Home | History | Annotate | Download | only in arm
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include <limits.h>  // For LONG_MIN, LONG_MAX.
      6 
      7 #include "src/v8.h"
      8 
      9 #if V8_TARGET_ARCH_ARM
     10 
     11 #include "src/base/bits.h"
     12 #include "src/base/division-by-constant.h"
     13 #include "src/bootstrapper.h"
     14 #include "src/codegen.h"
     15 #include "src/cpu-profiler.h"
     16 #include "src/debug.h"
     17 #include "src/isolate-inl.h"
     18 #include "src/runtime.h"
     19 
     20 namespace v8 {
     21 namespace internal {
     22 
     23 MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size)
     24     : Assembler(arg_isolate, buffer, size),
     25       generating_stub_(false),
     26       has_frame_(false) {
     27   if (isolate() != NULL) {
     28     code_object_ = Handle<Object>(isolate()->heap()->undefined_value(),
     29                                   isolate());
     30   }
     31 }
     32 
     33 
     34 void MacroAssembler::Jump(Register target, Condition cond) {
     35   bx(target, cond);
     36 }
     37 
     38 
     39 void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode,
     40                           Condition cond) {
     41   DCHECK(RelocInfo::IsCodeTarget(rmode));
     42   mov(pc, Operand(target, rmode), LeaveCC, cond);
     43 }
     44 
     45 
     46 void MacroAssembler::Jump(Address target, RelocInfo::Mode rmode,
     47                           Condition cond) {
     48   DCHECK(!RelocInfo::IsCodeTarget(rmode));
     49   Jump(reinterpret_cast<intptr_t>(target), rmode, cond);
     50 }
     51 
     52 
     53 void MacroAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode,
     54                           Condition cond) {
     55   DCHECK(RelocInfo::IsCodeTarget(rmode));
     56   // 'code' is always generated ARM code, never THUMB code
     57   AllowDeferredHandleDereference embedding_raw_address;
     58   Jump(reinterpret_cast<intptr_t>(code.location()), rmode, cond);
     59 }
     60 
     61 
     62 int MacroAssembler::CallSize(Register target, Condition cond) {
     63   return kInstrSize;
     64 }
     65 
     66 
     67 void MacroAssembler::Call(Register target, Condition cond) {
     68   // Block constant pool for the call instruction sequence.
     69   BlockConstPoolScope block_const_pool(this);
     70   Label start;
     71   bind(&start);
     72   blx(target, cond);
     73   DCHECK_EQ(CallSize(target, cond), SizeOfCodeGeneratedSince(&start));
     74 }
     75 
     76 
     77 int MacroAssembler::CallSize(
     78     Address target, RelocInfo::Mode rmode, Condition cond) {
     79   Instr mov_instr = cond | MOV | LeaveCC;
     80   Operand mov_operand = Operand(reinterpret_cast<intptr_t>(target), rmode);
     81   return kInstrSize +
     82          mov_operand.instructions_required(this, mov_instr) * kInstrSize;
     83 }
     84 
     85 
     86 int MacroAssembler::CallStubSize(
     87     CodeStub* stub, TypeFeedbackId ast_id, Condition cond) {
     88   return CallSize(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id, cond);
     89 }
     90 
     91 
     92 int MacroAssembler::CallSizeNotPredictableCodeSize(Isolate* isolate,
     93                                                    Address target,
     94                                                    RelocInfo::Mode rmode,
     95                                                    Condition cond) {
     96   Instr mov_instr = cond | MOV | LeaveCC;
     97   Operand mov_operand = Operand(reinterpret_cast<intptr_t>(target), rmode);
     98   return kInstrSize +
     99          mov_operand.instructions_required(NULL, mov_instr) * kInstrSize;
    100 }
    101 
    102 
    103 void MacroAssembler::Call(Address target,
    104                           RelocInfo::Mode rmode,
    105                           Condition cond,
    106                           TargetAddressStorageMode mode) {
    107   // Block constant pool for the call instruction sequence.
    108   BlockConstPoolScope block_const_pool(this);
    109   Label start;
    110   bind(&start);
    111 
    112   bool old_predictable_code_size = predictable_code_size();
    113   if (mode == NEVER_INLINE_TARGET_ADDRESS) {
    114     set_predictable_code_size(true);
    115   }
    116 
    117 #ifdef DEBUG
    118   // Check the expected size before generating code to ensure we assume the same
    119   // constant pool availability (e.g., whether constant pool is full or not).
    120   int expected_size = CallSize(target, rmode, cond);
    121 #endif
    122 
    123   // Call sequence on V7 or later may be :
    124   //  movw  ip, #... @ call address low 16
    125   //  movt  ip, #... @ call address high 16
    126   //  blx   ip
    127   //                      @ return address
    128   // Or for pre-V7 or values that may be back-patched
    129   // to avoid ICache flushes:
    130   //  ldr   ip, [pc, #...] @ call address
    131   //  blx   ip
    132   //                      @ return address
    133 
    134   // Statement positions are expected to be recorded when the target
    135   // address is loaded. The mov method will automatically record
    136   // positions when pc is the target, since this is not the case here
    137   // we have to do it explicitly.
    138   positions_recorder()->WriteRecordedPositions();
    139 
    140   mov(ip, Operand(reinterpret_cast<int32_t>(target), rmode));
    141   blx(ip, cond);
    142 
    143   DCHECK_EQ(expected_size, SizeOfCodeGeneratedSince(&start));
    144   if (mode == NEVER_INLINE_TARGET_ADDRESS) {
    145     set_predictable_code_size(old_predictable_code_size);
    146   }
    147 }
    148 
    149 
    150 int MacroAssembler::CallSize(Handle<Code> code,
    151                              RelocInfo::Mode rmode,
    152                              TypeFeedbackId ast_id,
    153                              Condition cond) {
    154   AllowDeferredHandleDereference using_raw_address;
    155   return CallSize(reinterpret_cast<Address>(code.location()), rmode, cond);
    156 }
    157 
    158 
    159 void MacroAssembler::Call(Handle<Code> code,
    160                           RelocInfo::Mode rmode,
    161                           TypeFeedbackId ast_id,
    162                           Condition cond,
    163                           TargetAddressStorageMode mode) {
    164   Label start;
    165   bind(&start);
    166   DCHECK(RelocInfo::IsCodeTarget(rmode));
    167   if (rmode == RelocInfo::CODE_TARGET && !ast_id.IsNone()) {
    168     SetRecordedAstId(ast_id);
    169     rmode = RelocInfo::CODE_TARGET_WITH_ID;
    170   }
    171   // 'code' is always generated ARM code, never THUMB code
    172   AllowDeferredHandleDereference embedding_raw_address;
    173   Call(reinterpret_cast<Address>(code.location()), rmode, cond, mode);
    174 }
    175 
    176 
    177 void MacroAssembler::Ret(Condition cond) {
    178   bx(lr, cond);
    179 }
    180 
    181 
    182 void MacroAssembler::Drop(int count, Condition cond) {
    183   if (count > 0) {
    184     add(sp, sp, Operand(count * kPointerSize), LeaveCC, cond);
    185   }
    186 }
    187 
    188 
    189 void MacroAssembler::Ret(int drop, Condition cond) {
    190   Drop(drop, cond);
    191   Ret(cond);
    192 }
    193 
    194 
    195 void MacroAssembler::Swap(Register reg1,
    196                           Register reg2,
    197                           Register scratch,
    198                           Condition cond) {
    199   if (scratch.is(no_reg)) {
    200     eor(reg1, reg1, Operand(reg2), LeaveCC, cond);
    201     eor(reg2, reg2, Operand(reg1), LeaveCC, cond);
    202     eor(reg1, reg1, Operand(reg2), LeaveCC, cond);
    203   } else {
    204     mov(scratch, reg1, LeaveCC, cond);
    205     mov(reg1, reg2, LeaveCC, cond);
    206     mov(reg2, scratch, LeaveCC, cond);
    207   }
    208 }
    209 
    210 
    211 void MacroAssembler::Call(Label* target) {
    212   bl(target);
    213 }
    214 
    215 
    216 void MacroAssembler::Push(Handle<Object> handle) {
    217   mov(ip, Operand(handle));
    218   push(ip);
    219 }
    220 
    221 
    222 void MacroAssembler::Move(Register dst, Handle<Object> value) {
    223   AllowDeferredHandleDereference smi_check;
    224   if (value->IsSmi()) {
    225     mov(dst, Operand(value));
    226   } else {
    227     DCHECK(value->IsHeapObject());
    228     if (isolate()->heap()->InNewSpace(*value)) {
    229       Handle<Cell> cell = isolate()->factory()->NewCell(value);
    230       mov(dst, Operand(cell));
    231       ldr(dst, FieldMemOperand(dst, Cell::kValueOffset));
    232     } else {
    233       mov(dst, Operand(value));
    234     }
    235   }
    236 }
    237 
    238 
    239 void MacroAssembler::Move(Register dst, Register src, Condition cond) {
    240   if (!dst.is(src)) {
    241     mov(dst, src, LeaveCC, cond);
    242   }
    243 }
    244 
    245 
    246 void MacroAssembler::Move(DwVfpRegister dst, DwVfpRegister src) {
    247   if (!dst.is(src)) {
    248     vmov(dst, src);
    249   }
    250 }
    251 
    252 
    253 void MacroAssembler::Mls(Register dst, Register src1, Register src2,
    254                          Register srcA, Condition cond) {
    255   if (CpuFeatures::IsSupported(MLS)) {
    256     CpuFeatureScope scope(this, MLS);
    257     mls(dst, src1, src2, srcA, cond);
    258   } else {
    259     DCHECK(!srcA.is(ip));
    260     mul(ip, src1, src2, LeaveCC, cond);
    261     sub(dst, srcA, ip, LeaveCC, cond);
    262   }
    263 }
    264 
    265 
    266 void MacroAssembler::And(Register dst, Register src1, const Operand& src2,
    267                          Condition cond) {
    268   if (!src2.is_reg() &&
    269       !src2.must_output_reloc_info(this) &&
    270       src2.immediate() == 0) {
    271     mov(dst, Operand::Zero(), LeaveCC, cond);
    272   } else if (!(src2.instructions_required(this) == 1) &&
    273              !src2.must_output_reloc_info(this) &&
    274              CpuFeatures::IsSupported(ARMv7) &&
    275              base::bits::IsPowerOfTwo32(src2.immediate() + 1)) {
    276     ubfx(dst, src1, 0,
    277         WhichPowerOf2(static_cast<uint32_t>(src2.immediate()) + 1), cond);
    278   } else {
    279     and_(dst, src1, src2, LeaveCC, cond);
    280   }
    281 }
    282 
    283 
    284 void MacroAssembler::Ubfx(Register dst, Register src1, int lsb, int width,
    285                           Condition cond) {
    286   DCHECK(lsb < 32);
    287   if (!CpuFeatures::IsSupported(ARMv7) || predictable_code_size()) {
    288     int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1);
    289     and_(dst, src1, Operand(mask), LeaveCC, cond);
    290     if (lsb != 0) {
    291       mov(dst, Operand(dst, LSR, lsb), LeaveCC, cond);
    292     }
    293   } else {
    294     ubfx(dst, src1, lsb, width, cond);
    295   }
    296 }
    297 
    298 
    299 void MacroAssembler::Sbfx(Register dst, Register src1, int lsb, int width,
    300                           Condition cond) {
    301   DCHECK(lsb < 32);
    302   if (!CpuFeatures::IsSupported(ARMv7) || predictable_code_size()) {
    303     int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1);
    304     and_(dst, src1, Operand(mask), LeaveCC, cond);
    305     int shift_up = 32 - lsb - width;
    306     int shift_down = lsb + shift_up;
    307     if (shift_up != 0) {
    308       mov(dst, Operand(dst, LSL, shift_up), LeaveCC, cond);
    309     }
    310     if (shift_down != 0) {
    311       mov(dst, Operand(dst, ASR, shift_down), LeaveCC, cond);
    312     }
    313   } else {
    314     sbfx(dst, src1, lsb, width, cond);
    315   }
    316 }
    317 
    318 
    319 void MacroAssembler::Bfi(Register dst,
    320                          Register src,
    321                          Register scratch,
    322                          int lsb,
    323                          int width,
    324                          Condition cond) {
    325   DCHECK(0 <= lsb && lsb < 32);
    326   DCHECK(0 <= width && width < 32);
    327   DCHECK(lsb + width < 32);
    328   DCHECK(!scratch.is(dst));
    329   if (width == 0) return;
    330   if (!CpuFeatures::IsSupported(ARMv7) || predictable_code_size()) {
    331     int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1);
    332     bic(dst, dst, Operand(mask));
    333     and_(scratch, src, Operand((1 << width) - 1));
    334     mov(scratch, Operand(scratch, LSL, lsb));
    335     orr(dst, dst, scratch);
    336   } else {
    337     bfi(dst, src, lsb, width, cond);
    338   }
    339 }
    340 
    341 
    342 void MacroAssembler::Bfc(Register dst, Register src, int lsb, int width,
    343                          Condition cond) {
    344   DCHECK(lsb < 32);
    345   if (!CpuFeatures::IsSupported(ARMv7) || predictable_code_size()) {
    346     int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1);
    347     bic(dst, src, Operand(mask));
    348   } else {
    349     Move(dst, src, cond);
    350     bfc(dst, lsb, width, cond);
    351   }
    352 }
    353 
    354 
    355 void MacroAssembler::Usat(Register dst, int satpos, const Operand& src,
    356                           Condition cond) {
    357   if (!CpuFeatures::IsSupported(ARMv7) || predictable_code_size()) {
    358     DCHECK(!dst.is(pc) && !src.rm().is(pc));
    359     DCHECK((satpos >= 0) && (satpos <= 31));
    360 
    361     // These asserts are required to ensure compatibility with the ARMv7
    362     // implementation.
    363     DCHECK((src.shift_op() == ASR) || (src.shift_op() == LSL));
    364     DCHECK(src.rs().is(no_reg));
    365 
    366     Label done;
    367     int satval = (1 << satpos) - 1;
    368 
    369     if (cond != al) {
    370       b(NegateCondition(cond), &done);  // Skip saturate if !condition.
    371     }
    372     if (!(src.is_reg() && dst.is(src.rm()))) {
    373       mov(dst, src);
    374     }
    375     tst(dst, Operand(~satval));
    376     b(eq, &done);
    377     mov(dst, Operand::Zero(), LeaveCC, mi);  // 0 if negative.
    378     mov(dst, Operand(satval), LeaveCC, pl);  // satval if positive.
    379     bind(&done);
    380   } else {
    381     usat(dst, satpos, src, cond);
    382   }
    383 }
    384 
    385 
    386 void MacroAssembler::Load(Register dst,
    387                           const MemOperand& src,
    388                           Representation r) {
    389   DCHECK(!r.IsDouble());
    390   if (r.IsInteger8()) {
    391     ldrsb(dst, src);
    392   } else if (r.IsUInteger8()) {
    393     ldrb(dst, src);
    394   } else if (r.IsInteger16()) {
    395     ldrsh(dst, src);
    396   } else if (r.IsUInteger16()) {
    397     ldrh(dst, src);
    398   } else {
    399     ldr(dst, src);
    400   }
    401 }
    402 
    403 
    404 void MacroAssembler::Store(Register src,
    405                            const MemOperand& dst,
    406                            Representation r) {
    407   DCHECK(!r.IsDouble());
    408   if (r.IsInteger8() || r.IsUInteger8()) {
    409     strb(src, dst);
    410   } else if (r.IsInteger16() || r.IsUInteger16()) {
    411     strh(src, dst);
    412   } else {
    413     if (r.IsHeapObject()) {
    414       AssertNotSmi(src);
    415     } else if (r.IsSmi()) {
    416       AssertSmi(src);
    417     }
    418     str(src, dst);
    419   }
    420 }
    421 
    422 
    423 void MacroAssembler::LoadRoot(Register destination,
    424                               Heap::RootListIndex index,
    425                               Condition cond) {
    426   if (CpuFeatures::IsSupported(MOVW_MOVT_IMMEDIATE_LOADS) &&
    427       isolate()->heap()->RootCanBeTreatedAsConstant(index) &&
    428       !predictable_code_size()) {
    429     // The CPU supports fast immediate values, and this root will never
    430     // change. We will load it as a relocatable immediate value.
    431     Handle<Object> root(&isolate()->heap()->roots_array_start()[index]);
    432     mov(destination, Operand(root), LeaveCC, cond);
    433     return;
    434   }
    435   ldr(destination, MemOperand(kRootRegister, index << kPointerSizeLog2), cond);
    436 }
    437 
    438 
    439 void MacroAssembler::StoreRoot(Register source,
    440                                Heap::RootListIndex index,
    441                                Condition cond) {
    442   str(source, MemOperand(kRootRegister, index << kPointerSizeLog2), cond);
    443 }
    444 
    445 
    446 void MacroAssembler::InNewSpace(Register object,
    447                                 Register scratch,
    448                                 Condition cond,
    449                                 Label* branch) {
    450   DCHECK(cond == eq || cond == ne);
    451   and_(scratch, object, Operand(ExternalReference::new_space_mask(isolate())));
    452   cmp(scratch, Operand(ExternalReference::new_space_start(isolate())));
    453   b(cond, branch);
    454 }
    455 
    456 
    457 void MacroAssembler::RecordWriteField(
    458     Register object,
    459     int offset,
    460     Register value,
    461     Register dst,
    462     LinkRegisterStatus lr_status,
    463     SaveFPRegsMode save_fp,
    464     RememberedSetAction remembered_set_action,
    465     SmiCheck smi_check,
    466     PointersToHereCheck pointers_to_here_check_for_value) {
    467   // First, check if a write barrier is even needed. The tests below
    468   // catch stores of Smis.
    469   Label done;
    470 
    471   // Skip barrier if writing a smi.
    472   if (smi_check == INLINE_SMI_CHECK) {
    473     JumpIfSmi(value, &done);
    474   }
    475 
    476   // Although the object register is tagged, the offset is relative to the start
    477   // of the object, so so offset must be a multiple of kPointerSize.
    478   DCHECK(IsAligned(offset, kPointerSize));
    479 
    480   add(dst, object, Operand(offset - kHeapObjectTag));
    481   if (emit_debug_code()) {
    482     Label ok;
    483     tst(dst, Operand((1 << kPointerSizeLog2) - 1));
    484     b(eq, &ok);
    485     stop("Unaligned cell in write barrier");
    486     bind(&ok);
    487   }
    488 
    489   RecordWrite(object,
    490               dst,
    491               value,
    492               lr_status,
    493               save_fp,
    494               remembered_set_action,
    495               OMIT_SMI_CHECK,
    496               pointers_to_here_check_for_value);
    497 
    498   bind(&done);
    499 
    500   // Clobber clobbered input registers when running with the debug-code flag
    501   // turned on to provoke errors.
    502   if (emit_debug_code()) {
    503     mov(value, Operand(bit_cast<int32_t>(kZapValue + 4)));
    504     mov(dst, Operand(bit_cast<int32_t>(kZapValue + 8)));
    505   }
    506 }
    507 
    508 
    509 // Will clobber 4 registers: object, map, dst, ip.  The
    510 // register 'object' contains a heap object pointer.
    511 void MacroAssembler::RecordWriteForMap(Register object,
    512                                        Register map,
    513                                        Register dst,
    514                                        LinkRegisterStatus lr_status,
    515                                        SaveFPRegsMode fp_mode) {
    516   if (emit_debug_code()) {
    517     ldr(dst, FieldMemOperand(map, HeapObject::kMapOffset));
    518     cmp(dst, Operand(isolate()->factory()->meta_map()));
    519     Check(eq, kWrongAddressOrValuePassedToRecordWrite);
    520   }
    521 
    522   if (!FLAG_incremental_marking) {
    523     return;
    524   }
    525 
    526   if (emit_debug_code()) {
    527     ldr(ip, FieldMemOperand(object, HeapObject::kMapOffset));
    528     cmp(ip, map);
    529     Check(eq, kWrongAddressOrValuePassedToRecordWrite);
    530   }
    531 
    532   Label done;
    533 
    534   // A single check of the map's pages interesting flag suffices, since it is
    535   // only set during incremental collection, and then it's also guaranteed that
    536   // the from object's page's interesting flag is also set.  This optimization
    537   // relies on the fact that maps can never be in new space.
    538   CheckPageFlag(map,
    539                 map,  // Used as scratch.
    540                 MemoryChunk::kPointersToHereAreInterestingMask,
    541                 eq,
    542                 &done);
    543 
    544   add(dst, object, Operand(HeapObject::kMapOffset - kHeapObjectTag));
    545   if (emit_debug_code()) {
    546     Label ok;
    547     tst(dst, Operand((1 << kPointerSizeLog2) - 1));
    548     b(eq, &ok);
    549     stop("Unaligned cell in write barrier");
    550     bind(&ok);
    551   }
    552 
    553   // Record the actual write.
