Home | History | Annotate | Download | only in CodeGen
      1 //==- MachineScheduler.h - MachineInstr Scheduling Pass ----------*- C++ -*-==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file provides an interface for customizing the standard MachineScheduler
     11 // pass. Note that the entire pass may be replaced as follows:
     12 //
     13 // <Target>TargetMachine::createPassConfig(PassManagerBase &PM) {
     14 //   PM.substitutePass(&MachineSchedulerID, &CustomSchedulerPassID);
     15 //   ...}
     16 //
     17 // The MachineScheduler pass is only responsible for choosing the regions to be
     18 // scheduled. Targets can override the DAG builder and scheduler without
     19 // replacing the pass as follows:
     20 //
     21 // ScheduleDAGInstrs *<Target>PassConfig::
     22 // createMachineScheduler(MachineSchedContext *C) {
     23 //   return new CustomMachineScheduler(C);
     24 // }
     25 //
     26 // The default scheduler, ScheduleDAGMILive, builds the DAG and drives list
     27 // scheduling while updating the instruction stream, register pressure, and live
     28 // intervals. Most targets don't need to override the DAG builder and list
     29 // schedulier, but subtargets that require custom scheduling heuristics may
     30 // plugin an alternate MachineSchedStrategy. The strategy is responsible for
     31 // selecting the highest priority node from the list:
     32 //
     33 // ScheduleDAGInstrs *<Target>PassConfig::
     34 // createMachineScheduler(MachineSchedContext *C) {
     35 //   return new ScheduleDAGMI(C, CustomStrategy(C));
     36 // }
     37 //
     38 // The DAG builder can also be customized in a sense by adding DAG mutations
     39 // that will run after DAG building and before list scheduling. DAG mutations
     40 // can adjust dependencies based on target-specific knowledge or add weak edges
     41 // to aid heuristics:
     42 //
     43 // ScheduleDAGInstrs *<Target>PassConfig::
     44 // createMachineScheduler(MachineSchedContext *C) {
     45 //   ScheduleDAGMI *DAG = new ScheduleDAGMI(C, CustomStrategy(C));
     46 //   DAG->addMutation(new CustomDependencies(DAG->TII, DAG->TRI));
     47 //   return DAG;
     48 // }
     49 //
     50 // A target that supports alternative schedulers can use the
     51 // MachineSchedRegistry to allow command line selection. This can be done by
     52 // implementing the following boilerplate:
     53 //
     54 // static ScheduleDAGInstrs *createCustomMachineSched(MachineSchedContext *C) {
     55 //  return new CustomMachineScheduler(C);
     56 // }
     57 // static MachineSchedRegistry
     58 // SchedCustomRegistry("custom", "Run my target's custom scheduler",
     59 //                     createCustomMachineSched);
     60 //
     61 //
     62 // Finally, subtargets that don't need to implement custom heuristics but would
     63 // like to configure the GenericScheduler's policy for a given scheduler region,
     64 // including scheduling direction and register pressure tracking policy, can do
     65 // this:
     66 //
     67 // void <SubTarget>Subtarget::
     68 // overrideSchedPolicy(MachineSchedPolicy &Policy,
     69 //                     MachineInstr *begin,
     70 //                     MachineInstr *end,
     71 //                     unsigned NumRegionInstrs) const {
     72 //   Policy.<Flag> = true;
     73 // }
     74 //
     75 //===----------------------------------------------------------------------===//
     76 
     77 #ifndef LLVM_CODEGEN_MACHINESCHEDULER_H
     78 #define LLVM_CODEGEN_MACHINESCHEDULER_H
     79 
     80 #include "llvm/CodeGen/MachinePassRegistry.h"
     81 #include "llvm/CodeGen/RegisterPressure.h"
     82 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
     83 #include <memory>
     84 
     85 namespace llvm {
     86 
     87 extern cl::opt<bool> ForceTopDown;
     88 extern cl::opt<bool> ForceBottomUp;
     89 
     90 class AliasAnalysis;
     91 class LiveIntervals;
     92 class MachineDominatorTree;
     93 class MachineLoopInfo;
     94 class RegisterClassInfo;
     95 class ScheduleDAGInstrs;
     96 class SchedDFSResult;
     97 class ScheduleHazardRecognizer;
     98 
     99 /// MachineSchedContext provides enough context from the MachineScheduler pass
    100 /// for the target to instantiate a scheduler.
    101 struct MachineSchedContext {
    102   MachineFunction *MF;
    103   const MachineLoopInfo *MLI;
    104   const MachineDominatorTree *MDT;
    105   const TargetPassConfig *PassConfig;
    106   AliasAnalysis *AA;
    107   LiveIntervals *LIS;
    108 
    109   RegisterClassInfo *RegClassInfo;
    110 
    111   MachineSchedContext();
    112   virtual ~MachineSchedContext();
    113 };
    114 
    115 /// MachineSchedRegistry provides a selection of available machine instruction
    116 /// schedulers.
