Home | History | Annotate | Download | only in CodeGen
      1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements the ScheduleDAGInstrs class, which implements re-scheduling
     11 // of MachineInstrs.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
     16 #include "llvm/ADT/MapVector.h"
     17 #include "llvm/ADT/SmallPtrSet.h"
     18 #include "llvm/ADT/SmallSet.h"
     19 #include "llvm/Analysis/AliasAnalysis.h"
     20 #include "llvm/Analysis/ValueTracking.h"
     21 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     22 #include "llvm/CodeGen/MachineFunctionPass.h"
     23 #include "llvm/CodeGen/MachineInstrBuilder.h"
     24 #include "llvm/CodeGen/MachineMemOperand.h"
     25 #include "llvm/CodeGen/MachineRegisterInfo.h"
     26 #include "llvm/CodeGen/PseudoSourceValue.h"
     27 #include "llvm/CodeGen/RegisterPressure.h"
     28 #include "llvm/CodeGen/ScheduleDFS.h"
     29 #include "llvm/IR/Operator.h"
     30 #include "llvm/MC/MCInstrItineraries.h"
     31 #include "llvm/Support/CommandLine.h"
     32 #include "llvm/Support/Debug.h"
     33 #include "llvm/Support/Format.h"
     34 #include "llvm/Support/raw_ostream.h"
     35 #include "llvm/Target/TargetInstrInfo.h"
     36 #include "llvm/Target/TargetMachine.h"
     37 #include "llvm/Target/TargetRegisterInfo.h"
     38 #include "llvm/Target/TargetSubtargetInfo.h"
     39 #include <queue>
     40 
     41 using namespace llvm;
     42 
     43 #define DEBUG_TYPE "misched"
     44 
     45 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
     46     cl::ZeroOrMore, cl::init(false),
     47     cl::desc("Enable use of AA during MI DAG construction"));
     48 
     49 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden,
     50     cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction"));
     51 
     52 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
     53                                      const MachineLoopInfo *mli,
     54                                      bool IsPostRAFlag, bool RemoveKillFlags,
     55                                      LiveIntervals *lis)
     56     : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()), LIS(lis),
     57       IsPostRA(IsPostRAFlag), RemoveKillFlags(RemoveKillFlags),
     58       CanHandleTerminators(false), FirstDbgValue(nullptr) {
     59   assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals");
     60   DbgValues.clear();
     61   assert(!(IsPostRA && MRI.getNumVirtRegs()) &&
     62          "Virtual registers must be removed prior to PostRA scheduling");
     63 
     64   const TargetSubtargetInfo &ST = mf.getSubtarget();
     65   SchedModel.init(ST.getSchedModel(), &ST, TII);
     66 }
     67 
     68 /// getUnderlyingObjectFromInt - This is the function that does the work of
     69 /// looking through basic ptrtoint+arithmetic+inttoptr sequences.
     70 static const Value *getUnderlyingObjectFromInt(const Value *V) {
     71   do {
     72     if (const Operator *U = dyn_cast<Operator>(V)) {
     73       // If we find a ptrtoint, we can transfer control back to the
     74       // regular getUnderlyingObjectFromInt.
     75       if (U->getOpcode() == Instruction::PtrToInt)
     76         return U->getOperand(0);
     77       // If we find an add of a constant, a multiplied value, or a phi, it's
     78       // likely that the other operand will lead us to the base
     79       // object. We don't have to worry about the case where the
     80       // object address is somehow being computed by the multiply,
     81       // because our callers only care when the result is an
     82       // identifiable object.
     83       if (U->getOpcode() != Instruction::Add ||
     84           (!isa<ConstantInt>(U->getOperand(1)) &&
     85            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
     86            !isa<PHINode>(U->getOperand(1))))
     87         return V;
     88       V = U->getOperand(0);
     89     } else {
     90       return V;
     91     }
     92     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
     93   } while (1);
     94 }
     95 
     96 /// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects
     97 /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
     98 static void getUnderlyingObjects(const Value *V,
     99                                  SmallVectorImpl<Value *> &Objects,
    100                                  const DataLayout &DL) {
    101   SmallPtrSet<const Value *, 16> Visited;
    102   SmallVector<const Value *, 4> Working(1, V);
    103   do {
    104     V = Working.pop_back_val();
    105 
    106     SmallVector<Value *, 4> Objs;
    107     GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL);
    108 
    109     for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end();
    110          I != IE; ++I) {
    111       V = *I;
    112       if (!Visited.insert(V).second)
    113         continue;
    114       if (Operator::getOpcode(V) == Instruction::IntToPtr) {
    115         const Value *O =
    116           getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
    117         if (O->getType()->isPointerTy()) {
    118           Working.push_back(O);
    119           continue;
    120         }
    121       }
    122       Objects.push_back(const_cast<Value *>(V));
    123     }
    124   } while (!Working.empty());
    125 }
    126 
    127 typedef PointerUnion<const Value *, const PseudoSourceValue *> ValueType;
    128 typedef SmallVector<PointerIntPair<ValueType, 1, bool>, 4>
    129 UnderlyingObjectsVector;
    130 
    131 /// getUnderlyingObjectsForInstr - If this machine instr has memory reference
    132 /// information and it can be tracked to a normal reference to a known
    133 /// object, return the Value for that object.
    134 static void getUnderlyingObjectsForInstr(const MachineInstr *MI,
    135                                          const MachineFrameInfo *MFI,
    136                                          UnderlyingObjectsVector &Objects,
    137                                          const DataLayout &DL) {
    138   if (!MI->hasOneMemOperand() ||
    139       (!(*MI->memoperands_begin())->getValue() &&
    140        !(*MI->memoperands_begin())->getPseudoValue()) ||
    141       (*MI->memoperands_begin())->isVolatile())
    142     return;
    143 
    144   if (const PseudoSourceValue *PSV =
    145       (*MI->memoperands_begin())->getPseudoValue()) {
    146     // For now, ignore PseudoSourceValues which may alias LLVM IR values
    147     // because the code that uses this function has no way to cope with
    148     // such aliases.
    149     if (!PSV->isAliased(MFI)) {
    150       bool MayAlias = PSV->mayAlias(MFI);
    151       Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias));
    152     }
    153     return;
    154   }
    155 
    156   const Value *V = (*MI->memoperands_begin())->getValue();
    157   if (!V)
    158     return;
    159 
    160   SmallVector<Value *, 4> Objs;
    161   getUnderlyingObjects(V, Objs, DL);
    162 
    163   for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end();
    164          I != IE; ++I) {
    165     V = *I;
    166 
    167     if (!isIdentifiedObject(V)) {
    168       Objects.clear();
    169       return;
    170     }
    171 
    172     Objects.push_back(UnderlyingObjectsVector::value_type(V, true));
    173   }
    174 }
    175 
    176 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
    177   BB = bb;
    178 }
    179 
    180 void ScheduleDAGInstrs::finishBlock() {
    181   // Subclasses should no longer refer to the old block.
    182   BB = nullptr;
    183 }
    184 
    185 /// Initialize the DAG and common scheduler state for the current scheduling
    186 /// region. This does not actually create the DAG, only clears it. The
    187 /// scheduling driver may call BuildSchedGraph multiple times per scheduling
    188 /// region.
    189 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
    190                                     MachineBasicBlock::iterator begin,
    191                                     MachineBasicBlock::iterator end,
    192                                     unsigned regioninstrs) {
    193   assert(bb == BB && "startBlock should set BB");
    194   RegionBegin = begin;
    195   RegionEnd = end;
    196   NumRegionInstrs = regioninstrs;
    197 }
    198 
    199 /// Close the current scheduling region. Don't clear any state in case the
    200 /// driver wants to refer to the previous scheduling region.
