Home | History | Annotate | Download | only in x87
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/v8.h"
      6 
      7 #if V8_TARGET_ARCH_X87
      8 
      9 #include "src/base/bits.h"
     10 #include "src/code-factory.h"
     11 #include "src/code-stubs.h"
     12 #include "src/codegen.h"
     13 #include "src/deoptimizer.h"
     14 #include "src/hydrogen-osr.h"
     15 #include "src/ic/ic.h"
     16 #include "src/ic/stub-cache.h"
     17 #include "src/x87/lithium-codegen-x87.h"
     18 
     19 namespace v8 {
     20 namespace internal {
     21 
     22 
     23 // When invoking builtins, we need to record the safepoint in the middle of
     24 // the invoke instruction sequence generated by the macro assembler.
     25 class SafepointGenerator FINAL : public CallWrapper {
     26  public:
     27   SafepointGenerator(LCodeGen* codegen,
     28                      LPointerMap* pointers,
     29                      Safepoint::DeoptMode mode)
     30       : codegen_(codegen),
     31         pointers_(pointers),
     32         deopt_mode_(mode) {}
     33   virtual ~SafepointGenerator() {}
     34 
     35   virtual void BeforeCall(int call_size) const OVERRIDE {}
     36 
     37   virtual void AfterCall() const OVERRIDE {
     38     codegen_->RecordSafepoint(pointers_, deopt_mode_);
     39   }
     40 
     41  private:
     42   LCodeGen* codegen_;
     43   LPointerMap* pointers_;
     44   Safepoint::DeoptMode deopt_mode_;
     45 };
     46 
     47 
     48 #define __ masm()->
     49 
     50 bool LCodeGen::GenerateCode() {
     51   LPhase phase("Z_Code generation", chunk());
     52   DCHECK(is_unused());
     53   status_ = GENERATING;
     54 
     55   // Open a frame scope to indicate that there is a frame on the stack.  The
     56   // MANUAL indicates that the scope shouldn't actually generate code to set up
     57   // the frame (that is done in GeneratePrologue).
     58   FrameScope frame_scope(masm_, StackFrame::MANUAL);
     59 
     60   support_aligned_spilled_doubles_ = info()->IsOptimizing();
     61 
     62   dynamic_frame_alignment_ = info()->IsOptimizing() &&
     63       ((chunk()->num_double_slots() > 2 &&
     64         !chunk()->graph()->is_recursive()) ||
     65        !info()->osr_ast_id().IsNone());
     66 
     67   return GeneratePrologue() &&
     68       GenerateBody() &&
     69       GenerateDeferredCode() &&
     70       GenerateJumpTable() &&
     71       GenerateSafepointTable();
     72 }
     73 
     74 
     75 void LCodeGen::FinishCode(Handle<Code> code) {
     76   DCHECK(is_done());
     77   code->set_stack_slots(GetStackSlotCount());
     78   code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
     79   if (code->is_optimized_code()) RegisterWeakObjectsInOptimizedCode(code);
     80   PopulateDeoptimizationData(code);
     81   if (!info()->IsStub()) {
     82     Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(code);
     83   }
     84 }
     85 
     86 
     87 #ifdef _MSC_VER
     88 void LCodeGen::MakeSureStackPagesMapped(int offset) {
     89   const int kPageSize = 4 * KB;
     90   for (offset -= kPageSize; offset > 0; offset -= kPageSize) {
     91     __ mov(Operand(esp, offset), eax);
     92   }
     93 }
     94 #endif
     95 
     96 
     97 bool LCodeGen::GeneratePrologue() {
     98   DCHECK(is_generating());
     99 
    100   if (info()->IsOptimizing()) {
    101     ProfileEntryHookStub::MaybeCallEntryHook(masm_);
    102 
    103 #ifdef DEBUG
    104     if (strlen(FLAG_stop_at) > 0 &&
    105         info_->function()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
    106       __ int3();
    107     }
    108 #endif
    109 
    110     // Sloppy mode functions and builtins need to replace the receiver with the
    111     // global proxy when called as functions (without an explicit receiver
    112     // object).
    113     if (info_->this_has_uses() &&
    114         info_->strict_mode() == SLOPPY &&
    115         !info_->is_native()) {
    116       Label ok;
    117       // +1 for return address.
    118       int receiver_offset = (scope()->num_parameters() + 1) * kPointerSize;
    119       __ mov(ecx, Operand(esp, receiver_offset));
    120 
    121       __ cmp(ecx, isolate()->factory()->undefined_value());
    122       __ j(not_equal, &ok, Label::kNear);
    123 
    124       __ mov(ecx, GlobalObjectOperand());
    125       __ mov(ecx, FieldOperand(ecx, GlobalObject::kGlobalProxyOffset));
    126 
    127       __ mov(Operand(esp, receiver_offset), ecx);
    128 
    129       __ bind(&ok);
    130     }
    131 
    132     if (support_aligned_spilled_doubles_ && dynamic_frame_alignment_) {
    133       // Move state of dynamic frame alignment into edx.
    134       __ Move(edx, Immediate(kNoAlignmentPadding));
    135 
    136       Label do_not_pad, align_loop;
    137       STATIC_ASSERT(kDoubleSize == 2 * kPointerSize);
    138       // Align esp + 4 to a multiple of 2 * kPointerSize.
    139       __ test(esp, Immediate(kPointerSize));
    140       __ j(not_zero, &do_not_pad, Label::kNear);
    141       __ push(Immediate(0));
    142       __ mov(ebx, esp);
    143       __ mov(edx, Immediate(kAlignmentPaddingPushed));
    144       // Copy arguments, receiver, and return address.
    145       __ mov(ecx, Immediate(scope()->num_parameters() + 2));
    146 
    147       __ bind(&align_loop);
    148       __ mov(eax, Operand(ebx, 1 * kPointerSize));
    149       __ mov(Operand(ebx, 0), eax);
    150       __ add(Operand(ebx), Immediate(kPointerSize));
    151       __ dec(ecx);
    152       __ j(not_zero, &align_loop, Label::kNear);
    153       __ mov(Operand(ebx, 0), Immediate(kAlignmentZapValue));
    154       __ bind(&do_not_pad);
    155     }
    156   }
    157 
    158   info()->set_prologue_offset(masm_->pc_offset());
    159   if (NeedsEagerFrame()) {
    160     DCHECK(!frame_is_built_);
    161     frame_is_built_ = true;
    162     if (info()->IsStub()) {
    163       __ StubPrologue();
    164     } else {
    165       __ Prologue(info()->IsCodePreAgingActive());
    166     }
    167     info()->AddNoFrameRange(0, masm_->pc_offset());
    168   }
    169 
    170   if (info()->IsOptimizing() &&
    171       dynamic_frame_alignment_ &&
    172       FLAG_debug_code) {
    173     __ test(esp, Immediate(kPointerSize));
    174     __ Assert(zero, kFrameIsExpectedToBeAligned);
    175   }
    176 
    177   // Reserve space for the stack slots needed by the code.
