Home | History | Annotate | Download | only in CodeGen
      1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // MachineScheduler schedules machine instructions after phi elimination. It
     11 // preserves LiveIntervals so it can be invoked before register allocation.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/CodeGen/MachineScheduler.h"
     16 #include "llvm/ADT/PriorityQueue.h"
     17 #include "llvm/Analysis/AliasAnalysis.h"
     18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     19 #include "llvm/CodeGen/MachineDominators.h"
     20 #include "llvm/CodeGen/MachineLoopInfo.h"
     21 #include "llvm/CodeGen/MachineRegisterInfo.h"
     22 #include "llvm/CodeGen/Passes.h"
     23 #include "llvm/CodeGen/RegisterClassInfo.h"
     24 #include "llvm/CodeGen/ScheduleDFS.h"
     25 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
     26 #include "llvm/Support/CommandLine.h"
     27 #include "llvm/Support/Debug.h"
     28 #include "llvm/Support/ErrorHandling.h"
     29 #include "llvm/Support/GraphWriter.h"
     30 #include "llvm/Support/raw_ostream.h"
     31 #include "llvm/Target/TargetInstrInfo.h"
     32 #include <queue>
     33 
     34 using namespace llvm;
     35 
     36 #define DEBUG_TYPE "misched"
     37 
     38 namespace llvm {
     39 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
     40                            cl::desc("Force top-down list scheduling"));
     41 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
     42                             cl::desc("Force bottom-up list scheduling"));
     43 cl::opt<bool>
     44 DumpCriticalPathLength("misched-dcpl", cl::Hidden,
     45                        cl::desc("Print critical path length to stdout"));
     46 }
     47 
     48 #ifndef NDEBUG
     49 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
     50   cl::desc("Pop up a window to show MISched dags after they are processed"));
     51 
     52 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
     53   cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
     54 
     55 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
     56   cl::desc("Only schedule this function"));
     57 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
     58   cl::desc("Only schedule this MBB#"));
     59 #else
     60 static bool ViewMISchedDAGs = false;
     61 #endif // NDEBUG
     62 
     63 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
     64   cl::desc("Enable register pressure scheduling."), cl::init(true));
     65 
     66 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
     67   cl::desc("Enable cyclic critical path analysis."), cl::init(true));
     68 
     69 static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden,
     70   cl::desc("Enable load clustering."), cl::init(true));
     71 
     72 // Experimental heuristics
     73 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden,
     74   cl::desc("Enable scheduling for macro fusion."), cl::init(true));
     75 
     76 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
     77   cl::desc("Verify machine instrs before and after machine scheduling"));
     78 
     79 // DAG subtrees must have at least this many nodes.
     80 static const unsigned MinSubtreeSize = 8;
     81 
     82 // Pin the vtables to this file.
     83 void MachineSchedStrategy::anchor() {}
     84 void ScheduleDAGMutation::anchor() {}
     85 
     86 //===----------------------------------------------------------------------===//
     87 // Machine Instruction Scheduling Pass and Registry
     88 //===----------------------------------------------------------------------===//
     89 
     90 MachineSchedContext::MachineSchedContext():
     91     MF(nullptr), MLI(nullptr), MDT(nullptr), PassConfig(nullptr), AA(nullptr), LIS(nullptr) {
     92   RegClassInfo = new RegisterClassInfo();
     93 }
     94 
     95 MachineSchedContext::~MachineSchedContext() {
     96   delete RegClassInfo;
     97 }
     98 
     99 namespace {
    100 /// Base class for a machine scheduler class that can run at any point.
    101 class MachineSchedulerBase : public MachineSchedContext,
    102                              public MachineFunctionPass {
    103 public:
    104   MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
    105 
    106   void print(raw_ostream &O, const Module* = nullptr) const override;
    107 
    108 protected:
    109   void scheduleRegions(ScheduleDAGInstrs &Scheduler);
    110 };
    111 
    112 /// MachineScheduler runs after coalescing and before register allocation.
    113 class MachineScheduler : public MachineSchedulerBase {
    114 public:
    115   MachineScheduler();
    116 
    117   void getAnalysisUsage(AnalysisUsage &AU) const override;
    118 
    119   bool runOnMachineFunction(MachineFunction&) override;
    120 
    121   static char ID; // Class identification, replacement for typeinfo
    122 
    123 protected:
    124   ScheduleDAGInstrs *createMachineScheduler();
    125 };
    126 
    127 /// PostMachineScheduler runs after shortly before code emission.
    128 class PostMachineScheduler : public MachineSchedulerBase {
    129 public:
    130   PostMachineScheduler();
    131 
    132   void getAnalysisUsage(AnalysisUsage &AU) const override;
    133 
    134   bool runOnMachineFunction(MachineFunction&) override;
    135 
    136   static char ID; // Class identification, replacement for typeinfo
    137 
    138 protected:
    139   ScheduleDAGInstrs *createPostMachineScheduler();
    140 };
    141 } // namespace
    142 
    143 char MachineScheduler::ID = 0;
    144 
    145 char &llvm::MachineSchedulerID = MachineScheduler::ID;
    146 
    147 INITIALIZE_PASS_BEGIN(MachineScheduler, "machine-scheduler",
    148                       "Machine Instruction Scheduler", false, false)
    149 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
    150 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
    151 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
    152 INITIALIZE_PASS_END(MachineScheduler, "machine-scheduler",
    153                     "Machine Instruction Scheduler", false, false)
    154 
    155 MachineScheduler::MachineScheduler()
    156 : MachineSchedulerBase(ID) {
    157   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
    158 }
    159 
    160 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
    161   AU.setPreservesCFG();
    162   AU.addRequiredID(MachineDominatorsID);
    163   AU.addRequired<MachineLoopInfo>();
    164   AU.addRequired<AliasAnalysis>();
    165   AU.addRequired<TargetPassConfig>();
    166   AU.addRequired<SlotIndexes>();
    167   AU.addPreserved<SlotIndexes>();
    168   AU.addRequired<LiveIntervals>();
    169   AU.addPreserved<LiveIntervals>();
    170   MachineFunctionPass::getAnalysisUsage(AU);
    171 }
    172 
    173 char PostMachineScheduler::ID = 0;
    174 
    175 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
    176 
    177 INITIALIZE_PASS(PostMachineScheduler, "postmisched",
    178                 "PostRA Machine Instruction Scheduler", false, false)
    179 
    180 PostMachineScheduler::PostMachineScheduler()
    181 : MachineSchedulerBase(ID) {
    182   initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
    183 }
    184 
    185 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
    186   AU.setPreservesCFG();
    187   AU.addRequiredID(MachineDominatorsID);
    188   AU.addRequired<MachineLoopInfo>();
    189   AU.addRequired<TargetPassConfig>();
    190   MachineFunctionPass::getAnalysisUsage(AU);
    191 }
    192 
    193 MachinePassRegistry MachineSchedRegistry::Registry;
    194 
    195 /// A dummy default scheduler factory indicates whether the scheduler
    196 /// is overridden on the command line.
    197 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
    198   return nullptr;
    199 }
    200 
    201 /// MachineSchedOpt allows command line selection of the scheduler.
    202 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
    203                RegisterPassParser<MachineSchedRegistry> >
    204 MachineSchedOpt("misched",
    205                 cl::init(&useDefaultMachineSched), cl::Hidden,
    206                 cl::desc("Machine instruction scheduler to use"));
    207 
    208 static MachineSchedRegistry
    209 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
    210                      useDefaultMachineSched);
    211 
    212 static cl::opt<bool> EnableMachineSched(
    213     "enable-misched",
    214     cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
    215     cl::Hidden);
    216 
    217 /// Forward declare the standard machine scheduler. This will be used as the
    218 /// default scheduler if the target does not set a default.
    219 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C);
    220 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C);
    221 
    222 /// Decrement this iterator until reaching the top or a non-debug instr.
    223 static MachineBasicBlock::const_iterator
    224 priorNonDebug(MachineBasicBlock::const_iterator I,
    225               MachineBasicBlock::const_iterator Beg) {
    226   assert(I != Beg && "reached the top of the region, cannot decrement");
    227   while (--I != Beg) {
    228     if (!I->isDebugValue())
    229       break;
    230   }
    231   return I;
    232 }
    233 
    234 /// Non-const version.
    235 static MachineBasicBlock::iterator
    236 priorNonDebug(MachineBasicBlock::iterator I,
    237               MachineBasicBlock::const_iterator Beg) {
    238   return const_cast<MachineInstr*>(
    239     &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg));
    240 }
    241 
    242 /// If this iterator is a debug value, increment until reaching the End or a
    243 /// non-debug instruction.
    244 static MachineBasicBlock::const_iterator
    245 nextIfDebug(MachineBasicBlock::const_iterator I,
    246             MachineBasicBlock::const_iterator End) {
    247   for(; I != End; ++I) {
    248     if (!I->isDebugValue())
    249       break;
    250   }
    251   return I;
    252 }
    253 
    254 /// Non-const version.
    255 static MachineBasicBlock::iterator
    256 nextIfDebug(MachineBasicBlock::iterator I,
    257             MachineBasicBlock::const_iterator End) {
    258   // Cast the return value to nonconst MachineInstr, then cast to an
    259   // instr_iterator, which does not check for null, finally return a
    260   // bundle_iterator.
    261   return MachineBasicBlock::instr_iterator(
    262     const_cast<MachineInstr*>(
    263       &*nextIfDebug(MachineBasicBlock::const_iterator(I), End)));
    264 }
    265 
    266 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
    267 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
    268   // Select the scheduler, or set the default.
    269   MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
    270   if (Ctor != useDefaultMachineSched)
    271     return Ctor(this);
    272 
    273   // Get the default scheduler set by the target for this function.
    274   ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
    275   if (Scheduler)
    276     return Scheduler;
    277 
    278   // Default to GenericScheduler.
    279   return createGenericSchedLive(this);
    280 }
    281 
    282 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
    283 /// the caller. We don't have a command line option to override the postRA
    284 /// scheduler. The Target must configure it.
    285 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
    286   // Get the postRA scheduler set by the target for this function.
    287   ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
    288   if (Scheduler)
    289     return Scheduler;
    290 
    291   // Default to GenericScheduler.
    292   return createGenericSchedPostRA(this);
    293 }
    294 
    295 /// Top-level MachineScheduler pass driver.
    296 ///
    297 /// Visit blocks in function order. Divide each block into scheduling regions
    298 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
    299 /// consistent with the DAG builder, which traverses the interior of the
    300 /// scheduling regions bottom-up.
    301 ///
    302 /// This design avoids exposing scheduling boundaries to the DAG builder,
    303 /// simplifying the DAG builder's support for "special" target instructions.
    304 /// At the same time the design allows target schedulers to operate across
    305 /// scheduling boundaries, for example to bundle the boudary instructions
    306 /// without reordering them. This creates complexity, because the target
    307 /// scheduler must update the RegionBegin and RegionEnd positions cached by
    308 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
    309 /// design would be to split blocks at scheduling boundaries, but LLVM has a
    310 /// general bias against block splitting purely for implementation simplicity.
    311 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
    312   if (EnableMachineSched.getNumOccurrences()) {
    313     if (!EnableMachineSched)
    314       return false;
    315   } else if (!mf.getSubtarget().enableMachineScheduler())
    316     return false;
    317 
    318   DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs()));
    319 
    320   // Initialize the context of the pass.
    321   MF = &mf;
    322   MLI = &getAnalysis<MachineLoopInfo>();
    323   MDT = &getAnalysis<MachineDominatorTree>();
    324   PassConfig = &getAnalysis<TargetPassConfig>();
    325   AA = &getAnalysis<AliasAnalysis>();
    326 
    327   LIS = &getAnalysis<LiveIntervals>();
    328 
    329   if (VerifyScheduling) {
    330     DEBUG(LIS->dump());
    331     MF->verify(this, "Before machine scheduling.");
    332   }
    333   RegClassInfo->runOnMachineFunction(*MF);
    334 
    335   // Instantiate the selected scheduler for this target, function, and
    336   // optimization level.
    337   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
    338   scheduleRegions(*Scheduler);
    339 
    340   DEBUG(LIS->dump());
    341   if (VerifyScheduling)
    342     MF->verify(this, "After machine scheduling.");
    343   return true;
    344 }
    345 
    346 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
    347   if (skipOptnoneFunction(*mf.getFunction()))
    348     return false;
    349 
    350   if (!mf.getSubtarget().enablePostMachineScheduler()) {
    351     DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
    352     return false;
    353   }
    354   DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
    355 
    356   // Initialize the context of the pass.
    357   MF = &mf;
    358   PassConfig = &getAnalysis<TargetPassConfig>();
    359 
    360   if (VerifyScheduling)
    361     MF->verify(this, "Before post machine scheduling.");
    362 
    363   // Instantiate the selected scheduler for this target, function, and
    364   // optimization level.
    365   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
    366   scheduleRegions(*Scheduler);
    367 
    368   if (VerifyScheduling)
    369     MF->verify(this, "After post machine scheduling.");
    370   return true;
    371 }
    372 
    373 /// Return true of the given instruction should not be included in a scheduling
    374 /// region.
    375 ///
    376 /// MachineScheduler does not currently support scheduling across calls. To
    377 /// handle calls, the DAG builder needs to be modified to create register
    378 /// anti/output dependencies on the registers clobbered by the call's regmask
    379 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
    380 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
    381 /// the boundary, but there would be no benefit to postRA scheduling across
    382 /// calls this late anyway.
    383 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
    384                             MachineBasicBlock *MBB,
    385                             MachineFunction *MF,
    386                             const TargetInstrInfo *TII,
    387                             bool IsPostRA) {
    388   return MI->isCall() || TII->isSchedulingBoundary(MI, MBB, *MF);
    389 }
    390 
    391 /// Main driver for both MachineScheduler and PostMachineScheduler.
    392 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler) {
    393   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
    394   bool IsPostRA = Scheduler.isPostRA();
    395 
    396   // Visit all machine basic blocks.
    397   //
    398   // TODO: Visit blocks in global postorder or postorder within the bottom-up
    399   // loop tree. Then we can optionally compute global RegPressure.
    400   for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
    401        MBB != MBBEnd; ++MBB) {
    402 
    403     Scheduler.startBlock(MBB);
    404 
    405 #ifndef NDEBUG
    406     if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
    407       continue;
    408     if (SchedOnlyBlock.getNumOccurrences()
    409         && (int)SchedOnlyBlock != MBB->getNumber())
    410       continue;
    411 #endif
    412 
    413     // Break the block into scheduling regions [I, RegionEnd), and schedule each
    414     // region as soon as it is discovered. RegionEnd points the scheduling
    415     // boundary at the bottom of the region. The DAG does not include RegionEnd,
    416     // but the region does (i.e. the next RegionEnd is above the previous
    417     // RegionBegin). If the current block has no terminator then RegionEnd ==
    418     // MBB->end() for the bottom region.
    419     //
    420     // The Scheduler may insert instructions during either schedule() or
    421     // exitRegion(), even for empty regions. So the local iterators 'I' and
    422     // 'RegionEnd' are invalid across these calls.
    423     //
    424     // MBB::size() uses instr_iterator to count. Here we need a bundle to count
    425     // as a single instruction.
    426     unsigned RemainingInstrs = std::distance(MBB->begin(), MBB->end());
    427     for(MachineBasicBlock::iterator RegionEnd = MBB->end();
    428         RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) {
    429 
    430       // Avoid decrementing RegionEnd for blocks with no terminator.
    431       if (RegionEnd != MBB->end() ||
    432           isSchedBoundary(std::prev(RegionEnd), MBB, MF, TII, IsPostRA)) {
    433         --RegionEnd;
    434         // Count the boundary instruction.
    435         --RemainingInstrs;
    436       }
    437 
    438       // The next region starts above the previous region. Look backward in the
    439       // instruction stream until we find the nearest boundary.