    201 void ScheduleDAGInstrs::exitRegion() {
    202   // Nothing to do.
    203 }
    204 
    205 /// addSchedBarrierDeps - Add dependencies from instructions in the current
    206 /// list of instructions being scheduled to scheduling barrier by adding
    207 /// the exit SU to the register defs and use list. This is because we want to
    208 /// make sure instructions which define registers that are either used by
    209 /// the terminator or are live-out are properly scheduled. This is
    210 /// especially important when the definition latency of the return value(s)
    211 /// are too high to be hidden by the branch or when the liveout registers
    212 /// used by instructions in the fallthrough block.
    213 void ScheduleDAGInstrs::addSchedBarrierDeps() {
    214   MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr;
    215   ExitSU.setInstr(ExitMI);
    216   bool AllDepKnown = ExitMI &&
    217     (ExitMI->isCall() || ExitMI->isBarrier());
    218   if (ExitMI && AllDepKnown) {
    219     // If it's a call or a barrier, add dependencies on the defs and uses of
    220     // instruction.
    221     for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
    222       const MachineOperand &MO = ExitMI->getOperand(i);
    223       if (!MO.isReg() || MO.isDef()) continue;
    224       unsigned Reg = MO.getReg();
    225       if (Reg == 0) continue;
    226 
    227       if (TRI->isPhysicalRegister(Reg))
    228         Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
    229       else {
    230         assert(!IsPostRA && "Virtual register encountered after regalloc.");
    231         if (MO.readsReg()) // ignore undef operands
    232           addVRegUseDeps(&ExitSU, i);
    233       }
    234     }
    235   } else {
    236     // For others, e.g. fallthrough, conditional branch, assume the exit
    237     // uses all the registers that are livein to the successor blocks.
    238     assert(Uses.empty() && "Uses in set before adding deps?");
    239     for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
    240            SE = BB->succ_end(); SI != SE; ++SI)
    241       for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
    242              E = (*SI)->livein_end(); I != E; ++I) {
    243         unsigned Reg = *I;
    244         if (!Uses.contains(Reg))
    245           Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
    246       }
    247   }
    248 }
    249 
    250 /// MO is an operand of SU's instruction that defines a physical register. Add
    251 /// data dependencies from SU to any uses of the physical register.
    252 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
    253   const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
    254   assert(MO.isDef() && "expect physreg def");
    255 
    256   // Ask the target if address-backscheduling is desirable, and if so how much.
    257   const TargetSubtargetInfo &ST = MF.getSubtarget();
    258 
    259   for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
    260        Alias.isValid(); ++Alias) {
    261     if (!Uses.contains(*Alias))
    262       continue;
    263     for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
    264       SUnit *UseSU = I->SU;
    265       if (UseSU == SU)
    266         continue;
    267 
    268       // Adjust the dependence latency using operand def/use information,
    269       // then allow the target to perform its own adjustments.
    270       int UseOp = I->OpIdx;
    271       MachineInstr *RegUse = nullptr;
    272       SDep Dep;
    273       if (UseOp < 0)
    274         Dep = SDep(SU, SDep::Artificial);
    275       else {
    276         // Set the hasPhysRegDefs only for physreg defs that have a use within
    277         // the scheduling region.
    278         SU->hasPhysRegDefs = true;
    279         Dep = SDep(SU, SDep::Data, *Alias);
    280         RegUse = UseSU->getInstr();
    281       }
    282       Dep.setLatency(
    283         SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse,
    284                                          UseOp));
    285 
    286       ST.adjustSchedDependency(SU, UseSU, Dep);
    287       UseSU->addPred(Dep);
    288     }
    289   }
    290 }
    291 
    292 /// addPhysRegDeps - Add register dependencies (data, anti, and output) from
    293 /// this SUnit to following instructions in the same scheduling region that
    294 /// depend the physical register referenced at OperIdx.
    295 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
    296   MachineInstr *MI = SU->getInstr();
    297   MachineOperand &MO = MI->getOperand(OperIdx);
    298 
    299   // Optionally add output and anti dependencies. For anti
    300   // dependencies we use a latency of 0 because for a multi-issue
    301   // target we want to allow the defining instruction to issue
    302   // in the same cycle as the using instruction.
    303   // TODO: Using a latency of 1 here for output dependencies assumes
    304   //       there's no cost for reusing registers.
    305   SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
    306   for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
    307        Alias.isValid(); ++Alias) {
    308     if (!Defs.contains(*Alias))
    309       continue;
    310     for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
    311       SUnit *DefSU = I->SU;
    312       if (DefSU == &ExitSU)
    313         continue;
    314       if (DefSU != SU &&
    315           (Kind != SDep::Output || !MO.isDead() ||
    316            !DefSU->getInstr()->registerDefIsDead(*Alias))) {
    317         if (Kind == SDep::Anti)
    318           DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias));
    319         else {
    320           SDep Dep(SU, Kind, /*Reg=*/*Alias);
    321           Dep.setLatency(
    322             SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
    323           DefSU->addPred(Dep);
    324         }
    325       }
    326     }
    327   }
    328 
    329   if (!MO.isDef()) {
    330     SU->hasPhysRegUses = true;
    331     // Either insert a new Reg2SUnits entry with an empty SUnits list, or
    332     // retrieve the existing SUnits list for this register's uses.
    333     // Push this SUnit on the use list.
    334     Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg()));
    335     if (RemoveKillFlags)
    336       MO.setIsKill(false);
    337   }
    338   else {
    339     addPhysRegDataDeps(SU, OperIdx);
    340     unsigned Reg = MO.getReg();
    341 
    342     // clear this register's use list
    343     if (Uses.contains(Reg))
    344       Uses.eraseAll(Reg);
    345 
    346     if (!MO.isDead()) {
    347       Defs.eraseAll(Reg);
    348     } else if (SU->isCall) {
    349       // Calls will not be reordered because of chain dependencies (see
    350       // below). Since call operands are dead, calls may continue to be added
    351       // to the DefList making dependence checking quadratic in the size of
    352       // the block. Instead, we leave only one call at the back of the
    353       // DefList.
    354       Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
    355       Reg2SUnitsMap::iterator B = P.first;
    356       Reg2SUnitsMap::iterator I = P.second;
    357       for (bool isBegin = I == B; !isBegin; /* empty */) {
    358         isBegin = (--I) == B;
    359         if (!I->SU->isCall)
    360           break;
    361         I = Defs.erase(I);
    362       }
    363     }
    364 
    365     // Defs are pushed in the order they are visited and never reordered.
    366     Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
    367   }
    368 }
    369 
    370 /// addVRegDefDeps - Add register output and data dependencies from this SUnit
    371 /// to instructions that occur later in the same scheduling region if they read
    372 /// from or write to the virtual register defined at OperIdx.
    373 ///
    374 /// TODO: Hoist loop induction variable increments. This has to be
    375 /// reevaluated. Generally, IV scheduling should be done before coalescing.
    376 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
    377   const MachineInstr *MI = SU->getInstr();
    378   unsigned Reg = MI->getOperand(OperIdx).getReg();
    379 
    380   // Singly defined vregs do not have output/anti dependencies.
    381   // The current operand is a def, so we have at least one.
    382   // Check here if there are any others...
    383   if (MRI.hasOneDef(Reg))
    384     return;
    385 
    386   // Add output dependence to the next nearest def of this vreg.
    387   //
    388   // Unless this definition is dead, the output dependence should be
    389   // transitively redundant with antidependencies from this definition's
    390   // uses. We're conservative for now until we have a way to guarantee the uses
    391   // are not eliminated sometime during scheduling. The output dependence edge
    392   // is also useful if output latency exceeds def-use latency.