    178   int slots = GetStackSlotCount();
    179   DCHECK(slots != 0 || !info()->IsOptimizing());
    180   if (slots > 0) {
    181     if (slots == 1) {
    182       if (dynamic_frame_alignment_) {
    183         __ push(edx);
    184       } else {
    185         __ push(Immediate(kNoAlignmentPadding));
    186       }
    187     } else {
    188       if (FLAG_debug_code) {
    189         __ sub(Operand(esp), Immediate(slots * kPointerSize));
    190 #ifdef _MSC_VER
    191         MakeSureStackPagesMapped(slots * kPointerSize);
    192 #endif
    193         __ push(eax);
    194         __ mov(Operand(eax), Immediate(slots));
    195         Label loop;
    196         __ bind(&loop);
    197         __ mov(MemOperand(esp, eax, times_4, 0),
    198                Immediate(kSlotsZapValue));
    199         __ dec(eax);
    200         __ j(not_zero, &loop);
    201         __ pop(eax);
    202       } else {
    203         __ sub(Operand(esp), Immediate(slots * kPointerSize));
    204 #ifdef _MSC_VER
    205         MakeSureStackPagesMapped(slots * kPointerSize);
    206 #endif
    207       }
    208 
    209       if (support_aligned_spilled_doubles_) {
    210         Comment(";;; Store dynamic frame alignment tag for spilled doubles");
    211         // Store dynamic frame alignment state in the first local.
    212         int offset = JavaScriptFrameConstants::kDynamicAlignmentStateOffset;
    213         if (dynamic_frame_alignment_) {
    214           __ mov(Operand(ebp, offset), edx);
    215         } else {
    216           __ mov(Operand(ebp, offset), Immediate(kNoAlignmentPadding));
    217         }
    218       }
    219     }
    220   }
    221 
    222   // Possibly allocate a local context.
    223   int heap_slots = info_->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
    224   if (heap_slots > 0) {
    225     Comment(";;; Allocate local context");
    226     bool need_write_barrier = true;
    227     // Argument to NewContext is the function, which is still in edi.
    228     if (heap_slots <= FastNewContextStub::kMaximumSlots) {
    229       FastNewContextStub stub(isolate(), heap_slots);
    230       __ CallStub(&stub);
    231       // Result of FastNewContextStub is always in new space.
    232       need_write_barrier = false;
    233     } else {
    234       __ push(edi);
    235       __ CallRuntime(Runtime::kNewFunctionContext, 1);
    236     }
    237     RecordSafepoint(Safepoint::kNoLazyDeopt);
    238     // Context is returned in eax.  It replaces the context passed to us.
    239     // It's saved in the stack and kept live in esi.
    240     __ mov(esi, eax);
    241     __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), eax);
    242 
    243     // Copy parameters into context if necessary.
    244     int num_parameters = scope()->num_parameters();
    245     for (int i = 0; i < num_parameters; i++) {
    246       Variable* var = scope()->parameter(i);
    247       if (var->IsContextSlot()) {
    248         int parameter_offset = StandardFrameConstants::kCallerSPOffset +
    249             (num_parameters - 1 - i) * kPointerSize;
    250         // Load parameter from stack.
    251         __ mov(eax, Operand(ebp, parameter_offset));
    252         // Store it in the context.
    253         int context_offset = Context::SlotOffset(var->index());
    254         __ mov(Operand(esi, context_offset), eax);
    255         // Update the write barrier. This clobbers eax and ebx.
    256         if (need_write_barrier) {
    257           __ RecordWriteContextSlot(esi, context_offset, eax, ebx,
    258                                     kDontSaveFPRegs);
    259         } else if (FLAG_debug_code) {
    260           Label done;
    261           __ JumpIfInNewSpace(esi, eax, &done, Label::kNear);
    262           __ Abort(kExpectedNewSpaceObject);
    263           __ bind(&done);
    264         }
    265       }
    266     }
    267     Comment(";;; End allocate local context");
    268   }
    269 
    270   // Initailize FPU state.
    271   __ fninit();
    272   // Trace the call.
    273   if (FLAG_trace && info()->IsOptimizing()) {
    274     // We have not executed any compiled code yet, so esi still holds the
    275     // incoming context.
    276     __ CallRuntime(Runtime::kTraceEnter, 0);
    277   }
    278   return !is_aborted();
    279 }
    280 
    281 
    282 void LCodeGen::GenerateOsrPrologue() {
    283   // Generate the OSR entry prologue at the first unknown OSR value, or if there
    284   // are none, at the OSR entrypoint instruction.
    285   if (osr_pc_offset_ >= 0) return;
    286 
    287   osr_pc_offset_ = masm()->pc_offset();
    288 
    289     // Move state of dynamic frame alignment into edx.
    290   __ Move(edx, Immediate(kNoAlignmentPadding));
    291 
    292   if (support_aligned_spilled_doubles_ && dynamic_frame_alignment_) {
    293     Label do_not_pad, align_loop;
    294     // Align ebp + 4 to a multiple of 2 * kPointerSize.
    295     __ test(ebp, Immediate(kPointerSize));
    296     __ j(zero, &do_not_pad, Label::kNear);
    297     __ push(Immediate(0));
    298     __ mov(ebx, esp);
    299     __ mov(edx, Immediate(kAlignmentPaddingPushed));
    300 
    301     // Move all parts of the frame over one word. The frame consists of:
    302     // unoptimized frame slots, alignment state, context, frame pointer, return
    303     // address, receiver, and the arguments.
    304     __ mov(ecx, Immediate(scope()->num_parameters() +
    305            5 + graph()->osr()->UnoptimizedFrameSlots()));
    306 
    307     __ bind(&align_loop);
    308     __ mov(eax, Operand(ebx, 1 * kPointerSize));
    309     __ mov(Operand(ebx, 0), eax);
    310     __ add(Operand(ebx), Immediate(kPointerSize));
    311     __ dec(ecx);
    312     __ j(not_zero, &align_loop, Label::kNear);
    313     __ mov(Operand(ebx, 0), Immediate(kAlignmentZapValue));
    314     __ sub(Operand(ebp), Immediate(kPointerSize));
    315     __ bind(&do_not_pad);
    316   }
    317 
    318   // Save the first local, which is overwritten by the alignment state.
    319   Operand alignment_loc = MemOperand(ebp, -3 * kPointerSize);
    320   __ push(alignment_loc);
    321 
    322   // Set the dynamic frame alignment state.
    323   __ mov(alignment_loc, edx);
    324 
    325   // Adjust the frame size, subsuming the unoptimized frame into the
    326   // optimized frame.
    327   int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
    328   DCHECK(slots >= 1);
    329   __ sub(esp, Immediate((slots - 1) * kPointerSize));
    330 
    331   // Initailize FPU state.
    332   __ fninit();
    333 }
    334 
    335 
    336 void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
    337   if (instr->IsCall()) {
    338     EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
    339   }
    340   if (!instr->IsLazyBailout() && !instr->IsGap()) {
    341     safepoints_.BumpLastLazySafepointIndex();
    342   }
    343   FlushX87StackIfNecessary(instr);
    344 }
    345 
    346 
    347 void LCodeGen::GenerateBodyInstructionPost(LInstruction* instr) {
    348   // When return from function call, FPU should be initialized again.