    440       unsigned NumRegionInstrs = 0;
    441       MachineBasicBlock::iterator I = RegionEnd;
    442       for(;I != MBB->begin(); --I, --RemainingInstrs) {
    443         if (isSchedBoundary(std::prev(I), MBB, MF, TII, IsPostRA))
    444           break;
    445         if (!I->isDebugValue())
    446           ++NumRegionInstrs;
    447       }
    448       // Notify the scheduler of the region, even if we may skip scheduling
    449       // it. Perhaps it still needs to be bundled.
    450       Scheduler.enterRegion(MBB, I, RegionEnd, NumRegionInstrs);
    451 
    452       // Skip empty scheduling regions (0 or 1 schedulable instructions).
    453       if (I == RegionEnd || I == std::prev(RegionEnd)) {
    454         // Close the current region. Bundle the terminator if needed.
    455         // This invalidates 'RegionEnd' and 'I'.
    456         Scheduler.exitRegion();
    457         continue;
    458       }
    459       DEBUG(dbgs() << "********** " << ((Scheduler.isPostRA()) ? "PostRA " : "")
    460             << "MI Scheduling **********\n");
    461       DEBUG(dbgs() << MF->getName()
    462             << ":BB#" << MBB->getNumber() << " " << MBB->getName()
    463             << "\n  From: " << *I << "    To: ";
    464             if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
    465             else dbgs() << "End";
    466             dbgs() << " RegionInstrs: " << NumRegionInstrs
    467             << " Remaining: " << RemainingInstrs << "\n");
    468       if (DumpCriticalPathLength) {
    469         errs() << MF->getName();
    470         errs() << ":BB# " << MBB->getNumber();
    471         errs() << " " << MBB->getName() << " \n";
    472       }
    473 
    474       // Schedule a region: possibly reorder instructions.
    475       // This invalidates 'RegionEnd' and 'I'.
    476       Scheduler.schedule();
    477 
    478       // Close the current region.
    479       Scheduler.exitRegion();
    480 
    481       // Scheduling has invalidated the current iterator 'I'. Ask the
    482       // scheduler for the top of it's scheduled region.
    483       RegionEnd = Scheduler.begin();
    484     }
    485     assert(RemainingInstrs == 0 && "Instruction count mismatch!");
    486     Scheduler.finishBlock();
    487     if (Scheduler.isPostRA()) {
    488       // FIXME: Ideally, no further passes should rely on kill flags. However,
    489       // thumb2 size reduction is currently an exception.
    490       Scheduler.fixupKills(MBB);
    491     }
    492   }
    493   Scheduler.finalizeSchedule();
    494 }
    495 
    496 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
    497   // unimplemented
    498 }
    499 
    500 LLVM_DUMP_METHOD
    501 void ReadyQueue::dump() {
    502   dbgs() << Name << ": ";
    503   for (unsigned i = 0, e = Queue.size(); i < e; ++i)
    504     dbgs() << Queue[i]->NodeNum << " ";
    505   dbgs() << "\n";
    506 }
    507 
    508 //===----------------------------------------------------------------------===//
    509 // ScheduleDAGMI - Basic machine instruction scheduling. This is
    510 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
    511 // virtual registers.
    512 // ===----------------------------------------------------------------------===/
    513 
    514 // Provide a vtable anchor.
    515 ScheduleDAGMI::~ScheduleDAGMI() {
    516 }
    517 
    518 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
    519   return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
    520 }
    521 
    522 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
    523   if (SuccSU != &ExitSU) {
    524     // Do not use WillCreateCycle, it assumes SD scheduling.
    525     // If Pred is reachable from Succ, then the edge creates a cycle.
    526     if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
    527       return false;
    528     Topo.AddPred(SuccSU, PredDep.getSUnit());
    529   }
    530   SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
    531   // Return true regardless of whether a new edge needed to be inserted.
    532   return true;
    533 }
    534 
    535 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
    536 /// NumPredsLeft reaches zero, release the successor node.
    537 ///
    538 /// FIXME: Adjust SuccSU height based on MinLatency.
    539 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
    540   SUnit *SuccSU = SuccEdge->getSUnit();
    541 
    542   if (SuccEdge->isWeak()) {
    543     --SuccSU->WeakPredsLeft;
    544     if (SuccEdge->isCluster())
    545       NextClusterSucc = SuccSU;
    546     return;
    547   }
    548 #ifndef NDEBUG
    549   if (SuccSU->NumPredsLeft == 0) {
    550     dbgs() << "*** Scheduling failed! ***\n";
    551     SuccSU->dump(this);
    552     dbgs() << " has been released too many times!\n";
    553     llvm_unreachable(nullptr);
    554   }
    555 #endif
    556   // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
    557   // CurrCycle may have advanced since then.
    558   if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
    559     SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
    560 
    561   --SuccSU->NumPredsLeft;
    562   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
    563     SchedImpl->releaseTopNode(SuccSU);
    564 }
    565 
    566 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
    567 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
    568   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
    569        I != E; ++I) {
    570     releaseSucc(SU, &*I);
    571   }
    572 }
    573 
    574 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
    575 /// NumSuccsLeft reaches zero, release the predecessor node.
    576 ///
    577 /// FIXME: Adjust PredSU height based on MinLatency.
    578 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
    579   SUnit *PredSU = PredEdge->getSUnit();
    580 
    581   if (PredEdge->isWeak()) {
    582     --PredSU->WeakSuccsLeft;
    583     if (PredEdge->isCluster())
    584       NextClusterPred = PredSU;
    585     return;
    586   }
    587 #ifndef NDEBUG
    588   if (PredSU->NumSuccsLeft == 0) {
    589     dbgs() << "*** Scheduling failed! ***\n";
    590     PredSU->dump(this);
    591     dbgs() << " has been released too many times!\n";
    592     llvm_unreachable(nullptr);
    593   }
    594 #endif
    595   // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
    596   // CurrCycle may have advanced since then.
    597   if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
    598     PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
    599 
    600   --PredSU->NumSuccsLeft;
    601   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
    602     SchedImpl->releaseBottomNode(PredSU);
    603 }
    604 
    605 /// releasePredecessors - Call releasePred on each of SU's predecessors.
    606 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
    607   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    608        I != E; ++I) {
    609     releasePred(SU, &*I);
    610   }
    611 }
    612 
    613 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
    614 /// crossing a scheduling boundary. [begin, end) includes all instructions in
    615 /// the region, including the boundary itself and single-instruction regions
    616 /// that don't get scheduled.
    617 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
    618                                      MachineBasicBlock::iterator begin,
    619                                      MachineBasicBlock::iterator end,
    620                                      unsigned regioninstrs)
    621 {
    622   ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
    623 
    624   SchedImpl->initPolicy(begin, end, regioninstrs);
    625 }
    626 
    627 /// This is normally called from the main scheduler loop but may also be invoked
    628 /// by the scheduling strategy to perform additional code motion.
    629 void ScheduleDAGMI::moveInstruction(
    630   MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
    631   // Advance RegionBegin if the first instruction moves down.
    632   if (&*RegionBegin == MI)
    633     ++RegionBegin;
    634 
    635   // Update the instruction stream.
    636   BB->splice(InsertPos, BB, MI);
    637 
    638   // Update LiveIntervals
    639   if (LIS)
    640     LIS->handleMove(MI, /*UpdateFlags=*/true);
    641 
    642   // Recede RegionBegin if an instruction moves above the first.
    643   if (RegionBegin == InsertPos)
    644     RegionBegin = MI;
    645 }
    646 
    647 bool ScheduleDAGMI::checkSchedLimit() {
    648 #ifndef NDEBUG
    649   if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
    650     CurrentTop = CurrentBottom;
    651     return false;
    652   }
    653   ++NumInstrsScheduled;
    654 #endif
    655   return true;
    656 }
    657 
    658 /// Per-region scheduling driver, called back from
    659 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that
    660 /// does not consider liveness or register pressure. It is useful for PostRA
    661 /// scheduling and potentially other custom schedulers.
    662 void ScheduleDAGMI::schedule() {
    663   // Build the DAG.
    664   buildSchedGraph(AA);
    665 
    666   Topo.InitDAGTopologicalSorting();
    667 
    668   postprocessDAG();
    669 
    670   SmallVector<SUnit*, 8> TopRoots, BotRoots;
    671   findRootsAndBiasEdges(TopRoots, BotRoots);
    672 
    673   // Initialize the strategy before modifying the DAG.
    674   // This may initialize a DFSResult to be used for queue priority.
    675   SchedImpl->initialize(this);
    676 
    677   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
    678           SUnits[su].dumpAll(this));
    679   if (ViewMISchedDAGs) viewGraph();
    680 
    681   // Initialize ready queues now that the DAG and priority data are finalized.
    682   initQueues(TopRoots, BotRoots);
    683 
    684   bool IsTopNode = false;
    685   while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
    686     assert(!SU->isScheduled && "Node already scheduled");
    687     if (!checkSchedLimit())
    688       break;
    689 
    690     MachineInstr *MI = SU->getInstr();
    691     if (IsTopNode) {
    692       assert(SU->isTopReady() && "node still has unscheduled dependencies");
    693       if (&*CurrentTop == MI)
    694         CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
    695       else
    696         moveInstruction(MI, CurrentTop);
    697     }
    698     else {
    699       assert(SU->isBottomReady() && "node still has unscheduled dependencies");
    700       MachineBasicBlock::iterator priorII =
    701         priorNonDebug(CurrentBottom, CurrentTop);
    702       if (&*priorII == MI)
    703         CurrentBottom = priorII;
    704       else {
    705         if (&*CurrentTop == MI)
    706           CurrentTop = nextIfDebug(++CurrentTop, priorII);
    707         moveInstruction(MI, CurrentBottom);
    708         CurrentBottom = MI;
    709       }
    710     }
    711     // Notify the scheduling strategy before updating the DAG.
    712     // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
    713     // runs, it can then use the accurate ReadyCycle time to determine whether
    714     // newly released nodes can move to the readyQ.
    715     SchedImpl->schedNode(SU, IsTopNode);
    716 
    717     updateQueues(SU, IsTopNode);
    718   }
    719   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
    720 
    721   placeDebugValues();
    722 
    723   DEBUG({
    724       unsigned BBNum = begin()->getParent()->getNumber();
    725       dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
    726       dumpSchedule();
    727       dbgs() << '\n';
    728     });
    729 }
    730 
    731 /// Apply each ScheduleDAGMutation step in order.
    732 void ScheduleDAGMI::postprocessDAG() {
    733   for (unsigned i = 0, e = Mutations.size(); i < e; ++i) {
    734     Mutations[i]->apply(this);
    735   }
    736 }
    737 
    738 void ScheduleDAGMI::
    739 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
    740                       SmallVectorImpl<SUnit*> &BotRoots) {
    741   for (std::vector<SUnit>::iterator
    742          I = SUnits.begin(), E = SUnits.end(); I != E; ++I) {
    743     SUnit *SU = &(*I);
    744     assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits");
    745 
    746     // Order predecessors so DFSResult follows the critical path.
    747     SU->biasCriticalPath();
    748 
    749     // A SUnit is ready to top schedule if it has no predecessors.
    750     if (!I->NumPredsLeft)
    751       TopRoots.push_back(SU);
    752     // A SUnit is ready to bottom schedule if it has no successors.
    753     if (!I->NumSuccsLeft)
    754       BotRoots.push_back(SU);
    755   }
    756   ExitSU.biasCriticalPath();
    757 }
    758 
    759 /// Identify DAG roots and setup scheduler queues.
    760 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
    761                                ArrayRef<SUnit*> BotRoots) {
    762   NextClusterSucc = nullptr;
    763   NextClusterPred = nullptr;
    764 
    765   // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
    766   //
    767   // Nodes with unreleased weak edges can still be roots.
    768   // Release top roots in forward order.
    769   for (SmallVectorImpl<SUnit*>::const_iterator
    770          I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) {
    771     SchedImpl->releaseTopNode(*I);
    772   }
    773   // Release bottom roots in reverse order so the higher priority nodes appear
    774   // first. This is more natural and slightly more efficient.
    775   for (SmallVectorImpl<SUnit*>::const_reverse_iterator
    776          I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
    777     SchedImpl->releaseBottomNode(*I);
    778   }
    779 
    780   releaseSuccessors(&EntrySU);
    781   releasePredecessors(&ExitSU);
    782 
    783   SchedImpl->registerRoots();
    784 
    785   // Advance past initial DebugValues.
    786   CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
    787   CurrentBottom = RegionEnd;
    788 }
    789 
    790 /// Update scheduler queues after scheduling an instruction.
    791 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
    792   // Release dependent instructions for scheduling.
    793   if (IsTopNode)
    794     releaseSuccessors(SU);
    795   else
    796     releasePredecessors(SU);
    797 
    798   SU->isScheduled = true;
    799 }
    800 
    801 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
    802 void ScheduleDAGMI::placeDebugValues() {
    803   // If first instruction was a DBG_VALUE then put it back.
    804   if (FirstDbgValue) {
    805     BB->splice(RegionBegin, BB, FirstDbgValue);
    806     RegionBegin = FirstDbgValue;
    807   }
    808 
    809   for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
    810          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
    811     std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
    812     MachineInstr *DbgValue = P.first;
    813     MachineBasicBlock::iterator OrigPrevMI = P.second;
    814     if (&*RegionBegin == DbgValue)
    815       ++RegionBegin;
    816     BB->splice(++OrigPrevMI, BB, DbgValue);
    817     if (OrigPrevMI == std::prev(RegionEnd))
    818       RegionEnd = DbgValue;
    819   }
    820   DbgValues.clear();
    821   FirstDbgValue = nullptr;
    822 }
    823 
    824 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    825 void ScheduleDAGMI::dumpSchedule() const {
    826   for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
    827     if (SUnit *SU = getSUnit(&(*MI)))
    828       SU->dump(this);
    829     else
    830       dbgs() << "Missing SUnit\n";
    831   }
    832 }
    833 #endif
    834 
    835 //===----------------------------------------------------------------------===//
    836 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
    837 // preservation.
    838 //===----------------------------------------------------------------------===//
    839 
    840 ScheduleDAGMILive::~ScheduleDAGMILive() {
    841   delete DFSResult;
    842 }
    843 
    844 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
    845 /// crossing a scheduling boundary. [begin, end) includes all instructions in
    846 /// the region, including the boundary itself and single-instruction regions
    847 /// that don't get scheduled.
    848 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
    849                                 MachineBasicBlock::iterator begin,
    850                                 MachineBasicBlock::iterator end,
    851                                 unsigned regioninstrs)
    852 {
    853   // ScheduleDAGMI initializes SchedImpl's per-region policy.
    854   ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
    855 
    856   // For convenience remember the end of the liveness region.
    857   LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
    858 
    859   SUPressureDiffs.clear();
    860 
    861   ShouldTrackPressure = SchedImpl->shouldTrackPressure();
    862 }
    863 
    864 // Setup the register pressure trackers for the top scheduled top and bottom
    865 // scheduled regions.
    866 void ScheduleDAGMILive::initRegPressure() {
    867   TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin);
    868   BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
    869 
    870   // Close the RPTracker to finalize live ins.
    871   RPTracker.closeRegion();
    872 
    873   DEBUG(RPTracker.dump());
    874 
    875   // Initialize the live ins and live outs.
    876   TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
    877   BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
    878 
    879   // Close one end of the tracker so we can call
    880   // getMaxUpward/DownwardPressureDelta before advancing across any
    881   // instructions. This converts currently live regs into live ins/outs.
    882   TopRPTracker.closeTop();
    883   BotRPTracker.closeBottom();
    884 
    885   BotRPTracker.initLiveThru(RPTracker);
    886   if (!BotRPTracker.getLiveThru().empty()) {
    887     TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
    888     DEBUG(dbgs() << "Live Thru: ";
    889           dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
    890   };
    891 
    892   // For each live out vreg reduce the pressure change associated with other
    893   // uses of the same vreg below the live-out reaching def.
