Home | History | Annotate | Download | only in Analysis
      1 //===- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation -==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the generic AliasAnalysis interface which is used as the
     11 // common interface used by all clients and implementations of alias analysis.
     12 //
     13 // This file also implements the default version of the AliasAnalysis interface
     14 // that is to be used when no other implementation is specified.  This does some
     15 // simple tests that detect obvious cases: two different global pointers cannot
     16 // alias, a global cannot alias a malloc, two different mallocs cannot alias,
     17 // etc.
     18 //
     19 // This alias analysis implementation really isn't very good for anything, but
     20 // it is very fast, and makes a nice clean default implementation.  Because it
     21 // handles lots of little corner cases, other, more complex, alias analysis
     22 // implementations may choose to rely on this pass to resolve these simple and
     23 // easy cases.
     24 //
     25 //===----------------------------------------------------------------------===//
     26 
     27 #include "llvm/Analysis/AliasAnalysis.h"
     28 #include "llvm/Analysis/CFG.h"
     29 #include "llvm/Analysis/CaptureTracking.h"
     30 #include "llvm/Analysis/TargetLibraryInfo.h"
     31 #include "llvm/Analysis/ValueTracking.h"
     32 #include "llvm/IR/BasicBlock.h"
     33 #include "llvm/IR/DataLayout.h"
     34 #include "llvm/IR/Dominators.h"
     35 #include "llvm/IR/Function.h"
     36 #include "llvm/IR/Instructions.h"
     37 #include "llvm/IR/IntrinsicInst.h"
     38 #include "llvm/IR/LLVMContext.h"
     39 #include "llvm/IR/Type.h"
     40 #include "llvm/Pass.h"
     41 using namespace llvm;
     42 
     43 // Register the AliasAnalysis interface, providing a nice name to refer to.
     44 INITIALIZE_ANALYSIS_GROUP(AliasAnalysis, "Alias Analysis", NoAA)
     45 char AliasAnalysis::ID = 0;
     46 
     47 //===----------------------------------------------------------------------===//
     48 // Default chaining methods
     49 //===----------------------------------------------------------------------===//
     50 
     51 AliasAnalysis::AliasResult
     52 AliasAnalysis::alias(const Location &LocA, const Location &LocB) {
     53   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
     54   return AA->alias(LocA, LocB);
     55 }
     56 
     57 bool AliasAnalysis::pointsToConstantMemory(const Location &Loc,
     58                                            bool OrLocal) {
     59   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
     60   return AA->pointsToConstantMemory(Loc, OrLocal);
     61 }
     62 
     63 AliasAnalysis::Location
     64 AliasAnalysis::getArgLocation(ImmutableCallSite CS, unsigned ArgIdx,
     65                               AliasAnalysis::ModRefResult &Mask) {
     66   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
     67   return AA->getArgLocation(CS, ArgIdx, Mask);
     68 }
     69 
     70 void AliasAnalysis::deleteValue(Value *V) {
     71   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
     72   AA->deleteValue(V);
     73 }
     74 
     75 void AliasAnalysis::copyValue(Value *From, Value *To) {
     76   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
     77   AA->copyValue(From, To);
     78 }
     79 
     80 void AliasAnalysis::addEscapingUse(Use &U) {
     81   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
     82   AA->addEscapingUse(U);
     83 }
     84 
     85 AliasAnalysis::ModRefResult
     86 AliasAnalysis::getModRefInfo(Instruction *I, ImmutableCallSite Call) {
     87   // We may have two calls
     88   if (auto CS = ImmutableCallSite(I)) {
     89     // Check if the two calls modify the same memory
     90     return getModRefInfo(Call, CS);
     91   } else {
     92     // Otherwise, check if the call modifies or references the
     93     // location this memory access defines.  The best we can say
     94     // is that if the call references what this instruction
     95     // defines, it must be clobbered by this location.
