Home | History | Annotate | Download | only in Analysis
      1 //===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the generic AliasAnalysis interface, which is used as the
     11 // common interface used by all clients of alias analysis information, and
     12 // implemented by all alias analysis implementations.  Mod/Ref information is
     13 // also captured by this interface.
     14 //
     15 // Implementations of this interface must implement the various virtual methods,
     16 // which automatically provides functionality for the entire suite of client
     17 // APIs.
     18 //
     19 // This API identifies memory regions with the Location class. The pointer
     20 // component specifies the base memory address of the region. The Size specifies
     21 // the maximum size (in address units) of the memory region, or UnknownSize if
     22 // the size is not known. The TBAA tag identifies the "type" of the memory
     23 // reference; see the TypeBasedAliasAnalysis class for details.
     24 //
     25 // Some non-obvious details include:
     26 //  - Pointers that point to two completely different objects in memory never
     27 //    alias, regardless of the value of the Size component.
     28 //  - NoAlias doesn't imply inequal pointers. The most obvious example of this
     29 //    is two pointers to constant memory. Even if they are equal, constant
     30 //    memory is never stored to, so there will never be any dependencies.
     31 //    In this and other situations, the pointers may be both NoAlias and
     32 //    MustAlias at the same time. The current API can only return one result,
     33 //    though this is rarely a problem in practice.
     34 //
     35 //===----------------------------------------------------------------------===//
     36 
     37 #ifndef LLVM_ANALYSIS_ALIASANALYSIS_H
     38 #define LLVM_ANALYSIS_ALIASANALYSIS_H
     39 
     40 #include "llvm/ADT/DenseMap.h"
     41 #include "llvm/IR/CallSite.h"
     42 #include "llvm/IR/Metadata.h"
     43 
     44 namespace llvm {
     45 
     46 class LoadInst;
     47 class StoreInst;
     48 class VAArgInst;
     49 class DataLayout;
     50 class TargetLibraryInfo;
     51 class Pass;
     52 class AnalysisUsage;
     53 class MemTransferInst;
     54 class MemIntrinsic;
     55 class DominatorTree;
     56 
     57 class AliasAnalysis {
     58 protected:
     59   const DataLayout *DL;
     60   const TargetLibraryInfo *TLI;
     61 
     62 private:
     63   AliasAnalysis *AA;       // Previous Alias Analysis to chain to.
     64 
     65 protected:
     66   /// InitializeAliasAnalysis - Subclasses must call this method to initialize
     67   /// the AliasAnalysis interface before any other methods are called.  This is
     68   /// typically called by the run* methods of these subclasses.  This may be
     69   /// called multiple times.
     70   ///
     71   void InitializeAliasAnalysis(Pass *P, const DataLayout *DL);
     72 
     73   /// getAnalysisUsage - All alias analysis implementations should invoke this
     74   /// directly (using AliasAnalysis::getAnalysisUsage(AU)).
     75   virtual void getAnalysisUsage(AnalysisUsage &AU) const;
     76 
     77 public:
     78   static char ID; // Class identification, replacement for typeinfo
     79   AliasAnalysis() : DL(nullptr), TLI(nullptr), AA(nullptr) {}
     80   virtual ~AliasAnalysis();  // We want to be subclassed
     81 
     82   /// UnknownSize - This is a special value which can be used with the
     83   /// size arguments in alias queries to indicate that the caller does not
     84   /// know the sizes of the potential memory references.
     85   static uint64_t const UnknownSize = ~UINT64_C(0);
     86 
     87   /// getTargetLibraryInfo - Return a pointer to the current TargetLibraryInfo
     88   /// object, or null if no TargetLibraryInfo object is available.
     89   ///
     90   const TargetLibraryInfo *getTargetLibraryInfo() const { return TLI; }
     91 
     92   /// getTypeStoreSize - Return the DataLayout store size for the given type,
     93   /// if known, or a conservative value otherwise.
     94   ///
     95   uint64_t getTypeStoreSize(Type *Ty);
     96 
     97   //===--------------------------------------------------------------------===//
     98   /// Alias Queries...
     99   ///
    100 
    101   /// Location - A description of a memory location.
    102   struct Location {
    103     /// Ptr - The address of the start of the location.