    894   updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
    895 
    896   // Account for liveness generated by the region boundary.
    897   if (LiveRegionEnd != RegionEnd) {
    898     SmallVector<unsigned, 8> LiveUses;
    899     BotRPTracker.recede(&LiveUses);
    900     updatePressureDiffs(LiveUses);
    901   }
    902 
    903   assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
    904 
    905   // Cache the list of excess pressure sets in this region. This will also track
    906   // the max pressure in the scheduled code for these sets.
    907   RegionCriticalPSets.clear();
    908   const std::vector<unsigned> &RegionPressure =
    909     RPTracker.getPressure().MaxSetPressure;
    910   for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
    911     unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
    912     if (RegionPressure[i] > Limit) {
    913       DEBUG(dbgs() << TRI->getRegPressureSetName(i)
    914             << " Limit " << Limit
    915             << " Actual " << RegionPressure[i] << "\n");
    916       RegionCriticalPSets.push_back(PressureChange(i));
    917     }
    918   }
    919   DEBUG(dbgs() << "Excess PSets: ";
    920         for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
    921           dbgs() << TRI->getRegPressureSetName(
    922             RegionCriticalPSets[i].getPSet()) << " ";
    923         dbgs() << "\n");
    924 }
    925 
    926 void ScheduleDAGMILive::
    927 updateScheduledPressure(const SUnit *SU,
    928                         const std::vector<unsigned> &NewMaxPressure) {
    929   const PressureDiff &PDiff = getPressureDiff(SU);
    930   unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
    931   for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end();
    932        I != E; ++I) {
    933     if (!I->isValid())
    934       break;
    935     unsigned ID = I->getPSet();
    936     while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
    937       ++CritIdx;
    938     if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
    939       if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
    940           && NewMaxPressure[ID] <= INT16_MAX)
    941         RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
    942     }
    943     unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
    944     if (NewMaxPressure[ID] >= Limit - 2) {
    945       DEBUG(dbgs() << "  " << TRI->getRegPressureSetName(ID) << ": "
    946             << NewMaxPressure[ID] << " > " << Limit << "(+ "
    947             << BotRPTracker.getLiveThru()[ID] << " livethru)\n");
    948     }
    949   }
    950 }
    951 
    952 /// Update the PressureDiff array for liveness after scheduling this
    953 /// instruction.
    954 void ScheduleDAGMILive::updatePressureDiffs(ArrayRef<unsigned> LiveUses) {
    955   for (unsigned LUIdx = 0, LUEnd = LiveUses.size(); LUIdx != LUEnd; ++LUIdx) {
    956     /// FIXME: Currently assuming single-use physregs.
    957     unsigned Reg = LiveUses[LUIdx];
    958     DEBUG(dbgs() << "  LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n");
    959     if (!TRI->isVirtualRegister(Reg))
    960       continue;
    961 
    962     // This may be called before CurrentBottom has been initialized. However,
    963     // BotRPTracker must have a valid position. We want the value live into the
    964     // instruction or live out of the block, so ask for the previous
    965     // instruction's live-out.
    966     const LiveInterval &LI = LIS->getInterval(Reg);
    967     VNInfo *VNI;
    968     MachineBasicBlock::const_iterator I =
    969       nextIfDebug(BotRPTracker.getPos(), BB->end());
    970     if (I == BB->end())
    971       VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
    972     else {
    973       LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(I));
    974       VNI = LRQ.valueIn();
    975     }
    976     // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
    977     assert(VNI && "No live value at use.");
    978     for (VReg2UseMap::iterator
    979            UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) {
    980       SUnit *SU = UI->SU;
    981       DEBUG(dbgs() << "  UpdateRegP: SU(" << SU->NodeNum << ") "
    982             << *SU->getInstr());
    983       // If this use comes before the reaching def, it cannot be a last use, so
    984       // descrease its pressure change.
    985       if (!SU->isScheduled && SU != &ExitSU) {
    986         LiveQueryResult LRQ
    987           = LI.Query(LIS->getInstructionIndex(SU->getInstr()));
    988         if (LRQ.valueIn() == VNI)
    989           getPressureDiff(SU).addPressureChange(Reg, true, &MRI);
    990       }
    991     }
    992   }
    993 }
    994 
    995 /// schedule - Called back from MachineScheduler::runOnMachineFunction
    996 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
    997 /// only includes instructions that have DAG nodes, not scheduling boundaries.
    998 ///
    999 /// This is a skeletal driver, with all the functionality pushed into helpers,
   1000 /// so that it can be easilly extended by experimental schedulers. Generally,
   1001 /// implementing MachineSchedStrategy should be sufficient to implement a new
   1002 /// scheduling algorithm. However, if a scheduler further subclasses
   1003 /// ScheduleDAGMILive then it will want to override this virtual method in order
   1004 /// to update any specialized state.
   1005 void ScheduleDAGMILive::schedule() {
   1006   buildDAGWithRegPressure();
   1007 
   1008   Topo.InitDAGTopologicalSorting();
   1009 
   1010   postprocessDAG();
   1011 
   1012   SmallVector<SUnit*, 8> TopRoots, BotRoots;
   1013   findRootsAndBiasEdges(TopRoots, BotRoots);
   1014 
   1015   // Initialize the strategy before modifying the DAG.
   1016   // This may initialize a DFSResult to be used for queue priority.
   1017   SchedImpl->initialize(this);
   1018 
   1019   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
   1020           SUnits[su].dumpAll(this));
   1021   if (ViewMISchedDAGs) viewGraph();
   1022 
   1023   // Initialize ready queues now that the DAG and priority data are finalized.
   1024   initQueues(TopRoots, BotRoots);
   1025 
   1026   if (ShouldTrackPressure) {
   1027     assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
   1028     TopRPTracker.setPos(CurrentTop);
   1029   }
   1030 
   1031   bool IsTopNode = false;
   1032   while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
   1033     assert(!SU->isScheduled && "Node already scheduled");
   1034     if (!checkSchedLimit())
   1035       break;
   1036 
   1037     scheduleMI(SU, IsTopNode);
   1038 
   1039     if (DFSResult) {
   1040       unsigned SubtreeID = DFSResult->getSubtreeID(SU);
   1041       if (!ScheduledTrees.test(SubtreeID)) {
   1042         ScheduledTrees.set(SubtreeID);
   1043         DFSResult->scheduleTree(SubtreeID);
   1044         SchedImpl->scheduleTree(SubtreeID);
   1045       }
   1046     }
   1047 
   1048     // Notify the scheduling strategy after updating the DAG.
   1049     SchedImpl->schedNode(SU, IsTopNode);
   1050 
   1051     updateQueues(SU, IsTopNode);
   1052   }
   1053   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
   1054 
   1055   placeDebugValues();
   1056 
   1057   DEBUG({
   1058       unsigned BBNum = begin()->getParent()->getNumber();
   1059       dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
   1060       dumpSchedule();
   1061       dbgs() << '\n';
   1062     });
   1063 }
   1064 
   1065 /// Build the DAG and setup three register pressure trackers.
   1066 void ScheduleDAGMILive::buildDAGWithRegPressure() {
   1067   if (!ShouldTrackPressure) {
   1068     RPTracker.reset();
   1069     RegionCriticalPSets.clear();
   1070     buildSchedGraph(AA);
   1071     return;
   1072   }
   1073 
   1074   // Initialize the register pressure tracker used by buildSchedGraph.
   1075   RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
   1076                  /*TrackUntiedDefs=*/true);
   1077 
   1078   // Account for liveness generate by the region boundary.
   1079   if (LiveRegionEnd != RegionEnd)
   1080     RPTracker.recede();
   1081 
   1082   // Build the DAG, and compute current register pressure.
   1083   buildSchedGraph(AA, &RPTracker, &SUPressureDiffs);
   1084 
   1085   // Initialize top/bottom trackers after computing region pressure.
   1086   initRegPressure();
   1087 }
   1088 
   1089 void ScheduleDAGMILive::computeDFSResult() {
   1090   if (!DFSResult)
   1091     DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
   1092   DFSResult->clear();
   1093   ScheduledTrees.clear();
   1094   DFSResult->resize(SUnits.size());
   1095   DFSResult->compute(SUnits);
   1096   ScheduledTrees.resize(DFSResult->getNumSubtrees());
   1097 }
   1098 
   1099 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
   1100 /// only provides the critical path for single block loops. To handle loops that
   1101 /// span blocks, we could use the vreg path latencies provided by
   1102 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
   1103 /// available for use in the scheduler.
   1104 ///
   1105 /// The cyclic path estimation identifies a def-use pair that crosses the back
   1106 /// edge and considers the depth and height of the nodes. For example, consider
   1107 /// the following instruction sequence where each instruction has unit latency
   1108 /// and defines an epomymous virtual register:
   1109 ///
   1110 /// a->b(a,c)->c(b)->d(c)->exit
   1111 ///
   1112 /// The cyclic critical path is a two cycles: b->c->b
   1113 /// The acyclic critical path is four cycles: a->b->c->d->exit
   1114 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
   1115 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
   1116 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
   1117 /// LiveInDepth = depth(b) = len(a->b) = 1
   1118 ///
   1119 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
   1120 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
   1121 /// CyclicCriticalPath = min(2, 2) = 2
   1122 ///
   1123 /// This could be relevant to PostRA scheduling, but is currently implemented
   1124 /// assuming LiveIntervals.
   1125 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
   1126   // This only applies to single block loop.
   1127   if (!BB->isSuccessor(BB))
   1128     return 0;
   1129 
   1130   unsigned MaxCyclicLatency = 0;
   1131   // Visit each live out vreg def to find def/use pairs that cross iterations.
   1132   ArrayRef<unsigned> LiveOuts = RPTracker.getPressure().LiveOutRegs;
   1133   for (ArrayRef<unsigned>::iterator RI = LiveOuts.begin(), RE = LiveOuts.end();
   1134        RI != RE; ++RI) {
   1135     unsigned Reg = *RI;
   1136     if (!TRI->isVirtualRegister(Reg))
   1137         continue;
   1138     const LiveInterval &LI = LIS->getInterval(Reg);
   1139     const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
   1140     if (!DefVNI)
   1141       continue;
   1142 
   1143     MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
   1144     const SUnit *DefSU = getSUnit(DefMI);
   1145     if (!DefSU)
   1146       continue;
   1147 
   1148     unsigned LiveOutHeight = DefSU->getHeight();
   1149     unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
   1150     // Visit all local users of the vreg def.
   1151     for (VReg2UseMap::iterator
   1152            UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) {
   1153       if (UI->SU == &ExitSU)
   1154         continue;
   1155 
   1156       // Only consider uses of the phi.
   1157       LiveQueryResult LRQ =
   1158         LI.Query(LIS->getInstructionIndex(UI->SU->getInstr()));
   1159       if (!LRQ.valueIn()->isPHIDef())
   1160         continue;
   1161 
   1162       // Assume that a path spanning two iterations is a cycle, which could
   1163       // overestimate in strange cases. This allows cyclic latency to be
   1164       // estimated as the minimum slack of the vreg's depth or height.
   1165       unsigned CyclicLatency = 0;
   1166       if (LiveOutDepth > UI->SU->getDepth())
   1167         CyclicLatency = LiveOutDepth - UI->SU->getDepth();
   1168 
   1169       unsigned LiveInHeight = UI->SU->getHeight() + DefSU->Latency;
   1170       if (LiveInHeight > LiveOutHeight) {
   1171         if (LiveInHeight - LiveOutHeight < CyclicLatency)
   1172           CyclicLatency = LiveInHeight - LiveOutHeight;
   1173       }
   1174       else
   1175         CyclicLatency = 0;
   1176 
   1177       DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
   1178             << UI->SU->NodeNum << ") = " << CyclicLatency << "c\n");
   1179       if (CyclicLatency > MaxCyclicLatency)
   1180         MaxCyclicLatency = CyclicLatency;
   1181     }
   1182   }
   1183   DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
   1184   return MaxCyclicLatency;
   1185 }
   1186 
   1187 /// Move an instruction and update register pressure.
   1188 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
   1189   // Move the instruction to its new location in the instruction stream.
   1190   MachineInstr *MI = SU->getInstr();
   1191 
   1192   if (IsTopNode) {
   1193     assert(SU->isTopReady() && "node still has unscheduled dependencies");
   1194     if (&*CurrentTop == MI)
   1195       CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
   1196     else {
   1197       moveInstruction(MI, CurrentTop);
   1198       TopRPTracker.setPos(MI);
   1199     }
   1200 
   1201     if (ShouldTrackPressure) {
   1202       // Update top scheduled pressure.
   1203       TopRPTracker.advance();
   1204       assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
   1205       updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
   1206     }
   1207   }
   1208   else {
   1209     assert(SU->isBottomReady() && "node still has unscheduled dependencies");
   1210     MachineBasicBlock::iterator priorII =
   1211       priorNonDebug(CurrentBottom, CurrentTop);
   1212     if (&*priorII == MI)
   1213       CurrentBottom = priorII;
   1214     else {
   1215       if (&*CurrentTop == MI) {
   1216         CurrentTop = nextIfDebug(++CurrentTop, priorII);
   1217         TopRPTracker.setPos(CurrentTop);
   1218       }
   1219       moveInstruction(MI, CurrentBottom);
   1220       CurrentBottom = MI;
   1221     }
   1222     if (ShouldTrackPressure) {
   1223       // Update bottom scheduled pressure.
   1224       SmallVector<unsigned, 8> LiveUses;
   1225       BotRPTracker.recede(&LiveUses);
   1226       assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
   1227       updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
   1228       updatePressureDiffs(LiveUses);
   1229     }
   1230   }
   1231 }
   1232 
   1233 //===----------------------------------------------------------------------===//
   1234 // LoadClusterMutation - DAG post-processing to cluster loads.
   1235 //===----------------------------------------------------------------------===//
   1236 
   1237 namespace {
   1238 /// \brief Post-process the DAG to create cluster edges between neighboring
   1239 /// loads.
   1240 class LoadClusterMutation : public ScheduleDAGMutation {
   1241   struct LoadInfo {
   1242     SUnit *SU;
   1243     unsigned BaseReg;
   1244     unsigned Offset;
   1245     LoadInfo(SUnit *su, unsigned reg, unsigned ofs)
   1246       : SU(su), BaseReg(reg), Offset(ofs) {}
   1247 
   1248     bool operator<(const LoadInfo &RHS) const {
   1249       return std::tie(BaseReg, Offset) < std::tie(RHS.BaseReg, RHS.Offset);
   1250     }
   1251   };
   1252 
   1253   const TargetInstrInfo *TII;
   1254   const TargetRegisterInfo *TRI;
   1255 public:
   1256   LoadClusterMutation(const TargetInstrInfo *tii,
   1257                       const TargetRegisterInfo *tri)
   1258     : TII(tii), TRI(tri) {}
   1259 
   1260   void apply(ScheduleDAGMI *DAG) override;
   1261 protected:
   1262   void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG);
   1263 };
   1264 } // anonymous
   1265 
   1266 void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads,
   1267                                                   ScheduleDAGMI *DAG) {
   1268   SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords;
   1269   for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) {
   1270     SUnit *SU = Loads[Idx];
   1271     unsigned BaseReg;
   1272     unsigned Offset;
   1273     if (TII->getLdStBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI))
   1274       LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset));
   1275   }
   1276   if (LoadRecords.size() < 2)
   1277     return;
   1278   std::sort(LoadRecords.begin(), LoadRecords.end());
   1279   unsigned ClusterLength = 1;
   1280   for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) {
   1281     if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) {
   1282       ClusterLength = 1;
   1283       continue;
   1284     }
   1285 
   1286     SUnit *SUa = LoadRecords[Idx].SU;
   1287     SUnit *SUb = LoadRecords[Idx+1].SU;
   1288     if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength)
   1289         && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
   1290 
   1291       DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU("
   1292             << SUb->NodeNum << ")\n");
   1293       // Copy successor edges from SUa to SUb. Interleaving computation
   1294       // dependent on SUa can prevent load combining due to register reuse.
