Home | History | Annotate | Download | only in Scalar
      1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This transformation analyzes and transforms the induction variables (and
     11 // computations derived from them) into forms suitable for efficient execution
     12 // on the target.
     13 //
     14 // This pass performs a strength reduction on array references inside loops that
     15 // have as one or more of their components the loop induction variable, it
     16 // rewrites expressions to take advantage of scaled-index addressing modes
     17 // available on the target, and it performs a variety of other optimizations
     18 // related to loop induction variables.
     19 //
     20 // Terminology note: this code has a lot of handling for "post-increment" or
     21 // "post-inc" users. This is not talking about post-increment addressing modes;
     22 // it is instead talking about code like this:
     23 //
     24 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
     25 //   ...
     26 //   %i.next = add %i, 1
     27 //   %c = icmp eq %i.next, %n
     28 //
     29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
     30 // it's useful to think about these as the same register, with some uses using
     31 // the value of the register before the add and some using it after. In this
     32 // example, the icmp is a post-increment user, since it uses %i.next, which is
     33 // the value of the induction variable after the increment. The other common
     34 // case of post-increment users is users outside the loop.
     35 //
     36 // TODO: More sophistication in the way Formulae are generated and filtered.
     37 //
     38 // TODO: Handle multiple loops at a time.
     39 //
     40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
     41 //       of a GlobalValue?
     42 //
     43 // TODO: When truncation is free, truncate ICmp users' operands to make it a
     44 //       smaller encoding (on x86 at least).
     45 //
     46 // TODO: When a negated register is used by an add (such as in a list of
     47 //       multiple base registers, or as the increment expression in an addrec),
     48 //       we may not actually need both reg and (-1 * reg) in registers; the
     49 //       negation can be implemented by using a sub instead of an add. The
     50 //       lack of support for taking this into consideration when making
     51 //       register pressure decisions is partly worked around by the "Special"
     52 //       use kind.
     53 //
     54 //===----------------------------------------------------------------------===//
     55 
     56 #include "llvm/Transforms/Scalar.h"
     57 #include "llvm/ADT/DenseSet.h"
     58 #include "llvm/ADT/Hashing.h"
     59 #include "llvm/ADT/STLExtras.h"
     60 #include "llvm/ADT/SetVector.h"
     61 #include "llvm/ADT/SmallBitVector.h"
     62 #include "llvm/Analysis/IVUsers.h"
     63 #include "llvm/Analysis/LoopPass.h"
     64 #include "llvm/Analysis/ScalarEvolutionExpander.h"
     65 #include "llvm/Analysis/TargetTransformInfo.h"
     66 #include "llvm/IR/Constants.h"
     67 #include "llvm/IR/DerivedTypes.h"
     68 #include "llvm/IR/Dominators.h"
     69 #include "llvm/IR/Instructions.h"
     70 #include "llvm/IR/IntrinsicInst.h"
     71 #include "llvm/IR/Module.h"
     72 #include "llvm/IR/ValueHandle.h"
     73 #include "llvm/Support/CommandLine.h"
     74 #include "llvm/Support/Debug.h"
     75 #include "llvm/Support/raw_ostream.h"
     76 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     77 #include "llvm/Transforms/Utils/Local.h"
     78 #include <algorithm>
     79 using namespace llvm;
     80 
     81 #define DEBUG_TYPE "loop-reduce"
     82 
     83 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for
     84 /// bail out. This threshold is far beyond the number of users that LSR can
     85 /// conceivably solve, so it should not affect generated code, but catches the
     86 /// worst cases before LSR burns too much compile time and stack space.
     87 static const unsigned MaxIVUsers = 200;
     88 
     89 // Temporary flag to cleanup congruent phis after LSR phi expansion.
     90 // It's currently disabled until we can determine whether it's truly useful or
     91 // not. The flag should be removed after the v3.0 release.
     92 // This is now needed for ivchains.
     93 static cl::opt<bool> EnablePhiElim(
     94   "enable-lsr-phielim", cl::Hidden, cl::init(true),
     95   cl::desc("Enable LSR phi elimination"));
     96 
     97 #ifndef NDEBUG
     98 // Stress test IV chain generation.
     99 static cl::opt<bool> StressIVChain(
    100   "stress-ivchain", cl::Hidden, cl::init(false),
    101   cl::desc("Stress test LSR IV chains"));
    102 #else
    103 static bool StressIVChain = false;
    104 #endif
    105 
    106 namespace {
    107 
    108 /// RegSortData - This class holds data which is used to order reuse candidates.
    109 class RegSortData {
    110 public:
    111   /// UsedByIndices - This represents the set of LSRUse indices which reference
    112   /// a particular register.
    113   SmallBitVector UsedByIndices;
    114 
    115   void print(raw_ostream &OS) const;
    116   void dump() const;
    117 };
    118 
    119 }
    120 
    121 void RegSortData::print(raw_ostream &OS) const {
    122   OS << "[NumUses=" << UsedByIndices.count() << ']';
    123 }
    124 
    125 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    126 void RegSortData::dump() const {
    127   print(errs()); errs() << '\n';
    128 }
    129 #endif
    130 
    131 namespace {
    132 
    133 /// RegUseTracker - Map register candidates to information about how they are
    134 /// used.
    135 class RegUseTracker {
    136   typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
    137 
    138   RegUsesTy RegUsesMap;
    139   SmallVector<const SCEV *, 16> RegSequence;
    140 
    141 public:
    142   void CountRegister(const SCEV *Reg, size_t LUIdx);
    143   void DropRegister(const SCEV *Reg, size_t LUIdx);
    144   void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx);
    145 
    146   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
    147 
    148   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
    149 
    150   void clear();
    151 
    152   typedef SmallVectorImpl<const SCEV *>::iterator iterator;
    153   typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
    154   iterator begin() { return RegSequence.begin(); }
    155   iterator end()   { return RegSequence.end(); }
    156   const_iterator begin() const { return RegSequence.begin(); }
    157   const_iterator end() const   { return RegSequence.end(); }
    158 };
    159 
    160 }
    161 
    162 void
    163 RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
    164   std::pair<RegUsesTy::iterator, bool> Pair =
    165     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
    166   RegSortData &RSD = Pair.first->second;
    167   if (Pair.second)
    168     RegSequence.push_back(Reg);
    169   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
    170   RSD.UsedByIndices.set(LUIdx);
    171 }
    172 
    173 void
    174 RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) {
    175   RegUsesTy::iterator It = RegUsesMap.find(Reg);
    176   assert(It != RegUsesMap.end());
    177   RegSortData &RSD = It->second;
    178   assert(RSD.UsedByIndices.size() > LUIdx);
    179   RSD.UsedByIndices.reset(LUIdx);
    180 }
    181 
    182 void
    183 RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
    184   assert(LUIdx <= LastLUIdx);
    185 
    186   // Update RegUses. The data structure is not optimized for this purpose;
    187   // we must iterate through it and update each of the bit vectors.
    188   for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end();
    189        I != E; ++I) {
    190     SmallBitVector &UsedByIndices = I->second.UsedByIndices;
    191     if (LUIdx < UsedByIndices.size())
    192       UsedByIndices[LUIdx] =
    193         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0;
    194     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
    195   }
    196 }
    197 
    198 bool
    199 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
    200   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
    201   if (I == RegUsesMap.end())
    202     return false;
    203   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
    204   int i = UsedByIndices.find_first();
    205   if (i == -1) return false;
    206   if ((size_t)i != LUIdx) return true;
    207   return UsedByIndices.find_next(i) != -1;
    208 }
    209 
    210 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
    211   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
    212   assert(I != RegUsesMap.end() && "Unknown register!");
    213   return I->second.UsedByIndices;
    214 }
    215 
    216 void RegUseTracker::clear() {
    217   RegUsesMap.clear();
    218   RegSequence.clear();
    219 }
    220 
    221 namespace {
    222 
    223 /// Formula - This class holds information that describes a formula for
    224 /// computing satisfying a use. It may include broken-out immediates and scaled
    225 /// registers.
    226 struct Formula {
    227   /// Global base address used for complex addressing.
    228   GlobalValue *BaseGV;
    229 
    230   /// Base offset for complex addressing.
    231   int64_t BaseOffset;
    232 
    233   /// Whether any complex addressing has a base register.
    234   bool HasBaseReg;
    235 
    236   /// The scale of any complex addressing.
    237   int64_t Scale;
    238 
    239   /// BaseRegs - The list of "base" registers for this use. When this is
    240   /// non-empty. The canonical representation of a formula is
    241   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
    242   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
    243   /// #1 enforces that the scaled register is always used when at least two
    244   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
    245   /// #2 enforces that 1 * reg is reg.
    246   /// This invariant can be temporarly broken while building a formula.
    247   /// However, every formula inserted into the LSRInstance must be in canonical
    248   /// form.
    249   SmallVector<const SCEV *, 4> BaseRegs;
    250 
    251   /// ScaledReg - The 'scaled' register for this use. This should be non-null
    252   /// when Scale is not zero.
    253   const SCEV *ScaledReg;
    254 
    255   /// UnfoldedOffset - An additional constant offset which added near the
    256   /// use. This requires a temporary register, but the offset itself can
    257   /// live in an add immediate field rather than a register.
    258   int64_t UnfoldedOffset;
    259 
    260   Formula()
    261       : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0),
    262         ScaledReg(nullptr), UnfoldedOffset(0) {}
    263 
    264   void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
    265 
    266   bool isCanonical() const;
    267 
    268   void Canonicalize();
    269 
    270   bool Unscale();
    271 
    272   size_t getNumRegs() const;
    273   Type *getType() const;
    274 
    275   void DeleteBaseReg(const SCEV *&S);
    276 
    277   bool referencesReg(const SCEV *S) const;
    278   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
    279                                   const RegUseTracker &RegUses) const;
    280 
    281   void print(raw_ostream &OS) const;
    282   void dump() const;
    283 };
    284 
    285 }
    286 
    287 /// DoInitialMatch - Recursion helper for InitialMatch.
    288 static void DoInitialMatch(const SCEV *S, Loop *L,
    289                            SmallVectorImpl<const SCEV *> &Good,
    290                            SmallVectorImpl<const SCEV *> &Bad,
    291                            ScalarEvolution &SE) {
    292   // Collect expressions which properly dominate the loop header.
    293   if (SE.properlyDominates(S, L->getHeader())) {
    294     Good.push_back(S);
    295     return;
    296   }
    297 
    298   // Look at add operands.
    299   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
    300     for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
    301          I != E; ++I)
    302       DoInitialMatch(*I, L, Good, Bad, SE);
    303     return;
    304   }
    305 
    306   // Look at addrec operands.
    307   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
    308     if (!AR->getStart()->isZero()) {
    309       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
    310       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
    311                                       AR->getStepRecurrence(SE),
    312                                       // FIXME: AR->getNoWrapFlags()
    313                                       AR->getLoop(), SCEV::FlagAnyWrap),
    314                      L, Good, Bad, SE);
    315       return;
    316     }
    317 
    318   // Handle a multiplication by -1 (negation) if it didn't fold.
    319   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
    320     if (Mul->getOperand(0)->isAllOnesValue()) {
    321       SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
    322       const SCEV *NewMul = SE.getMulExpr(Ops);
    323 
    324       SmallVector<const SCEV *, 4> MyGood;
    325       SmallVector<const SCEV *, 4> MyBad;
    326       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
    327       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
    328         SE.getEffectiveSCEVType(NewMul->getType())));
    329       for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(),
    330            E = MyGood.end(); I != E; ++I)
    331         Good.push_back(SE.getMulExpr(NegOne, *I));
    332       for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(),
    333            E = MyBad.end(); I != E; ++I)
    334         Bad.push_back(SE.getMulExpr(NegOne, *I));
    335       return;
    336     }
    337 
    338   // Ok, we can't do anything interesting. Just stuff the whole thing into a
    339   // register and hope for the best.
    340   Bad.push_back(S);
    341 }
    342 
    343 /// InitialMatch - Incorporate loop-variant parts of S into this Formula,
    344 /// attempting to keep all loop-invariant and loop-computable values in a
    345 /// single base register.
    346 void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
    347   SmallVector<const SCEV *, 4> Good;
    348   SmallVector<const SCEV *, 4> Bad;
    349   DoInitialMatch(S, L, Good, Bad, SE);
    350   if (!Good.empty()) {
    351     const SCEV *Sum = SE.getAddExpr(Good);
    352     if (!Sum->isZero())
    353       BaseRegs.push_back(Sum);
    354     HasBaseReg = true;
    355   }
    356   if (!Bad.empty()) {
    357     const SCEV *Sum = SE.getAddExpr(Bad);
    358     if (!Sum->isZero())
    359       BaseRegs.push_back(Sum);
    360     HasBaseReg = true;
    361   }
    362   Canonicalize();
    363 }
    364 
    365 /// \brief Check whether or not this formula statisfies the canonical
    366 /// representation.
    367 /// \see Formula::BaseRegs.
    368 bool Formula::isCanonical() const {
    369   if (ScaledReg)
    370     return Scale != 1 || !BaseRegs.empty();
    371   return BaseRegs.size() <= 1;
    372 }
    373 
    374 /// \brief Helper method to morph a formula into its canonical representation.
    375 /// \see Formula::BaseRegs.
    376 /// Every formula having more than one base register, must use the ScaledReg
    377 /// field. Otherwise, we would have to do special cases everywhere in LSR
    378 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
    379 /// On the other hand, 1*reg should be canonicalized into reg.
    380 void Formula::Canonicalize() {
    381   if (isCanonical())
    382     return;
    383   // So far we did not need this case. This is easy to implement but it is
    384   // useless to maintain dead code. Beside it could hurt compile time.
    385   assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
    386   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
    387   ScaledReg = BaseRegs.back();
    388   BaseRegs.pop_back();
    389   Scale = 1;
    390   size_t BaseRegsSize = BaseRegs.size();
    391   size_t Try = 0;
    392   // If ScaledReg is an invariant, try to find a variant expression.
    393   while (Try < BaseRegsSize && !isa<SCEVAddRecExpr>(ScaledReg))
    394     std::swap(ScaledReg, BaseRegs[Try++]);
    395 }
    396 
    397 /// \brief Get rid of the scale in the formula.
    398 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
    399 /// \return true if it was possible to get rid of the scale, false otherwise.
    400 /// \note After this operation the formula may not be in the canonical form.
    401 bool Formula::Unscale() {
    402   if (Scale != 1)
    403     return false;
    404   Scale = 0;
    405   BaseRegs.push_back(ScaledReg);
    406   ScaledReg = nullptr;
    407   return true;
    408 }
    409 
    410 /// getNumRegs - Return the total number of register operands used by this
    411 /// formula. This does not include register uses implied by non-constant
    412 /// addrec strides.
    413 size_t Formula::getNumRegs() const {
    414   return !!ScaledReg + BaseRegs.size();
    415 }
    416 
    417 /// getType - Return the type of this formula, if it has one, or null
    418 /// otherwise. This type is meaningless except for the bit size.
    419 Type *Formula::getType() const {
    420   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
    421          ScaledReg ? ScaledReg->getType() :
    422          BaseGV ? BaseGV->getType() :
    423          nullptr;
    424 }
    425 
    426 /// DeleteBaseReg - Delete the given base reg from the BaseRegs list.
    427 void Formula::DeleteBaseReg(const SCEV *&S) {
    428   if (&S != &BaseRegs.back())
    429     std::swap(S, BaseRegs.back());
    430   BaseRegs.pop_back();
    431 }
    432 
    433 /// referencesReg - Test if this formula references the given register.
    434 bool Formula::referencesReg(const SCEV *S) const {
    435   return S == ScaledReg ||
    436          std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
    437 }
    438 
    439 /// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
    440 /// which are used by uses other than the use with the given index.
    441 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
    442                                          const RegUseTracker &RegUses) const {
    443   if (ScaledReg)
    444     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
    445       return true;
    446   for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
    447        E = BaseRegs.end(); I != E; ++I)
    448     if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx))
    449       return true;
    450   return false;
    451 }
    452 
    453 void Formula::print(raw_ostream &OS) const {
    454   bool First = true;
    455   if (BaseGV) {
    456     if (!First) OS << " + "; else First = false;
    457     BaseGV->printAsOperand(OS, /*PrintType=*/false);
    458   }
    459   if (BaseOffset != 0) {
    460     if (!First) OS << " + "; else First = false;
    461     OS << BaseOffset;
    462   }
    463   for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
    464        E = BaseRegs.end(); I != E; ++I) {
    465     if (!First) OS << " + "; else First = false;
    466     OS << "reg(" << **I << ')';
    467   }
    468   if (HasBaseReg && BaseRegs.empty()) {
    469     if (!First) OS << " + "; else First = false;
    470     OS << "**error: HasBaseReg**";
    471   } else if (!HasBaseReg && !BaseRegs.empty()) {
    472     if (!First) OS << " + "; else First = false;
    473     OS << "**error: !HasBaseReg**";
    474   }
    475   if (Scale != 0) {
    476     if (!First) OS << " + "; else First = false;
    477     OS << Scale << "*reg(";
    478     if (ScaledReg)
    479       OS << *ScaledReg;
    480     else
    481       OS << "<unknown>";
    482     OS << ')';
    483   }
    484   if (UnfoldedOffset != 0) {
    485     if (!First) OS << " + ";
    486     OS << "imm(" << UnfoldedOffset << ')';
    487   }
    488 }
    489 
    490 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    491 void Formula::dump() const {
    492   print(errs()); errs() << '\n';
    493 }
    494 #endif
    495 
    496 /// isAddRecSExtable - Return true if the given addrec can be sign-extended
    497 /// without changing its value.
    498 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
    499   Type *WideTy =
    500     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
    501   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
    502 }
    503 
    504 /// isAddSExtable - Return true if the given add can be sign-extended
    505 /// without changing its value.
    506 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
    507   Type *WideTy =
    508     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
    509   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
    510 }
    511 
    512 /// isMulSExtable - Return true if the given mul can be sign-extended
    513 /// without changing its value.
    514 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
    515   Type *WideTy =
    516     IntegerType::get(SE.getContext(),
    517                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
    518   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
    519 }
    520 
    521 /// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
    522 /// and if the remainder is known to be zero,  or null otherwise. If
    523 /// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
    524 /// to Y, ignoring that the multiplication may overflow, which is useful when
    525 /// the result will be used in a context where the most significant bits are
    526 /// ignored.
    527 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
    528                                 ScalarEvolution &SE,
    529                                 bool IgnoreSignificantBits = false) {
    530   // Handle the trivial case, which works for any SCEV type.
    531   if (LHS == RHS)
    532     return SE.getConstant(LHS->getType(), 1);
    533 
    534   // Handle a few RHS special cases.
    535   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
    536   if (RC) {
    537     const APInt &RA = RC->getValue()->getValue();
    538     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
    539     // some folding.
    540     if (RA.isAllOnesValue())
    541       return SE.getMulExpr(LHS, RC);
    542     // Handle x /s 1 as x.
    543     if (RA == 1)
    544       return LHS;
    545   }
    546 
    547   // Check for a division of a constant by a constant.
    548   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
    549     if (!RC)
    550       return nullptr;
    551     const APInt &LA = C->getValue()->getValue();
    552     const APInt &RA = RC->getValue()->getValue();
    553     if (LA.srem(RA) != 0)
    554       return nullptr;
    555     return SE.getConstant(LA.sdiv(RA));
    556   }
    557 
    558   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
    559   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
    560     if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
    561       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
    562                                       IgnoreSignificantBits);
    563       if (!Step) return nullptr;
    564       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
    565                                        IgnoreSignificantBits);
    566       if (!Start) return nullptr;
    567       // FlagNW is independent of the start value, step direction, and is
    568       // preserved with smaller magnitude steps.
    569       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
    570       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
    571     }
    572     return nullptr;
    573   }
    574 
    575   // Distribute the sdiv over add operands, if the add doesn't overflow.
    576   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
    577     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
    578       SmallVector<const SCEV *, 8> Ops;
    579       for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
    580            I != E; ++I) {
    581         const SCEV *Op = getExactSDiv(*I, RHS, SE,
    582                                       IgnoreSignificantBits);
    583         if (!Op) return nullptr;
    584         Ops.push_back(Op);
    585       }
    586       return SE.getAddExpr(Ops);
    587     }
    588     return nullptr;
    589   }
    590 
    591   // Check for a multiply operand that we can pull RHS out of.
    592   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
    593     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
    594       SmallVector<const SCEV *, 4> Ops;
    595       bool Found = false;
    596       for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end();
    597            I != E; ++I) {
    598         const SCEV *S = *I;
    599         if (!Found)
    600           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
    601                                            IgnoreSignificantBits)) {
    602             S = Q;
    603             Found = true;
    604           }
    605         Ops.push_back(S);
    606       }
    607       return Found ? SE.getMulExpr(Ops) : nullptr;
    608     }
    609     return nullptr;
    610   }
    611 
    612   // Otherwise we don't know.
    613   return nullptr;
    614 }
    615 
    616 /// ExtractImmediate - If S involves the addition of a constant integer value,
    617 /// return that integer value, and mutate S to point to a new SCEV with that
    618 /// value excluded.
    619 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
    620   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
    621     if (C->getValue()->getValue().getMinSignedBits() <= 64) {
    622       S = SE.getConstant(C->getType(), 0);
    623       return C->getValue()->getSExtValue();
    624     }
    625   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
    626     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
    627     int64_t Result = ExtractImmediate(NewOps.front(), SE);
    628     if (Result != 0)
    629       S = SE.getAddExpr(NewOps);
    630     return Result;
    631   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
    632     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
    633     int64_t Result = ExtractImmediate(NewOps.front(), SE);
    634     if (Result != 0)
    635       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
    636                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
    637                            SCEV::FlagAnyWrap);
    638     return Result;
    639   }
    640   return 0;
    641 }
    642 
    643 /// ExtractSymbol - If S involves the addition of a GlobalValue address,
    644 /// return that symbol, and mutate S to point to a new SCEV with that
    645 /// value excluded.
    646 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
    647   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
    648     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
    649       S = SE.getConstant(GV->getType(), 0);
    650       return GV;
    651     }
    652   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
    653     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
    654     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
    655     if (Result)
    656       S = SE.getAddExpr(NewOps);
    657     return Result;
    658   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
    659     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
    660     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
    661     if (Result)
    662       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
    663                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
    664                            SCEV::FlagAnyWrap);
    665     return Result;
    666   }
    667   return nullptr;
    668 }
    669 
    670 /// isAddressUse - Returns true if the specified instruction is using the
    671 /// specified value as an address.
    672 static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
    673   bool isAddress = isa<LoadInst>(Inst);
    674   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
    675     if (SI->getOperand(1) == OperandVal)
    676       isAddress = true;
    677   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
    678     // Addressing modes can also be folded into prefetches and a variety
    679     // of intrinsics.
    680     switch (II->getIntrinsicID()) {
    681       default: break;
    682       case Intrinsic::prefetch:
    683       case Intrinsic::x86_sse_storeu_ps:
    684       case Intrinsic::x86_sse2_storeu_pd:
    685       case Intrinsic::x86_sse2_storeu_dq:
    686       case Intrinsic::x86_sse2_storel_dq:
    687         if (II->getArgOperand(0) == OperandVal)
    688           isAddress = true;
    689         break;
    690     }
    691   }
    692   return isAddress;
    693 }
    694 
    695 /// getAccessType - Return the type of the memory being accessed.
    696 static Type *getAccessType(const Instruction *Inst) {
    697   Type *AccessTy = Inst->getType();
    698   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
    699     AccessTy = SI->getOperand(0)->getType();
    700   else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
    701     // Addressing modes can also be folded into prefetches and a variety
    702     // of intrinsics.