    117 class MachineSchedRegistry : public MachinePassRegistryNode {
    118 public:
    119   typedef ScheduleDAGInstrs *(*ScheduleDAGCtor)(MachineSchedContext *);
    120 
    121   // RegisterPassParser requires a (misnamed) FunctionPassCtor type.
    122   typedef ScheduleDAGCtor FunctionPassCtor;
    123 
    124   static MachinePassRegistry Registry;
    125 
    126   MachineSchedRegistry(const char *N, const char *D, ScheduleDAGCtor C)
    127     : MachinePassRegistryNode(N, D, (MachinePassCtor)C) {
    128     Registry.Add(this);
    129   }
    130   ~MachineSchedRegistry() { Registry.Remove(this); }
    131 
    132   // Accessors.
    133   //
    134   MachineSchedRegistry *getNext() const {
    135     return (MachineSchedRegistry *)MachinePassRegistryNode::getNext();
    136   }
    137   static MachineSchedRegistry *getList() {
    138     return (MachineSchedRegistry *)Registry.getList();
    139   }
    140   static void setListener(MachinePassRegistryListener *L) {
    141     Registry.setListener(L);
    142   }
    143 };
    144 
    145 class ScheduleDAGMI;
    146 
    147 /// Define a generic scheduling policy for targets that don't provide their own
    148 /// MachineSchedStrategy. This can be overriden for each scheduling region
    149 /// before building the DAG.
    150 struct MachineSchedPolicy {
    151   // Allow the scheduler to disable register pressure tracking.
    152   bool ShouldTrackPressure;
    153 
    154   // Allow the scheduler to force top-down or bottom-up scheduling. If neither
    155   // is true, the scheduler runs in both directions and converges.
    156   bool OnlyTopDown;
    157   bool OnlyBottomUp;
    158 
    159   MachineSchedPolicy(): ShouldTrackPressure(false), OnlyTopDown(false),
    160     OnlyBottomUp(false) {}
    161 };
    162 
    163 /// MachineSchedStrategy - Interface to the scheduling algorithm used by
    164 /// ScheduleDAGMI.
    165 ///
    166 /// Initialization sequence:
    167 ///   initPolicy -> shouldTrackPressure -> initialize(DAG) -> registerRoots
    168 class MachineSchedStrategy {
    169   virtual void anchor();
    170 public:
    171   virtual ~MachineSchedStrategy() {}
    172 
    173   /// Optionally override the per-region scheduling policy.
    174   virtual void initPolicy(MachineBasicBlock::iterator Begin,
    175                           MachineBasicBlock::iterator End,
    176                           unsigned NumRegionInstrs) {}
    177 
    178   /// Check if pressure tracking is needed before building the DAG and
    179   /// initializing this strategy. Called after initPolicy.
    180   virtual bool shouldTrackPressure() const { return true; }
    181 
    182   /// Initialize the strategy after building the DAG for a new region.
    183   virtual void initialize(ScheduleDAGMI *DAG) = 0;
    184 
    185   /// Notify this strategy that all roots have been released (including those
    186   /// that depend on EntrySU or ExitSU).
    187   virtual void registerRoots() {}
    188 
    189   /// Pick the next node to schedule, or return NULL. Set IsTopNode to true to
    190   /// schedule the node at the top of the unscheduled region. Otherwise it will
    191   /// be scheduled at the bottom.
    192   virtual SUnit *pickNode(bool &IsTopNode) = 0;
    193 
    194   /// \brief Scheduler callback to notify that a new subtree is scheduled.
    195   virtual void scheduleTree(unsigned SubtreeID) {}
    196 
    197   /// Notify MachineSchedStrategy that ScheduleDAGMI has scheduled an
    198   /// instruction and updated scheduled/remaining flags in the DAG nodes.
    199   virtual void schedNode(SUnit *SU, bool IsTopNode) = 0;
    200 
    201   /// When all predecessor dependencies have been resolved, free this node for
    202   /// top-down scheduling.
    203   virtual void releaseTopNode(SUnit *SU) = 0;
    204   /// When all successor dependencies have been resolved, free this node for
    205   /// bottom-up scheduling.
    206   virtual void releaseBottomNode(SUnit *SU) = 0;
    207 };
    208 
    209 /// Mutate the DAG as a postpass after normal DAG building.
    210 class ScheduleDAGMutation {
    211   virtual void anchor();
    212 public:
    213   virtual ~ScheduleDAGMutation() {}
    214 
    215   virtual void apply(ScheduleDAGMI *DAG) = 0;
    216 };
    217 
    218 /// ScheduleDAGMI is an implementation of ScheduleDAGInstrs that simply
    219 /// schedules machine instructions according to the given MachineSchedStrategy
    220 /// without much extra book-keeping. This is the common functionality between
    221 /// PreRA and PostRA MachineScheduler.
    222 class ScheduleDAGMI : public ScheduleDAGInstrs {
    223 protected:
    224   AliasAnalysis *AA;
    225   std::unique_ptr<MachineSchedStrategy> SchedImpl;
    226 
    227   /// Topo - A topological ordering for SUnits which permits fast IsReachable
    228   /// and similar queries.