   1295       // Predecessor edges do not need to be copied from SUb to SUa since nearby
   1296       // loads should have effectively the same inputs.
   1297       for (SUnit::const_succ_iterator
   1298              SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) {
   1299         if (SI->getSUnit() == SUb)
   1300           continue;
   1301         DEBUG(dbgs() << "  Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n");
   1302         DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial));
   1303       }
   1304       ++ClusterLength;
   1305     }
   1306     else
   1307       ClusterLength = 1;
   1308   }
   1309 }
   1310 
   1311 /// \brief Callback from DAG postProcessing to create cluster edges for loads.
   1312 void LoadClusterMutation::apply(ScheduleDAGMI *DAG) {
   1313   // Map DAG NodeNum to store chain ID.
   1314   DenseMap<unsigned, unsigned> StoreChainIDs;
   1315   // Map each store chain to a set of dependent loads.
   1316   SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
   1317   for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
   1318     SUnit *SU = &DAG->SUnits[Idx];
   1319     if (!SU->getInstr()->mayLoad())
   1320       continue;
   1321     unsigned ChainPredID = DAG->SUnits.size();
   1322     for (SUnit::const_pred_iterator
   1323            PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
   1324       if (PI->isCtrl()) {
   1325         ChainPredID = PI->getSUnit()->NodeNum;
   1326         break;
   1327       }
   1328     }
   1329     // Check if this chain-like pred has been seen
   1330     // before. ChainPredID==MaxNodeID for loads at the top of the schedule.
   1331     unsigned NumChains = StoreChainDependents.size();
   1332     std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
   1333       StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
   1334     if (Result.second)
   1335       StoreChainDependents.resize(NumChains + 1);
   1336     StoreChainDependents[Result.first->second].push_back(SU);
   1337   }
   1338   // Iterate over the store chains.
   1339   for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx)
   1340     clusterNeighboringLoads(StoreChainDependents[Idx], DAG);
   1341 }
   1342 
   1343 //===----------------------------------------------------------------------===//
   1344 // MacroFusion - DAG post-processing to encourage fusion of macro ops.
   1345 //===----------------------------------------------------------------------===//
   1346 
   1347 namespace {
   1348 /// \brief Post-process the DAG to create cluster edges between instructions
   1349 /// that may be fused by the processor into a single operation.
   1350 class MacroFusion : public ScheduleDAGMutation {
   1351   const TargetInstrInfo *TII;
   1352 public:
   1353   MacroFusion(const TargetInstrInfo *tii): TII(tii) {}
   1354 
   1355   void apply(ScheduleDAGMI *DAG) override;
   1356 };
   1357 } // anonymous
   1358 
   1359 /// \brief Callback from DAG postProcessing to create cluster edges to encourage
   1360 /// fused operations.
   1361 void MacroFusion::apply(ScheduleDAGMI *DAG) {
   1362   // For now, assume targets can only fuse with the branch.
   1363   MachineInstr *Branch = DAG->ExitSU.getInstr();
   1364   if (!Branch)
   1365     return;
   1366 
   1367   for (unsigned Idx = DAG->SUnits.size(); Idx > 0;) {
   1368     SUnit *SU = &DAG->SUnits[--Idx];
   1369     if (!TII->shouldScheduleAdjacent(SU->getInstr(), Branch))
   1370       continue;
   1371 
   1372     // Create a single weak edge from SU to ExitSU. The only effect is to cause
   1373     // bottom-up scheduling to heavily prioritize the clustered SU.  There is no
   1374     // need to copy predecessor edges from ExitSU to SU, since top-down
   1375     // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling
   1376     // of SU, we could create an artificial edge from the deepest root, but it
   1377     // hasn't been needed yet.
   1378     bool Success = DAG->addEdge(&DAG->ExitSU, SDep(SU, SDep::Cluster));
   1379     (void)Success;
   1380     assert(Success && "No DAG nodes should be reachable from ExitSU");
   1381 
   1382     DEBUG(dbgs() << "Macro Fuse SU(" << SU->NodeNum << ")\n");
   1383     break;
   1384   }
   1385 }
   1386 
   1387 //===----------------------------------------------------------------------===//
   1388 // CopyConstrain - DAG post-processing to encourage copy elimination.
   1389 //===----------------------------------------------------------------------===//
   1390 
   1391 namespace {
   1392 /// \brief Post-process the DAG to create weak edges from all uses of a copy to
   1393 /// the one use that defines the copy's source vreg, most likely an induction
   1394 /// variable increment.
   1395 class CopyConstrain : public ScheduleDAGMutation {
   1396   // Transient state.
   1397   SlotIndex RegionBeginIdx;
   1398   // RegionEndIdx is the slot index of the last non-debug instruction in the
   1399   // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
   1400   SlotIndex RegionEndIdx;
   1401 public:
   1402   CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
   1403 
   1404   void apply(ScheduleDAGMI *DAG) override;
   1405 
   1406 protected:
   1407   void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
   1408 };
   1409 } // anonymous
   1410 
   1411 /// constrainLocalCopy handles two possibilities:
   1412 /// 1) Local src:
   1413 /// I0:     = dst
   1414 /// I1: src = ...
   1415 /// I2:     = dst
   1416 /// I3: dst = src (copy)
   1417 /// (create pred->succ edges I0->I1, I2->I1)
   1418 ///
   1419 /// 2) Local copy:
   1420 /// I0: dst = src (copy)
   1421 /// I1:     = dst
   1422 /// I2: src = ...
   1423 /// I3:     = dst
   1424 /// (create pred->succ edges I1->I2, I3->I2)
   1425 ///
   1426 /// Although the MachineScheduler is currently constrained to single blocks,
   1427 /// this algorithm should handle extended blocks. An EBB is a set of
   1428 /// contiguously numbered blocks such that the previous block in the EBB is
   1429 /// always the single predecessor.
   1430 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
   1431   LiveIntervals *LIS = DAG->getLIS();
   1432   MachineInstr *Copy = CopySU->getInstr();
   1433 
   1434   // Check for pure vreg copies.
   1435   unsigned SrcReg = Copy->getOperand(1).getReg();
   1436   if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
   1437     return;
   1438 
   1439   unsigned DstReg = Copy->getOperand(0).getReg();
   1440   if (!TargetRegisterInfo::isVirtualRegister(DstReg))
   1441     return;
   1442 
   1443   // Check if either the dest or source is local. If it's live across a back
   1444   // edge, it's not local. Note that if both vregs are live across the back
   1445   // edge, we cannot successfully contrain the copy without cyclic scheduling.
   1446   // If both the copy's source and dest are local live intervals, then we
   1447   // should treat the dest as the global for the purpose of adding
   1448   // constraints. This adds edges from source's other uses to the copy.
   1449   unsigned LocalReg = SrcReg;
   1450   unsigned GlobalReg = DstReg;
   1451   LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
   1452   if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
   1453     LocalReg = DstReg;
   1454     GlobalReg = SrcReg;
   1455     LocalLI = &LIS->getInterval(LocalReg);
   1456     if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
   1457       return;
   1458   }
   1459   LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
   1460 
   1461   // Find the global segment after the start of the local LI.
   1462   LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
   1463   // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
   1464   // local live range. We could create edges from other global uses to the local
   1465   // start, but the coalescer should have already eliminated these cases, so
   1466   // don't bother dealing with it.
   1467   if (GlobalSegment == GlobalLI->end())
   1468     return;
   1469 
   1470   // If GlobalSegment is killed at the LocalLI->start, the call to find()
   1471   // returned the next global segment. But if GlobalSegment overlaps with
   1472   // LocalLI->start, then advance to the next segement. If a hole in GlobalLI
   1473   // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
   1474   if (GlobalSegment->contains(LocalLI->beginIndex()))
   1475     ++GlobalSegment;
   1476 
   1477   if (GlobalSegment == GlobalLI->end())
   1478     return;
   1479 
   1480   // Check if GlobalLI contains a hole in the vicinity of LocalLI.
   1481   if (GlobalSegment != GlobalLI->begin()) {
   1482     // Two address defs have no hole.
   1483     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
   1484                                GlobalSegment->start)) {
   1485       return;
   1486     }
   1487     // If the prior global segment may be defined by the same two-address
   1488     // instruction that also defines LocalLI, then can't make a hole here.
   1489     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
   1490                                LocalLI->beginIndex())) {
   1491       return;
   1492     }
   1493     // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
   1494     // it would be a disconnected component in the live range.
   1495     assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
   1496            "Disconnected LRG within the scheduling region.");
   1497   }
   1498   MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
   1499   if (!GlobalDef)
   1500     return;
   1501 
   1502   SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
   1503   if (!GlobalSU)
   1504     return;
   1505 
   1506   // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
   1507   // constraining the uses of the last local def to precede GlobalDef.
   1508   SmallVector<SUnit*,8> LocalUses;
   1509   const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
   1510   MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
   1511   SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
   1512   for (SUnit::const_succ_iterator
   1513          I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end();
   1514        I != E; ++I) {
   1515     if (I->getKind() != SDep::Data || I->getReg() != LocalReg)
   1516       continue;
   1517     if (I->getSUnit() == GlobalSU)
   1518       continue;
   1519     if (!DAG->canAddEdge(GlobalSU, I->getSUnit()))
   1520       return;
   1521     LocalUses.push_back(I->getSUnit());
   1522   }
   1523   // Open the top of the GlobalLI hole by constraining any earlier global uses
   1524   // to precede the start of LocalLI.
   1525   SmallVector<SUnit*,8> GlobalUses;
   1526   MachineInstr *FirstLocalDef =
   1527     LIS->getInstructionFromIndex(LocalLI->beginIndex());
   1528   SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
   1529   for (SUnit::const_pred_iterator
   1530          I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) {
   1531     if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg)
   1532       continue;
   1533     if (I->getSUnit() == FirstLocalSU)
   1534       continue;
   1535     if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit()))
   1536       return;
   1537     GlobalUses.push_back(I->getSUnit());
   1538   }
   1539   DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
   1540   // Add the weak edges.
   1541   for (SmallVectorImpl<SUnit*>::const_iterator
   1542          I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
   1543     DEBUG(dbgs() << "  Local use SU(" << (*I)->NodeNum << ") -> SU("
   1544           << GlobalSU->NodeNum << ")\n");
   1545     DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
   1546   }
   1547   for (SmallVectorImpl<SUnit*>::const_iterator
   1548          I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
   1549     DEBUG(dbgs() << "  Global use SU(" << (*I)->NodeNum << ") -> SU("
   1550           << FirstLocalSU->NodeNum << ")\n");
   1551     DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
   1552   }
   1553 }
   1554 
   1555 /// \brief Callback from DAG postProcessing to create weak edges to encourage
   1556 /// copy elimination.
   1557 void CopyConstrain::apply(ScheduleDAGMI *DAG) {
   1558   assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
   1559 
   1560   MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
   1561   if (FirstPos == DAG->end())
   1562     return;
   1563   RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos);
   1564   RegionEndIdx = DAG->getLIS()->getInstructionIndex(
   1565     &*priorNonDebug(DAG->end(), DAG->begin()));
   1566 
   1567   for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
   1568     SUnit *SU = &DAG->SUnits[Idx];
   1569     if (!SU->getInstr()->isCopy())
   1570       continue;
   1571 
   1572     constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG));
   1573   }
   1574 }
   1575 
   1576 //===----------------------------------------------------------------------===//
   1577 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
   1578 // and possibly other custom schedulers.
   1579 //===----------------------------------------------------------------------===//
   1580 
   1581 static const unsigned InvalidCycle = ~0U;
   1582 
   1583 SchedBoundary::~SchedBoundary() { delete HazardRec; }
   1584 
   1585 void SchedBoundary::reset() {
   1586   // A new HazardRec is created for each DAG and owned by SchedBoundary.
   1587   // Destroying and reconstructing it is very expensive though. So keep
   1588   // invalid, placeholder HazardRecs.
   1589   if (HazardRec && HazardRec->isEnabled()) {
   1590     delete HazardRec;
   1591     HazardRec = nullptr;
   1592   }
   1593   Available.clear();
   1594   Pending.clear();
   1595   CheckPending = false;
   1596   NextSUs.clear();
   1597   CurrCycle = 0;
   1598   CurrMOps = 0;
   1599   MinReadyCycle = UINT_MAX;
   1600   ExpectedLatency = 0;
   1601   DependentLatency = 0;
   1602   RetiredMOps = 0;
   1603   MaxExecutedResCount = 0;
   1604   ZoneCritResIdx = 0;
   1605   IsResourceLimited = false;
   1606   ReservedCycles.clear();
   1607 #ifndef NDEBUG
   1608   // Track the maximum number of stall cycles that could arise either from the
   1609   // latency of a DAG edge or the number of cycles that a processor resource is
   1610   // reserved (SchedBoundary::ReservedCycles).
   1611   MaxObservedStall = 0;
   1612 #endif
   1613   // Reserve a zero-count for invalid CritResIdx.
   1614   ExecutedResCounts.resize(1);
   1615   assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
   1616 }
   1617 
   1618 void SchedRemainder::
   1619 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
   1620   reset();
   1621   if (!SchedModel->hasInstrSchedModel())
   1622     return;
   1623   RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
   1624   for (std::vector<SUnit>::iterator
   1625          I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) {
   1626     const MCSchedClassDesc *SC = DAG->getSchedClass(&*I);
   1627     RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC)
   1628       * SchedModel->getMicroOpFactor();
   1629     for (TargetSchedModel::ProcResIter
   1630            PI = SchedModel->getWriteProcResBegin(SC),
   1631            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
   1632       unsigned PIdx = PI->ProcResourceIdx;
   1633       unsigned Factor = SchedModel->getResourceFactor(PIdx);
   1634       RemainingCounts[PIdx] += (Factor * PI->Cycles);
   1635     }
   1636   }
   1637 }
   1638 
   1639 void SchedBoundary::
   1640 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
   1641   reset();
   1642   DAG = dag;
   1643   SchedModel = smodel;
   1644   Rem = rem;
   1645   if (SchedModel->hasInstrSchedModel()) {
   1646     ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
   1647     ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle);
   1648   }
   1649 }
   1650 
   1651 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
   1652 /// these "soft stalls" differently than the hard stall cycles based on CPU
   1653 /// resources and computed by checkHazard(). A fully in-order model
   1654 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
   1655 /// available for scheduling until they are ready. However, a weaker in-order
   1656 /// model may use this for heuristics. For example, if a processor has in-order
   1657 /// behavior when reading certain resources, this may come into play.
   1658 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
   1659   if (!SU->isUnbuffered)
   1660     return 0;
   1661 
   1662   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
   1663   if (ReadyCycle > CurrCycle)
   1664     return ReadyCycle - CurrCycle;
   1665   return 0;
   1666 }
   1667 
   1668 /// Compute the next cycle at which the given processor resource can be
   1669 /// scheduled.
   1670 unsigned SchedBoundary::
   1671 getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
   1672   unsigned NextUnreserved = ReservedCycles[PIdx];
   1673   // If this resource has never been used, always return cycle zero.
   1674   if (NextUnreserved == InvalidCycle)
   1675     return 0;
   1676   // For bottom-up scheduling add the cycles needed for the current operation.
   1677   if (!isTop())
   1678     NextUnreserved += Cycles;
   1679   return NextUnreserved;
   1680 }
   1681 
   1682 /// Does this SU have a hazard within the current instruction group.
   1683 ///
   1684 /// The scheduler supports two modes of hazard recognition. The first is the
   1685 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
   1686 /// supports highly complicated in-order reservation tables
   1687 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic.