    104     const Value *Ptr;
    105     /// Size - The maximum size of the location, in address-units, or
    106     /// UnknownSize if the size is not known.  Note that an unknown size does
    107     /// not mean the pointer aliases the entire virtual address space, because
    108     /// there are restrictions on stepping out of one object and into another.
    109     /// See http://llvm.org/docs/LangRef.html#pointeraliasing
    110     uint64_t Size;
    111     /// AATags - The metadata nodes which describes the aliasing of the
    112     /// location (each member is null if that kind of information is
    113     /// unavailable)..
    114     AAMDNodes AATags;
    115 
    116     explicit Location(const Value *P = nullptr, uint64_t S = UnknownSize,
    117                       const AAMDNodes &N = AAMDNodes())
    118       : Ptr(P), Size(S), AATags(N) {}
    119 
    120     Location getWithNewPtr(const Value *NewPtr) const {
    121       Location Copy(*this);
    122       Copy.Ptr = NewPtr;
    123       return Copy;
    124     }
    125 
    126     Location getWithNewSize(uint64_t NewSize) const {
    127       Location Copy(*this);
    128       Copy.Size = NewSize;
    129       return Copy;
    130     }
    131 
    132     Location getWithoutAATags() const {
    133       Location Copy(*this);
    134       Copy.AATags = AAMDNodes();
    135       return Copy;
    136     }
    137   };
    138 
    139   /// getLocation - Fill in Loc with information about the memory reference by
    140   /// the given instruction.
    141   Location getLocation(const LoadInst *LI);
    142   Location getLocation(const StoreInst *SI);
    143   Location getLocation(const VAArgInst *VI);
    144   Location getLocation(const AtomicCmpXchgInst *CXI);
    145   Location getLocation(const AtomicRMWInst *RMWI);
    146   static Location getLocationForSource(const MemTransferInst *MTI);
    147   static Location getLocationForDest(const MemIntrinsic *MI);
    148   Location getLocation(const Instruction *Inst) {
    149     if (auto *I = dyn_cast<LoadInst>(Inst))
    150       return getLocation(I);
    151     else if (auto *I = dyn_cast<StoreInst>(Inst))
    152       return getLocation(I);
    153     else if (auto *I = dyn_cast<VAArgInst>(Inst))
    154       return getLocation(I);
    155     else if (auto *I = dyn_cast<AtomicCmpXchgInst>(Inst))
    156       return getLocation(I);
    157     else if (auto *I = dyn_cast<AtomicRMWInst>(Inst))
    158       return getLocation(I);
    159     llvm_unreachable("unsupported memory instruction");
    160   }
    161 
    162   /// Alias analysis result - Either we know for sure that it does not alias, we
    163   /// know for sure it must alias, or we don't know anything: The two pointers
    164   /// _might_ alias.  This enum is designed so you can do things like:
    165   ///     if (AA.alias(P1, P2)) { ... }
    166   /// to check to see if two pointers might alias.
    167   ///
    168   /// See docs/AliasAnalysis.html for more information on the specific meanings
    169   /// of these values.
    170   ///
    171   enum AliasResult {
    172     NoAlias = 0,        ///< No dependencies.
    173     MayAlias,           ///< Anything goes.
    174     PartialAlias,       ///< Pointers differ, but pointees overlap.
    175     MustAlias           ///< Pointers are equal.
    176   };
    177 
    178   /// alias - The main low level interface to the alias analysis implementation.
    179   /// Returns an AliasResult indicating whether the two pointers are aliased to
    180   /// each other.  This is the interface that must be implemented by specific
    181   /// alias analysis implementations.
    182   virtual AliasResult alias(const Location &LocA, const Location &LocB);
    183 
    184   /// alias - A convenience wrapper.
    185   AliasResult alias(const Value *V1, uint64_t V1Size,
    186                     const Value *V2, uint64_t V2Size) {
    187     return alias(Location(V1, V1Size), Location(V2, V2Size));
    188   }
    189 
    190   /// alias - A convenience wrapper.
    191   AliasResult alias(const Value *V1, const Value *V2) {
    192     return alias(V1, UnknownSize, V2, UnknownSize);
    193   }
    194 
    195   /// isNoAlias - A trivial helper function to check to see if the specified
    196   /// pointers are no-alias.
    197   bool isNoAlias(const Location &LocA, const Location &LocB) {
    198     return alias(LocA, LocB) == NoAlias;
    199   }
    200 
    201   /// isNoAlias - A convenience wrapper.