    554   if (lr_status == kLRHasNotBeenSaved) {
    555     push(lr);
    556   }
    557   RecordWriteStub stub(isolate(), object, map, dst, OMIT_REMEMBERED_SET,
    558                        fp_mode);
    559   CallStub(&stub);
    560   if (lr_status == kLRHasNotBeenSaved) {
    561     pop(lr);
    562   }
    563 
    564   bind(&done);
    565 
    566   // Count number of write barriers in generated code.
    567   isolate()->counters()->write_barriers_static()->Increment();
    568   IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, ip, dst);
    569 
    570   // Clobber clobbered registers when running with the debug-code flag
    571   // turned on to provoke errors.
    572   if (emit_debug_code()) {
    573     mov(dst, Operand(bit_cast<int32_t>(kZapValue + 12)));
    574     mov(map, Operand(bit_cast<int32_t>(kZapValue + 16)));
    575   }
    576 }
    577 
    578 
    579 // Will clobber 4 registers: object, address, scratch, ip.  The
    580 // register 'object' contains a heap object pointer.  The heap object
    581 // tag is shifted away.
    582 void MacroAssembler::RecordWrite(
    583     Register object,
    584     Register address,
    585     Register value,
    586     LinkRegisterStatus lr_status,
    587     SaveFPRegsMode fp_mode,
    588     RememberedSetAction remembered_set_action,
    589     SmiCheck smi_check,
    590     PointersToHereCheck pointers_to_here_check_for_value) {
    591   DCHECK(!object.is(value));
    592   if (emit_debug_code()) {
    593     ldr(ip, MemOperand(address));
    594     cmp(ip, value);
    595     Check(eq, kWrongAddressOrValuePassedToRecordWrite);
    596   }
    597 
    598   if (remembered_set_action == OMIT_REMEMBERED_SET &&
    599       !FLAG_incremental_marking) {
    600     return;
    601   }
    602 
    603   // First, check if a write barrier is even needed. The tests below
    604   // catch stores of smis and stores into the young generation.
    605   Label done;
    606 
    607   if (smi_check == INLINE_SMI_CHECK) {
    608     JumpIfSmi(value, &done);
    609   }
    610 
    611   if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) {
    612     CheckPageFlag(value,
    613                   value,  // Used as scratch.
    614                   MemoryChunk::kPointersToHereAreInterestingMask,
    615                   eq,
    616                   &done);
    617   }
    618   CheckPageFlag(object,
    619                 value,  // Used as scratch.
    620                 MemoryChunk::kPointersFromHereAreInterestingMask,
    621                 eq,
    622                 &done);
    623 
    624   // Record the actual write.
    625   if (lr_status == kLRHasNotBeenSaved) {
    626     push(lr);
    627   }
    628   RecordWriteStub stub(isolate(), object, value, address, remembered_set_action,
    629                        fp_mode);
    630   CallStub(&stub);
    631   if (lr_status == kLRHasNotBeenSaved) {
    632     pop(lr);
    633   }
    634 
    635   bind(&done);
    636 
    637   // Count number of write barriers in generated code.
    638   isolate()->counters()->write_barriers_static()->Increment();
    639   IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, ip,
    640                    value);
    641 
    642   // Clobber clobbered registers when running with the debug-code flag
    643   // turned on to provoke errors.
    644   if (emit_debug_code()) {
    645     mov(address, Operand(bit_cast<int32_t>(kZapValue + 12)));
    646     mov(value, Operand(bit_cast<int32_t>(kZapValue + 16)));
    647   }
    648 }
    649 
    650 
    651 void MacroAssembler::RememberedSetHelper(Register object,  // For debug tests.
    652                                          Register address,
    653                                          Register scratch,
    654                                          SaveFPRegsMode fp_mode,
    655                                          RememberedSetFinalAction and_then) {
    656   Label done;
    657   if (emit_debug_code()) {
    658     Label ok;
    659     JumpIfNotInNewSpace(object, scratch, &ok);
    660     stop("Remembered set pointer is in new space");
    661     bind(&ok);
    662   }
    663   // Load store buffer top.
    664   ExternalReference store_buffer =
    665       ExternalReference::store_buffer_top(isolate());
    666   mov(ip, Operand(store_buffer));
    667   ldr(scratch, MemOperand(ip));
    668   // Store pointer to buffer and increment buffer top.
    669   str(address, MemOperand(scratch, kPointerSize, PostIndex));
    670   // Write back new top of buffer.
    671   str(scratch, MemOperand(ip));
    672   // Call stub on end of buffer.
    673   // Check for end of buffer.
    674   tst(scratch, Operand(StoreBuffer::kStoreBufferOverflowBit));
    675   if (and_then == kFallThroughAtEnd) {
    676     b(eq, &done);
    677   } else {
    678     DCHECK(and_then == kReturnAtEnd);
    679     Ret(eq);
    680   }
    681   push(lr);
    682   StoreBufferOverflowStub store_buffer_overflow(isolate(), fp_mode);
    683   CallStub(&store_buffer_overflow);
    684   pop(lr);
    685   bind(&done);
    686   if (and_then == kReturnAtEnd) {
    687     Ret();
    688   }
    689 }
    690 
    691 
    692 void MacroAssembler::PushFixedFrame(Register marker_reg) {
    693   DCHECK(!marker_reg.is_valid() || marker_reg.code() < cp.code());
    694   stm(db_w, sp, (marker_reg.is_valid() ? marker_reg.bit() : 0) |
    695                 cp.bit() |
    696                 (FLAG_enable_ool_constant_pool ? pp.bit() : 0) |
    697                 fp.bit() |
    698                 lr.bit());
    699 }
    700 
    701 
    702 void MacroAssembler::PopFixedFrame(Register marker_reg) {
    703   DCHECK(!marker_reg.is_valid() || marker_reg.code() < cp.code());
    704   ldm(ia_w, sp, (marker_reg.is_valid() ? marker_reg.bit() : 0) |
    705                 cp.bit() |
    706                 (FLAG_enable_ool_constant_pool ? pp.bit() : 0) |
    707                 fp.bit() |
    708                 lr.bit());
    709 }
    710 
    711 
    712 // Push and pop all registers that can hold pointers.
    713 void MacroAssembler::PushSafepointRegisters() {
    714   // Safepoints expect a block of contiguous register values starting with r0:
    715   DCHECK(((1 << kNumSafepointSavedRegisters) - 1) == kSafepointSavedRegisters);
    716   // Safepoints expect a block of kNumSafepointRegisters values on the
    717   // stack, so adjust the stack for unsaved registers.
    718   const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
    719   DCHECK(num_unsaved >= 0);
    720   sub(sp, sp, Operand(num_unsaved * kPointerSize));
    721   stm(db_w, sp, kSafepointSavedRegisters);
    722 }
    723 
    724 
    725 void MacroAssembler::PopSafepointRegisters() {
    726   const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
    727   ldm(ia_w, sp, kSafepointSavedRegisters);
    728   add(sp, sp, Operand(num_unsaved * kPointerSize));
    729 }
    730 
    731 
    732 void MacroAssembler::StoreToSafepointRegisterSlot(Register src, Register dst) {
    733   str(src, SafepointRegisterSlot(dst));
    734 }
    735 
    736 
    737 void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) {
    738   ldr(dst, SafepointRegisterSlot(src));
    739 }
    740 
    741 
    742 int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
    743   // The registers are pushed starting with the highest encoding,
    744   // which means that lowest encodings are closest to the stack pointer.
    745   DCHECK(reg_code >= 0 && reg_code < kNumSafepointRegisters);
    746   return reg_code;
    747 }
    748 
    749 
    750 MemOperand MacroAssembler::SafepointRegisterSlot(Register reg) {
    751   return MemOperand(sp, SafepointRegisterStackIndex(reg.code()) * kPointerSize);
    752 }
    753 
    754 
    755 MemOperand MacroAssembler::SafepointRegistersAndDoublesSlot(Register reg) {
    756   // Number of d-regs not known at snapshot time.
    757   DCHECK(!serializer_enabled());
    758   // General purpose registers are pushed last on the stack.
    759   int doubles_size = DwVfpRegister::NumAllocatableRegisters() * kDoubleSize;
    760   int register_offset = SafepointRegisterStackIndex(reg.code()) * kPointerSize;
    761   return MemOperand(sp, doubles_size + register_offset);
    762 }
    763 
    764 
    765 void MacroAssembler::Ldrd(Register dst1, Register dst2,
    766                           const MemOperand& src, Condition cond) {
    767   DCHECK(src.rm().is(no_reg));
    768   DCHECK(!dst1.is(lr));  // r14.
    769 
    770   // V8 does not use this addressing mode, so the fallback code
    771   // below doesn't support it yet.
    772   DCHECK((src.am() != PreIndex) && (src.am() != NegPreIndex));
    773 
    774   // Generate two ldr instructions if ldrd is not available.
    775   if (CpuFeatures::IsSupported(ARMv7) && !predictable_code_size() &&
    776       (dst1.code() % 2 == 0) && (dst1.code() + 1 == dst2.code())) {
    777     CpuFeatureScope scope(this, ARMv7);
    778     ldrd(dst1, dst2, src, cond);
    779   } else {
    780     if ((src.am() == Offset) || (src.am() == NegOffset)) {
    781       MemOperand src2(src);
    782       src2.set_offset(src2.offset() + 4);
    783       if (dst1.is(src.rn())) {
    784         ldr(dst2, src2, cond);
    785         ldr(dst1, src, cond);
    786       } else {
    787         ldr(dst1, src, cond);
    788         ldr(dst2, src2, cond);
    789       }
    790     } else {  // PostIndex or NegPostIndex.
    791       DCHECK((src.am() == PostIndex) || (src.am() == NegPostIndex));
    792       if (dst1.is(src.rn())) {
    793         ldr(dst2, MemOperand(src.rn(), 4, Offset), cond);
    794         ldr(dst1, src, cond);
    795       } else {
    796         MemOperand src2(src);
    797         src2.set_offset(src2.offset() - 4);
    798         ldr(dst1, MemOperand(src.rn(), 4, PostIndex), cond);
    799         ldr(dst2, src2, cond);
    800       }
    801     }
    802   }
    803 }
    804 
    805 
    806 void MacroAssembler::Strd(Register src1, Register src2,
    807                           const MemOperand& dst, Condition cond) {
    808   DCHECK(dst.rm().is(no_reg));
    809   DCHECK(!src1.is(lr));  // r14.
    810 
    811   // V8 does not use this addressing mode, so the fallback code
    812   // below doesn't support it yet.
    813   DCHECK((dst.am() != PreIndex) && (dst.am() != NegPreIndex));
    814 
    815   // Generate two str instructions if strd is not available.
    816   if (CpuFeatures::IsSupported(ARMv7) && !predictable_code_size() &&
    817       (src1.code() % 2 == 0) && (src1.code() + 1 == src2.code())) {
    818     CpuFeatureScope scope(this, ARMv7);
    819     strd(src1, src2, dst, cond);
    820   } else {
    821     MemOperand dst2(dst);
    822     if ((dst.am() == Offset) || (dst.am() == NegOffset)) {
    823       dst2.set_offset(dst2.offset() + 4);
    824       str(src1, dst, cond);
    825       str(src2, dst2, cond);
    826     } else {  // PostIndex or NegPostIndex.
    827       DCHECK((dst.am() == PostIndex) || (dst.am() == NegPostIndex));
    828       dst2.set_offset(dst2.offset() - 4);
    829       str(src1, MemOperand(dst.rn(), 4, PostIndex), cond);
    830       str(src2, dst2, cond);
    831     }
    832   }
    833 }
    834 
    835 
    836 void MacroAssembler::VFPEnsureFPSCRState(Register scratch) {
    837   // If needed, restore wanted bits of FPSCR.
    838   Label fpscr_done;
    839   vmrs(scratch);
    840   if (emit_debug_code()) {
    841     Label rounding_mode_correct;
    842     tst(scratch, Operand(kVFPRoundingModeMask));
    843     b(eq, &rounding_mode_correct);
    844     // Don't call Assert here, since Runtime_Abort could re-enter here.
    845     stop("Default rounding mode not set");
    846     bind(&rounding_mode_correct);
    847   }
    848   tst(scratch, Operand(kVFPDefaultNaNModeControlBit));
    849   b(ne, &fpscr_done);
    850   orr(scratch, scratch, Operand(kVFPDefaultNaNModeControlBit));
    851   vmsr(scratch);
    852   bind(&fpscr_done);
    853 }
    854 
    855 
    856 void MacroAssembler::VFPCanonicalizeNaN(const DwVfpRegister dst,
    857                                         const DwVfpRegister src,
    858                                         const Condition cond) {
    859   vsub(dst, src, kDoubleRegZero, cond);
    860 }
    861 
    862 
    863 void MacroAssembler::VFPCompareAndSetFlags(const DwVfpRegister src1,
    864                                            const DwVfpRegister src2,
    865                                            const Condition cond) {
    866   // Compare and move FPSCR flags to the normal condition flags.
    867   VFPCompareAndLoadFlags(src1, src2, pc, cond);
    868 }
    869 
    870 void MacroAssembler::VFPCompareAndSetFlags(const DwVfpRegister src1,
    871                                            const double src2,
    872                                            const Condition cond) {
    873   // Compare and move FPSCR flags to the normal condition flags.
    874   VFPCompareAndLoadFlags(src1, src2, pc, cond);
    875 }
    876 
    877 
    878 void MacroAssembler::VFPCompareAndLoadFlags(const DwVfpRegister src1,
    879                                             const DwVfpRegister src2,
    880                                             const Register fpscr_flags,
    881                                             const Condition cond) {
    882   // Compare and load FPSCR.
    883   vcmp(src1, src2, cond);
    884   vmrs(fpscr_flags, cond);
    885 }
    886 
    887 void MacroAssembler::VFPCompareAndLoadFlags(const DwVfpRegister src1,
    888                                             const double src2,
    889                                             const Register fpscr_flags,
    890                                             const Condition cond) {
    891   // Compare and load FPSCR.
    892   vcmp(src1, src2, cond);
    893   vmrs(fpscr_flags, cond);
    894 }
    895 
    896 void MacroAssembler::Vmov(const DwVfpRegister dst,
    897                           const double imm,
    898                           const Register scratch) {
    899   static const DoubleRepresentation minus_zero(-0.0);
    900   static const DoubleRepresentation zero(0.0);
    901   DoubleRepresentation value_rep(imm);
    902   // Handle special values first.
    903   if (value_rep == zero) {
    904     vmov(dst, kDoubleRegZero);
    905   } else if (value_rep == minus_zero) {
    906     vneg(dst, kDoubleRegZero);
    907   } else {
    908     vmov(dst, imm, scratch);
    909   }
    910 }
    911 
    912 
    913 void MacroAssembler::VmovHigh(Register dst, DwVfpRegister src) {
    914   if (src.code() < 16) {
    915     const LowDwVfpRegister loc = LowDwVfpRegister::from_code(src.code());
    916     vmov(dst, loc.high());
    917   } else {
    918     vmov(dst, VmovIndexHi, src);
    919   }
    920 }
    921 
    922 
    923 void MacroAssembler::VmovHigh(DwVfpRegister dst, Register src) {
    924   if (dst.code() < 16) {
    925     const LowDwVfpRegister loc = LowDwVfpRegister::from_code(dst.code());
    926     vmov(loc.high(), src);
    927   } else {
    928     vmov(dst, VmovIndexHi, src);
    929   }
    930 }
    931 
    932 
    933 void MacroAssembler::VmovLow(Register dst, DwVfpRegister src) {
    934   if (src.code() < 16) {
    935     const LowDwVfpRegister loc = LowDwVfpRegister::from_code(src.code());
    936     vmov(dst, loc.low());
    937   } else {
    938     vmov(dst, VmovIndexLo, src);
    939   }
    940 }
    941 
    942 
    943 void MacroAssembler::VmovLow(DwVfpRegister dst, Register src) {
    944   if (dst.code() < 16) {
    945     const LowDwVfpRegister loc = LowDwVfpRegister::from_code(dst.code());
    946     vmov(loc.low(), src);
    947   } else {
    948     vmov(dst, VmovIndexLo, src);
    949   }
    950 }
    951 
    952 
    953 void MacroAssembler::LoadConstantPoolPointerRegister() {
    954   if (FLAG_enable_ool_constant_pool) {
    955     int constant_pool_offset = Code::kConstantPoolOffset - Code::kHeaderSize -
    956         pc_offset() - Instruction::kPCReadOffset;
    957     DCHECK(ImmediateFitsAddrMode2Instruction(constant_pool_offset));
    958     ldr(pp, MemOperand(pc, constant_pool_offset));
    959   }
    960 }
    961 
    962 
    963 void MacroAssembler::StubPrologue() {
    964   PushFixedFrame();
    965   Push(Smi::FromInt(StackFrame::STUB));
    966   // Adjust FP to point to saved FP.
    967   add(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
    968   if (FLAG_enable_ool_constant_pool) {
    969     LoadConstantPoolPointerRegister();
    970     set_constant_pool_available(true);
    971   }
    972 }
    973 
    974 
    975 void MacroAssembler::Prologue(bool code_pre_aging) {
    976   { PredictableCodeSizeScope predictible_code_size_scope(
    977         this, kNoCodeAgeSequenceLength);
    978     // The following three instructions must remain together and unmodified
    979     // for code aging to work properly.
    980     if (code_pre_aging) {
    981       // Pre-age the code.
    982       Code* stub = Code::GetPreAgedCodeAgeStub(isolate());
    983       add(r0, pc, Operand(-8));
    984       ldr(pc, MemOperand(pc, -4));
    985       emit_code_stub_address(stub);
    986     } else {
    987       PushFixedFrame(r1);
    988       nop(ip.code());
    989       // Adjust FP to point to saved FP.
    990       add(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
    991     }
    992   }
    993   if (FLAG_enable_ool_constant_pool) {
    994     LoadConstantPoolPointerRegister();
    995     set_constant_pool_available(true);
    996   }
    997 }
    998 
    999 
   1000 void MacroAssembler::EnterFrame(StackFrame::Type type,
   1001                                 bool load_constant_pool) {
   1002   // r0-r3: preserved
   1003   PushFixedFrame();
   1004   if (FLAG_enable_ool_constant_pool && load_constant_pool) {
   1005     LoadConstantPoolPointerRegister();
   1006   }
   1007   mov(ip, Operand(Smi::FromInt(type)));
   1008   push(ip);
   1009   mov(ip, Operand(CodeObject()));
   1010   push(ip);
   1011   // Adjust FP to point to saved FP.
   1012   add(fp, sp,
   1013       Operand(StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize));
   1014 }
   1015 
   1016 
   1017 int MacroAssembler::LeaveFrame(StackFrame::Type type) {
   1018   // r0: preserved
   1019   // r1: preserved
   1020   // r2: preserved
   1021 
   1022   // Drop the execution stack down to the frame pointer and restore
   1023   // the caller frame pointer, return address and constant pool pointer
   1024   // (if FLAG_enable_ool_constant_pool).
   1025   int frame_ends;
   1026   if (FLAG_enable_ool_constant_pool) {
   1027     add(sp, fp, Operand(StandardFrameConstants::kConstantPoolOffset));
   1028     frame_ends = pc_offset();
   1029     ldm(ia_w, sp, pp.bit() | fp.bit() | lr.bit());
   1030   } else {
   1031     mov(sp, fp);
   1032     frame_ends = pc_offset();
   1033     ldm(ia_w, sp, fp.bit() | lr.bit());
   1034   }
   1035   return frame_ends;
   1036 }
   1037 
   1038 
   1039 void MacroAssembler::EnterExitFrame(bool save_doubles, int stack_space) {
   1040   // Set up the frame structure on the stack.
   1041   DCHECK_EQ(2 * kPointerSize, ExitFrameConstants::kCallerSPDisplacement);
   1042   DCHECK_EQ(1 * kPointerSize, ExitFrameConstants::kCallerPCOffset);
   1043   DCHECK_EQ(0 * kPointerSize, ExitFrameConstants::kCallerFPOffset);
   1044   Push(lr, fp);
   1045   mov(fp, Operand(sp));  // Set up new frame pointer.
   1046   // Reserve room for saved entry sp and code object.
   1047   sub(sp, sp, Operand(ExitFrameConstants::kFrameSize));
   1048   if (emit_debug_code()) {
   1049     mov(ip, Operand::Zero());
   1050     str(ip, MemOperand(fp, ExitFrameConstants::kSPOffset));
   1051   }
   1052   if (FLAG_enable_ool_constant_pool) {
   1053     str(pp, MemOperand(fp, ExitFrameConstants::kConstantPoolOffset));
   1054   }
   1055   mov(ip, Operand(CodeObject()));
   1056   str(ip, MemOperand(fp, ExitFrameConstants::kCodeOffset));
   1057 
   1058   // Save the frame pointer and the context in top.
   1059   mov(ip, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
   1060   str(fp, MemOperand(ip));
   1061   mov(ip, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
   1062   str(cp, MemOperand(ip));
   1063 
   1064   // Optionally save all double registers.
   1065   if (save_doubles) {
   1066     SaveFPRegs(sp, ip);
   1067     // Note that d0 will be accessible at
   1068     //   fp - ExitFrameConstants::kFrameSize -
   1069     //   DwVfpRegister::kMaxNumRegisters * kDoubleSize,
   1070     // since the sp slot, code slot and constant pool slot (if
   1071     // FLAG_enable_ool_constant_pool) were pushed after the fp.