    393   VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
    394   if (DefI == VRegDefs.end())
    395     VRegDefs.insert(VReg2SUnit(Reg, SU));
    396   else {
    397     SUnit *DefSU = DefI->SU;
    398     if (DefSU != SU && DefSU != &ExitSU) {
    399       SDep Dep(SU, SDep::Output, Reg);
    400       Dep.setLatency(
    401         SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
    402       DefSU->addPred(Dep);
    403     }
    404     DefI->SU = SU;
    405   }
    406 }
    407 
    408 /// addVRegUseDeps - Add a register data dependency if the instruction that
    409 /// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
    410 /// register antidependency from this SUnit to instructions that occur later in
    411 /// the same scheduling region if they write the virtual register.
    412 ///
    413 /// TODO: Handle ExitSU "uses" properly.
    414 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
    415   MachineInstr *MI = SU->getInstr();
    416   unsigned Reg = MI->getOperand(OperIdx).getReg();
    417 
    418   // Record this local VReg use.
    419   VReg2UseMap::iterator UI = VRegUses.find(Reg);
    420   for (; UI != VRegUses.end(); ++UI) {
    421     if (UI->SU == SU)
    422       break;
    423   }
    424   if (UI == VRegUses.end())
    425     VRegUses.insert(VReg2SUnit(Reg, SU));
    426 
    427   // Lookup this operand's reaching definition.
    428   assert(LIS && "vreg dependencies requires LiveIntervals");
    429   LiveQueryResult LRQ
    430     = LIS->getInterval(Reg).Query(LIS->getInstructionIndex(MI));
    431   VNInfo *VNI = LRQ.valueIn();
    432 
    433   // VNI will be valid because MachineOperand::readsReg() is checked by caller.
    434   assert(VNI && "No value to read by operand");
    435   MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def);
    436   // Phis and other noninstructions (after coalescing) have a NULL Def.
    437   if (Def) {
    438     SUnit *DefSU = getSUnit(Def);
    439     if (DefSU) {
    440       // The reaching Def lives within this scheduling region.
    441       // Create a data dependence.
    442       SDep dep(DefSU, SDep::Data, Reg);
    443       // Adjust the dependence latency using operand def/use information, then
    444       // allow the target to perform its own adjustments.
    445       int DefOp = Def->findRegisterDefOperandIdx(Reg);
    446       dep.setLatency(SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx));
    447 
    448       const TargetSubtargetInfo &ST = MF.getSubtarget();
    449       ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep));
    450       SU->addPred(dep);
    451     }
    452   }
    453 
    454   // Add antidependence to the following def of the vreg it uses.
    455   VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
    456   if (DefI != VRegDefs.end() && DefI->SU != SU)
    457     DefI->SU->addPred(SDep(SU, SDep::Anti, Reg));
    458 }
    459 
    460 /// Return true if MI is an instruction we are unable to reason about
    461 /// (like a call or something with unmodeled side effects).
    462 static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) {
    463   if (MI->isCall() || MI->hasUnmodeledSideEffects() ||
    464       (MI->hasOrderedMemoryRef() &&
    465        (!MI->mayLoad() || !MI->isInvariantLoad(AA))))
    466     return true;
    467   return false;
    468 }
    469 
    470 // This MI might have either incomplete info, or known to be unsafe
    471 // to deal with (i.e. volatile object).
    472 static inline bool isUnsafeMemoryObject(MachineInstr *MI,
    473                                         const MachineFrameInfo *MFI,
    474                                         const DataLayout &DL) {
    475   if (!MI || MI->memoperands_empty())
    476     return true;
    477   // We purposefully do no check for hasOneMemOperand() here
    478   // in hope to trigger an assert downstream in order to
    479   // finish implementation.
    480   if ((*MI->memoperands_begin())->isVolatile() ||
    481        MI->hasUnmodeledSideEffects())
    482     return true;
    483 
    484   if ((*MI->memoperands_begin())->getPseudoValue()) {
    485     // Similarly to getUnderlyingObjectForInstr:
    486     // For now, ignore PseudoSourceValues which may alias LLVM IR values
    487     // because the code that uses this function has no way to cope with
    488     // such aliases.
    489     return true;
    490   }
    491 
    492   const Value *V = (*MI->memoperands_begin())->getValue();
    493   if (!V)
    494     return true;
    495 
    496   SmallVector<Value *, 4> Objs;
    497   getUnderlyingObjects(V, Objs, DL);
    498   for (SmallVectorImpl<Value *>::iterator I = Objs.begin(),
    499          IE = Objs.end(); I != IE; ++I) {
    500     // Does this pointer refer to a distinct and identifiable object?
    501     if (!isIdentifiedObject(*I))
    502       return true;
    503   }
    504 
    505   return false;
    506 }
    507 
    508 /// This returns true if the two MIs need a chain edge betwee them.
    509 /// If these are not even memory operations, we still may need
    510 /// chain deps between them. The question really is - could
    511 /// these two MIs be reordered during scheduling from memory dependency
    512 /// point of view.
    513 static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI,
    514                              const DataLayout &DL, MachineInstr *MIa,
    515                              MachineInstr *MIb) {
    516   const MachineFunction *MF = MIa->getParent()->getParent();
    517   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
    518 
    519   // Cover a trivial case - no edge is need to itself.
    520   if (MIa == MIb)
    521     return false;
    522 
    523   // Let the target decide if memory accesses cannot possibly overlap.
    524   if ((MIa->mayLoad() || MIa->mayStore()) &&
    525       (MIb->mayLoad() || MIb->mayStore()))
    526     if (TII->areMemAccessesTriviallyDisjoint(MIa, MIb, AA))
    527       return false;
    528 
    529   // FIXME: Need to handle multiple memory operands to support all targets.
    530   if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand())
    531     return true;
    532 
    533   if (isUnsafeMemoryObject(MIa, MFI, DL) || isUnsafeMemoryObject(MIb, MFI, DL))
    534     return true;
    535 
    536   // If we are dealing with two "normal" loads, we do not need an edge
    537   // between them - they could be reordered.
    538   if (!MIa->mayStore() && !MIb->mayStore())
    539     return false;
    540 
    541   // To this point analysis is generic. From here on we do need AA.
    542   if (!AA)
    543     return true;
    544 
    545   MachineMemOperand *MMOa = *MIa->memoperands_begin();
    546   MachineMemOperand *MMOb = *MIb->memoperands_begin();
    547 
    548   if (!MMOa->getValue() || !MMOb->getValue())
    549     return true;
    550 
    551   // The following interface to AA is fashioned after DAGCombiner::isAlias
    552   // and operates with MachineMemOperand offset with some important
    553   // assumptions:
    554   //   - LLVM fundamentally assumes flat address spaces.
    555   //   - MachineOperand offset can *only* result from legalization and
    556   //     cannot affect queries other than the trivial case of overlap
    557   //     checking.
    558   //   - These offsets never wrap and never step outside
    559   //     of allocated objects.
    560   //   - There should never be any negative offsets here.
    561   //
    562   // FIXME: Modify API to hide this math from "user"
    563   // FIXME: Even before we go to AA we can reason locally about some
    564   // memory objects. It can save compile time, and possibly catch some
    565   // corner cases not currently covered.
    566 
    567   assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset");
    568   assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset");
    569 
    570   int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset());
    571   int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset;
    572   int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset;
    573 
    574   AliasAnalysis::AliasResult AAResult = AA->alias(
    575       AliasAnalysis::Location(MMOa->getValue(), Overlapa,
    576                               UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
    577       AliasAnalysis::Location(MMOb->getValue(), Overlapb,
    578                               UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
    579 
    580   return (AAResult != AliasAnalysis::NoAlias);
    581 }
    582 
    583 /// This recursive function iterates over chain deps of SUb looking for
    584 /// "latest" node that needs a chain edge to SUa.