     96     const AliasAnalysis::Location DefLoc = AA->getLocation(I);
     97     if (getModRefInfo(Call, DefLoc) != AliasAnalysis::NoModRef)
     98       return AliasAnalysis::ModRef;
     99   }
    100   return AliasAnalysis::NoModRef;
    101 }
    102 
    103 AliasAnalysis::ModRefResult
    104 AliasAnalysis::getModRefInfo(ImmutableCallSite CS,
    105                              const Location &Loc) {
    106   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
    107 
    108   ModRefBehavior MRB = getModRefBehavior(CS);
    109   if (MRB == DoesNotAccessMemory)
    110     return NoModRef;
    111 
    112   ModRefResult Mask = ModRef;
    113   if (onlyReadsMemory(MRB))
    114     Mask = Ref;
    115 
    116   if (onlyAccessesArgPointees(MRB)) {
    117     bool doesAlias = false;
    118     ModRefResult AllArgsMask = NoModRef;
    119     if (doesAccessArgPointees(MRB)) {
    120       for (ImmutableCallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
    121            AI != AE; ++AI) {
    122         const Value *Arg = *AI;
    123         if (!Arg->getType()->isPointerTy())
    124           continue;
    125         ModRefResult ArgMask;
    126         Location CSLoc =
    127           getArgLocation(CS, (unsigned) std::distance(CS.arg_begin(), AI),
    128                          ArgMask);
    129         if (!isNoAlias(CSLoc, Loc)) {
    130           doesAlias = true;
    131           AllArgsMask = ModRefResult(AllArgsMask | ArgMask);
    132         }
    133       }
    134     }
    135     if (!doesAlias)
    136       return NoModRef;
    137     Mask = ModRefResult(Mask & AllArgsMask);
    138   }
    139 
    140   // If Loc is a constant memory location, the call definitely could not
    141   // modify the memory location.
    142   if ((Mask & Mod) && pointsToConstantMemory(Loc))
    143     Mask = ModRefResult(Mask & ~Mod);
    144 
    145   // If this is the end of the chain, don't forward.
    146   if (!AA) return Mask;
    147 
    148   // Otherwise, fall back to the next AA in the chain. But we can merge
    149   // in any mask we've managed to compute.
    150   return ModRefResult(AA->getModRefInfo(CS, Loc) & Mask);
    151 }
    152 
    153 AliasAnalysis::ModRefResult
    154 AliasAnalysis::getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
    155   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
    156 
    157   // If CS1 or CS2 are readnone, they don't interact.
    158   ModRefBehavior CS1B = getModRefBehavior(CS1);
    159   if (CS1B == DoesNotAccessMemory) return NoModRef;
    160 
    161   ModRefBehavior CS2B = getModRefBehavior(CS2);
    162   if (CS2B == DoesNotAccessMemory) return NoModRef;
    163 
    164   // If they both only read from memory, there is no dependence.
    165   if (onlyReadsMemory(CS1B) && onlyReadsMemory(CS2B))
    166     return NoModRef;
    167 
    168   AliasAnalysis::ModRefResult Mask = ModRef;
    169 
    170   // If CS1 only reads memory, the only dependence on CS2 can be
    171   // from CS1 reading memory written by CS2.
    172   if (onlyReadsMemory(CS1B))
    173     Mask = ModRefResult(Mask & Ref);
    174 
    175   // If CS2 only access memory through arguments, accumulate the mod/ref
    176   // information from CS1's references to the memory referenced by
    177   // CS2's arguments.
    178   if (onlyAccessesArgPointees(CS2B)) {
    179     AliasAnalysis::ModRefResult R = NoModRef;
    180     if (doesAccessArgPointees(CS2B)) {
    181       for (ImmutableCallSite::arg_iterator
    182            I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) {
    183         const Value *Arg = *I;
    184         if (!Arg->getType()->isPointerTy())
    185           continue;
    186         ModRefResult ArgMask;
    187         Location CS2Loc =
    188           getArgLocation(CS2, (unsigned) std::distance(CS2.arg_begin(), I),
    189                          ArgMask);
    190         // ArgMask indicates what CS2 might do to CS2Loc, and the dependence of
    191         // CS1 on that location is the inverse.