    229   ScheduleDAGTopologicalSort Topo;
    230 
    231   /// Ordered list of DAG postprocessing steps.
    232   std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
    233 
    234   /// The top of the unscheduled zone.
    235   MachineBasicBlock::iterator CurrentTop;
    236 
    237   /// The bottom of the unscheduled zone.
    238   MachineBasicBlock::iterator CurrentBottom;
    239 
    240   /// Record the next node in a scheduled cluster.
    241   const SUnit *NextClusterPred;
    242   const SUnit *NextClusterSucc;
    243 
    244 #ifndef NDEBUG
    245   /// The number of instructions scheduled so far. Used to cut off the
    246   /// scheduler at the point determined by misched-cutoff.
    247   unsigned NumInstrsScheduled;
    248 #endif
    249 public:
    250   ScheduleDAGMI(MachineSchedContext *C, std::unique_ptr<MachineSchedStrategy> S,
    251                 bool IsPostRA)
    252       : ScheduleDAGInstrs(*C->MF, C->MLI, IsPostRA,
    253                           /*RemoveKillFlags=*/IsPostRA, C->LIS),
    254         AA(C->AA), SchedImpl(std::move(S)), Topo(SUnits, &ExitSU), CurrentTop(),
    255         CurrentBottom(), NextClusterPred(nullptr), NextClusterSucc(nullptr) {
    256 #ifndef NDEBUG
    257     NumInstrsScheduled = 0;
    258 #endif
    259   }
    260 
    261   // Provide a vtable anchor
    262   ~ScheduleDAGMI() override;
    263 
    264   /// Return true if this DAG supports VReg liveness and RegPressure.
    265   virtual bool hasVRegLiveness() const { return false; }
    266 
    267   /// Add a postprocessing step to the DAG builder.
    268   /// Mutations are applied in the order that they are added after normal DAG
    269   /// building and before MachineSchedStrategy initialization.
    270   ///
    271   /// ScheduleDAGMI takes ownership of the Mutation object.
    272   void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) {
    273     Mutations.push_back(std::move(Mutation));
    274   }
    275 
    276   /// \brief True if an edge can be added from PredSU to SuccSU without creating
    277   /// a cycle.
    278   bool canAddEdge(SUnit *SuccSU, SUnit *PredSU);
    279 
    280   /// \brief Add a DAG edge to the given SU with the given predecessor
    281   /// dependence data.
    282   ///
    283   /// \returns true if the edge may be added without creating a cycle OR if an
    284   /// equivalent edge already existed (false indicates failure).
    285   bool addEdge(SUnit *SuccSU, const SDep &PredDep);
    286 
    287   MachineBasicBlock::iterator top() const { return CurrentTop; }
    288   MachineBasicBlock::iterator bottom() const { return CurrentBottom; }
    289 
    290   /// Implement the ScheduleDAGInstrs interface for handling the next scheduling
    291   /// region. This covers all instructions in a block, while schedule() may only
    292   /// cover a subset.
    293   void enterRegion(MachineBasicBlock *bb,
    294                    MachineBasicBlock::iterator begin,
    295                    MachineBasicBlock::iterator end,
    296                    unsigned regioninstrs) override;
    297 
    298   /// Implement ScheduleDAGInstrs interface for scheduling a sequence of
    299   /// reorderable instructions.
    300   void schedule() override;
    301 
    302   /// Change the position of an instruction within the basic block and update
    303   /// live ranges and region boundary iterators.
    304   void moveInstruction(MachineInstr *MI, MachineBasicBlock::iterator InsertPos);
    305 
    306   const SUnit *getNextClusterPred() const { return NextClusterPred; }
    307 
    308   const SUnit *getNextClusterSucc() const { return NextClusterSucc; }
    309 
    310   void viewGraph(const Twine &Name, const Twine &Title) override;
    311   void viewGraph() override;
    312 
    313 protected:
    314   // Top-Level entry points for the schedule() driver...
    315 
    316   /// Apply each ScheduleDAGMutation step in order. This allows different
    317   /// instances of ScheduleDAGMI to perform custom DAG postprocessing.
    318   void postprocessDAG();
    319 
    320   /// Release ExitSU predecessors and setup scheduler queues.
    321   void initQueues(ArrayRef<SUnit*> TopRoots, ArrayRef<SUnit*> BotRoots);
    322 
    323   /// Update scheduler DAG and queues after scheduling an instruction.
    324   void updateQueues(SUnit *SU, bool IsTopNode);
    325 
    326   /// Reinsert debug_values recorded in ScheduleDAGInstrs::DbgValues.
    327   void placeDebugValues();
    328 
    329   /// \brief dump the scheduled Sequence.
    330   void dumpSchedule() const;
    331 
    332   // Lesser helpers...