   1072   }
   1073 
   1074   // Reserve place for the return address and stack space and align the frame
   1075   // preparing for calling the runtime function.
   1076   const int frame_alignment = MacroAssembler::ActivationFrameAlignment();
   1077   sub(sp, sp, Operand((stack_space + 1) * kPointerSize));
   1078   if (frame_alignment > 0) {
   1079     DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
   1080     and_(sp, sp, Operand(-frame_alignment));
   1081   }
   1082 
   1083   // Set the exit frame sp value to point just before the return address
   1084   // location.
   1085   add(ip, sp, Operand(kPointerSize));
   1086   str(ip, MemOperand(fp, ExitFrameConstants::kSPOffset));
   1087 }
   1088 
   1089 
   1090 void MacroAssembler::InitializeNewString(Register string,
   1091                                          Register length,
   1092                                          Heap::RootListIndex map_index,
   1093                                          Register scratch1,
   1094                                          Register scratch2) {
   1095   SmiTag(scratch1, length);
   1096   LoadRoot(scratch2, map_index);
   1097   str(scratch1, FieldMemOperand(string, String::kLengthOffset));
   1098   mov(scratch1, Operand(String::kEmptyHashField));
   1099   str(scratch2, FieldMemOperand(string, HeapObject::kMapOffset));
   1100   str(scratch1, FieldMemOperand(string, String::kHashFieldOffset));
   1101 }
   1102 
   1103 
   1104 int MacroAssembler::ActivationFrameAlignment() {
   1105 #if V8_HOST_ARCH_ARM
   1106   // Running on the real platform. Use the alignment as mandated by the local
   1107   // environment.
   1108   // Note: This will break if we ever start generating snapshots on one ARM
   1109   // platform for another ARM platform with a different alignment.
   1110   return base::OS::ActivationFrameAlignment();
   1111 #else  // V8_HOST_ARCH_ARM
   1112   // If we are using the simulator then we should always align to the expected
   1113   // alignment. As the simulator is used to generate snapshots we do not know
   1114   // if the target platform will need alignment, so this is controlled from a
   1115   // flag.
   1116   return FLAG_sim_stack_alignment;
   1117 #endif  // V8_HOST_ARCH_ARM
   1118 }
   1119 
   1120 
   1121 void MacroAssembler::LeaveExitFrame(bool save_doubles,
   1122                                     Register argument_count,
   1123                                     bool restore_context) {
   1124   ConstantPoolUnavailableScope constant_pool_unavailable(this);
   1125 
   1126   // Optionally restore all double registers.
   1127   if (save_doubles) {
   1128     // Calculate the stack location of the saved doubles and restore them.
   1129     const int offset = ExitFrameConstants::kFrameSize;
   1130     sub(r3, fp,
   1131         Operand(offset + DwVfpRegister::kMaxNumRegisters * kDoubleSize));
   1132     RestoreFPRegs(r3, ip);
   1133   }
   1134 
   1135   // Clear top frame.
   1136   mov(r3, Operand::Zero());
   1137   mov(ip, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
   1138   str(r3, MemOperand(ip));
   1139 
   1140   // Restore current context from top and clear it in debug mode.
   1141   if (restore_context) {
   1142     mov(ip, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
   1143     ldr(cp, MemOperand(ip));
   1144   }
   1145 #ifdef DEBUG
   1146   mov(ip, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
   1147   str(r3, MemOperand(ip));
   1148 #endif
   1149 
   1150   // Tear down the exit frame, pop the arguments, and return.
   1151   if (FLAG_enable_ool_constant_pool) {
   1152     ldr(pp, MemOperand(fp, ExitFrameConstants::kConstantPoolOffset));
   1153   }
   1154   mov(sp, Operand(fp));
   1155   ldm(ia_w, sp, fp.bit() | lr.bit());
   1156   if (argument_count.is_valid()) {
   1157     add(sp, sp, Operand(argument_count, LSL, kPointerSizeLog2));
   1158   }
   1159 }
   1160 
   1161 
   1162 void MacroAssembler::MovFromFloatResult(const DwVfpRegister dst) {
   1163   if (use_eabi_hardfloat()) {
   1164     Move(dst, d0);
   1165   } else {
   1166     vmov(dst, r0, r1);
   1167   }
   1168 }
   1169 
   1170 
   1171 // On ARM this is just a synonym to make the purpose clear.
   1172 void MacroAssembler::MovFromFloatParameter(DwVfpRegister dst) {
   1173   MovFromFloatResult(dst);
   1174 }
   1175 
   1176 
   1177 void MacroAssembler::InvokePrologue(const ParameterCount& expected,
   1178                                     const ParameterCount& actual,
   1179                                     Handle<Code> code_constant,
   1180                                     Register code_reg,
   1181                                     Label* done,
   1182                                     bool* definitely_mismatches,
   1183                                     InvokeFlag flag,
   1184                                     const CallWrapper& call_wrapper) {
   1185   bool definitely_matches = false;
   1186   *definitely_mismatches = false;
   1187   Label regular_invoke;
   1188 
   1189   // Check whether the expected and actual arguments count match. If not,
   1190   // setup registers according to contract with ArgumentsAdaptorTrampoline:
   1191   //  r0: actual arguments count
   1192   //  r1: function (passed through to callee)
   1193   //  r2: expected arguments count
   1194 
   1195   // The code below is made a lot easier because the calling code already sets
   1196   // up actual and expected registers according to the contract if values are
   1197   // passed in registers.
   1198   DCHECK(actual.is_immediate() || actual.reg().is(r0));
   1199   DCHECK(expected.is_immediate() || expected.reg().is(r2));
   1200   DCHECK((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(r3));
   1201 
   1202   if (expected.is_immediate()) {
   1203     DCHECK(actual.is_immediate());
   1204     if (expected.immediate() == actual.immediate()) {
   1205       definitely_matches = true;
   1206     } else {
   1207       mov(r0, Operand(actual.immediate()));
   1208       const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
   1209       if (expected.immediate() == sentinel) {
   1210         // Don't worry about adapting arguments for builtins that
   1211         // don't want that done. Skip adaption code by making it look
   1212         // like we have a match between expected and actual number of
   1213         // arguments.
   1214         definitely_matches = true;
   1215       } else {
   1216         *definitely_mismatches = true;
   1217         mov(r2, Operand(expected.immediate()));
   1218       }
   1219     }
   1220   } else {
   1221     if (actual.is_immediate()) {
   1222       cmp(expected.reg(), Operand(actual.immediate()));
   1223       b(eq, &regular_invoke);
   1224       mov(r0, Operand(actual.immediate()));
   1225     } else {
   1226       cmp(expected.reg(), Operand(actual.reg()));
   1227       b(eq, &regular_invoke);
   1228     }
   1229   }
   1230 
   1231   if (!definitely_matches) {
   1232     if (!code_constant.is_null()) {
   1233       mov(r3, Operand(code_constant));
   1234       add(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag));
   1235     }
   1236 
   1237     Handle<Code> adaptor =
   1238         isolate()->builtins()->ArgumentsAdaptorTrampoline();
   1239     if (flag == CALL_FUNCTION) {
   1240       call_wrapper.BeforeCall(CallSize(adaptor));
   1241       Call(adaptor);
   1242       call_wrapper.AfterCall();
   1243       if (!*definitely_mismatches) {
   1244         b(done);
   1245       }
   1246     } else {
   1247       Jump(adaptor, RelocInfo::CODE_TARGET);
   1248     }
   1249     bind(&regular_invoke);
   1250   }
   1251 }
   1252 
   1253 
   1254 void MacroAssembler::InvokeCode(Register code,
   1255                                 const ParameterCount& expected,
   1256                                 const ParameterCount& actual,
   1257                                 InvokeFlag flag,
   1258                                 const CallWrapper& call_wrapper) {
   1259   // You can't call a function without a valid frame.
   1260   DCHECK(flag == JUMP_FUNCTION || has_frame());
   1261 
   1262   Label done;
   1263   bool definitely_mismatches = false;
   1264   InvokePrologue(expected, actual, Handle<Code>::null(), code,
   1265                  &done, &definitely_mismatches, flag,
   1266                  call_wrapper);
   1267   if (!definitely_mismatches) {
   1268     if (flag == CALL_FUNCTION) {
   1269       call_wrapper.BeforeCall(CallSize(code));
   1270       Call(code);
   1271       call_wrapper.AfterCall();
   1272     } else {
   1273       DCHECK(flag == JUMP_FUNCTION);
   1274       Jump(code);
   1275     }
   1276 
   1277     // Continue here if InvokePrologue does handle the invocation due to
   1278     // mismatched parameter counts.
   1279     bind(&done);
   1280   }
   1281 }
   1282 
   1283 
   1284 void MacroAssembler::InvokeFunction(Register fun,
   1285                                     const ParameterCount& actual,
   1286                                     InvokeFlag flag,
   1287                                     const CallWrapper& call_wrapper) {
   1288   // You can't call a function without a valid frame.
   1289   DCHECK(flag == JUMP_FUNCTION || has_frame());
   1290 
   1291   // Contract with called JS functions requires that function is passed in r1.
   1292   DCHECK(fun.is(r1));
   1293 
   1294   Register expected_reg = r2;
   1295   Register code_reg = r3;
   1296 
   1297   ldr(code_reg, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
   1298   ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
   1299   ldr(expected_reg,
   1300       FieldMemOperand(code_reg,
   1301                       SharedFunctionInfo::kFormalParameterCountOffset));
   1302   SmiUntag(expected_reg);
   1303   ldr(code_reg,
   1304       FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
   1305 
   1306   ParameterCount expected(expected_reg);
   1307   InvokeCode(code_reg, expected, actual, flag, call_wrapper);
   1308 }
   1309 
   1310 
   1311 void MacroAssembler::InvokeFunction(Register function,
   1312                                     const ParameterCount& expected,
   1313                                     const ParameterCount& actual,
   1314                                     InvokeFlag flag,
   1315                                     const CallWrapper& call_wrapper) {
   1316   // You can't call a function without a valid frame.
   1317   DCHECK(flag == JUMP_FUNCTION || has_frame());
   1318 
   1319   // Contract with called JS functions requires that function is passed in r1.
   1320   DCHECK(function.is(r1));
   1321 
   1322   // Get the function and setup the context.
   1323   ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
   1324 
   1325   // We call indirectly through the code field in the function to
   1326   // allow recompilation to take effect without changing any of the
   1327   // call sites.
   1328   ldr(r3, FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
   1329   InvokeCode(r3, expected, actual, flag, call_wrapper);
   1330 }
   1331 
   1332 
   1333 void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
   1334                                     const ParameterCount& expected,
   1335                                     const ParameterCount& actual,
   1336                                     InvokeFlag flag,
   1337                                     const CallWrapper& call_wrapper) {
   1338   Move(r1, function);
   1339   InvokeFunction(r1, expected, actual, flag, call_wrapper);
   1340 }
   1341 
   1342 
   1343 void MacroAssembler::IsObjectJSObjectType(Register heap_object,
   1344                                           Register map,
   1345                                           Register scratch,
   1346                                           Label* fail) {
   1347   ldr(map, FieldMemOperand(heap_object, HeapObject::kMapOffset));
   1348   IsInstanceJSObjectType(map, scratch, fail);
   1349 }
   1350 
   1351 
   1352 void MacroAssembler::IsInstanceJSObjectType(Register map,
   1353                                             Register scratch,
   1354                                             Label* fail) {
   1355   ldrb(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
   1356   cmp(scratch, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
   1357   b(lt, fail);
   1358   cmp(scratch, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
   1359   b(gt, fail);
   1360 }
   1361 
   1362 
   1363 void MacroAssembler::IsObjectJSStringType(Register object,
   1364                                           Register scratch,
   1365                                           Label* fail) {
   1366   DCHECK(kNotStringTag != 0);
   1367 
   1368   ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
   1369   ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
   1370   tst(scratch, Operand(kIsNotStringMask));
   1371   b(ne, fail);
   1372 }
   1373 
   1374 
   1375 void MacroAssembler::IsObjectNameType(Register object,
   1376                                       Register scratch,
   1377                                       Label* fail) {
   1378   ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
   1379   ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
   1380   cmp(scratch, Operand(LAST_NAME_TYPE));
   1381   b(hi, fail);
   1382 }
   1383 
   1384 
   1385 void MacroAssembler::DebugBreak() {
   1386   mov(r0, Operand::Zero());
   1387   mov(r1, Operand(ExternalReference(Runtime::kDebugBreak, isolate())));
   1388   CEntryStub ces(isolate(), 1);
   1389   DCHECK(AllowThisStubCall(&ces));
   1390   Call(ces.GetCode(), RelocInfo::DEBUG_BREAK);
   1391 }
   1392 
   1393 
   1394 void MacroAssembler::PushTryHandler(StackHandler::Kind kind,
   1395                                     int handler_index) {
   1396   // Adjust this code if not the case.
   1397   STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
   1398   STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
   1399   STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
   1400   STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
   1401   STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
   1402   STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
   1403 
   1404   // For the JSEntry handler, we must preserve r0-r4, r5-r6 are available.
   1405   // We will build up the handler from the bottom by pushing on the stack.
   1406   // Set up the code object (r5) and the state (r6) for pushing.
   1407   unsigned state =
   1408       StackHandler::IndexField::encode(handler_index) |
   1409       StackHandler::KindField::encode(kind);
   1410   mov(r5, Operand(CodeObject()));
   1411   mov(r6, Operand(state));
   1412 
   1413   // Push the frame pointer, context, state, and code object.
   1414   if (kind == StackHandler::JS_ENTRY) {
   1415     mov(cp, Operand(Smi::FromInt(0)));  // Indicates no context.
   1416     mov(ip, Operand::Zero());  // NULL frame pointer.
   1417     stm(db_w, sp, r5.bit() | r6.bit() | cp.bit() | ip.bit());
   1418   } else {
   1419     stm(db_w, sp, r5.bit() | r6.bit() | cp.bit() | fp.bit());
   1420   }
   1421 
   1422   // Link the current handler as the next handler.
   1423   mov(r6, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
   1424   ldr(r5, MemOperand(r6));
   1425   push(r5);
   1426   // Set this new handler as the current one.
   1427   str(sp, MemOperand(r6));
   1428 }
   1429 
   1430 
   1431 void MacroAssembler::PopTryHandler() {
   1432   STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
   1433   pop(r1);
   1434   mov(ip, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
   1435   add(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize));
   1436   str(r1, MemOperand(ip));
   1437 }
   1438 
   1439 
   1440 void MacroAssembler::JumpToHandlerEntry() {
   1441   // Compute the handler entry address and jump to it.  The handler table is
   1442   // a fixed array of (smi-tagged) code offsets.
   1443   // r0 = exception, r1 = code object, r2 = state.
   1444 
   1445   ConstantPoolUnavailableScope constant_pool_unavailable(this);
   1446   if (FLAG_enable_ool_constant_pool) {
   1447     ldr(pp, FieldMemOperand(r1, Code::kConstantPoolOffset));  // Constant pool.
   1448   }
   1449   ldr(r3, FieldMemOperand(r1, Code::kHandlerTableOffset));  // Handler table.
   1450   add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
   1451   mov(r2, Operand(r2, LSR, StackHandler::kKindWidth));  // Handler index.
   1452   ldr(r2, MemOperand(r3, r2, LSL, kPointerSizeLog2));  // Smi-tagged offset.
   1453   add(r1, r1, Operand(Code::kHeaderSize - kHeapObjectTag));  // Code start.
   1454   add(pc, r1, Operand::SmiUntag(r2));  // Jump
   1455 }
   1456 
   1457 
   1458 void MacroAssembler::Throw(Register value) {
   1459   // Adjust this code if not the case.
   1460   STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
   1461   STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
   1462   STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
   1463   STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
   1464   STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
   1465   STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
   1466 
   1467   // The exception is expected in r0.
   1468   if (!value.is(r0)) {
   1469     mov(r0, value);
   1470   }
   1471   // Drop the stack pointer to the top of the top handler.
   1472   mov(r3, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
   1473   ldr(sp, MemOperand(r3));
   1474   // Restore the next handler.
   1475   pop(r2);
   1476   str(r2, MemOperand(r3));
   1477 
   1478   // Get the code object (r1) and state (r2).  Restore the context and frame
   1479   // pointer.
   1480   ldm(ia_w, sp, r1.bit() | r2.bit() | cp.bit() | fp.bit());
   1481 
   1482   // If the handler is a JS frame, restore the context to the frame.
   1483   // (kind == ENTRY) == (fp == 0) == (cp == 0), so we could test either fp
   1484   // or cp.
   1485   tst(cp, cp);
   1486   str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne);
   1487 
   1488   JumpToHandlerEntry();
   1489 }
   1490 
   1491 
   1492 void MacroAssembler::ThrowUncatchable(Register value) {
   1493   // Adjust this code if not the case.
   1494   STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
   1495   STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
   1496   STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
   1497   STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
   1498   STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
   1499   STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
   1500 
   1501   // The exception is expected in r0.
   1502   if (!value.is(r0)) {
   1503     mov(r0, value);
   1504   }
   1505   // Drop the stack pointer to the top of the top stack handler.
   1506   mov(r3, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
   1507   ldr(sp, MemOperand(r3));
   1508 
   1509   // Unwind the handlers until the ENTRY handler is found.
   1510   Label fetch_next, check_kind;
   1511   jmp(&check_kind);
   1512   bind(&fetch_next);
   1513   ldr(sp, MemOperand(sp, StackHandlerConstants::kNextOffset));
   1514 
   1515   bind(&check_kind);
   1516   STATIC_ASSERT(StackHandler::JS_ENTRY == 0);
   1517   ldr(r2, MemOperand(sp, StackHandlerConstants::kStateOffset));
   1518   tst(r2, Operand(StackHandler::KindField::kMask));
   1519   b(ne, &fetch_next);
   1520 
   1521   // Set the top handler address to next handler past the top ENTRY handler.
   1522   pop(r2);
   1523   str(r2, MemOperand(r3));
   1524   // Get the code object (r1) and state (r2).  Clear the context and frame
   1525   // pointer (0 was saved in the handler).
   1526   ldm(ia_w, sp, r1.bit() | r2.bit() | cp.bit() | fp.bit());
   1527 
   1528   JumpToHandlerEntry();
   1529 }
   1530 
   1531 
   1532 void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
   1533                                             Register scratch,
   1534                                             Label* miss) {
   1535   Label same_contexts;
   1536 
   1537   DCHECK(!holder_reg.is(scratch));
   1538   DCHECK(!holder_reg.is(ip));
   1539   DCHECK(!scratch.is(ip));
   1540 
   1541   // Load current lexical context from the stack frame.
   1542   ldr(scratch, MemOperand(fp, StandardFrameConstants::kContextOffset));
   1543   // In debug mode, make sure the lexical context is set.
   1544 #ifdef DEBUG
   1545   cmp(scratch, Operand::Zero());
   1546   Check(ne, kWeShouldNotHaveAnEmptyLexicalContext);
   1547 #endif
   1548 
   1549   // Load the native context of the current context.
   1550   int offset =
   1551       Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize;
   1552   ldr(scratch, FieldMemOperand(scratch, offset));
   1553   ldr(scratch, FieldMemOperand(scratch, GlobalObject::kNativeContextOffset));
   1554 
   1555   // Check the context is a native context.
   1556   if (emit_debug_code()) {
   1557     // Cannot use ip as a temporary in this verification code. Due to the fact
   1558     // that ip is clobbered as part of cmp with an object Operand.
   1559     push(holder_reg);  // Temporarily save holder on the stack.
   1560     // Read the first word and compare to the native_context_map.
   1561     ldr(holder_reg, FieldMemOperand(scratch, HeapObject::kMapOffset));
   1562     LoadRoot(ip, Heap::kNativeContextMapRootIndex);
   1563     cmp(holder_reg, ip);
   1564     Check(eq, kJSGlobalObjectNativeContextShouldBeANativeContext);
   1565     pop(holder_reg);  // Restore holder.
   1566   }
   1567 
   1568   // Check if both contexts are the same.
   1569   ldr(ip, FieldMemOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
   1570   cmp(scratch, Operand(ip));
   1571   b(eq, &same_contexts);
   1572 
   1573   // Check the context is a native context.
   1574   if (emit_debug_code()) {
   1575     // Cannot use ip as a temporary in this verification code. Due to the fact
   1576     // that ip is clobbered as part of cmp with an object Operand.
   1577     push(holder_reg);  // Temporarily save holder on the stack.
   1578     mov(holder_reg, ip);  // Move ip to its holding place.
   1579     LoadRoot(ip, Heap::kNullValueRootIndex);
   1580     cmp(holder_reg, ip);
   1581     Check(ne, kJSGlobalProxyContextShouldNotBeNull);
   1582 
   1583     ldr(holder_reg, FieldMemOperand(holder_reg, HeapObject::kMapOffset));
   1584     LoadRoot(ip, Heap::kNativeContextMapRootIndex);
   1585     cmp(holder_reg, ip);
   1586     Check(eq, kJSGlobalObjectNativeContextShouldBeANativeContext);
   1587     // Restore ip is not needed. ip is reloaded below.