    585 static unsigned iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI,
    586                                  const DataLayout &DL, SUnit *SUa, SUnit *SUb,
    587                                  SUnit *ExitSU, unsigned *Depth,
    588                                  SmallPtrSetImpl<const SUnit *> &Visited) {
    589   if (!SUa || !SUb || SUb == ExitSU)
    590     return *Depth;
    591 
    592   // Remember visited nodes.
    593   if (!Visited.insert(SUb).second)
    594       return *Depth;
    595   // If there is _some_ dependency already in place, do not
    596   // descend any further.
    597   // TODO: Need to make sure that if that dependency got eliminated or ignored
    598   // for any reason in the future, we would not violate DAG topology.
    599   // Currently it does not happen, but makes an implicit assumption about
    600   // future implementation.
    601   //
    602   // Independently, if we encounter node that is some sort of global
    603   // object (like a call) we already have full set of dependencies to it
    604   // and we can stop descending.
    605   if (SUa->isSucc(SUb) ||
    606       isGlobalMemoryObject(AA, SUb->getInstr()))
    607     return *Depth;
    608 
    609   // If we do need an edge, or we have exceeded depth budget,
    610   // add that edge to the predecessors chain of SUb,
    611   // and stop descending.
    612   if (*Depth > 200 ||
    613       MIsNeedChainEdge(AA, MFI, DL, SUa->getInstr(), SUb->getInstr())) {
    614     SUb->addPred(SDep(SUa, SDep::MayAliasMem));
    615     return *Depth;
    616   }
    617   // Track current depth.
    618   (*Depth)++;
    619   // Iterate over memory dependencies only.
    620   for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end();
    621        I != E; ++I)
    622     if (I->isNormalMemoryOrBarrier())
    623       iterateChainSucc(AA, MFI, DL, SUa, I->getSUnit(), ExitSU, Depth, Visited);
    624   return *Depth;
    625 }
    626 
    627 /// This function assumes that "downward" from SU there exist
    628 /// tail/leaf of already constructed DAG. It iterates downward and
    629 /// checks whether SU can be aliasing any node dominated
    630 /// by it.
    631 static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI,
    632                             const DataLayout &DL, SUnit *SU, SUnit *ExitSU,
    633                             std::set<SUnit *> &CheckList,
    634                             unsigned LatencyToLoad) {
    635   if (!SU)
    636     return;
    637 
    638   SmallPtrSet<const SUnit*, 16> Visited;
    639   unsigned Depth = 0;
    640 
    641   for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end();
    642        I != IE; ++I) {
    643     if (SU == *I)
    644       continue;
    645     if (MIsNeedChainEdge(AA, MFI, DL, SU->getInstr(), (*I)->getInstr())) {
    646       SDep Dep(SU, SDep::MayAliasMem);
    647       Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0);
    648       (*I)->addPred(Dep);
    649     }
    650 
    651     // Iterate recursively over all previously added memory chain
    652     // successors. Keep track of visited nodes.
    653     for (SUnit::const_succ_iterator J = (*I)->Succs.begin(),
    654          JE = (*I)->Succs.end(); J != JE; ++J)
    655       if (J->isNormalMemoryOrBarrier())
    656         iterateChainSucc(AA, MFI, DL, SU, J->getSUnit(), ExitSU, &Depth,
    657                          Visited);
    658   }
    659 }
    660 
    661 /// Check whether two objects need a chain edge, if so, add it
    662 /// otherwise remember the rejected SU.
    663 static inline void addChainDependency(AliasAnalysis *AA,
    664                                       const MachineFrameInfo *MFI,
    665                                       const DataLayout &DL, SUnit *SUa,
    666                                       SUnit *SUb, std::set<SUnit *> &RejectList,
    667                                       unsigned TrueMemOrderLatency = 0,
    668                                       bool isNormalMemory = false) {
    669   // If this is a false dependency,
    670   // do not add the edge, but rememeber the rejected node.
    671   if (MIsNeedChainEdge(AA, MFI, DL, SUa->getInstr(), SUb->getInstr())) {
    672     SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier);
    673     Dep.setLatency(TrueMemOrderLatency);
    674     SUb->addPred(Dep);
    675   }
    676   else {
    677     // Duplicate entries should be ignored.
    678     RejectList.insert(SUb);
    679     DEBUG(dbgs() << "\tReject chain dep between SU("
    680           << SUa->NodeNum << ") and SU("
    681           << SUb->NodeNum << ")\n");
    682   }
    683 }
    684 
    685 /// Create an SUnit for each real instruction, numbered in top-down toplological
    686 /// order. The instruction order A < B, implies that no edge exists from B to A.
    687 ///
    688 /// Map each real instruction to its SUnit.
    689 ///
    690 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may
    691 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
    692 /// instead of pointers.
    693 ///
    694 /// MachineScheduler relies on initSUnits numbering the nodes by their order in
    695 /// the original instruction list.
    696 void ScheduleDAGInstrs::initSUnits() {
    697   // We'll be allocating one SUnit for each real instruction in the region,
    698   // which is contained within a basic block.
    699   SUnits.reserve(NumRegionInstrs);
    700 
    701   for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) {
    702     MachineInstr *MI = I;
    703     if (MI->isDebugValue())
    704       continue;
    705 
    706     SUnit *SU = newSUnit(MI);
    707     MISUnitMap[MI] = SU;
    708 
    709     SU->isCall = MI->isCall();
    710     SU->isCommutable = MI->isCommutable();
    711 
    712     // Assign the Latency field of SU using target-provided information.
    713     SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
    714 
    715     // If this SUnit uses a reserved or unbuffered resource, mark it as such.
    716     //
    717     // Reserved resources block an instruction from issuing and stall the
    718     // entire pipeline. These are identified by BufferSize=0.
    719     //
    720     // Unbuffered resources prevent execution of subsequent instructions that
    721     // require the same resources. This is used for in-order execution pipelines
    722     // within an out-of-order core. These are identified by BufferSize=1.
    723     if (SchedModel.hasInstrSchedModel()) {
    724       const MCSchedClassDesc *SC = getSchedClass(SU);
    725       for (TargetSchedModel::ProcResIter
    726              PI = SchedModel.getWriteProcResBegin(SC),
    727              PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) {
    728         switch (SchedModel.getProcResource(PI->ProcResourceIdx)->BufferSize) {
    729         case 0:
    730           SU->hasReservedResource = true;
    731           break;
    732         case 1:
    733           SU->isUnbuffered = true;
    734           break;
    735         default:
    736           break;
    737         }
    738       }
    739     }
    740   }
    741 }
    742 
    743 /// If RegPressure is non-null, compute register pressure as a side effect. The
    744 /// DAG builder is an efficient place to do it because it already visits
    745 /// operands.
    746 void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
    747                                         RegPressureTracker *RPTracker,
    748                                         PressureDiffs *PDiffs) {
    749   const TargetSubtargetInfo &ST = MF.getSubtarget();
    750   bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI
    751                                                        : ST.useAA();
    752   AliasAnalysis *AAForDep = UseAA ? AA : nullptr;
    753 
    754   MISUnitMap.clear();
    755   ScheduleDAG::clearDAG();
    756 
    757   // Create an SUnit for each real instruction.
    758   initSUnits();
    759 
    760   if (PDiffs)
    761     PDiffs->init(SUnits.size());
    762 
    763   // We build scheduling units by walking a block's instruction list from bottom
    764   // to top.
    765 
    766   // Remember where a generic side-effecting instruction is as we procede.