    333   bool checkSchedLimit();
    334 
    335   void findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
    336                              SmallVectorImpl<SUnit*> &BotRoots);
    337 
    338   void releaseSucc(SUnit *SU, SDep *SuccEdge);
    339   void releaseSuccessors(SUnit *SU);
    340   void releasePred(SUnit *SU, SDep *PredEdge);
    341   void releasePredecessors(SUnit *SU);
    342 };
    343 
    344 /// ScheduleDAGMILive is an implementation of ScheduleDAGInstrs that schedules
    345 /// machine instructions while updating LiveIntervals and tracking regpressure.
    346 class ScheduleDAGMILive : public ScheduleDAGMI {
    347 protected:
    348   RegisterClassInfo *RegClassInfo;
    349 
    350   /// Information about DAG subtrees. If DFSResult is NULL, then SchedulerTrees
    351   /// will be empty.
    352   SchedDFSResult *DFSResult;
    353   BitVector ScheduledTrees;
    354 
    355   MachineBasicBlock::iterator LiveRegionEnd;
    356 
    357   // Map each SU to its summary of pressure changes. This array is updated for
    358   // liveness during bottom-up scheduling. Top-down scheduling may proceed but
    359   // has no affect on the pressure diffs.
    360   PressureDiffs SUPressureDiffs;
    361 
    362   /// Register pressure in this region computed by initRegPressure.
    363   bool ShouldTrackPressure;
    364   IntervalPressure RegPressure;
    365   RegPressureTracker RPTracker;
    366 
    367   /// List of pressure sets that exceed the target's pressure limit before
    368   /// scheduling, listed in increasing set ID order. Each pressure set is paired
    369   /// with its max pressure in the currently scheduled regions.
    370   std::vector<PressureChange> RegionCriticalPSets;
    371 
    372   /// The top of the unscheduled zone.
    373   IntervalPressure TopPressure;
    374   RegPressureTracker TopRPTracker;
    375 
    376   /// The bottom of the unscheduled zone.
    377   IntervalPressure BotPressure;
    378   RegPressureTracker BotRPTracker;
    379 
    380 public:
    381   ScheduleDAGMILive(MachineSchedContext *C,
    382                     std::unique_ptr<MachineSchedStrategy> S)
    383       : ScheduleDAGMI(C, std::move(S), /*IsPostRA=*/false),
    384         RegClassInfo(C->RegClassInfo), DFSResult(nullptr),
    385         ShouldTrackPressure(false), RPTracker(RegPressure),
    386         TopRPTracker(TopPressure), BotRPTracker(BotPressure) {}
    387 
    388   ~ScheduleDAGMILive() override;
    389 
    390   /// Return true if this DAG supports VReg liveness and RegPressure.
    391   bool hasVRegLiveness() const override { return true; }
    392 
    393   /// \brief Return true if register pressure tracking is enabled.
    394   bool isTrackingPressure() const { return ShouldTrackPressure; }
    395 
    396   /// Get current register pressure for the top scheduled instructions.
    397   const IntervalPressure &getTopPressure() const { return TopPressure; }
    398   const RegPressureTracker &getTopRPTracker() const { return TopRPTracker; }
    399 
    400   /// Get current register pressure for the bottom scheduled instructions.
    401   const IntervalPressure &getBotPressure() const { return BotPressure; }
    402   const RegPressureTracker &getBotRPTracker() const { return BotRPTracker; }
    403 
    404   /// Get register pressure for the entire scheduling region before scheduling.
    405   const IntervalPressure &getRegPressure() const { return RegPressure; }
    406 
    407   const std::vector<PressureChange> &getRegionCriticalPSets() const {
    408     return RegionCriticalPSets;
    409   }
    410 
    411   PressureDiff &getPressureDiff(const SUnit *SU) {
    412     return SUPressureDiffs[SU->NodeNum];
    413   }
    414 
    415   /// Compute a DFSResult after DAG building is complete, and before any
    416   /// queue comparisons.
    417   void computeDFSResult();
    418 
    419   /// Return a non-null DFS result if the scheduling strategy initialized it.
    420   const SchedDFSResult *getDFSResult() const { return DFSResult; }
    421 
    422   BitVector &getScheduledTrees() { return ScheduledTrees; }
    423 
    424   /// Implement the ScheduleDAGInstrs interface for handling the next scheduling
    425   /// region. This covers all instructions in a block, while schedule() may only
    426   /// cover a subset.
    427   void enterRegion(MachineBasicBlock *bb,
    428                    MachineBasicBlock::iterator begin,
    429                    MachineBasicBlock::iterator end,
    430                    unsigned regioninstrs) override;
    431 
    432   /// Implement ScheduleDAGInstrs interface for scheduling a sequence of
    433   /// reorderable instructions.
    434   void schedule() override;
    435 
    436   /// Compute the cyclic critical path through the DAG.
    437   unsigned computeCyclicCriticalPath();
    438 
    439 protected:
    440   // Top-Level entry points for the schedule() driver...