    349   if (instr->IsCall() && instr->ClobbersDoubleRegisters(isolate())) {
    350     bool double_result = instr->HasDoubleRegisterResult();
    351     if (double_result) {
    352       __ lea(esp, Operand(esp, -kDoubleSize));
    353       __ fstp_d(Operand(esp, 0));
    354     }
    355     __ fninit();
    356     if (double_result) {
    357       __ fld_d(Operand(esp, 0));
    358       __ lea(esp, Operand(esp, kDoubleSize));
    359     }
    360   }
    361   if (instr->IsGoto()) {
    362     x87_stack_.LeavingBlock(current_block_, LGoto::cast(instr), this);
    363   } else if (FLAG_debug_code && FLAG_enable_slow_asserts &&
    364              !instr->IsGap() && !instr->IsReturn()) {
    365     if (instr->ClobbersDoubleRegisters(isolate())) {
    366       if (instr->HasDoubleRegisterResult()) {
    367         DCHECK_EQ(1, x87_stack_.depth());
    368       } else {
    369         DCHECK_EQ(0, x87_stack_.depth());
    370       }
    371     }
    372     __ VerifyX87StackDepth(x87_stack_.depth());
    373   }
    374 }
    375 
    376 
    377 bool LCodeGen::GenerateJumpTable() {
    378   Label needs_frame;
    379   if (jump_table_.length() > 0) {
    380     Comment(";;; -------------------- Jump table --------------------");
    381   }
    382   for (int i = 0; i < jump_table_.length(); i++) {
    383     Deoptimizer::JumpTableEntry* table_entry = &jump_table_[i];
    384     __ bind(&table_entry->label);
    385     Address entry = table_entry->address;
    386     DeoptComment(table_entry->reason);
    387     if (table_entry->needs_frame) {
    388       DCHECK(!info()->saves_caller_doubles());
    389       __ push(Immediate(ExternalReference::ForDeoptEntry(entry)));
    390       if (needs_frame.is_bound()) {
    391         __ jmp(&needs_frame);
    392       } else {
    393         __ bind(&needs_frame);
    394         __ push(MemOperand(ebp, StandardFrameConstants::kContextOffset));
    395         // This variant of deopt can only be used with stubs. Since we don't
    396         // have a function pointer to install in the stack frame that we're
    397         // building, install a special marker there instead.
    398         DCHECK(info()->IsStub());
    399         __ push(Immediate(Smi::FromInt(StackFrame::STUB)));
    400         // Push a PC inside the function so that the deopt code can find where
    401         // the deopt comes from. It doesn't have to be the precise return
    402         // address of a "calling" LAZY deopt, it only has to be somewhere
    403         // inside the code body.
    404         Label push_approx_pc;
    405         __ call(&push_approx_pc);
    406         __ bind(&push_approx_pc);
    407         // Push the continuation which was stashed were the ebp should
    408         // be. Replace it with the saved ebp.
    409         __ push(MemOperand(esp, 3 * kPointerSize));
    410         __ mov(MemOperand(esp, 4 * kPointerSize), ebp);
    411         __ lea(ebp, MemOperand(esp, 4 * kPointerSize));
    412         __ ret(0);  // Call the continuation without clobbering registers.
    413       }
    414     } else {
    415       __ call(entry, RelocInfo::RUNTIME_ENTRY);
    416     }
    417   }
    418   return !is_aborted();
    419 }
    420 
    421 
    422 bool LCodeGen::GenerateDeferredCode() {
    423   DCHECK(is_generating());
    424   if (deferred_.length() > 0) {
    425     for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
    426       LDeferredCode* code = deferred_[i];
    427       X87Stack copy(code->x87_stack());
    428       x87_stack_ = copy;
    429 
    430       HValue* value =
    431           instructions_->at(code->instruction_index())->hydrogen_value();
    432       RecordAndWritePosition(
    433           chunk()->graph()->SourcePositionToScriptPosition(value->position()));
    434 
    435       Comment(";;; <@%d,#%d> "
    436               "-------------------- Deferred %s --------------------",
    437               code->instruction_index(),
    438               code->instr()->hydrogen_value()->id(),
    439               code->instr()->Mnemonic());
    440       __ bind(code->entry());
    441       if (NeedsDeferredFrame()) {
    442         Comment(";;; Build frame");
    443         DCHECK(!frame_is_built_);
    444         DCHECK(info()->IsStub());
    445         frame_is_built_ = true;
    446         // Build the frame in such a way that esi isn't trashed.
    447         __ push(ebp);  // Caller's frame pointer.
    448         __ push(Operand(ebp, StandardFrameConstants::kContextOffset));
    449         __ push(Immediate(Smi::FromInt(StackFrame::STUB)));
    450         __ lea(ebp, Operand(esp, 2 * kPointerSize));
    451         Comment(";;; Deferred code");
    452       }
    453       code->Generate();
    454       if (NeedsDeferredFrame()) {
    455         __ bind(code->done());
    456         Comment(";;; Destroy frame");
    457         DCHECK(frame_is_built_);
    458         frame_is_built_ = false;
    459         __ mov(esp, ebp);
    460         __ pop(ebp);
    461       }
    462       __ jmp(code->exit());
    463     }
    464   }
    465 
    466   // Deferred code is the last part of the instruction sequence. Mark
    467   // the generated code as done unless we bailed out.
    468   if (!is_aborted()) status_ = DONE;
    469   return !is_aborted();
    470 }
    471 
    472 
    473 bool LCodeGen::GenerateSafepointTable() {
    474   DCHECK(is_done());
    475   if (!info()->IsStub()) {
    476     // For lazy deoptimization we need space to patch a call after every call.
    477     // Ensure there is always space for such patching, even if the code ends
    478     // in a call.
    479     int target_offset = masm()->pc_offset() + Deoptimizer::patch_size();
    480     while (masm()->pc_offset() < target_offset) {
    481       masm()->nop();
    482     }
    483   }
    484   safepoints_.Emit(masm(), GetStackSlotCount());
    485   return !is_aborted();
    486 }
    487 
    488 
    489 Register LCodeGen::ToRegister(int index) const {
    490   return Register::FromAllocationIndex(index);
    491 }
    492 
    493 
    494 X87Register LCodeGen::ToX87Register(int index) const {
    495   return X87Register::FromAllocationIndex(index);
    496 }
    497 
    498 
    499 void LCodeGen::X87LoadForUsage(X87Register reg) {
    500   DCHECK(x87_stack_.Contains(reg));
    501   x87_stack_.Fxch(reg);
    502   x87_stack_.pop();
    503 }
    504 
    505 
    506 void LCodeGen::X87LoadForUsage(X87Register reg1, X87Register reg2) {
    507   DCHECK(x87_stack_.Contains(reg1));
    508   DCHECK(x87_stack_.Contains(reg2));
    509   if (reg1.is(reg2) && x87_stack_.depth() == 1) {
    510     __ fld(x87_stack_.st(reg1));
    511     x87_stack_.push(reg1);
    512     x87_stack_.pop();
    513     x87_stack_.pop();
    514   } else {
    515     x87_stack_.Fxch(reg1, 1);
    516     x87_stack_.Fxch(reg2);
    517     x87_stack_.pop();
    518     x87_stack_.pop();
    519   }
    520 }
    521 
    522 
    523 int LCodeGen::X87Stack::GetLayout() {
    524   int layout = stack_depth_;
    525   for (int i = 0; i < stack_depth_; i++) {
    526     layout |= (stack_[stack_depth_ - 1 - i].code() << ((i + 1) * 3));
    527   }
    528 
    529   return layout;
    530 }
    531 
    532 
    533 void LCodeGen::X87Stack::Fxch(X87Register reg, int other_slot) {
    534   DCHECK(is_mutable_);
    535   DCHECK(Contains(reg) && stack_depth_ > other_slot);
    536   int i  = ArrayIndex(reg);
    537   int st = st2idx(i);