   1688 ///
   1689 /// The second is a streamlined mechanism that checks for hazards based on
   1690 /// simple counters that the scheduler itself maintains. It explicitly checks
   1691 /// for instruction dispatch limitations, including the number of micro-ops that
   1692 /// can dispatch per cycle.
   1693 ///
   1694 /// TODO: Also check whether the SU must start a new group.
   1695 bool SchedBoundary::checkHazard(SUnit *SU) {
   1696   if (HazardRec->isEnabled()
   1697       && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
   1698     return true;
   1699   }
   1700   unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
   1701   if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
   1702     DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
   1703           << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
   1704     return true;
   1705   }
   1706   if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
   1707     const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
   1708     for (TargetSchedModel::ProcResIter
   1709            PI = SchedModel->getWriteProcResBegin(SC),
   1710            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
   1711       unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles);
   1712       if (NRCycle > CurrCycle) {
   1713 #ifndef NDEBUG
   1714         MaxObservedStall = std::max(PI->Cycles, MaxObservedStall);
   1715 #endif
   1716         DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") "
   1717               << SchedModel->getResourceName(PI->ProcResourceIdx)
   1718               << "=" << NRCycle << "c\n");
   1719         return true;
   1720       }
   1721     }
   1722   }
   1723   return false;
   1724 }
   1725 
   1726 // Find the unscheduled node in ReadySUs with the highest latency.
   1727 unsigned SchedBoundary::
   1728 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
   1729   SUnit *LateSU = nullptr;
   1730   unsigned RemLatency = 0;
   1731   for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end();
   1732        I != E; ++I) {
   1733     unsigned L = getUnscheduledLatency(*I);
   1734     if (L > RemLatency) {
   1735       RemLatency = L;
   1736       LateSU = *I;
   1737     }
   1738   }
   1739   if (LateSU) {
   1740     DEBUG(dbgs() << Available.getName() << " RemLatency SU("
   1741           << LateSU->NodeNum << ") " << RemLatency << "c\n");
   1742   }
   1743   return RemLatency;
   1744 }
   1745 
   1746 // Count resources in this zone and the remaining unscheduled
   1747 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
   1748 // resource index, or zero if the zone is issue limited.
   1749 unsigned SchedBoundary::
   1750 getOtherResourceCount(unsigned &OtherCritIdx) {
   1751   OtherCritIdx = 0;
   1752   if (!SchedModel->hasInstrSchedModel())
   1753     return 0;
   1754 
   1755   unsigned OtherCritCount = Rem->RemIssueCount
   1756     + (RetiredMOps * SchedModel->getMicroOpFactor());
   1757   DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
   1758         << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
   1759   for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
   1760        PIdx != PEnd; ++PIdx) {
   1761     unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
   1762     if (OtherCount > OtherCritCount) {
   1763       OtherCritCount = OtherCount;
   1764       OtherCritIdx = PIdx;
   1765     }
   1766   }
   1767   if (OtherCritIdx) {
   1768     DEBUG(dbgs() << "  " << Available.getName() << " + Remain CritRes: "
   1769           << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
   1770           << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
   1771   }
   1772   return OtherCritCount;
   1773 }
   1774 
   1775 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) {
   1776   assert(SU->getInstr() && "Scheduled SUnit must have instr");
   1777 
   1778 #ifndef NDEBUG
   1779   // ReadyCycle was been bumped up to the CurrCycle when this node was
   1780   // scheduled, but CurrCycle may have been eagerly advanced immediately after
   1781   // scheduling, so may now be greater than ReadyCycle.
   1782   if (ReadyCycle > CurrCycle)
   1783     MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
   1784 #endif
   1785 
   1786   if (ReadyCycle < MinReadyCycle)
   1787     MinReadyCycle = ReadyCycle;
   1788 
   1789   // Check for interlocks first. For the purpose of other heuristics, an
   1790   // instruction that cannot issue appears as if it's not in the ReadyQueue.
   1791   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
   1792   if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU))
   1793     Pending.push(SU);
   1794   else
   1795     Available.push(SU);
   1796 
   1797   // Record this node as an immediate dependent of the scheduled node.
   1798   NextSUs.insert(SU);
   1799 }
   1800 
   1801 void SchedBoundary::releaseTopNode(SUnit *SU) {
   1802   if (SU->isScheduled)
   1803     return;
   1804 
   1805   releaseNode(SU, SU->TopReadyCycle);
   1806 }
   1807 
   1808 void SchedBoundary::releaseBottomNode(SUnit *SU) {
   1809   if (SU->isScheduled)
   1810     return;
   1811 
   1812   releaseNode(SU, SU->BotReadyCycle);
   1813 }
   1814 
   1815 /// Move the boundary of scheduled code by one cycle.
   1816 void SchedBoundary::bumpCycle(unsigned NextCycle) {
   1817   if (SchedModel->getMicroOpBufferSize() == 0) {
   1818     assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
   1819     if (MinReadyCycle > NextCycle)
   1820       NextCycle = MinReadyCycle;
   1821   }
   1822   // Update the current micro-ops, which will issue in the next cycle.
   1823   unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
   1824   CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
   1825 
   1826   // Decrement DependentLatency based on the next cycle.
   1827   if ((NextCycle - CurrCycle) > DependentLatency)
   1828     DependentLatency = 0;
   1829   else
   1830     DependentLatency -= (NextCycle - CurrCycle);
   1831 
   1832   if (!HazardRec->isEnabled()) {
   1833     // Bypass HazardRec virtual calls.
   1834     CurrCycle = NextCycle;
   1835   }
   1836   else {
   1837     // Bypass getHazardType calls in case of long latency.
   1838     for (; CurrCycle != NextCycle; ++CurrCycle) {
   1839       if (isTop())
   1840         HazardRec->AdvanceCycle();
   1841       else
   1842         HazardRec->RecedeCycle();
   1843     }
   1844   }
   1845   CheckPending = true;
   1846   unsigned LFactor = SchedModel->getLatencyFactor();
   1847   IsResourceLimited =
   1848     (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
   1849     > (int)LFactor;
   1850 
   1851   DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n');
   1852 }
   1853 
   1854 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
   1855   ExecutedResCounts[PIdx] += Count;
   1856   if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
   1857     MaxExecutedResCount = ExecutedResCounts[PIdx];
   1858 }
   1859 
   1860 /// Add the given processor resource to this scheduled zone.
   1861 ///
   1862 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
   1863 /// during which this resource is consumed.
   1864 ///
   1865 /// \return the next cycle at which the instruction may execute without
   1866 /// oversubscribing resources.
   1867 unsigned SchedBoundary::
   1868 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
   1869   unsigned Factor = SchedModel->getResourceFactor(PIdx);
   1870   unsigned Count = Factor * Cycles;
   1871   DEBUG(dbgs() << "  " << SchedModel->getResourceName(PIdx)
   1872         << " +" << Cycles << "x" << Factor << "u\n");
   1873 
   1874   // Update Executed resources counts.
   1875   incExecutedResources(PIdx, Count);
   1876   assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
   1877   Rem->RemainingCounts[PIdx] -= Count;
   1878 
   1879   // Check if this resource exceeds the current critical resource. If so, it
   1880   // becomes the critical resource.
   1881   if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
   1882     ZoneCritResIdx = PIdx;
   1883     DEBUG(dbgs() << "  *** Critical resource "
   1884           << SchedModel->getResourceName(PIdx) << ": "
   1885           << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n");
   1886   }
   1887   // For reserved resources, record the highest cycle using the resource.
   1888   unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles);
   1889   if (NextAvailable > CurrCycle) {
   1890     DEBUG(dbgs() << "  Resource conflict: "
   1891           << SchedModel->getProcResource(PIdx)->Name << " reserved until @"
   1892           << NextAvailable << "\n");
   1893   }
   1894   return NextAvailable;
   1895 }
   1896 
   1897 /// Move the boundary of scheduled code by one SUnit.
   1898 void SchedBoundary::bumpNode(SUnit *SU) {
   1899   // Update the reservation table.
   1900   if (HazardRec->isEnabled()) {
   1901     if (!isTop() && SU->isCall) {
   1902       // Calls are scheduled with their preceding instructions. For bottom-up
   1903       // scheduling, clear the pipeline state before emitting.
   1904       HazardRec->Reset();
   1905     }
   1906     HazardRec->EmitInstruction(SU);
   1907   }
   1908   // checkHazard should prevent scheduling multiple instructions per cycle that
   1909   // exceed the issue width.
   1910   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
   1911   unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
   1912   assert(
   1913       (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
   1914       "Cannot schedule this instruction's MicroOps in the current cycle.");
   1915 
   1916   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
   1917   DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
   1918 
   1919   unsigned NextCycle = CurrCycle;
   1920   switch (SchedModel->getMicroOpBufferSize()) {
   1921   case 0:
   1922     assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
   1923     break;
   1924   case 1:
   1925     if (ReadyCycle > NextCycle) {
   1926       NextCycle = ReadyCycle;
   1927       DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
   1928     }
   1929     break;
   1930   default:
   1931     // We don't currently model the OOO reorder buffer, so consider all
   1932     // scheduled MOps to be "retired". We do loosely model in-order resource
   1933     // latency. If this instruction uses an in-order resource, account for any
   1934     // likely stall cycles.
   1935     if (SU->isUnbuffered && ReadyCycle > NextCycle)
   1936       NextCycle = ReadyCycle;
   1937     break;
   1938   }
   1939   RetiredMOps += IncMOps;
   1940 
   1941   // Update resource counts and critical resource.
   1942   if (SchedModel->hasInstrSchedModel()) {
   1943     unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
   1944     assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
   1945     Rem->RemIssueCount -= DecRemIssue;
   1946     if (ZoneCritResIdx) {
   1947       // Scale scheduled micro-ops for comparing with the critical resource.
   1948       unsigned ScaledMOps =
   1949         RetiredMOps * SchedModel->getMicroOpFactor();
   1950 
   1951       // If scaled micro-ops are now more than the previous critical resource by
   1952       // a full cycle, then micro-ops issue becomes critical.
   1953       if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
   1954           >= (int)SchedModel->getLatencyFactor()) {
   1955         ZoneCritResIdx = 0;
   1956         DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
   1957               << ScaledMOps / SchedModel->getLatencyFactor() << "c\n");
   1958       }
   1959     }
   1960     for (TargetSchedModel::ProcResIter
   1961            PI = SchedModel->getWriteProcResBegin(SC),
   1962            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
   1963       unsigned RCycle =
   1964         countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
   1965       if (RCycle > NextCycle)
   1966         NextCycle = RCycle;
   1967     }
   1968     if (SU->hasReservedResource) {
   1969       // For reserved resources, record the highest cycle using the resource.
   1970       // For top-down scheduling, this is the cycle in which we schedule this
   1971       // instruction plus the number of cycles the operations reserves the
   1972       // resource. For bottom-up is it simply the instruction's cycle.
   1973       for (TargetSchedModel::ProcResIter
   1974              PI = SchedModel->getWriteProcResBegin(SC),
   1975              PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
   1976         unsigned PIdx = PI->ProcResourceIdx;
   1977         if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
   1978           if (isTop()) {
   1979             ReservedCycles[PIdx] =
   1980               std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles);
   1981           }
   1982           else
   1983             ReservedCycles[PIdx] = NextCycle;
   1984         }
   1985       }
   1986     }
   1987   }
   1988   // Update ExpectedLatency and DependentLatency.
   1989   unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
   1990   unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
   1991   if (SU->getDepth() > TopLatency) {
   1992     TopLatency = SU->getDepth();
   1993     DEBUG(dbgs() << "  " << Available.getName()
   1994           << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n");
   1995   }
   1996   if (SU->getHeight() > BotLatency) {
   1997     BotLatency = SU->getHeight();
   1998     DEBUG(dbgs() << "  " << Available.getName()
   1999           << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n");
   2000   }
   2001   // If we stall for any reason, bump the cycle.
   2002   if (NextCycle > CurrCycle) {
   2003     bumpCycle(NextCycle);
   2004   }
   2005   else {
   2006     // After updating ZoneCritResIdx and ExpectedLatency, check if we're
   2007     // resource limited. If a stall occurred, bumpCycle does this.
   2008     unsigned LFactor = SchedModel->getLatencyFactor();
   2009     IsResourceLimited =
   2010       (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
   2011       > (int)LFactor;
   2012   }
   2013   // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
   2014   // resets CurrMOps. Loop to handle instructions with more MOps than issue in
   2015   // one cycle.  Since we commonly reach the max MOps here, opportunistically
   2016   // bump the cycle to avoid uselessly checking everything in the readyQ.
   2017   CurrMOps += IncMOps;
   2018   while (CurrMOps >= SchedModel->getIssueWidth()) {
   2019     DEBUG(dbgs() << "  *** Max MOps " << CurrMOps
   2020           << " at cycle " << CurrCycle << '\n');
   2021     bumpCycle(++NextCycle);
   2022   }
   2023   DEBUG(dumpScheduledState());
   2024 }
   2025 
   2026 /// Release pending ready nodes in to the available queue. This makes them
   2027 /// visible to heuristics.
   2028 void SchedBoundary::releasePending() {
   2029   // If the available queue is empty, it is safe to reset MinReadyCycle.
   2030   if (Available.empty())
   2031     MinReadyCycle = UINT_MAX;
   2032 
   2033   // Check to see if any of the pending instructions are ready to issue.  If
   2034   // so, add them to the available queue.
   2035   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
   2036   for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
   2037     SUnit *SU = *(Pending.begin()+i);
   2038     unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
   2039 
   2040     if (ReadyCycle < MinReadyCycle)
   2041       MinReadyCycle = ReadyCycle;
   2042 
   2043     if (!IsBuffered && ReadyCycle > CurrCycle)
   2044       continue;
   2045 
   2046     if (checkHazard(SU))
   2047       continue;
   2048 
   2049     Available.push(SU);
   2050     Pending.remove(Pending.begin()+i);
   2051     --i; --e;
   2052   }
   2053   DEBUG(if (!Pending.empty()) Pending.dump());
   2054   CheckPending = false;
   2055 }
   2056 
   2057 /// Remove SU from the ready set for this boundary.
   2058 void SchedBoundary::removeReady(SUnit *SU) {
   2059   if (Available.isInQueue(SU))
   2060     Available.remove(Available.find(SU));
   2061   else {
   2062     assert(Pending.isInQueue(SU) && "bad ready count");
   2063     Pending.remove(Pending.find(SU));
   2064   }
   2065 }
   2066 
   2067 /// If this queue only has one ready candidate, return it. As a side effect,
   2068 /// defer any nodes that now hit a hazard, and advance the cycle until at least
   2069 /// one node is ready. If multiple instructions are ready, return NULL.
   2070 SUnit *SchedBoundary::pickOnlyChoice() {
   2071   if (CheckPending)
   2072     releasePending();
   2073 
   2074   if (CurrMOps > 0) {
   2075     // Defer any ready instrs that now have a hazard.
   2076     for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
   2077       if (checkHazard(*I)) {
   2078         Pending.push(*I);
   2079         I = Available.remove(I);
   2080         continue;
   2081       }
   2082       ++I;
   2083     }
   2084   }
   2085   for (unsigned i = 0; Available.empty(); ++i) {
   2086 //  FIXME: Re-enable assert once PR20057 is resolved.
   2087 //    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
   2088 //           "permanent hazard");
   2089     (void)i;
   2090     bumpCycle(CurrCycle + 1);
   2091     releasePending();
   2092   }
   2093   if (Available.size() == 1)
   2094     return *Available.begin();
   2095   return nullptr;
   2096 }
   2097 
   2098 #ifndef NDEBUG
   2099 // This is useful information to dump after bumpNode.
   2100 // Note that the Queue contents are more useful before pickNodeFromQueue.