    703     switch (II->getIntrinsicID()) {
    704     default: break;
    705     case Intrinsic::x86_sse_storeu_ps:
    706     case Intrinsic::x86_sse2_storeu_pd:
    707     case Intrinsic::x86_sse2_storeu_dq:
    708     case Intrinsic::x86_sse2_storel_dq:
    709       AccessTy = II->getArgOperand(0)->getType();
    710       break;
    711     }
    712   }
    713 
    714   // All pointers have the same requirements, so canonicalize them to an
    715   // arbitrary pointer type to minimize variation.
    716   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy))
    717     AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
    718                                 PTy->getAddressSpace());
    719 
    720   return AccessTy;
    721 }
    722 
    723 /// isExistingPhi - Return true if this AddRec is already a phi in its loop.
    724 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
    725   for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
    726        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
    727     if (SE.isSCEVable(PN->getType()) &&
    728         (SE.getEffectiveSCEVType(PN->getType()) ==
    729          SE.getEffectiveSCEVType(AR->getType())) &&
    730         SE.getSCEV(PN) == AR)
    731       return true;
    732   }
    733   return false;
    734 }
    735 
    736 /// Check if expanding this expression is likely to incur significant cost. This
    737 /// is tricky because SCEV doesn't track which expressions are actually computed
    738 /// by the current IR.
    739 ///
    740 /// We currently allow expansion of IV increments that involve adds,
    741 /// multiplication by constants, and AddRecs from existing phis.
    742 ///
    743 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
    744 /// obvious multiple of the UDivExpr.
    745 static bool isHighCostExpansion(const SCEV *S,
    746                                 SmallPtrSetImpl<const SCEV*> &Processed,
    747                                 ScalarEvolution &SE) {
    748   // Zero/One operand expressions
    749   switch (S->getSCEVType()) {
    750   case scUnknown:
    751   case scConstant:
    752     return false;
    753   case scTruncate:
    754     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
    755                                Processed, SE);
    756   case scZeroExtend:
    757     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
    758                                Processed, SE);
    759   case scSignExtend:
    760     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
    761                                Processed, SE);
    762   }
    763 
    764   if (!Processed.insert(S).second)
    765     return false;
    766 
    767   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
    768     for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
    769          I != E; ++I) {
    770       if (isHighCostExpansion(*I, Processed, SE))
    771         return true;
    772     }
    773     return false;
    774   }
    775 
    776   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
    777     if (Mul->getNumOperands() == 2) {
    778       // Multiplication by a constant is ok
    779       if (isa<SCEVConstant>(Mul->getOperand(0)))
    780         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
    781 
    782       // If we have the value of one operand, check if an existing
    783       // multiplication already generates this expression.
    784       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
    785         Value *UVal = U->getValue();
    786         for (User *UR : UVal->users()) {
    787           // If U is a constant, it may be used by a ConstantExpr.
    788           Instruction *UI = dyn_cast<Instruction>(UR);
    789           if (UI && UI->getOpcode() == Instruction::Mul &&
    790               SE.isSCEVable(UI->getType())) {
    791             return SE.getSCEV(UI) == Mul;
    792           }
    793         }
    794       }
    795     }
    796   }
    797 
    798   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
    799     if (isExistingPhi(AR, SE))
    800       return false;
    801   }
    802 
    803   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
    804   return true;
    805 }
    806 
    807 /// DeleteTriviallyDeadInstructions - If any of the instructions is the
    808 /// specified set are trivially dead, delete them and see if this makes any of
    809 /// their operands subsequently dead.
    810 static bool
    811 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
    812   bool Changed = false;
    813 
    814   while (!DeadInsts.empty()) {
    815     Value *V = DeadInsts.pop_back_val();
    816     Instruction *I = dyn_cast_or_null<Instruction>(V);
    817 
    818     if (!I || !isInstructionTriviallyDead(I))
    819       continue;
    820 
    821     for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
    822       if (Instruction *U = dyn_cast<Instruction>(*OI)) {
    823         *OI = nullptr;
    824         if (U->use_empty())
    825           DeadInsts.push_back(U);
    826       }
    827 
    828     I->eraseFromParent();
    829     Changed = true;
    830   }
    831 
    832   return Changed;
    833 }
    834 
    835 namespace {
    836 class LSRUse;
    837 }
    838 
    839 /// \brief Check if the addressing mode defined by \p F is completely
    840 /// folded in \p LU at isel time.
    841 /// This includes address-mode folding and special icmp tricks.
    842 /// This function returns true if \p LU can accommodate what \p F
    843 /// defines and up to 1 base + 1 scaled + offset.
    844 /// In other words, if \p F has several base registers, this function may
    845 /// still return true. Therefore, users still need to account for
    846 /// additional base registers and/or unfolded offsets to derive an
    847 /// accurate cost model.
    848 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
    849                                  const LSRUse &LU, const Formula &F);
    850 // Get the cost of the scaling factor used in F for LU.
    851 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
    852                                      const LSRUse &LU, const Formula &F);
    853 
    854 namespace {
    855 
    856 /// Cost - This class is used to measure and compare candidate formulae.
    857 class Cost {
    858   /// TODO: Some of these could be merged. Also, a lexical ordering
    859   /// isn't always optimal.
    860   unsigned NumRegs;
    861   unsigned AddRecCost;
    862   unsigned NumIVMuls;
    863   unsigned NumBaseAdds;
    864   unsigned ImmCost;
    865   unsigned SetupCost;
    866   unsigned ScaleCost;
    867 
    868 public:
    869   Cost()
    870     : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
    871       SetupCost(0), ScaleCost(0) {}
    872 
    873   bool operator<(const Cost &Other) const;
    874 
    875   void Lose();
    876 
    877 #ifndef NDEBUG
    878   // Once any of the metrics loses, they must all remain losers.
    879   bool isValid() {
    880     return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds
    881              | ImmCost | SetupCost | ScaleCost) != ~0u)
    882       || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds
    883            & ImmCost & SetupCost & ScaleCost) == ~0u);
    884   }
    885 #endif
    886 
    887   bool isLoser() {
    888     assert(isValid() && "invalid cost");
    889     return NumRegs == ~0u;
    890   }
    891 
    892   void RateFormula(const TargetTransformInfo &TTI,
    893                    const Formula &F,
    894                    SmallPtrSetImpl<const SCEV *> &Regs,
    895                    const DenseSet<const SCEV *> &VisitedRegs,
    896                    const Loop *L,
    897                    const SmallVectorImpl<int64_t> &Offsets,
    898                    ScalarEvolution &SE, DominatorTree &DT,
    899                    const LSRUse &LU,
    900                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
    901 
    902   void print(raw_ostream &OS) const;
    903   void dump() const;
    904 
    905 private:
    906   void RateRegister(const SCEV *Reg,
    907                     SmallPtrSetImpl<const SCEV *> &Regs,
    908                     const Loop *L,
    909                     ScalarEvolution &SE, DominatorTree &DT);
    910   void RatePrimaryRegister(const SCEV *Reg,
    911                            SmallPtrSetImpl<const SCEV *> &Regs,
    912                            const Loop *L,
    913                            ScalarEvolution &SE, DominatorTree &DT,
    914                            SmallPtrSetImpl<const SCEV *> *LoserRegs);
    915 };
    916 
    917 }
    918 
    919 /// RateRegister - Tally up interesting quantities from the given register.
    920 void Cost::RateRegister(const SCEV *Reg,
    921                         SmallPtrSetImpl<const SCEV *> &Regs,
    922                         const Loop *L,
    923                         ScalarEvolution &SE, DominatorTree &DT) {
    924   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
    925     // If this is an addrec for another loop, don't second-guess its addrec phi
    926     // nodes. LSR isn't currently smart enough to reason about more than one
    927     // loop at a time. LSR has already run on inner loops, will not run on outer
    928     // loops, and cannot be expected to change sibling loops.
    929     if (AR->getLoop() != L) {
    930       // If the AddRec exists, consider it's register free and leave it alone.
    931       if (isExistingPhi(AR, SE))
    932         return;
    933 
    934       // Otherwise, do not consider this formula at all.
    935       Lose();
    936       return;
    937     }
    938     AddRecCost += 1; /// TODO: This should be a function of the stride.
    939 
    940     // Add the step value register, if it needs one.
    941     // TODO: The non-affine case isn't precisely modeled here.
    942     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
    943       if (!Regs.count(AR->getOperand(1))) {
    944         RateRegister(AR->getOperand(1), Regs, L, SE, DT);
    945         if (isLoser())
    946           return;
    947       }
    948     }
    949   }
    950   ++NumRegs;
    951 
    952   // Rough heuristic; favor registers which don't require extra setup
    953   // instructions in the preheader.
    954   if (!isa<SCEVUnknown>(Reg) &&
    955       !isa<SCEVConstant>(Reg) &&
    956       !(isa<SCEVAddRecExpr>(Reg) &&
    957         (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
    958          isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
    959     ++SetupCost;
    960 
    961     NumIVMuls += isa<SCEVMulExpr>(Reg) &&
    962                  SE.hasComputableLoopEvolution(Reg, L);
    963 }
    964 
    965 /// RatePrimaryRegister - Record this register in the set. If we haven't seen it
    966 /// before, rate it. Optional LoserRegs provides a way to declare any formula
    967 /// that refers to one of those regs an instant loser.
    968 void Cost::RatePrimaryRegister(const SCEV *Reg,
    969                                SmallPtrSetImpl<const SCEV *> &Regs,
    970                                const Loop *L,
    971                                ScalarEvolution &SE, DominatorTree &DT,
    972                                SmallPtrSetImpl<const SCEV *> *LoserRegs) {
    973   if (LoserRegs && LoserRegs->count(Reg)) {
    974     Lose();
    975     return;
    976   }
    977   if (Regs.insert(Reg).second) {
    978     RateRegister(Reg, Regs, L, SE, DT);
    979     if (LoserRegs && isLoser())
    980       LoserRegs->insert(Reg);
    981   }
    982 }
    983 
    984 void Cost::RateFormula(const TargetTransformInfo &TTI,
    985                        const Formula &F,
    986                        SmallPtrSetImpl<const SCEV *> &Regs,
    987                        const DenseSet<const SCEV *> &VisitedRegs,
    988                        const Loop *L,
    989                        const SmallVectorImpl<int64_t> &Offsets,
    990                        ScalarEvolution &SE, DominatorTree &DT,
    991                        const LSRUse &LU,
    992                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
    993   assert(F.isCanonical() && "Cost is accurate only for canonical formula");
    994   // Tally up the registers.
    995   if (const SCEV *ScaledReg = F.ScaledReg) {
    996     if (VisitedRegs.count(ScaledReg)) {
    997       Lose();
    998       return;
    999     }
   1000     RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs);
   1001     if (isLoser())
   1002       return;
   1003   }
   1004   for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
   1005        E = F.BaseRegs.end(); I != E; ++I) {
   1006     const SCEV *BaseReg = *I;
   1007     if (VisitedRegs.count(BaseReg)) {
   1008       Lose();
   1009       return;
   1010     }
   1011     RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs);
   1012     if (isLoser())
   1013       return;
   1014   }
   1015 
   1016   // Determine how many (unfolded) adds we'll need inside the loop.
   1017   size_t NumBaseParts = F.getNumRegs();
   1018   if (NumBaseParts > 1)
   1019     // Do not count the base and a possible second register if the target
   1020     // allows to fold 2 registers.
   1021     NumBaseAdds +=
   1022         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F)));
   1023   NumBaseAdds += (F.UnfoldedOffset != 0);
   1024 
   1025   // Accumulate non-free scaling amounts.
   1026   ScaleCost += getScalingFactorCost(TTI, LU, F);
   1027 
   1028   // Tally up the non-zero immediates.
   1029   for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
   1030        E = Offsets.end(); I != E; ++I) {
   1031     int64_t Offset = (uint64_t)*I + F.BaseOffset;
   1032     if (F.BaseGV)
   1033       ImmCost += 64; // Handle symbolic values conservatively.
   1034                      // TODO: This should probably be the pointer size.
   1035     else if (Offset != 0)
   1036       ImmCost += APInt(64, Offset, true).getMinSignedBits();
   1037   }
   1038   assert(isValid() && "invalid cost");
   1039 }
   1040 
   1041 /// Lose - Set this cost to a losing value.
   1042 void Cost::Lose() {
   1043   NumRegs = ~0u;
   1044   AddRecCost = ~0u;
   1045   NumIVMuls = ~0u;
   1046   NumBaseAdds = ~0u;
   1047   ImmCost = ~0u;
   1048   SetupCost = ~0u;
   1049   ScaleCost = ~0u;
   1050 }
   1051 
   1052 /// operator< - Choose the lower cost.
   1053 bool Cost::operator<(const Cost &Other) const {
   1054   return std::tie(NumRegs, AddRecCost, NumIVMuls, NumBaseAdds, ScaleCost,
   1055                   ImmCost, SetupCost) <
   1056          std::tie(Other.NumRegs, Other.AddRecCost, Other.NumIVMuls,
   1057                   Other.NumBaseAdds, Other.ScaleCost, Other.ImmCost,
   1058                   Other.SetupCost);
   1059 }
   1060 
   1061 void Cost::print(raw_ostream &OS) const {
   1062   OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
   1063   if (AddRecCost != 0)
   1064     OS << ", with addrec cost " << AddRecCost;
   1065   if (NumIVMuls != 0)
   1066     OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
   1067   if (NumBaseAdds != 0)
   1068     OS << ", plus " << NumBaseAdds << " base add"
   1069        << (NumBaseAdds == 1 ? "" : "s");
   1070   if (ScaleCost != 0)
   1071     OS << ", plus " << ScaleCost << " scale cost";
   1072   if (ImmCost != 0)
   1073     OS << ", plus " << ImmCost << " imm cost";
   1074   if (SetupCost != 0)
   1075     OS << ", plus " << SetupCost << " setup cost";
   1076 }
   1077 
   1078 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
   1079 void Cost::dump() const {
   1080   print(errs()); errs() << '\n';
   1081 }
   1082 #endif
   1083 
   1084 namespace {
   1085 
   1086 /// LSRFixup - An operand value in an instruction which is to be replaced
   1087 /// with some equivalent, possibly strength-reduced, replacement.
   1088 struct LSRFixup {
   1089   /// UserInst - The instruction which will be updated.
   1090   Instruction *UserInst;
   1091 
   1092   /// OperandValToReplace - The operand of the instruction which will
   1093   /// be replaced. The operand may be used more than once; every instance
   1094   /// will be replaced.
   1095   Value *OperandValToReplace;
   1096 
   1097   /// PostIncLoops - If this user is to use the post-incremented value of an
   1098   /// induction variable, this variable is non-null and holds the loop
   1099   /// associated with the induction variable.
   1100   PostIncLoopSet PostIncLoops;
   1101 
   1102   /// LUIdx - The index of the LSRUse describing the expression which
   1103   /// this fixup needs, minus an offset (below).
   1104   size_t LUIdx;
   1105 
   1106   /// Offset - A constant offset to be added to the LSRUse expression.
   1107   /// This allows multiple fixups to share the same LSRUse with different
   1108   /// offsets, for example in an unrolled loop.
   1109   int64_t Offset;
   1110 
   1111   bool isUseFullyOutsideLoop(const Loop *L) const;
   1112 
   1113   LSRFixup();
   1114 
   1115   void print(raw_ostream &OS) const;
   1116   void dump() const;
   1117 };
   1118 
   1119 }
   1120 
   1121 LSRFixup::LSRFixup()
   1122   : UserInst(nullptr), OperandValToReplace(nullptr), LUIdx(~size_t(0)),
   1123     Offset(0) {}
   1124 
   1125 /// isUseFullyOutsideLoop - Test whether this fixup always uses its
   1126 /// value outside of the given loop.
   1127 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
   1128   // PHI nodes use their value in their incoming blocks.
   1129   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
   1130     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
   1131       if (PN->getIncomingValue(i) == OperandValToReplace &&
   1132           L->contains(PN->getIncomingBlock(i)))
   1133         return false;
   1134     return true;
   1135   }
   1136 
   1137   return !L->contains(UserInst);
   1138 }
   1139 
   1140 void LSRFixup::print(raw_ostream &OS) const {
   1141   OS << "UserInst=";
   1142   // Store is common and interesting enough to be worth special-casing.
   1143   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
   1144     OS << "store ";
   1145     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
   1146   } else if (UserInst->getType()->isVoidTy())
   1147     OS << UserInst->getOpcodeName();
   1148   else
   1149     UserInst->printAsOperand(OS, /*PrintType=*/false);
   1150 
   1151   OS << ", OperandValToReplace=";
   1152   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
   1153 
   1154   for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(),
   1155        E = PostIncLoops.end(); I != E; ++I) {
   1156     OS << ", PostIncLoop=";
   1157     (*I)->getHeader()->printAsOperand(OS, /*PrintType=*/false);
   1158   }
   1159 
   1160   if (LUIdx != ~size_t(0))
   1161     OS << ", LUIdx=" << LUIdx;
   1162 
   1163   if (Offset != 0)
   1164     OS << ", Offset=" << Offset;
   1165 }
   1166 
   1167 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
   1168 void LSRFixup::dump() const {
   1169   print(errs()); errs() << '\n';
   1170 }
   1171 #endif
   1172 
   1173 namespace {
   1174 
   1175 /// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
   1176 /// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
   1177 struct UniquifierDenseMapInfo {
   1178   static SmallVector<const SCEV *, 4> getEmptyKey() {
   1179     SmallVector<const SCEV *, 4>  V;
   1180     V.push_back(reinterpret_cast<const SCEV *>(-1));
   1181     return V;
   1182   }
   1183 
   1184   static SmallVector<const SCEV *, 4> getTombstoneKey() {
   1185     SmallVector<const SCEV *, 4> V;
   1186     V.push_back(reinterpret_cast<const SCEV *>(-2));
   1187     return V;
   1188   }
   1189 
   1190   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
   1191     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
   1192   }
   1193 
   1194   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
   1195                       const SmallVector<const SCEV *, 4> &RHS) {
   1196     return LHS == RHS;
   1197   }
   1198 };
   1199 
   1200 /// LSRUse - This class holds the state that LSR keeps for each use in
   1201 /// IVUsers, as well as uses invented by LSR itself. It includes information
   1202 /// about what kinds of things can be folded into the user, information about
   1203 /// the user itself, and information about how the use may be satisfied.
   1204 /// TODO: Represent multiple users of the same expression in common?
   1205 class LSRUse {
   1206   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
   1207 
   1208 public:
   1209   /// KindType - An enum for a kind of use, indicating what types of
   1210   /// scaled and immediate operands it might support.
   1211   enum KindType {
   1212     Basic,   ///< A normal use, with no folding.
   1213     Special, ///< A special case of basic, allowing -1 scales.
   1214     Address, ///< An address use; folding according to TargetLowering
   1215     ICmpZero ///< An equality icmp with both operands folded into one.
   1216     // TODO: Add a generic icmp too?
   1217   };
   1218 
   1219   typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair;
   1220 
   1221   KindType Kind;
   1222   Type *AccessTy;
   1223 
   1224   SmallVector<int64_t, 8> Offsets;
   1225   int64_t MinOffset;
   1226   int64_t MaxOffset;
   1227 
   1228   /// AllFixupsOutsideLoop - This records whether all of the fixups using this
   1229   /// LSRUse are outside of the loop, in which case some special-case heuristics
   1230   /// may be used.
   1231   bool AllFixupsOutsideLoop;
   1232 
   1233   /// RigidFormula is set to true to guarantee that this use will be associated
   1234   /// with a single formula--the one that initially matched. Some SCEV
   1235   /// expressions cannot be expanded. This allows LSR to consider the registers
   1236   /// used by those expressions without the need to expand them later after
   1237   /// changing the formula.
   1238   bool RigidFormula;
   1239 
   1240   /// WidestFixupType - This records the widest use type for any fixup using
   1241   /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different
   1242   /// max fixup widths to be equivalent, because the narrower one may be relying
   1243   /// on the implicit truncation to truncate away bogus bits.
   1244   Type *WidestFixupType;
   1245 
   1246   /// Formulae - A list of ways to build a value that can satisfy this user.
   1247   /// After the list is populated, one of these is selected heuristically and
   1248   /// used to formulate a replacement for OperandValToReplace in UserInst.
   1249   SmallVector<Formula, 12> Formulae;
   1250 
   1251   /// Regs - The set of register candidates used by all formulae in this LSRUse.
   1252   SmallPtrSet<const SCEV *, 4> Regs;
   1253 
   1254   LSRUse(KindType K, Type *T) : Kind(K), AccessTy(T),
   1255                                       MinOffset(INT64_MAX),
   1256                                       MaxOffset(INT64_MIN),
   1257                                       AllFixupsOutsideLoop(true),
   1258                                       RigidFormula(false),
   1259                                       WidestFixupType(nullptr) {}
   1260 
   1261   bool HasFormulaWithSameRegs(const Formula &F) const;
   1262   bool InsertFormula(const Formula &F);
   1263   void DeleteFormula(Formula &F);
   1264   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
   1265 
   1266   void print(raw_ostream &OS) const;
   1267   void dump() const;
   1268 };
   1269 
   1270 }
   1271 
   1272 /// HasFormula - Test whether this use as a formula which has the same
   1273 /// registers as the given formula.
   1274 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
   1275   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
   1276   if (F.ScaledReg) Key.push_back(F.ScaledReg);
   1277   // Unstable sort by host order ok, because this is only used for uniquifying.
   1278   std::sort(Key.begin(), Key.end());
   1279   return Uniquifier.count(Key);
   1280 }
   1281 
   1282 /// InsertFormula - If the given formula has not yet been inserted, add it to
   1283 /// the list, and return true. Return false otherwise.
   1284 /// The formula must be in canonical form.
   1285 bool LSRUse::InsertFormula(const Formula &F) {
   1286   assert(F.isCanonical() && "Invalid canonical representation");
   1287 
   1288   if (!Formulae.empty() && RigidFormula)
   1289     return false;
   1290 
   1291   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
   1292   if (F.ScaledReg) Key.push_back(F.ScaledReg);
   1293   // Unstable sort by host order ok, because this is only used for uniquifying.
   1294   std::sort(Key.begin(), Key.end());
   1295 
   1296   if (!Uniquifier.insert(Key).second)
   1297     return false;
   1298 
   1299   // Using a register to hold the value of 0 is not profitable.
   1300   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
   1301          "Zero allocated in a scaled register!");
   1302 #ifndef NDEBUG
   1303   for (SmallVectorImpl<const SCEV *>::const_iterator I =
   1304        F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I)
   1305     assert(!(*I)->isZero() && "Zero allocated in a base register!");
   1306 #endif
   1307 
   1308   // Add the formula to the list.
   1309   Formulae.push_back(F);
   1310 
   1311   // Record registers now being used by this use.
   1312   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
   1313   if (F.ScaledReg)
   1314     Regs.insert(F.ScaledReg);
   1315 
   1316   return true;
   1317 }
   1318 
   1319 /// DeleteFormula - Remove the given formula from this use's list.
   1320 void LSRUse::DeleteFormula(Formula &F) {
   1321   if (&F != &Formulae.back())
   1322     std::swap(F, Formulae.back());
   1323   Formulae.pop_back();
   1324 }
   1325 
   1326 /// RecomputeRegs - Recompute the Regs field, and update RegUses.
   1327 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
   1328   // Now that we've filtered out some formulae, recompute the Regs set.
   1329   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
   1330   Regs.clear();
   1331   for (const Formula &F : Formulae) {
   1332     if (F.ScaledReg) Regs.insert(F.ScaledReg);
   1333     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
   1334   }
   1335 
   1336   // Update the RegTracker.