    538   if (st != other_slot) {
    539     int other_i = st2idx(other_slot);
    540     X87Register other = stack_[other_i];
    541     stack_[other_i]   = reg;
    542     stack_[i]         = other;
    543     if (st == 0) {
    544       __ fxch(other_slot);
    545     } else if (other_slot == 0) {
    546       __ fxch(st);
    547     } else {
    548       __ fxch(st);
    549       __ fxch(other_slot);
    550       __ fxch(st);
    551     }
    552   }
    553 }
    554 
    555 
    556 int LCodeGen::X87Stack::st2idx(int pos) {
    557   return stack_depth_ - pos - 1;
    558 }
    559 
    560 
    561 int LCodeGen::X87Stack::ArrayIndex(X87Register reg) {
    562   for (int i = 0; i < stack_depth_; i++) {
    563     if (stack_[i].is(reg)) return i;
    564   }
    565   UNREACHABLE();
    566   return -1;
    567 }
    568 
    569 
    570 bool LCodeGen::X87Stack::Contains(X87Register reg) {
    571   for (int i = 0; i < stack_depth_; i++) {
    572     if (stack_[i].is(reg)) return true;
    573   }
    574   return false;
    575 }
    576 
    577 
    578 void LCodeGen::X87Stack::Free(X87Register reg) {
    579   DCHECK(is_mutable_);
    580   DCHECK(Contains(reg));
    581   int i  = ArrayIndex(reg);
    582   int st = st2idx(i);
    583   if (st > 0) {
    584     // keep track of how fstp(i) changes the order of elements
    585     int tos_i = st2idx(0);
    586     stack_[i] = stack_[tos_i];
    587   }
    588   pop();
    589   __ fstp(st);
    590 }
    591 
    592 
    593 void LCodeGen::X87Mov(X87Register dst, Operand src, X87OperandType opts) {
    594   if (x87_stack_.Contains(dst)) {
    595     x87_stack_.Fxch(dst);
    596     __ fstp(0);
    597   } else {
    598     x87_stack_.push(dst);
    599   }
    600   X87Fld(src, opts);
    601 }
    602 
    603 
    604 void LCodeGen::X87Mov(X87Register dst, X87Register src, X87OperandType opts) {
    605   if (x87_stack_.Contains(dst)) {
    606     x87_stack_.Fxch(dst);
    607     __ fstp(0);
    608     x87_stack_.pop();
    609     // Push ST(i) onto the FPU register stack
    610     __ fld(x87_stack_.st(src));
    611     x87_stack_.push(dst);
    612   } else {
    613     // Push ST(i) onto the FPU register stack
    614     __ fld(x87_stack_.st(src));
    615     x87_stack_.push(dst);
    616   }
    617 }
    618 
    619 
    620 void LCodeGen::X87Fld(Operand src, X87OperandType opts) {
    621   DCHECK(!src.is_reg_only());
    622   switch (opts) {
    623     case kX87DoubleOperand:
    624       __ fld_d(src);
    625       break;
    626     case kX87FloatOperand:
    627       __ fld_s(src);
    628       break;
    629     case kX87IntOperand:
    630       __ fild_s(src);
    631       break;
    632     default:
    633       UNREACHABLE();
    634   }
    635 }
    636 
    637 
    638 void LCodeGen::X87Mov(Operand dst, X87Register src, X87OperandType opts) {
    639   DCHECK(!dst.is_reg_only());
    640   x87_stack_.Fxch(src);
    641   switch (opts) {
    642     case kX87DoubleOperand:
    643       __ fst_d(dst);
    644       break;
    645     case kX87FloatOperand:
    646       __ fst_s(dst);
    647       break;
    648     case kX87IntOperand:
    649       __ fist_s(dst);
    650       break;
    651     default:
    652       UNREACHABLE();
    653   }
    654 }
    655 
    656 
    657 void LCodeGen::X87Stack::PrepareToWrite(X87Register reg) {
    658   DCHECK(is_mutable_);
    659   if (Contains(reg)) {
    660     Free(reg);
    661   }
    662   // Mark this register as the next register to write to
    663   stack_[stack_depth_] = reg;
    664 }
    665 
    666 
    667 void LCodeGen::X87Stack::CommitWrite(X87Register reg) {
    668   DCHECK(is_mutable_);
    669   // Assert the reg is prepared to write, but not on the virtual stack yet
    670   DCHECK(!Contains(reg) && stack_[stack_depth_].is(reg) &&
    671       stack_depth_ < X87Register::kMaxNumAllocatableRegisters);
    672   stack_depth_++;
    673 }
    674 
    675 
    676 void LCodeGen::X87PrepareBinaryOp(
    677     X87Register left, X87Register right, X87Register result) {
    678   // You need to use DefineSameAsFirst for x87 instructions
    679   DCHECK(result.is(left));
    680   x87_stack_.Fxch(right, 1);
    681   x87_stack_.Fxch(left);
    682 }
    683 
    684 
    685 void LCodeGen::X87Stack::FlushIfNecessary(LInstruction* instr, LCodeGen* cgen) {
    686   if (stack_depth_ > 0 && instr->ClobbersDoubleRegisters(isolate())) {
    687     bool double_inputs = instr->HasDoubleRegisterInput();
    688 
    689     // Flush stack from tos down, since FreeX87() will mess with tos
    690     for (int i = stack_depth_-1; i >= 0; i--) {
    691       X87Register reg = stack_[i];
    692       // Skip registers which contain the inputs for the next instruction
    693       // when flushing the stack
    694       if (double_inputs && instr->IsDoubleInput(reg, cgen)) {
    695         continue;
    696       }
    697       Free(reg);
    698       if (i < stack_depth_-1) i++;
    699     }
    700   }
    701   if (instr->IsReturn()) {
    702     while (stack_depth_ > 0) {
    703       __ fstp(0);
    704       stack_depth_--;
    705     }
    706     if (FLAG_debug_code && FLAG_enable_slow_asserts) __ VerifyX87StackDepth(0);
    707   }
    708 }
    709 
    710 
    711 void LCodeGen::X87Stack::LeavingBlock(int current_block_id, LGoto* goto_instr,
    712                                       LCodeGen* cgen) {
    713   // For going to a joined block, an explicit LClobberDoubles is inserted before
    714   // LGoto. Because all used x87 registers are spilled to stack slots. The
    715   // ResolvePhis phase of register allocator could guarantee the two input's x87
    716   // stacks have the same layout. So don't check stack_depth_ <= 1 here.
    717   int goto_block_id = goto_instr->block_id();
    718   if (current_block_id + 1 != goto_block_id) {
    719     // If we have a value on the x87 stack on leaving a block, it must be a
    720     // phi input. If the next block we compile is not the join block, we have
    721     // to discard the stack state.
    722     // Before discarding the stack state, we need to save it if the "goto block"
    723     // has unreachable last predecessor when FLAG_unreachable_code_elimination.
    724     if (FLAG_unreachable_code_elimination) {
    725       int length = goto_instr->block()->predecessors()->length();
    726       bool has_unreachable_last_predecessor = false;
    727       for (int i = 0; i < length; i++) {
    728         HBasicBlock* block = goto_instr->block()->predecessors()->at(i);
    729         if (block->IsUnreachable() &&
    730             (block->block_id() + 1) == goto_block_id) {
    731           has_unreachable_last_predecessor = true;
    732         }
    733       }
    734       if (has_unreachable_last_predecessor) {
    735         if (cgen->x87_stack_map_.find(goto_block_id) ==
    736             cgen->x87_stack_map_.end()) {
    737           X87Stack* stack = new (cgen->zone()) X87Stack(*this);
    738           cgen->x87_stack_map_.insert(std::make_pair(goto_block_id, stack));
    739         }
    740       }
    741     }
    742 
    743     // Discard the stack state.
    744     stack_depth_ = 0;
    745   }
    746 }
    747 
    748 
    749 void LCodeGen::EmitFlushX87ForDeopt() {
    750   // The deoptimizer does not support X87 Registers. But as long as we
    751   // deopt from a stub its not a problem, since we will re-materialize the
    752   // original stub inputs, which can't be double registers.