   2101 void SchedBoundary::dumpScheduledState() {
   2102   unsigned ResFactor;
   2103   unsigned ResCount;
   2104   if (ZoneCritResIdx) {
   2105     ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
   2106     ResCount = getResourceCount(ZoneCritResIdx);
   2107   }
   2108   else {
   2109     ResFactor = SchedModel->getMicroOpFactor();
   2110     ResCount = RetiredMOps * SchedModel->getMicroOpFactor();
   2111   }
   2112   unsigned LFactor = SchedModel->getLatencyFactor();
   2113   dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
   2114          << "  Retired: " << RetiredMOps;
   2115   dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
   2116   dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
   2117          << ResCount / ResFactor << " "
   2118          << SchedModel->getResourceName(ZoneCritResIdx)
   2119          << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
   2120          << (IsResourceLimited ? "  - Resource" : "  - Latency")
   2121          << " limited.\n";
   2122 }
   2123 #endif
   2124 
   2125 //===----------------------------------------------------------------------===//
   2126 // GenericScheduler - Generic implementation of MachineSchedStrategy.
   2127 //===----------------------------------------------------------------------===//
   2128 
   2129 void GenericSchedulerBase::SchedCandidate::
   2130 initResourceDelta(const ScheduleDAGMI *DAG,
   2131                   const TargetSchedModel *SchedModel) {
   2132   if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
   2133     return;
   2134 
   2135   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
   2136   for (TargetSchedModel::ProcResIter
   2137          PI = SchedModel->getWriteProcResBegin(SC),
   2138          PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
   2139     if (PI->ProcResourceIdx == Policy.ReduceResIdx)
   2140       ResDelta.CritResources += PI->Cycles;
   2141     if (PI->ProcResourceIdx == Policy.DemandResIdx)
   2142       ResDelta.DemandedResources += PI->Cycles;
   2143   }
   2144 }
   2145 
   2146 /// Set the CandPolicy given a scheduling zone given the current resources and
   2147 /// latencies inside and outside the zone.
   2148 void GenericSchedulerBase::setPolicy(CandPolicy &Policy,
   2149                                      bool IsPostRA,
   2150                                      SchedBoundary &CurrZone,
   2151                                      SchedBoundary *OtherZone) {
   2152   // Apply preemptive heuristics based on the the total latency and resources
   2153   // inside and outside this zone. Potential stalls should be considered before
   2154   // following this policy.
   2155 
   2156   // Compute remaining latency. We need this both to determine whether the
   2157   // overall schedule has become latency-limited and whether the instructions
   2158   // outside this zone are resource or latency limited.
   2159   //
   2160   // The "dependent" latency is updated incrementally during scheduling as the
   2161   // max height/depth of scheduled nodes minus the cycles since it was
   2162   // scheduled:
   2163   //   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
   2164   //
   2165   // The "independent" latency is the max ready queue depth:
   2166   //   ILat = max N.depth for N in Available|Pending
   2167   //
   2168   // RemainingLatency is the greater of independent and dependent latency.
   2169   unsigned RemLatency = CurrZone.getDependentLatency();
   2170   RemLatency = std::max(RemLatency,
   2171                         CurrZone.findMaxLatency(CurrZone.Available.elements()));
   2172   RemLatency = std::max(RemLatency,
   2173                         CurrZone.findMaxLatency(CurrZone.Pending.elements()));
   2174 
   2175   // Compute the critical resource outside the zone.
   2176   unsigned OtherCritIdx = 0;
   2177   unsigned OtherCount =
   2178     OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
   2179 
   2180   bool OtherResLimited = false;
   2181   if (SchedModel->hasInstrSchedModel()) {
   2182     unsigned LFactor = SchedModel->getLatencyFactor();
   2183     OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor;
   2184   }
   2185   // Schedule aggressively for latency in PostRA mode. We don't check for
   2186   // acyclic latency during PostRA, and highly out-of-order processors will
   2187   // skip PostRA scheduling.
   2188   if (!OtherResLimited) {
   2189     if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) {
   2190       Policy.ReduceLatency |= true;
   2191       DEBUG(dbgs() << "  " << CurrZone.Available.getName()
   2192             << " RemainingLatency " << RemLatency << " + "
   2193             << CurrZone.getCurrCycle() << "c > CritPath "
   2194             << Rem.CriticalPath << "\n");
   2195     }
   2196   }
   2197   // If the same resource is limiting inside and outside the zone, do nothing.
   2198   if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
   2199     return;
   2200 
   2201   DEBUG(
   2202     if (CurrZone.isResourceLimited()) {
   2203       dbgs() << "  " << CurrZone.Available.getName() << " ResourceLimited: "
   2204              << SchedModel->getResourceName(CurrZone.getZoneCritResIdx())
   2205              << "\n";
   2206     }
   2207     if (OtherResLimited)
   2208       dbgs() << "  RemainingLimit: "
   2209              << SchedModel->getResourceName(OtherCritIdx) << "\n";
   2210     if (!CurrZone.isResourceLimited() && !OtherResLimited)
   2211       dbgs() << "  Latency limited both directions.\n");
   2212 
   2213   if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
   2214     Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
   2215 
   2216   if (OtherResLimited)
   2217     Policy.DemandResIdx = OtherCritIdx;
   2218 }
   2219 
   2220 #ifndef NDEBUG
   2221 const char *GenericSchedulerBase::getReasonStr(
   2222   GenericSchedulerBase::CandReason Reason) {
   2223   switch (Reason) {
   2224   case NoCand:         return "NOCAND    ";
   2225   case PhysRegCopy:    return "PREG-COPY";
   2226   case RegExcess:      return "REG-EXCESS";
   2227   case RegCritical:    return "REG-CRIT  ";
   2228   case Stall:          return "STALL     ";
   2229   case Cluster:        return "CLUSTER   ";
   2230   case Weak:           return "WEAK      ";
   2231   case RegMax:         return "REG-MAX   ";
   2232   case ResourceReduce: return "RES-REDUCE";
   2233   case ResourceDemand: return "RES-DEMAND";
   2234   case TopDepthReduce: return "TOP-DEPTH ";
   2235   case TopPathReduce:  return "TOP-PATH  ";
   2236   case BotHeightReduce:return "BOT-HEIGHT";
   2237   case BotPathReduce:  return "BOT-PATH  ";
   2238   case NextDefUse:     return "DEF-USE   ";
   2239   case NodeOrder:      return "ORDER     ";
   2240   };
   2241   llvm_unreachable("Unknown reason!");
   2242 }
   2243 
   2244 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
   2245   PressureChange P;
   2246   unsigned ResIdx = 0;
   2247   unsigned Latency = 0;
   2248   switch (Cand.Reason) {
   2249   default:
   2250     break;
   2251   case RegExcess:
   2252     P = Cand.RPDelta.Excess;
   2253     break;
   2254   case RegCritical:
   2255     P = Cand.RPDelta.CriticalMax;
   2256     break;
   2257   case RegMax:
   2258     P = Cand.RPDelta.CurrentMax;
   2259     break;
   2260   case ResourceReduce:
   2261     ResIdx = Cand.Policy.ReduceResIdx;
   2262     break;
   2263   case ResourceDemand:
   2264     ResIdx = Cand.Policy.DemandResIdx;
   2265     break;
   2266   case TopDepthReduce:
   2267     Latency = Cand.SU->getDepth();
   2268     break;
   2269   case TopPathReduce:
   2270     Latency = Cand.SU->getHeight();
   2271     break;
   2272   case BotHeightReduce:
   2273     Latency = Cand.SU->getHeight();
   2274     break;
   2275   case BotPathReduce:
   2276     Latency = Cand.SU->getDepth();
   2277     break;
   2278   }
   2279   dbgs() << "  SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
   2280   if (P.isValid())
   2281     dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
   2282            << ":" << P.getUnitInc() << " ";
   2283   else
   2284     dbgs() << "      ";
   2285   if (ResIdx)
   2286     dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
   2287   else
   2288     dbgs() << "         ";
   2289   if (Latency)
   2290     dbgs() << " " << Latency << " cycles ";
   2291   else
   2292     dbgs() << "          ";
   2293   dbgs() << '\n';
   2294 }
   2295 #endif
   2296 
   2297 /// Return true if this heuristic determines order.
   2298 static bool tryLess(int TryVal, int CandVal,
   2299                     GenericSchedulerBase::SchedCandidate &TryCand,
   2300                     GenericSchedulerBase::SchedCandidate &Cand,
   2301                     GenericSchedulerBase::CandReason Reason) {
   2302   if (TryVal < CandVal) {
   2303     TryCand.Reason = Reason;
   2304     return true;
   2305   }
   2306   if (TryVal > CandVal) {
   2307     if (Cand.Reason > Reason)
   2308       Cand.Reason = Reason;
   2309     return true;
   2310   }
   2311   Cand.setRepeat(Reason);
   2312   return false;
   2313 }
   2314 
   2315 static bool tryGreater(int TryVal, int CandVal,
   2316                        GenericSchedulerBase::SchedCandidate &TryCand,
   2317                        GenericSchedulerBase::SchedCandidate &Cand,
   2318                        GenericSchedulerBase::CandReason Reason) {
   2319   if (TryVal > CandVal) {
   2320     TryCand.Reason = Reason;
   2321     return true;
   2322   }
   2323   if (TryVal < CandVal) {
   2324     if (Cand.Reason > Reason)
   2325       Cand.Reason = Reason;
   2326     return true;
   2327   }
   2328   Cand.setRepeat(Reason);
   2329   return false;
   2330 }
   2331 
   2332 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
   2333                        GenericSchedulerBase::SchedCandidate &Cand,
   2334                        SchedBoundary &Zone) {
   2335   if (Zone.isTop()) {
   2336     if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
   2337       if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
   2338                   TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
   2339         return true;
   2340     }
   2341     if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
   2342                    TryCand, Cand, GenericSchedulerBase::TopPathReduce))
   2343       return true;
   2344   }
   2345   else {
   2346     if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
   2347       if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
   2348                   TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
   2349         return true;
   2350     }
   2351     if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
   2352                    TryCand, Cand, GenericSchedulerBase::BotPathReduce))
   2353       return true;
   2354   }
   2355   return false;
   2356 }
   2357 
   2358 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand,
   2359                       bool IsTop) {
   2360   DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
   2361         << GenericSchedulerBase::getReasonStr(Cand.Reason) << '\n');
   2362 }
   2363 
   2364 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
   2365   assert(dag->hasVRegLiveness() &&
   2366          "(PreRA)GenericScheduler needs vreg liveness");
   2367   DAG = static_cast<ScheduleDAGMILive*>(dag);
   2368   SchedModel = DAG->getSchedModel();
   2369   TRI = DAG->TRI;
   2370 
   2371   Rem.init(DAG, SchedModel);
   2372   Top.init(DAG, SchedModel, &Rem);
   2373   Bot.init(DAG, SchedModel, &Rem);
   2374 
   2375   // Initialize resource counts.
   2376 
   2377   // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
   2378   // are disabled, then these HazardRecs will be disabled.
   2379   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
   2380   if (!Top.HazardRec) {
   2381     Top.HazardRec =
   2382         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
   2383             Itin, DAG);
   2384   }
   2385   if (!Bot.HazardRec) {
   2386     Bot.HazardRec =
   2387         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
   2388             Itin, DAG);
   2389   }
   2390 }
   2391 
   2392 /// Initialize the per-region scheduling policy.
   2393 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
   2394                                   MachineBasicBlock::iterator End,
   2395                                   unsigned NumRegionInstrs) {
   2396   const MachineFunction &MF = *Begin->getParent()->getParent();
   2397   const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
   2398 
   2399   // Avoid setting up the register pressure tracker for small regions to save
   2400   // compile time. As a rough heuristic, only track pressure when the number of
   2401   // schedulable instructions exceeds half the integer register file.
   2402   RegionPolicy.ShouldTrackPressure = true;
   2403   for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
   2404     MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
   2405     if (TLI->isTypeLegal(LegalIntVT)) {
   2406       unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
   2407         TLI->getRegClassFor(LegalIntVT));
   2408       RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
   2409     }
   2410   }
   2411 
   2412   // For generic targets, we default to bottom-up, because it's simpler and more
   2413   // compile-time optimizations have been implemented in that direction.
   2414   RegionPolicy.OnlyBottomUp = true;
   2415 
   2416   // Allow the subtarget to override default policy.
   2417   MF.getSubtarget().overrideSchedPolicy(RegionPolicy, Begin, End,
   2418                                         NumRegionInstrs);
   2419 
   2420   // After subtarget overrides, apply command line options.
   2421   if (!EnableRegPressure)
   2422     RegionPolicy.ShouldTrackPressure = false;
   2423 
   2424   // Check -misched-topdown/bottomup can force or unforce scheduling direction.
   2425   // e.g. -misched-bottomup=false allows scheduling in both directions.
   2426   assert((!ForceTopDown || !ForceBottomUp) &&
   2427          "-misched-topdown incompatible with -misched-bottomup");
   2428   if (ForceBottomUp.getNumOccurrences() > 0) {
   2429     RegionPolicy.OnlyBottomUp = ForceBottomUp;
   2430     if (RegionPolicy.OnlyBottomUp)
   2431       RegionPolicy.OnlyTopDown = false;
   2432   }
   2433   if (ForceTopDown.getNumOccurrences() > 0) {
   2434     RegionPolicy.OnlyTopDown = ForceTopDown;
   2435     if (RegionPolicy.OnlyTopDown)
   2436       RegionPolicy.OnlyBottomUp = false;
   2437   }
   2438 }
   2439 
   2440 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
   2441 /// critical path by more cycles than it takes to drain the instruction buffer.
   2442 /// We estimate an upper bounds on in-flight instructions as:
   2443 ///
   2444 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
   2445 /// InFlightIterations = AcyclicPath / CyclesPerIteration
   2446 /// InFlightResources = InFlightIterations * LoopResources
   2447 ///
   2448 /// TODO: Check execution resources in addition to IssueCount.
   2449 void GenericScheduler::checkAcyclicLatency() {
   2450   if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
   2451     return;
   2452 
   2453   // Scaled number of cycles per loop iteration.
   2454   unsigned IterCount =
   2455     std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
   2456              Rem.RemIssueCount);
   2457   // Scaled acyclic critical path.
   2458   unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
   2459   // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
   2460   unsigned InFlightCount =
   2461     (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
   2462   unsigned BufferLimit =
   2463     SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
   2464 
   2465   Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
   2466 
   2467   DEBUG(dbgs() << "IssueCycles="
   2468         << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
   2469         << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
   2470         << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount
   2471         << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
   2472         << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
   2473         if (Rem.IsAcyclicLatencyLimited)
   2474           dbgs() << "  ACYCLIC LATENCY LIMIT\n");
   2475 }
   2476 
   2477 void GenericScheduler::registerRoots() {
   2478   Rem.CriticalPath = DAG->ExitSU.getDepth();
   2479 
   2480   // Some roots may not feed into ExitSU. Check all of them in case.
   2481   for (std::vector<SUnit*>::const_iterator
   2482          I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) {
   2483     if ((*I)->getDepth() > Rem.CriticalPath)
   2484       Rem.CriticalPath = (*I)->getDepth();
   2485   }
   2486   DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
   2487   if (DumpCriticalPathLength) {
   2488     errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
   2489   }
   2490 
   2491   if (EnableCyclicPath) {
   2492     Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
   2493     checkAcyclicLatency();
   2494   }
   2495 }
   2496 
   2497 static bool tryPressure(const PressureChange &TryP,
   2498                         const PressureChange &CandP,
   2499                         GenericSchedulerBase::SchedCandidate &TryCand,
   2500                         GenericSchedulerBase::SchedCandidate &Cand,
   2501                         GenericSchedulerBase::CandReason Reason) {
   2502   int TryRank = TryP.getPSetOrMax();
   2503   int CandRank = CandP.getPSetOrMax();
   2504   // If both candidates affect the same set, go with the smallest increase.