    767   SUnit *BarrierChain = nullptr, *AliasChain = nullptr;
    768 
    769   // Memory references to specific known memory locations are tracked
    770   // so that they can be given more precise dependencies. We track
    771   // separately the known memory locations that may alias and those
    772   // that are known not to alias
    773   MapVector<ValueType, std::vector<SUnit *> > AliasMemDefs, NonAliasMemDefs;
    774   MapVector<ValueType, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
    775   std::set<SUnit*> RejectMemNodes;
    776 
    777   // Remove any stale debug info; sometimes BuildSchedGraph is called again
    778   // without emitting the info from the previous call.
    779   DbgValues.clear();
    780   FirstDbgValue = nullptr;
    781 
    782   assert(Defs.empty() && Uses.empty() &&
    783          "Only BuildGraph should update Defs/Uses");
    784   Defs.setUniverse(TRI->getNumRegs());
    785   Uses.setUniverse(TRI->getNumRegs());
    786 
    787   assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs");
    788   VRegUses.clear();
    789   VRegDefs.setUniverse(MRI.getNumVirtRegs());
    790   VRegUses.setUniverse(MRI.getNumVirtRegs());
    791 
    792   // Model data dependencies between instructions being scheduled and the
    793   // ExitSU.
    794   addSchedBarrierDeps();
    795 
    796   // Walk the list of instructions, from bottom moving up.
    797   MachineInstr *DbgMI = nullptr;
    798   for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
    799        MII != MIE; --MII) {
    800     MachineInstr *MI = std::prev(MII);
    801     if (MI && DbgMI) {
    802       DbgValues.push_back(std::make_pair(DbgMI, MI));
    803       DbgMI = nullptr;
    804     }
    805 
    806     if (MI->isDebugValue()) {
    807       DbgMI = MI;
    808       continue;
    809     }
    810     SUnit *SU = MISUnitMap[MI];
    811     assert(SU && "No SUnit mapped to this MI");
    812 
    813     if (RPTracker) {
    814       PressureDiff *PDiff = PDiffs ? &(*PDiffs)[SU->NodeNum] : nullptr;
    815       RPTracker->recede(/*LiveUses=*/nullptr, PDiff);
    816       assert(RPTracker->getPos() == std::prev(MII) &&
    817              "RPTracker can't find MI");
    818     }
    819 
    820     assert(
    821         (CanHandleTerminators || (!MI->isTerminator() && !MI->isPosition())) &&
    822         "Cannot schedule terminators or labels!");
    823 
    824     // Add register-based dependencies (data, anti, and output).
    825     bool HasVRegDef = false;
    826     for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
    827       const MachineOperand &MO = MI->getOperand(j);
    828       if (!MO.isReg()) continue;
    829       unsigned Reg = MO.getReg();
    830       if (Reg == 0) continue;
    831 
    832       if (TRI->isPhysicalRegister(Reg))
    833         addPhysRegDeps(SU, j);
    834       else {
    835         assert(!IsPostRA && "Virtual register encountered!");
    836         if (MO.isDef()) {
    837           HasVRegDef = true;
    838           addVRegDefDeps(SU, j);
    839         }
    840         else if (MO.readsReg()) // ignore undef operands
    841           addVRegUseDeps(SU, j);
    842       }
    843     }
    844     // If we haven't seen any uses in this scheduling region, create a
    845     // dependence edge to ExitSU to model the live-out latency. This is required
    846     // for vreg defs with no in-region use, and prefetches with no vreg def.
    847     //
    848     // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
    849     // check currently relies on being called before adding chain deps.
    850     if (SU->NumSuccs == 0 && SU->Latency > 1
    851         && (HasVRegDef || MI->mayLoad())) {
    852       SDep Dep(SU, SDep::Artificial);
    853       Dep.setLatency(SU->Latency - 1);
    854       ExitSU.addPred(Dep);
    855     }
    856 
    857     // Add chain dependencies.
    858     // Chain dependencies used to enforce memory order should have
    859     // latency of 0 (except for true dependency of Store followed by
    860     // aliased Load... we estimate that with a single cycle of latency
    861     // assuming the hardware will bypass)
    862     // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
    863     // after stack slots are lowered to actual addresses.
    864     // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
    865     // produce more precise dependence information.
    866     unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0;
    867     if (isGlobalMemoryObject(AA, MI)) {
    868       // Be conservative with these and add dependencies on all memory
    869       // references, even those that are known to not alias.
    870       for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
    871              NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
    872         for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
    873           I->second[i]->addPred(SDep(SU, SDep::Barrier));
    874         }
    875       }
    876       for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
    877              NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
    878         for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
    879           SDep Dep(SU, SDep::Barrier);
    880           Dep.setLatency(TrueMemOrderLatency);
    881           I->second[i]->addPred(Dep);
    882         }
    883       }
    884       // Add SU to the barrier chain.
    885       if (BarrierChain)
    886         BarrierChain->addPred(SDep(SU, SDep::Barrier));
    887       BarrierChain = SU;
    888       // This is a barrier event that acts as a pivotal node in the DAG,
    889       // so it is safe to clear list of exposed nodes.
    890       adjustChainDeps(AA, MFI, *TM.getDataLayout(), SU, &ExitSU, RejectMemNodes,
    891                       TrueMemOrderLatency);
    892       RejectMemNodes.clear();
    893       NonAliasMemDefs.clear();
    894       NonAliasMemUses.clear();
    895 
    896       // fall-through
    897     new_alias_chain:
    898       // Chain all possibly aliasing memory references through SU.
    899       if (AliasChain) {
    900         unsigned ChainLatency = 0;
    901         if (AliasChain->getInstr()->mayLoad())
    902           ChainLatency = TrueMemOrderLatency;
    903         addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU, AliasChain,
    904                            RejectMemNodes, ChainLatency);
    905       }
    906       AliasChain = SU;
    907       for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
    908         addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU,
    909                            PendingLoads[k], RejectMemNodes,
    910                            TrueMemOrderLatency);
    911       for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
    912            AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) {
    913         for (unsigned i = 0, e = I->second.size(); i != e; ++i)
    914           addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU,
    915                              I->second[i], RejectMemNodes);
    916       }
    917       for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
    918            AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
    919         for (unsigned i = 0, e = I->second.size(); i != e; ++i)
    920           addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU,
    921                              I->second[i], RejectMemNodes, TrueMemOrderLatency);
    922       }
    923       adjustChainDeps(AA, MFI, *TM.getDataLayout(), SU, &ExitSU, RejectMemNodes,
    924                       TrueMemOrderLatency);
    925       PendingLoads.clear();
    926       AliasMemDefs.clear();
    927       AliasMemUses.clear();
    928     } else if (MI->mayStore()) {
    929       // Add dependence on barrier chain, if needed.
    930       // There is no point to check aliasing on barrier event. Even if
    931       // SU and barrier _could_ be reordered, they should not. In addition,
    932       // we have lost all RejectMemNodes below barrier.
    933       if (BarrierChain)
    934         BarrierChain->addPred(SDep(SU, SDep::Barrier));
    935 
    936       UnderlyingObjectsVector Objs;
    937       getUnderlyingObjectsForInstr(MI, MFI, Objs, *TM.getDataLayout());
    938 
    939       if (Objs.empty()) {
    940         // Treat all other stores conservatively.
    941         goto new_alias_chain;
    942       }
    943 
    944       bool MayAlias = false;
    945       for (UnderlyingObjectsVector::iterator K = Objs.begin(), KE = Objs.end();
    946            K != KE; ++K) {
    947         ValueType V = K->getPointer();
    948         bool ThisMayAlias = K->getInt();
    949         if (ThisMayAlias)
    950           MayAlias = true;
    951 
    952         // A store to a specific PseudoSourceValue. Add precise dependencies.
    953         // Record the def in MemDefs, first adding a dep if there is
    954         // an existing def.