    753   // DCHECK(info()->IsStub());
    754   if (FLAG_debug_code && FLAG_enable_slow_asserts) {
    755     __ pushfd();
    756     __ VerifyX87StackDepth(x87_stack_.depth());
    757     __ popfd();
    758   }
    759 
    760   // Flush X87 stack in the deoptimizer entry.
    761 }
    762 
    763 
    764 Register LCodeGen::ToRegister(LOperand* op) const {
    765   DCHECK(op->IsRegister());
    766   return ToRegister(op->index());
    767 }
    768 
    769 
    770 X87Register LCodeGen::ToX87Register(LOperand* op) const {
    771   DCHECK(op->IsDoubleRegister());
    772   return ToX87Register(op->index());
    773 }
    774 
    775 
    776 int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
    777   return ToRepresentation(op, Representation::Integer32());
    778 }
    779 
    780 
    781 int32_t LCodeGen::ToRepresentation(LConstantOperand* op,
    782                                    const Representation& r) const {
    783   HConstant* constant = chunk_->LookupConstant(op);
    784   int32_t value = constant->Integer32Value();
    785   if (r.IsInteger32()) return value;
    786   DCHECK(r.IsSmiOrTagged());
    787   return reinterpret_cast<int32_t>(Smi::FromInt(value));
    788 }
    789 
    790 
    791 Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
    792   HConstant* constant = chunk_->LookupConstant(op);
    793   DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
    794   return constant->handle(isolate());
    795 }
    796 
    797 
    798 double LCodeGen::ToDouble(LConstantOperand* op) const {
    799   HConstant* constant = chunk_->LookupConstant(op);
    800   DCHECK(constant->HasDoubleValue());
    801   return constant->DoubleValue();
    802 }
    803 
    804 
    805 ExternalReference LCodeGen::ToExternalReference(LConstantOperand* op) const {
    806   HConstant* constant = chunk_->LookupConstant(op);
    807   DCHECK(constant->HasExternalReferenceValue());
    808   return constant->ExternalReferenceValue();
    809 }
    810 
    811 
    812 bool LCodeGen::IsInteger32(LConstantOperand* op) const {
    813   return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
    814 }
    815 
    816 
    817 bool LCodeGen::IsSmi(LConstantOperand* op) const {
    818   return chunk_->LookupLiteralRepresentation(op).IsSmi();
    819 }
    820 
    821 
    822 static int ArgumentsOffsetWithoutFrame(int index) {
    823   DCHECK(index < 0);
    824   return -(index + 1) * kPointerSize + kPCOnStackSize;
    825 }
    826 
    827 
    828 Operand LCodeGen::ToOperand(LOperand* op) const {
    829   if (op->IsRegister()) return Operand(ToRegister(op));
    830   DCHECK(!op->IsDoubleRegister());
    831   DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
    832   if (NeedsEagerFrame()) {
    833     return Operand(ebp, StackSlotOffset(op->index()));
    834   } else {
    835     // Retrieve parameter without eager stack-frame relative to the
    836     // stack-pointer.
    837     return Operand(esp, ArgumentsOffsetWithoutFrame(op->index()));
    838   }
    839 }
    840 
    841 
    842 Operand LCodeGen::HighOperand(LOperand* op) {
    843   DCHECK(op->IsDoubleStackSlot());
    844   if (NeedsEagerFrame()) {
    845     return Operand(ebp, StackSlotOffset(op->index()) + kPointerSize);
    846   } else {
    847     // Retrieve parameter without eager stack-frame relative to the
    848     // stack-pointer.
    849     return Operand(
    850         esp, ArgumentsOffsetWithoutFrame(op->index()) + kPointerSize);
    851   }
    852 }
    853 
    854 
    855 void LCodeGen::WriteTranslation(LEnvironment* environment,
    856                                 Translation* translation) {
    857   if (environment == NULL) return;
    858 
    859   // The translation includes one command per value in the environment.
    860   int translation_size = environment->translation_size();
    861   // The output frame height does not include the parameters.
    862   int height = translation_size - environment->parameter_count();
    863 
    864   WriteTranslation(environment->outer(), translation);
    865   bool has_closure_id = !info()->closure().is_null() &&
    866       !info()->closure().is_identical_to(environment->closure());
    867   int closure_id = has_closure_id
    868       ? DefineDeoptimizationLiteral(environment->closure())
    869       : Translation::kSelfLiteralId;
    870   switch (environment->frame_type()) {
    871     case JS_FUNCTION:
    872       translation->BeginJSFrame(environment->ast_id(), closure_id, height);
    873       break;
    874     case JS_CONSTRUCT:
    875       translation->BeginConstructStubFrame(closure_id, translation_size);
    876       break;
    877     case JS_GETTER:
    878       DCHECK(translation_size == 1);
    879       DCHECK(height == 0);
    880       translation->BeginGetterStubFrame(closure_id);
    881       break;
    882     case JS_SETTER:
    883       DCHECK(translation_size == 2);
    884       DCHECK(height == 0);
    885       translation->BeginSetterStubFrame(closure_id);
    886       break;
    887     case ARGUMENTS_ADAPTOR:
    888       translation->BeginArgumentsAdaptorFrame(closure_id, translation_size);
    889       break;
    890     case STUB:
    891       translation->BeginCompiledStubFrame();
    892       break;
    893     default:
    894       UNREACHABLE();
    895   }
    896 
    897   int object_index = 0;
    898   int dematerialized_index = 0;
    899   for (int i = 0; i < translation_size; ++i) {
    900     LOperand* value = environment->values()->at(i);
    901     AddToTranslation(environment,
    902                      translation,
    903                      value,
    904                      environment->HasTaggedValueAt(i),
    905                      environment->HasUint32ValueAt(i),
    906                      &object_index,
    907                      &dematerialized_index);
    908   }
    909 }
    910 
    911 
    912 void LCodeGen::AddToTranslation(LEnvironment* environment,
    913                                 Translation* translation,
    914                                 LOperand* op,
    915                                 bool is_tagged,
    916                                 bool is_uint32,
    917                                 int* object_index_pointer,
    918                                 int* dematerialized_index_pointer) {
    919   if (op == LEnvironment::materialization_marker()) {
    920     int object_index = (*object_index_pointer)++;
    921     if (environment->ObjectIsDuplicateAt(object_index)) {
    922       int dupe_of = environment->ObjectDuplicateOfAt(object_index);
    923       translation->DuplicateObject(dupe_of);
    924       return;
    925     }
    926     int object_length = environment->ObjectLengthAt(object_index);
    927     if (environment->ObjectIsArgumentsAt(object_index)) {
    928       translation->BeginArgumentsObject(object_length);
    929     } else {
    930       translation->BeginCapturedObject(object_length);
    931     }
    932     int dematerialized_index = *dematerialized_index_pointer;
    933     int env_offset = environment->translation_size() + dematerialized_index;
    934     *dematerialized_index_pointer += object_length;
    935     for (int i = 0; i < object_length; ++i) {
    936       LOperand* value = environment->values()->at(env_offset + i);
    937       AddToTranslation(environment,
    938                        translation,
    939                        value,
    940                        environment->HasTaggedValueAt(env_offset + i),
    941                        environment->HasUint32ValueAt(env_offset + i),
    942                        object_index_pointer,
    943                        dematerialized_index_pointer);
    944     }
    945     return;
    946   }
    947 
    948   if (op->IsStackSlot()) {
    949     if (is_tagged) {
    950       translation->StoreStackSlot(op->index());
    951     } else if (is_uint32) {
    952       translation->StoreUint32StackSlot(op->index());
    953     } else {
    954       translation->StoreInt32StackSlot(op->index());
    955     }
    956   } else if (op->IsDoubleStackSlot()) {
    957     translation->StoreDoubleStackSlot(op->index());
    958   } else if (op->IsRegister()) {
    959     Register reg = ToRegister(op);
    960     if (is_tagged) {
    961       translation->StoreRegister(reg);
    962     } else if (is_uint32) {
    963       translation->StoreUint32Register(reg);
    964     } else {
    965       translation->StoreInt32Register(reg);
    966     }
    967   } else if (op->IsDoubleRegister()) {
    968     X87Register reg = ToX87Register(op);
    969     translation->StoreDoubleRegister(reg);
    970   } else if (op->IsConstantOperand()) {
    971     HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
    972     int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
    973     translation->StoreLiteral(src_index);
    974   } else {
    975     UNREACHABLE();
    976   }
    977 }
    978 
    979 
    980 void LCodeGen::CallCodeGeneric(Handle<Code> code,
    981                                RelocInfo::Mode mode,
    982                                LInstruction* instr,
    983                                SafepointMode safepoint_mode) {
    984   DCHECK(instr != NULL);
    985   __ call(code, mode);
    986   RecordSafepointWithLazyDeopt(instr, safepoint_mode);
    987 
    988   // Signal that we don't inline smi code before these stubs in the
    989   // optimizing code generator.