    441 
    442   /// Call ScheduleDAGInstrs::buildSchedGraph with register pressure tracking
    443   /// enabled. This sets up three trackers. RPTracker will cover the entire DAG
    444   /// region, TopTracker and BottomTracker will be initialized to the top and
    445   /// bottom of the DAG region without covereing any unscheduled instruction.
    446   void buildDAGWithRegPressure();
    447 
    448   /// Move an instruction and update register pressure.
    449   void scheduleMI(SUnit *SU, bool IsTopNode);
    450 
    451   // Lesser helpers...
    452 
    453   void initRegPressure();
    454 
    455   void updatePressureDiffs(ArrayRef<unsigned> LiveUses);
    456 
    457   void updateScheduledPressure(const SUnit *SU,
    458                                const std::vector<unsigned> &NewMaxPressure);
    459 };
    460 
    461 //===----------------------------------------------------------------------===//
    462 ///
    463 /// Helpers for implementing custom MachineSchedStrategy classes. These take
    464 /// care of the book-keeping associated with list scheduling heuristics.
    465 ///
    466 //===----------------------------------------------------------------------===//
    467 
    468 /// ReadyQueue encapsulates vector of "ready" SUnits with basic convenience
    469 /// methods for pushing and removing nodes. ReadyQueue's are uniquely identified
    470 /// by an ID. SUnit::NodeQueueId is a mask of the ReadyQueues the SUnit is in.
    471 ///
    472 /// This is a convenience class that may be used by implementations of
    473 /// MachineSchedStrategy.
    474 class ReadyQueue {
    475   unsigned ID;
    476   std::string Name;
    477   std::vector<SUnit*> Queue;
    478 
    479 public:
    480   ReadyQueue(unsigned id, const Twine &name): ID(id), Name(name.str()) {}
    481 
    482   unsigned getID() const { return ID; }
    483 
    484   StringRef getName() const { return Name; }
    485 
    486   // SU is in this queue if it's NodeQueueID is a superset of this ID.
    487   bool isInQueue(SUnit *SU) const { return (SU->NodeQueueId & ID); }
    488 
    489   bool empty() const { return Queue.empty(); }
    490 
    491   void clear() { Queue.clear(); }
    492 
    493   unsigned size() const { return Queue.size(); }
    494 
    495   typedef std::vector<SUnit*>::iterator iterator;
    496 
    497   iterator begin() { return Queue.begin(); }
    498 
    499   iterator end() { return Queue.end(); }
    500 
    501   ArrayRef<SUnit*> elements() { return Queue; }
    502 
    503   iterator find(SUnit *SU) {
    504     return std::find(Queue.begin(), Queue.end(), SU);
    505   }
    506 
    507   void push(SUnit *SU) {
    508     Queue.push_back(SU);
    509     SU->NodeQueueId |= ID;
    510   }
    511 
    512   iterator remove(iterator I) {
    513     (*I)->NodeQueueId &= ~ID;
    514     *I = Queue.back();
    515     unsigned idx = I - Queue.begin();
    516     Queue.pop_back();
    517     return Queue.begin() + idx;
    518   }
    519 
    520   void dump();
    521 };
    522 
    523 /// Summarize the unscheduled region.
    524 struct SchedRemainder {
    525   // Critical path through the DAG in expected latency.
    526   unsigned CriticalPath;
    527   unsigned CyclicCritPath;
    528 
    529   // Scaled count of micro-ops left to schedule.
    530   unsigned RemIssueCount;
    531 
    532   bool IsAcyclicLatencyLimited;
    533 
    534   // Unscheduled resources
    535   SmallVector<unsigned, 16> RemainingCounts;
    536 
    537   void reset() {
    538     CriticalPath = 0;
    539     CyclicCritPath = 0;
    540     RemIssueCount = 0;
    541     IsAcyclicLatencyLimited = false;
    542     RemainingCounts.clear();
    543   }
    544 
    545   SchedRemainder() { reset(); }
    546 
    547   void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel);
    548 };
    549 
    550 /// Each Scheduling boundary is associated with ready queues. It tracks the
    551 /// current cycle in the direction of movement, and maintains the state
    552 /// of "hazards" and other interlocks at the current cycle.
    553 class SchedBoundary {
    554 public:
    555   /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both)
    556   enum {
    557     TopQID = 1,
    558     BotQID = 2,
    559     LogMaxQID = 2
    560   };
    561 
    562   ScheduleDAGMI *DAG;
    563   const TargetSchedModel *SchedModel;
    564   SchedRemainder *Rem;
    565 
    566   ReadyQueue Available;
    567   ReadyQueue Pending;
    568 
    569   ScheduleHazardRecognizer *HazardRec;
    570 
    571 private:
    572   /// True if the pending Q should be checked/updated before scheduling another
    573   /// instruction.
    574   bool CheckPending;
    575 
    576   // For heuristics, keep a list of the nodes that immediately depend on the
    577   // most recently scheduled node.
    578   SmallPtrSet<const SUnit*, 8> NextSUs;
    579 
    580   /// Number of cycles it takes to issue the instructions scheduled in this
    581   /// zone. It is defined as: scheduled-micro-ops / issue-width + stalls.