   1337   for (const SCEV *S : OldRegs)
   1338     if (!Regs.count(S))
   1339       RegUses.DropRegister(S, LUIdx);
   1340 }
   1341 
   1342 void LSRUse::print(raw_ostream &OS) const {
   1343   OS << "LSR Use: Kind=";
   1344   switch (Kind) {
   1345   case Basic:    OS << "Basic"; break;
   1346   case Special:  OS << "Special"; break;
   1347   case ICmpZero: OS << "ICmpZero"; break;
   1348   case Address:
   1349     OS << "Address of ";
   1350     if (AccessTy->isPointerTy())
   1351       OS << "pointer"; // the full pointer type could be really verbose
   1352     else
   1353       OS << *AccessTy;
   1354   }
   1355 
   1356   OS << ", Offsets={";
   1357   for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
   1358        E = Offsets.end(); I != E; ++I) {
   1359     OS << *I;
   1360     if (std::next(I) != E)
   1361       OS << ',';
   1362   }
   1363   OS << '}';
   1364 
   1365   if (AllFixupsOutsideLoop)
   1366     OS << ", all-fixups-outside-loop";
   1367 
   1368   if (WidestFixupType)
   1369     OS << ", widest fixup type: " << *WidestFixupType;
   1370 }
   1371 
   1372 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
   1373 void LSRUse::dump() const {
   1374   print(errs()); errs() << '\n';
   1375 }
   1376 #endif
   1377 
   1378 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
   1379                                  LSRUse::KindType Kind, Type *AccessTy,
   1380                                  GlobalValue *BaseGV, int64_t BaseOffset,
   1381                                  bool HasBaseReg, int64_t Scale) {
   1382   switch (Kind) {
   1383   case LSRUse::Address:
   1384     return TTI.isLegalAddressingMode(AccessTy, BaseGV, BaseOffset, HasBaseReg, Scale);
   1385 
   1386     // Otherwise, just guess that reg+reg addressing is legal.
   1387     //return ;
   1388 
   1389   case LSRUse::ICmpZero:
   1390     // There's not even a target hook for querying whether it would be legal to
   1391     // fold a GV into an ICmp.
   1392     if (BaseGV)
   1393       return false;
   1394 
   1395     // ICmp only has two operands; don't allow more than two non-trivial parts.
   1396     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
   1397       return false;
   1398 
   1399     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
   1400     // putting the scaled register in the other operand of the icmp.
   1401     if (Scale != 0 && Scale != -1)
   1402       return false;
   1403 
   1404     // If we have low-level target information, ask the target if it can fold an
   1405     // integer immediate on an icmp.
   1406     if (BaseOffset != 0) {
   1407       // We have one of:
   1408       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
   1409       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
   1410       // Offs is the ICmp immediate.
   1411       if (Scale == 0)
   1412         // The cast does the right thing with INT64_MIN.
   1413         BaseOffset = -(uint64_t)BaseOffset;
   1414       return TTI.isLegalICmpImmediate(BaseOffset);
   1415     }
   1416 
   1417     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
   1418     return true;
   1419 
   1420   case LSRUse::Basic:
   1421     // Only handle single-register values.
   1422     return !BaseGV && Scale == 0 && BaseOffset == 0;
   1423 
   1424   case LSRUse::Special:
   1425     // Special case Basic to handle -1 scales.
   1426     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
   1427   }
   1428 
   1429   llvm_unreachable("Invalid LSRUse Kind!");
   1430 }
   1431 
   1432 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
   1433                                  int64_t MinOffset, int64_t MaxOffset,
   1434                                  LSRUse::KindType Kind, Type *AccessTy,
   1435                                  GlobalValue *BaseGV, int64_t BaseOffset,
   1436                                  bool HasBaseReg, int64_t Scale) {
   1437   // Check for overflow.
   1438   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
   1439       (MinOffset > 0))
   1440     return false;
   1441   MinOffset = (uint64_t)BaseOffset + MinOffset;
   1442   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
   1443       (MaxOffset > 0))
   1444     return false;
   1445   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
   1446 
   1447   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
   1448                               HasBaseReg, Scale) &&
   1449          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
   1450                               HasBaseReg, Scale);
   1451 }
   1452 
   1453 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
   1454                                  int64_t MinOffset, int64_t MaxOffset,
   1455                                  LSRUse::KindType Kind, Type *AccessTy,
   1456                                  const Formula &F) {
   1457   // For the purpose of isAMCompletelyFolded either having a canonical formula
   1458   // or a scale not equal to zero is correct.
   1459   // Problems may arise from non canonical formulae having a scale == 0.
   1460   // Strictly speaking it would best to just rely on canonical formulae.
   1461   // However, when we generate the scaled formulae, we first check that the
   1462   // scaling factor is profitable before computing the actual ScaledReg for
   1463   // compile time sake.
   1464   assert((F.isCanonical() || F.Scale != 0));
   1465   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
   1466                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
   1467 }
   1468 
   1469 /// isLegalUse - Test whether we know how to expand the current formula.
   1470 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
   1471                        int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy,
   1472                        GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg,
   1473                        int64_t Scale) {
   1474   // We know how to expand completely foldable formulae.
   1475   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
   1476                               BaseOffset, HasBaseReg, Scale) ||
   1477          // Or formulae that use a base register produced by a sum of base
   1478          // registers.
   1479          (Scale == 1 &&
   1480           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
   1481                                BaseGV, BaseOffset, true, 0));
   1482 }
   1483 
   1484 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
   1485                        int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy,
   1486                        const Formula &F) {
   1487   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
   1488                     F.BaseOffset, F.HasBaseReg, F.Scale);
   1489 }
   1490 
   1491 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
   1492                                  const LSRUse &LU, const Formula &F) {
   1493   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
   1494                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
   1495                               F.Scale);
   1496 }
   1497 
   1498 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
   1499                                      const LSRUse &LU, const Formula &F) {
   1500   if (!F.Scale)
   1501     return 0;
   1502 
   1503   // If the use is not completely folded in that instruction, we will have to
   1504   // pay an extra cost only for scale != 1.
   1505   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
   1506                             LU.AccessTy, F))
   1507     return F.Scale != 1;
   1508 
   1509   switch (LU.Kind) {
   1510   case LSRUse::Address: {
   1511     // Check the scaling factor cost with both the min and max offsets.
   1512     int ScaleCostMinOffset =
   1513       TTI.getScalingFactorCost(LU.AccessTy, F.BaseGV,
   1514                                F.BaseOffset + LU.MinOffset,
   1515                                F.HasBaseReg, F.Scale);
   1516     int ScaleCostMaxOffset =
   1517       TTI.getScalingFactorCost(LU.AccessTy, F.BaseGV,
   1518                                F.BaseOffset + LU.MaxOffset,
   1519                                F.HasBaseReg, F.Scale);
   1520 
   1521     assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
   1522            "Legal addressing mode has an illegal cost!");
   1523     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
   1524   }
   1525   case LSRUse::ICmpZero:
   1526   case LSRUse::Basic:
   1527   case LSRUse::Special:
   1528     // The use is completely folded, i.e., everything is folded into the
   1529     // instruction.
   1530     return 0;
   1531   }
   1532 
   1533   llvm_unreachable("Invalid LSRUse Kind!");
   1534 }
   1535 
   1536 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
   1537                              LSRUse::KindType Kind, Type *AccessTy,
   1538                              GlobalValue *BaseGV, int64_t BaseOffset,
   1539                              bool HasBaseReg) {
   1540   // Fast-path: zero is always foldable.
   1541   if (BaseOffset == 0 && !BaseGV) return true;
   1542 
   1543   // Conservatively, create an address with an immediate and a
   1544   // base and a scale.
   1545   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
   1546 
   1547   // Canonicalize a scale of 1 to a base register if the formula doesn't
   1548   // already have a base register.
   1549   if (!HasBaseReg && Scale == 1) {
   1550     Scale = 0;
   1551     HasBaseReg = true;
   1552   }
   1553 
   1554   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
   1555                               HasBaseReg, Scale);
   1556 }
   1557 
   1558 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
   1559                              ScalarEvolution &SE, int64_t MinOffset,
   1560                              int64_t MaxOffset, LSRUse::KindType Kind,
   1561                              Type *AccessTy, const SCEV *S, bool HasBaseReg) {
   1562   // Fast-path: zero is always foldable.
   1563   if (S->isZero()) return true;
   1564 
   1565   // Conservatively, create an address with an immediate and a
   1566   // base and a scale.
   1567   int64_t BaseOffset = ExtractImmediate(S, SE);
   1568   GlobalValue *BaseGV = ExtractSymbol(S, SE);
   1569 
   1570   // If there's anything else involved, it's not foldable.
   1571   if (!S->isZero()) return false;
   1572 
   1573   // Fast-path: zero is always foldable.
   1574   if (BaseOffset == 0 && !BaseGV) return true;
   1575 
   1576   // Conservatively, create an address with an immediate and a
   1577   // base and a scale.
   1578   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
   1579 
   1580   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
   1581                               BaseOffset, HasBaseReg, Scale);
   1582 }
   1583 
   1584 namespace {
   1585 
   1586 /// IVInc - An individual increment in a Chain of IV increments.
   1587 /// Relate an IV user to an expression that computes the IV it uses from the IV
   1588 /// used by the previous link in the Chain.
   1589 ///
   1590 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
   1591 /// original IVOperand. The head of the chain's IVOperand is only valid during
   1592 /// chain collection, before LSR replaces IV users. During chain generation,
   1593 /// IncExpr can be used to find the new IVOperand that computes the same
   1594 /// expression.
   1595 struct IVInc {
   1596   Instruction *UserInst;
   1597   Value* IVOperand;
   1598   const SCEV *IncExpr;
   1599 
   1600   IVInc(Instruction *U, Value *O, const SCEV *E):
   1601     UserInst(U), IVOperand(O), IncExpr(E) {}
   1602 };
   1603 
   1604 // IVChain - The list of IV increments in program order.
   1605 // We typically add the head of a chain without finding subsequent links.
   1606 struct IVChain {
   1607   SmallVector<IVInc,1> Incs;
   1608   const SCEV *ExprBase;
   1609 
   1610   IVChain() : ExprBase(nullptr) {}
   1611 
   1612   IVChain(const IVInc &Head, const SCEV *Base)
   1613     : Incs(1, Head), ExprBase(Base) {}
   1614 
   1615   typedef SmallVectorImpl<IVInc>::const_iterator const_iterator;
   1616 
   1617   // begin - return the first increment in the chain.
   1618   const_iterator begin() const {
   1619     assert(!Incs.empty());
   1620     return std::next(Incs.begin());
   1621   }
   1622   const_iterator end() const {
   1623     return Incs.end();
   1624   }
   1625 
   1626   // hasIncs - Returns true if this chain contains any increments.
   1627   bool hasIncs() const { return Incs.size() >= 2; }
   1628 
   1629   // add - Add an IVInc to the end of this chain.
   1630   void add(const IVInc &X) { Incs.push_back(X); }
   1631 
   1632   // tailUserInst - Returns the last UserInst in the chain.
   1633   Instruction *tailUserInst() const { return Incs.back().UserInst; }
   1634 
   1635   // isProfitableIncrement - Returns true if IncExpr can be profitably added to
   1636   // this chain.
   1637   bool isProfitableIncrement(const SCEV *OperExpr,
   1638                              const SCEV *IncExpr,
   1639                              ScalarEvolution&);
   1640 };
   1641 
   1642 /// ChainUsers - Helper for CollectChains to track multiple IV increment uses.
   1643 /// Distinguish between FarUsers that definitely cross IV increments and
   1644 /// NearUsers that may be used between IV increments.
   1645 struct ChainUsers {
   1646   SmallPtrSet<Instruction*, 4> FarUsers;
   1647   SmallPtrSet<Instruction*, 4> NearUsers;
   1648 };
   1649 
   1650 /// LSRInstance - This class holds state for the main loop strength reduction
   1651 /// logic.
   1652 class LSRInstance {
   1653   IVUsers &IU;
   1654   ScalarEvolution &SE;
   1655   DominatorTree &DT;
   1656   LoopInfo &LI;
   1657   const TargetTransformInfo &TTI;
   1658   Loop *const L;
   1659   bool Changed;
   1660 
   1661   /// IVIncInsertPos - This is the insert position that the current loop's
   1662   /// induction variable increment should be placed. In simple loops, this is
   1663   /// the latch block's terminator. But in more complicated cases, this is a
   1664   /// position which will dominate all the in-loop post-increment users.
   1665   Instruction *IVIncInsertPos;
   1666 
   1667   /// Factors - Interesting factors between use strides.
   1668   SmallSetVector<int64_t, 8> Factors;
   1669 
   1670   /// Types - Interesting use types, to facilitate truncation reuse.
   1671   SmallSetVector<Type *, 4> Types;
   1672 
   1673   /// Fixups - The list of operands which are to be replaced.
   1674   SmallVector<LSRFixup, 16> Fixups;
   1675 
   1676   /// Uses - The list of interesting uses.
   1677   SmallVector<LSRUse, 16> Uses;
   1678 
   1679   /// RegUses - Track which uses use which register candidates.
   1680   RegUseTracker RegUses;
   1681 
   1682   // Limit the number of chains to avoid quadratic behavior. We don't expect to
   1683   // have more than a few IV increment chains in a loop. Missing a Chain falls
   1684   // back to normal LSR behavior for those uses.
   1685   static const unsigned MaxChains = 8;
   1686 
   1687   /// IVChainVec - IV users can form a chain of IV increments.
   1688   SmallVector<IVChain, MaxChains> IVChainVec;
   1689 
   1690   /// IVIncSet - IV users that belong to profitable IVChains.
   1691   SmallPtrSet<Use*, MaxChains> IVIncSet;
   1692 
   1693   void OptimizeShadowIV();
   1694   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
   1695   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
   1696   void OptimizeLoopTermCond();
   1697 
   1698   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
   1699                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
   1700   void FinalizeChain(IVChain &Chain);
   1701   void CollectChains();
   1702   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
   1703                        SmallVectorImpl<WeakVH> &DeadInsts);
   1704 
   1705   void CollectInterestingTypesAndFactors();
   1706   void CollectFixupsAndInitialFormulae();
   1707 
   1708   LSRFixup &getNewFixup() {
   1709     Fixups.push_back(LSRFixup());
   1710     return Fixups.back();
   1711   }
   1712 
   1713   // Support for sharing of LSRUses between LSRFixups.
   1714   typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy;
   1715   UseMapTy UseMap;
   1716 
   1717   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
   1718                           LSRUse::KindType Kind, Type *AccessTy);
   1719 
   1720   std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
   1721                                     LSRUse::KindType Kind,
   1722                                     Type *AccessTy);
   1723 
   1724   void DeleteUse(LSRUse &LU, size_t LUIdx);
   1725 
   1726   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
   1727 
   1728   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
   1729   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
   1730   void CountRegisters(const Formula &F, size_t LUIdx);
   1731   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
   1732 
   1733   void CollectLoopInvariantFixupsAndFormulae();
   1734 
   1735   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
   1736                               unsigned Depth = 0);
   1737 
   1738   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
   1739                                   const Formula &Base, unsigned Depth,
   1740                                   size_t Idx, bool IsScaledReg = false);
   1741   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
   1742   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
   1743                                    const Formula &Base, size_t Idx,
   1744                                    bool IsScaledReg = false);
   1745   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
   1746   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
   1747                                    const Formula &Base,
   1748                                    const SmallVectorImpl<int64_t> &Worklist,
   1749                                    size_t Idx, bool IsScaledReg = false);
   1750   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
   1751   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
   1752   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
   1753   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
   1754   void GenerateCrossUseConstantOffsets();
   1755   void GenerateAllReuseFormulae();
   1756 
   1757   void FilterOutUndesirableDedicatedRegisters();
   1758 
   1759   size_t EstimateSearchSpaceComplexity() const;
   1760   void NarrowSearchSpaceByDetectingSupersets();
   1761   void NarrowSearchSpaceByCollapsingUnrolledCode();
   1762   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
   1763   void NarrowSearchSpaceByPickingWinnerRegs();
   1764   void NarrowSearchSpaceUsingHeuristics();
   1765 
   1766   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
   1767                     Cost &SolutionCost,
   1768                     SmallVectorImpl<const Formula *> &Workspace,
   1769                     const Cost &CurCost,
   1770                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
   1771                     DenseSet<const SCEV *> &VisitedRegs) const;
   1772   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
   1773 
   1774   BasicBlock::iterator
   1775     HoistInsertPosition(BasicBlock::iterator IP,
   1776                         const SmallVectorImpl<Instruction *> &Inputs) const;
   1777   BasicBlock::iterator
   1778     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
   1779                                   const LSRFixup &LF,
   1780                                   const LSRUse &LU,
   1781                                   SCEVExpander &Rewriter) const;
   1782 
   1783   Value *Expand(const LSRFixup &LF,
   1784                 const Formula &F,
   1785                 BasicBlock::iterator IP,
   1786                 SCEVExpander &Rewriter,
   1787                 SmallVectorImpl<WeakVH> &DeadInsts) const;
   1788   void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
   1789                      const Formula &F,
   1790                      SCEVExpander &Rewriter,
   1791                      SmallVectorImpl<WeakVH> &DeadInsts,
   1792                      Pass *P) const;
   1793   void Rewrite(const LSRFixup &LF,
   1794                const Formula &F,
   1795                SCEVExpander &Rewriter,
   1796                SmallVectorImpl<WeakVH> &DeadInsts,
   1797                Pass *P) const;
   1798   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
   1799                          Pass *P);
   1800 
   1801 public:
   1802   LSRInstance(Loop *L, Pass *P);
   1803 
   1804   bool getChanged() const { return Changed; }
   1805 
   1806   void print_factors_and_types(raw_ostream &OS) const;
   1807   void print_fixups(raw_ostream &OS) const;
   1808   void print_uses(raw_ostream &OS) const;
   1809   void print(raw_ostream &OS) const;
   1810   void dump() const;
   1811 };
   1812 
   1813 }
   1814 
   1815 /// OptimizeShadowIV - If IV is used in a int-to-float cast
   1816 /// inside the loop then try to eliminate the cast operation.
   1817 void LSRInstance::OptimizeShadowIV() {
   1818   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
   1819   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
   1820     return;
   1821 
   1822   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
   1823        UI != E; /* empty */) {
   1824     IVUsers::const_iterator CandidateUI = UI;
   1825     ++UI;
   1826     Instruction *ShadowUse = CandidateUI->getUser();
   1827     Type *DestTy = nullptr;
   1828     bool IsSigned = false;
   1829 
   1830     /* If shadow use is a int->float cast then insert a second IV
   1831        to eliminate this cast.
   1832 
   1833          for (unsigned i = 0; i < n; ++i)
   1834            foo((double)i);
   1835 
   1836        is transformed into
   1837 
   1838          double d = 0.0;
   1839          for (unsigned i = 0; i < n; ++i, ++d)
   1840            foo(d);
   1841     */
   1842     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
   1843       IsSigned = false;
   1844       DestTy = UCast->getDestTy();
   1845     }
   1846     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
   1847       IsSigned = true;
   1848       DestTy = SCast->getDestTy();
   1849     }
   1850     if (!DestTy) continue;
   1851 
   1852     // If target does not support DestTy natively then do not apply
   1853     // this transformation.
   1854     if (!TTI.isTypeLegal(DestTy)) continue;
   1855 
   1856     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
   1857     if (!PH) continue;
   1858     if (PH->getNumIncomingValues() != 2) continue;
   1859 
   1860     Type *SrcTy = PH->getType();
   1861     int Mantissa = DestTy->getFPMantissaWidth();
   1862     if (Mantissa == -1) continue;
   1863     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
   1864       continue;
   1865 
   1866     unsigned Entry, Latch;
   1867     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
   1868       Entry = 0;
   1869       Latch = 1;
   1870     } else {
   1871       Entry = 1;
   1872       Latch = 0;
   1873     }
   1874 
   1875     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
   1876     if (!Init) continue;
   1877     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
   1878                                         (double)Init->getSExtValue() :
   1879                                         (double)Init->getZExtValue());
   1880 
   1881     BinaryOperator *Incr =
   1882       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
   1883     if (!Incr) continue;
   1884     if (Incr->getOpcode() != Instruction::Add
   1885         && Incr->getOpcode() != Instruction::Sub)
   1886       continue;
   1887 
   1888     /* Initialize new IV, double d = 0.0 in above example. */
   1889     ConstantInt *C = nullptr;
   1890     if (Incr->getOperand(0) == PH)
   1891       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
   1892     else if (Incr->getOperand(1) == PH)
   1893       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
   1894     else
   1895       continue;
   1896 
   1897     if (!C) continue;
   1898 
   1899     // Ignore negative constants, as the code below doesn't handle them
   1900     // correctly. TODO: Remove this restriction.
   1901     if (!C->getValue().isStrictlyPositive()) continue;
   1902 
   1903     /* Add new PHINode. */
   1904     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
   1905 
   1906     /* create new increment. '++d' in above example. */
   1907     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
   1908     BinaryOperator *NewIncr =
   1909       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
   1910                                Instruction::FAdd : Instruction::FSub,
   1911                              NewPH, CFP, "IV.S.next.", Incr);
   1912 
   1913     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
   1914     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
   1915 
   1916     /* Remove cast operation */
   1917     ShadowUse->replaceAllUsesWith(NewPH);
   1918     ShadowUse->eraseFromParent();
   1919     Changed = true;
   1920     break;
   1921   }
   1922 }
   1923 
   1924 /// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
   1925 /// set the IV user and stride information and return true, otherwise return
   1926 /// false.
   1927 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
   1928   for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
   1929     if (UI->getUser() == Cond) {
   1930       // NOTE: we could handle setcc instructions with multiple uses here, but
   1931       // InstCombine does it as well for simple uses, it's not clear that it
   1932       // occurs enough in real life to handle.
   1933       CondUse = UI;
   1934       return true;
   1935     }
   1936   return false;
   1937 }
   1938 
   1939 /// OptimizeMax - Rewrite the loop's terminating condition if it uses
   1940 /// a max computation.
   1941 ///
   1942 /// This is a narrow solution to a specific, but acute, problem. For loops
   1943 /// like this:
   1944 ///
   1945 ///   i = 0;
   1946 ///   do {
   1947 ///     p[i] = 0.0;
   1948 ///   } while (++i < n);
   1949 ///
   1950 /// the trip count isn't just 'n', because 'n' might not be positive. And
   1951 /// unfortunately this can come up even for loops where the user didn't use
   1952 /// a C do-while loop. For example, seemingly well-behaved top-test loops
   1953 /// will commonly be lowered like this:
   1954 //
   1955 ///   if (n > 0) {
   1956 ///     i = 0;
   1957 ///     do {
   1958 ///       p[i] = 0.0;
   1959 ///     } while (++i < n);
   1960 ///   }
   1961 ///
   1962 /// and then it's possible for subsequent optimization to obscure the if
   1963 /// test in such a way that indvars can't find it.
   1964 ///
   1965 /// When indvars can't find the if test in loops like this, it creates a
   1966 /// max expression, which allows it to give the loop a canonical
   1967 /// induction variable:
   1968 ///
   1969 ///   i = 0;
   1970 ///   max = n < 1 ? 1 : n;
   1971 ///   do {
   1972 ///     p[i] = 0.0;
   1973 ///   } while (++i != max);
   1974 ///
   1975 /// Canonical induction variables are necessary because the loop passes
   1976 /// are designed around them. The most obvious example of this is the
   1977 /// LoopInfo analysis, which doesn't remember trip count values. It
   1978 /// expects to be able to rediscover the trip count each time it is
   1979 /// needed, and it does this using a simple analysis that only succeeds if
   1980 /// the loop has a canonical induction variable.