   1588     pop(holder_reg);  // Restore holder.
   1589     // Restore ip to holder's context.
   1590     ldr(ip, FieldMemOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
   1591   }
   1592 
   1593   // Check that the security token in the calling global object is
   1594   // compatible with the security token in the receiving global
   1595   // object.
   1596   int token_offset = Context::kHeaderSize +
   1597                      Context::SECURITY_TOKEN_INDEX * kPointerSize;
   1598 
   1599   ldr(scratch, FieldMemOperand(scratch, token_offset));
   1600   ldr(ip, FieldMemOperand(ip, token_offset));
   1601   cmp(scratch, Operand(ip));
   1602   b(ne, miss);
   1603 
   1604   bind(&same_contexts);
   1605 }
   1606 
   1607 
   1608 // Compute the hash code from the untagged key.  This must be kept in sync with
   1609 // ComputeIntegerHash in utils.h and KeyedLoadGenericStub in
   1610 // code-stub-hydrogen.cc
   1611 void MacroAssembler::GetNumberHash(Register t0, Register scratch) {
   1612   // First of all we assign the hash seed to scratch.
   1613   LoadRoot(scratch, Heap::kHashSeedRootIndex);
   1614   SmiUntag(scratch);
   1615 
   1616   // Xor original key with a seed.
   1617   eor(t0, t0, Operand(scratch));
   1618 
   1619   // Compute the hash code from the untagged key.  This must be kept in sync
   1620   // with ComputeIntegerHash in utils.h.
   1621   //
   1622   // hash = ~hash + (hash << 15);
   1623   mvn(scratch, Operand(t0));
   1624   add(t0, scratch, Operand(t0, LSL, 15));
   1625   // hash = hash ^ (hash >> 12);
   1626   eor(t0, t0, Operand(t0, LSR, 12));
   1627   // hash = hash + (hash << 2);
   1628   add(t0, t0, Operand(t0, LSL, 2));
   1629   // hash = hash ^ (hash >> 4);
   1630   eor(t0, t0, Operand(t0, LSR, 4));
   1631   // hash = hash * 2057;
   1632   mov(scratch, Operand(t0, LSL, 11));
   1633   add(t0, t0, Operand(t0, LSL, 3));
   1634   add(t0, t0, scratch);
   1635   // hash = hash ^ (hash >> 16);
   1636   eor(t0, t0, Operand(t0, LSR, 16));
   1637 }
   1638 
   1639 
   1640 void MacroAssembler::LoadFromNumberDictionary(Label* miss,
   1641                                               Register elements,
   1642                                               Register key,
   1643                                               Register result,
   1644                                               Register t0,
   1645                                               Register t1,
   1646                                               Register t2) {
   1647   // Register use:
   1648   //
   1649   // elements - holds the slow-case elements of the receiver on entry.
   1650   //            Unchanged unless 'result' is the same register.
   1651   //
   1652   // key      - holds the smi key on entry.
   1653   //            Unchanged unless 'result' is the same register.
   1654   //
   1655   // result   - holds the result on exit if the load succeeded.
   1656   //            Allowed to be the same as 'key' or 'result'.
   1657   //            Unchanged on bailout so 'key' or 'result' can be used
   1658   //            in further computation.
   1659   //
   1660   // Scratch registers:
   1661   //
   1662   // t0 - holds the untagged key on entry and holds the hash once computed.
   1663   //
   1664   // t1 - used to hold the capacity mask of the dictionary
   1665   //
   1666   // t2 - used for the index into the dictionary.
   1667   Label done;
   1668 
   1669   GetNumberHash(t0, t1);
   1670 
   1671   // Compute the capacity mask.
   1672   ldr(t1, FieldMemOperand(elements, SeededNumberDictionary::kCapacityOffset));
   1673   SmiUntag(t1);
   1674   sub(t1, t1, Operand(1));
   1675 
   1676   // Generate an unrolled loop that performs a few probes before giving up.
   1677   for (int i = 0; i < kNumberDictionaryProbes; i++) {
   1678     // Use t2 for index calculations and keep the hash intact in t0.
   1679     mov(t2, t0);
   1680     // Compute the masked index: (hash + i + i * i) & mask.
   1681     if (i > 0) {
   1682       add(t2, t2, Operand(SeededNumberDictionary::GetProbeOffset(i)));
   1683     }
   1684     and_(t2, t2, Operand(t1));
   1685 
   1686     // Scale the index by multiplying by the element size.
   1687     DCHECK(SeededNumberDictionary::kEntrySize == 3);
   1688     add(t2, t2, Operand(t2, LSL, 1));  // t2 = t2 * 3
   1689 
   1690     // Check if the key is identical to the name.
   1691     add(t2, elements, Operand(t2, LSL, kPointerSizeLog2));
   1692     ldr(ip, FieldMemOperand(t2, SeededNumberDictionary::kElementsStartOffset));
   1693     cmp(key, Operand(ip));
   1694     if (i != kNumberDictionaryProbes - 1) {
   1695       b(eq, &done);
   1696     } else {
   1697       b(ne, miss);
   1698     }
   1699   }
   1700 
   1701   bind(&done);
   1702   // Check that the value is a normal property.
   1703   // t2: elements + (index * kPointerSize)
   1704   const int kDetailsOffset =
   1705       SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize;
   1706   ldr(t1, FieldMemOperand(t2, kDetailsOffset));
   1707   tst(t1, Operand(Smi::FromInt(PropertyDetails::TypeField::kMask)));
   1708   b(ne, miss);
   1709 
   1710   // Get the value at the masked, scaled index and return.
   1711   const int kValueOffset =
   1712       SeededNumberDictionary::kElementsStartOffset + kPointerSize;
   1713   ldr(result, FieldMemOperand(t2, kValueOffset));
   1714 }
   1715 
   1716 
   1717 void MacroAssembler::Allocate(int object_size,
   1718                               Register result,
   1719                               Register scratch1,
   1720                               Register scratch2,
   1721                               Label* gc_required,
   1722                               AllocationFlags flags) {
   1723   DCHECK(object_size <= Page::kMaxRegularHeapObjectSize);
   1724   if (!FLAG_inline_new) {
   1725     if (emit_debug_code()) {
   1726       // Trash the registers to simulate an allocation failure.
   1727       mov(result, Operand(0x7091));
   1728       mov(scratch1, Operand(0x7191));
   1729       mov(scratch2, Operand(0x7291));
   1730     }
   1731     jmp(gc_required);
   1732     return;
   1733   }
   1734 
   1735   DCHECK(!result.is(scratch1));
   1736   DCHECK(!result.is(scratch2));
   1737   DCHECK(!scratch1.is(scratch2));
   1738   DCHECK(!scratch1.is(ip));
   1739   DCHECK(!scratch2.is(ip));
   1740 
   1741   // Make object size into bytes.
   1742   if ((flags & SIZE_IN_WORDS) != 0) {
   1743     object_size *= kPointerSize;
   1744   }
   1745   DCHECK_EQ(0, object_size & kObjectAlignmentMask);
   1746 
   1747   // Check relative positions of allocation top and limit addresses.
   1748   // The values must be adjacent in memory to allow the use of LDM.
   1749   // Also, assert that the registers are numbered such that the values
   1750   // are loaded in the correct order.
   1751   ExternalReference allocation_top =
   1752       AllocationUtils::GetAllocationTopReference(isolate(), flags);
   1753   ExternalReference allocation_limit =
   1754       AllocationUtils::GetAllocationLimitReference(isolate(), flags);
   1755 
   1756   intptr_t top   =
   1757       reinterpret_cast<intptr_t>(allocation_top.address());
   1758   intptr_t limit =
   1759       reinterpret_cast<intptr_t>(allocation_limit.address());
   1760   DCHECK((limit - top) == kPointerSize);
   1761   DCHECK(result.code() < ip.code());
   1762 
   1763   // Set up allocation top address register.
   1764   Register topaddr = scratch1;
   1765   mov(topaddr, Operand(allocation_top));
   1766 
   1767   // This code stores a temporary value in ip. This is OK, as the code below
   1768   // does not need ip for implicit literal generation.
   1769   if ((flags & RESULT_CONTAINS_TOP) == 0) {
   1770     // Load allocation top into result and allocation limit into ip.
   1771     ldm(ia, topaddr, result.bit() | ip.bit());
   1772   } else {
   1773     if (emit_debug_code()) {
   1774       // Assert that result actually contains top on entry. ip is used
   1775       // immediately below so this use of ip does not cause difference with
   1776       // respect to register content between debug and release mode.
   1777       ldr(ip, MemOperand(topaddr));
   1778       cmp(result, ip);
   1779       Check(eq, kUnexpectedAllocationTop);
   1780     }
   1781     // Load allocation limit into ip. Result already contains allocation top.
   1782     ldr(ip, MemOperand(topaddr, limit - top));
   1783   }
   1784 
   1785   if ((flags & DOUBLE_ALIGNMENT) != 0) {
   1786     // Align the next allocation. Storing the filler map without checking top is
   1787     // safe in new-space because the limit of the heap is aligned there.
   1788     DCHECK((flags & PRETENURE_OLD_POINTER_SPACE) == 0);
   1789     STATIC_ASSERT(kPointerAlignment * 2 == kDoubleAlignment);
   1790     and_(scratch2, result, Operand(kDoubleAlignmentMask), SetCC);
   1791     Label aligned;
   1792     b(eq, &aligned);
   1793     if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) {
   1794       cmp(result, Operand(ip));
   1795       b(hs, gc_required);
   1796     }
   1797     mov(scratch2, Operand(isolate()->factory()->one_pointer_filler_map()));
   1798     str(scratch2, MemOperand(result, kDoubleSize / 2, PostIndex));
   1799     bind(&aligned);
   1800   }
   1801 
   1802   // Calculate new top and bail out if new space is exhausted. Use result
   1803   // to calculate the new top. We must preserve the ip register at this
   1804   // point, so we cannot just use add().
   1805   DCHECK(object_size > 0);
   1806   Register source = result;
   1807   Condition cond = al;
   1808   int shift = 0;
   1809   while (object_size != 0) {
   1810     if (((object_size >> shift) & 0x03) == 0) {
   1811       shift += 2;
   1812     } else {
   1813       int bits = object_size & (0xff << shift);
   1814       object_size -= bits;
   1815       shift += 8;
   1816       Operand bits_operand(bits);
   1817       DCHECK(bits_operand.instructions_required(this) == 1);
   1818       add(scratch2, source, bits_operand, SetCC, cond);
   1819       source = scratch2;
   1820       cond = cc;
   1821     }
   1822   }
   1823   b(cs, gc_required);
   1824   cmp(scratch2, Operand(ip));
   1825   b(hi, gc_required);
   1826   str(scratch2, MemOperand(topaddr));
   1827 
   1828   // Tag object if requested.
   1829   if ((flags & TAG_OBJECT) != 0) {
   1830     add(result, result, Operand(kHeapObjectTag));
   1831   }
   1832 }
   1833 
   1834 
   1835 void MacroAssembler::Allocate(Register object_size,
   1836                               Register result,
   1837                               Register scratch1,
   1838                               Register scratch2,
   1839                               Label* gc_required,
   1840                               AllocationFlags flags) {
   1841   if (!FLAG_inline_new) {
   1842     if (emit_debug_code()) {
   1843       // Trash the registers to simulate an allocation failure.
   1844       mov(result, Operand(0x7091));
   1845       mov(scratch1, Operand(0x7191));
   1846       mov(scratch2, Operand(0x7291));
   1847     }
   1848     jmp(gc_required);
   1849     return;
   1850   }
   1851 
   1852   // Assert that the register arguments are different and that none of
   1853   // them are ip. ip is used explicitly in the code generated below.
   1854   DCHECK(!result.is(scratch1));
   1855   DCHECK(!result.is(scratch2));
   1856   DCHECK(!scratch1.is(scratch2));
   1857   DCHECK(!object_size.is(ip));
   1858   DCHECK(!result.is(ip));
   1859   DCHECK(!scratch1.is(ip));
   1860   DCHECK(!scratch2.is(ip));
   1861 
   1862   // Check relative positions of allocation top and limit addresses.
   1863   // The values must be adjacent in memory to allow the use of LDM.
   1864   // Also, assert that the registers are numbered such that the values
   1865   // are loaded in the correct order.
   1866   ExternalReference allocation_top =
   1867       AllocationUtils::GetAllocationTopReference(isolate(), flags);
   1868   ExternalReference allocation_limit =
   1869       AllocationUtils::GetAllocationLimitReference(isolate(), flags);
   1870   intptr_t top =
   1871       reinterpret_cast<intptr_t>(allocation_top.address());
   1872   intptr_t limit =
   1873       reinterpret_cast<intptr_t>(allocation_limit.address());
   1874   DCHECK((limit - top) == kPointerSize);
   1875   DCHECK(result.code() < ip.code());
   1876 
   1877   // Set up allocation top address.
   1878   Register topaddr = scratch1;
   1879   mov(topaddr, Operand(allocation_top));
   1880 
   1881   // This code stores a temporary value in ip. This is OK, as the code below
   1882   // does not need ip for implicit literal generation.
   1883   if ((flags & RESULT_CONTAINS_TOP) == 0) {
   1884     // Load allocation top into result and allocation limit into ip.
   1885     ldm(ia, topaddr, result.bit() | ip.bit());
   1886   } else {
   1887     if (emit_debug_code()) {
   1888       // Assert that result actually contains top on entry. ip is used
   1889       // immediately below so this use of ip does not cause difference with
   1890       // respect to register content between debug and release mode.
   1891       ldr(ip, MemOperand(topaddr));
   1892       cmp(result, ip);
   1893       Check(eq, kUnexpectedAllocationTop);
   1894     }
   1895     // Load allocation limit into ip. Result already contains allocation top.
   1896     ldr(ip, MemOperand(topaddr, limit - top));
   1897   }
   1898 
   1899   if ((flags & DOUBLE_ALIGNMENT) != 0) {
   1900     // Align the next allocation. Storing the filler map without checking top is
   1901     // safe in new-space because the limit of the heap is aligned there.
   1902     DCHECK((flags & PRETENURE_OLD_POINTER_SPACE) == 0);
   1903     DCHECK(kPointerAlignment * 2 == kDoubleAlignment);
   1904     and_(scratch2, result, Operand(kDoubleAlignmentMask), SetCC);
   1905     Label aligned;
   1906     b(eq, &aligned);
   1907     if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) {
   1908       cmp(result, Operand(ip));
   1909       b(hs, gc_required);
   1910     }
   1911     mov(scratch2, Operand(isolate()->factory()->one_pointer_filler_map()));
   1912     str(scratch2, MemOperand(result, kDoubleSize / 2, PostIndex));
   1913     bind(&aligned);
   1914   }
   1915 
   1916   // Calculate new top and bail out if new space is exhausted. Use result
   1917   // to calculate the new top. Object size may be in words so a shift is
   1918   // required to get the number of bytes.
   1919   if ((flags & SIZE_IN_WORDS) != 0) {
   1920     add(scratch2, result, Operand(object_size, LSL, kPointerSizeLog2), SetCC);
   1921   } else {
   1922     add(scratch2, result, Operand(object_size), SetCC);
   1923   }
   1924   b(cs, gc_required);
   1925   cmp(scratch2, Operand(ip));
   1926   b(hi, gc_required);
   1927 
   1928   // Update allocation top. result temporarily holds the new top.
   1929   if (emit_debug_code()) {
   1930     tst(scratch2, Operand(kObjectAlignmentMask));
   1931     Check(eq, kUnalignedAllocationInNewSpace);
   1932   }
   1933   str(scratch2, MemOperand(topaddr));
   1934 
   1935   // Tag object if requested.
   1936   if ((flags & TAG_OBJECT) != 0) {
   1937     add(result, result, Operand(kHeapObjectTag));
   1938   }
   1939 }
   1940 
   1941 
   1942 void MacroAssembler::UndoAllocationInNewSpace(Register object,
   1943                                               Register scratch) {
   1944   ExternalReference new_space_allocation_top =
   1945       ExternalReference::new_space_allocation_top_address(isolate());
   1946 
   1947   // Make sure the object has no tag before resetting top.
   1948   and_(object, object, Operand(~kHeapObjectTagMask));
   1949 #ifdef DEBUG
   1950   // Check that the object un-allocated is below the current top.
   1951   mov(scratch, Operand(new_space_allocation_top));
   1952   ldr(scratch, MemOperand(scratch));
   1953   cmp(object, scratch);
   1954   Check(lt, kUndoAllocationOfNonAllocatedMemory);
   1955 #endif
   1956   // Write the address of the object to un-allocate as the current top.
   1957   mov(scratch, Operand(new_space_allocation_top));
   1958   str(object, MemOperand(scratch));
   1959 }
   1960 
   1961 
   1962 void MacroAssembler::AllocateTwoByteString(Register result,
   1963                                            Register length,
   1964                                            Register scratch1,
   1965                                            Register scratch2,
   1966                                            Register scratch3,
   1967                                            Label* gc_required) {
   1968   // Calculate the number of bytes needed for the characters in the string while
   1969   // observing object alignment.
   1970   DCHECK((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
   1971   mov(scratch1, Operand(length, LSL, 1));  // Length in bytes, not chars.
   1972   add(scratch1, scratch1,
   1973       Operand(kObjectAlignmentMask + SeqTwoByteString::kHeaderSize));
   1974   and_(scratch1, scratch1, Operand(~kObjectAlignmentMask));
   1975 
   1976   // Allocate two-byte string in new space.
   1977   Allocate(scratch1,
   1978            result,
   1979            scratch2,
   1980            scratch3,
   1981            gc_required,
   1982            TAG_OBJECT);
   1983 
   1984   // Set the map, length and hash field.
   1985   InitializeNewString(result,
   1986                       length,
   1987                       Heap::kStringMapRootIndex,
   1988                       scratch1,
   1989                       scratch2);
   1990 }
   1991 
   1992 
   1993 void MacroAssembler::AllocateOneByteString(Register result, Register length,
   1994                                            Register scratch1, Register scratch2,
   1995                                            Register scratch3,
   1996                                            Label* gc_required) {
   1997   // Calculate the number of bytes needed for the characters in the string while
   1998   // observing object alignment.
   1999   DCHECK((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
   2000   DCHECK(kCharSize == 1);
   2001   add(scratch1, length,
   2002       Operand(kObjectAlignmentMask + SeqOneByteString::kHeaderSize));
   2003   and_(scratch1, scratch1, Operand(~kObjectAlignmentMask));
   2004 
   2005   // Allocate one-byte string in new space.
   2006   Allocate(scratch1,
   2007            result,
   2008            scratch2,
   2009            scratch3,
   2010            gc_required,
   2011            TAG_OBJECT);
   2012 
   2013   // Set the map, length and hash field.
   2014   InitializeNewString(result, length, Heap::kOneByteStringMapRootIndex,
   2015                       scratch1, scratch2);
   2016 }
   2017 
   2018 
   2019 void MacroAssembler::AllocateTwoByteConsString(Register result,
   2020                                                Register length,
   2021                                                Register scratch1,
   2022                                                Register scratch2,
   2023                                                Label* gc_required) {
   2024   Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
   2025            TAG_OBJECT);
   2026 
   2027   InitializeNewString(result,
   2028                       length,
   2029                       Heap::kConsStringMapRootIndex,
   2030                       scratch1,
   2031                       scratch2);
   2032 }
   2033 
   2034 
   2035 void MacroAssembler::AllocateOneByteConsString(Register result, Register length,
   2036                                                Register scratch1,
   2037                                                Register scratch2,
   2038                                                Label* gc_required) {
   2039   Allocate(ConsString::kSize,
   2040            result,
   2041            scratch1,
   2042            scratch2,
   2043            gc_required,
   2044            TAG_OBJECT);
   2045 
   2046   InitializeNewString(result, length, Heap::kConsOneByteStringMapRootIndex,
   2047                       scratch1, scratch2);
   2048 }
   2049 
   2050 
   2051 void MacroAssembler::AllocateTwoByteSlicedString(Register result,
   2052                                                  Register length,
   2053                                                  Register scratch1,
   2054                                                  Register scratch2,
   2055                                                  Label* gc_required) {
   2056   Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
   2057            TAG_OBJECT);
   2058 
   2059   InitializeNewString(result,
   2060                       length,
   2061                       Heap::kSlicedStringMapRootIndex,
   2062                       scratch1,
   2063                       scratch2);
   2064 }
   2065 
   2066 
   2067 void MacroAssembler::AllocateOneByteSlicedString(Register result,
   2068                                                  Register length,
   2069                                                  Register scratch1,
   2070                                                  Register scratch2,
   2071                                                  Label* gc_required) {
   2072   Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
   2073            TAG_OBJECT);
   2074 
   2075   InitializeNewString(result, length, Heap::kSlicedOneByteStringMapRootIndex,
   2076                       scratch1, scratch2);
   2077 }
   2078 
   2079 
   2080 void MacroAssembler::CompareObjectType(Register object,
   2081                                        Register map,
   2082                                        Register type_reg,
   2083                                        InstanceType type) {
   2084   const Register temp = type_reg.is(no_reg) ? ip : type_reg;
   2085 
   2086   ldr(map, FieldMemOperand(object, HeapObject::kMapOffset));
   2087   CompareInstanceType(map, temp, type);
   2088 }
   2089 
   2090 
   2091 void MacroAssembler::CheckObjectTypeRange(Register object,
   2092                                           Register map,
   2093                                           InstanceType min_type,
   2094                                           InstanceType max_type,
   2095                                           Label* false_label) {
   2096   STATIC_ASSERT(Map::kInstanceTypeOffset < 4096);
   2097   STATIC_ASSERT(LAST_TYPE < 256);
   2098   ldr(map, FieldMemOperand(object, HeapObject::kMapOffset));
   2099   ldrb(ip, FieldMemOperand(map, Map::kInstanceTypeOffset));
   2100   sub(ip, ip, Operand(min_type));
   2101   cmp(ip, Operand(max_type - min_type));
   2102   b(hi, false_label);
   2103 }
   2104 
   2105 
   2106 void MacroAssembler::CompareInstanceType(Register map,
   2107                                          Register type_reg,
   2108                                          InstanceType type) {
   2109   // Registers map and type_reg can be ip. These two lines assert
   2110   // that ip can be used with the two instructions (the constants
   2111   // will never need ip).