    192         if (ArgMask == Mod)
    193           ArgMask = ModRef;
    194         else if (ArgMask == Ref)
    195           ArgMask = Mod;
    196 
    197         R = ModRefResult((R | (getModRefInfo(CS1, CS2Loc) & ArgMask)) & Mask);
    198         if (R == Mask)
    199           break;
    200       }
    201     }
    202     return R;
    203   }
    204 
    205   // If CS1 only accesses memory through arguments, check if CS2 references
    206   // any of the memory referenced by CS1's arguments. If not, return NoModRef.
    207   if (onlyAccessesArgPointees(CS1B)) {
    208     AliasAnalysis::ModRefResult R = NoModRef;
    209     if (doesAccessArgPointees(CS1B)) {
    210       for (ImmutableCallSite::arg_iterator
    211            I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I) {
    212         const Value *Arg = *I;
    213         if (!Arg->getType()->isPointerTy())
    214           continue;
    215         ModRefResult ArgMask;
    216         Location CS1Loc = getArgLocation(
    217             CS1, (unsigned)std::distance(CS1.arg_begin(), I), ArgMask);
    218         // ArgMask indicates what CS1 might do to CS1Loc; if CS1 might Mod
    219         // CS1Loc, then we care about either a Mod or a Ref by CS2. If CS1
    220         // might Ref, then we care only about a Mod by CS2.
    221         ModRefResult ArgR = getModRefInfo(CS2, CS1Loc);
    222         if (((ArgMask & Mod) != NoModRef && (ArgR & ModRef) != NoModRef) ||
    223             ((ArgMask & Ref) != NoModRef && (ArgR & Mod)    != NoModRef))
    224           R = ModRefResult((R | ArgMask) & Mask);
    225 
    226         if (R == Mask)
    227           break;
    228       }
    229     }
    230     return R;
    231   }
    232 
    233   // If this is the end of the chain, don't forward.
    234   if (!AA) return Mask;
    235 
    236   // Otherwise, fall back to the next AA in the chain. But we can merge
    237   // in any mask we've managed to compute.
    238   return ModRefResult(AA->getModRefInfo(CS1, CS2) & Mask);
    239 }
    240 
    241 AliasAnalysis::ModRefBehavior
    242 AliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
    243   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
    244 
    245   ModRefBehavior Min = UnknownModRefBehavior;
    246 
    247   // Call back into the alias analysis with the other form of getModRefBehavior
    248   // to see if it can give a better response.
    249   if (const Function *F = CS.getCalledFunction())
    250     Min = getModRefBehavior(F);
    251 
    252   // If this is the end of the chain, don't forward.
    253   if (!AA) return Min;
    254 
    255   // Otherwise, fall back to the next AA in the chain. But we can merge
    256   // in any result we've managed to compute.
    257   return ModRefBehavior(AA->getModRefBehavior(CS) & Min);
    258 }
    259 
    260 AliasAnalysis::ModRefBehavior
    261 AliasAnalysis::getModRefBehavior(const Function *F) {
    262   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
    263   return AA->getModRefBehavior(F);
    264 }
    265 
    266 //===----------------------------------------------------------------------===//
    267 // AliasAnalysis non-virtual helper method implementation
    268 //===----------------------------------------------------------------------===//
    269 
    270 AliasAnalysis::Location AliasAnalysis::getLocation(const LoadInst *LI) {
    271   AAMDNodes AATags;
    272   LI->getAAMetadata(AATags);
    273 
    274   return Location(LI->getPointerOperand(),
    275                   getTypeStoreSize(LI->getType()), AATags);
    276 }
    277 
    278 AliasAnalysis::Location AliasAnalysis::getLocation(const StoreInst *SI) {
    279   AAMDNodes AATags;
    280   SI->getAAMetadata(AATags);
    281 
    282   return Location(SI->getPointerOperand(),
    283                   getTypeStoreSize(SI->getValueOperand()->getType()), AATags);
    284 }
    285 