   1981 ///
   1982 /// However, when it comes time to generate code, the maximum operation
   1983 /// can be quite costly, especially if it's inside of an outer loop.
   1984 ///
   1985 /// This function solves this problem by detecting this type of loop and
   1986 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
   1987 /// the instructions for the maximum computation.
   1988 ///
   1989 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
   1990   // Check that the loop matches the pattern we're looking for.
   1991   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
   1992       Cond->getPredicate() != CmpInst::ICMP_NE)
   1993     return Cond;
   1994 
   1995   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
   1996   if (!Sel || !Sel->hasOneUse()) return Cond;
   1997 
   1998   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
   1999   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
   2000     return Cond;
   2001   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
   2002 
   2003   // Add one to the backedge-taken count to get the trip count.
   2004   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
   2005   if (IterationCount != SE.getSCEV(Sel)) return Cond;
   2006 
   2007   // Check for a max calculation that matches the pattern. There's no check
   2008   // for ICMP_ULE here because the comparison would be with zero, which
   2009   // isn't interesting.
   2010   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
   2011   const SCEVNAryExpr *Max = nullptr;
   2012   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
   2013     Pred = ICmpInst::ICMP_SLE;
   2014     Max = S;
   2015   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
   2016     Pred = ICmpInst::ICMP_SLT;
   2017     Max = S;
   2018   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
   2019     Pred = ICmpInst::ICMP_ULT;
   2020     Max = U;
   2021   } else {
   2022     // No match; bail.
   2023     return Cond;
   2024   }
   2025 
   2026   // To handle a max with more than two operands, this optimization would
   2027   // require additional checking and setup.
   2028   if (Max->getNumOperands() != 2)
   2029     return Cond;
   2030 
   2031   const SCEV *MaxLHS = Max->getOperand(0);
   2032   const SCEV *MaxRHS = Max->getOperand(1);
   2033 
   2034   // ScalarEvolution canonicalizes constants to the left. For < and >, look
   2035   // for a comparison with 1. For <= and >=, a comparison with zero.
   2036   if (!MaxLHS ||
   2037       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
   2038     return Cond;
   2039 
   2040   // Check the relevant induction variable for conformance to
   2041   // the pattern.
   2042   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
   2043   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
   2044   if (!AR || !AR->isAffine() ||
   2045       AR->getStart() != One ||
   2046       AR->getStepRecurrence(SE) != One)
   2047     return Cond;
   2048 
   2049   assert(AR->getLoop() == L &&
   2050          "Loop condition operand is an addrec in a different loop!");
   2051 
   2052   // Check the right operand of the select, and remember it, as it will
   2053   // be used in the new comparison instruction.
   2054   Value *NewRHS = nullptr;
   2055   if (ICmpInst::isTrueWhenEqual(Pred)) {
   2056     // Look for n+1, and grab n.
   2057     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
   2058       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
   2059          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
   2060            NewRHS = BO->getOperand(0);
   2061     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
   2062       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
   2063         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
   2064           NewRHS = BO->getOperand(0);
   2065     if (!NewRHS)
   2066       return Cond;
   2067   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
   2068     NewRHS = Sel->getOperand(1);
   2069   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
   2070     NewRHS = Sel->getOperand(2);
   2071   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
   2072     NewRHS = SU->getValue();
   2073   else
   2074     // Max doesn't match expected pattern.
   2075     return Cond;
   2076 
   2077   // Determine the new comparison opcode. It may be signed or unsigned,
   2078   // and the original comparison may be either equality or inequality.
   2079   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
   2080     Pred = CmpInst::getInversePredicate(Pred);
   2081 
   2082   // Ok, everything looks ok to change the condition into an SLT or SGE and
   2083   // delete the max calculation.
   2084   ICmpInst *NewCond =
   2085     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
   2086 
   2087   // Delete the max calculation instructions.
   2088   Cond->replaceAllUsesWith(NewCond);
   2089   CondUse->setUser(NewCond);
   2090   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
   2091   Cond->eraseFromParent();
   2092   Sel->eraseFromParent();
   2093   if (Cmp->use_empty())
   2094     Cmp->eraseFromParent();
   2095   return NewCond;
   2096 }
   2097 
   2098 /// OptimizeLoopTermCond - Change loop terminating condition to use the
   2099 /// postinc iv when possible.
   2100 void
   2101 LSRInstance::OptimizeLoopTermCond() {
   2102   SmallPtrSet<Instruction *, 4> PostIncs;
   2103 
   2104   BasicBlock *LatchBlock = L->getLoopLatch();
   2105   SmallVector<BasicBlock*, 8> ExitingBlocks;
   2106   L->getExitingBlocks(ExitingBlocks);
   2107 
   2108   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
   2109     BasicBlock *ExitingBlock = ExitingBlocks[i];
   2110 
   2111     // Get the terminating condition for the loop if possible.  If we
   2112     // can, we want to change it to use a post-incremented version of its
   2113     // induction variable, to allow coalescing the live ranges for the IV into
   2114     // one register value.
   2115 
   2116     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
   2117     if (!TermBr)
   2118       continue;
   2119     // FIXME: Overly conservative, termination condition could be an 'or' etc..
   2120     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
   2121       continue;
   2122 
   2123     // Search IVUsesByStride to find Cond's IVUse if there is one.
   2124     IVStrideUse *CondUse = nullptr;
   2125     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
   2126     if (!FindIVUserForCond(Cond, CondUse))
   2127       continue;
   2128 
   2129     // If the trip count is computed in terms of a max (due to ScalarEvolution
   2130     // being unable to find a sufficient guard, for example), change the loop
   2131     // comparison to use SLT or ULT instead of NE.
   2132     // One consequence of doing this now is that it disrupts the count-down
   2133     // optimization. That's not always a bad thing though, because in such
   2134     // cases it may still be worthwhile to avoid a max.
   2135     Cond = OptimizeMax(Cond, CondUse);
   2136 
   2137     // If this exiting block dominates the latch block, it may also use
   2138     // the post-inc value if it won't be shared with other uses.
   2139     // Check for dominance.
   2140     if (!DT.dominates(ExitingBlock, LatchBlock))
   2141       continue;
   2142 
   2143     // Conservatively avoid trying to use the post-inc value in non-latch
   2144     // exits if there may be pre-inc users in intervening blocks.
   2145     if (LatchBlock != ExitingBlock)
   2146       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
   2147         // Test if the use is reachable from the exiting block. This dominator
   2148         // query is a conservative approximation of reachability.
   2149         if (&*UI != CondUse &&
   2150             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
   2151           // Conservatively assume there may be reuse if the quotient of their
   2152           // strides could be a legal scale.
   2153           const SCEV *A = IU.getStride(*CondUse, L);
   2154           const SCEV *B = IU.getStride(*UI, L);
   2155           if (!A || !B) continue;
   2156           if (SE.getTypeSizeInBits(A->getType()) !=
   2157               SE.getTypeSizeInBits(B->getType())) {
   2158             if (SE.getTypeSizeInBits(A->getType()) >
   2159                 SE.getTypeSizeInBits(B->getType()))
   2160               B = SE.getSignExtendExpr(B, A->getType());
   2161             else
   2162               A = SE.getSignExtendExpr(A, B->getType());
   2163           }
   2164           if (const SCEVConstant *D =
   2165                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
   2166             const ConstantInt *C = D->getValue();
   2167             // Stride of one or negative one can have reuse with non-addresses.
   2168             if (C->isOne() || C->isAllOnesValue())
   2169               goto decline_post_inc;
   2170             // Avoid weird situations.
   2171             if (C->getValue().getMinSignedBits() >= 64 ||
   2172                 C->getValue().isMinSignedValue())
   2173               goto decline_post_inc;
   2174             // Check for possible scaled-address reuse.
   2175             Type *AccessTy = getAccessType(UI->getUser());
   2176             int64_t Scale = C->getSExtValue();
   2177             if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ nullptr,
   2178                                           /*BaseOffset=*/ 0,
   2179                                           /*HasBaseReg=*/ false, Scale))
   2180               goto decline_post_inc;
   2181             Scale = -Scale;
   2182             if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ nullptr,
   2183                                           /*BaseOffset=*/ 0,
   2184                                           /*HasBaseReg=*/ false, Scale))
   2185               goto decline_post_inc;
   2186           }
   2187         }
   2188 
   2189     DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
   2190                  << *Cond << '\n');
   2191 
   2192     // It's possible for the setcc instruction to be anywhere in the loop, and
   2193     // possible for it to have multiple users.  If it is not immediately before
   2194     // the exiting block branch, move it.
   2195     if (&*++BasicBlock::iterator(Cond) != TermBr) {
   2196       if (Cond->hasOneUse()) {
   2197         Cond->moveBefore(TermBr);
   2198       } else {
   2199         // Clone the terminating condition and insert into the loopend.
   2200         ICmpInst *OldCond = Cond;
   2201         Cond = cast<ICmpInst>(Cond->clone());
   2202         Cond->setName(L->getHeader()->getName() + ".termcond");
   2203         ExitingBlock->getInstList().insert(TermBr, Cond);
   2204 
   2205         // Clone the IVUse, as the old use still exists!
   2206         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
   2207         TermBr->replaceUsesOfWith(OldCond, Cond);
   2208       }
   2209     }
   2210 
   2211     // If we get to here, we know that we can transform the setcc instruction to
   2212     // use the post-incremented version of the IV, allowing us to coalesce the
   2213     // live ranges for the IV correctly.
   2214     CondUse->transformToPostInc(L);
   2215     Changed = true;
   2216 
   2217     PostIncs.insert(Cond);
   2218   decline_post_inc:;
   2219   }
   2220 
   2221   // Determine an insertion point for the loop induction variable increment. It
   2222   // must dominate all the post-inc comparisons we just set up, and it must
   2223   // dominate the loop latch edge.
   2224   IVIncInsertPos = L->getLoopLatch()->getTerminator();
   2225   for (Instruction *Inst : PostIncs) {
   2226     BasicBlock *BB =
   2227       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
   2228                                     Inst->getParent());
   2229     if (BB == Inst->getParent())
   2230       IVIncInsertPos = Inst;
   2231     else if (BB != IVIncInsertPos->getParent())
   2232       IVIncInsertPos = BB->getTerminator();
   2233   }
   2234 }
   2235 
   2236 /// reconcileNewOffset - Determine if the given use can accommodate a fixup
   2237 /// at the given offset and other details. If so, update the use and
   2238 /// return true.
   2239 bool
   2240 LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
   2241                                 LSRUse::KindType Kind, Type *AccessTy) {
   2242   int64_t NewMinOffset = LU.MinOffset;
   2243   int64_t NewMaxOffset = LU.MaxOffset;
   2244   Type *NewAccessTy = AccessTy;
   2245 
   2246   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
   2247   // something conservative, however this can pessimize in the case that one of
   2248   // the uses will have all its uses outside the loop, for example.
   2249   if (LU.Kind != Kind)
   2250     return false;
   2251 
   2252   // Check for a mismatched access type, and fall back conservatively as needed.
   2253   // TODO: Be less conservative when the type is similar and can use the same
   2254   // addressing modes.
   2255   if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
   2256     NewAccessTy = Type::getVoidTy(AccessTy->getContext());
   2257 
   2258   // Conservatively assume HasBaseReg is true for now.
   2259   if (NewOffset < LU.MinOffset) {
   2260     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
   2261                           LU.MaxOffset - NewOffset, HasBaseReg))
   2262       return false;
   2263     NewMinOffset = NewOffset;
   2264   } else if (NewOffset > LU.MaxOffset) {
   2265     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
   2266                           NewOffset - LU.MinOffset, HasBaseReg))
   2267       return false;
   2268     NewMaxOffset = NewOffset;
   2269   }
   2270 
   2271   // Update the use.
   2272   LU.MinOffset = NewMinOffset;
   2273   LU.MaxOffset = NewMaxOffset;
   2274   LU.AccessTy = NewAccessTy;
   2275   if (NewOffset != LU.Offsets.back())
   2276     LU.Offsets.push_back(NewOffset);
   2277   return true;
   2278 }
   2279 
   2280 /// getUse - Return an LSRUse index and an offset value for a fixup which
   2281 /// needs the given expression, with the given kind and optional access type.
   2282 /// Either reuse an existing use or create a new one, as needed.
   2283 std::pair<size_t, int64_t>
   2284 LSRInstance::getUse(const SCEV *&Expr,
   2285                     LSRUse::KindType Kind, Type *AccessTy) {
   2286   const SCEV *Copy = Expr;
   2287   int64_t Offset = ExtractImmediate(Expr, SE);
   2288 
   2289   // Basic uses can't accept any offset, for example.
   2290   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
   2291                         Offset, /*HasBaseReg=*/ true)) {
   2292     Expr = Copy;
   2293     Offset = 0;
   2294   }
   2295 
   2296   std::pair<UseMapTy::iterator, bool> P =
   2297     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
   2298   if (!P.second) {
   2299     // A use already existed with this base.
   2300     size_t LUIdx = P.first->second;
   2301     LSRUse &LU = Uses[LUIdx];
   2302     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
   2303       // Reuse this use.
   2304       return std::make_pair(LUIdx, Offset);
   2305   }
   2306 
   2307   // Create a new use.
   2308   size_t LUIdx = Uses.size();
   2309   P.first->second = LUIdx;
   2310   Uses.push_back(LSRUse(Kind, AccessTy));
   2311   LSRUse &LU = Uses[LUIdx];
   2312 
   2313   // We don't need to track redundant offsets, but we don't need to go out
   2314   // of our way here to avoid them.
   2315   if (LU.Offsets.empty() || Offset != LU.Offsets.back())
   2316     LU.Offsets.push_back(Offset);
   2317 
   2318   LU.MinOffset = Offset;
   2319   LU.MaxOffset = Offset;
   2320   return std::make_pair(LUIdx, Offset);
   2321 }
   2322 
   2323 /// DeleteUse - Delete the given use from the Uses list.
   2324 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
   2325   if (&LU != &Uses.back())
   2326     std::swap(LU, Uses.back());
   2327   Uses.pop_back();
   2328 
   2329   // Update RegUses.
   2330   RegUses.SwapAndDropUse(LUIdx, Uses.size());
   2331 }
   2332 
   2333 /// FindUseWithFormula - Look for a use distinct from OrigLU which is has
   2334 /// a formula that has the same registers as the given formula.
   2335 LSRUse *
   2336 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
   2337                                        const LSRUse &OrigLU) {
   2338   // Search all uses for the formula. This could be more clever.
   2339   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   2340     LSRUse &LU = Uses[LUIdx];
   2341     // Check whether this use is close enough to OrigLU, to see whether it's
   2342     // worthwhile looking through its formulae.
   2343     // Ignore ICmpZero uses because they may contain formulae generated by
   2344     // GenerateICmpZeroScales, in which case adding fixup offsets may
   2345     // be invalid.
   2346     if (&LU != &OrigLU &&
   2347         LU.Kind != LSRUse::ICmpZero &&
   2348         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
   2349         LU.WidestFixupType == OrigLU.WidestFixupType &&
   2350         LU.HasFormulaWithSameRegs(OrigF)) {
   2351       // Scan through this use's formulae.
   2352       for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
   2353            E = LU.Formulae.end(); I != E; ++I) {
   2354         const Formula &F = *I;
   2355         // Check to see if this formula has the same registers and symbols
   2356         // as OrigF.
   2357         if (F.BaseRegs == OrigF.BaseRegs &&
   2358             F.ScaledReg == OrigF.ScaledReg &&
   2359             F.BaseGV == OrigF.BaseGV &&
   2360             F.Scale == OrigF.Scale &&
   2361             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
   2362           if (F.BaseOffset == 0)
   2363             return &LU;
   2364           // This is the formula where all the registers and symbols matched;
   2365           // there aren't going to be any others. Since we declined it, we
   2366           // can skip the rest of the formulae and proceed to the next LSRUse.
   2367           break;
   2368         }
   2369       }
   2370     }
   2371   }
   2372 
   2373   // Nothing looked good.
   2374   return nullptr;
   2375 }
   2376 
   2377 void LSRInstance::CollectInterestingTypesAndFactors() {
   2378   SmallSetVector<const SCEV *, 4> Strides;
   2379 
   2380   // Collect interesting types and strides.
   2381   SmallVector<const SCEV *, 4> Worklist;
   2382   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
   2383     const SCEV *Expr = IU.getExpr(*UI);
   2384 
   2385     // Collect interesting types.
   2386     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
   2387 
   2388     // Add strides for mentioned loops.
   2389     Worklist.push_back(Expr);
   2390     do {
   2391       const SCEV *S = Worklist.pop_back_val();
   2392       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
   2393         if (AR->getLoop() == L)
   2394           Strides.insert(AR->getStepRecurrence(SE));
   2395         Worklist.push_back(AR->getStart());
   2396       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
   2397         Worklist.append(Add->op_begin(), Add->op_end());
   2398       }
   2399     } while (!Worklist.empty());
   2400   }
   2401 
   2402   // Compute interesting factors from the set of interesting strides.
   2403   for (SmallSetVector<const SCEV *, 4>::const_iterator
   2404        I = Strides.begin(), E = Strides.end(); I != E; ++I)
   2405     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
   2406          std::next(I); NewStrideIter != E; ++NewStrideIter) {
   2407       const SCEV *OldStride = *I;
   2408       const SCEV *NewStride = *NewStrideIter;
   2409 
   2410       if (SE.getTypeSizeInBits(OldStride->getType()) !=
   2411           SE.getTypeSizeInBits(NewStride->getType())) {
   2412         if (SE.getTypeSizeInBits(OldStride->getType()) >
   2413             SE.getTypeSizeInBits(NewStride->getType()))
   2414           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
   2415         else
   2416           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
   2417       }
   2418       if (const SCEVConstant *Factor =
   2419             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
   2420                                                         SE, true))) {
   2421         if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
   2422           Factors.insert(Factor->getValue()->getValue().getSExtValue());
   2423       } else if (const SCEVConstant *Factor =
   2424                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
   2425                                                                NewStride,
   2426                                                                SE, true))) {
   2427         if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
   2428           Factors.insert(Factor->getValue()->getValue().getSExtValue());
   2429       }
   2430     }
   2431 
   2432   // If all uses use the same type, don't bother looking for truncation-based
   2433   // reuse.
   2434   if (Types.size() == 1)
   2435     Types.clear();
   2436 
   2437   DEBUG(print_factors_and_types(dbgs()));
   2438 }
   2439 
   2440 /// findIVOperand - Helper for CollectChains that finds an IV operand (computed
   2441 /// by an AddRec in this loop) within [OI,OE) or returns OE. If IVUsers mapped
   2442 /// Instructions to IVStrideUses, we could partially skip this.
   2443 static User::op_iterator
   2444 findIVOperand(User::op_iterator OI, User::op_iterator OE,
   2445               Loop *L, ScalarEvolution &SE) {
   2446   for(; OI != OE; ++OI) {
   2447     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
   2448       if (!SE.isSCEVable(Oper->getType()))
   2449         continue;
   2450 
   2451       if (const SCEVAddRecExpr *AR =
   2452           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
   2453         if (AR->getLoop() == L)
   2454           break;
   2455       }
   2456     }
   2457   }
   2458   return OI;
   2459 }
   2460 
   2461 /// getWideOperand - IVChain logic must consistenctly peek base TruncInst
   2462 /// operands, so wrap it in a convenient helper.
   2463 static Value *getWideOperand(Value *Oper) {
   2464   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
   2465     return Trunc->getOperand(0);
   2466   return Oper;
   2467 }
   2468 
   2469 /// isCompatibleIVType - Return true if we allow an IV chain to include both
   2470 /// types.
   2471 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
   2472   Type *LType = LVal->getType();
   2473   Type *RType = RVal->getType();
   2474   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy());
   2475 }
   2476 
   2477 /// getExprBase - Return an approximation of this SCEV expression's "base", or
   2478 /// NULL for any constant. Returning the expression itself is
   2479 /// conservative. Returning a deeper subexpression is more precise and valid as
   2480 /// long as it isn't less complex than another subexpression. For expressions
   2481 /// involving multiple unscaled values, we need to return the pointer-type
   2482 /// SCEVUnknown. This avoids forming chains across objects, such as:
   2483 /// PrevOper==a[i], IVOper==b[i], IVInc==b-a.
   2484 ///
   2485 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
   2486 /// SCEVUnknown, we simply return the rightmost SCEV operand.
   2487 static const SCEV *getExprBase(const SCEV *S) {
   2488   switch (S->getSCEVType()) {
   2489   default: // uncluding scUnknown.
   2490     return S;
   2491   case scConstant:
   2492     return nullptr;
   2493   case scTruncate:
   2494     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
   2495   case scZeroExtend:
   2496     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
   2497   case scSignExtend:
   2498     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
   2499   case scAddExpr: {
   2500     // Skip over scaled operands (scMulExpr) to follow add operands as long as
   2501     // there's nothing more complex.
   2502     // FIXME: not sure if we want to recognize negation.
   2503     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
   2504     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
   2505            E(Add->op_begin()); I != E; ++I) {
   2506       const SCEV *SubExpr = *I;
   2507       if (SubExpr->getSCEVType() == scAddExpr)
   2508         return getExprBase(SubExpr);
   2509 
   2510       if (SubExpr->getSCEVType() != scMulExpr)
   2511         return SubExpr;
   2512     }
   2513     return S; // all operands are scaled, be conservative.
   2514   }
   2515   case scAddRecExpr:
   2516     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
   2517   }
   2518 }
   2519 
   2520 /// Return true if the chain increment is profitable to expand into a loop
   2521 /// invariant value, which may require its own register. A profitable chain
   2522 /// increment will be an offset relative to the same base. We allow such offsets
   2523 /// to potentially be used as chain increment as long as it's not obviously
   2524 /// expensive to expand using real instructions.
   2525 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
   2526                                     const SCEV *IncExpr,
   2527                                     ScalarEvolution &SE) {
   2528   // Aggressively form chains when -stress-ivchain.
   2529   if (StressIVChain)
   2530     return true;
   2531 
   2532   // Do not replace a constant offset from IV head with a nonconstant IV
   2533   // increment.
   2534   if (!isa<SCEVConstant>(IncExpr)) {
   2535     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
   2536     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
   2537       return 0;
   2538   }
   2539 
   2540   SmallPtrSet<const SCEV*, 8> Processed;
   2541   return !isHighCostExpansion(IncExpr, Processed, SE);
   2542 }
   2543 
   2544 /// Return true if the number of registers needed for the chain is estimated to
   2545 /// be less than the number required for the individual IV users. First prohibit
   2546 /// any IV users that keep the IV live across increments (the Users set should
   2547 /// be empty). Next count the number and type of increments in the chain.
   2548 ///
   2549 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
   2550 /// effectively use postinc addressing modes. Only consider it profitable it the
   2551 /// increments can be computed in fewer registers when chained.
   2552 ///
   2553 /// TODO: Consider IVInc free if it's already used in another chains.
   2554 static bool
   2555 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users,
   2556                   ScalarEvolution &SE, const TargetTransformInfo &TTI) {
   2557   if (StressIVChain)
   2558     return true;
   2559 
   2560   if (!Chain.hasIncs())
   2561     return false;
   2562 
   2563   if (!Users.empty()) {
   2564     DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
   2565           for (Instruction *Inst : Users) {
   2566             dbgs() << "  " << *Inst << "\n";
   2567           });
   2568     return false;
   2569   }
   2570   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
   2571 
   2572   // The chain itself may require a register, so intialize cost to 1.
   2573   int cost = 1;
   2574 
   2575   // A complete chain likely eliminates the need for keeping the original IV in
   2576   // a register. LSR does not currently know how to form a complete chain unless
   2577   // the header phi already exists.