    582   /// See getStalls().
    583   unsigned CurrCycle;
    584 
    585   /// Micro-ops issued in the current cycle
    586   unsigned CurrMOps;
    587 
    588   /// MinReadyCycle - Cycle of the soonest available instruction.
    589   unsigned MinReadyCycle;
    590 
    591   // The expected latency of the critical path in this scheduled zone.
    592   unsigned ExpectedLatency;
    593 
    594   // The latency of dependence chains leading into this zone.
    595   // For each node scheduled bottom-up: DLat = max DLat, N.Depth.
    596   // For each cycle scheduled: DLat -= 1.
    597   unsigned DependentLatency;
    598 
    599   /// Count the scheduled (issued) micro-ops that can be retired by
    600   /// time=CurrCycle assuming the first scheduled instr is retired at time=0.
    601   unsigned RetiredMOps;
    602 
    603   // Count scheduled resources that have been executed. Resources are
    604   // considered executed if they become ready in the time that it takes to
    605   // saturate any resource including the one in question. Counts are scaled
    606   // for direct comparison with other resources. Counts can be compared with
    607   // MOps * getMicroOpFactor and Latency * getLatencyFactor.
    608   SmallVector<unsigned, 16> ExecutedResCounts;
    609 
    610   /// Cache the max count for a single resource.
    611   unsigned MaxExecutedResCount;
    612 
    613   // Cache the critical resources ID in this scheduled zone.
    614   unsigned ZoneCritResIdx;
    615 
    616   // Is the scheduled region resource limited vs. latency limited.
    617   bool IsResourceLimited;
    618 
    619   // Record the highest cycle at which each resource has been reserved by a
    620   // scheduled instruction.
    621   SmallVector<unsigned, 16> ReservedCycles;
    622 
    623 #ifndef NDEBUG
    624   // Remember the greatest possible stall as an upper bound on the number of
    625   // times we should retry the pending queue because of a hazard.
    626   unsigned MaxObservedStall;
    627 #endif
    628 
    629 public:
    630   /// Pending queues extend the ready queues with the same ID and the
    631   /// PendingFlag set.
    632   SchedBoundary(unsigned ID, const Twine &Name):
    633     DAG(nullptr), SchedModel(nullptr), Rem(nullptr), Available(ID, Name+".A"),
    634     Pending(ID << LogMaxQID, Name+".P"),
    635     HazardRec(nullptr) {
    636     reset();
    637   }
    638 
    639   ~SchedBoundary();
    640 
    641   void reset();
    642 
    643   void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel,
    644             SchedRemainder *rem);
    645 
    646   bool isTop() const {
    647     return Available.getID() == TopQID;
    648   }
    649 
    650   /// Number of cycles to issue the instructions scheduled in this zone.
    651   unsigned getCurrCycle() const { return CurrCycle; }
    652 
    653   /// Micro-ops issued in the current cycle
    654   unsigned getCurrMOps() const { return CurrMOps; }
    655 
    656   /// Return true if the given SU is used by the most recently scheduled
    657   /// instruction.
    658   bool isNextSU(const SUnit *SU) const { return NextSUs.count(SU); }
    659 
    660   // The latency of dependence chains leading into this zone.
    661   unsigned getDependentLatency() const { return DependentLatency; }
    662 
    663   /// Get the number of latency cycles "covered" by the scheduled
    664   /// instructions. This is the larger of the critical path within the zone
    665   /// and the number of cycles required to issue the instructions.
    666   unsigned getScheduledLatency() const {
    667     return std::max(ExpectedLatency, CurrCycle);
    668   }
    669 
    670   unsigned getUnscheduledLatency(SUnit *SU) const {
    671     return isTop() ? SU->getHeight() : SU->getDepth();
    672   }
    673 
    674   unsigned getResourceCount(unsigned ResIdx) const {
    675     return ExecutedResCounts[ResIdx];
    676   }
    677 
    678   /// Get the scaled count of scheduled micro-ops and resources, including
    679   /// executed resources.
    680   unsigned getCriticalCount() const {
    681     if (!ZoneCritResIdx)
    682       return RetiredMOps * SchedModel->getMicroOpFactor();
    683     return getResourceCount(ZoneCritResIdx);
    684   }
    685 
    686   /// Get a scaled count for the minimum execution time of the scheduled
    687   /// micro-ops that are ready to execute by getExecutedCount. Notice the
    688   /// feedback loop.
    689   unsigned getExecutedCount() const {
    690     return std::max(CurrCycle * SchedModel->getLatencyFactor(),
    691                     MaxExecutedResCount);
    692   }
    693 
    694   unsigned getZoneCritResIdx() const { return ZoneCritResIdx; }
    695 
    696   // Is the scheduled region resource limited vs. latency limited.
    697   bool isResourceLimited() const { return IsResourceLimited; }
    698 
    699   /// Get the difference between the given SUnit's ready time and the current
    700   /// cycle.