    990   if (code->kind() == Code::BINARY_OP_IC ||
    991       code->kind() == Code::COMPARE_IC) {
    992     __ nop();
    993   }
    994 }
    995 
    996 
    997 void LCodeGen::CallCode(Handle<Code> code,
    998                         RelocInfo::Mode mode,
    999                         LInstruction* instr) {
   1000   CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
   1001 }
   1002 
   1003 
   1004 void LCodeGen::CallRuntime(const Runtime::Function* fun, int argc,
   1005                            LInstruction* instr, SaveFPRegsMode save_doubles) {
   1006   DCHECK(instr != NULL);
   1007   DCHECK(instr->HasPointerMap());
   1008 
   1009   __ CallRuntime(fun, argc, save_doubles);
   1010 
   1011   RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
   1012 
   1013   DCHECK(info()->is_calling());
   1014 }
   1015 
   1016 
   1017 void LCodeGen::LoadContextFromDeferred(LOperand* context) {
   1018   if (context->IsRegister()) {
   1019     if (!ToRegister(context).is(esi)) {
   1020       __ mov(esi, ToRegister(context));
   1021     }
   1022   } else if (context->IsStackSlot()) {
   1023     __ mov(esi, ToOperand(context));
   1024   } else if (context->IsConstantOperand()) {
   1025     HConstant* constant =
   1026         chunk_->LookupConstant(LConstantOperand::cast(context));
   1027     __ LoadObject(esi, Handle<Object>::cast(constant->handle(isolate())));
   1028   } else {
   1029     UNREACHABLE();
   1030   }
   1031 }
   1032 
   1033 void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
   1034                                        int argc,
   1035                                        LInstruction* instr,
   1036                                        LOperand* context) {
   1037   LoadContextFromDeferred(context);
   1038 
   1039   __ CallRuntimeSaveDoubles(id);
   1040   RecordSafepointWithRegisters(
   1041       instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
   1042 
   1043   DCHECK(info()->is_calling());
   1044 }
   1045 
   1046 
   1047 void LCodeGen::RegisterEnvironmentForDeoptimization(
   1048     LEnvironment* environment, Safepoint::DeoptMode mode) {
   1049   environment->set_has_been_used();
   1050   if (!environment->HasBeenRegistered()) {
   1051     // Physical stack frame layout:
   1052     // -x ............. -4  0 ..................................... y
   1053     // [incoming arguments] [spill slots] [pushed outgoing arguments]
   1054 
   1055     // Layout of the environment:
   1056     // 0 ..................................................... size-1
   1057     // [parameters] [locals] [expression stack including arguments]
   1058 
   1059     // Layout of the translation:
   1060     // 0 ........................................................ size - 1 + 4
   1061     // [expression stack including arguments] [locals] [4 words] [parameters]
   1062     // |>------------  translation_size ------------<|
   1063 
   1064     int frame_count = 0;
   1065     int jsframe_count = 0;
   1066     for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
   1067       ++frame_count;
   1068       if (e->frame_type() == JS_FUNCTION) {
   1069         ++jsframe_count;
   1070       }
   1071     }
   1072     Translation translation(&translations_, frame_count, jsframe_count, zone());
   1073     WriteTranslation(environment, &translation);
   1074     int deoptimization_index = deoptimizations_.length();
   1075     int pc_offset = masm()->pc_offset();
   1076     environment->Register(deoptimization_index,
   1077                           translation.index(),
   1078                           (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
   1079     deoptimizations_.Add(environment, zone());
   1080   }
   1081 }
   1082 
   1083 
   1084 void LCodeGen::DeoptimizeIf(Condition cc, LInstruction* instr,
   1085                             const char* detail,
   1086                             Deoptimizer::BailoutType bailout_type) {
   1087   LEnvironment* environment = instr->environment();
   1088   RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
   1089   DCHECK(environment->HasBeenRegistered());
   1090   int id = environment->deoptimization_index();
   1091   DCHECK(info()->IsOptimizing() || info()->IsStub());
   1092   Address entry =
   1093       Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
   1094   if (entry == NULL) {
   1095     Abort(kBailoutWasNotPrepared);
   1096     return;
   1097   }
   1098 
   1099   if (DeoptEveryNTimes()) {
   1100     ExternalReference count = ExternalReference::stress_deopt_count(isolate());
   1101     Label no_deopt;
   1102     __ pushfd();
   1103     __ push(eax);
   1104     __ mov(eax, Operand::StaticVariable(count));
   1105     __ sub(eax, Immediate(1));
   1106     __ j(not_zero, &no_deopt, Label::kNear);
   1107     if (FLAG_trap_on_deopt) __ int3();
   1108     __ mov(eax, Immediate(FLAG_deopt_every_n_times));
   1109     __ mov(Operand::StaticVariable(count), eax);
   1110     __ pop(eax);
   1111     __ popfd();
   1112     DCHECK(frame_is_built_);
   1113     // Put the x87 stack layout in TOS.
   1114     if (x87_stack_.depth() > 0) EmitFlushX87ForDeopt();
   1115     __ push(Immediate(x87_stack_.GetLayout()));
   1116     __ fild_s(MemOperand(esp, 0));
   1117     // Don't touch eflags.
   1118     __ lea(esp, Operand(esp, kPointerSize));
   1119     __ call(entry, RelocInfo::RUNTIME_ENTRY);
   1120     __ bind(&no_deopt);
   1121     __ mov(Operand::StaticVariable(count), eax);
   1122     __ pop(eax);
   1123     __ popfd();
   1124   }
   1125 
   1126   // Put the x87 stack layout in TOS, so that we can save x87 fp registers in
   1127   // the correct location.
   1128   {
   1129     Label done;
   1130     if (cc != no_condition) __ j(NegateCondition(cc), &done, Label::kNear);
   1131     if (x87_stack_.depth() > 0) EmitFlushX87ForDeopt();
   1132 
   1133     int x87_stack_layout = x87_stack_.GetLayout();
   1134     __ push(Immediate(x87_stack_layout));
   1135     __ fild_s(MemOperand(esp, 0));
   1136     // Don't touch eflags.