   2578   if (isa<PHINode>(Chain.tailUserInst())
   2579       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
   2580     --cost;
   2581   }
   2582   const SCEV *LastIncExpr = nullptr;
   2583   unsigned NumConstIncrements = 0;
   2584   unsigned NumVarIncrements = 0;
   2585   unsigned NumReusedIncrements = 0;
   2586   for (IVChain::const_iterator I = Chain.begin(), E = Chain.end();
   2587        I != E; ++I) {
   2588 
   2589     if (I->IncExpr->isZero())
   2590       continue;
   2591 
   2592     // Incrementing by zero or some constant is neutral. We assume constants can
   2593     // be folded into an addressing mode or an add's immediate operand.
   2594     if (isa<SCEVConstant>(I->IncExpr)) {
   2595       ++NumConstIncrements;
   2596       continue;
   2597     }
   2598 
   2599     if (I->IncExpr == LastIncExpr)
   2600       ++NumReusedIncrements;
   2601     else
   2602       ++NumVarIncrements;
   2603 
   2604     LastIncExpr = I->IncExpr;
   2605   }
   2606   // An IV chain with a single increment is handled by LSR's postinc
   2607   // uses. However, a chain with multiple increments requires keeping the IV's
   2608   // value live longer than it needs to be if chained.
   2609   if (NumConstIncrements > 1)
   2610     --cost;
   2611 
   2612   // Materializing increment expressions in the preheader that didn't exist in
   2613   // the original code may cost a register. For example, sign-extended array
   2614   // indices can produce ridiculous increments like this:
   2615   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
   2616   cost += NumVarIncrements;
   2617 
   2618   // Reusing variable increments likely saves a register to hold the multiple of
   2619   // the stride.
   2620   cost -= NumReusedIncrements;
   2621 
   2622   DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
   2623                << "\n");
   2624 
   2625   return cost < 0;
   2626 }
   2627 
   2628 /// ChainInstruction - Add this IV user to an existing chain or make it the head
   2629 /// of a new chain.
   2630 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
   2631                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
   2632   // When IVs are used as types of varying widths, they are generally converted
   2633   // to a wider type with some uses remaining narrow under a (free) trunc.
   2634   Value *const NextIV = getWideOperand(IVOper);
   2635   const SCEV *const OperExpr = SE.getSCEV(NextIV);
   2636   const SCEV *const OperExprBase = getExprBase(OperExpr);
   2637 
   2638   // Visit all existing chains. Check if its IVOper can be computed as a
   2639   // profitable loop invariant increment from the last link in the Chain.
   2640   unsigned ChainIdx = 0, NChains = IVChainVec.size();
   2641   const SCEV *LastIncExpr = nullptr;
   2642   for (; ChainIdx < NChains; ++ChainIdx) {
   2643     IVChain &Chain = IVChainVec[ChainIdx];
   2644 
   2645     // Prune the solution space aggressively by checking that both IV operands
   2646     // are expressions that operate on the same unscaled SCEVUnknown. This
   2647     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
   2648     // first avoids creating extra SCEV expressions.
   2649     if (!StressIVChain && Chain.ExprBase != OperExprBase)
   2650       continue;
   2651 
   2652     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
   2653     if (!isCompatibleIVType(PrevIV, NextIV))
   2654       continue;
   2655 
   2656     // A phi node terminates a chain.
   2657     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
   2658       continue;
   2659 
   2660     // The increment must be loop-invariant so it can be kept in a register.
   2661     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
   2662     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
   2663     if (!SE.isLoopInvariant(IncExpr, L))
   2664       continue;
   2665 
   2666     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
   2667       LastIncExpr = IncExpr;
   2668       break;
   2669     }
   2670   }
   2671   // If we haven't found a chain, create a new one, unless we hit the max. Don't
   2672   // bother for phi nodes, because they must be last in the chain.
   2673   if (ChainIdx == NChains) {
   2674     if (isa<PHINode>(UserInst))
   2675       return;
   2676     if (NChains >= MaxChains && !StressIVChain) {
   2677       DEBUG(dbgs() << "IV Chain Limit\n");
   2678       return;
   2679     }
   2680     LastIncExpr = OperExpr;
   2681     // IVUsers may have skipped over sign/zero extensions. We don't currently
   2682     // attempt to form chains involving extensions unless they can be hoisted
   2683     // into this loop's AddRec.
   2684     if (!isa<SCEVAddRecExpr>(LastIncExpr))
   2685       return;
   2686     ++NChains;
   2687     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
   2688                                  OperExprBase));
   2689     ChainUsersVec.resize(NChains);
   2690     DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
   2691                  << ") IV=" << *LastIncExpr << "\n");
   2692   } else {
   2693     DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
   2694                  << ") IV+" << *LastIncExpr << "\n");
   2695     // Add this IV user to the end of the chain.
   2696     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
   2697   }
   2698   IVChain &Chain = IVChainVec[ChainIdx];
   2699 
   2700   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
   2701   // This chain's NearUsers become FarUsers.
   2702   if (!LastIncExpr->isZero()) {
   2703     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
   2704                                             NearUsers.end());
   2705     NearUsers.clear();
   2706   }
   2707 
   2708   // All other uses of IVOperand become near uses of the chain.
   2709   // We currently ignore intermediate values within SCEV expressions, assuming
   2710   // they will eventually be used be the current chain, or can be computed
   2711   // from one of the chain increments. To be more precise we could
   2712   // transitively follow its user and only add leaf IV users to the set.
   2713   for (User *U : IVOper->users()) {
   2714     Instruction *OtherUse = dyn_cast<Instruction>(U);
   2715     if (!OtherUse)
   2716       continue;
   2717     // Uses in the chain will no longer be uses if the chain is formed.
   2718     // Include the head of the chain in this iteration (not Chain.begin()).
   2719     IVChain::const_iterator IncIter = Chain.Incs.begin();
   2720     IVChain::const_iterator IncEnd = Chain.Incs.end();
   2721     for( ; IncIter != IncEnd; ++IncIter) {
   2722       if (IncIter->UserInst == OtherUse)
   2723         break;
   2724     }
   2725     if (IncIter != IncEnd)
   2726       continue;
   2727 
   2728     if (SE.isSCEVable(OtherUse->getType())
   2729         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
   2730         && IU.isIVUserOrOperand(OtherUse)) {
   2731       continue;
   2732     }
   2733     NearUsers.insert(OtherUse);
   2734   }
   2735 
   2736   // Since this user is part of the chain, it's no longer considered a use
   2737   // of the chain.
   2738   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
   2739 }
   2740 
   2741 /// CollectChains - Populate the vector of Chains.
   2742 ///
   2743 /// This decreases ILP at the architecture level. Targets with ample registers,
   2744 /// multiple memory ports, and no register renaming probably don't want
   2745 /// this. However, such targets should probably disable LSR altogether.
   2746 ///
   2747 /// The job of LSR is to make a reasonable choice of induction variables across
   2748 /// the loop. Subsequent passes can easily "unchain" computation exposing more
   2749 /// ILP *within the loop* if the target wants it.
   2750 ///
   2751 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
   2752 /// will not reorder memory operations, it will recognize this as a chain, but
   2753 /// will generate redundant IV increments. Ideally this would be corrected later
   2754 /// by a smart scheduler:
   2755 ///        = A[i]
   2756 ///        = A[i+x]
   2757 /// A[i]   =
   2758 /// A[i+x] =
   2759 ///
   2760 /// TODO: Walk the entire domtree within this loop, not just the path to the
   2761 /// loop latch. This will discover chains on side paths, but requires
   2762 /// maintaining multiple copies of the Chains state.
   2763 void LSRInstance::CollectChains() {
   2764   DEBUG(dbgs() << "Collecting IV Chains.\n");
   2765   SmallVector<ChainUsers, 8> ChainUsersVec;
   2766 
   2767   SmallVector<BasicBlock *,8> LatchPath;
   2768   BasicBlock *LoopHeader = L->getHeader();
   2769   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
   2770        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
   2771     LatchPath.push_back(Rung->getBlock());
   2772   }
   2773   LatchPath.push_back(LoopHeader);
   2774 
   2775   // Walk the instruction stream from the loop header to the loop latch.
   2776   for (SmallVectorImpl<BasicBlock *>::reverse_iterator
   2777          BBIter = LatchPath.rbegin(), BBEnd = LatchPath.rend();
   2778        BBIter != BBEnd; ++BBIter) {
   2779     for (BasicBlock::iterator I = (*BBIter)->begin(), E = (*BBIter)->end();
   2780          I != E; ++I) {
   2781       // Skip instructions that weren't seen by IVUsers analysis.
   2782       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(I))
   2783         continue;
   2784 
   2785       // Ignore users that are part of a SCEV expression. This way we only
   2786       // consider leaf IV Users. This effectively rediscovers a portion of
   2787       // IVUsers analysis but in program order this time.
   2788       if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(I)))
   2789         continue;
   2790 
   2791       // Remove this instruction from any NearUsers set it may be in.
   2792       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
   2793            ChainIdx < NChains; ++ChainIdx) {
   2794         ChainUsersVec[ChainIdx].NearUsers.erase(I);
   2795       }
   2796       // Search for operands that can be chained.
   2797       SmallPtrSet<Instruction*, 4> UniqueOperands;
   2798       User::op_iterator IVOpEnd = I->op_end();
   2799       User::op_iterator IVOpIter = findIVOperand(I->op_begin(), IVOpEnd, L, SE);
   2800       while (IVOpIter != IVOpEnd) {
   2801         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
   2802         if (UniqueOperands.insert(IVOpInst).second)
   2803           ChainInstruction(I, IVOpInst, ChainUsersVec);
   2804         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
   2805       }
   2806     } // Continue walking down the instructions.
   2807   } // Continue walking down the domtree.
   2808   // Visit phi backedges to determine if the chain can generate the IV postinc.
   2809   for (BasicBlock::iterator I = L->getHeader()->begin();
   2810        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
   2811     if (!SE.isSCEVable(PN->getType()))
   2812       continue;
   2813 
   2814     Instruction *IncV =
   2815       dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
   2816     if (IncV)
   2817       ChainInstruction(PN, IncV, ChainUsersVec);
   2818   }
   2819   // Remove any unprofitable chains.
   2820   unsigned ChainIdx = 0;
   2821   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
   2822        UsersIdx < NChains; ++UsersIdx) {
   2823     if (!isProfitableChain(IVChainVec[UsersIdx],
   2824                            ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
   2825       continue;
   2826     // Preserve the chain at UsesIdx.
   2827     if (ChainIdx != UsersIdx)
   2828       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
   2829     FinalizeChain(IVChainVec[ChainIdx]);
   2830     ++ChainIdx;
   2831   }
   2832   IVChainVec.resize(ChainIdx);
   2833 }
   2834 
   2835 void LSRInstance::FinalizeChain(IVChain &Chain) {
   2836   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
   2837   DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
   2838 
   2839   for (IVChain::const_iterator I = Chain.begin(), E = Chain.end();
   2840        I != E; ++I) {
   2841     DEBUG(dbgs() << "        Inc: " << *I->UserInst << "\n");
   2842     User::op_iterator UseI =
   2843       std::find(I->UserInst->op_begin(), I->UserInst->op_end(), I->IVOperand);
   2844     assert(UseI != I->UserInst->op_end() && "cannot find IV operand");
   2845     IVIncSet.insert(UseI);
   2846   }
   2847 }
   2848 
   2849 /// Return true if the IVInc can be folded into an addressing mode.
   2850 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
   2851                              Value *Operand, const TargetTransformInfo &TTI) {
   2852   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
   2853   if (!IncConst || !isAddressUse(UserInst, Operand))
   2854     return false;
   2855 
   2856   if (IncConst->getValue()->getValue().getMinSignedBits() > 64)
   2857     return false;
   2858 
   2859   int64_t IncOffset = IncConst->getValue()->getSExtValue();
   2860   if (!isAlwaysFoldable(TTI, LSRUse::Address,
   2861                         getAccessType(UserInst), /*BaseGV=*/ nullptr,
   2862                         IncOffset, /*HaseBaseReg=*/ false))
   2863     return false;
   2864 
   2865   return true;
   2866 }
   2867 
   2868 /// GenerateIVChains - Generate an add or subtract for each IVInc in a chain to
   2869 /// materialize the IV user's operand from the previous IV user's operand.
   2870 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
   2871                                   SmallVectorImpl<WeakVH> &DeadInsts) {
   2872   // Find the new IVOperand for the head of the chain. It may have been replaced
   2873   // by LSR.
   2874   const IVInc &Head = Chain.Incs[0];
   2875   User::op_iterator IVOpEnd = Head.UserInst->op_end();
   2876   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
   2877   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
   2878                                              IVOpEnd, L, SE);
   2879   Value *IVSrc = nullptr;
   2880   while (IVOpIter != IVOpEnd) {
   2881     IVSrc = getWideOperand(*IVOpIter);
   2882 
   2883     // If this operand computes the expression that the chain needs, we may use
   2884     // it. (Check this after setting IVSrc which is used below.)
   2885     //
   2886     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
   2887     // narrow for the chain, so we can no longer use it. We do allow using a
   2888     // wider phi, assuming the LSR checked for free truncation. In that case we
   2889     // should already have a truncate on this operand such that
   2890     // getSCEV(IVSrc) == IncExpr.
   2891     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
   2892         || SE.getSCEV(IVSrc) == Head.IncExpr) {
   2893       break;
   2894     }
   2895     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
   2896   }
   2897   if (IVOpIter == IVOpEnd) {
   2898     // Gracefully give up on this chain.
   2899     DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
   2900     return;
   2901   }
   2902 
   2903   DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
   2904   Type *IVTy = IVSrc->getType();
   2905   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
   2906   const SCEV *LeftOverExpr = nullptr;
   2907   for (IVChain::const_iterator IncI = Chain.begin(),
   2908          IncE = Chain.end(); IncI != IncE; ++IncI) {
   2909 
   2910     Instruction *InsertPt = IncI->UserInst;
   2911     if (isa<PHINode>(InsertPt))
   2912       InsertPt = L->getLoopLatch()->getTerminator();
   2913 
   2914     // IVOper will replace the current IV User's operand. IVSrc is the IV
   2915     // value currently held in a register.
   2916     Value *IVOper = IVSrc;
   2917     if (!IncI->IncExpr->isZero()) {
   2918       // IncExpr was the result of subtraction of two narrow values, so must
   2919       // be signed.
   2920       const SCEV *IncExpr = SE.getNoopOrSignExtend(IncI->IncExpr, IntTy);
   2921       LeftOverExpr = LeftOverExpr ?
   2922         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
   2923     }
   2924     if (LeftOverExpr && !LeftOverExpr->isZero()) {
   2925       // Expand the IV increment.
   2926       Rewriter.clearPostInc();
   2927       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
   2928       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
   2929                                              SE.getUnknown(IncV));
   2930       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
   2931 
   2932       // If an IV increment can't be folded, use it as the next IV value.
   2933       if (!canFoldIVIncExpr(LeftOverExpr, IncI->UserInst, IncI->IVOperand,
   2934                             TTI)) {
   2935         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
   2936         IVSrc = IVOper;
   2937         LeftOverExpr = nullptr;
   2938       }
   2939     }
   2940     Type *OperTy = IncI->IVOperand->getType();
   2941     if (IVTy != OperTy) {
   2942       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
   2943              "cannot extend a chained IV");
   2944       IRBuilder<> Builder(InsertPt);
   2945       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
   2946     }
   2947     IncI->UserInst->replaceUsesOfWith(IncI->IVOperand, IVOper);
   2948     DeadInsts.push_back(IncI->IVOperand);
   2949   }
   2950   // If LSR created a new, wider phi, we may also replace its postinc. We only
   2951   // do this if we also found a wide value for the head of the chain.
   2952   if (isa<PHINode>(Chain.tailUserInst())) {
   2953     for (BasicBlock::iterator I = L->getHeader()->begin();
   2954          PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
   2955       if (!isCompatibleIVType(Phi, IVSrc))
   2956         continue;
   2957       Instruction *PostIncV = dyn_cast<Instruction>(
   2958         Phi->getIncomingValueForBlock(L->getLoopLatch()));
   2959       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
   2960         continue;
   2961       Value *IVOper = IVSrc;
   2962       Type *PostIncTy = PostIncV->getType();
   2963       if (IVTy != PostIncTy) {
   2964         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
   2965         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
   2966         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
   2967         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
   2968       }
   2969       Phi->replaceUsesOfWith(PostIncV, IVOper);
   2970       DeadInsts.push_back(PostIncV);
   2971     }
   2972   }
   2973 }
   2974 
   2975 void LSRInstance::CollectFixupsAndInitialFormulae() {
   2976   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
   2977     Instruction *UserInst = UI->getUser();
   2978     // Skip IV users that are part of profitable IV Chains.
   2979     User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(),
   2980                                        UI->getOperandValToReplace());
   2981     assert(UseI != UserInst->op_end() && "cannot find IV operand");
   2982     if (IVIncSet.count(UseI))
   2983       continue;
   2984 
   2985     // Record the uses.
   2986     LSRFixup &LF = getNewFixup();
   2987     LF.UserInst = UserInst;
   2988     LF.OperandValToReplace = UI->getOperandValToReplace();
   2989     LF.PostIncLoops = UI->getPostIncLoops();
   2990 
   2991     LSRUse::KindType Kind = LSRUse::Basic;
   2992     Type *AccessTy = nullptr;
   2993     if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
   2994       Kind = LSRUse::Address;
   2995       AccessTy = getAccessType(LF.UserInst);
   2996     }
   2997 
   2998     const SCEV *S = IU.getExpr(*UI);
   2999 
   3000     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
   3001     // (N - i == 0), and this allows (N - i) to be the expression that we work
   3002     // with rather than just N or i, so we can consider the register
   3003     // requirements for both N and i at the same time. Limiting this code to
   3004     // equality icmps is not a problem because all interesting loops use
   3005     // equality icmps, thanks to IndVarSimplify.
   3006     if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
   3007       if (CI->isEquality()) {
   3008         // Swap the operands if needed to put the OperandValToReplace on the
   3009         // left, for consistency.
   3010         Value *NV = CI->getOperand(1);
   3011         if (NV == LF.OperandValToReplace) {
   3012           CI->setOperand(1, CI->getOperand(0));
   3013           CI->setOperand(0, NV);
   3014           NV = CI->getOperand(1);
   3015           Changed = true;
   3016         }
   3017 
   3018         // x == y  -->  x - y == 0
   3019         const SCEV *N = SE.getSCEV(NV);
   3020         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
   3021           // S is normalized, so normalize N before folding it into S
   3022           // to keep the result normalized.
   3023           N = TransformForPostIncUse(Normalize, N, CI, nullptr,
   3024                                      LF.PostIncLoops, SE, DT);
   3025           Kind = LSRUse::ICmpZero;
   3026           S = SE.getMinusSCEV(N, S);
   3027         }
   3028 
   3029         // -1 and the negations of all interesting strides (except the negation
   3030         // of -1) are now also interesting.
   3031         for (size_t i = 0, e = Factors.size(); i != e; ++i)
   3032           if (Factors[i] != -1)
   3033             Factors.insert(-(uint64_t)Factors[i]);
   3034         Factors.insert(-1);
   3035       }
   3036 
   3037     // Set up the initial formula for this use.
   3038     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
   3039     LF.LUIdx = P.first;
   3040     LF.Offset = P.second;
   3041     LSRUse &LU = Uses[LF.LUIdx];
   3042     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
   3043     if (!LU.WidestFixupType ||
   3044         SE.getTypeSizeInBits(LU.WidestFixupType) <
   3045         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
   3046       LU.WidestFixupType = LF.OperandValToReplace->getType();
   3047 
   3048     // If this is the first use of this LSRUse, give it a formula.
   3049     if (LU.Formulae.empty()) {
   3050       InsertInitialFormula(S, LU, LF.LUIdx);
   3051       CountRegisters(LU.Formulae.back(), LF.LUIdx);
   3052     }
   3053   }
   3054 
   3055   DEBUG(print_fixups(dbgs()));
   3056 }
   3057 
   3058 /// InsertInitialFormula - Insert a formula for the given expression into
   3059 /// the given use, separating out loop-variant portions from loop-invariant
   3060 /// and loop-computable portions.
   3061 void
   3062 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
   3063   // Mark uses whose expressions cannot be expanded.
   3064   if (!isSafeToExpand(S, SE))
   3065     LU.RigidFormula = true;
   3066 
   3067   Formula F;
   3068   F.InitialMatch(S, L, SE);
   3069   bool Inserted = InsertFormula(LU, LUIdx, F);
   3070   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
   3071 }
   3072 
   3073 /// InsertSupplementalFormula - Insert a simple single-register formula for
   3074 /// the given expression into the given use.
   3075 void
   3076 LSRInstance::InsertSupplementalFormula(const SCEV *S,
   3077                                        LSRUse &LU, size_t LUIdx) {
   3078   Formula F;
   3079   F.BaseRegs.push_back(S);
   3080   F.HasBaseReg = true;
   3081   bool Inserted = InsertFormula(LU, LUIdx, F);
   3082   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
   3083 }
   3084 
   3085 /// CountRegisters - Note which registers are used by the given formula,
   3086 /// updating RegUses.
   3087 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
   3088   if (F.ScaledReg)
   3089     RegUses.CountRegister(F.ScaledReg, LUIdx);
   3090   for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
   3091        E = F.BaseRegs.end(); I != E; ++I)
   3092     RegUses.CountRegister(*I, LUIdx);
   3093 }
   3094 
   3095 /// InsertFormula - If the given formula has not yet been inserted, add it to
   3096 /// the list, and return true. Return false otherwise.
   3097 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
   3098   // Do not insert formula that we will not be able to expand.
   3099   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
   3100          "Formula is illegal");
   3101   if (!LU.InsertFormula(F))
   3102     return false;
   3103 
   3104   CountRegisters(F, LUIdx);
   3105   return true;
   3106 }
   3107 
   3108 /// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
   3109 /// loop-invariant values which we're tracking. These other uses will pin these
   3110 /// values in registers, making them less profitable for elimination.
   3111 /// TODO: This currently misses non-constant addrec step registers.
   3112 /// TODO: Should this give more weight to users inside the loop?
   3113 void
   3114 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
   3115   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
   3116   SmallPtrSet<const SCEV *, 32> Visited;
   3117 
   3118   while (!Worklist.empty()) {
   3119     const SCEV *S = Worklist.pop_back_val();
   3120 
   3121     // Don't process the same SCEV twice
   3122     if (!Visited.insert(S).second)
   3123       continue;
   3124 
   3125     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
   3126       Worklist.append(N->op_begin(), N->op_end());
   3127     else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
   3128       Worklist.push_back(C->getOperand());
   3129     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
   3130       Worklist.push_back(D->getLHS());
   3131       Worklist.push_back(D->getRHS());
   3132     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
   3133       const Value *V = US->getValue();
   3134       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
   3135         // Look for instructions defined outside the loop.
   3136         if (L->contains(Inst)) continue;
   3137       } else if (isa<UndefValue>(V))
   3138         // Undef doesn't have a live range, so it doesn't matter.
   3139         continue;
   3140       for (const Use &U : V->uses()) {
   3141         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
   3142         // Ignore non-instructions.
   3143         if (!UserInst)
   3144           continue;
   3145         // Ignore instructions in other functions (as can happen with
   3146         // Constants).
   3147         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
   3148           continue;
   3149         // Ignore instructions not dominated by the loop.
   3150         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
   3151           UserInst->getParent() :
   3152           cast<PHINode>(UserInst)->getIncomingBlock(
   3153             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
   3154         if (!DT.dominates(L->getHeader(), UseBB))
   3155           continue;
   3156         // Ignore uses which are part of other SCEV expressions, to avoid
   3157         // analyzing them multiple times.