    202   bool isNoAlias(const Value *V1, uint64_t V1Size,
    203                  const Value *V2, uint64_t V2Size) {
    204     return isNoAlias(Location(V1, V1Size), Location(V2, V2Size));
    205   }
    206 
    207   /// isNoAlias - A convenience wrapper.
    208   bool isNoAlias(const Value *V1, const Value *V2) {
    209     return isNoAlias(Location(V1), Location(V2));
    210   }
    211 
    212   /// isMustAlias - A convenience wrapper.
    213   bool isMustAlias(const Location &LocA, const Location &LocB) {
    214     return alias(LocA, LocB) == MustAlias;
    215   }
    216 
    217   /// isMustAlias - A convenience wrapper.
    218   bool isMustAlias(const Value *V1, const Value *V2) {
    219     return alias(V1, 1, V2, 1) == MustAlias;
    220   }
    221 
    222   /// pointsToConstantMemory - If the specified memory location is
    223   /// known to be constant, return true. If OrLocal is true and the
    224   /// specified memory location is known to be "local" (derived from
    225   /// an alloca), return true. Otherwise return false.
    226   virtual bool pointsToConstantMemory(const Location &Loc,
    227                                       bool OrLocal = false);
    228 
    229   /// pointsToConstantMemory - A convenient wrapper.
    230   bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
    231     return pointsToConstantMemory(Location(P), OrLocal);
    232   }
    233 
    234   //===--------------------------------------------------------------------===//
    235   /// Simple mod/ref information...
    236   ///
    237 
    238   /// ModRefResult - Represent the result of a mod/ref query.  Mod and Ref are
    239   /// bits which may be or'd together.
    240   ///
    241   enum ModRefResult { NoModRef = 0, Ref = 1, Mod = 2, ModRef = 3 };
    242 
    243   /// These values define additional bits used to define the
    244   /// ModRefBehavior values.
    245   enum { Nowhere = 0, ArgumentPointees = 4, Anywhere = 8 | ArgumentPointees };
    246 
    247   /// ModRefBehavior - Summary of how a function affects memory in the program.
    248   /// Loads from constant globals are not considered memory accesses for this
    249   /// interface.  Also, functions may freely modify stack space local to their
    250   /// invocation without having to report it through these interfaces.
    251   enum ModRefBehavior {
    252     /// DoesNotAccessMemory - This function does not perform any non-local loads
    253     /// or stores to memory.
    254     ///
    255     /// This property corresponds to the GCC 'const' attribute.
    256     /// This property corresponds to the LLVM IR 'readnone' attribute.
    257     /// This property corresponds to the IntrNoMem LLVM intrinsic flag.
    258     DoesNotAccessMemory = Nowhere | NoModRef,
    259 
    260     /// OnlyReadsArgumentPointees - The only memory references in this function
    261     /// (if it has any) are non-volatile loads from objects pointed to by its
    262     /// pointer-typed arguments, with arbitrary offsets.
    263     ///
    264     /// This property corresponds to the IntrReadArgMem LLVM intrinsic flag.
    265     OnlyReadsArgumentPointees = ArgumentPointees | Ref,
    266 
    267     /// OnlyAccessesArgumentPointees - The only memory references in this
    268     /// function (if it has any) are non-volatile loads and stores from objects
    269     /// pointed to by its pointer-typed arguments, with arbitrary offsets.
    270     ///
    271     /// This property corresponds to the IntrReadWriteArgMem LLVM intrinsic flag.
    272     OnlyAccessesArgumentPointees = ArgumentPointees | ModRef,
    273 
    274     /// OnlyReadsMemory - This function does not perform any non-local stores or
    275     /// volatile loads, but may read from any memory location.
    276     ///
    277     /// This property corresponds to the GCC 'pure' attribute.
    278     /// This property corresponds to the LLVM IR 'readonly' attribute.
    279     /// This property corresponds to the IntrReadMem LLVM intrinsic flag.
    280     OnlyReadsMemory = Anywhere | Ref,
    281 
    282     /// UnknownModRefBehavior - This indicates that the function could not be
    283     /// classified into one of the behaviors above.
    284     UnknownModRefBehavior = Anywhere | ModRef
    285   };
    286 
    287   /// Get the location associated with a pointer argument of a callsite.
    288   /// The mask bits are set to indicate the allowed aliasing ModRef kinds.