   2505   if (TryRank == CandRank) {
   2506     return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
   2507                    Reason);
   2508   }
   2509   // If one candidate decreases and the other increases, go with it.
   2510   // Invalid candidates have UnitInc==0.
   2511   if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
   2512                  Reason)) {
   2513     return true;
   2514   }
   2515   // If the candidates are decreasing pressure, reverse priority.
   2516   if (TryP.getUnitInc() < 0)
   2517     std::swap(TryRank, CandRank);
   2518   return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
   2519 }
   2520 
   2521 static unsigned getWeakLeft(const SUnit *SU, bool isTop) {
   2522   return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
   2523 }
   2524 
   2525 /// Minimize physical register live ranges. Regalloc wants them adjacent to
   2526 /// their physreg def/use.
   2527 ///
   2528 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
   2529 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
   2530 /// with the operation that produces or consumes the physreg. We'll do this when
   2531 /// regalloc has support for parallel copies.
   2532 static int biasPhysRegCopy(const SUnit *SU, bool isTop) {
   2533   const MachineInstr *MI = SU->getInstr();
   2534   if (!MI->isCopy())
   2535     return 0;
   2536 
   2537   unsigned ScheduledOper = isTop ? 1 : 0;
   2538   unsigned UnscheduledOper = isTop ? 0 : 1;
   2539   // If we have already scheduled the physreg produce/consumer, immediately
   2540   // schedule the copy.
   2541   if (TargetRegisterInfo::isPhysicalRegister(
   2542         MI->getOperand(ScheduledOper).getReg()))
   2543     return 1;
   2544   // If the physreg is at the boundary, defer it. Otherwise schedule it
   2545   // immediately to free the dependent. We can hoist the copy later.
   2546   bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
   2547   if (TargetRegisterInfo::isPhysicalRegister(
   2548         MI->getOperand(UnscheduledOper).getReg()))
   2549     return AtBoundary ? -1 : 1;
   2550   return 0;
   2551 }
   2552 
   2553 /// Apply a set of heursitics to a new candidate. Heuristics are currently
   2554 /// hierarchical. This may be more efficient than a graduated cost model because
   2555 /// we don't need to evaluate all aspects of the model for each node in the
   2556 /// queue. But it's really done to make the heuristics easier to debug and
   2557 /// statistically analyze.
   2558 ///
   2559 /// \param Cand provides the policy and current best candidate.
   2560 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
   2561 /// \param Zone describes the scheduled zone that we are extending.
   2562 /// \param RPTracker describes reg pressure within the scheduled zone.
   2563 /// \param TempTracker is a scratch pressure tracker to reuse in queries.
   2564 void GenericScheduler::tryCandidate(SchedCandidate &Cand,
   2565                                     SchedCandidate &TryCand,
   2566                                     SchedBoundary &Zone,
   2567                                     const RegPressureTracker &RPTracker,
   2568                                     RegPressureTracker &TempTracker) {
   2569 
   2570   if (DAG->isTrackingPressure()) {
   2571     // Always initialize TryCand's RPDelta.
   2572     if (Zone.isTop()) {
   2573       TempTracker.getMaxDownwardPressureDelta(
   2574         TryCand.SU->getInstr(),
   2575         TryCand.RPDelta,
   2576         DAG->getRegionCriticalPSets(),
   2577         DAG->getRegPressure().MaxSetPressure);
   2578     }
   2579     else {
   2580       if (VerifyScheduling) {
   2581         TempTracker.getMaxUpwardPressureDelta(
   2582           TryCand.SU->getInstr(),
   2583           &DAG->getPressureDiff(TryCand.SU),
   2584           TryCand.RPDelta,
   2585           DAG->getRegionCriticalPSets(),
   2586           DAG->getRegPressure().MaxSetPressure);
   2587       }
   2588       else {
   2589         RPTracker.getUpwardPressureDelta(
   2590           TryCand.SU->getInstr(),
   2591           DAG->getPressureDiff(TryCand.SU),
   2592           TryCand.RPDelta,
   2593           DAG->getRegionCriticalPSets(),
   2594           DAG->getRegPressure().MaxSetPressure);
   2595       }
   2596     }
   2597   }
   2598   DEBUG(if (TryCand.RPDelta.Excess.isValid())
   2599           dbgs() << "  SU(" << TryCand.SU->NodeNum << ") "
   2600                  << TRI->getRegPressureSetName(TryCand.RPDelta.Excess.getPSet())
   2601                  << ":" << TryCand.RPDelta.Excess.getUnitInc() << "\n");
   2602 
   2603   // Initialize the candidate if needed.
   2604   if (!Cand.isValid()) {
   2605     TryCand.Reason = NodeOrder;
   2606     return;
   2607   }
   2608 
   2609   if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()),
   2610                  biasPhysRegCopy(Cand.SU, Zone.isTop()),
   2611                  TryCand, Cand, PhysRegCopy))
   2612     return;
   2613 
   2614   // Avoid exceeding the target's limit. If signed PSetID is negative, it is
   2615   // invalid; convert it to INT_MAX to give it lowest priority.
   2616   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
   2617                                                Cand.RPDelta.Excess,
   2618                                                TryCand, Cand, RegExcess))
   2619     return;
   2620 
   2621   // Avoid increasing the max critical pressure in the scheduled region.
   2622   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
   2623                                                Cand.RPDelta.CriticalMax,
   2624                                                TryCand, Cand, RegCritical))
   2625     return;
   2626 
   2627   // For loops that are acyclic path limited, aggressively schedule for latency.
   2628   // This can result in very long dependence chains scheduled in sequence, so
   2629   // once every cycle (when CurrMOps == 0), switch to normal heuristics.
   2630   if (Rem.IsAcyclicLatencyLimited && !Zone.getCurrMOps()
   2631       && tryLatency(TryCand, Cand, Zone))
   2632     return;
   2633 
   2634   // Prioritize instructions that read unbuffered resources by stall cycles.
   2635   if (tryLess(Zone.getLatencyStallCycles(TryCand.SU),
   2636               Zone.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
   2637     return;
   2638 
   2639   // Keep clustered nodes together to encourage downstream peephole
   2640   // optimizations which may reduce resource requirements.
   2641   //
   2642   // This is a best effort to set things up for a post-RA pass. Optimizations
   2643   // like generating loads of multiple registers should ideally be done within
   2644   // the scheduler pass by combining the loads during DAG postprocessing.
   2645   const SUnit *NextClusterSU =
   2646     Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
   2647   if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU,
   2648                  TryCand, Cand, Cluster))
   2649     return;
   2650 
   2651   // Weak edges are for clustering and other constraints.
   2652   if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()),
   2653               getWeakLeft(Cand.SU, Zone.isTop()),
   2654               TryCand, Cand, Weak)) {
   2655     return;
   2656   }
   2657   // Avoid increasing the max pressure of the entire region.
   2658   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
   2659                                                Cand.RPDelta.CurrentMax,
   2660                                                TryCand, Cand, RegMax))
   2661     return;
   2662 
   2663   // Avoid critical resource consumption and balance the schedule.
   2664   TryCand.initResourceDelta(DAG, SchedModel);
   2665   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
   2666               TryCand, Cand, ResourceReduce))
   2667     return;
   2668   if (tryGreater(TryCand.ResDelta.DemandedResources,
   2669                  Cand.ResDelta.DemandedResources,
   2670                  TryCand, Cand, ResourceDemand))
   2671     return;
   2672 
   2673   // Avoid serializing long latency dependence chains.
   2674   // For acyclic path limited loops, latency was already checked above.
   2675   if (Cand.Policy.ReduceLatency && !Rem.IsAcyclicLatencyLimited
   2676       && tryLatency(TryCand, Cand, Zone)) {
   2677     return;
   2678   }
   2679 
   2680   // Prefer immediate defs/users of the last scheduled instruction. This is a
   2681   // local pressure avoidance strategy that also makes the machine code
   2682   // readable.
   2683   if (tryGreater(Zone.isNextSU(TryCand.SU), Zone.isNextSU(Cand.SU),
   2684                  TryCand, Cand, NextDefUse))
   2685     return;
   2686 
   2687   // Fall through to original instruction order.
   2688   if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
   2689       || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
   2690     TryCand.Reason = NodeOrder;
   2691   }
   2692 }
   2693 
   2694 /// Pick the best candidate from the queue.
   2695 ///
   2696 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
   2697 /// DAG building. To adjust for the current scheduling location we need to
   2698 /// maintain the number of vreg uses remaining to be top-scheduled.
   2699 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
   2700                                          const RegPressureTracker &RPTracker,
   2701                                          SchedCandidate &Cand) {
   2702   ReadyQueue &Q = Zone.Available;
   2703 
   2704   DEBUG(Q.dump());
   2705 
   2706   // getMaxPressureDelta temporarily modifies the tracker.
   2707   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
   2708 
   2709   for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
   2710 
   2711     SchedCandidate TryCand(Cand.Policy);
   2712     TryCand.SU = *I;
   2713     tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker);
   2714     if (TryCand.Reason != NoCand) {
   2715       // Initialize resource delta if needed in case future heuristics query it.
   2716       if (TryCand.ResDelta == SchedResourceDelta())
   2717         TryCand.initResourceDelta(DAG, SchedModel);
   2718       Cand.setBest(TryCand);
   2719       DEBUG(traceCandidate(Cand));
   2720     }
   2721   }
   2722 }
   2723 
   2724 /// Pick the best candidate node from either the top or bottom queue.
   2725 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
   2726   // Schedule as far as possible in the direction of no choice. This is most
   2727   // efficient, but also provides the best heuristics for CriticalPSets.
   2728   if (SUnit *SU = Bot.pickOnlyChoice()) {
   2729     IsTopNode = false;
   2730     DEBUG(dbgs() << "Pick Bot NOCAND\n");
   2731     return SU;
   2732   }
   2733   if (SUnit *SU = Top.pickOnlyChoice()) {
   2734     IsTopNode = true;
   2735     DEBUG(dbgs() << "Pick Top NOCAND\n");
   2736     return SU;
   2737   }
   2738   CandPolicy NoPolicy;
   2739   SchedCandidate BotCand(NoPolicy);
   2740   SchedCandidate TopCand(NoPolicy);
   2741   // Set the bottom-up policy based on the state of the current bottom zone and
   2742   // the instructions outside the zone, including the top zone.
   2743   setPolicy(BotCand.Policy, /*IsPostRA=*/false, Bot, &Top);
   2744   // Set the top-down policy based on the state of the current top zone and
   2745   // the instructions outside the zone, including the bottom zone.
   2746   setPolicy(TopCand.Policy, /*IsPostRA=*/false, Top, &Bot);
   2747 
   2748   // Prefer bottom scheduling when heuristics are silent.
   2749   pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
   2750   assert(BotCand.Reason != NoCand && "failed to find the first candidate");
   2751 
   2752   // If either Q has a single candidate that provides the least increase in
   2753   // Excess pressure, we can immediately schedule from that Q.
   2754   //
   2755   // RegionCriticalPSets summarizes the pressure within the scheduled region and
   2756   // affects picking from either Q. If scheduling in one direction must
   2757   // increase pressure for one of the excess PSets, then schedule in that
   2758   // direction first to provide more freedom in the other direction.
   2759   if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess))
   2760       || (BotCand.Reason == RegCritical
   2761           && !BotCand.isRepeat(RegCritical)))
   2762   {
   2763     IsTopNode = false;
   2764     tracePick(BotCand, IsTopNode);
   2765     return BotCand.SU;
   2766   }
   2767   // Check if the top Q has a better candidate.
   2768   pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
   2769   assert(TopCand.Reason != NoCand && "failed to find the first candidate");
   2770 
   2771   // Choose the queue with the most important (lowest enum) reason.
   2772   if (TopCand.Reason < BotCand.Reason) {
   2773     IsTopNode = true;
   2774     tracePick(TopCand, IsTopNode);
   2775     return TopCand.SU;
   2776   }
   2777   // Otherwise prefer the bottom candidate, in node order if all else failed.
   2778   IsTopNode = false;
   2779   tracePick(BotCand, IsTopNode);
   2780   return BotCand.SU;
   2781 }
   2782 
   2783 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
   2784 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
   2785   if (DAG->top() == DAG->bottom()) {
   2786     assert(Top.Available.empty() && Top.Pending.empty() &&
   2787            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
   2788     return nullptr;
   2789   }
   2790   SUnit *SU;
   2791   do {
   2792     if (RegionPolicy.OnlyTopDown) {
   2793       SU = Top.pickOnlyChoice();
   2794       if (!SU) {
   2795         CandPolicy NoPolicy;
   2796         SchedCandidate TopCand(NoPolicy);
   2797         pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
   2798         assert(TopCand.Reason != NoCand && "failed to find a candidate");
   2799         tracePick(TopCand, true);
   2800         SU = TopCand.SU;
   2801       }
   2802       IsTopNode = true;
   2803     }
   2804     else if (RegionPolicy.OnlyBottomUp) {
   2805       SU = Bot.pickOnlyChoice();
   2806       if (!SU) {
   2807         CandPolicy NoPolicy;
   2808         SchedCandidate BotCand(NoPolicy);
   2809         pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
   2810         assert(BotCand.Reason != NoCand && "failed to find a candidate");
   2811         tracePick(BotCand, false);
   2812         SU = BotCand.SU;
   2813       }
   2814       IsTopNode = false;
   2815     }
   2816     else {
   2817       SU = pickNodeBidirectional(IsTopNode);
   2818     }
   2819   } while (SU->isScheduled);
   2820 
   2821   if (SU->isTopReady())
   2822     Top.removeReady(SU);
   2823   if (SU->isBottomReady())
   2824     Bot.removeReady(SU);
   2825 
   2826   DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
   2827   return SU;
   2828 }
   2829 
   2830 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
   2831 
   2832   MachineBasicBlock::iterator InsertPos = SU->getInstr();
   2833   if (!isTop)
   2834     ++InsertPos;
   2835   SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
   2836 
   2837   // Find already scheduled copies with a single physreg dependence and move
   2838   // them just above the scheduled instruction.
   2839   for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end();
   2840        I != E; ++I) {
   2841     if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg()))
   2842       continue;
   2843     SUnit *DepSU = I->getSUnit();
   2844     if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
   2845       continue;
   2846     MachineInstr *Copy = DepSU->getInstr();
   2847     if (!Copy->isCopy())
   2848       continue;
   2849     DEBUG(dbgs() << "  Rescheduling physreg copy ";
   2850           I->getSUnit()->dump(DAG));
   2851     DAG->moveInstruction(Copy, InsertPos);
   2852   }
   2853 }
   2854 
   2855 /// Update the scheduler's state after scheduling a node. This is the same node
   2856 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
   2857 /// update it's state based on the current cycle before MachineSchedStrategy
   2858 /// does.
   2859 ///
   2860 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
   2861 /// them here. See comments in biasPhysRegCopy.
   2862 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
   2863   if (IsTopNode) {
   2864     SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
   2865     Top.bumpNode(SU);
   2866     if (SU->hasPhysRegUses)
   2867       reschedulePhysRegCopies(SU, true);
   2868   }
   2869   else {
   2870     SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
   2871     Bot.bumpNode(SU);
   2872     if (SU->hasPhysRegDefs)
   2873       reschedulePhysRegCopies(SU, false);
   2874   }
   2875 }
   2876 
   2877 /// Create the standard converging machine scheduler. This will be used as the
   2878 /// default scheduler if the target does not set a default.
   2879 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C) {
   2880   ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, make_unique<GenericScheduler>(C));
   2881   // Register DAG post-processors.
   2882   //
   2883   // FIXME: extend the mutation API to allow earlier mutations to instantiate
   2884   // data and pass it to later mutations. Have a single mutation that gathers
   2885   // the interesting nodes in one pass.