   3158         if (SE.isSCEVable(UserInst->getType())) {
   3159           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
   3160           // If the user is a no-op, look through to its uses.
   3161           if (!isa<SCEVUnknown>(UserS))
   3162             continue;
   3163           if (UserS == US) {
   3164             Worklist.push_back(
   3165               SE.getUnknown(const_cast<Instruction *>(UserInst)));
   3166             continue;
   3167           }
   3168         }
   3169         // Ignore icmp instructions which are already being analyzed.
   3170         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
   3171           unsigned OtherIdx = !U.getOperandNo();
   3172           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
   3173           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
   3174             continue;
   3175         }
   3176 
   3177         LSRFixup &LF = getNewFixup();
   3178         LF.UserInst = const_cast<Instruction *>(UserInst);
   3179         LF.OperandValToReplace = U;
   3180         std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, nullptr);
   3181         LF.LUIdx = P.first;
   3182         LF.Offset = P.second;
   3183         LSRUse &LU = Uses[LF.LUIdx];
   3184         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
   3185         if (!LU.WidestFixupType ||
   3186             SE.getTypeSizeInBits(LU.WidestFixupType) <
   3187             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
   3188           LU.WidestFixupType = LF.OperandValToReplace->getType();
   3189         InsertSupplementalFormula(US, LU, LF.LUIdx);
   3190         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
   3191         break;
   3192       }
   3193     }
   3194   }
   3195 }
   3196 
   3197 /// CollectSubexprs - Split S into subexpressions which can be pulled out into
   3198 /// separate registers. If C is non-null, multiply each subexpression by C.
   3199 ///
   3200 /// Return remainder expression after factoring the subexpressions captured by
   3201 /// Ops. If Ops is complete, return NULL.
   3202 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
   3203                                    SmallVectorImpl<const SCEV *> &Ops,
   3204                                    const Loop *L,
   3205                                    ScalarEvolution &SE,
   3206                                    unsigned Depth = 0) {
   3207   // Arbitrarily cap recursion to protect compile time.
   3208   if (Depth >= 3)
   3209     return S;
   3210 
   3211   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
   3212     // Break out add operands.
   3213     for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
   3214          I != E; ++I) {
   3215       const SCEV *Remainder = CollectSubexprs(*I, C, Ops, L, SE, Depth+1);
   3216       if (Remainder)
   3217         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
   3218     }
   3219     return nullptr;
   3220   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
   3221     // Split a non-zero base out of an addrec.
   3222     if (AR->getStart()->isZero())
   3223       return S;
   3224 
   3225     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
   3226                                             C, Ops, L, SE, Depth+1);
   3227     // Split the non-zero AddRec unless it is part of a nested recurrence that
   3228     // does not pertain to this loop.
   3229     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
   3230       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
   3231       Remainder = nullptr;
   3232     }
   3233     if (Remainder != AR->getStart()) {
   3234       if (!Remainder)
   3235         Remainder = SE.getConstant(AR->getType(), 0);
   3236       return SE.getAddRecExpr(Remainder,
   3237                               AR->getStepRecurrence(SE),
   3238                               AR->getLoop(),
   3239                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
   3240                               SCEV::FlagAnyWrap);
   3241     }
   3242   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
   3243     // Break (C * (a + b + c)) into C*a + C*b + C*c.
   3244     if (Mul->getNumOperands() != 2)
   3245       return S;
   3246     if (const SCEVConstant *Op0 =
   3247         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
   3248       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
   3249       const SCEV *Remainder =
   3250         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
   3251       if (Remainder)
   3252         Ops.push_back(SE.getMulExpr(C, Remainder));
   3253       return nullptr;
   3254     }
   3255   }
   3256   return S;
   3257 }
   3258 
   3259 /// \brief Helper function for LSRInstance::GenerateReassociations.
   3260 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
   3261                                              const Formula &Base,
   3262                                              unsigned Depth, size_t Idx,
   3263                                              bool IsScaledReg) {
   3264   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
   3265   SmallVector<const SCEV *, 8> AddOps;
   3266   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
   3267   if (Remainder)
   3268     AddOps.push_back(Remainder);
   3269 
   3270   if (AddOps.size() == 1)
   3271     return;
   3272 
   3273   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
   3274                                                      JE = AddOps.end();
   3275        J != JE; ++J) {
   3276 
   3277     // Loop-variant "unknown" values are uninteresting; we won't be able to
   3278     // do anything meaningful with them.
   3279     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
   3280       continue;
   3281 
   3282     // Don't pull a constant into a register if the constant could be folded
   3283     // into an immediate field.
   3284     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
   3285                          LU.AccessTy, *J, Base.getNumRegs() > 1))
   3286       continue;
   3287 
   3288     // Collect all operands except *J.
   3289     SmallVector<const SCEV *, 8> InnerAddOps(
   3290         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
   3291     InnerAddOps.append(std::next(J),
   3292                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
   3293 
   3294     // Don't leave just a constant behind in a register if the constant could
   3295     // be folded into an immediate field.
   3296     if (InnerAddOps.size() == 1 &&
   3297         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
   3298                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
   3299       continue;
   3300 
   3301     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
   3302     if (InnerSum->isZero())
   3303       continue;
   3304     Formula F = Base;
   3305 
   3306     // Add the remaining pieces of the add back into the new formula.
   3307     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
   3308     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
   3309         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
   3310                                 InnerSumSC->getValue()->getZExtValue())) {
   3311       F.UnfoldedOffset =
   3312           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
   3313       if (IsScaledReg)
   3314         F.ScaledReg = nullptr;
   3315       else
   3316         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
   3317     } else if (IsScaledReg)
   3318       F.ScaledReg = InnerSum;
   3319     else
   3320       F.BaseRegs[Idx] = InnerSum;
   3321 
   3322     // Add J as its own register, or an unfolded immediate.
   3323     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
   3324     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
   3325         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
   3326                                 SC->getValue()->getZExtValue()))
   3327       F.UnfoldedOffset =
   3328           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
   3329     else
   3330       F.BaseRegs.push_back(*J);
   3331     // We may have changed the number of register in base regs, adjust the
   3332     // formula accordingly.
   3333     F.Canonicalize();
   3334 
   3335     if (InsertFormula(LU, LUIdx, F))
   3336       // If that formula hadn't been seen before, recurse to find more like
   3337       // it.
   3338       GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1);
   3339   }
   3340 }
   3341 
   3342 /// GenerateReassociations - Split out subexpressions from adds and the bases of
   3343 /// addrecs.
   3344 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
   3345                                          Formula Base, unsigned Depth) {
   3346   assert(Base.isCanonical() && "Input must be in the canonical form");
   3347   // Arbitrarily cap recursion to protect compile time.
   3348   if (Depth >= 3)
   3349     return;
   3350 
   3351   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
   3352     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
   3353 
   3354   if (Base.Scale == 1)
   3355     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
   3356                                /* Idx */ -1, /* IsScaledReg */ true);
   3357 }
   3358 
   3359 /// GenerateCombinations - Generate a formula consisting of all of the
   3360 /// loop-dominating registers added into a single register.
   3361 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
   3362                                        Formula Base) {
   3363   // This method is only interesting on a plurality of registers.
   3364   if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1)
   3365     return;
   3366 
   3367   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
   3368   // processing the formula.
   3369   Base.Unscale();
   3370   Formula F = Base;
   3371   F.BaseRegs.clear();
   3372   SmallVector<const SCEV *, 4> Ops;
   3373   for (SmallVectorImpl<const SCEV *>::const_iterator
   3374        I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) {
   3375     const SCEV *BaseReg = *I;
   3376     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
   3377         !SE.hasComputableLoopEvolution(BaseReg, L))
   3378       Ops.push_back(BaseReg);
   3379     else
   3380       F.BaseRegs.push_back(BaseReg);
   3381   }
   3382   if (Ops.size() > 1) {
   3383     const SCEV *Sum = SE.getAddExpr(Ops);
   3384     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
   3385     // opportunity to fold something. For now, just ignore such cases
   3386     // rather than proceed with zero in a register.
   3387     if (!Sum->isZero()) {
   3388       F.BaseRegs.push_back(Sum);
   3389       F.Canonicalize();
   3390       (void)InsertFormula(LU, LUIdx, F);
   3391     }
   3392   }
   3393 }
   3394 
   3395 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets.
   3396 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
   3397                                               const Formula &Base, size_t Idx,
   3398                                               bool IsScaledReg) {
   3399   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
   3400   GlobalValue *GV = ExtractSymbol(G, SE);
   3401   if (G->isZero() || !GV)
   3402     return;
   3403   Formula F = Base;
   3404   F.BaseGV = GV;
   3405   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
   3406     return;
   3407   if (IsScaledReg)
   3408     F.ScaledReg = G;
   3409   else
   3410     F.BaseRegs[Idx] = G;
   3411   (void)InsertFormula(LU, LUIdx, F);
   3412 }
   3413 
   3414 /// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
   3415 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
   3416                                           Formula Base) {
   3417   // We can't add a symbolic offset if the address already contains one.
   3418   if (Base.BaseGV) return;
   3419 
   3420   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
   3421     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
   3422   if (Base.Scale == 1)
   3423     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
   3424                                 /* IsScaledReg */ true);
   3425 }
   3426 
   3427 /// \brief Helper function for LSRInstance::GenerateConstantOffsets.
   3428 void LSRInstance::GenerateConstantOffsetsImpl(
   3429     LSRUse &LU, unsigned LUIdx, const Formula &Base,
   3430     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
   3431   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
   3432   for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
   3433                                                 E = Worklist.end();
   3434        I != E; ++I) {
   3435     Formula F = Base;
   3436     F.BaseOffset = (uint64_t)Base.BaseOffset - *I;
   3437     if (isLegalUse(TTI, LU.MinOffset - *I, LU.MaxOffset - *I, LU.Kind,
   3438                    LU.AccessTy, F)) {
   3439       // Add the offset to the base register.
   3440       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G);
   3441       // If it cancelled out, drop the base register, otherwise update it.
   3442       if (NewG->isZero()) {
   3443         if (IsScaledReg) {
   3444           F.Scale = 0;
   3445           F.ScaledReg = nullptr;
   3446         } else
   3447           F.DeleteBaseReg(F.BaseRegs[Idx]);
   3448         F.Canonicalize();
   3449       } else if (IsScaledReg)
   3450         F.ScaledReg = NewG;
   3451       else
   3452         F.BaseRegs[Idx] = NewG;
   3453 
   3454       (void)InsertFormula(LU, LUIdx, F);
   3455     }
   3456   }
   3457 
   3458   int64_t Imm = ExtractImmediate(G, SE);
   3459   if (G->isZero() || Imm == 0)
   3460     return;
   3461   Formula F = Base;
   3462   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
   3463   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
   3464     return;
   3465   if (IsScaledReg)
   3466     F.ScaledReg = G;
   3467   else
   3468     F.BaseRegs[Idx] = G;
   3469   (void)InsertFormula(LU, LUIdx, F);
   3470 }
   3471 
   3472 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
   3473 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
   3474                                           Formula Base) {
   3475   // TODO: For now, just add the min and max offset, because it usually isn't
   3476   // worthwhile looking at everything inbetween.
   3477   SmallVector<int64_t, 2> Worklist;
   3478   Worklist.push_back(LU.MinOffset);
   3479   if (LU.MaxOffset != LU.MinOffset)
   3480     Worklist.push_back(LU.MaxOffset);
   3481 
   3482   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
   3483     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
   3484   if (Base.Scale == 1)
   3485     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
   3486                                 /* IsScaledReg */ true);
   3487 }
   3488 
   3489 /// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
   3490 /// the comparison. For example, x == y -> x*c == y*c.
   3491 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
   3492                                          Formula Base) {
   3493   if (LU.Kind != LSRUse::ICmpZero) return;
   3494 
   3495   // Determine the integer type for the base formula.
   3496   Type *IntTy = Base.getType();
   3497   if (!IntTy) return;
   3498   if (SE.getTypeSizeInBits(IntTy) > 64) return;
   3499 
   3500   // Don't do this if there is more than one offset.
   3501   if (LU.MinOffset != LU.MaxOffset) return;
   3502 
   3503   assert(!Base.BaseGV && "ICmpZero use is not legal!");
   3504 
   3505   // Check each interesting stride.
   3506   for (SmallSetVector<int64_t, 8>::const_iterator
   3507        I = Factors.begin(), E = Factors.end(); I != E; ++I) {
   3508     int64_t Factor = *I;
   3509 
   3510     // Check that the multiplication doesn't overflow.
   3511     if (Base.BaseOffset == INT64_MIN && Factor == -1)
   3512       continue;
   3513     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
   3514     if (NewBaseOffset / Factor != Base.BaseOffset)
   3515       continue;
   3516     // If the offset will be truncated at this use, check that it is in bounds.
   3517     if (!IntTy->isPointerTy() &&
   3518         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
   3519       continue;
   3520 
   3521     // Check that multiplying with the use offset doesn't overflow.
   3522     int64_t Offset = LU.MinOffset;
   3523     if (Offset == INT64_MIN && Factor == -1)
   3524       continue;
   3525     Offset = (uint64_t)Offset * Factor;
   3526     if (Offset / Factor != LU.MinOffset)
   3527       continue;
   3528     // If the offset will be truncated at this use, check that it is in bounds.
   3529     if (!IntTy->isPointerTy() &&
   3530         !ConstantInt::isValueValidForType(IntTy, Offset))
   3531       continue;
   3532 
   3533     Formula F = Base;
   3534     F.BaseOffset = NewBaseOffset;
   3535 
   3536     // Check that this scale is legal.
   3537     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
   3538       continue;
   3539 
   3540     // Compensate for the use having MinOffset built into it.
   3541     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
   3542 
   3543     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
   3544 
   3545     // Check that multiplying with each base register doesn't overflow.
   3546     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
   3547       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
   3548       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
   3549         goto next;
   3550     }
   3551 
   3552     // Check that multiplying with the scaled register doesn't overflow.
   3553     if (F.ScaledReg) {
   3554       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
   3555       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
   3556         continue;
   3557     }
   3558 
   3559     // Check that multiplying with the unfolded offset doesn't overflow.
   3560     if (F.UnfoldedOffset != 0) {
   3561       if (F.UnfoldedOffset == INT64_MIN && Factor == -1)
   3562         continue;
   3563       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
   3564       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
   3565         continue;
   3566       // If the offset will be truncated, check that it is in bounds.
   3567       if (!IntTy->isPointerTy() &&
   3568           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
   3569         continue;
   3570     }
   3571 
   3572     // If we make it here and it's legal, add it.
   3573     (void)InsertFormula(LU, LUIdx, F);
   3574   next:;
   3575   }
   3576 }
   3577 
   3578 /// GenerateScales - Generate stride factor reuse formulae by making use of
   3579 /// scaled-offset address modes, for example.
   3580 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
   3581   // Determine the integer type for the base formula.
   3582   Type *IntTy = Base.getType();
   3583   if (!IntTy) return;
   3584 
   3585   // If this Formula already has a scaled register, we can't add another one.
   3586   // Try to unscale the formula to generate a better scale.
   3587   if (Base.Scale != 0 && !Base.Unscale())
   3588     return;
   3589 
   3590   assert(Base.Scale == 0 && "Unscale did not did its job!");
   3591 
   3592   // Check each interesting stride.
   3593   for (SmallSetVector<int64_t, 8>::const_iterator
   3594        I = Factors.begin(), E = Factors.end(); I != E; ++I) {
   3595     int64_t Factor = *I;
   3596 
   3597     Base.Scale = Factor;
   3598     Base.HasBaseReg = Base.BaseRegs.size() > 1;
   3599     // Check whether this scale is going to be legal.
   3600     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
   3601                     Base)) {
   3602       // As a special-case, handle special out-of-loop Basic users specially.
   3603       // TODO: Reconsider this special case.
   3604       if (LU.Kind == LSRUse::Basic &&
   3605           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
   3606                      LU.AccessTy, Base) &&
   3607           LU.AllFixupsOutsideLoop)
   3608         LU.Kind = LSRUse::Special;
   3609       else
   3610         continue;
   3611     }
   3612     // For an ICmpZero, negating a solitary base register won't lead to
   3613     // new solutions.
   3614     if (LU.Kind == LSRUse::ICmpZero &&
   3615         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
   3616       continue;
   3617     // For each addrec base reg, apply the scale, if possible.
   3618     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
   3619       if (const SCEVAddRecExpr *AR =
   3620             dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
   3621         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
   3622         if (FactorS->isZero())
   3623           continue;
   3624         // Divide out the factor, ignoring high bits, since we'll be
   3625         // scaling the value back up in the end.
   3626         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
   3627           // TODO: This could be optimized to avoid all the copying.
   3628           Formula F = Base;
   3629           F.ScaledReg = Quotient;
   3630           F.DeleteBaseReg(F.BaseRegs[i]);
   3631           // The canonical representation of 1*reg is reg, which is already in
   3632           // Base. In that case, do not try to insert the formula, it will be
   3633           // rejected anyway.
   3634           if (F.Scale == 1 && F.BaseRegs.empty())
   3635             continue;
   3636           (void)InsertFormula(LU, LUIdx, F);
   3637         }
   3638       }
   3639   }
   3640 }
   3641 
   3642 /// GenerateTruncates - Generate reuse formulae from different IV types.
   3643 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
   3644   // Don't bother truncating symbolic values.
   3645   if (Base.BaseGV) return;
   3646 
   3647   // Determine the integer type for the base formula.
   3648   Type *DstTy = Base.getType();
   3649   if (!DstTy) return;
   3650   DstTy = SE.getEffectiveSCEVType(DstTy);
   3651 
   3652   for (SmallSetVector<Type *, 4>::const_iterator
   3653        I = Types.begin(), E = Types.end(); I != E; ++I) {
   3654     Type *SrcTy = *I;
   3655     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
   3656       Formula F = Base;
   3657 
   3658       if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
   3659       for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
   3660            JE = F.BaseRegs.end(); J != JE; ++J)
   3661         *J = SE.getAnyExtendExpr(*J, SrcTy);
   3662 
   3663       // TODO: This assumes we've done basic processing on all uses and
   3664       // have an idea what the register usage is.
   3665       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
   3666         continue;
   3667 
   3668       (void)InsertFormula(LU, LUIdx, F);
   3669     }
   3670   }
   3671 }
   3672 
   3673 namespace {
   3674 
   3675 /// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
   3676 /// defer modifications so that the search phase doesn't have to worry about
   3677 /// the data structures moving underneath it.
   3678 struct WorkItem {
   3679   size_t LUIdx;
   3680   int64_t Imm;
   3681   const SCEV *OrigReg;
   3682 
   3683   WorkItem(size_t LI, int64_t I, const SCEV *R)
   3684     : LUIdx(LI), Imm(I), OrigReg(R) {}
   3685 
   3686   void print(raw_ostream &OS) const;
   3687   void dump() const;
   3688 };
   3689 
   3690 }
   3691 
   3692 void WorkItem::print(raw_ostream &OS) const {
   3693   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
   3694      << " , add offset " << Imm;
   3695 }
   3696 
   3697 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
   3698 void WorkItem::dump() const {
   3699   print(errs()); errs() << '\n';
   3700 }
   3701 #endif
   3702 
   3703 /// GenerateCrossUseConstantOffsets - Look for registers which are a constant
   3704 /// distance apart and try to form reuse opportunities between them.
   3705 void LSRInstance::GenerateCrossUseConstantOffsets() {
   3706   // Group the registers by their value without any added constant offset.
   3707   typedef std::map<int64_t, const SCEV *> ImmMapTy;
   3708   typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy;
   3709   RegMapTy Map;
   3710   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
   3711   SmallVector<const SCEV *, 8> Sequence;
   3712   for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
   3713        I != E; ++I) {
   3714     const SCEV *Reg = *I;
   3715     int64_t Imm = ExtractImmediate(Reg, SE);
   3716     std::pair<RegMapTy::iterator, bool> Pair =
   3717       Map.insert(std::make_pair(Reg, ImmMapTy()));
   3718     if (Pair.second)
   3719       Sequence.push_back(Reg);
   3720     Pair.first->second.insert(std::make_pair(Imm, *I));
   3721     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I);
   3722   }
   3723 
   3724   // Now examine each set of registers with the same base value. Build up
   3725   // a list of work to do and do the work in a separate step so that we're
   3726   // not adding formulae and register counts while we're searching.
   3727   SmallVector<WorkItem, 32> WorkItems;
   3728   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
   3729   for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
   3730        E = Sequence.end(); I != E; ++I) {
   3731     const SCEV *Reg = *I;
   3732     const ImmMapTy &Imms = Map.find(Reg)->second;
   3733 
   3734     // It's not worthwhile looking for reuse if there's only one offset.
   3735     if (Imms.size() == 1)
   3736       continue;
   3737 
   3738     DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
   3739           for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
   3740                J != JE; ++J)
   3741             dbgs() << ' ' << J->first;
   3742           dbgs() << '\n');
   3743 
   3744     // Examine each offset.
   3745     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
   3746          J != JE; ++J) {
   3747       const SCEV *OrigReg = J->second;
   3748 
   3749       int64_t JImm = J->first;
   3750       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
   3751 
   3752       if (!isa<SCEVConstant>(OrigReg) &&
   3753           UsedByIndicesMap[Reg].count() == 1) {
   3754         DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
   3755         continue;
   3756       }
   3757 
   3758       // Conservatively examine offsets between this orig reg a few selected
   3759       // other orig regs.
   3760       ImmMapTy::const_iterator OtherImms[] = {
   3761         Imms.begin(), std::prev(Imms.end()),
   3762         Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) /
   3763                          2)
   3764       };
   3765       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
   3766         ImmMapTy::const_iterator M = OtherImms[i];
   3767         if (M == J || M == JE) continue;
   3768 
   3769         // Compute the difference between the two.
   3770         int64_t Imm = (uint64_t)JImm - M->first;
   3771         for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
   3772              LUIdx = UsedByIndices.find_next(LUIdx))
   3773           // Make a memo of this use, offset, and register tuple.
   3774           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
   3775             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
   3776       }
   3777     }
   3778   }
   3779 
   3780   Map.clear();
   3781   Sequence.clear();
   3782   UsedByIndicesMap.clear();
   3783   UniqueItems.clear();
   3784 
   3785   // Now iterate through the worklist and add new formulae.
   3786   for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
   3787        E = WorkItems.end(); I != E; ++I) {
   3788     const WorkItem &WI = *I;
   3789     size_t LUIdx = WI.LUIdx;
   3790     LSRUse &LU = Uses[LUIdx];
   3791     int64_t Imm = WI.Imm;
   3792     const SCEV *OrigReg = WI.OrigReg;
   3793 
   3794     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
   3795     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
   3796     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
   3797 
   3798     // TODO: Use a more targeted data structure.
   3799     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
   3800       Formula F = LU.Formulae[L];
   3801       // FIXME: The code for the scaled and unscaled registers looks
   3802       // very similar but slightly different. Investigate if they
   3803       // could be merged. That way, we would not have to unscale the
   3804       // Formula.
   3805       F.Unscale();
   3806       // Use the immediate in the scaled register.
   3807       if (F.ScaledReg == OrigReg) {
   3808         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
   3809         // Don't create 50 + reg(-50).
   3810         if (F.referencesReg(SE.getSCEV(
   3811                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
   3812           continue;
   3813         Formula NewF = F;
   3814         NewF.BaseOffset = Offset;
   3815         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
   3816                         NewF))
   3817           continue;
   3818         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
   3819 
   3820         // If the new scale is a constant in a register, and adding the constant
   3821         // value to the immediate would produce a value closer to zero than the
   3822         // immediate itself, then the formula isn't worthwhile.