   2112   STATIC_ASSERT(Map::kInstanceTypeOffset < 4096);
   2113   STATIC_ASSERT(LAST_TYPE < 256);
   2114   ldrb(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
   2115   cmp(type_reg, Operand(type));
   2116 }
   2117 
   2118 
   2119 void MacroAssembler::CompareRoot(Register obj,
   2120                                  Heap::RootListIndex index) {
   2121   DCHECK(!obj.is(ip));
   2122   LoadRoot(ip, index);
   2123   cmp(obj, ip);
   2124 }
   2125 
   2126 
   2127 void MacroAssembler::CheckFastElements(Register map,
   2128                                        Register scratch,
   2129                                        Label* fail) {
   2130   STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
   2131   STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
   2132   STATIC_ASSERT(FAST_ELEMENTS == 2);
   2133   STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
   2134   ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset));
   2135   cmp(scratch, Operand(Map::kMaximumBitField2FastHoleyElementValue));
   2136   b(hi, fail);
   2137 }
   2138 
   2139 
   2140 void MacroAssembler::CheckFastObjectElements(Register map,
   2141                                              Register scratch,
   2142                                              Label* fail) {
   2143   STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
   2144   STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
   2145   STATIC_ASSERT(FAST_ELEMENTS == 2);
   2146   STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
   2147   ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset));
   2148   cmp(scratch, Operand(Map::kMaximumBitField2FastHoleySmiElementValue));
   2149   b(ls, fail);
   2150   cmp(scratch, Operand(Map::kMaximumBitField2FastHoleyElementValue));
   2151   b(hi, fail);
   2152 }
   2153 
   2154 
   2155 void MacroAssembler::CheckFastSmiElements(Register map,
   2156                                           Register scratch,
   2157                                           Label* fail) {
   2158   STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
   2159   STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
   2160   ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset));
   2161   cmp(scratch, Operand(Map::kMaximumBitField2FastHoleySmiElementValue));
   2162   b(hi, fail);
   2163 }
   2164 
   2165 
   2166 void MacroAssembler::StoreNumberToDoubleElements(
   2167                                       Register value_reg,
   2168                                       Register key_reg,
   2169                                       Register elements_reg,
   2170                                       Register scratch1,
   2171                                       LowDwVfpRegister double_scratch,
   2172                                       Label* fail,
   2173                                       int elements_offset) {
   2174   Label smi_value, store;
   2175 
   2176   // Handle smi values specially.
   2177   JumpIfSmi(value_reg, &smi_value);
   2178 
   2179   // Ensure that the object is a heap number
   2180   CheckMap(value_reg,
   2181            scratch1,
   2182            isolate()->factory()->heap_number_map(),
   2183            fail,
   2184            DONT_DO_SMI_CHECK);
   2185 
   2186   vldr(double_scratch, FieldMemOperand(value_reg, HeapNumber::kValueOffset));
   2187   // Force a canonical NaN.
   2188   if (emit_debug_code()) {
   2189     vmrs(ip);
   2190     tst(ip, Operand(kVFPDefaultNaNModeControlBit));
   2191     Assert(ne, kDefaultNaNModeNotSet);
   2192   }
   2193   VFPCanonicalizeNaN(double_scratch);
   2194   b(&store);
   2195 
   2196   bind(&smi_value);
   2197   SmiToDouble(double_scratch, value_reg);
   2198 
   2199   bind(&store);
   2200   add(scratch1, elements_reg, Operand::DoubleOffsetFromSmiKey(key_reg));
   2201   vstr(double_scratch,
   2202        FieldMemOperand(scratch1,
   2203                        FixedDoubleArray::kHeaderSize - elements_offset));
   2204 }
   2205 
   2206 
   2207 void MacroAssembler::CompareMap(Register obj,
   2208                                 Register scratch,
   2209                                 Handle<Map> map,
   2210                                 Label* early_success) {
   2211   ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
   2212   CompareMap(scratch, map, early_success);
   2213 }
   2214 
   2215 
   2216 void MacroAssembler::CompareMap(Register obj_map,
   2217                                 Handle<Map> map,
   2218                                 Label* early_success) {
   2219   cmp(obj_map, Operand(map));
   2220 }
   2221 
   2222 
   2223 void MacroAssembler::CheckMap(Register obj,
   2224                               Register scratch,
   2225                               Handle<Map> map,
   2226                               Label* fail,
   2227                               SmiCheckType smi_check_type) {
   2228   if (smi_check_type == DO_SMI_CHECK) {
   2229     JumpIfSmi(obj, fail);
   2230   }
   2231 
   2232   Label success;
   2233   CompareMap(obj, scratch, map, &success);
   2234   b(ne, fail);
   2235   bind(&success);
   2236 }
   2237 
   2238 
   2239 void MacroAssembler::CheckMap(Register obj,
   2240                               Register scratch,
   2241                               Heap::RootListIndex index,
   2242                               Label* fail,
   2243                               SmiCheckType smi_check_type) {
   2244   if (smi_check_type == DO_SMI_CHECK) {
   2245     JumpIfSmi(obj, fail);
   2246   }
   2247   ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
   2248   LoadRoot(ip, index);
   2249   cmp(scratch, ip);
   2250   b(ne, fail);
   2251 }
   2252 
   2253 
   2254 void MacroAssembler::DispatchMap(Register obj,
   2255                                  Register scratch,
   2256                                  Handle<Map> map,
   2257                                  Handle<Code> success,
   2258                                  SmiCheckType smi_check_type) {
   2259   Label fail;
   2260   if (smi_check_type == DO_SMI_CHECK) {
   2261     JumpIfSmi(obj, &fail);
   2262   }
   2263   ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
   2264   mov(ip, Operand(map));
   2265   cmp(scratch, ip);
   2266   Jump(success, RelocInfo::CODE_TARGET, eq);
   2267   bind(&fail);
   2268 }
   2269 
   2270 
   2271 void MacroAssembler::TryGetFunctionPrototype(Register function,
   2272                                              Register result,
   2273                                              Register scratch,
   2274                                              Label* miss,
   2275                                              bool miss_on_bound_function) {
   2276   Label non_instance;
   2277   if (miss_on_bound_function) {
   2278     // Check that the receiver isn't a smi.
   2279     JumpIfSmi(function, miss);
   2280 
   2281     // Check that the function really is a function.  Load map into result reg.
   2282     CompareObjectType(function, result, scratch, JS_FUNCTION_TYPE);
   2283     b(ne, miss);
   2284 
   2285     ldr(scratch,
   2286         FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
   2287     ldr(scratch,
   2288         FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset));
   2289     tst(scratch,
   2290         Operand(Smi::FromInt(1 << SharedFunctionInfo::kBoundFunction)));
   2291     b(ne, miss);
   2292 
   2293     // Make sure that the function has an instance prototype.
   2294     ldrb(scratch, FieldMemOperand(result, Map::kBitFieldOffset));
   2295     tst(scratch, Operand(1 << Map::kHasNonInstancePrototype));
   2296     b(ne, &non_instance);
   2297   }
   2298 
   2299   // Get the prototype or initial map from the function.
   2300   ldr(result,
   2301       FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
   2302 
   2303   // If the prototype or initial map is the hole, don't return it and
   2304   // simply miss the cache instead. This will allow us to allocate a
   2305   // prototype object on-demand in the runtime system.
   2306   LoadRoot(ip, Heap::kTheHoleValueRootIndex);
   2307   cmp(result, ip);
   2308   b(eq, miss);
   2309 
   2310   // If the function does not have an initial map, we're done.
   2311   Label done;
   2312   CompareObjectType(result, scratch, scratch, MAP_TYPE);
   2313   b(ne, &done);
   2314 
   2315   // Get the prototype from the initial map.
   2316   ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
   2317 
   2318   if (miss_on_bound_function) {
   2319     jmp(&done);
   2320 
   2321     // Non-instance prototype: Fetch prototype from constructor field
   2322     // in initial map.
   2323     bind(&non_instance);
   2324     ldr(result, FieldMemOperand(result, Map::kConstructorOffset));
   2325   }
   2326 
   2327   // All done.
   2328   bind(&done);
   2329 }
   2330 
   2331 
   2332 void MacroAssembler::CallStub(CodeStub* stub,
   2333                               TypeFeedbackId ast_id,
   2334                               Condition cond) {
   2335   DCHECK(AllowThisStubCall(stub));  // Stub calls are not allowed in some stubs.
   2336   Call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id, cond);
   2337 }
   2338 
   2339 
   2340 void MacroAssembler::TailCallStub(CodeStub* stub, Condition cond) {
   2341   Jump(stub->GetCode(), RelocInfo::CODE_TARGET, cond);
   2342 }
   2343 
   2344 
   2345 static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
   2346   return ref0.address() - ref1.address();
   2347 }
   2348 
   2349 
   2350 void MacroAssembler::CallApiFunctionAndReturn(
   2351     Register function_address,
   2352     ExternalReference thunk_ref,
   2353     int stack_space,
   2354     MemOperand return_value_operand,
   2355     MemOperand* context_restore_operand) {
   2356   ExternalReference next_address =
   2357       ExternalReference::handle_scope_next_address(isolate());
   2358   const int kNextOffset = 0;
   2359   const int kLimitOffset = AddressOffset(
   2360       ExternalReference::handle_scope_limit_address(isolate()),
   2361       next_address);
   2362   const int kLevelOffset = AddressOffset(
   2363       ExternalReference::handle_scope_level_address(isolate()),
   2364       next_address);
   2365 
   2366   DCHECK(function_address.is(r1) || function_address.is(r2));
   2367 
   2368   Label profiler_disabled;
   2369   Label end_profiler_check;
   2370   mov(r9, Operand(ExternalReference::is_profiling_address(isolate())));
   2371   ldrb(r9, MemOperand(r9, 0));
   2372   cmp(r9, Operand(0));
   2373   b(eq, &profiler_disabled);
   2374 
   2375   // Additional parameter is the address of the actual callback.
   2376   mov(r3, Operand(thunk_ref));
   2377   jmp(&end_profiler_check);
   2378 
   2379   bind(&profiler_disabled);
   2380   Move(r3, function_address);
   2381   bind(&end_profiler_check);
   2382 
   2383   // Allocate HandleScope in callee-save registers.
   2384   mov(r9, Operand(next_address));
   2385   ldr(r4, MemOperand(r9, kNextOffset));
   2386   ldr(r5, MemOperand(r9, kLimitOffset));
   2387   ldr(r6, MemOperand(r9, kLevelOffset));
   2388   add(r6, r6, Operand(1));
   2389   str(r6, MemOperand(r9, kLevelOffset));
   2390 
   2391   if (FLAG_log_timer_events) {
   2392     FrameScope frame(this, StackFrame::MANUAL);
   2393     PushSafepointRegisters();
   2394     PrepareCallCFunction(1, r0);
   2395     mov(r0, Operand(ExternalReference::isolate_address(isolate())));
   2396     CallCFunction(ExternalReference::log_enter_external_function(isolate()), 1);
   2397     PopSafepointRegisters();
   2398   }
   2399 
   2400   // Native call returns to the DirectCEntry stub which redirects to the
   2401   // return address pushed on stack (could have moved after GC).
   2402   // DirectCEntry stub itself is generated early and never moves.
   2403   DirectCEntryStub stub(isolate());
   2404   stub.GenerateCall(this, r3);
   2405 
   2406   if (FLAG_log_timer_events) {
   2407     FrameScope frame(this, StackFrame::MANUAL);
   2408     PushSafepointRegisters();
   2409     PrepareCallCFunction(1, r0);
   2410     mov(r0, Operand(ExternalReference::isolate_address(isolate())));
   2411     CallCFunction(ExternalReference::log_leave_external_function(isolate()), 1);
   2412     PopSafepointRegisters();
   2413   }
   2414 
   2415   Label promote_scheduled_exception;
   2416   Label exception_handled;
   2417   Label delete_allocated_handles;
   2418   Label leave_exit_frame;
   2419   Label return_value_loaded;
   2420 
   2421   // load value from ReturnValue
   2422   ldr(r0, return_value_operand);
   2423   bind(&return_value_loaded);
   2424   // No more valid handles (the result handle was the last one). Restore
   2425   // previous handle scope.
   2426   str(r4, MemOperand(r9, kNextOffset));
   2427   if (emit_debug_code()) {
   2428     ldr(r1, MemOperand(r9, kLevelOffset));
   2429     cmp(r1, r6);
   2430     Check(eq, kUnexpectedLevelAfterReturnFromApiCall);
   2431   }
   2432   sub(r6, r6, Operand(1));
   2433   str(r6, MemOperand(r9, kLevelOffset));
   2434   ldr(ip, MemOperand(r9, kLimitOffset));
   2435   cmp(r5, ip);
   2436   b(ne, &delete_allocated_handles);
   2437 
   2438   // Check if the function scheduled an exception.
   2439   bind(&leave_exit_frame);
   2440   LoadRoot(r4, Heap::kTheHoleValueRootIndex);
   2441   mov(ip, Operand(ExternalReference::scheduled_exception_address(isolate())));
   2442   ldr(r5, MemOperand(ip));
   2443   cmp(r4, r5);
   2444   b(ne, &promote_scheduled_exception);
   2445   bind(&exception_handled);
   2446 
   2447   bool restore_context = context_restore_operand != NULL;
   2448   if (restore_context) {
   2449     ldr(cp, *context_restore_operand);
   2450   }
   2451   // LeaveExitFrame expects unwind space to be in a register.
   2452   mov(r4, Operand(stack_space));
   2453   LeaveExitFrame(false, r4, !restore_context);
   2454   mov(pc, lr);
   2455 
   2456   bind(&promote_scheduled_exception);
   2457   {
   2458     FrameScope frame(this, StackFrame::INTERNAL);
   2459     CallExternalReference(
   2460         ExternalReference(Runtime::kPromoteScheduledException, isolate()),
   2461         0);
   2462   }
   2463   jmp(&exception_handled);
   2464 
   2465   // HandleScope limit has changed. Delete allocated extensions.
   2466   bind(&delete_allocated_handles);
   2467   str(r5, MemOperand(r9, kLimitOffset));
   2468   mov(r4, r0);
   2469   PrepareCallCFunction(1, r5);
   2470   mov(r0, Operand(ExternalReference::isolate_address(isolate())));
   2471   CallCFunction(
   2472       ExternalReference::delete_handle_scope_extensions(isolate()), 1);
   2473   mov(r0, r4);
   2474   jmp(&leave_exit_frame);
   2475 }
   2476 
   2477 
   2478 bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
   2479   return has_frame_ || !stub->SometimesSetsUpAFrame();
   2480 }
   2481 
   2482 
   2483 void MacroAssembler::IndexFromHash(Register hash, Register index) {
   2484   // If the hash field contains an array index pick it out. The assert checks
   2485   // that the constants for the maximum number of digits for an array index
   2486   // cached in the hash field and the number of bits reserved for it does not
   2487   // conflict.
   2488   DCHECK(TenToThe(String::kMaxCachedArrayIndexLength) <
   2489          (1 << String::kArrayIndexValueBits));
   2490   DecodeFieldToSmi<String::ArrayIndexValueBits>(index, hash);
   2491 }
   2492 
   2493 
   2494 void MacroAssembler::SmiToDouble(LowDwVfpRegister value, Register smi) {
   2495   if (CpuFeatures::IsSupported(VFP3)) {
   2496     vmov(value.low(), smi);
   2497     vcvt_f64_s32(value, 1);
   2498   } else {
   2499     SmiUntag(ip, smi);
   2500     vmov(value.low(), ip);
   2501     vcvt_f64_s32(value, value.low());
   2502   }
   2503 }
   2504 
   2505 
   2506 void MacroAssembler::TestDoubleIsInt32(DwVfpRegister double_input,
   2507                                        LowDwVfpRegister double_scratch) {
   2508   DCHECK(!double_input.is(double_scratch));
   2509   vcvt_s32_f64(double_scratch.low(), double_input);
   2510   vcvt_f64_s32(double_scratch, double_scratch.low());
   2511   VFPCompareAndSetFlags(double_input, double_scratch);
   2512 }
   2513 
   2514 
   2515 void MacroAssembler::TryDoubleToInt32Exact(Register result,
   2516                                            DwVfpRegister double_input,
   2517                                            LowDwVfpRegister double_scratch) {
   2518   DCHECK(!double_input.is(double_scratch));
   2519   vcvt_s32_f64(double_scratch.low(), double_input);
   2520   vmov(result, double_scratch.low());
   2521   vcvt_f64_s32(double_scratch, double_scratch.low());
   2522   VFPCompareAndSetFlags(double_input, double_scratch);
   2523 }
   2524 
   2525 
   2526 void MacroAssembler::TryInt32Floor(Register result,
   2527                                    DwVfpRegister double_input,
   2528                                    Register input_high,
   2529                                    LowDwVfpRegister double_scratch,
   2530                                    Label* done,
   2531                                    Label* exact) {
   2532   DCHECK(!result.is(input_high));
   2533   DCHECK(!double_input.is(double_scratch));
   2534   Label negative, exception;
   2535 
   2536   VmovHigh(input_high, double_input);
   2537 
   2538   // Test for NaN and infinities.
   2539   Sbfx(result, input_high,
   2540        HeapNumber::kExponentShift, HeapNumber::kExponentBits);
   2541   cmp(result, Operand(-1));
   2542   b(eq, &exception);
   2543   // Test for values that can be exactly represented as a
   2544   // signed 32-bit integer.
   2545   TryDoubleToInt32Exact(result, double_input, double_scratch);
   2546   // If exact, return (result already fetched).
   2547   b(eq, exact);
   2548   cmp(input_high, Operand::Zero());
   2549   b(mi, &negative);
   2550 
   2551   // Input is in ]+0, +inf[.
   2552   // If result equals 0x7fffffff input was out of range or
   2553   // in ]0x7fffffff, 0x80000000[. We ignore this last case which
   2554   // could fits into an int32, that means we always think input was
   2555   // out of range and always go to exception.
   2556   // If result < 0x7fffffff, go to done, result fetched.
   2557   cmn(result, Operand(1));
   2558   b(mi, &exception);
   2559   b(done);
   2560 
   2561   // Input is in ]-inf, -0[.
   2562   // If x is a non integer negative number,
   2563   // floor(x) <=> round_to_zero(x) - 1.
   2564   bind(&negative);
   2565   sub(result, result, Operand(1), SetCC);
   2566   // If result is still negative, go to done, result fetched.
   2567   // Else, we had an overflow and we fall through exception.
   2568   b(mi, done);
   2569   bind(&exception);
   2570 }
   2571 
   2572 void MacroAssembler::TryInlineTruncateDoubleToI(Register result,
   2573                                                 DwVfpRegister double_input,
   2574                                                 Label* done) {
   2575   LowDwVfpRegister double_scratch = kScratchDoubleReg;
   2576   vcvt_s32_f64(double_scratch.low(), double_input);
   2577   vmov(result, double_scratch.low());
   2578 
   2579   // If result is not saturated (0x7fffffff or 0x80000000), we are done.
   2580   sub(ip, result, Operand(1));
   2581   cmp(ip, Operand(0x7ffffffe));
   2582   b(lt, done);
   2583 }
   2584 
   2585 
   2586 void MacroAssembler::TruncateDoubleToI(Register result,
   2587                                        DwVfpRegister double_input) {
   2588   Label done;
   2589 
   2590   TryInlineTruncateDoubleToI(result, double_input, &done);
   2591 
   2592   // If we fell through then inline version didn't succeed - call stub instead.
   2593   push(lr);
   2594   sub(sp, sp, Operand(kDoubleSize));  // Put input on stack.