    701   unsigned getLatencyStallCycles(SUnit *SU);
    702 
    703   unsigned getNextResourceCycle(unsigned PIdx, unsigned Cycles);
    704 
    705   bool checkHazard(SUnit *SU);
    706 
    707   unsigned findMaxLatency(ArrayRef<SUnit*> ReadySUs);
    708 
    709   unsigned getOtherResourceCount(unsigned &OtherCritIdx);
    710 
    711   void releaseNode(SUnit *SU, unsigned ReadyCycle);
    712 
    713   void releaseTopNode(SUnit *SU);
    714 
    715   void releaseBottomNode(SUnit *SU);
    716 
    717   void bumpCycle(unsigned NextCycle);
    718 
    719   void incExecutedResources(unsigned PIdx, unsigned Count);
    720 
    721   unsigned countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle);
    722 
    723   void bumpNode(SUnit *SU);
    724 
    725   void releasePending();
    726 
    727   void removeReady(SUnit *SU);
    728 
    729   /// Call this before applying any other heuristics to the Available queue.
    730   /// Updates the Available/Pending Q's if necessary and returns the single
    731   /// available instruction, or NULL if there are multiple candidates.
    732   SUnit *pickOnlyChoice();
    733 
    734 #ifndef NDEBUG
    735   void dumpScheduledState();
    736 #endif
    737 };
    738 
    739 /// Base class for GenericScheduler. This class maintains information about
    740 /// scheduling candidates based on TargetSchedModel making it easy to implement
    741 /// heuristics for either preRA or postRA scheduling.
    742 class GenericSchedulerBase : public MachineSchedStrategy {
    743 public:
    744   /// Represent the type of SchedCandidate found within a single queue.
    745   /// pickNodeBidirectional depends on these listed by decreasing priority.
    746   enum CandReason {
    747     NoCand, PhysRegCopy, RegExcess, RegCritical, Stall, Cluster, Weak, RegMax,
    748     ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce,
    749     TopDepthReduce, TopPathReduce, NextDefUse, NodeOrder};
    750 
    751 #ifndef NDEBUG
    752   static const char *getReasonStr(GenericSchedulerBase::CandReason Reason);
    753 #endif
    754 
    755   /// Policy for scheduling the next instruction in the candidate's zone.
    756   struct CandPolicy {
    757     bool ReduceLatency;
    758     unsigned ReduceResIdx;
    759     unsigned DemandResIdx;
    760 
    761     CandPolicy(): ReduceLatency(false), ReduceResIdx(0), DemandResIdx(0) {}
    762   };
    763 
    764   /// Status of an instruction's critical resource consumption.
    765   struct SchedResourceDelta {
    766     // Count critical resources in the scheduled region required by SU.
    767     unsigned CritResources;
    768 
    769     // Count critical resources from another region consumed by SU.
    770     unsigned DemandedResources;
    771 
    772     SchedResourceDelta(): CritResources(0), DemandedResources(0) {}
    773 
    774     bool operator==(const SchedResourceDelta &RHS) const {
    775       return CritResources == RHS.CritResources
    776         && DemandedResources == RHS.DemandedResources;
    777     }
    778     bool operator!=(const SchedResourceDelta &RHS) const {
    779       return !operator==(RHS);
    780     }
    781   };
    782 
    783   /// Store the state used by GenericScheduler heuristics, required for the
    784   /// lifetime of one invocation of pickNode().
    785   struct SchedCandidate {
    786     CandPolicy Policy;
    787 
    788     // The best SUnit candidate.
    789     SUnit *SU;
    790 
    791     // The reason for this candidate.
    792     CandReason Reason;
    793 
    794     // Set of reasons that apply to multiple candidates.
    795     uint32_t RepeatReasonSet;
    796 
    797     // Register pressure values for the best candidate.
    798     RegPressureDelta RPDelta;
    799 
    800     // Critical resource consumption of the best candidate.
    801     SchedResourceDelta ResDelta;
    802 
    803     SchedCandidate(const CandPolicy &policy)
    804       : Policy(policy), SU(nullptr), Reason(NoCand), RepeatReasonSet(0) {}
    805 
    806     bool isValid() const { return SU; }
    807 
    808     // Copy the status of another candidate without changing policy.