    289   /// Note that these mask bits do not necessarily account for the overall
    290   /// behavior of the function, but rather only provide additional
    291   /// per-argument information.
    292   virtual Location getArgLocation(ImmutableCallSite CS, unsigned ArgIdx,
    293                                   ModRefResult &Mask);
    294 
    295   /// getModRefBehavior - Return the behavior when calling the given call site.
    296   virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
    297 
    298   /// getModRefBehavior - Return the behavior when calling the given function.
    299   /// For use when the call site is not known.
    300   virtual ModRefBehavior getModRefBehavior(const Function *F);
    301 
    302   /// doesNotAccessMemory - If the specified call is known to never read or
    303   /// write memory, return true.  If the call only reads from known-constant
    304   /// memory, it is also legal to return true.  Calls that unwind the stack
    305   /// are legal for this predicate.
    306   ///
    307   /// Many optimizations (such as CSE and LICM) can be performed on such calls
    308   /// without worrying about aliasing properties, and many calls have this
    309   /// property (e.g. calls to 'sin' and 'cos').
    310   ///
    311   /// This property corresponds to the GCC 'const' attribute.
    312   ///
    313   bool doesNotAccessMemory(ImmutableCallSite CS) {
    314     return getModRefBehavior(CS) == DoesNotAccessMemory;
    315   }
    316 
    317   /// doesNotAccessMemory - If the specified function is known to never read or
    318   /// write memory, return true.  For use when the call site is not known.
    319   ///
    320   bool doesNotAccessMemory(const Function *F) {
    321     return getModRefBehavior(F) == DoesNotAccessMemory;
    322   }
    323 
    324   /// onlyReadsMemory - If the specified call is known to only read from
    325   /// non-volatile memory (or not access memory at all), return true.  Calls
    326   /// that unwind the stack are legal for this predicate.
    327   ///
    328   /// This property allows many common optimizations to be performed in the
    329   /// absence of interfering store instructions, such as CSE of strlen calls.
    330   ///
    331   /// This property corresponds to the GCC 'pure' attribute.
    332   ///
    333   bool onlyReadsMemory(ImmutableCallSite CS) {
    334     return onlyReadsMemory(getModRefBehavior(CS));
    335   }
    336 
    337   /// onlyReadsMemory - If the specified function is known to only read from
    338   /// non-volatile memory (or not access memory at all), return true.  For use
    339   /// when the call site is not known.
    340   ///
    341   bool onlyReadsMemory(const Function *F) {
    342     return onlyReadsMemory(getModRefBehavior(F));
    343   }
    344 
    345   /// onlyReadsMemory - Return true if functions with the specified behavior are
    346   /// known to only read from non-volatile memory (or not access memory at all).
    347   ///
    348   static bool onlyReadsMemory(ModRefBehavior MRB) {
    349     return !(MRB & Mod);
    350   }
    351 
    352   /// onlyAccessesArgPointees - Return true if functions with the specified
    353   /// behavior are known to read and write at most from objects pointed to by
    354   /// their pointer-typed arguments (with arbitrary offsets).
    355   ///
    356   static bool onlyAccessesArgPointees(ModRefBehavior MRB) {
    357     return !(MRB & Anywhere & ~ArgumentPointees);
    358   }
    359 
    360   /// doesAccessArgPointees - Return true if functions with the specified
    361   /// behavior are known to potentially read or write from objects pointed
    362   /// to be their pointer-typed arguments (with arbitrary offsets).
    363   ///
    364   static bool doesAccessArgPointees(ModRefBehavior MRB) {
    365     return (MRB & ModRef) && (MRB & ArgumentPointees);
    366   }
    367 
    368   /// getModRefInfo - Return information about whether or not an
    369   /// instruction may read or write memory (without regard to a
    370   /// specific location)
    371   ModRefResult getModRefInfo(const Instruction *I) {
    372     if (auto CS = ImmutableCallSite(I)) {
    373       auto MRB = getModRefBehavior(CS);
    374       if (MRB & ModRef)
    375         return ModRef;
    376       else if (MRB & Ref)
    377         return Ref;
    378       else if (MRB & Mod)
    379         return Mod;
    380       return NoModRef;
    381     }
    382 
    383     return getModRefInfo(I, Location());
    384   }
    385 
    386   /// getModRefInfo - Return information about whether or not an instruction may
    387   /// read or write the specified memory location.  An instruction
    388   /// that doesn't read or write memory may be trivially LICM'd for example.