   1137     __ lea(esp, Operand(esp, kPointerSize));
   1138     __ bind(&done);
   1139   }
   1140 
   1141   if (info()->ShouldTrapOnDeopt()) {
   1142     Label done;
   1143     if (cc != no_condition) __ j(NegateCondition(cc), &done, Label::kNear);
   1144     __ int3();
   1145     __ bind(&done);
   1146   }
   1147 
   1148   Deoptimizer::Reason reason(instr->hydrogen_value()->position().raw(),
   1149                              instr->Mnemonic(), detail);
   1150   DCHECK(info()->IsStub() || frame_is_built_);
   1151   if (cc == no_condition && frame_is_built_) {
   1152     DeoptComment(reason);
   1153     __ call(entry, RelocInfo::RUNTIME_ENTRY);
   1154   } else {
   1155     Deoptimizer::JumpTableEntry table_entry(entry, reason, bailout_type,
   1156                                             !frame_is_built_);
   1157     // We often have several deopts to the same entry, reuse the last
   1158     // jump entry if this is the case.
   1159     if (jump_table_.is_empty() ||
   1160         !table_entry.IsEquivalentTo(jump_table_.last())) {
   1161       jump_table_.Add(table_entry, zone());
   1162     }
   1163     if (cc == no_condition) {
   1164       __ jmp(&jump_table_.last().label);
   1165     } else {
   1166       __ j(cc, &jump_table_.last().label);
   1167     }
   1168   }
   1169 }
   1170 
   1171 
   1172 void LCodeGen::DeoptimizeIf(Condition cc, LInstruction* instr,
   1173                             const char* detail) {
   1174   Deoptimizer::BailoutType bailout_type = info()->IsStub()
   1175       ? Deoptimizer::LAZY
   1176       : Deoptimizer::EAGER;
   1177   DeoptimizeIf(cc, instr, detail, bailout_type);
   1178 }
   1179 
   1180 
   1181 void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) {
   1182   int length = deoptimizations_.length();
   1183   if (length == 0) return;
   1184   Handle<DeoptimizationInputData> data =
   1185       DeoptimizationInputData::New(isolate(), length, TENURED);
   1186 
   1187   Handle<ByteArray> translations =
   1188       translations_.CreateByteArray(isolate()->factory());
   1189   data->SetTranslationByteArray(*translations);
   1190   data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_));
   1191   data->SetOptimizationId(Smi::FromInt(info_->optimization_id()));
   1192   if (info_->IsOptimizing()) {
   1193     // Reference to shared function info does not change between phases.
   1194     AllowDeferredHandleDereference allow_handle_dereference;
   1195     data->SetSharedFunctionInfo(*info_->shared_info());
   1196   } else {
   1197     data->SetSharedFunctionInfo(Smi::FromInt(0));
   1198   }
   1199 
   1200   Handle<FixedArray> literals =
   1201       factory()->NewFixedArray(deoptimization_literals_.length(), TENURED);
   1202   { AllowDeferredHandleDereference copy_handles;
   1203     for (int i = 0; i < deoptimization_literals_.length(); i++) {
   1204       literals->set(i, *deoptimization_literals_[i]);
   1205     }
   1206     data->SetLiteralArray(*literals);
   1207   }
   1208 
   1209   data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id().ToInt()));
   1210   data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_));
   1211 
   1212   // Populate the deoptimization entries.
   1213   for (int i = 0; i < length; i++) {
   1214     LEnvironment* env = deoptimizations_[i];
   1215     data->SetAstId(i, env->ast_id());
   1216     data->SetTranslationIndex(i, Smi::FromInt(env->translation_index()));
   1217     data->SetArgumentsStackHeight(i,
   1218                                   Smi::FromInt(env->arguments_stack_height()));
   1219     data->SetPc(i, Smi::FromInt(env->pc_offset()));
   1220   }
   1221   code->set_deoptimization_data(*data);
   1222 }
   1223 
   1224 
   1225 int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) {
   1226   int result = deoptimization_literals_.length();
   1227   for (int i = 0; i < deoptimization_literals_.length(); ++i) {
   1228     if (deoptimization_literals_[i].is_identical_to(literal)) return i;
   1229   }
   1230   deoptimization_literals_.Add(literal, zone());
   1231   return result;
   1232 }
   1233 
   1234 
   1235 void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() {
   1236   DCHECK(deoptimization_literals_.length() == 0);
   1237 
   1238   const ZoneList<Handle<JSFunction> >* inlined_closures =
   1239       chunk()->inlined_closures();
   1240 
   1241   for (int i = 0, length = inlined_closures->length();
   1242        i < length;
   1243        i++) {
   1244     DefineDeoptimizationLiteral(inlined_closures->at(i));
   1245   }
   1246 
   1247   inlined_function_count_ = deoptimization_literals_.length();
   1248 }
   1249 
   1250 
   1251 void LCodeGen::RecordSafepointWithLazyDeopt(
   1252     LInstruction* instr, SafepointMode safepoint_mode) {
   1253   if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
   1254     RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
   1255   } else {
   1256     DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
   1257     RecordSafepointWithRegisters(
   1258         instr->pointer_map(), 0, Safepoint::kLazyDeopt);
   1259   }
   1260 }
   1261 
   1262 
   1263 void LCodeGen::RecordSafepoint(
   1264     LPointerMap* pointers,
   1265     Safepoint::Kind kind,
   1266     int arguments,
   1267     Safepoint::DeoptMode deopt_mode) {
   1268   DCHECK(kind == expected_safepoint_kind_);
   1269   const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
   1270   Safepoint safepoint =
   1271       safepoints_.DefineSafepoint(masm(), kind, arguments, deopt_mode);
   1272   for (int i = 0; i < operands->length(); i++) {
   1273     LOperand* pointer = operands->at(i);
   1274     if (pointer->IsStackSlot()) {
   1275       safepoint.DefinePointerSlot(pointer->index(), zone());
   1276     } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
   1277       safepoint.DefinePointerRegister(ToRegister(pointer), zone());
   1278     }
   1279   }
   1280 }
   1281 
   1282 
   1283 void LCodeGen::RecordSafepoint(LPointerMap* pointers,
   1284                                Safepoint::DeoptMode mode) {
   1285   RecordSafepoint(pointers, Safepoint::kSimple, 0, mode);
   1286 }
   1287 
   1288 
   1289 void LCodeGen::RecordSafepoint(Safepoint::DeoptMode mode) {
   1290   LPointerMap empty_pointers(zone());
   1291   RecordSafepoint(&empty_pointers, mode);
   1292 }
   1293 
   1294 
   1295 void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
   1296                                             int arguments,
   1297                                             Safepoint::DeoptMode mode) {
   1298   RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, mode);
   1299 }
   1300 
   1301 
   1302 void LCodeGen::RecordAndWritePosition(int position) {
   1303   if (position == RelocInfo::kNoPosition) return;
   1304   masm()->positions_recorder()->RecordPosition(position);
   1305   masm()->positions_recorder()->WriteRecordedPositions();
   1306 }
   1307 
   1308 
   1309 static const char* LabelType(LLabel* label) {
   1310   if (label->is_loop_header()) return " (loop header)";
   1311   if (label->is_osr_entry()) return " (OSR entry)";
   1312   return "";
   1313 }
   1314 
   1315 
   1316 void LCodeGen::DoLabel(LLabel* label) {
   1317   Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
   1318           current_instruction_,
   1319           label->hydrogen_value()->id(),
   1320           label->block_id(),
   1321           LabelType(label));
   1322   __ bind(label->label());
   1323   current_block_ = label->block_id();
   1324   if (label->block()->predecessors()->length() > 1) {
   1325     // A join block's x87 stack is that of its last visited predecessor.
   1326     // If the last visited predecessor block is unreachable, the stack state
   1327     // will be wrong. In such case, use the x87 stack of reachable predecessor.