    809     void setBest(SchedCandidate &Best) {
    810       assert(Best.Reason != NoCand && "uninitialized Sched candidate");
    811       SU = Best.SU;
    812       Reason = Best.Reason;
    813       RPDelta = Best.RPDelta;
    814       ResDelta = Best.ResDelta;
    815     }
    816 
    817     bool isRepeat(CandReason R) { return RepeatReasonSet & (1 << R); }
    818     void setRepeat(CandReason R) { RepeatReasonSet |= (1 << R); }
    819 
    820     void initResourceDelta(const ScheduleDAGMI *DAG,
    821                            const TargetSchedModel *SchedModel);
    822   };
    823 
    824 protected:
    825   const MachineSchedContext *Context;
    826   const TargetSchedModel *SchedModel;
    827   const TargetRegisterInfo *TRI;
    828 
    829   SchedRemainder Rem;
    830 protected:
    831   GenericSchedulerBase(const MachineSchedContext *C):
    832     Context(C), SchedModel(nullptr), TRI(nullptr) {}
    833 
    834   void setPolicy(CandPolicy &Policy, bool IsPostRA, SchedBoundary &CurrZone,
    835                  SchedBoundary *OtherZone);
    836 
    837 #ifndef NDEBUG
    838   void traceCandidate(const SchedCandidate &Cand);
    839 #endif
    840 };
    841 
    842 /// GenericScheduler shrinks the unscheduled zone using heuristics to balance
    843 /// the schedule.
    844 class GenericScheduler : public GenericSchedulerBase {
    845   ScheduleDAGMILive *DAG;
    846 
    847   // State of the top and bottom scheduled instruction boundaries.
    848   SchedBoundary Top;
    849   SchedBoundary Bot;
    850 
    851   MachineSchedPolicy RegionPolicy;
    852 public:
    853   GenericScheduler(const MachineSchedContext *C):
    854     GenericSchedulerBase(C), DAG(nullptr), Top(SchedBoundary::TopQID, "TopQ"),
    855     Bot(SchedBoundary::BotQID, "BotQ") {}
    856 
    857   void initPolicy(MachineBasicBlock::iterator Begin,
    858                   MachineBasicBlock::iterator End,
    859                   unsigned NumRegionInstrs) override;
    860 
    861   bool shouldTrackPressure() const override {
    862     return RegionPolicy.ShouldTrackPressure;
    863   }
    864 
    865   void initialize(ScheduleDAGMI *dag) override;
    866 
    867   SUnit *pickNode(bool &IsTopNode) override;
    868 
    869   void schedNode(SUnit *SU, bool IsTopNode) override;
    870 
    871   void releaseTopNode(SUnit *SU) override {
    872     Top.releaseTopNode(SU);
    873   }
    874 
    875   void releaseBottomNode(SUnit *SU) override {
    876     Bot.releaseBottomNode(SU);
    877   }
    878 
    879   void registerRoots() override;
    880 
    881 protected:
    882   void checkAcyclicLatency();
    883 
    884   void tryCandidate(SchedCandidate &Cand,
    885                     SchedCandidate &TryCand,
    886                     SchedBoundary &Zone,
    887                     const RegPressureTracker &RPTracker,
    888                     RegPressureTracker &TempTracker);
    889 
    890   SUnit *pickNodeBidirectional(bool &IsTopNode);
    891 
    892   void pickNodeFromQueue(SchedBoundary &Zone,
    893                          const RegPressureTracker &RPTracker,
    894                          SchedCandidate &Candidate);
    895 
    896   void reschedulePhysRegCopies(SUnit *SU, bool isTop);
    897 };
    898 
    899 /// PostGenericScheduler - Interface to the scheduling algorithm used by
    900 /// ScheduleDAGMI.
    901 ///
    902 /// Callbacks from ScheduleDAGMI:
    903 ///   initPolicy -> initialize(DAG) -> registerRoots -> pickNode ...
    904 class PostGenericScheduler : public GenericSchedulerBase {
    905   ScheduleDAGMI *DAG;
    906   SchedBoundary Top;
    907   SmallVector<SUnit*, 8> BotRoots;
    908 public:
    909   PostGenericScheduler(const MachineSchedContext *C):
    910     GenericSchedulerBase(C), Top(SchedBoundary::TopQID, "TopQ") {}
    911 
    912   ~PostGenericScheduler() override {}
    913 
    914   void initPolicy(MachineBasicBlock::iterator Begin,
    915                   MachineBasicBlock::iterator End,
    916                   unsigned NumRegionInstrs) override {
    917     /* no configurable policy */
    918   };
    919 
    920   /// PostRA scheduling does not track pressure.
    921   bool shouldTrackPressure() const override { return false; }
    922 
    923   void initialize(ScheduleDAGMI *Dag) override;
    924 
    925   void registerRoots() override;
    926 
    927   SUnit *pickNode(bool &IsTopNode) override;
    928 
    929   void scheduleTree(unsigned SubtreeID) override {
    930     llvm_unreachable("PostRA scheduler does not support subtree analysis.");
    931   }
    932 
    933   void schedNode(SUnit *SU, bool IsTopNode) override;
    934 
    935   void releaseTopNode(SUnit *SU) override {
    936     Top.releaseTopNode(SU);
    937   }
    938 
    939   // Only called for roots.
    940   void releaseBottomNode(SUnit *SU) override {
    941     BotRoots.push_back(SU);
    942   }
    943 
    944 protected:
    945   void tryCandidate(SchedCandidate &Cand, SchedCandidate &TryCand);
    946 
    947   void pickNodeFromQueue(SchedCandidate &Cand);
    948 };
    949 
    950 } // namespace llvm
    951 
    952 #endif
    953