    389   ModRefResult getModRefInfo(const Instruction *I,
    390                              const Location &Loc) {
    391     switch (I->getOpcode()) {
    392     case Instruction::VAArg:  return getModRefInfo((const VAArgInst*)I, Loc);
    393     case Instruction::Load:   return getModRefInfo((const LoadInst*)I,  Loc);
    394     case Instruction::Store:  return getModRefInfo((const StoreInst*)I, Loc);
    395     case Instruction::Fence:  return getModRefInfo((const FenceInst*)I, Loc);
    396     case Instruction::AtomicCmpXchg:
    397       return getModRefInfo((const AtomicCmpXchgInst*)I, Loc);
    398     case Instruction::AtomicRMW:
    399       return getModRefInfo((const AtomicRMWInst*)I, Loc);
    400     case Instruction::Call:   return getModRefInfo((const CallInst*)I,  Loc);
    401     case Instruction::Invoke: return getModRefInfo((const InvokeInst*)I,Loc);
    402     default:                  return NoModRef;
    403     }
    404   }
    405 
    406   /// getModRefInfo - A convenience wrapper.
    407   ModRefResult getModRefInfo(const Instruction *I,
    408                              const Value *P, uint64_t Size) {
    409     return getModRefInfo(I, Location(P, Size));
    410   }
    411 
    412   /// getModRefInfo (for call sites) - Return information about whether
    413   /// a particular call site modifies or reads the specified memory location.
    414   virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
    415                                      const Location &Loc);
    416 
    417   /// getModRefInfo (for call sites) - A convenience wrapper.
    418   ModRefResult getModRefInfo(ImmutableCallSite CS,
    419                              const Value *P, uint64_t Size) {
    420     return getModRefInfo(CS, Location(P, Size));
    421   }
    422 
    423   /// getModRefInfo (for calls) - Return information about whether
    424   /// a particular call modifies or reads the specified memory location.
    425   ModRefResult getModRefInfo(const CallInst *C, const Location &Loc) {
    426     return getModRefInfo(ImmutableCallSite(C), Loc);
    427   }
    428 
    429   /// getModRefInfo (for calls) - A convenience wrapper.
    430   ModRefResult getModRefInfo(const CallInst *C, const Value *P, uint64_t Size) {
    431     return getModRefInfo(C, Location(P, Size));
    432   }
    433 
    434   /// getModRefInfo (for invokes) - Return information about whether
    435   /// a particular invoke modifies or reads the specified memory location.
    436   ModRefResult getModRefInfo(const InvokeInst *I,
    437                              const Location &Loc) {
    438     return getModRefInfo(ImmutableCallSite(I), Loc);
    439   }
    440 
    441   /// getModRefInfo (for invokes) - A convenience wrapper.
    442   ModRefResult getModRefInfo(const InvokeInst *I,
    443                              const Value *P, uint64_t Size) {
    444     return getModRefInfo(I, Location(P, Size));
    445   }
    446 
    447   /// getModRefInfo (for loads) - Return information about whether
    448   /// a particular load modifies or reads the specified memory location.
    449   ModRefResult getModRefInfo(const LoadInst *L, const Location &Loc);
    450 
    451   /// getModRefInfo (for loads) - A convenience wrapper.
    452   ModRefResult getModRefInfo(const LoadInst *L, const Value *P, uint64_t Size) {
    453     return getModRefInfo(L, Location(P, Size));
    454   }
    455 
    456   /// getModRefInfo (for stores) - Return information about whether
    457   /// a particular store modifies or reads the specified memory location.
    458   ModRefResult getModRefInfo(const StoreInst *S, const Location &Loc);
    459 
    460   /// getModRefInfo (for stores) - A convenience wrapper.
    461   ModRefResult getModRefInfo(const StoreInst *S, const Value *P, uint64_t Size){
    462     return getModRefInfo(S, Location(P, Size));
    463   }
    464 
    465   /// getModRefInfo (for fences) - Return information about whether
    466   /// a particular store modifies or reads the specified memory location.
    467   ModRefResult getModRefInfo(const FenceInst *S, const Location &Loc) {
    468     // Conservatively correct.  (We could possibly be a bit smarter if
    469     // Loc is a alloca that doesn't escape.)