    286 AliasAnalysis::Location AliasAnalysis::getLocation(const VAArgInst *VI) {
    287   AAMDNodes AATags;
    288   VI->getAAMetadata(AATags);
    289 
    290   return Location(VI->getPointerOperand(), UnknownSize, AATags);
    291 }
    292 
    293 AliasAnalysis::Location
    294 AliasAnalysis::getLocation(const AtomicCmpXchgInst *CXI) {
    295   AAMDNodes AATags;
    296   CXI->getAAMetadata(AATags);
    297 
    298   return Location(CXI->getPointerOperand(),
    299                   getTypeStoreSize(CXI->getCompareOperand()->getType()),
    300                   AATags);
    301 }
    302 
    303 AliasAnalysis::Location
    304 AliasAnalysis::getLocation(const AtomicRMWInst *RMWI) {
    305   AAMDNodes AATags;
    306   RMWI->getAAMetadata(AATags);
    307 
    308   return Location(RMWI->getPointerOperand(),
    309                   getTypeStoreSize(RMWI->getValOperand()->getType()), AATags);
    310 }
    311 
    312 AliasAnalysis::Location
    313 AliasAnalysis::getLocationForSource(const MemTransferInst *MTI) {
    314   uint64_t Size = UnknownSize;
    315   if (ConstantInt *C = dyn_cast<ConstantInt>(MTI->getLength()))
    316     Size = C->getValue().getZExtValue();
    317 
    318   // memcpy/memmove can have AA tags. For memcpy, they apply
    319   // to both the source and the destination.
    320   AAMDNodes AATags;
    321   MTI->getAAMetadata(AATags);
    322 
    323   return Location(MTI->getRawSource(), Size, AATags);
    324 }
    325 
    326 AliasAnalysis::Location
    327 AliasAnalysis::getLocationForDest(const MemIntrinsic *MTI) {
    328   uint64_t Size = UnknownSize;
    329   if (ConstantInt *C = dyn_cast<ConstantInt>(MTI->getLength()))
    330     Size = C->getValue().getZExtValue();
    331 
    332   // memcpy/memmove can have AA tags. For memcpy, they apply
    333   // to both the source and the destination.
    334   AAMDNodes AATags;
    335   MTI->getAAMetadata(AATags);
    336 
    337   return Location(MTI->getRawDest(), Size, AATags);
    338 }
    339 
    340 
    341 
    342 AliasAnalysis::ModRefResult
    343 AliasAnalysis::getModRefInfo(const LoadInst *L, const Location &Loc) {
    344   // Be conservative in the face of volatile/atomic.
    345   if (!L->isUnordered())
    346     return ModRef;
    347 
    348   // If the load address doesn't alias the given address, it doesn't read
    349   // or write the specified memory.
    350   if (Loc.Ptr && !alias(getLocation(L), Loc))
    351     return NoModRef;
    352 
    353   // Otherwise, a load just reads.
    354   return Ref;
    355 }
    356 
    357 AliasAnalysis::ModRefResult
    358 AliasAnalysis::getModRefInfo(const StoreInst *S, const Location &Loc) {
    359   // Be conservative in the face of volatile/atomic.
    360   if (!S->isUnordered())
    361     return ModRef;
    362 
    363   if (Loc.Ptr) {
    364     // If the store address cannot alias the pointer in question, then the
    365     // specified memory cannot be modified by the store.
    366     if (!alias(getLocation(S), Loc))
    367       return NoModRef;
    368 
    369     // If the pointer is a pointer to constant memory, then it could not have
    370     // been modified by this store.
    371     if (pointsToConstantMemory(Loc))
    372       return NoModRef;
    373 
    374   }
    375 
    376   // Otherwise, a store just writes.
    377   return Mod;
    378 }
    379 
    380 AliasAnalysis::ModRefResult
    381 AliasAnalysis::getModRefInfo(const VAArgInst *V, const Location &Loc) {
    382   // If the va_arg address cannot alias the pointer in question, then the
    383   // specified memory cannot be accessed by the va_arg.
    384   if (!alias(getLocation(V), Loc))
    385     return NoModRef;
    386 
    387   // If the pointer is a pointer to constant memory, then it could not have been
    388   // modified by this va_arg.
    389   if (pointsToConstantMemory(Loc))
    390     return NoModRef;
    391 
    392   // Otherwise, a va_arg reads and writes.