   2595   vstr(double_input, MemOperand(sp, 0));
   2596 
   2597   DoubleToIStub stub(isolate(), sp, result, 0, true, true);
   2598   CallStub(&stub);
   2599 
   2600   add(sp, sp, Operand(kDoubleSize));
   2601   pop(lr);
   2602 
   2603   bind(&done);
   2604 }
   2605 
   2606 
   2607 void MacroAssembler::TruncateHeapNumberToI(Register result,
   2608                                            Register object) {
   2609   Label done;
   2610   LowDwVfpRegister double_scratch = kScratchDoubleReg;
   2611   DCHECK(!result.is(object));
   2612 
   2613   vldr(double_scratch,
   2614        MemOperand(object, HeapNumber::kValueOffset - kHeapObjectTag));
   2615   TryInlineTruncateDoubleToI(result, double_scratch, &done);
   2616 
   2617   // If we fell through then inline version didn't succeed - call stub instead.
   2618   push(lr);
   2619   DoubleToIStub stub(isolate(),
   2620                      object,
   2621                      result,
   2622                      HeapNumber::kValueOffset - kHeapObjectTag,
   2623                      true,
   2624                      true);
   2625   CallStub(&stub);
   2626   pop(lr);
   2627 
   2628   bind(&done);
   2629 }
   2630 
   2631 
   2632 void MacroAssembler::TruncateNumberToI(Register object,
   2633                                        Register result,
   2634                                        Register heap_number_map,
   2635                                        Register scratch1,
   2636                                        Label* not_number) {
   2637   Label done;
   2638   DCHECK(!result.is(object));
   2639 
   2640   UntagAndJumpIfSmi(result, object, &done);
   2641   JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_number);
   2642   TruncateHeapNumberToI(result, object);
   2643 
   2644   bind(&done);
   2645 }
   2646 
   2647 
   2648 void MacroAssembler::GetLeastBitsFromSmi(Register dst,
   2649                                          Register src,
   2650                                          int num_least_bits) {
   2651   if (CpuFeatures::IsSupported(ARMv7) && !predictable_code_size()) {
   2652     ubfx(dst, src, kSmiTagSize, num_least_bits);
   2653   } else {
   2654     SmiUntag(dst, src);
   2655     and_(dst, dst, Operand((1 << num_least_bits) - 1));
   2656   }
   2657 }
   2658 
   2659 
   2660 void MacroAssembler::GetLeastBitsFromInt32(Register dst,
   2661                                            Register src,
   2662                                            int num_least_bits) {
   2663   and_(dst, src, Operand((1 << num_least_bits) - 1));
   2664 }
   2665 
   2666 
   2667 void MacroAssembler::CallRuntime(const Runtime::Function* f,
   2668                                  int num_arguments,
   2669                                  SaveFPRegsMode save_doubles) {
   2670   // All parameters are on the stack.  r0 has the return value after call.
   2671 
   2672   // If the expected number of arguments of the runtime function is
   2673   // constant, we check that the actual number of arguments match the
   2674   // expectation.
   2675   CHECK(f->nargs < 0 || f->nargs == num_arguments);
   2676 
   2677   // TODO(1236192): Most runtime routines don't need the number of
   2678   // arguments passed in because it is constant. At some point we
   2679   // should remove this need and make the runtime routine entry code
   2680   // smarter.
   2681   mov(r0, Operand(num_arguments));
   2682   mov(r1, Operand(ExternalReference(f, isolate())));
   2683   CEntryStub stub(isolate(), 1, save_doubles);
   2684   CallStub(&stub);
   2685 }
   2686 
   2687 
   2688 void MacroAssembler::CallExternalReference(const ExternalReference& ext,
   2689                                            int num_arguments) {
   2690   mov(r0, Operand(num_arguments));
   2691   mov(r1, Operand(ext));
   2692 
   2693   CEntryStub stub(isolate(), 1);
   2694   CallStub(&stub);
   2695 }
   2696 
   2697 
   2698 void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
   2699                                                int num_arguments,
   2700                                                int result_size) {
   2701   // TODO(1236192): Most runtime routines don't need the number of
   2702   // arguments passed in because it is constant. At some point we
   2703   // should remove this need and make the runtime routine entry code
   2704   // smarter.
   2705   mov(r0, Operand(num_arguments));
   2706   JumpToExternalReference(ext);
   2707 }
   2708 
   2709 
   2710 void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
   2711                                      int num_arguments,
   2712                                      int result_size) {
   2713   TailCallExternalReference(ExternalReference(fid, isolate()),
   2714                             num_arguments,
   2715                             result_size);
   2716 }
   2717 
   2718 
   2719 void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin) {
   2720 #if defined(__thumb__)
   2721   // Thumb mode builtin.
   2722   DCHECK((reinterpret_cast<intptr_t>(builtin.address()) & 1) == 1);
   2723 #endif
   2724   mov(r1, Operand(builtin));
   2725   CEntryStub stub(isolate(), 1);
   2726   Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
   2727 }
   2728 
   2729 
   2730 void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
   2731                                    InvokeFlag flag,
   2732                                    const CallWrapper& call_wrapper) {
   2733   // You can't call a builtin without a valid frame.
   2734   DCHECK(flag == JUMP_FUNCTION || has_frame());
   2735 
   2736   GetBuiltinEntry(r2, id);
   2737   if (flag == CALL_FUNCTION) {
   2738     call_wrapper.BeforeCall(CallSize(r2));
   2739     Call(r2);
   2740     call_wrapper.AfterCall();
   2741   } else {
   2742     DCHECK(flag == JUMP_FUNCTION);
   2743     Jump(r2);
   2744   }
   2745 }
   2746 
   2747 
   2748 void MacroAssembler::GetBuiltinFunction(Register target,
   2749                                         Builtins::JavaScript id) {
   2750   // Load the builtins object into target register.
   2751   ldr(target,
   2752       MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
   2753   ldr(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset));
   2754   // Load the JavaScript builtin function from the builtins object.
   2755   ldr(target, FieldMemOperand(target,
   2756                           JSBuiltinsObject::OffsetOfFunctionWithId(id)));
   2757 }
   2758 
   2759 
   2760 void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
   2761   DCHECK(!target.is(r1));
   2762   GetBuiltinFunction(r1, id);
   2763   // Load the code entry point from the builtins object.
   2764   ldr(target, FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
   2765 }
   2766 
   2767 
   2768 void MacroAssembler::SetCounter(StatsCounter* counter, int value,
   2769                                 Register scratch1, Register scratch2) {
   2770   if (FLAG_native_code_counters && counter->Enabled()) {
   2771     mov(scratch1, Operand(value));
   2772     mov(scratch2, Operand(ExternalReference(counter)));
   2773     str(scratch1, MemOperand(scratch2));
   2774   }
   2775 }
   2776 
   2777 
   2778 void MacroAssembler::IncrementCounter(StatsCounter* counter, int value,
   2779                                       Register scratch1, Register scratch2) {
   2780   DCHECK(value > 0);
   2781   if (FLAG_native_code_counters && counter->Enabled()) {
   2782     mov(scratch2, Operand(ExternalReference(counter)));
   2783     ldr(scratch1, MemOperand(scratch2));
   2784     add(scratch1, scratch1, Operand(value));
   2785     str(scratch1, MemOperand(scratch2));
   2786   }
   2787 }
   2788 
   2789 
   2790 void MacroAssembler::DecrementCounter(StatsCounter* counter, int value,
   2791                                       Register scratch1, Register scratch2) {
   2792   DCHECK(value > 0);
   2793   if (FLAG_native_code_counters && counter->Enabled()) {
   2794     mov(scratch2, Operand(ExternalReference(counter)));
   2795     ldr(scratch1, MemOperand(scratch2));
   2796     sub(scratch1, scratch1, Operand(value));
   2797     str(scratch1, MemOperand(scratch2));
   2798   }
   2799 }
   2800 
   2801 
   2802 void MacroAssembler::Assert(Condition cond, BailoutReason reason) {
   2803   if (emit_debug_code())
   2804     Check(cond, reason);
   2805 }
   2806 
   2807 
   2808 void MacroAssembler::AssertFastElements(Register elements) {
   2809   if (emit_debug_code()) {
   2810     DCHECK(!elements.is(ip));
   2811     Label ok;
   2812     push(elements);
   2813     ldr(elements, FieldMemOperand(elements, HeapObject::kMapOffset));
   2814     LoadRoot(ip, Heap::kFixedArrayMapRootIndex);
   2815     cmp(elements, ip);
   2816     b(eq, &ok);
   2817     LoadRoot(ip, Heap::kFixedDoubleArrayMapRootIndex);
   2818     cmp(elements, ip);
   2819     b(eq, &ok);
   2820     LoadRoot(ip, Heap::kFixedCOWArrayMapRootIndex);
   2821     cmp(elements, ip);
   2822     b(eq, &ok);
   2823     Abort(kJSObjectWithFastElementsMapHasSlowElements);
   2824     bind(&ok);
   2825     pop(elements);
   2826   }
   2827 }
   2828 
   2829 
   2830 void MacroAssembler::Check(Condition cond, BailoutReason reason) {
   2831   Label L;
   2832   b(cond, &L);
   2833   Abort(reason);
   2834   // will not return here
   2835   bind(&L);
   2836 }
   2837 
   2838 
   2839 void MacroAssembler::Abort(BailoutReason reason) {
   2840   Label abort_start;
   2841   bind(&abort_start);
   2842 #ifdef DEBUG
   2843   const char* msg = GetBailoutReason(reason);
   2844   if (msg != NULL) {
   2845     RecordComment("Abort message: ");
   2846     RecordComment(msg);
   2847   }
   2848 
   2849   if (FLAG_trap_on_abort) {
   2850     stop(msg);
   2851     return;
   2852   }
   2853 #endif
   2854 
   2855   mov(r0, Operand(Smi::FromInt(reason)));
   2856   push(r0);
   2857 
   2858   // Disable stub call restrictions to always allow calls to abort.
   2859   if (!has_frame_) {
   2860     // We don't actually want to generate a pile of code for this, so just
   2861     // claim there is a stack frame, without generating one.
   2862     FrameScope scope(this, StackFrame::NONE);
   2863     CallRuntime(Runtime::kAbort, 1);
   2864   } else {
   2865     CallRuntime(Runtime::kAbort, 1);
   2866   }
   2867   // will not return here
   2868   if (is_const_pool_blocked()) {
   2869     // If the calling code cares about the exact number of
   2870     // instructions generated, we insert padding here to keep the size
   2871     // of the Abort macro constant.
   2872     static const int kExpectedAbortInstructions = 7;
   2873     int abort_instructions = InstructionsGeneratedSince(&abort_start);
   2874     DCHECK(abort_instructions <= kExpectedAbortInstructions);
   2875     while (abort_instructions++ < kExpectedAbortInstructions) {
   2876       nop();
   2877     }
   2878   }
   2879 }
   2880 
   2881 
   2882 void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
   2883   if (context_chain_length > 0) {
   2884     // Move up the chain of contexts to the context containing the slot.
   2885     ldr(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX)));
   2886     for (int i = 1; i < context_chain_length; i++) {
   2887       ldr(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
   2888     }
   2889   } else {
   2890     // Slot is in the current function context.  Move it into the
   2891     // destination register in case we store into it (the write barrier
   2892     // cannot be allowed to destroy the context in esi).
   2893     mov(dst, cp);
   2894   }
   2895 }
   2896 
   2897 
   2898 void MacroAssembler::LoadTransitionedArrayMapConditional(
   2899     ElementsKind expected_kind,
   2900     ElementsKind transitioned_kind,
   2901     Register map_in_out,
   2902     Register scratch,
   2903     Label* no_map_match) {
   2904   // Load the global or builtins object from the current context.
   2905   ldr(scratch,
   2906       MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
   2907   ldr(scratch, FieldMemOperand(scratch, GlobalObject::kNativeContextOffset));
   2908 
   2909   // Check that the function's map is the same as the expected cached map.
   2910   ldr(scratch,
   2911       MemOperand(scratch,
   2912                  Context::SlotOffset(Context::JS_ARRAY_MAPS_INDEX)));
   2913   size_t offset = expected_kind * kPointerSize +
   2914       FixedArrayBase::kHeaderSize;
   2915   ldr(ip, FieldMemOperand(scratch, offset));
   2916   cmp(map_in_out, ip);
   2917   b(ne, no_map_match);
   2918 
   2919   // Use the transitioned cached map.
   2920   offset = transitioned_kind * kPointerSize +
   2921       FixedArrayBase::kHeaderSize;
   2922   ldr(map_in_out, FieldMemOperand(scratch, offset));
   2923 }
   2924 
   2925 
   2926 void MacroAssembler::LoadGlobalFunction(int index, Register function) {
   2927   // Load the global or builtins object from the current context.
   2928   ldr(function,
   2929       MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
   2930   // Load the native context from the global or builtins object.
   2931   ldr(function, FieldMemOperand(function,
   2932                                 GlobalObject::kNativeContextOffset));
   2933   // Load the function from the native context.
   2934   ldr(function, MemOperand(function, Context::SlotOffset(index)));
   2935 }
   2936 
   2937 
   2938 void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
   2939                                                   Register map,
   2940                                                   Register scratch) {
   2941   // Load the initial map. The global functions all have initial maps.
   2942   ldr(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
   2943   if (emit_debug_code()) {
   2944     Label ok, fail;
   2945     CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK);
   2946     b(&ok);
   2947     bind(&fail);
   2948     Abort(kGlobalFunctionsMustHaveInitialMap);
   2949     bind(&ok);
   2950   }
   2951 }
   2952 
   2953 
   2954 void MacroAssembler::JumpIfNotPowerOfTwoOrZero(
   2955     Register reg,
   2956     Register scratch,
   2957     Label* not_power_of_two_or_zero) {
   2958   sub(scratch, reg, Operand(1), SetCC);
   2959   b(mi, not_power_of_two_or_zero);
   2960   tst(scratch, reg);
   2961   b(ne, not_power_of_two_or_zero);
   2962 }
   2963 
   2964 
   2965 void MacroAssembler::JumpIfNotPowerOfTwoOrZeroAndNeg(
   2966     Register reg,
   2967     Register scratch,
   2968     Label* zero_and_neg,
   2969     Label* not_power_of_two) {
   2970   sub(scratch, reg, Operand(1), SetCC);
   2971   b(mi, zero_and_neg);
   2972   tst(scratch, reg);
   2973   b(ne, not_power_of_two);
   2974 }
   2975 
   2976 
   2977 void MacroAssembler::JumpIfNotBothSmi(Register reg1,
   2978                                       Register reg2,
   2979                                       Label* on_not_both_smi) {
   2980   STATIC_ASSERT(kSmiTag == 0);
   2981   tst(reg1, Operand(kSmiTagMask));
   2982   tst(reg2, Operand(kSmiTagMask), eq);
   2983   b(ne, on_not_both_smi);
   2984 }
   2985 
   2986 
   2987 void MacroAssembler::UntagAndJumpIfSmi(
   2988     Register dst, Register src, Label* smi_case) {
   2989   STATIC_ASSERT(kSmiTag == 0);
   2990   SmiUntag(dst, src, SetCC);
   2991   b(cc, smi_case);  // Shifter carry is not set for a smi.
   2992 }
   2993 
   2994 
   2995 void MacroAssembler::UntagAndJumpIfNotSmi(
   2996     Register dst, Register src, Label* non_smi_case) {
   2997   STATIC_ASSERT(kSmiTag == 0);
   2998   SmiUntag(dst, src, SetCC);
   2999   b(cs, non_smi_case);  // Shifter carry is set for a non-smi.
   3000 }
   3001 
   3002 
   3003 void MacroAssembler::JumpIfEitherSmi(Register reg1,
   3004                                      Register reg2,
   3005                                      Label* on_either_smi) {
   3006   STATIC_ASSERT(kSmiTag == 0);
   3007   tst(reg1, Operand(kSmiTagMask));
   3008   tst(reg2, Operand(kSmiTagMask), ne);
   3009   b(eq, on_either_smi);
   3010 }
   3011 
   3012 
   3013 void MacroAssembler::AssertNotSmi(Register object) {
   3014   if (emit_debug_code()) {
   3015     STATIC_ASSERT(kSmiTag == 0);
   3016     tst(object, Operand(kSmiTagMask));
   3017     Check(ne, kOperandIsASmi);
   3018   }
   3019 }
   3020 
   3021 
   3022 void MacroAssembler::AssertSmi(Register object) {
   3023   if (emit_debug_code()) {
   3024     STATIC_ASSERT(kSmiTag == 0);
   3025     tst(object, Operand(kSmiTagMask));
   3026     Check(eq, kOperandIsNotSmi);
   3027   }
   3028 }
   3029 
   3030 
   3031 void MacroAssembler::AssertString(Register object) {
   3032   if (emit_debug_code()) {
   3033     STATIC_ASSERT(kSmiTag == 0);
   3034     tst(object, Operand(kSmiTagMask));
   3035     Check(ne, kOperandIsASmiAndNotAString);
   3036     push(object);
   3037     ldr(object, FieldMemOperand(object, HeapObject::kMapOffset));
   3038     CompareInstanceType(object, object, FIRST_NONSTRING_TYPE);
   3039     pop(object);
   3040     Check(lo, kOperandIsNotAString);
   3041   }
   3042 }
   3043 
   3044 
   3045 void MacroAssembler::AssertName(Register object) {
   3046   if (emit_debug_code()) {
   3047     STATIC_ASSERT(kSmiTag == 0);
   3048     tst(object, Operand(kSmiTagMask));
   3049     Check(ne, kOperandIsASmiAndNotAName);
   3050     push(object);
   3051     ldr(object, FieldMemOperand(object, HeapObject::kMapOffset));
   3052     CompareInstanceType(object, object, LAST_NAME_TYPE);
   3053     pop(object);
   3054     Check(le, kOperandIsNotAName);
   3055   }
   3056 }
   3057 
   3058 
   3059 void MacroAssembler::AssertUndefinedOrAllocationSite(Register object,
   3060                                                      Register scratch) {
   3061   if (emit_debug_code()) {
   3062     Label done_checking;
   3063     AssertNotSmi(object);
   3064     CompareRoot(object, Heap::kUndefinedValueRootIndex);
   3065     b(eq, &done_checking);
   3066     ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
   3067     CompareRoot(scratch, Heap::kAllocationSiteMapRootIndex);
   3068     Assert(eq, kExpectedUndefinedOrCell);
   3069     bind(&done_checking);
   3070   }
   3071 }
   3072 
   3073 
   3074 void MacroAssembler::AssertIsRoot(Register reg, Heap::RootListIndex index) {
   3075   if (emit_debug_code()) {
   3076     CompareRoot(reg, index);
   3077     Check(eq, kHeapNumberMapRegisterClobbered);
   3078   }
   3079 }
   3080 
   3081 
   3082 void MacroAssembler::JumpIfNotHeapNumber(Register object,
   3083                                          Register heap_number_map,
   3084                                          Register scratch,
   3085                                          Label* on_not_heap_number) {
   3086   ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
   3087   AssertIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
   3088   cmp(scratch, heap_number_map);
   3089   b(ne, on_not_heap_number);
   3090 }
   3091 
   3092 
   3093 void MacroAssembler::LookupNumberStringCache(Register object,
   3094                                              Register result,
   3095                                              Register scratch1,
   3096                                              Register scratch2,
   3097                                              Register scratch3,
   3098                                              Label* not_found) {
   3099   // Use of registers. Register result is used as a temporary.
   3100   Register number_string_cache = result;
   3101   Register mask = scratch3;
   3102 
   3103   // Load the number string cache.
   3104   LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
   3105 
   3106   // Make the hash mask from the length of the number string cache. It
   3107   // contains two elements (number and string) for each cache entry.
   3108   ldr(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset));
   3109   // Divide length by two (length is a smi).
   3110   mov(mask, Operand(mask, ASR, kSmiTagSize + 1));
   3111   sub(mask, mask, Operand(1));  // Make mask.
   3112 
   3113   // Calculate the entry in the number string cache. The hash value in the
   3114   // number string cache for smis is just the smi value, and the hash for
   3115   // doubles is the xor of the upper and lower words. See
   3116   // Heap::GetNumberStringCache.
   3117   Label is_smi;
   3118   Label load_result_from_cache;
   3119   JumpIfSmi(object, &is_smi);
   3120   CheckMap(object,
   3121            scratch1,
   3122            Heap::kHeapNumberMapRootIndex,
   3123            not_found,
   3124            DONT_DO_SMI_CHECK);
   3125 
   3126   STATIC_ASSERT(8 == kDoubleSize);
   3127   add(scratch1,
   3128       object,
   3129       Operand(HeapNumber::kValueOffset - kHeapObjectTag));
   3130   ldm(ia, scratch1, scratch1.bit() | scratch2.bit());
   3131   eor(scratch1, scratch1, Operand(scratch2));
   3132   and_(scratch1, scratch1, Operand(mask));
   3133 
   3134   // Calculate address of entry in string cache: each entry consists
   3135   // of two pointer sized fields.