    470     return ModRef;
    471   }
    472 
    473   /// getModRefInfo (for fences) - A convenience wrapper.
    474   ModRefResult getModRefInfo(const FenceInst *S, const Value *P, uint64_t Size){
    475     return getModRefInfo(S, Location(P, Size));
    476   }
    477 
    478   /// getModRefInfo (for cmpxchges) - Return information about whether
    479   /// a particular cmpxchg modifies or reads the specified memory location.
    480   ModRefResult getModRefInfo(const AtomicCmpXchgInst *CX, const Location &Loc);
    481 
    482   /// getModRefInfo (for cmpxchges) - A convenience wrapper.
    483   ModRefResult getModRefInfo(const AtomicCmpXchgInst *CX,
    484                              const Value *P, unsigned Size) {
    485     return getModRefInfo(CX, Location(P, Size));
    486   }
    487 
    488   /// getModRefInfo (for atomicrmws) - Return information about whether
    489   /// a particular atomicrmw modifies or reads the specified memory location.
    490   ModRefResult getModRefInfo(const AtomicRMWInst *RMW, const Location &Loc);
    491 
    492   /// getModRefInfo (for atomicrmws) - A convenience wrapper.
    493   ModRefResult getModRefInfo(const AtomicRMWInst *RMW,
    494                              const Value *P, unsigned Size) {
    495     return getModRefInfo(RMW, Location(P, Size));
    496   }
    497 
    498   /// getModRefInfo (for va_args) - Return information about whether
    499   /// a particular va_arg modifies or reads the specified memory location.
    500   ModRefResult getModRefInfo(const VAArgInst* I, const Location &Loc);
    501 
    502   /// getModRefInfo (for va_args) - A convenience wrapper.
    503   ModRefResult getModRefInfo(const VAArgInst* I, const Value* P, uint64_t Size){
    504     return getModRefInfo(I, Location(P, Size));
    505   }
    506   /// getModRefInfo - Return information about whether a call and an instruction
    507   /// may refer to the same memory locations.
    508   ModRefResult getModRefInfo(Instruction *I,
    509                              ImmutableCallSite Call);
    510 
    511   /// getModRefInfo - Return information about whether two call sites may refer
    512   /// to the same set of memory locations.  See
    513   ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
    514   /// for details.
    515   virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
    516                                      ImmutableCallSite CS2);
    517 
    518   /// callCapturesBefore - Return information about whether a particular call
    519   /// site modifies or reads the specified memory location.
    520   ModRefResult callCapturesBefore(const Instruction *I,
    521                                   const AliasAnalysis::Location &MemLoc,
    522                                   DominatorTree *DT);
    523 
    524   /// callCapturesBefore - A convenience wrapper.
    525   ModRefResult callCapturesBefore(const Instruction *I, const Value *P,
    526                                   uint64_t Size, DominatorTree *DT) {
    527     return callCapturesBefore(I, Location(P, Size), DT);
    528   }
    529 
    530   //===--------------------------------------------------------------------===//
    531   /// Higher level methods for querying mod/ref information.
    532   ///
    533 
    534   /// canBasicBlockModify - Return true if it is possible for execution of the
    535   /// specified basic block to modify the location Loc.
    536   bool canBasicBlockModify(const BasicBlock &BB, const Location &Loc);
    537 
    538   /// canBasicBlockModify - A convenience wrapper.
    539   bool canBasicBlockModify(const BasicBlock &BB, const Value *P, uint64_t Size){
    540     return canBasicBlockModify(BB, Location(P, Size));
    541   }
    542 
    543   /// canInstructionRangeModRef - Return true if it is possible for the
    544   /// execution of the specified instructions to mod\ref (according to the
    545   /// mode) the location Loc. The instructions to consider are all
    546   /// of the instructions in the range of [I1,I2] INCLUSIVE.
    547   /// I1 and I2 must be in the same basic block.
    548   bool canInstructionRangeModRef(const Instruction &I1,
    549                                 const Instruction &I2, const Location &Loc,
    550                                 const ModRefResult Mode);
    551 
    552   /// canInstructionRangeModRef - A convenience wrapper.