    955         MapVector<ValueType, std::vector<SUnit *> >::iterator I =
    956           ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
    957         MapVector<ValueType, std::vector<SUnit *> >::iterator IE =
    958           ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
    959         if (I != IE) {
    960           for (unsigned i = 0, e = I->second.size(); i != e; ++i)
    961             addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU,
    962                                I->second[i], RejectMemNodes, 0, true);
    963 
    964           // If we're not using AA, then we only need one store per object.
    965           if (!AAForDep)
    966             I->second.clear();
    967           I->second.push_back(SU);
    968         } else {
    969           if (ThisMayAlias) {
    970             if (!AAForDep)
    971               AliasMemDefs[V].clear();
    972             AliasMemDefs[V].push_back(SU);
    973           } else {
    974             if (!AAForDep)
    975               NonAliasMemDefs[V].clear();
    976             NonAliasMemDefs[V].push_back(SU);
    977           }
    978         }
    979         // Handle the uses in MemUses, if there are any.
    980         MapVector<ValueType, std::vector<SUnit *> >::iterator J =
    981           ((ThisMayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
    982         MapVector<ValueType, std::vector<SUnit *> >::iterator JE =
    983           ((ThisMayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
    984         if (J != JE) {
    985           for (unsigned i = 0, e = J->second.size(); i != e; ++i)
    986             addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU,
    987                                J->second[i], RejectMemNodes,
    988                                TrueMemOrderLatency, true);
    989           J->second.clear();
    990         }
    991       }
    992       if (MayAlias) {
    993         // Add dependencies from all the PendingLoads, i.e. loads
    994         // with no underlying object.
    995         for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
    996           addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU,
    997                              PendingLoads[k], RejectMemNodes,
    998                              TrueMemOrderLatency);
    999         // Add dependence on alias chain, if needed.
   1000         if (AliasChain)
   1001           addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU, AliasChain,
   1002                              RejectMemNodes);
   1003       }
   1004       adjustChainDeps(AA, MFI, *TM.getDataLayout(), SU, &ExitSU, RejectMemNodes,
   1005                       TrueMemOrderLatency);
   1006     } else if (MI->mayLoad()) {
   1007       bool MayAlias = true;
   1008       if (MI->isInvariantLoad(AA)) {
   1009         // Invariant load, no chain dependencies needed!
   1010       } else {
   1011         UnderlyingObjectsVector Objs;
   1012         getUnderlyingObjectsForInstr(MI, MFI, Objs, *TM.getDataLayout());
   1013 
   1014         if (Objs.empty()) {
   1015           // A load with no underlying object. Depend on all
   1016           // potentially aliasing stores.
   1017           for (MapVector<ValueType, std::vector<SUnit *> >::iterator I =
   1018                  AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
   1019             for (unsigned i = 0, e = I->second.size(); i != e; ++i)
   1020               addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU,
   1021                                  I->second[i], RejectMemNodes);
   1022 
   1023           PendingLoads.push_back(SU);
   1024           MayAlias = true;
   1025         } else {
   1026           MayAlias = false;
   1027         }
   1028 
   1029         for (UnderlyingObjectsVector::iterator
   1030              J = Objs.begin(), JE = Objs.end(); J != JE; ++J) {
   1031           ValueType V = J->getPointer();
   1032           bool ThisMayAlias = J->getInt();
   1033 
   1034           if (ThisMayAlias)
   1035             MayAlias = true;
   1036 
   1037           // A load from a specific PseudoSourceValue. Add precise dependencies.
   1038           MapVector<ValueType, std::vector<SUnit *> >::iterator I =
   1039             ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
   1040           MapVector<ValueType, std::vector<SUnit *> >::iterator IE =
   1041             ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
   1042           if (I != IE)
   1043             for (unsigned i = 0, e = I->second.size(); i != e; ++i)
   1044               addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU,
   1045                                  I->second[i], RejectMemNodes, 0, true);
   1046           if (ThisMayAlias)
   1047             AliasMemUses[V].push_back(SU);
   1048           else
   1049             NonAliasMemUses[V].push_back(SU);
   1050         }
   1051         if (MayAlias)
   1052           adjustChainDeps(AA, MFI, *TM.getDataLayout(), SU, &ExitSU,
   1053                           RejectMemNodes, /*Latency=*/0);
   1054         // Add dependencies on alias and barrier chains, if needed.
   1055         if (MayAlias && AliasChain)
   1056           addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU, AliasChain,
   1057                              RejectMemNodes);
   1058         if (BarrierChain)
   1059           BarrierChain->addPred(SDep(SU, SDep::Barrier));
   1060       }
   1061     }
   1062   }
   1063   if (DbgMI)
   1064     FirstDbgValue = DbgMI;
   1065 
   1066   Defs.clear();
   1067   Uses.clear();
   1068   VRegDefs.clear();
   1069   PendingLoads.clear();
   1070 }
   1071 
   1072 /// \brief Initialize register live-range state for updating kills.
   1073 void ScheduleDAGInstrs::startBlockForKills(MachineBasicBlock *BB) {
   1074   // Start with no live registers.
   1075   LiveRegs.reset();
   1076 
   1077   // Examine the live-in regs of all successors.
   1078   for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
   1079        SE = BB->succ_end(); SI != SE; ++SI) {
   1080     for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
   1081          E = (*SI)->livein_end(); I != E; ++I) {
   1082       unsigned Reg = *I;
   1083       // Repeat, for reg and all subregs.
   1084       for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
   1085            SubRegs.isValid(); ++SubRegs)
   1086         LiveRegs.set(*SubRegs);
   1087     }
   1088   }
   1089 }
   1090 
   1091 bool ScheduleDAGInstrs::toggleKillFlag(MachineInstr *MI, MachineOperand &MO) {
   1092   // Setting kill flag...
   1093   if (!MO.isKill()) {
   1094     MO.setIsKill(true);
   1095     return false;
   1096   }
   1097 
   1098   // If MO itself is live, clear the kill flag...
   1099   if (LiveRegs.test(MO.getReg())) {
   1100     MO.setIsKill(false);
   1101     return false;
   1102   }
   1103 
   1104   // If any subreg of MO is live, then create an imp-def for that
   1105   // subreg and keep MO marked as killed.
   1106   MO.setIsKill(false);
   1107   bool AllDead = true;
   1108   const unsigned SuperReg = MO.getReg();
   1109   MachineInstrBuilder MIB(MF, MI);
   1110   for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) {
   1111     if (LiveRegs.test(*SubRegs)) {
   1112       MIB.addReg(*SubRegs, RegState::ImplicitDefine);
   1113       AllDead = false;
   1114     }
   1115   }
   1116 
   1117   if(AllDead)
   1118     MO.setIsKill(true);
   1119   return false;
   1120 }
   1121 
   1122 // FIXME: Reuse the LivePhysRegs utility for this.
   1123 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock *MBB) {
   1124   DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');
   1125 
   1126   LiveRegs.resize(TRI->getNumRegs());
   1127   BitVector killedRegs(TRI->getNumRegs());
   1128 
   1129   startBlockForKills(MBB);
   1130 
   1131   // Examine block from end to start...
   1132   unsigned Count = MBB->size();
   1133   for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
   1134        I != E; --Count) {
   1135     MachineInstr *MI = --I;
   1136     if (MI->isDebugValue())
   1137       continue;
   1138 
   1139     // Update liveness.  Registers that are defed but not used in this
   1140     // instruction are now dead. Mark register and all subregs as they
   1141     // are completely defined.
   1142     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1143       MachineOperand &MO = MI->getOperand(i);
   1144       if (MO.isRegMask())
   1145         LiveRegs.clearBitsNotInMask(MO.getRegMask());
   1146       if (!MO.isReg()) continue;
   1147       unsigned Reg = MO.getReg();
   1148       if (Reg == 0) continue;
   1149       if (!MO.isDef()) continue;
   1150       // Ignore two-addr defs.