   3823         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
   3824           if (C->getValue()->isNegative() !=
   3825                 (NewF.BaseOffset < 0) &&
   3826               (C->getValue()->getValue().abs() * APInt(BitWidth, F.Scale))
   3827                 .ule(std::abs(NewF.BaseOffset)))
   3828             continue;
   3829 
   3830         // OK, looks good.
   3831         NewF.Canonicalize();
   3832         (void)InsertFormula(LU, LUIdx, NewF);
   3833       } else {
   3834         // Use the immediate in a base register.
   3835         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
   3836           const SCEV *BaseReg = F.BaseRegs[N];
   3837           if (BaseReg != OrigReg)
   3838             continue;
   3839           Formula NewF = F;
   3840           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
   3841           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
   3842                           LU.Kind, LU.AccessTy, NewF)) {
   3843             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
   3844               continue;
   3845             NewF = F;
   3846             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
   3847           }
   3848           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
   3849 
   3850           // If the new formula has a constant in a register, and adding the
   3851           // constant value to the immediate would produce a value closer to
   3852           // zero than the immediate itself, then the formula isn't worthwhile.
   3853           for (SmallVectorImpl<const SCEV *>::const_iterator
   3854                J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
   3855                J != JE; ++J)
   3856             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
   3857               if ((C->getValue()->getValue() + NewF.BaseOffset).abs().slt(
   3858                    std::abs(NewF.BaseOffset)) &&
   3859                   (C->getValue()->getValue() +
   3860                    NewF.BaseOffset).countTrailingZeros() >=
   3861                    countTrailingZeros<uint64_t>(NewF.BaseOffset))
   3862                 goto skip_formula;
   3863 
   3864           // Ok, looks good.
   3865           NewF.Canonicalize();
   3866           (void)InsertFormula(LU, LUIdx, NewF);
   3867           break;
   3868         skip_formula:;
   3869         }
   3870       }
   3871     }
   3872   }
   3873 }
   3874 
   3875 /// GenerateAllReuseFormulae - Generate formulae for each use.
   3876 void
   3877 LSRInstance::GenerateAllReuseFormulae() {
   3878   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
   3879   // queries are more precise.
   3880   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3881     LSRUse &LU = Uses[LUIdx];
   3882     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3883       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
   3884     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3885       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
   3886   }
   3887   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3888     LSRUse &LU = Uses[LUIdx];
   3889     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3890       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
   3891     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3892       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
   3893     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3894       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
   3895     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3896       GenerateScales(LU, LUIdx, LU.Formulae[i]);
   3897   }
   3898   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3899     LSRUse &LU = Uses[LUIdx];
   3900     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3901       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
   3902   }
   3903 
   3904   GenerateCrossUseConstantOffsets();
   3905 
   3906   DEBUG(dbgs() << "\n"
   3907                   "After generating reuse formulae:\n";
   3908         print_uses(dbgs()));
   3909 }
   3910 
   3911 /// If there are multiple formulae with the same set of registers used
   3912 /// by other uses, pick the best one and delete the others.
   3913 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
   3914   DenseSet<const SCEV *> VisitedRegs;
   3915   SmallPtrSet<const SCEV *, 16> Regs;
   3916   SmallPtrSet<const SCEV *, 16> LoserRegs;
   3917 #ifndef NDEBUG
   3918   bool ChangedFormulae = false;
   3919 #endif
   3920 
   3921   // Collect the best formula for each unique set of shared registers. This
   3922   // is reset for each use.
   3923   typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>
   3924     BestFormulaeTy;
   3925   BestFormulaeTy BestFormulae;
   3926 
   3927   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3928     LSRUse &LU = Uses[LUIdx];
   3929     DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
   3930 
   3931     bool Any = false;
   3932     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
   3933          FIdx != NumForms; ++FIdx) {
   3934       Formula &F = LU.Formulae[FIdx];
   3935 
   3936       // Some formulas are instant losers. For example, they may depend on
   3937       // nonexistent AddRecs from other loops. These need to be filtered
   3938       // immediately, otherwise heuristics could choose them over others leading
   3939       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
   3940       // avoids the need to recompute this information across formulae using the
   3941       // same bad AddRec. Passing LoserRegs is also essential unless we remove
   3942       // the corresponding bad register from the Regs set.
   3943       Cost CostF;
   3944       Regs.clear();
   3945       CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, LU.Offsets, SE, DT, LU,
   3946                         &LoserRegs);
   3947       if (CostF.isLoser()) {
   3948         // During initial formula generation, undesirable formulae are generated
   3949         // by uses within other loops that have some non-trivial address mode or
   3950         // use the postinc form of the IV. LSR needs to provide these formulae
   3951         // as the basis of rediscovering the desired formula that uses an AddRec
   3952         // corresponding to the existing phi. Once all formulae have been
   3953         // generated, these initial losers may be pruned.
   3954         DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
   3955               dbgs() << "\n");
   3956       }
   3957       else {
   3958         SmallVector<const SCEV *, 4> Key;
   3959         for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
   3960                JE = F.BaseRegs.end(); J != JE; ++J) {
   3961           const SCEV *Reg = *J;
   3962           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
   3963             Key.push_back(Reg);
   3964         }
   3965         if (F.ScaledReg &&
   3966             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
   3967           Key.push_back(F.ScaledReg);
   3968         // Unstable sort by host order ok, because this is only used for
   3969         // uniquifying.
   3970         std::sort(Key.begin(), Key.end());
   3971 
   3972         std::pair<BestFormulaeTy::const_iterator, bool> P =
   3973           BestFormulae.insert(std::make_pair(Key, FIdx));
   3974         if (P.second)
   3975           continue;
   3976 
   3977         Formula &Best = LU.Formulae[P.first->second];
   3978 
   3979         Cost CostBest;
   3980         Regs.clear();
   3981         CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, LU.Offsets, SE,
   3982                              DT, LU);
   3983         if (CostF < CostBest)
   3984           std::swap(F, Best);
   3985         DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
   3986               dbgs() << "\n"
   3987                         "    in favor of formula "; Best.print(dbgs());
   3988               dbgs() << '\n');
   3989       }
   3990 #ifndef NDEBUG
   3991       ChangedFormulae = true;
   3992 #endif
   3993       LU.DeleteFormula(F);
   3994       --FIdx;
   3995       --NumForms;
   3996       Any = true;
   3997     }
   3998 
   3999     // Now that we've filtered out some formulae, recompute the Regs set.
   4000     if (Any)
   4001       LU.RecomputeRegs(LUIdx, RegUses);
   4002 
   4003     // Reset this to prepare for the next use.
   4004     BestFormulae.clear();
   4005   }
   4006 
   4007   DEBUG(if (ChangedFormulae) {
   4008           dbgs() << "\n"
   4009                     "After filtering out undesirable candidates:\n";
   4010           print_uses(dbgs());
   4011         });
   4012 }
   4013 
   4014 // This is a rough guess that seems to work fairly well.
   4015 static const size_t ComplexityLimit = UINT16_MAX;
   4016 
   4017 /// EstimateSearchSpaceComplexity - Estimate the worst-case number of
   4018 /// solutions the solver might have to consider. It almost never considers
   4019 /// this many solutions because it prune the search space, but the pruning
   4020 /// isn't always sufficient.
   4021 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
   4022   size_t Power = 1;
   4023   for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
   4024        E = Uses.end(); I != E; ++I) {
   4025     size_t FSize = I->Formulae.size();
   4026     if (FSize >= ComplexityLimit) {
   4027       Power = ComplexityLimit;
   4028       break;
   4029     }
   4030     Power *= FSize;
   4031     if (Power >= ComplexityLimit)
   4032       break;
   4033   }
   4034   return Power;
   4035 }
   4036 
   4037 /// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset
   4038 /// of the registers of another formula, it won't help reduce register
   4039 /// pressure (though it may not necessarily hurt register pressure); remove
   4040 /// it to simplify the system.
   4041 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
   4042   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
   4043     DEBUG(dbgs() << "The search space is too complex.\n");
   4044 
   4045     DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
   4046                     "which use a superset of registers used by other "
   4047                     "formulae.\n");
   4048 
   4049     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   4050       LSRUse &LU = Uses[LUIdx];
   4051       bool Any = false;
   4052       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
   4053         Formula &F = LU.Formulae[i];
   4054         // Look for a formula with a constant or GV in a register. If the use
   4055         // also has a formula with that same value in an immediate field,
   4056         // delete the one that uses a register.
   4057         for (SmallVectorImpl<const SCEV *>::const_iterator
   4058              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
   4059           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
   4060             Formula NewF = F;
   4061             NewF.BaseOffset += C->getValue()->getSExtValue();
   4062             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
   4063                                 (I - F.BaseRegs.begin()));
   4064             if (LU.HasFormulaWithSameRegs(NewF)) {
   4065               DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
   4066               LU.DeleteFormula(F);
   4067               --i;
   4068               --e;
   4069               Any = true;
   4070               break;
   4071             }
   4072           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
   4073             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
   4074               if (!F.BaseGV) {
   4075                 Formula NewF = F;
   4076                 NewF.BaseGV = GV;
   4077                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
   4078                                     (I - F.BaseRegs.begin()));
   4079                 if (LU.HasFormulaWithSameRegs(NewF)) {
   4080                   DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
   4081                         dbgs() << '\n');
   4082                   LU.DeleteFormula(F);
   4083                   --i;
   4084                   --e;
   4085                   Any = true;
   4086                   break;
   4087                 }
   4088               }
   4089           }
   4090         }
   4091       }
   4092       if (Any)
   4093         LU.RecomputeRegs(LUIdx, RegUses);
   4094     }
   4095 
   4096     DEBUG(dbgs() << "After pre-selection:\n";
   4097           print_uses(dbgs()));
   4098   }
   4099 }
   4100 
   4101 /// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers
   4102 /// for expressions like A, A+1, A+2, etc., allocate a single register for
   4103 /// them.
   4104 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
   4105   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
   4106     return;
   4107 
   4108   DEBUG(dbgs() << "The search space is too complex.\n"
   4109                   "Narrowing the search space by assuming that uses separated "
   4110                   "by a constant offset will use the same registers.\n");
   4111 
   4112   // This is especially useful for unrolled loops.
   4113 
   4114   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   4115     LSRUse &LU = Uses[LUIdx];
   4116     for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
   4117          E = LU.Formulae.end(); I != E; ++I) {
   4118       const Formula &F = *I;
   4119       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
   4120         continue;
   4121 
   4122       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
   4123       if (!LUThatHas)
   4124         continue;
   4125 
   4126       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
   4127                               LU.Kind, LU.AccessTy))
   4128         continue;
   4129 
   4130       DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
   4131 
   4132       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
   4133 
   4134       // Update the relocs to reference the new use.
   4135       for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(),
   4136            E = Fixups.end(); I != E; ++I) {
   4137         LSRFixup &Fixup = *I;
   4138         if (Fixup.LUIdx == LUIdx) {
   4139           Fixup.LUIdx = LUThatHas - &Uses.front();
   4140           Fixup.Offset += F.BaseOffset;
   4141           // Add the new offset to LUThatHas' offset list.
   4142           if (LUThatHas->Offsets.back() != Fixup.Offset) {
   4143             LUThatHas->Offsets.push_back(Fixup.Offset);
   4144             if (Fixup.Offset > LUThatHas->MaxOffset)
   4145               LUThatHas->MaxOffset = Fixup.Offset;
   4146             if (Fixup.Offset < LUThatHas->MinOffset)
   4147               LUThatHas->MinOffset = Fixup.Offset;
   4148           }
   4149           DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
   4150         }
   4151         if (Fixup.LUIdx == NumUses-1)
   4152           Fixup.LUIdx = LUIdx;
   4153       }
   4154 
   4155       // Delete formulae from the new use which are no longer legal.
   4156       bool Any = false;
   4157       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
   4158         Formula &F = LUThatHas->Formulae[i];
   4159         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
   4160                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
   4161           DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
   4162                 dbgs() << '\n');
   4163           LUThatHas->DeleteFormula(F);
   4164           --i;
   4165           --e;
   4166           Any = true;
   4167         }
   4168       }
   4169 
   4170       if (Any)
   4171         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
   4172 
   4173       // Delete the old use.
   4174       DeleteUse(LU, LUIdx);
   4175       --LUIdx;
   4176       --NumUses;
   4177       break;
   4178     }
   4179   }
   4180 
   4181   DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
   4182 }
   4183 
   4184 /// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call
   4185 /// FilterOutUndesirableDedicatedRegisters again, if necessary, now that
   4186 /// we've done more filtering, as it may be able to find more formulae to
   4187 /// eliminate.
   4188 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
   4189   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
   4190     DEBUG(dbgs() << "The search space is too complex.\n");
   4191 
   4192     DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
   4193                     "undesirable dedicated registers.\n");
   4194 
   4195     FilterOutUndesirableDedicatedRegisters();
   4196 
   4197     DEBUG(dbgs() << "After pre-selection:\n";
   4198           print_uses(dbgs()));
   4199   }
   4200 }
   4201 
   4202 /// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely
   4203 /// to be profitable, and then in any use which has any reference to that
   4204 /// register, delete all formulae which do not reference that register.
   4205 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
   4206   // With all other options exhausted, loop until the system is simple
   4207   // enough to handle.
   4208   SmallPtrSet<const SCEV *, 4> Taken;
   4209   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
   4210     // Ok, we have too many of formulae on our hands to conveniently handle.
   4211     // Use a rough heuristic to thin out the list.
   4212     DEBUG(dbgs() << "The search space is too complex.\n");
   4213 
   4214     // Pick the register which is used by the most LSRUses, which is likely
   4215     // to be a good reuse register candidate.
   4216     const SCEV *Best = nullptr;
   4217     unsigned BestNum = 0;
   4218     for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
   4219          I != E; ++I) {
   4220       const SCEV *Reg = *I;
   4221       if (Taken.count(Reg))
   4222         continue;
   4223       if (!Best)
   4224         Best = Reg;
   4225       else {
   4226         unsigned Count = RegUses.getUsedByIndices(Reg).count();
   4227         if (Count > BestNum) {
   4228           Best = Reg;
   4229           BestNum = Count;
   4230         }
   4231       }
   4232     }
   4233 
   4234     DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
   4235                  << " will yield profitable reuse.\n");
   4236     Taken.insert(Best);
   4237 
   4238     // In any use with formulae which references this register, delete formulae
   4239     // which don't reference it.
   4240     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   4241       LSRUse &LU = Uses[LUIdx];
   4242       if (!LU.Regs.count(Best)) continue;
   4243 
   4244       bool Any = false;
   4245       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
   4246         Formula &F = LU.Formulae[i];
   4247         if (!F.referencesReg(Best)) {
   4248           DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
   4249           LU.DeleteFormula(F);
   4250           --e;
   4251           --i;
   4252           Any = true;
   4253           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
   4254           continue;
   4255         }
   4256       }
   4257 
   4258       if (Any)
   4259         LU.RecomputeRegs(LUIdx, RegUses);
   4260     }
   4261 
   4262     DEBUG(dbgs() << "After pre-selection:\n";
   4263           print_uses(dbgs()));
   4264   }
   4265 }
   4266 
   4267 /// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
   4268 /// formulae to choose from, use some rough heuristics to prune down the number
   4269 /// of formulae. This keeps the main solver from taking an extraordinary amount
   4270 /// of time in some worst-case scenarios.
   4271 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
   4272   NarrowSearchSpaceByDetectingSupersets();
   4273   NarrowSearchSpaceByCollapsingUnrolledCode();
   4274   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
   4275   NarrowSearchSpaceByPickingWinnerRegs();
   4276 }
   4277 
   4278 /// SolveRecurse - This is the recursive solver.
   4279 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
   4280                                Cost &SolutionCost,
   4281                                SmallVectorImpl<const Formula *> &Workspace,
   4282                                const Cost &CurCost,
   4283                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
   4284                                DenseSet<const SCEV *> &VisitedRegs) const {
   4285   // Some ideas:
   4286   //  - prune more:
   4287   //    - use more aggressive filtering
   4288   //    - sort the formula so that the most profitable solutions are found first
   4289   //    - sort the uses too
   4290   //  - search faster:
   4291   //    - don't compute a cost, and then compare. compare while computing a cost
   4292   //      and bail early.
   4293   //    - track register sets with SmallBitVector
   4294 
   4295   const LSRUse &LU = Uses[Workspace.size()];
   4296 
   4297   // If this use references any register that's already a part of the
   4298   // in-progress solution, consider it a requirement that a formula must
   4299   // reference that register in order to be considered. This prunes out
   4300   // unprofitable searching.
   4301   SmallSetVector<const SCEV *, 4> ReqRegs;
   4302   for (const SCEV *S : CurRegs)
   4303     if (LU.Regs.count(S))
   4304       ReqRegs.insert(S);
   4305 
   4306   SmallPtrSet<const SCEV *, 16> NewRegs;
   4307   Cost NewCost;
   4308   for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
   4309        E = LU.Formulae.end(); I != E; ++I) {
   4310     const Formula &F = *I;
   4311 
   4312     // Ignore formulae which may not be ideal in terms of register reuse of
   4313     // ReqRegs.  The formula should use all required registers before
   4314     // introducing new ones.
   4315     int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
   4316     for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(),
   4317          JE = ReqRegs.end(); J != JE; ++J) {
   4318       const SCEV *Reg = *J;
   4319       if ((F.ScaledReg && F.ScaledReg == Reg) ||
   4320           std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) !=
   4321           F.BaseRegs.end()) {
   4322         --NumReqRegsToFind;
   4323         if (NumReqRegsToFind == 0)
   4324           break;
   4325       }
   4326     }
   4327     if (NumReqRegsToFind != 0) {
   4328       // If none of the formulae satisfied the required registers, then we could
   4329       // clear ReqRegs and try again. Currently, we simply give up in this case.
   4330       continue;
   4331     }
   4332 
   4333     // Evaluate the cost of the current formula. If it's already worse than
   4334     // the current best, prune the search at that point.
   4335     NewCost = CurCost;
   4336     NewRegs = CurRegs;
   4337     NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT,
   4338                         LU);
   4339     if (NewCost < SolutionCost) {
   4340       Workspace.push_back(&F);
   4341       if (Workspace.size() != Uses.size()) {
   4342         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
   4343                      NewRegs, VisitedRegs);
   4344         if (F.getNumRegs() == 1 && Workspace.size() == 1)
   4345           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
   4346       } else {
   4347         DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
   4348               dbgs() << ".\n Regs:";
   4349               for (const SCEV *S : NewRegs)
   4350                 dbgs() << ' ' << *S;
   4351               dbgs() << '\n');
   4352 
   4353         SolutionCost = NewCost;
   4354         Solution = Workspace;
   4355       }
   4356       Workspace.pop_back();
   4357     }
   4358   }
   4359 }
   4360 
   4361 /// Solve - Choose one formula from each use. Return the results in the given
   4362 /// Solution vector.
   4363 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
   4364   SmallVector<const Formula *, 8> Workspace;
   4365   Cost SolutionCost;
   4366   SolutionCost.Lose();
   4367   Cost CurCost;
   4368   SmallPtrSet<const SCEV *, 16> CurRegs;
   4369   DenseSet<const SCEV *> VisitedRegs;
   4370   Workspace.reserve(Uses.size());
   4371 
   4372   // SolveRecurse does all the work.
   4373   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
   4374                CurRegs, VisitedRegs);
   4375   if (Solution.empty()) {
   4376     DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
   4377     return;
   4378   }
   4379 
   4380   // Ok, we've now made all our decisions.
   4381   DEBUG(dbgs() << "\n"
   4382                   "The chosen solution requires "; SolutionCost.print(dbgs());
   4383         dbgs() << ":\n";
   4384         for (size_t i = 0, e = Uses.size(); i != e; ++i) {
   4385           dbgs() << "  ";
   4386           Uses[i].print(dbgs());
   4387           dbgs() << "\n"
   4388                     "    ";
   4389           Solution[i]->print(dbgs());
   4390           dbgs() << '\n';
   4391         });
   4392 
   4393   assert(Solution.size() == Uses.size() && "Malformed solution!");
   4394 }
   4395 
   4396 /// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up
   4397 /// the dominator tree far as we can go while still being dominated by the
   4398 /// input positions. This helps canonicalize the insert position, which
   4399 /// encourages sharing.
   4400 BasicBlock::iterator
   4401 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
   4402                                  const SmallVectorImpl<Instruction *> &Inputs)
   4403                                                                          const {
   4404   for (;;) {
   4405     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
   4406     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
   4407 
   4408     BasicBlock *IDom;
   4409     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
   4410       if (!Rung) return IP;
   4411       Rung = Rung->getIDom();
   4412       if (!Rung) return IP;
   4413       IDom = Rung->getBlock();
   4414 
   4415       // Don't climb into a loop though.
   4416       const Loop *IDomLoop = LI.getLoopFor(IDom);
   4417       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
   4418       if (IDomDepth <= IPLoopDepth &&
   4419           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
   4420         break;
   4421     }
   4422 
   4423     bool AllDominate = true;
   4424     Instruction *BetterPos = nullptr;
   4425     Instruction *Tentative = IDom->getTerminator();
   4426     for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(),
   4427          E = Inputs.end(); I != E; ++I) {
   4428       Instruction *Inst = *I;
   4429       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
   4430         AllDominate = false;
   4431         break;
   4432       }
   4433       // Attempt to find an insert position in the middle of the block,
   4434       // instead of at the end, so that it can be used for other expansions.
   4435       if (IDom == Inst->getParent() &&
   4436           (!BetterPos || !DT.dominates(Inst, BetterPos)))
   4437         BetterPos = std::next(BasicBlock::iterator(Inst));
   4438     }
   4439     if (!AllDominate)
   4440       break;
   4441     if (BetterPos)
   4442       IP = BetterPos;
   4443     else
   4444       IP = Tentative;
   4445   }
   4446 
   4447   return IP;
   4448 }
   4449 
   4450 /// AdjustInsertPositionForExpand - Determine an input position which will be
   4451 /// dominated by the operands and which will dominate the result.
   4452 BasicBlock::iterator
   4453 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
   4454                                            const LSRFixup &LF,
   4455                                            const LSRUse &LU,
   4456                                            SCEVExpander &Rewriter) const {
   4457   // Collect some instructions which must be dominated by the
   4458   // expanding replacement. These must be dominated by any operands that
   4459   // will be required in the expansion.
   4460   SmallVector<Instruction *, 4> Inputs;
   4461   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
   4462     Inputs.push_back(I);
   4463   if (LU.Kind == LSRUse::ICmpZero)
   4464     if (Instruction *I =
   4465           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
   4466       Inputs.push_back(I);
   4467   if (LF.PostIncLoops.count(L)) {
   4468     if (LF.isUseFullyOutsideLoop(L))
   4469       Inputs.push_back(L->getLoopLatch()->getTerminator());
   4470     else
   4471       Inputs.push_back(IVIncInsertPos);
   4472   }
   4473   // The expansion must also be dominated by the increment positions of any
   4474   // loops it for which it is using post-inc mode.
   4475   for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(),
   4476        E = LF.PostIncLoops.end(); I != E; ++I) {
   4477     const Loop *PIL = *I;
   4478     if (PIL == L) continue;
   4479 
   4480     // Be dominated by the loop exit.
   4481     SmallVector<BasicBlock *, 4> ExitingBlocks;
   4482     PIL->getExitingBlocks(ExitingBlocks);
   4483     if (!ExitingBlocks.empty()) {
   4484       BasicBlock *BB = ExitingBlocks[0];
   4485       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
   4486         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
   4487       Inputs.push_back(BB->getTerminator());
   4488     }
   4489   }
   4490 
   4491   assert(!isa<PHINode>(LowestIP) && !isa<LandingPadInst>(LowestIP)
   4492          && !isa<DbgInfoIntrinsic>(LowestIP) &&
   4493          "Insertion point must be a normal instruction");
   4494 
   4495   // Then, climb up the immediate dominator tree as far as we can go while
   4496   // still being dominated by the input positions.