    553   bool canInstructionRangeModRef(const Instruction &I1,
    554                                  const Instruction &I2, const Value *Ptr,
    555                                  uint64_t Size, const ModRefResult Mode) {
    556     return canInstructionRangeModRef(I1, I2, Location(Ptr, Size), Mode);
    557   }
    558 
    559   //===--------------------------------------------------------------------===//
    560   /// Methods that clients should call when they transform the program to allow
    561   /// alias analyses to update their internal data structures.  Note that these
    562   /// methods may be called on any instruction, regardless of whether or not
    563   /// they have pointer-analysis implications.
    564   ///
    565 
    566   /// deleteValue - This method should be called whenever an LLVM Value is
    567   /// deleted from the program, for example when an instruction is found to be
    568   /// redundant and is eliminated.
    569   ///
    570   virtual void deleteValue(Value *V);
    571 
    572   /// copyValue - This method should be used whenever a preexisting value in the
    573   /// program is copied or cloned, introducing a new value.  Note that analysis
    574   /// implementations should tolerate clients that use this method to introduce
    575   /// the same value multiple times: if the analysis already knows about a
    576   /// value, it should ignore the request.
    577   ///
    578   virtual void copyValue(Value *From, Value *To);
    579 
    580   /// addEscapingUse - This method should be used whenever an escaping use is
    581   /// added to a pointer value.  Analysis implementations may either return
    582   /// conservative responses for that value in the future, or may recompute
    583   /// some or all internal state to continue providing precise responses.
    584   ///
    585   /// Escaping uses are considered by anything _except_ the following:
    586   ///  - GEPs or bitcasts of the pointer
    587   ///  - Loads through the pointer
    588   ///  - Stores through (but not of) the pointer
    589   virtual void addEscapingUse(Use &U);
    590 
    591   /// replaceWithNewValue - This method is the obvious combination of the two
    592   /// above, and it provided as a helper to simplify client code.
    593   ///
    594   void replaceWithNewValue(Value *Old, Value *New) {
    595     copyValue(Old, New);
    596     deleteValue(Old);
    597   }
    598 };
    599 
    600 // Specialize DenseMapInfo for Location.
    601 template<>
    602 struct DenseMapInfo<AliasAnalysis::Location> {
    603   static inline AliasAnalysis::Location getEmptyKey() {
    604     return AliasAnalysis::Location(DenseMapInfo<const Value *>::getEmptyKey(),
    605                                    0);
    606   }
    607   static inline AliasAnalysis::Location getTombstoneKey() {
    608     return AliasAnalysis::Location(
    609         DenseMapInfo<const Value *>::getTombstoneKey(), 0);
    610   }
    611   static unsigned getHashValue(const AliasAnalysis::Location &Val) {
    612     return DenseMapInfo<const Value *>::getHashValue(Val.Ptr) ^
    613            DenseMapInfo<uint64_t>::getHashValue(Val.Size) ^
    614            DenseMapInfo<AAMDNodes>::getHashValue(Val.AATags);
    615   }
    616   static bool isEqual(const AliasAnalysis::Location &LHS,
    617                       const AliasAnalysis::Location &RHS) {
    618     return LHS.Ptr == RHS.Ptr &&
    619            LHS.Size == RHS.Size &&
    620            LHS.AATags == RHS.AATags;
    621   }
    622 };
    623 
    624 /// isNoAliasCall - Return true if this pointer is returned by a noalias
    625 /// function.
    626 bool isNoAliasCall(const Value *V);
    627 
    628 /// isNoAliasArgument - Return true if this is an argument with the noalias
    629 /// attribute.
    630 bool isNoAliasArgument(const Value *V);
    631 
    632 /// isIdentifiedObject - Return true if this pointer refers to a distinct and
    633 /// identifiable object.  This returns true for:
    634 ///    Global Variables and Functions (but not Global Aliases)
    635 ///    Allocas
    636 ///    ByVal and NoAlias Arguments
    637 ///    NoAlias returns (e.g. calls to malloc)
    638 ///
    639 bool isIdentifiedObject(const Value *V);
    640 
    641 /// isIdentifiedFunctionLocal - Return true if V is umabigously identified
    642 /// at the function-level. Different IdentifiedFunctionLocals can't alias.
    643 /// Further, an IdentifiedFunctionLocal can not alias with any function
    644 /// arguments other than itself, which is not necessarily true for
    645 /// IdentifiedObjects.
    646 bool isIdentifiedFunctionLocal(const Value *V);
    647 
    648 } // End llvm namespace
    649 
    650 #endif
    651