    393   return ModRef;
    394 }
    395 
    396 AliasAnalysis::ModRefResult
    397 AliasAnalysis::getModRefInfo(const AtomicCmpXchgInst *CX, const Location &Loc) {
    398   // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
    399   if (CX->getSuccessOrdering() > Monotonic)
    400     return ModRef;
    401 
    402   // If the cmpxchg address does not alias the location, it does not access it.
    403   if (!alias(getLocation(CX), Loc))
    404     return NoModRef;
    405 
    406   return ModRef;
    407 }
    408 
    409 AliasAnalysis::ModRefResult
    410 AliasAnalysis::getModRefInfo(const AtomicRMWInst *RMW, const Location &Loc) {
    411   // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
    412   if (RMW->getOrdering() > Monotonic)
    413     return ModRef;
    414 
    415   // If the atomicrmw address does not alias the location, it does not access it.
    416   if (!alias(getLocation(RMW), Loc))
    417     return NoModRef;
    418 
    419   return ModRef;
    420 }
    421 
    422 // FIXME: this is really just shoring-up a deficiency in alias analysis.
    423 // BasicAA isn't willing to spend linear time determining whether an alloca
    424 // was captured before or after this particular call, while we are. However,
    425 // with a smarter AA in place, this test is just wasting compile time.
    426 AliasAnalysis::ModRefResult
    427 AliasAnalysis::callCapturesBefore(const Instruction *I,
    428                                   const AliasAnalysis::Location &MemLoc,
    429                                   DominatorTree *DT) {
    430   if (!DT)
    431     return AliasAnalysis::ModRef;
    432 
    433   const Value *Object = GetUnderlyingObject(MemLoc.Ptr, *DL);
    434   if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) ||
    435       isa<Constant>(Object))
    436     return AliasAnalysis::ModRef;
    437 
    438   ImmutableCallSite CS(I);
    439   if (!CS.getInstruction() || CS.getInstruction() == Object)
    440     return AliasAnalysis::ModRef;
    441 
    442   if (llvm::PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true,
    443                                        /* StoreCaptures */ true, I, DT,
    444                                        /* include Object */ true))
    445     return AliasAnalysis::ModRef;
    446 
    447   unsigned ArgNo = 0;
    448   AliasAnalysis::ModRefResult R = AliasAnalysis::NoModRef;
    449   for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
    450        CI != CE; ++CI, ++ArgNo) {
    451     // Only look at the no-capture or byval pointer arguments.  If this
    452     // pointer were passed to arguments that were neither of these, then it
    453     // couldn't be no-capture.
    454     if (!(*CI)->getType()->isPointerTy() ||
    455         (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo)))
    456       continue;
    457 
    458     // If this is a no-capture pointer argument, see if we can tell that it
    459     // is impossible to alias the pointer we're checking.  If not, we have to
    460     // assume that the call could touch the pointer, even though it doesn't
    461     // escape.
    462     if (isNoAlias(AliasAnalysis::Location(*CI),
    463                   AliasAnalysis::Location(Object)))
    464       continue;
    465     if (CS.doesNotAccessMemory(ArgNo))
    466       continue;
    467     if (CS.onlyReadsMemory(ArgNo)) {
    468       R = AliasAnalysis::Ref;
    469       continue;
    470     }
    471     return AliasAnalysis::ModRef;
    472   }
    473   return R;
    474 }
    475 
    476 // AliasAnalysis destructor: DO NOT move this to the header file for
    477 // AliasAnalysis or else clients of the AliasAnalysis class may not depend on
    478 // the AliasAnalysis.o file in the current .a file, causing alias analysis
    479 // support to not be included in the tool correctly!
    480 //
    481 AliasAnalysis::~AliasAnalysis() {}
    482 
    483 /// InitializeAliasAnalysis - Subclasses must call this method to initialize the
    484 /// AliasAnalysis interface before any other methods are called.