   2886   DAG->addMutation(make_unique<CopyConstrain>(DAG->TII, DAG->TRI));
   2887   if (EnableLoadCluster && DAG->TII->enableClusterLoads())
   2888     DAG->addMutation(make_unique<LoadClusterMutation>(DAG->TII, DAG->TRI));
   2889   if (EnableMacroFusion)
   2890     DAG->addMutation(make_unique<MacroFusion>(DAG->TII));
   2891   return DAG;
   2892 }
   2893 
   2894 static MachineSchedRegistry
   2895 GenericSchedRegistry("converge", "Standard converging scheduler.",
   2896                      createGenericSchedLive);
   2897 
   2898 //===----------------------------------------------------------------------===//
   2899 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
   2900 //===----------------------------------------------------------------------===//
   2901 
   2902 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
   2903   DAG = Dag;
   2904   SchedModel = DAG->getSchedModel();
   2905   TRI = DAG->TRI;
   2906 
   2907   Rem.init(DAG, SchedModel);
   2908   Top.init(DAG, SchedModel, &Rem);
   2909   BotRoots.clear();
   2910 
   2911   // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
   2912   // or are disabled, then these HazardRecs will be disabled.
   2913   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
   2914   if (!Top.HazardRec) {
   2915     Top.HazardRec =
   2916         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
   2917             Itin, DAG);
   2918   }
   2919 }
   2920 
   2921 
   2922 void PostGenericScheduler::registerRoots() {
   2923   Rem.CriticalPath = DAG->ExitSU.getDepth();
   2924 
   2925   // Some roots may not feed into ExitSU. Check all of them in case.
   2926   for (SmallVectorImpl<SUnit*>::const_iterator
   2927          I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) {
   2928     if ((*I)->getDepth() > Rem.CriticalPath)
   2929       Rem.CriticalPath = (*I)->getDepth();
   2930   }
   2931   DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
   2932   if (DumpCriticalPathLength) {
   2933     errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
   2934   }
   2935 }
   2936 
   2937 /// Apply a set of heursitics to a new candidate for PostRA scheduling.
   2938 ///
   2939 /// \param Cand provides the policy and current best candidate.
   2940 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
   2941 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
   2942                                         SchedCandidate &TryCand) {
   2943 
   2944   // Initialize the candidate if needed.
   2945   if (!Cand.isValid()) {
   2946     TryCand.Reason = NodeOrder;
   2947     return;
   2948   }
   2949 
   2950   // Prioritize instructions that read unbuffered resources by stall cycles.
   2951   if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
   2952               Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
   2953     return;
   2954 
   2955   // Avoid critical resource consumption and balance the schedule.
   2956   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
   2957               TryCand, Cand, ResourceReduce))
   2958     return;
   2959   if (tryGreater(TryCand.ResDelta.DemandedResources,
   2960                  Cand.ResDelta.DemandedResources,
   2961                  TryCand, Cand, ResourceDemand))
   2962     return;
   2963 
   2964   // Avoid serializing long latency dependence chains.
   2965   if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
   2966     return;
   2967   }
   2968 
   2969   // Fall through to original instruction order.
   2970   if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
   2971     TryCand.Reason = NodeOrder;
   2972 }
   2973 
   2974 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
   2975   ReadyQueue &Q = Top.Available;
   2976 
   2977   DEBUG(Q.dump());
   2978 
   2979   for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
   2980     SchedCandidate TryCand(Cand.Policy);
   2981     TryCand.SU = *I;
   2982     TryCand.initResourceDelta(DAG, SchedModel);
   2983     tryCandidate(Cand, TryCand);
   2984     if (TryCand.Reason != NoCand) {
   2985       Cand.setBest(TryCand);
   2986       DEBUG(traceCandidate(Cand));
   2987     }
   2988   }
   2989 }
   2990 
   2991 /// Pick the next node to schedule.
   2992 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
   2993   if (DAG->top() == DAG->bottom()) {
   2994     assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
   2995     return nullptr;
   2996   }
   2997   SUnit *SU;
   2998   do {
   2999     SU = Top.pickOnlyChoice();
   3000     if (!SU) {
   3001       CandPolicy NoPolicy;
   3002       SchedCandidate TopCand(NoPolicy);
   3003       // Set the top-down policy based on the state of the current top zone and
   3004       // the instructions outside the zone, including the bottom zone.
   3005       setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
   3006       pickNodeFromQueue(TopCand);
   3007       assert(TopCand.Reason != NoCand && "failed to find a candidate");
   3008       tracePick(TopCand, true);
   3009       SU = TopCand.SU;
   3010     }
   3011   } while (SU->isScheduled);
   3012 
   3013   IsTopNode = true;
   3014   Top.removeReady(SU);
   3015 
   3016   DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
   3017   return SU;
   3018 }
   3019 
   3020 /// Called after ScheduleDAGMI has scheduled an instruction and updated
   3021 /// scheduled/remaining flags in the DAG nodes.
   3022 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
   3023   SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
   3024   Top.bumpNode(SU);
   3025 }
   3026 
   3027 /// Create a generic scheduler with no vreg liveness or DAG mutation passes.
   3028 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C) {
   3029   return new ScheduleDAGMI(C, make_unique<PostGenericScheduler>(C), /*IsPostRA=*/true);
   3030 }
   3031 
   3032 //===----------------------------------------------------------------------===//
   3033 // ILP Scheduler. Currently for experimental analysis of heuristics.
   3034 //===----------------------------------------------------------------------===//
   3035 
   3036 namespace {
   3037 /// \brief Order nodes by the ILP metric.
   3038 struct ILPOrder {
   3039   const SchedDFSResult *DFSResult;
   3040   const BitVector *ScheduledTrees;
   3041   bool MaximizeILP;
   3042 
   3043   ILPOrder(bool MaxILP)
   3044     : DFSResult(nullptr), ScheduledTrees(nullptr), MaximizeILP(MaxILP) {}
   3045 
   3046   /// \brief Apply a less-than relation on node priority.
   3047   ///
   3048   /// (Return true if A comes after B in the Q.)
   3049   bool operator()(const SUnit *A, const SUnit *B) const {
   3050     unsigned SchedTreeA = DFSResult->getSubtreeID(A);
   3051     unsigned SchedTreeB = DFSResult->getSubtreeID(B);
   3052     if (SchedTreeA != SchedTreeB) {
   3053       // Unscheduled trees have lower priority.
   3054       if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
   3055         return ScheduledTrees->test(SchedTreeB);
   3056 
   3057       // Trees with shallower connections have have lower priority.
   3058       if (DFSResult->getSubtreeLevel(SchedTreeA)
   3059           != DFSResult->getSubtreeLevel(SchedTreeB)) {
   3060         return DFSResult->getSubtreeLevel(SchedTreeA)
   3061           < DFSResult->getSubtreeLevel(SchedTreeB);
   3062       }
   3063     }
   3064     if (MaximizeILP)
   3065       return DFSResult->getILP(A) < DFSResult->getILP(B);
   3066     else
   3067       return DFSResult->getILP(A) > DFSResult->getILP(B);
   3068   }
   3069 };
   3070 
   3071 /// \brief Schedule based on the ILP metric.
   3072 class ILPScheduler : public MachineSchedStrategy {
   3073   ScheduleDAGMILive *DAG;
   3074   ILPOrder Cmp;
   3075 
   3076   std::vector<SUnit*> ReadyQ;
   3077 public:
   3078   ILPScheduler(bool MaximizeILP): DAG(nullptr), Cmp(MaximizeILP) {}
   3079 
   3080   void initialize(ScheduleDAGMI *dag) override {
   3081     assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
   3082     DAG = static_cast<ScheduleDAGMILive*>(dag);
   3083     DAG->computeDFSResult();
   3084     Cmp.DFSResult = DAG->getDFSResult();
   3085     Cmp.ScheduledTrees = &DAG->getScheduledTrees();
   3086     ReadyQ.clear();
   3087   }
   3088 
   3089   void registerRoots() override {
   3090     // Restore the heap in ReadyQ with the updated DFS results.
   3091     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
   3092   }
   3093 
   3094   /// Implement MachineSchedStrategy interface.
   3095   /// -----------------------------------------
   3096 
   3097   /// Callback to select the highest priority node from the ready Q.
   3098   SUnit *pickNode(bool &IsTopNode) override {
   3099     if (ReadyQ.empty()) return nullptr;
   3100     std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
   3101     SUnit *SU = ReadyQ.back();
   3102     ReadyQ.pop_back();
   3103     IsTopNode = false;
   3104     DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") "
   3105           << " ILP: " << DAG->getDFSResult()->getILP(SU)
   3106           << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @"
   3107           << DAG->getDFSResult()->getSubtreeLevel(
   3108             DAG->getDFSResult()->getSubtreeID(SU)) << '\n'
   3109           << "Scheduling " << *SU->getInstr());
   3110     return SU;
   3111   }
   3112 
   3113   /// \brief Scheduler callback to notify that a new subtree is scheduled.
   3114   void scheduleTree(unsigned SubtreeID) override {
   3115     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
   3116   }
   3117 
   3118   /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
   3119   /// DFSResults, and resort the priority Q.
   3120   void schedNode(SUnit *SU, bool IsTopNode) override {
   3121     assert(!IsTopNode && "SchedDFSResult needs bottom-up");
   3122   }
   3123 
   3124   void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
   3125 
   3126   void releaseBottomNode(SUnit *SU) override {
   3127     ReadyQ.push_back(SU);
   3128     std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
   3129   }
   3130 };
   3131 } // namespace
   3132 
   3133 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
   3134   return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(true));
   3135 }
   3136 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
   3137   return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(false));
   3138 }
   3139 static MachineSchedRegistry ILPMaxRegistry(
   3140   "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
   3141 static MachineSchedRegistry ILPMinRegistry(
   3142   "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
   3143 
   3144 //===----------------------------------------------------------------------===//
   3145 // Machine Instruction Shuffler for Correctness Testing
   3146 //===----------------------------------------------------------------------===//
   3147 
   3148 #ifndef NDEBUG
   3149 namespace {
   3150 /// Apply a less-than relation on the node order, which corresponds to the
   3151 /// instruction order prior to scheduling. IsReverse implements greater-than.
   3152 template<bool IsReverse>
   3153 struct SUnitOrder {
   3154   bool operator()(SUnit *A, SUnit *B) const {
   3155     if (IsReverse)
   3156       return A->NodeNum > B->NodeNum;
   3157     else
   3158       return A->NodeNum < B->NodeNum;
   3159   }
   3160 };
   3161 
   3162 /// Reorder instructions as much as possible.
   3163 class InstructionShuffler : public MachineSchedStrategy {
   3164   bool IsAlternating;
   3165   bool IsTopDown;
   3166 
   3167   // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
   3168   // gives nodes with a higher number higher priority causing the latest
   3169   // instructions to be scheduled first.
   3170   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> >
   3171     TopQ;
   3172   // When scheduling bottom-up, use greater-than as the queue priority.
   3173   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> >
   3174     BottomQ;
   3175 public:
   3176   InstructionShuffler(bool alternate, bool topdown)
   3177     : IsAlternating(alternate), IsTopDown(topdown) {}
   3178 
   3179   void initialize(ScheduleDAGMI*) override {
   3180     TopQ.clear();
   3181     BottomQ.clear();
   3182   }
   3183 
   3184   /// Implement MachineSchedStrategy interface.
   3185   /// -----------------------------------------
   3186 
   3187   SUnit *pickNode(bool &IsTopNode) override {
   3188     SUnit *SU;
   3189     if (IsTopDown) {
   3190       do {
   3191         if (TopQ.empty()) return nullptr;
   3192         SU = TopQ.top();
   3193         TopQ.pop();
   3194       } while (SU->isScheduled);
   3195       IsTopNode = true;
   3196     }
   3197     else {
   3198       do {
   3199         if (BottomQ.empty()) return nullptr;
   3200         SU = BottomQ.top();
   3201         BottomQ.pop();
   3202       } while (SU->isScheduled);
   3203       IsTopNode = false;
   3204     }
   3205     if (IsAlternating)
   3206       IsTopDown = !IsTopDown;
   3207     return SU;
   3208   }
   3209 
   3210   void schedNode(SUnit *SU, bool IsTopNode) override {}
   3211 
   3212   void releaseTopNode(SUnit *SU) override {
   3213     TopQ.push(SU);
   3214   }
   3215   void releaseBottomNode(SUnit *SU) override {
   3216     BottomQ.push(SU);
   3217   }
   3218 };
   3219 } // namespace
   3220 
   3221 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
   3222   bool Alternate = !ForceTopDown && !ForceBottomUp;
   3223   bool TopDown = !ForceBottomUp;
   3224   assert((TopDown || !ForceTopDown) &&
   3225          "-misched-topdown incompatible with -misched-bottomup");
   3226   return new ScheduleDAGMILive(C, make_unique<InstructionShuffler>(Alternate, TopDown));
   3227 }
   3228 static MachineSchedRegistry ShufflerRegistry(
   3229   "shuffle", "Shuffle machine instructions alternating directions",
   3230   createInstructionShuffler);
   3231 #endif // !NDEBUG
   3232 
   3233 //===----------------------------------------------------------------------===//
   3234 // GraphWriter support for ScheduleDAGMILive.
   3235 //===----------------------------------------------------------------------===//
   3236 
   3237 #ifndef NDEBUG
   3238 namespace llvm {
   3239 
   3240 template<> struct GraphTraits<
   3241   ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
   3242 
   3243 template<>
   3244 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
   3245 
   3246   DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
   3247 
   3248   static std::string getGraphName(const ScheduleDAG *G) {
   3249     return G->MF.getName();
   3250   }
   3251 
   3252   static bool renderGraphFromBottomUp() {
   3253     return true;
   3254   }
   3255 
   3256   static bool isNodeHidden(const SUnit *Node) {
   3257     return (Node->Preds.size() > 10 || Node->Succs.size() > 10);
   3258   }
   3259 
   3260   static bool hasNodeAddressLabel(const SUnit *Node,
   3261                                   const ScheduleDAG *Graph) {
   3262     return false;
   3263   }
   3264 
   3265   /// If you want to override the dot attributes printed for a particular
   3266   /// edge, override this method.
   3267   static std::string getEdgeAttributes(const SUnit *Node,
   3268                                        SUnitIterator EI,
   3269                                        const ScheduleDAG *Graph) {
   3270     if (EI.isArtificialDep())
   3271       return "color=cyan,style=dashed";
   3272     if (EI.isCtrlDep())
   3273       return "color=blue,style=dashed";
   3274     return "";
   3275   }
   3276 
   3277   static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
   3278     std::string Str;
   3279     raw_string_ostream SS(Str);
   3280     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
   3281     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
   3282       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
   3283     SS << "SU:" << SU->NodeNum;
   3284     if (DFS)
   3285       SS << " I:" << DFS->getNumInstrs(SU);
   3286     return SS.str();
   3287   }
   3288   static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
   3289     return G->getGraphNodeLabel(SU);
   3290   }
   3291 
   3292   static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
   3293     std::string Str("shape=Mrecord");
   3294     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
   3295     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
   3296       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
   3297     if (DFS) {
   3298       Str += ",style=filled,fillcolor=\"#";
   3299       Str += DOT::getColorString(DFS->getSubtreeID(N));
   3300       Str += '"';
   3301     }
   3302     return Str;
   3303   }
   3304 };
   3305 } // namespace llvm
   3306 #endif // NDEBUG
   3307 
   3308 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
   3309 /// rendered using 'dot'.
   3310 ///
   3311 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
   3312 #ifndef NDEBUG
   3313   ViewGraph(this, Name, false, Title);
   3314 #else
   3315   errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
   3316          << "systems with Graphviz or gv!\n";
   3317 #endif  // NDEBUG
   3318 }
   3319 
   3320 /// Out-of-line implementation with no arguments is handy for gdb.
   3321 void ScheduleDAGMI::viewGraph() {
   3322   viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
   3323 }
   3324