   1151       if (MI->isRegTiedToUseOperand(i)) continue;
   1152 
   1153       // Repeat for reg and all subregs.
   1154       for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
   1155            SubRegs.isValid(); ++SubRegs)
   1156         LiveRegs.reset(*SubRegs);
   1157     }
   1158 
   1159     // Examine all used registers and set/clear kill flag. When a
   1160     // register is used multiple times we only set the kill flag on
   1161     // the first use. Don't set kill flags on undef operands.
   1162     killedRegs.reset();
   1163     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1164       MachineOperand &MO = MI->getOperand(i);
   1165       if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
   1166       unsigned Reg = MO.getReg();
   1167       if ((Reg == 0) || MRI.isReserved(Reg)) continue;
   1168 
   1169       bool kill = false;
   1170       if (!killedRegs.test(Reg)) {
   1171         kill = true;
   1172         // A register is not killed if any subregs are live...
   1173         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
   1174           if (LiveRegs.test(*SubRegs)) {
   1175             kill = false;
   1176             break;
   1177           }
   1178         }
   1179 
   1180         // If subreg is not live, then register is killed if it became
   1181         // live in this instruction
   1182         if (kill)
   1183           kill = !LiveRegs.test(Reg);
   1184       }
   1185 
   1186       if (MO.isKill() != kill) {
   1187         DEBUG(dbgs() << "Fixing " << MO << " in ");
   1188         // Warning: toggleKillFlag may invalidate MO.
   1189         toggleKillFlag(MI, MO);
   1190         DEBUG(MI->dump());
   1191       }
   1192 
   1193       killedRegs.set(Reg);
   1194     }
   1195 
   1196     // Mark any used register (that is not using undef) and subregs as
   1197     // now live...
   1198     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1199       MachineOperand &MO = MI->getOperand(i);
   1200       if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
   1201       unsigned Reg = MO.getReg();
   1202       if ((Reg == 0) || MRI.isReserved(Reg)) continue;
   1203 
   1204       for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
   1205            SubRegs.isValid(); ++SubRegs)
   1206         LiveRegs.set(*SubRegs);
   1207     }
   1208   }
   1209 }
   1210 
   1211 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
   1212 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
   1213   SU->getInstr()->dump();
   1214 #endif
   1215 }
   1216 
   1217 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
   1218   std::string s;
   1219   raw_string_ostream oss(s);
   1220   if (SU == &EntrySU)
   1221     oss << "<entry>";
   1222   else if (SU == &ExitSU)
   1223     oss << "<exit>";
   1224   else
   1225     SU->getInstr()->print(oss, /*SkipOpers=*/true);
   1226   return oss.str();
   1227 }
   1228 
   1229 /// Return the basic block label. It is not necessarilly unique because a block
   1230 /// contains multiple scheduling regions. But it is fine for visualization.
   1231 std::string ScheduleDAGInstrs::getDAGName() const {
   1232   return "dag." + BB->getFullName();
   1233 }
   1234 
   1235 //===----------------------------------------------------------------------===//
   1236 // SchedDFSResult Implementation
   1237 //===----------------------------------------------------------------------===//
   1238 
   1239 namespace llvm {
   1240 /// \brief Internal state used to compute SchedDFSResult.
   1241 class SchedDFSImpl {
   1242   SchedDFSResult &R;
   1243 
   1244   /// Join DAG nodes into equivalence classes by their subtree.
   1245   IntEqClasses SubtreeClasses;
   1246   /// List PredSU, SuccSU pairs that represent data edges between subtrees.
   1247   std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs;
   1248 
   1249   struct RootData {
   1250     unsigned NodeID;
   1251     unsigned ParentNodeID;  // Parent node (member of the parent subtree).
   1252     unsigned SubInstrCount; // Instr count in this tree only, not children.
   1253 
   1254     RootData(unsigned id): NodeID(id),
   1255                            ParentNodeID(SchedDFSResult::InvalidSubtreeID),
   1256                            SubInstrCount(0) {}
   1257 
   1258     unsigned getSparseSetIndex() const { return NodeID; }
   1259   };
   1260 
   1261   SparseSet<RootData> RootSet;
   1262 
   1263 public:
   1264   SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
   1265     RootSet.setUniverse(R.DFSNodeData.size());
   1266   }
   1267 
   1268   /// Return true if this node been visited by the DFS traversal.
   1269   ///
   1270   /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
   1271   /// ID. Later, SubtreeID is updated but remains valid.
   1272   bool isVisited(const SUnit *SU) const {
   1273     return R.DFSNodeData[SU->NodeNum].SubtreeID
   1274       != SchedDFSResult::InvalidSubtreeID;
   1275   }
   1276 
   1277   /// Initialize this node's instruction count. We don't need to flag the node
   1278   /// visited until visitPostorder because the DAG cannot have cycles.
   1279   void visitPreorder(const SUnit *SU) {
   1280     R.DFSNodeData[SU->NodeNum].InstrCount =
   1281       SU->getInstr()->isTransient() ? 0 : 1;
   1282   }
   1283 
   1284   /// Called once for each node after all predecessors are visited. Revisit this
   1285   /// node's predecessors and potentially join them now that we know the ILP of
   1286   /// the other predecessors.
   1287   void visitPostorderNode(const SUnit *SU) {
   1288     // Mark this node as the root of a subtree. It may be joined with its
   1289     // successors later.
   1290     R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
   1291     RootData RData(SU->NodeNum);
   1292     RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
   1293 
   1294     // If any predecessors are still in their own subtree, they either cannot be
   1295     // joined or are large enough to remain separate. If this parent node's
   1296     // total instruction count is not greater than a child subtree by at least
   1297     // the subtree limit, then try to join it now since splitting subtrees is
   1298     // only useful if multiple high-pressure paths are possible.
   1299     unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
   1300     for (SUnit::const_pred_iterator
   1301            PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
   1302       if (PI->getKind() != SDep::Data)
   1303         continue;
   1304       unsigned PredNum = PI->getSUnit()->NodeNum;
   1305       if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
   1306         joinPredSubtree(*PI, SU, /*CheckLimit=*/false);
   1307 
   1308       // Either link or merge the TreeData entry from the child to the parent.
   1309       if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
   1310         // If the predecessor's parent is invalid, this is a tree edge and the
   1311         // current node is the parent.
   1312         if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
   1313           RootSet[PredNum].ParentNodeID = SU->NodeNum;
   1314       }
   1315       else if (RootSet.count(PredNum)) {
   1316         // The predecessor is not a root, but is still in the root set. This
   1317         // must be the new parent that it was just joined to. Note that
   1318         // RootSet[PredNum].ParentNodeID may either be invalid or may still be
   1319         // set to the original parent.
   1320         RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
   1321         RootSet.erase(PredNum);
   1322       }
   1323     }
   1324     RootSet[SU->NodeNum] = RData;
   1325   }
   1326 
   1327   /// Called once for each tree edge after calling visitPostOrderNode on the
   1328   /// predecessor. Increment the parent node's instruction count and
   1329   /// preemptively join this subtree to its parent's if it is small enough.
   1330   void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
   1331     R.DFSNodeData[Succ->NodeNum].InstrCount
   1332       += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
   1333     joinPredSubtree(PredDep, Succ);
   1334   }
   1335 
   1336   /// Add a connection for cross edges.
   1337   void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
   1338     ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ));
   1339   }
   1340 
   1341   /// Set each node's subtree ID to the representative ID and record connections
   1342   /// between trees.