    485 ///
    486 void AliasAnalysis::InitializeAliasAnalysis(Pass *P, const DataLayout *NewDL) {
    487   DL = NewDL;
    488   auto *TLIP = P->getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
    489   TLI = TLIP ? &TLIP->getTLI() : nullptr;
    490   AA = &P->getAnalysis<AliasAnalysis>();
    491 }
    492 
    493 // getAnalysisUsage - All alias analysis implementations should invoke this
    494 // directly (using AliasAnalysis::getAnalysisUsage(AU)).
    495 void AliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
    496   AU.addRequired<AliasAnalysis>();         // All AA's chain
    497 }
    498 
    499 /// getTypeStoreSize - Return the DataLayout store size for the given type,
    500 /// if known, or a conservative value otherwise.
    501 ///
    502 uint64_t AliasAnalysis::getTypeStoreSize(Type *Ty) {
    503   return DL ? DL->getTypeStoreSize(Ty) : UnknownSize;
    504 }
    505 
    506 /// canBasicBlockModify - Return true if it is possible for execution of the
    507 /// specified basic block to modify the location Loc.
    508 ///
    509 bool AliasAnalysis::canBasicBlockModify(const BasicBlock &BB,
    510                                         const Location &Loc) {
    511   return canInstructionRangeModRef(BB.front(), BB.back(), Loc, Mod);
    512 }
    513 
    514 /// canInstructionRangeModRef - Return true if it is possible for the
    515 /// execution of the specified instructions to mod\ref (according to the
    516 /// mode) the location Loc. The instructions to consider are all
    517 /// of the instructions in the range of [I1,I2] INCLUSIVE.
    518 /// I1 and I2 must be in the same basic block.
    519 bool AliasAnalysis::canInstructionRangeModRef(const Instruction &I1,
    520                                               const Instruction &I2,
    521                                               const Location &Loc,
    522                                               const ModRefResult Mode) {
    523   assert(I1.getParent() == I2.getParent() &&
    524          "Instructions not in same basic block!");
    525   BasicBlock::const_iterator I = &I1;
    526   BasicBlock::const_iterator E = &I2;
    527   ++E;  // Convert from inclusive to exclusive range.
    528 
    529   for (; I != E; ++I) // Check every instruction in range
    530     if (getModRefInfo(I, Loc) & Mode)
    531       return true;
    532   return false;
    533 }
    534 
    535 /// isNoAliasCall - Return true if this pointer is returned by a noalias
    536 /// function.
    537 bool llvm::isNoAliasCall(const Value *V) {
    538   if (isa<CallInst>(V) || isa<InvokeInst>(V))
    539     return ImmutableCallSite(cast<Instruction>(V))
    540       .paramHasAttr(0, Attribute::NoAlias);
    541   return false;
    542 }
    543 
    544 /// isNoAliasArgument - Return true if this is an argument with the noalias
    545 /// attribute.
    546 bool llvm::isNoAliasArgument(const Value *V)
    547 {
    548   if (const Argument *A = dyn_cast<Argument>(V))
    549     return A->hasNoAliasAttr();
    550   return false;
    551 }
    552 
    553 /// isIdentifiedObject - Return true if this pointer refers to a distinct and
    554 /// identifiable object.  This returns true for:
    555 ///    Global Variables and Functions (but not Global Aliases)
    556 ///    Allocas and Mallocs
    557 ///    ByVal and NoAlias Arguments
    558 ///    NoAlias returns
    559 ///
    560 bool llvm::isIdentifiedObject(const Value *V) {
    561   if (isa<AllocaInst>(V))
    562     return true;
    563   if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
    564     return true;
    565   if (isNoAliasCall(V))
    566     return true;
    567   if (const Argument *A = dyn_cast<Argument>(V))
    568     return A->hasNoAliasAttr() || A->hasByValAttr();
    569   return false;
    570 }
    571 
    572 /// isIdentifiedFunctionLocal - Return true if V is umabigously identified
    573 /// at the function-level. Different IdentifiedFunctionLocals can't alias.
    574 /// Further, an IdentifiedFunctionLocal can not alias with any function
    575 /// arguments other than itself, which is not necessarily true for
    576 /// IdentifiedObjects.
    577 bool llvm::isIdentifiedFunctionLocal(const Value *V)
    578 {
    579   return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V);
    580 }
    581