   3136   add(scratch1,
   3137       number_string_cache,
   3138       Operand(scratch1, LSL, kPointerSizeLog2 + 1));
   3139 
   3140   Register probe = mask;
   3141   ldr(probe, FieldMemOperand(scratch1, FixedArray::kHeaderSize));
   3142   JumpIfSmi(probe, not_found);
   3143   sub(scratch2, object, Operand(kHeapObjectTag));
   3144   vldr(d0, scratch2, HeapNumber::kValueOffset);
   3145   sub(probe, probe, Operand(kHeapObjectTag));
   3146   vldr(d1, probe, HeapNumber::kValueOffset);
   3147   VFPCompareAndSetFlags(d0, d1);
   3148   b(ne, not_found);  // The cache did not contain this value.
   3149   b(&load_result_from_cache);
   3150 
   3151   bind(&is_smi);
   3152   Register scratch = scratch1;
   3153   and_(scratch, mask, Operand(object, ASR, 1));
   3154   // Calculate address of entry in string cache: each entry consists
   3155   // of two pointer sized fields.
   3156   add(scratch,
   3157       number_string_cache,
   3158       Operand(scratch, LSL, kPointerSizeLog2 + 1));
   3159 
   3160   // Check if the entry is the smi we are looking for.
   3161   ldr(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize));
   3162   cmp(object, probe);
   3163   b(ne, not_found);
   3164 
   3165   // Get the result from the cache.
   3166   bind(&load_result_from_cache);
   3167   ldr(result, FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize));
   3168   IncrementCounter(isolate()->counters()->number_to_string_native(),
   3169                    1,
   3170                    scratch1,
   3171                    scratch2);
   3172 }
   3173 
   3174 
   3175 void MacroAssembler::JumpIfNonSmisNotBothSequentialOneByteStrings(
   3176     Register first, Register second, Register scratch1, Register scratch2,
   3177     Label* failure) {
   3178   // Test that both first and second are sequential one-byte strings.
   3179   // Assume that they are non-smis.
   3180   ldr(scratch1, FieldMemOperand(first, HeapObject::kMapOffset));
   3181   ldr(scratch2, FieldMemOperand(second, HeapObject::kMapOffset));
   3182   ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
   3183   ldrb(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset));
   3184 
   3185   JumpIfBothInstanceTypesAreNotSequentialOneByte(scratch1, scratch2, scratch1,
   3186                                                  scratch2, failure);
   3187 }
   3188 
   3189 void MacroAssembler::JumpIfNotBothSequentialOneByteStrings(Register first,
   3190                                                            Register second,
   3191                                                            Register scratch1,
   3192                                                            Register scratch2,
   3193                                                            Label* failure) {
   3194   // Check that neither is a smi.
   3195   and_(scratch1, first, Operand(second));
   3196   JumpIfSmi(scratch1, failure);
   3197   JumpIfNonSmisNotBothSequentialOneByteStrings(first, second, scratch1,
   3198                                                scratch2, failure);
   3199 }
   3200 
   3201 
   3202 void MacroAssembler::JumpIfNotUniqueNameInstanceType(Register reg,
   3203                                                      Label* not_unique_name) {
   3204   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
   3205   Label succeed;
   3206   tst(reg, Operand(kIsNotStringMask | kIsNotInternalizedMask));
   3207   b(eq, &succeed);
   3208   cmp(reg, Operand(SYMBOL_TYPE));
   3209   b(ne, not_unique_name);
   3210 
   3211   bind(&succeed);
   3212 }
   3213 
   3214 
   3215 // Allocates a heap number or jumps to the need_gc label if the young space
   3216 // is full and a scavenge is needed.
   3217 void MacroAssembler::AllocateHeapNumber(Register result,
   3218                                         Register scratch1,
   3219                                         Register scratch2,
   3220                                         Register heap_number_map,
   3221                                         Label* gc_required,
   3222                                         TaggingMode tagging_mode,
   3223                                         MutableMode mode) {
   3224   // Allocate an object in the heap for the heap number and tag it as a heap
   3225   // object.
   3226   Allocate(HeapNumber::kSize, result, scratch1, scratch2, gc_required,
   3227            tagging_mode == TAG_RESULT ? TAG_OBJECT : NO_ALLOCATION_FLAGS);
   3228 
   3229   Heap::RootListIndex map_index = mode == MUTABLE
   3230       ? Heap::kMutableHeapNumberMapRootIndex
   3231       : Heap::kHeapNumberMapRootIndex;
   3232   AssertIsRoot(heap_number_map, map_index);
   3233 
   3234   // Store heap number map in the allocated object.
   3235   if (tagging_mode == TAG_RESULT) {
   3236     str(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset));
   3237   } else {
   3238     str(heap_number_map, MemOperand(result, HeapObject::kMapOffset));
   3239   }
   3240 }
   3241 
   3242 
   3243 void MacroAssembler::AllocateHeapNumberWithValue(Register result,
   3244                                                  DwVfpRegister value,
   3245                                                  Register scratch1,
   3246                                                  Register scratch2,
   3247                                                  Register heap_number_map,
   3248                                                  Label* gc_required) {
   3249   AllocateHeapNumber(result, scratch1, scratch2, heap_number_map, gc_required);
   3250   sub(scratch1, result, Operand(kHeapObjectTag));
   3251   vstr(value, scratch1, HeapNumber::kValueOffset);
   3252 }
   3253 
   3254 
   3255 // Copies a fixed number of fields of heap objects from src to dst.
   3256 void MacroAssembler::CopyFields(Register dst,
   3257                                 Register src,
   3258                                 LowDwVfpRegister double_scratch,
   3259                                 int field_count) {
   3260   int double_count = field_count / (DwVfpRegister::kSizeInBytes / kPointerSize);
   3261   for (int i = 0; i < double_count; i++) {
   3262     vldr(double_scratch, FieldMemOperand(src, i * DwVfpRegister::kSizeInBytes));
   3263     vstr(double_scratch, FieldMemOperand(dst, i * DwVfpRegister::kSizeInBytes));
   3264   }
   3265 
   3266   STATIC_ASSERT(SwVfpRegister::kSizeInBytes == kPointerSize);
   3267   STATIC_ASSERT(2 * SwVfpRegister::kSizeInBytes == DwVfpRegister::kSizeInBytes);
   3268 
   3269   int remain = field_count % (DwVfpRegister::kSizeInBytes / kPointerSize);
   3270   if (remain != 0) {
   3271     vldr(double_scratch.low(),
   3272          FieldMemOperand(src, (field_count - 1) * kPointerSize));
   3273     vstr(double_scratch.low(),
   3274          FieldMemOperand(dst, (field_count - 1) * kPointerSize));
   3275   }
   3276 }
   3277 
   3278 
   3279 void MacroAssembler::CopyBytes(Register src,
   3280                                Register dst,
   3281                                Register length,
   3282                                Register scratch) {
   3283   Label align_loop_1, word_loop, byte_loop, byte_loop_1, done;
   3284 
   3285   // Align src before copying in word size chunks.
   3286   cmp(length, Operand(kPointerSize));
   3287   b(le, &byte_loop);
   3288 
   3289   bind(&align_loop_1);
   3290   tst(src, Operand(kPointerSize - 1));
   3291   b(eq, &word_loop);
   3292   ldrb(scratch, MemOperand(src, 1, PostIndex));
   3293   strb(scratch, MemOperand(dst, 1, PostIndex));
   3294   sub(length, length, Operand(1), SetCC);
   3295   b(&align_loop_1);
   3296   // Copy bytes in word size chunks.
   3297   bind(&word_loop);
   3298   if (emit_debug_code()) {
   3299     tst(src, Operand(kPointerSize - 1));
   3300     Assert(eq, kExpectingAlignmentForCopyBytes);
   3301   }
   3302   cmp(length, Operand(kPointerSize));
   3303   b(lt, &byte_loop);
   3304   ldr(scratch, MemOperand(src, kPointerSize, PostIndex));
   3305   if (CpuFeatures::IsSupported(UNALIGNED_ACCESSES)) {
   3306     str(scratch, MemOperand(dst, kPointerSize, PostIndex));
   3307   } else {
   3308     strb(scratch, MemOperand(dst, 1, PostIndex));
   3309     mov(scratch, Operand(scratch, LSR, 8));
   3310     strb(scratch, MemOperand(dst, 1, PostIndex));
   3311     mov(scratch, Operand(scratch, LSR, 8));
   3312     strb(scratch, MemOperand(dst, 1, PostIndex));
   3313     mov(scratch, Operand(scratch, LSR, 8));
   3314     strb(scratch, MemOperand(dst, 1, PostIndex));
   3315   }
   3316   sub(length, length, Operand(kPointerSize));
   3317   b(&word_loop);
   3318 
   3319   // Copy the last bytes if any left.
   3320   bind(&byte_loop);
   3321   cmp(length, Operand::Zero());
   3322   b(eq, &done);
   3323   bind(&byte_loop_1);
   3324   ldrb(scratch, MemOperand(src, 1, PostIndex));
   3325   strb(scratch, MemOperand(dst, 1, PostIndex));
   3326   sub(length, length, Operand(1), SetCC);
   3327   b(ne, &byte_loop_1);
   3328   bind(&done);
   3329 }
   3330 
   3331 
   3332 void MacroAssembler::InitializeFieldsWithFiller(Register start_offset,
   3333                                                 Register end_offset,
   3334                                                 Register filler) {
   3335   Label loop, entry;
   3336   b(&entry);
   3337   bind(&loop);
   3338   str(filler, MemOperand(start_offset, kPointerSize, PostIndex));
   3339   bind(&entry);
   3340   cmp(start_offset, end_offset);
   3341   b(lt, &loop);
   3342 }
   3343 
   3344 
   3345 void MacroAssembler::CheckFor32DRegs(Register scratch) {
   3346   mov(scratch, Operand(ExternalReference::cpu_features()));
   3347   ldr(scratch, MemOperand(scratch));
   3348   tst(scratch, Operand(1u << VFP32DREGS));
   3349 }
   3350 
   3351 
   3352 void MacroAssembler::SaveFPRegs(Register location, Register scratch) {
   3353   CheckFor32DRegs(scratch);
   3354   vstm(db_w, location, d16, d31, ne);
   3355   sub(location, location, Operand(16 * kDoubleSize), LeaveCC, eq);
   3356   vstm(db_w, location, d0, d15);
   3357 }
   3358 
   3359 
   3360 void MacroAssembler::RestoreFPRegs(Register location, Register scratch) {
   3361   CheckFor32DRegs(scratch);
   3362   vldm(ia_w, location, d0, d15);
   3363   vldm(ia_w, location, d16, d31, ne);
   3364   add(location, location, Operand(16 * kDoubleSize), LeaveCC, eq);
   3365 }
   3366 
   3367 
   3368 void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialOneByte(
   3369     Register first, Register second, Register scratch1, Register scratch2,
   3370     Label* failure) {
   3371   const int kFlatOneByteStringMask =
   3372       kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
   3373   const int kFlatOneByteStringTag =
   3374       kStringTag | kOneByteStringTag | kSeqStringTag;
   3375   and_(scratch1, first, Operand(kFlatOneByteStringMask));
   3376   and_(scratch2, second, Operand(kFlatOneByteStringMask));
   3377   cmp(scratch1, Operand(kFlatOneByteStringTag));
   3378   // Ignore second test if first test failed.
   3379   cmp(scratch2, Operand(kFlatOneByteStringTag), eq);
   3380   b(ne, failure);
   3381 }
   3382 
   3383 
   3384 void MacroAssembler::JumpIfInstanceTypeIsNotSequentialOneByte(Register type,
   3385                                                               Register scratch,
   3386                                                               Label* failure) {
   3387   const int kFlatOneByteStringMask =
   3388       kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
   3389   const int kFlatOneByteStringTag =
   3390       kStringTag | kOneByteStringTag | kSeqStringTag;
   3391   and_(scratch, type, Operand(kFlatOneByteStringMask));
   3392   cmp(scratch, Operand(kFlatOneByteStringTag));
   3393   b(ne, failure);
   3394 }
   3395 
   3396 static const int kRegisterPassedArguments = 4;
   3397 
   3398 
   3399 int MacroAssembler::CalculateStackPassedWords(int num_reg_arguments,
   3400                                               int num_double_arguments) {
   3401   int stack_passed_words = 0;
   3402   if (use_eabi_hardfloat()) {
   3403     // In the hard floating point calling convention, we can use
   3404     // all double registers to pass doubles.
   3405     if (num_double_arguments > DoubleRegister::NumRegisters()) {
   3406       stack_passed_words +=
   3407           2 * (num_double_arguments - DoubleRegister::NumRegisters());
   3408     }
   3409   } else {
   3410     // In the soft floating point calling convention, every double
   3411     // argument is passed using two registers.
   3412     num_reg_arguments += 2 * num_double_arguments;
   3413   }
   3414   // Up to four simple arguments are passed in registers r0..r3.
   3415   if (num_reg_arguments > kRegisterPassedArguments) {
   3416     stack_passed_words += num_reg_arguments - kRegisterPassedArguments;
   3417   }
   3418   return stack_passed_words;
   3419 }
   3420 
   3421 
   3422 void MacroAssembler::EmitSeqStringSetCharCheck(Register string,
   3423                                                Register index,
   3424                                                Register value,
   3425                                                uint32_t encoding_mask) {
   3426   Label is_object;
   3427   SmiTst(string);
   3428   Check(ne, kNonObject);
   3429 
   3430   ldr(ip, FieldMemOperand(string, HeapObject::kMapOffset));
   3431   ldrb(ip, FieldMemOperand(ip, Map::kInstanceTypeOffset));
   3432 
   3433   and_(ip, ip, Operand(kStringRepresentationMask | kStringEncodingMask));
   3434   cmp(ip, Operand(encoding_mask));
   3435   Check(eq, kUnexpectedStringType);
   3436 
   3437   // The index is assumed to be untagged coming in, tag it to compare with the
   3438   // string length without using a temp register, it is restored at the end of
   3439   // this function.
   3440   Label index_tag_ok, index_tag_bad;
   3441   TrySmiTag(index, index, &index_tag_bad);
   3442   b(&index_tag_ok);
   3443   bind(&index_tag_bad);
   3444   Abort(kIndexIsTooLarge);
   3445   bind(&index_tag_ok);
   3446 
   3447   ldr(ip, FieldMemOperand(string, String::kLengthOffset));
   3448   cmp(index, ip);
   3449   Check(lt, kIndexIsTooLarge);
   3450 
   3451   cmp(index, Operand(Smi::FromInt(0)));
   3452   Check(ge, kIndexIsNegative);
   3453 
   3454   SmiUntag(index, index);
   3455 }
   3456 
   3457 
   3458 void MacroAssembler::PrepareCallCFunction(int num_reg_arguments,
   3459                                           int num_double_arguments,
   3460                                           Register scratch) {
   3461   int frame_alignment = ActivationFrameAlignment();
   3462   int stack_passed_arguments = CalculateStackPassedWords(
   3463       num_reg_arguments, num_double_arguments);
   3464   if (frame_alignment > kPointerSize) {
   3465     // Make stack end at alignment and make room for num_arguments - 4 words
   3466     // and the original value of sp.
   3467     mov(scratch, sp);
   3468     sub(sp, sp, Operand((stack_passed_arguments + 1) * kPointerSize));
   3469     DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
   3470     and_(sp, sp, Operand(-frame_alignment));
   3471     str(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize));
   3472   } else {
   3473     sub(sp, sp, Operand(stack_passed_arguments * kPointerSize));
   3474   }
   3475 }
   3476 
   3477 
   3478 void MacroAssembler::PrepareCallCFunction(int num_reg_arguments,
   3479                                           Register scratch) {
   3480   PrepareCallCFunction(num_reg_arguments, 0, scratch);
   3481 }
   3482 
   3483 
   3484 void MacroAssembler::MovToFloatParameter(DwVfpRegister src) {
   3485   DCHECK(src.is(d0));
   3486   if (!use_eabi_hardfloat()) {
   3487     vmov(r0, r1, src);
   3488   }
   3489 }
   3490 
   3491 
   3492 // On ARM this is just a synonym to make the purpose clear.
   3493 void MacroAssembler::MovToFloatResult(DwVfpRegister src) {
   3494   MovToFloatParameter(src);
   3495 }
   3496 
   3497 
   3498 void MacroAssembler::MovToFloatParameters(DwVfpRegister src1,
   3499                                           DwVfpRegister src2) {
   3500   DCHECK(src1.is(d0));
   3501   DCHECK(src2.is(d1));
   3502   if (!use_eabi_hardfloat()) {
   3503     vmov(r0, r1, src1);
   3504     vmov(r2, r3, src2);
   3505   }
   3506 }
   3507 
   3508 
   3509 void MacroAssembler::CallCFunction(ExternalReference function,
   3510                                    int num_reg_arguments,
   3511                                    int num_double_arguments) {
   3512   mov(ip, Operand(function));
   3513   CallCFunctionHelper(ip, num_reg_arguments, num_double_arguments);
   3514 }
   3515 
   3516 
   3517 void MacroAssembler::CallCFunction(Register function,
   3518                                    int num_reg_arguments,
   3519                                    int num_double_arguments) {
   3520   CallCFunctionHelper(function, num_reg_arguments, num_double_arguments);
   3521 }
   3522 
   3523 
   3524 void MacroAssembler::CallCFunction(ExternalReference function,
   3525                                    int num_arguments) {
   3526   CallCFunction(function, num_arguments, 0);
   3527 }
   3528 
   3529 
   3530 void MacroAssembler::CallCFunction(Register function,
   3531                                    int num_arguments) {
   3532   CallCFunction(function, num_arguments, 0);
   3533 }
   3534 
   3535 
   3536 void MacroAssembler::CallCFunctionHelper(Register function,
   3537                                          int num_reg_arguments,
   3538                                          int num_double_arguments) {
   3539   DCHECK(has_frame());
   3540   // Make sure that the stack is aligned before calling a C function unless
   3541   // running in the simulator. The simulator has its own alignment check which
   3542   // provides more information.
   3543 #if V8_HOST_ARCH_ARM
   3544   if (emit_debug_code()) {
   3545     int frame_alignment = base::OS::ActivationFrameAlignment();
   3546     int frame_alignment_mask = frame_alignment - 1;
   3547     if (frame_alignment > kPointerSize) {
   3548       DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
   3549       Label alignment_as_expected;
   3550       tst(sp, Operand(frame_alignment_mask));
   3551       b(eq, &alignment_as_expected);
   3552       // Don't use Check here, as it will call Runtime_Abort possibly
   3553       // re-entering here.
   3554       stop("Unexpected alignment");
   3555       bind(&alignment_as_expected);
   3556     }
   3557   }
   3558 #endif
   3559 
   3560   // Just call directly. The function called cannot cause a GC, or
   3561   // allow preemption, so the return address in the link register
   3562   // stays correct.
   3563   Call(function);
   3564   int stack_passed_arguments = CalculateStackPassedWords(
   3565       num_reg_arguments, num_double_arguments);
   3566   if (ActivationFrameAlignment() > kPointerSize) {
   3567     ldr(sp, MemOperand(sp, stack_passed_arguments * kPointerSize));
   3568   } else {
   3569     add(sp, sp, Operand(stack_passed_arguments * sizeof(kPointerSize)));
   3570   }
   3571 }
   3572 
   3573 
   3574 void MacroAssembler::GetRelocatedValueLocation(Register ldr_location,
   3575                                                Register result,
   3576                                                Register scratch) {
   3577   Label small_constant_pool_load, load_result;
   3578   ldr(result, MemOperand(ldr_location));
   3579 
   3580   if (FLAG_enable_ool_constant_pool) {
   3581     // Check if this is an extended constant pool load.
   3582     and_(scratch, result, Operand(GetConsantPoolLoadMask()));
   3583     teq(scratch, Operand(GetConsantPoolLoadPattern()));
   3584     b(eq, &small_constant_pool_load);
   3585     if (emit_debug_code()) {
   3586       // Check that the instruction sequence is:
   3587       //   movw reg, #offset_low
   3588       //   movt reg, #offset_high
   3589       //   ldr reg, [pp, reg]
   3590       Instr patterns[] = {GetMovWPattern(), GetMovTPattern(),
   3591                           GetLdrPpRegOffsetPattern()};
   3592       for (int i = 0; i < 3; i++) {
   3593         ldr(result, MemOperand(ldr_location, i * kInstrSize));
   3594         and_(result, result, Operand(patterns[i]));
   3595         cmp(result, Operand(patterns[i]));
   3596         Check(eq, kTheInstructionToPatchShouldBeALoadFromConstantPool);
   3597       }
   3598       // Result was clobbered. Restore it.
   3599       ldr(result, MemOperand(ldr_location));
   3600     }
   3601 
   3602     // Get the offset into the constant pool.  First extract movw immediate into
   3603     // result.
   3604     and_(scratch, result, Operand(0xfff));
   3605     mov(ip, Operand(result, LSR, 4));
   3606     and_(ip, ip, Operand(0xf000));
   3607     orr(result, scratch, Operand(ip));
   3608     // Then extract movt immediate and or into result.