   1343   void finalize() {
   1344     SubtreeClasses.compress();
   1345     R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
   1346     assert(SubtreeClasses.getNumClasses() == RootSet.size()
   1347            && "number of roots should match trees");
   1348     for (SparseSet<RootData>::const_iterator
   1349            RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) {
   1350       unsigned TreeID = SubtreeClasses[RI->NodeID];
   1351       if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID)
   1352         R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID];
   1353       R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount;
   1354       // Note that SubInstrCount may be greater than InstrCount if we joined
   1355       // subtrees across a cross edge. InstrCount will be attributed to the
   1356       // original parent, while SubInstrCount will be attributed to the joined
   1357       // parent.
   1358     }
   1359     R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
   1360     R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
   1361     DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
   1362     for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
   1363       R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
   1364       DEBUG(dbgs() << "  SU(" << Idx << ") in tree "
   1365             << R.DFSNodeData[Idx].SubtreeID << '\n');
   1366     }
   1367     for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator
   1368            I = ConnectionPairs.begin(), E = ConnectionPairs.end();
   1369          I != E; ++I) {
   1370       unsigned PredTree = SubtreeClasses[I->first->NodeNum];
   1371       unsigned SuccTree = SubtreeClasses[I->second->NodeNum];
   1372       if (PredTree == SuccTree)
   1373         continue;
   1374       unsigned Depth = I->first->getDepth();
   1375       addConnection(PredTree, SuccTree, Depth);
   1376       addConnection(SuccTree, PredTree, Depth);
   1377     }
   1378   }
   1379 
   1380 protected:
   1381   /// Join the predecessor subtree with the successor that is its DFS
   1382   /// parent. Apply some heuristics before joining.
   1383   bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
   1384                        bool CheckLimit = true) {
   1385     assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
   1386 
   1387     // Check if the predecessor is already joined.
   1388     const SUnit *PredSU = PredDep.getSUnit();
   1389     unsigned PredNum = PredSU->NodeNum;
   1390     if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
   1391       return false;
   1392 
   1393     // Four is the magic number of successors before a node is considered a
   1394     // pinch point.
   1395     unsigned NumDataSucs = 0;
   1396     for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(),
   1397            SE = PredSU->Succs.end(); SI != SE; ++SI) {
   1398       if (SI->getKind() == SDep::Data) {
   1399         if (++NumDataSucs >= 4)
   1400           return false;
   1401       }
   1402     }
   1403     if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
   1404       return false;
   1405     R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
   1406     SubtreeClasses.join(Succ->NodeNum, PredNum);
   1407     return true;
   1408   }
   1409 
   1410   /// Called by finalize() to record a connection between trees.
   1411   void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
   1412     if (!Depth)
   1413       return;
   1414 
   1415     do {
   1416       SmallVectorImpl<SchedDFSResult::Connection> &Connections =
   1417         R.SubtreeConnections[FromTree];
   1418       for (SmallVectorImpl<SchedDFSResult::Connection>::iterator
   1419              I = Connections.begin(), E = Connections.end(); I != E; ++I) {
   1420         if (I->TreeID == ToTree) {
   1421           I->Level = std::max(I->Level, Depth);
   1422           return;
   1423         }
   1424       }
   1425       Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
   1426       FromTree = R.DFSTreeData[FromTree].ParentTreeID;
   1427     } while (FromTree != SchedDFSResult::InvalidSubtreeID);
   1428   }
   1429 };
   1430 } // namespace llvm
   1431 
   1432 namespace {
   1433 /// \brief Manage the stack used by a reverse depth-first search over the DAG.
   1434 class SchedDAGReverseDFS {
   1435   std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack;
   1436 public:
   1437   bool isComplete() const { return DFSStack.empty(); }
   1438 
   1439   void follow(const SUnit *SU) {
   1440     DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
   1441   }
   1442   void advance() { ++DFSStack.back().second; }
   1443 
   1444   const SDep *backtrack() {
   1445     DFSStack.pop_back();
   1446     return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second);
   1447   }
   1448 
   1449   const SUnit *getCurr() const { return DFSStack.back().first; }
   1450 
   1451   SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
   1452 
   1453   SUnit::const_pred_iterator getPredEnd() const {
   1454     return getCurr()->Preds.end();
   1455   }
   1456 };
   1457 } // anonymous
   1458 
   1459 static bool hasDataSucc(const SUnit *SU) {
   1460   for (SUnit::const_succ_iterator
   1461          SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) {
   1462     if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode())
   1463       return true;
   1464   }
   1465   return false;
   1466 }
   1467 
   1468 /// Compute an ILP metric for all nodes in the subDAG reachable via depth-first
   1469 /// search from this root.
   1470 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
   1471   if (!IsBottomUp)
   1472     llvm_unreachable("Top-down ILP metric is unimplemnted");
   1473 
   1474   SchedDFSImpl Impl(*this);
   1475   for (ArrayRef<SUnit>::const_iterator
   1476          SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) {
   1477     const SUnit *SU = &*SI;
   1478     if (Impl.isVisited(SU) || hasDataSucc(SU))
   1479       continue;
   1480 
   1481     SchedDAGReverseDFS DFS;
   1482     Impl.visitPreorder(SU);
   1483     DFS.follow(SU);
   1484     for (;;) {
   1485       // Traverse the leftmost path as far as possible.
   1486       while (DFS.getPred() != DFS.getPredEnd()) {
   1487         const SDep &PredDep = *DFS.getPred();
   1488         DFS.advance();
   1489         // Ignore non-data edges.
   1490         if (PredDep.getKind() != SDep::Data
   1491             || PredDep.getSUnit()->isBoundaryNode()) {
   1492           continue;
   1493         }
   1494         // An already visited edge is a cross edge, assuming an acyclic DAG.
   1495         if (Impl.isVisited(PredDep.getSUnit())) {
   1496           Impl.visitCrossEdge(PredDep, DFS.getCurr());
   1497           continue;
   1498         }
   1499         Impl.visitPreorder(PredDep.getSUnit());
   1500         DFS.follow(PredDep.getSUnit());
   1501       }
   1502       // Visit the top of the stack in postorder and backtrack.
   1503       const SUnit *Child = DFS.getCurr();
   1504       const SDep *PredDep = DFS.backtrack();
   1505       Impl.visitPostorderNode(Child);
   1506       if (PredDep)
   1507         Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
   1508       if (DFS.isComplete())
   1509         break;
   1510     }
   1511   }
   1512   Impl.finalize();
   1513 }
   1514 
   1515 /// The root of the given SubtreeID was just scheduled. For all subtrees
   1516 /// connected to this tree, record the depth of the connection so that the
   1517 /// nearest connected subtrees can be prioritized.
   1518 void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
   1519   for (SmallVectorImpl<Connection>::const_iterator
   1520          I = SubtreeConnections[SubtreeID].begin(),
   1521          E = SubtreeConnections[SubtreeID].end(); I != E; ++I) {
   1522     SubtreeConnectLevels[I->TreeID] =
   1523       std::max(SubtreeConnectLevels[I->TreeID], I->Level);
   1524     DEBUG(dbgs() << "  Tree: " << I->TreeID
   1525           << " @" << SubtreeConnectLevels[I->TreeID] << '\n');
   1526   }
   1527 }
   1528 
   1529 LLVM_DUMP_METHOD
   1530 void ILPValue::print(raw_ostream &OS) const {
   1531   OS << InstrCount << " / " << Length << " = ";
   1532   if (!Length)
   1533     OS << "BADILP";
   1534   else
   1535     OS << format("%g", ((double)InstrCount / Length));
   1536 }
   1537 
   1538 LLVM_DUMP_METHOD
   1539 void ILPValue::dump() const {
   1540   dbgs() << *this << '\n';
   1541 }
   1542 
   1543 namespace llvm {
   1544 
   1545 LLVM_DUMP_METHOD
   1546 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
   1547   Val.print(OS);
   1548   return OS;
   1549 }
   1550 
   1551 } // namespace llvm
   1552