   4497   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
   4498 
   4499   // Don't insert instructions before PHI nodes.
   4500   while (isa<PHINode>(IP)) ++IP;
   4501 
   4502   // Ignore landingpad instructions.
   4503   while (isa<LandingPadInst>(IP)) ++IP;
   4504 
   4505   // Ignore debug intrinsics.
   4506   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
   4507 
   4508   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
   4509   // IP consistent across expansions and allows the previously inserted
   4510   // instructions to be reused by subsequent expansion.
   4511   while (Rewriter.isInsertedInstruction(IP) && IP != LowestIP) ++IP;
   4512 
   4513   return IP;
   4514 }
   4515 
   4516 /// Expand - Emit instructions for the leading candidate expression for this
   4517 /// LSRUse (this is called "expanding").
   4518 Value *LSRInstance::Expand(const LSRFixup &LF,
   4519                            const Formula &F,
   4520                            BasicBlock::iterator IP,
   4521                            SCEVExpander &Rewriter,
   4522                            SmallVectorImpl<WeakVH> &DeadInsts) const {
   4523   const LSRUse &LU = Uses[LF.LUIdx];
   4524   if (LU.RigidFormula)
   4525     return LF.OperandValToReplace;
   4526 
   4527   // Determine an input position which will be dominated by the operands and
   4528   // which will dominate the result.
   4529   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
   4530 
   4531   // Inform the Rewriter if we have a post-increment use, so that it can
   4532   // perform an advantageous expansion.
   4533   Rewriter.setPostInc(LF.PostIncLoops);
   4534 
   4535   // This is the type that the user actually needs.
   4536   Type *OpTy = LF.OperandValToReplace->getType();
   4537   // This will be the type that we'll initially expand to.
   4538   Type *Ty = F.getType();
   4539   if (!Ty)
   4540     // No type known; just expand directly to the ultimate type.
   4541     Ty = OpTy;
   4542   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
   4543     // Expand directly to the ultimate type if it's the right size.
   4544     Ty = OpTy;
   4545   // This is the type to do integer arithmetic in.
   4546   Type *IntTy = SE.getEffectiveSCEVType(Ty);
   4547 
   4548   // Build up a list of operands to add together to form the full base.
   4549   SmallVector<const SCEV *, 8> Ops;
   4550 
   4551   // Expand the BaseRegs portion.
   4552   for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
   4553        E = F.BaseRegs.end(); I != E; ++I) {
   4554     const SCEV *Reg = *I;
   4555     assert(!Reg->isZero() && "Zero allocated in a base register!");
   4556 
   4557     // If we're expanding for a post-inc user, make the post-inc adjustment.
   4558     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
   4559     Reg = TransformForPostIncUse(Denormalize, Reg,
   4560                                  LF.UserInst, LF.OperandValToReplace,
   4561                                  Loops, SE, DT);
   4562 
   4563     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr, IP)));
   4564   }
   4565 
   4566   // Expand the ScaledReg portion.
   4567   Value *ICmpScaledV = nullptr;
   4568   if (F.Scale != 0) {
   4569     const SCEV *ScaledS = F.ScaledReg;
   4570 
   4571     // If we're expanding for a post-inc user, make the post-inc adjustment.
   4572     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
   4573     ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
   4574                                      LF.UserInst, LF.OperandValToReplace,
   4575                                      Loops, SE, DT);
   4576 
   4577     if (LU.Kind == LSRUse::ICmpZero) {
   4578       // Expand ScaleReg as if it was part of the base regs.
   4579       if (F.Scale == 1)
   4580         Ops.push_back(
   4581             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, IP)));
   4582       else {
   4583         // An interesting way of "folding" with an icmp is to use a negated
   4584         // scale, which we'll implement by inserting it into the other operand
   4585         // of the icmp.
   4586         assert(F.Scale == -1 &&
   4587                "The only scale supported by ICmpZero uses is -1!");
   4588         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr, IP);
   4589       }
   4590     } else {
   4591       // Otherwise just expand the scaled register and an explicit scale,
   4592       // which is expected to be matched as part of the address.
   4593 
   4594       // Flush the operand list to suppress SCEVExpander hoisting address modes.
   4595       // Unless the addressing mode will not be folded.
   4596       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
   4597           isAMCompletelyFolded(TTI, LU, F)) {
   4598         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
   4599         Ops.clear();
   4600         Ops.push_back(SE.getUnknown(FullV));
   4601       }
   4602       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, IP));
   4603       if (F.Scale != 1)
   4604         ScaledS =
   4605             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
   4606       Ops.push_back(ScaledS);
   4607     }
   4608   }
   4609 
   4610   // Expand the GV portion.
   4611   if (F.BaseGV) {
   4612     // Flush the operand list to suppress SCEVExpander hoisting.
   4613     if (!Ops.empty()) {
   4614       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
   4615       Ops.clear();
   4616       Ops.push_back(SE.getUnknown(FullV));
   4617     }
   4618     Ops.push_back(SE.getUnknown(F.BaseGV));
   4619   }
   4620 
   4621   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
   4622   // unfolded offsets. LSR assumes they both live next to their uses.
   4623   if (!Ops.empty()) {
   4624     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
   4625     Ops.clear();
   4626     Ops.push_back(SE.getUnknown(FullV));
   4627   }
   4628 
   4629   // Expand the immediate portion.
   4630   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
   4631   if (Offset != 0) {
   4632     if (LU.Kind == LSRUse::ICmpZero) {
   4633       // The other interesting way of "folding" with an ICmpZero is to use a
   4634       // negated immediate.
   4635       if (!ICmpScaledV)
   4636         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
   4637       else {
   4638         Ops.push_back(SE.getUnknown(ICmpScaledV));
   4639         ICmpScaledV = ConstantInt::get(IntTy, Offset);
   4640       }
   4641     } else {
   4642       // Just add the immediate values. These again are expected to be matched
   4643       // as part of the address.
   4644       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
   4645     }
   4646   }
   4647 
   4648   // Expand the unfolded offset portion.
   4649   int64_t UnfoldedOffset = F.UnfoldedOffset;
   4650   if (UnfoldedOffset != 0) {
   4651     // Just add the immediate values.
   4652     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
   4653                                                        UnfoldedOffset)));
   4654   }
   4655 
   4656   // Emit instructions summing all the operands.
   4657   const SCEV *FullS = Ops.empty() ?
   4658                       SE.getConstant(IntTy, 0) :
   4659                       SE.getAddExpr(Ops);
   4660   Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
   4661 
   4662   // We're done expanding now, so reset the rewriter.
   4663   Rewriter.clearPostInc();
   4664 
   4665   // An ICmpZero Formula represents an ICmp which we're handling as a
   4666   // comparison against zero. Now that we've expanded an expression for that
   4667   // form, update the ICmp's other operand.
   4668   if (LU.Kind == LSRUse::ICmpZero) {
   4669     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
   4670     DeadInsts.push_back(CI->getOperand(1));
   4671     assert(!F.BaseGV && "ICmp does not support folding a global value and "
   4672                            "a scale at the same time!");
   4673     if (F.Scale == -1) {
   4674       if (ICmpScaledV->getType() != OpTy) {
   4675         Instruction *Cast =
   4676           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
   4677                                                    OpTy, false),
   4678                            ICmpScaledV, OpTy, "tmp", CI);
   4679         ICmpScaledV = Cast;
   4680       }
   4681       CI->setOperand(1, ICmpScaledV);
   4682     } else {
   4683       // A scale of 1 means that the scale has been expanded as part of the
   4684       // base regs.
   4685       assert((F.Scale == 0 || F.Scale == 1) &&
   4686              "ICmp does not support folding a global value and "
   4687              "a scale at the same time!");
   4688       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
   4689                                            -(uint64_t)Offset);
   4690       if (C->getType() != OpTy)
   4691         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
   4692                                                           OpTy, false),
   4693                                   C, OpTy);
   4694 
   4695       CI->setOperand(1, C);
   4696     }
   4697   }
   4698 
   4699   return FullV;
   4700 }
   4701 
   4702 /// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
   4703 /// of their operands effectively happens in their predecessor blocks, so the
   4704 /// expression may need to be expanded in multiple places.
   4705 void LSRInstance::RewriteForPHI(PHINode *PN,
   4706                                 const LSRFixup &LF,
   4707                                 const Formula &F,
   4708                                 SCEVExpander &Rewriter,
   4709                                 SmallVectorImpl<WeakVH> &DeadInsts,
   4710                                 Pass *P) const {
   4711   DenseMap<BasicBlock *, Value *> Inserted;
   4712   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
   4713     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
   4714       BasicBlock *BB = PN->getIncomingBlock(i);
   4715 
   4716       // If this is a critical edge, split the edge so that we do not insert
   4717       // the code on all predecessor/successor paths.  We do this unless this
   4718       // is the canonical backedge for this loop, which complicates post-inc
   4719       // users.
   4720       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
   4721           !isa<IndirectBrInst>(BB->getTerminator())) {
   4722         BasicBlock *Parent = PN->getParent();
   4723         Loop *PNLoop = LI.getLoopFor(Parent);
   4724         if (!PNLoop || Parent != PNLoop->getHeader()) {
   4725           // Split the critical edge.
   4726           BasicBlock *NewBB = nullptr;
   4727           if (!Parent->isLandingPad()) {
   4728             NewBB = SplitCriticalEdge(BB, Parent,
   4729                                       CriticalEdgeSplittingOptions(&DT, &LI)
   4730                                           .setMergeIdenticalEdges()
   4731                                           .setDontDeleteUselessPHIs());
   4732           } else {
   4733             SmallVector<BasicBlock*, 2> NewBBs;
   4734             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs,
   4735                                         /*AliasAnalysis*/ nullptr, &DT, &LI);
   4736             NewBB = NewBBs[0];
   4737           }
   4738           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
   4739           // phi predecessors are identical. The simple thing to do is skip
   4740           // splitting in this case rather than complicate the API.
   4741           if (NewBB) {
   4742             // If PN is outside of the loop and BB is in the loop, we want to
   4743             // move the block to be immediately before the PHI block, not
   4744             // immediately after BB.
   4745             if (L->contains(BB) && !L->contains(PN))
   4746               NewBB->moveBefore(PN->getParent());
   4747 
   4748             // Splitting the edge can reduce the number of PHI entries we have.
   4749             e = PN->getNumIncomingValues();
   4750             BB = NewBB;
   4751             i = PN->getBasicBlockIndex(BB);
   4752           }
   4753         }
   4754       }
   4755 
   4756       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
   4757         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
   4758       if (!Pair.second)
   4759         PN->setIncomingValue(i, Pair.first->second);
   4760       else {
   4761         Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts);
   4762 
   4763         // If this is reuse-by-noop-cast, insert the noop cast.
   4764         Type *OpTy = LF.OperandValToReplace->getType();
   4765         if (FullV->getType() != OpTy)
   4766           FullV =
   4767             CastInst::Create(CastInst::getCastOpcode(FullV, false,
   4768                                                      OpTy, false),
   4769                              FullV, LF.OperandValToReplace->getType(),
   4770                              "tmp", BB->getTerminator());
   4771 
   4772         PN->setIncomingValue(i, FullV);
   4773         Pair.first->second = FullV;
   4774       }
   4775     }
   4776 }
   4777 
   4778 /// Rewrite - Emit instructions for the leading candidate expression for this
   4779 /// LSRUse (this is called "expanding"), and update the UserInst to reference
   4780 /// the newly expanded value.
   4781 void LSRInstance::Rewrite(const LSRFixup &LF,
   4782                           const Formula &F,
   4783                           SCEVExpander &Rewriter,
   4784                           SmallVectorImpl<WeakVH> &DeadInsts,
   4785                           Pass *P) const {
   4786   // First, find an insertion point that dominates UserInst. For PHI nodes,
   4787   // find the nearest block which dominates all the relevant uses.
   4788   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
   4789     RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P);
   4790   } else {
   4791     Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts);
   4792 
   4793     // If this is reuse-by-noop-cast, insert the noop cast.
   4794     Type *OpTy = LF.OperandValToReplace->getType();
   4795     if (FullV->getType() != OpTy) {
   4796       Instruction *Cast =
   4797         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
   4798                          FullV, OpTy, "tmp", LF.UserInst);
   4799       FullV = Cast;
   4800     }
   4801 
   4802     // Update the user. ICmpZero is handled specially here (for now) because
   4803     // Expand may have updated one of the operands of the icmp already, and
   4804     // its new value may happen to be equal to LF.OperandValToReplace, in
   4805     // which case doing replaceUsesOfWith leads to replacing both operands
   4806     // with the same value. TODO: Reorganize this.
   4807     if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
   4808       LF.UserInst->setOperand(0, FullV);
   4809     else
   4810       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
   4811   }
   4812 
   4813   DeadInsts.push_back(LF.OperandValToReplace);
   4814 }
   4815 
   4816 /// ImplementSolution - Rewrite all the fixup locations with new values,
   4817 /// following the chosen solution.
   4818 void
   4819 LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
   4820                                Pass *P) {
   4821   // Keep track of instructions we may have made dead, so that
   4822   // we can remove them after we are done working.
   4823   SmallVector<WeakVH, 16> DeadInsts;
   4824 
   4825   SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
   4826                         "lsr");
   4827 #ifndef NDEBUG
   4828   Rewriter.setDebugType(DEBUG_TYPE);
   4829 #endif
   4830   Rewriter.disableCanonicalMode();
   4831   Rewriter.enableLSRMode();
   4832   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
   4833 
   4834   // Mark phi nodes that terminate chains so the expander tries to reuse them.
   4835   for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(),
   4836          ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) {
   4837     if (PHINode *PN = dyn_cast<PHINode>(ChainI->tailUserInst()))
   4838       Rewriter.setChainedPhi(PN);
   4839   }
   4840 
   4841   // Expand the new value definitions and update the users.
   4842   for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
   4843        E = Fixups.end(); I != E; ++I) {
   4844     const LSRFixup &Fixup = *I;
   4845 
   4846     Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P);
   4847 
   4848     Changed = true;
   4849   }
   4850 
   4851   for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(),
   4852          ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) {
   4853     GenerateIVChain(*ChainI, Rewriter, DeadInsts);
   4854     Changed = true;
   4855   }
   4856   // Clean up after ourselves. This must be done before deleting any
   4857   // instructions.
   4858   Rewriter.clear();
   4859 
   4860   Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
   4861 }
   4862 
   4863 LSRInstance::LSRInstance(Loop *L, Pass *P)
   4864     : IU(P->getAnalysis<IVUsers>()), SE(P->getAnalysis<ScalarEvolution>()),
   4865       DT(P->getAnalysis<DominatorTreeWrapperPass>().getDomTree()),
   4866       LI(P->getAnalysis<LoopInfoWrapperPass>().getLoopInfo()),
   4867       TTI(P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
   4868           *L->getHeader()->getParent())),
   4869       L(L), Changed(false), IVIncInsertPos(nullptr) {
   4870   // If LoopSimplify form is not available, stay out of trouble.
   4871   if (!L->isLoopSimplifyForm())
   4872     return;
   4873 
   4874   // If there's no interesting work to be done, bail early.
   4875   if (IU.empty()) return;
   4876 
   4877   // If there's too much analysis to be done, bail early. We won't be able to
   4878   // model the problem anyway.
   4879   unsigned NumUsers = 0;
   4880   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
   4881     if (++NumUsers > MaxIVUsers) {
   4882       DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << *L
   4883             << "\n");
   4884       return;
   4885     }
   4886   }
   4887 
   4888 #ifndef NDEBUG
   4889   // All dominating loops must have preheaders, or SCEVExpander may not be able
   4890   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
   4891   //
   4892   // IVUsers analysis should only create users that are dominated by simple loop
   4893   // headers. Since this loop should dominate all of its users, its user list
   4894   // should be empty if this loop itself is not within a simple loop nest.
   4895   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
   4896        Rung; Rung = Rung->getIDom()) {
   4897     BasicBlock *BB = Rung->getBlock();
   4898     const Loop *DomLoop = LI.getLoopFor(BB);
   4899     if (DomLoop && DomLoop->getHeader() == BB) {
   4900       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
   4901     }
   4902   }
   4903 #endif // DEBUG
   4904 
   4905   DEBUG(dbgs() << "\nLSR on loop ";
   4906         L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
   4907         dbgs() << ":\n");
   4908 
   4909   // First, perform some low-level loop optimizations.
   4910   OptimizeShadowIV();
   4911   OptimizeLoopTermCond();
   4912 
   4913   // If loop preparation eliminates all interesting IV users, bail.
   4914   if (IU.empty()) return;
   4915 
   4916   // Skip nested loops until we can model them better with formulae.
   4917   if (!L->empty()) {
   4918     DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
   4919     return;
   4920   }
   4921 
   4922   // Start collecting data and preparing for the solver.
   4923   CollectChains();
   4924   CollectInterestingTypesAndFactors();
   4925   CollectFixupsAndInitialFormulae();
   4926   CollectLoopInvariantFixupsAndFormulae();
   4927 
   4928   assert(!Uses.empty() && "IVUsers reported at least one use");
   4929   DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
   4930         print_uses(dbgs()));
   4931 
   4932   // Now use the reuse data to generate a bunch of interesting ways
   4933   // to formulate the values needed for the uses.
   4934   GenerateAllReuseFormulae();
   4935 
   4936   FilterOutUndesirableDedicatedRegisters();
   4937   NarrowSearchSpaceUsingHeuristics();
   4938 
   4939   SmallVector<const Formula *, 8> Solution;
   4940   Solve(Solution);
   4941 
   4942   // Release memory that is no longer needed.
   4943   Factors.clear();
   4944   Types.clear();
   4945   RegUses.clear();
   4946 
   4947   if (Solution.empty())
   4948     return;
   4949 
   4950 #ifndef NDEBUG
   4951   // Formulae should be legal.
   4952   for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), E = Uses.end();
   4953        I != E; ++I) {
   4954     const LSRUse &LU = *I;
   4955     for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
   4956                                                   JE = LU.Formulae.end();
   4957          J != JE; ++J)
   4958       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
   4959                         *J) && "Illegal formula generated!");
   4960   };
   4961 #endif
   4962 
   4963   // Now that we've decided what we want, make it so.
   4964   ImplementSolution(Solution, P);
   4965 }
   4966 
   4967 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
   4968   if (Factors.empty() && Types.empty()) return;
   4969 
   4970   OS << "LSR has identified the following interesting factors and types: ";
   4971   bool First = true;
   4972 
   4973   for (SmallSetVector<int64_t, 8>::const_iterator
   4974        I = Factors.begin(), E = Factors.end(); I != E; ++I) {
   4975     if (!First) OS << ", ";
   4976     First = false;
   4977     OS << '*' << *I;
   4978   }
   4979 
   4980   for (SmallSetVector<Type *, 4>::const_iterator
   4981        I = Types.begin(), E = Types.end(); I != E; ++I) {
   4982     if (!First) OS << ", ";
   4983     First = false;
   4984     OS << '(' << **I << ')';
   4985   }
   4986   OS << '\n';
   4987 }
   4988 
   4989 void LSRInstance::print_fixups(raw_ostream &OS) const {
   4990   OS << "LSR is examining the following fixup sites:\n";
   4991   for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
   4992        E = Fixups.end(); I != E; ++I) {
   4993     dbgs() << "  ";
   4994     I->print(OS);
   4995     OS << '\n';
   4996   }
   4997 }
   4998 
   4999 void LSRInstance::print_uses(raw_ostream &OS) const {
   5000   OS << "LSR is examining the following uses:\n";
   5001   for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
   5002        E = Uses.end(); I != E; ++I) {
   5003     const LSRUse &LU = *I;
   5004     dbgs() << "  ";
   5005     LU.print(OS);
   5006     OS << '\n';
   5007     for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
   5008          JE = LU.Formulae.end(); J != JE; ++J) {
   5009       OS << "    ";
   5010       J->print(OS);
   5011       OS << '\n';
   5012     }
   5013   }
   5014 }
   5015 
   5016 void LSRInstance::print(raw_ostream &OS) const {
   5017   print_factors_and_types(OS);
   5018   print_fixups(OS);
   5019   print_uses(OS);
   5020 }
   5021 
   5022 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
   5023 void LSRInstance::dump() const {
   5024   print(errs()); errs() << '\n';
   5025 }
   5026 #endif
   5027 
   5028 namespace {
   5029 
   5030 class LoopStrengthReduce : public LoopPass {
   5031 public:
   5032   static char ID; // Pass ID, replacement for typeid
   5033   LoopStrengthReduce();
   5034 
   5035 private:
   5036   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
   5037   void getAnalysisUsage(AnalysisUsage &AU) const override;
   5038 };
   5039 
   5040 }
   5041 
   5042 char LoopStrengthReduce::ID = 0;
   5043 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
   5044                 "Loop Strength Reduction", false, false)
   5045 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
   5046 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
   5047 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
   5048 INITIALIZE_PASS_DEPENDENCY(IVUsers)
   5049 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
   5050 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
   5051 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
   5052                 "Loop Strength Reduction", false, false)
   5053 
   5054 
   5055 Pass *llvm::createLoopStrengthReducePass() {
   5056   return new LoopStrengthReduce();
   5057 }
   5058 
   5059 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
   5060   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
   5061 }
   5062 
   5063 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
   5064   // We split critical edges, so we change the CFG.  However, we do update
   5065   // many analyses if they are around.
   5066   AU.addPreservedID(LoopSimplifyID);
   5067 
   5068   AU.addRequired<LoopInfoWrapperPass>();
   5069   AU.addPreserved<LoopInfoWrapperPass>();
   5070   AU.addRequiredID(LoopSimplifyID);
   5071   AU.addRequired<DominatorTreeWrapperPass>();
   5072   AU.addPreserved<DominatorTreeWrapperPass>();
   5073   AU.addRequired<ScalarEvolution>();
   5074   AU.addPreserved<ScalarEvolution>();
   5075   // Requiring LoopSimplify a second time here prevents IVUsers from running
   5076   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
   5077   AU.addRequiredID(LoopSimplifyID);
   5078   AU.addRequired<IVUsers>();
   5079   AU.addPreserved<IVUsers>();
   5080   AU.addRequired<TargetTransformInfoWrapperPass>();
   5081 }
   5082 
   5083 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
   5084   if (skipOptnoneFunction(L))
   5085     return false;
   5086 
   5087   bool Changed = false;
   5088 
   5089   // Run the main LSR transformation.
   5090   Changed |= LSRInstance(L, this).getChanged();
   5091 
   5092   // Remove any extra phis created by processing inner loops.
   5093   Changed |= DeleteDeadPHIs(L->getHeader());
   5094   if (EnablePhiElim && L->isLoopSimplifyForm()) {
   5095     SmallVector<WeakVH, 16> DeadInsts;
   5096     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
   5097     SCEVExpander Rewriter(getAnalysis<ScalarEvolution>(), DL, "lsr");
   5098 #ifndef NDEBUG
   5099     Rewriter.setDebugType(DEBUG_TYPE);
   5100 #endif
   5101     unsigned numFolded = Rewriter.replaceCongruentIVs(
   5102         L, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), DeadInsts,
   5103         &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
   5104             *L->getHeader()->getParent()));
   5105     if (numFolded) {
   5106       Changed = true;
   5107       DeleteTriviallyDeadInstructions(DeadInsts);
   5108       DeleteDeadPHIs(L->getHeader());
   5109     }
   5110   }
   5111   return Changed;
   5112 }
   5113