   3609     ldr(scratch, MemOperand(ldr_location, kInstrSize));
   3610     and_(ip, scratch, Operand(0xf0000));
   3611     orr(result, result, Operand(ip, LSL, 12));
   3612     and_(scratch, scratch, Operand(0xfff));
   3613     orr(result, result, Operand(scratch, LSL, 16));
   3614 
   3615     b(&load_result);
   3616   }
   3617 
   3618   bind(&small_constant_pool_load);
   3619   if (emit_debug_code()) {
   3620     // Check that the instruction is a ldr reg, [<pc or pp> + offset] .
   3621     and_(result, result, Operand(GetConsantPoolLoadPattern()));
   3622     cmp(result, Operand(GetConsantPoolLoadPattern()));
   3623     Check(eq, kTheInstructionToPatchShouldBeALoadFromConstantPool);
   3624     // Result was clobbered. Restore it.
   3625     ldr(result, MemOperand(ldr_location));
   3626   }
   3627 
   3628   // Get the offset into the constant pool.
   3629   const uint32_t kLdrOffsetMask = (1 << 12) - 1;
   3630   and_(result, result, Operand(kLdrOffsetMask));
   3631 
   3632   bind(&load_result);
   3633   // Get the address of the constant.
   3634   if (FLAG_enable_ool_constant_pool) {
   3635     add(result, pp, Operand(result));
   3636   } else {
   3637     add(result, ldr_location, Operand(result));
   3638     add(result, result, Operand(Instruction::kPCReadOffset));
   3639   }
   3640 }
   3641 
   3642 
   3643 void MacroAssembler::CheckPageFlag(
   3644     Register object,
   3645     Register scratch,
   3646     int mask,
   3647     Condition cc,
   3648     Label* condition_met) {
   3649   Bfc(scratch, object, 0, kPageSizeBits);
   3650   ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
   3651   tst(scratch, Operand(mask));
   3652   b(cc, condition_met);
   3653 }
   3654 
   3655 
   3656 void MacroAssembler::CheckMapDeprecated(Handle<Map> map,
   3657                                         Register scratch,
   3658                                         Label* if_deprecated) {
   3659   if (map->CanBeDeprecated()) {
   3660     mov(scratch, Operand(map));
   3661     ldr(scratch, FieldMemOperand(scratch, Map::kBitField3Offset));
   3662     tst(scratch, Operand(Map::Deprecated::kMask));
   3663     b(ne, if_deprecated);
   3664   }
   3665 }
   3666 
   3667 
   3668 void MacroAssembler::JumpIfBlack(Register object,
   3669                                  Register scratch0,
   3670                                  Register scratch1,
   3671                                  Label* on_black) {
   3672   HasColor(object, scratch0, scratch1, on_black, 1, 0);  // kBlackBitPattern.
   3673   DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
   3674 }
   3675 
   3676 
   3677 void MacroAssembler::HasColor(Register object,
   3678                               Register bitmap_scratch,
   3679                               Register mask_scratch,
   3680                               Label* has_color,
   3681                               int first_bit,
   3682                               int second_bit) {
   3683   DCHECK(!AreAliased(object, bitmap_scratch, mask_scratch, no_reg));
   3684 
   3685   GetMarkBits(object, bitmap_scratch, mask_scratch);
   3686 
   3687   Label other_color, word_boundary;
   3688   ldr(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
   3689   tst(ip, Operand(mask_scratch));
   3690   b(first_bit == 1 ? eq : ne, &other_color);
   3691   // Shift left 1 by adding.
   3692   add(mask_scratch, mask_scratch, Operand(mask_scratch), SetCC);
   3693   b(eq, &word_boundary);
   3694   tst(ip, Operand(mask_scratch));
   3695   b(second_bit == 1 ? ne : eq, has_color);
   3696   jmp(&other_color);
   3697 
   3698   bind(&word_boundary);
   3699   ldr(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize + kPointerSize));
   3700   tst(ip, Operand(1));
   3701   b(second_bit == 1 ? ne : eq, has_color);
   3702   bind(&other_color);
   3703 }
   3704 
   3705 
   3706 // Detect some, but not all, common pointer-free objects.  This is used by the
   3707 // incremental write barrier which doesn't care about oddballs (they are always
   3708 // marked black immediately so this code is not hit).
   3709 void MacroAssembler::JumpIfDataObject(Register value,
   3710                                       Register scratch,
   3711                                       Label* not_data_object) {
   3712   Label is_data_object;
   3713   ldr(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
   3714   CompareRoot(scratch, Heap::kHeapNumberMapRootIndex);
   3715   b(eq, &is_data_object);
   3716   DCHECK(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
   3717   DCHECK(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
   3718   // If it's a string and it's not a cons string then it's an object containing
   3719   // no GC pointers.
   3720   ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
   3721   tst(scratch, Operand(kIsIndirectStringMask | kIsNotStringMask));
   3722   b(ne, not_data_object);
   3723   bind(&is_data_object);
   3724 }
   3725 
   3726 
   3727 void MacroAssembler::GetMarkBits(Register addr_reg,
   3728                                  Register bitmap_reg,
   3729                                  Register mask_reg) {
   3730   DCHECK(!AreAliased(addr_reg, bitmap_reg, mask_reg, no_reg));
   3731   and_(bitmap_reg, addr_reg, Operand(~Page::kPageAlignmentMask));
   3732   Ubfx(mask_reg, addr_reg, kPointerSizeLog2, Bitmap::kBitsPerCellLog2);
   3733   const int kLowBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2;
   3734   Ubfx(ip, addr_reg, kLowBits, kPageSizeBits - kLowBits);
   3735   add(bitmap_reg, bitmap_reg, Operand(ip, LSL, kPointerSizeLog2));
   3736   mov(ip, Operand(1));
   3737   mov(mask_reg, Operand(ip, LSL, mask_reg));
   3738 }
   3739 
   3740 
   3741 void MacroAssembler::EnsureNotWhite(
   3742     Register value,
   3743     Register bitmap_scratch,
   3744     Register mask_scratch,
   3745     Register load_scratch,
   3746     Label* value_is_white_and_not_data) {
   3747   DCHECK(!AreAliased(value, bitmap_scratch, mask_scratch, ip));
   3748   GetMarkBits(value, bitmap_scratch, mask_scratch);
   3749 
   3750   // If the value is black or grey we don't need to do anything.
   3751   DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
   3752   DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
   3753   DCHECK(strcmp(Marking::kGreyBitPattern, "11") == 0);
   3754   DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
   3755 
   3756   Label done;
   3757 
   3758   // Since both black and grey have a 1 in the first position and white does
   3759   // not have a 1 there we only need to check one bit.
   3760   ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
   3761   tst(mask_scratch, load_scratch);
   3762   b(ne, &done);
   3763 
   3764   if (emit_debug_code()) {
   3765     // Check for impossible bit pattern.
   3766     Label ok;
   3767     // LSL may overflow, making the check conservative.
   3768     tst(load_scratch, Operand(mask_scratch, LSL, 1));
   3769     b(eq, &ok);
   3770     stop("Impossible marking bit pattern");
   3771     bind(&ok);
   3772   }
   3773 
   3774   // Value is white.  We check whether it is data that doesn't need scanning.
   3775   // Currently only checks for HeapNumber and non-cons strings.
   3776   Register map = load_scratch;  // Holds map while checking type.
   3777   Register length = load_scratch;  // Holds length of object after testing type.
   3778   Label is_data_object;
   3779 
   3780   // Check for heap-number
   3781   ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
   3782   CompareRoot(map, Heap::kHeapNumberMapRootIndex);
   3783   mov(length, Operand(HeapNumber::kSize), LeaveCC, eq);
   3784   b(eq, &is_data_object);
   3785 
   3786   // Check for strings.
   3787   DCHECK(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
   3788   DCHECK(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
   3789   // If it's a string and it's not a cons string then it's an object containing
   3790   // no GC pointers.
   3791   Register instance_type = load_scratch;
   3792   ldrb(instance_type, FieldMemOperand(map, Map::kInstanceTypeOffset));
   3793   tst(instance_type, Operand(kIsIndirectStringMask | kIsNotStringMask));
   3794   b(ne, value_is_white_and_not_data);
   3795   // It's a non-indirect (non-cons and non-slice) string.
   3796   // If it's external, the length is just ExternalString::kSize.
   3797   // Otherwise it's String::kHeaderSize + string->length() * (1 or 2).
   3798   // External strings are the only ones with the kExternalStringTag bit
   3799   // set.
   3800   DCHECK_EQ(0, kSeqStringTag & kExternalStringTag);
   3801   DCHECK_EQ(0, kConsStringTag & kExternalStringTag);
   3802   tst(instance_type, Operand(kExternalStringTag));
   3803   mov(length, Operand(ExternalString::kSize), LeaveCC, ne);
   3804   b(ne, &is_data_object);
   3805 
   3806   // Sequential string, either Latin1 or UC16.
   3807   // For Latin1 (char-size of 1) we shift the smi tag away to get the length.
   3808   // For UC16 (char-size of 2) we just leave the smi tag in place, thereby
   3809   // getting the length multiplied by 2.
   3810   DCHECK(kOneByteStringTag == 4 && kStringEncodingMask == 4);
   3811   DCHECK(kSmiTag == 0 && kSmiTagSize == 1);
   3812   ldr(ip, FieldMemOperand(value, String::kLengthOffset));
   3813   tst(instance_type, Operand(kStringEncodingMask));
   3814   mov(ip, Operand(ip, LSR, 1), LeaveCC, ne);
   3815   add(length, ip, Operand(SeqString::kHeaderSize + kObjectAlignmentMask));
   3816   and_(length, length, Operand(~kObjectAlignmentMask));
   3817 
   3818   bind(&is_data_object);
   3819   // Value is a data object, and it is white.  Mark it black.  Since we know
   3820   // that the object is white we can make it black by flipping one bit.
   3821   ldr(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
   3822   orr(ip, ip, Operand(mask_scratch));
   3823   str(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
   3824 
   3825   and_(bitmap_scratch, bitmap_scratch, Operand(~Page::kPageAlignmentMask));
   3826   ldr(ip, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
   3827   add(ip, ip, Operand(length));
   3828   str(ip, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
   3829 
   3830   bind(&done);
   3831 }
   3832 
   3833 
   3834 void MacroAssembler::ClampUint8(Register output_reg, Register input_reg) {
   3835   Usat(output_reg, 8, Operand(input_reg));
   3836 }
   3837 
   3838 
   3839 void MacroAssembler::ClampDoubleToUint8(Register result_reg,
   3840                                         DwVfpRegister input_reg,
   3841                                         LowDwVfpRegister double_scratch) {
   3842   Label done;
   3843 
   3844   // Handle inputs >= 255 (including +infinity).
   3845   Vmov(double_scratch, 255.0, result_reg);
   3846   mov(result_reg, Operand(255));
   3847   VFPCompareAndSetFlags(input_reg, double_scratch);
   3848   b(ge, &done);
   3849 
   3850   // For inputs < 255 (including negative) vcvt_u32_f64 with round-to-nearest
   3851   // rounding mode will provide the correct result.
   3852   vcvt_u32_f64(double_scratch.low(), input_reg, kFPSCRRounding);
   3853   vmov(result_reg, double_scratch.low());
   3854 
   3855   bind(&done);
   3856 }
   3857 
   3858 
   3859 void MacroAssembler::LoadInstanceDescriptors(Register map,
   3860                                              Register descriptors) {
   3861   ldr(descriptors, FieldMemOperand(map, Map::kDescriptorsOffset));
   3862 }
   3863 
   3864 
   3865 void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) {
   3866   ldr(dst, FieldMemOperand(map, Map::kBitField3Offset));
   3867   DecodeField<Map::NumberOfOwnDescriptorsBits>(dst);
   3868 }
   3869 
   3870 
   3871 void MacroAssembler::EnumLength(Register dst, Register map) {
   3872   STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
   3873   ldr(dst, FieldMemOperand(map, Map::kBitField3Offset));
   3874   and_(dst, dst, Operand(Map::EnumLengthBits::kMask));
   3875   SmiTag(dst);
   3876 }
   3877 
   3878 
   3879 void MacroAssembler::CheckEnumCache(Register null_value, Label* call_runtime) {
   3880   Register  empty_fixed_array_value = r6;
   3881   LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex);
   3882   Label next, start;
   3883   mov(r2, r0);
   3884 
   3885   // Check if the enum length field is properly initialized, indicating that
   3886   // there is an enum cache.
   3887   ldr(r1, FieldMemOperand(r2, HeapObject::kMapOffset));
   3888 
   3889   EnumLength(r3, r1);
   3890   cmp(r3, Operand(Smi::FromInt(kInvalidEnumCacheSentinel)));
   3891   b(eq, call_runtime);
   3892 
   3893   jmp(&start);
   3894 
   3895   bind(&next);
   3896   ldr(r1, FieldMemOperand(r2, HeapObject::kMapOffset));
   3897 
   3898   // For all objects but the receiver, check that the cache is empty.
   3899   EnumLength(r3, r1);
   3900   cmp(r3, Operand(Smi::FromInt(0)));
   3901   b(ne, call_runtime);
   3902 
   3903   bind(&start);
   3904 
   3905   // Check that there are no elements. Register r2 contains the current JS
   3906   // object we've reached through the prototype chain.
   3907   Label no_elements;
   3908   ldr(r2, FieldMemOperand(r2, JSObject::kElementsOffset));
   3909   cmp(r2, empty_fixed_array_value);
   3910   b(eq, &no_elements);
   3911 
   3912   // Second chance, the object may be using the empty slow element dictionary.
   3913   CompareRoot(r2, Heap::kEmptySlowElementDictionaryRootIndex);
   3914   b(ne, call_runtime);
   3915 
   3916   bind(&no_elements);
   3917   ldr(r2, FieldMemOperand(r1, Map::kPrototypeOffset));
   3918   cmp(r2, null_value);
   3919   b(ne, &next);
   3920 }
   3921 
   3922 
   3923 void MacroAssembler::TestJSArrayForAllocationMemento(
   3924     Register receiver_reg,
   3925     Register scratch_reg,
   3926     Label* no_memento_found) {
   3927   ExternalReference new_space_start =
   3928       ExternalReference::new_space_start(isolate());
   3929   ExternalReference new_space_allocation_top =
   3930       ExternalReference::new_space_allocation_top_address(isolate());
   3931   add(scratch_reg, receiver_reg,
   3932       Operand(JSArray::kSize + AllocationMemento::kSize - kHeapObjectTag));
   3933   cmp(scratch_reg, Operand(new_space_start));
   3934   b(lt, no_memento_found);
   3935   mov(ip, Operand(new_space_allocation_top));
   3936   ldr(ip, MemOperand(ip));
   3937   cmp(scratch_reg, ip);
   3938   b(gt, no_memento_found);
   3939   ldr(scratch_reg, MemOperand(scratch_reg, -AllocationMemento::kSize));
   3940   cmp(scratch_reg,
   3941       Operand(isolate()->factory()->allocation_memento_map()));
   3942 }
   3943 
   3944 
   3945 Register GetRegisterThatIsNotOneOf(Register reg1,
   3946                                    Register reg2,
   3947                                    Register reg3,
   3948                                    Register reg4,
   3949                                    Register reg5,
   3950                                    Register reg6) {
   3951   RegList regs = 0;
   3952   if (reg1.is_valid()) regs |= reg1.bit();
   3953   if (reg2.is_valid()) regs |= reg2.bit();
   3954   if (reg3.is_valid()) regs |= reg3.bit();
   3955   if (reg4.is_valid()) regs |= reg4.bit();
   3956   if (reg5.is_valid()) regs |= reg5.bit();
   3957   if (reg6.is_valid()) regs |= reg6.bit();
   3958 
   3959   for (int i = 0; i < Register::NumAllocatableRegisters(); i++) {
   3960     Register candidate = Register::FromAllocationIndex(i);
   3961     if (regs & candidate.bit()) continue;
   3962     return candidate;
   3963   }
   3964   UNREACHABLE();
   3965   return no_reg;
   3966 }
   3967 
   3968 
   3969 void MacroAssembler::JumpIfDictionaryInPrototypeChain(
   3970     Register object,
   3971     Register scratch0,
   3972     Register scratch1,
   3973     Label* found) {
   3974   DCHECK(!scratch1.is(scratch0));
   3975   Factory* factory = isolate()->factory();
   3976   Register current = scratch0;
   3977   Label loop_again;
   3978 
   3979   // scratch contained elements pointer.
   3980   mov(current, object);
   3981 
   3982   // Loop based on the map going up the prototype chain.
   3983   bind(&loop_again);
   3984   ldr(current, FieldMemOperand(current, HeapObject::kMapOffset));
   3985   ldr(scratch1, FieldMemOperand(current, Map::kBitField2Offset));
   3986   DecodeField<Map::ElementsKindBits>(scratch1);
   3987   cmp(scratch1, Operand(DICTIONARY_ELEMENTS));
   3988   b(eq, found);
   3989   ldr(current, FieldMemOperand(current, Map::kPrototypeOffset));
   3990   cmp(current, Operand(factory->null_value()));
   3991   b(ne, &loop_again);
   3992 }
   3993 
   3994 
   3995 #ifdef DEBUG
   3996 bool AreAliased(Register reg1,
   3997                 Register reg2,
   3998                 Register reg3,
   3999                 Register reg4,
   4000                 Register reg5,
   4001                 Register reg6,
   4002                 Register reg7,
   4003                 Register reg8) {
   4004   int n_of_valid_regs = reg1.is_valid() + reg2.is_valid() +
   4005       reg3.is_valid() + reg4.is_valid() + reg5.is_valid() + reg6.is_valid() +
   4006       reg7.is_valid() + reg8.is_valid();
   4007 
   4008   RegList regs = 0;
   4009   if (reg1.is_valid()) regs |= reg1.bit();
   4010   if (reg2.is_valid()) regs |= reg2.bit();
   4011   if (reg3.is_valid()) regs |= reg3.bit();
   4012   if (reg4.is_valid()) regs |= reg4.bit();
   4013   if (reg5.is_valid()) regs |= reg5.bit();
   4014   if (reg6.is_valid()) regs |= reg6.bit();
   4015   if (reg7.is_valid()) regs |= reg7.bit();
   4016   if (reg8.is_valid()) regs |= reg8.bit();
   4017   int n_of_non_aliasing_regs = NumRegs(regs);
   4018 
   4019   return n_of_valid_regs != n_of_non_aliasing_regs;
   4020 }
   4021 #endif
   4022 
   4023 
   4024 CodePatcher::CodePatcher(byte* address,
   4025                          int instructions,
   4026                          FlushICache flush_cache)
   4027     : address_(address),
   4028       size_(instructions * Assembler::kInstrSize),
   4029       masm_(NULL, address, size_ + Assembler::kGap),
   4030       flush_cache_(flush_cache) {
   4031   // Create a new macro assembler pointing to the address of the code to patch.
   4032   // The size is adjusted with kGap on order for the assembler to generate size
   4033   // bytes of instructions without failing with buffer size constraints.
   4034   DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
   4035 }
   4036 
   4037 
   4038 CodePatcher::~CodePatcher() {
   4039   // Indicate that code has changed.
   4040   if (flush_cache_ == FLUSH) {
   4041     CpuFeatures::FlushICache(address_, size_);
   4042   }
   4043 
   4044   // Check that the code was patched as expected.
   4045   DCHECK(masm_.pc_ == address_ + size_);
   4046   DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
   4047 }
   4048 
   4049 
   4050 void CodePatcher::Emit(Instr instr) {
   4051   masm()->emit(instr);
   4052 }
   4053 
   4054 
   4055 void CodePatcher::Emit(Address addr) {
   4056   masm()->emit(reinterpret_cast<Instr>(addr));
   4057 }
   4058 
   4059 
   4060 void CodePatcher::EmitCondition(Condition cond) {
   4061   Instr instr = Assembler::instr_at(masm_.pc_);
   4062   instr = (instr & ~kCondMask) | cond;
   4063   masm_.emit(instr);
   4064 }
   4065 
   4066 
   4067 void MacroAssembler::TruncatingDiv(Register result,
   4068                                    Register dividend,
   4069                                    int32_t divisor) {
   4070   DCHECK(!dividend.is(result));
   4071   DCHECK(!dividend.is(ip));
   4072   DCHECK(!result.is(ip));
   4073   base::MagicNumbersForDivision<uint32_t> mag =
   4074       base::SignedDivisionByConstant(static_cast<uint32_t>(divisor));
   4075   mov(ip, Operand(mag.multiplier));
   4076   smull(ip, result, dividend, ip);
   4077   bool neg = (mag.multiplier & (static_cast<uint32_t>(1) << 31)) != 0;
   4078   if (divisor > 0 && neg) {
   4079     add(result, result, Operand(dividend));
   4080   }
   4081   if (divisor < 0 && !neg && mag.multiplier > 0) {
   4082     sub(result, result, Operand(dividend));
   4083   }
   4084   if (mag.shift > 0) mov(result, Operand(result, ASR, mag.shift));
   4085   add(result, result, Operand(dividend, LSR, 31));
   4086 }
   4087 
   4088 
   4089 } }  // namespace v8::internal
   4090 
   4091 #endif  // V8_TARGET_ARCH_ARM
   4092