   1328     X87StackMap::const_iterator it = x87_stack_map_.find(current_block_);
   1329     // Restore x87 stack.
   1330     if (it != x87_stack_map_.end()) {
   1331       x87_stack_ = *(it->second);
   1332     }
   1333   }
   1334   DoGap(label);
   1335 }
   1336 
   1337 
   1338 void LCodeGen::DoParallelMove(LParallelMove* move) {
   1339   resolver_.Resolve(move);
   1340 }
   1341 
   1342 
   1343 void LCodeGen::DoGap(LGap* gap) {
   1344   for (int i = LGap::FIRST_INNER_POSITION;
   1345        i <= LGap::LAST_INNER_POSITION;
   1346        i++) {
   1347     LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
   1348     LParallelMove* move = gap->GetParallelMove(inner_pos);
   1349     if (move != NULL) DoParallelMove(move);
   1350   }
   1351 }
   1352 
   1353 
   1354 void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
   1355   DoGap(instr);
   1356 }
   1357 
   1358 
   1359 void LCodeGen::DoParameter(LParameter* instr) {
   1360   // Nothing to do.
   1361 }
   1362 
   1363 
   1364 void LCodeGen::DoCallStub(LCallStub* instr) {
   1365   DCHECK(ToRegister(instr->context()).is(esi));
   1366   DCHECK(ToRegister(instr->result()).is(eax));
   1367   switch (instr->hydrogen()->major_key()) {
   1368     case CodeStub::RegExpExec: {
   1369       RegExpExecStub stub(isolate());
   1370       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   1371       break;
   1372     }
   1373     case CodeStub::SubString: {
   1374       SubStringStub stub(isolate());
   1375       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   1376       break;
   1377     }
   1378     case CodeStub::StringCompare: {
   1379       StringCompareStub stub(isolate());
   1380       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   1381       break;
   1382     }
   1383     default:
   1384       UNREACHABLE();
   1385   }
   1386 }
   1387 
   1388 
   1389 void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
   1390   GenerateOsrPrologue();
   1391 }
   1392 
   1393 
   1394 void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
   1395   Register dividend = ToRegister(instr->dividend());
   1396   int32_t divisor = instr->divisor();
   1397   DCHECK(dividend.is(ToRegister(instr->result())));
   1398 
   1399   // Theoretically, a variation of the branch-free code for integer division by
   1400   // a power of 2 (calculating the remainder via an additional multiplication
   1401   // (which gets simplified to an 'and') and subtraction) should be faster, and
   1402   // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
   1403   // indicate that positive dividends are heavily favored, so the branching
   1404   // version performs better.
   1405   HMod* hmod = instr->hydrogen();
   1406   int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
   1407   Label dividend_is_not_negative, done;
   1408   if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
   1409     __ test(dividend, dividend);
   1410     __ j(not_sign, &dividend_is_not_negative, Label::kNear);
   1411     // Note that this is correct even for kMinInt operands.
   1412     __ neg(dividend);
   1413     __ and_(dividend, mask);
   1414     __ neg(dividend);
   1415     if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
   1416       DeoptimizeIf(zero, instr, "minus zero");
   1417     }
   1418     __ jmp(&done, Label::kNear);
   1419   }
   1420 
   1421   __ bind(&dividend_is_not_negative);
   1422   __ and_(dividend, mask);
   1423   __ bind(&done);
   1424 }
   1425 
   1426 
   1427 void LCodeGen::DoModByConstI(LModByConstI* instr) {
   1428   Register dividend = ToRegister(instr->dividend());
   1429   int32_t divisor = instr->divisor();
   1430   DCHECK(ToRegister(instr->result()).is(eax));
   1431 
   1432   if (divisor == 0) {
   1433     DeoptimizeIf(no_condition, instr, "division by zero");
   1434     return;
   1435   }
   1436 
   1437   __ TruncatingDiv(dividend, Abs(divisor));
   1438   __ imul(edx, edx, Abs(divisor));
   1439   __ mov(eax, dividend);
   1440   __ sub(eax, edx);
   1441 
   1442   // Check for negative zero.
   1443   HMod* hmod = instr->hydrogen();
   1444   if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
   1445     Label remainder_not_zero;
   1446     __ j(not_zero, &remainder_not_zero, Label::kNear);
   1447     __ cmp(dividend, Immediate(0));
   1448     DeoptimizeIf(less, instr, "minus zero");
   1449     __ bind(&remainder_not_zero);
   1450   }
   1451 }
   1452 
   1453 
   1454 void LCodeGen::DoModI(LModI* instr) {
   1455   HMod* hmod = instr->hydrogen();
   1456 
   1457   Register left_reg = ToRegister(instr->left());
   1458   DCHECK(left_reg.is(eax));
   1459   Register right_reg = ToRegister(instr->right());
   1460   DCHECK(!right_reg.is(eax));
   1461   DCHECK(!right_reg.is(edx));
   1462   Register result_reg = ToRegister(instr->result());
   1463   DCHECK(result_reg.is(edx));
   1464 
   1465   Label done;
   1466   // Check for x % 0, idiv would signal a divide error. We have to
   1467   // deopt in this case because we can't return a NaN.
   1468   if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
   1469     __ test(right_reg, Operand(right_reg));
   1470     DeoptimizeIf(zero, instr, "division by zero");
   1471   }
   1472 
   1473   // Check for kMinInt % -1, idiv would signal a divide error. We
   1474   // have to deopt if we care about -0, because we can't return that.
   1475   if (hmod->CheckFlag(HValue::kCanOverflow)) {
   1476     Label no_overflow_possible;
   1477     __ cmp(left_reg, kMinInt);
   1478     __ j(not_equal, &no_overflow_possible, Label::kNear);
   1479     __ cmp(right_reg, -1);
   1480     if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
   1481       DeoptimizeIf(equal, instr, "minus zero");
   1482     } else {
   1483       __ j(not_equal, &no_overflow_possible, Label::kNear);
   1484       __ Move(result_reg, Immediate(0));
   1485       __ jmp(&done, Label::kNear);
   1486     }
   1487     __ bind(&no_overflow_possible);
   1488   }
   1489 
   1490   // Sign extend dividend in eax into edx:eax.
   1491   __ cdq();
   1492 
   1493   // If we care about -0, test if the dividend is <0 and the result is 0.
   1494   if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
   1495     Label positive_left;
   1496     __ test(left_reg, Operand(left_reg));
   1497     __ j(not_sign, &positive_left, Label::kNear);
   1498     __ idiv(right_reg);
   1499     __ test(result_reg, Operand(result_reg));
   1500     DeoptimizeIf(zero, instr, "minus zero");
   1501     __ jmp(&done, Label::kNear);
   1502     __ bind(&positive_left);
   1503   }
   1504   __ idiv(right_reg);
   1505   __ bind(&done);
   1506 }
   1507 
   1508 
   1509 void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
   1510   Register dividend = ToRegister(instr->dividend());
   1511   int32_t divisor = instr->divisor();
   1512   Register result = ToRegister(instr->result());
   1513   DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
   1514   DCHECK(!result.is(dividend));
   1515 
   1516   // Check for (0 / -x) that will produce negative zero.
   1517   HDiv* hdiv = instr->hydrogen();
   1518   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
   1519     __ test(dividend, dividend);
   1520     DeoptimizeIf(zero, instr, "minus zero");
   1521   }
   1522   // Check for (kMinInt / -1).
   1523   if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
   1524     __ cmp(dividend, kMinInt);
   1525     DeoptimizeIf(zero, instr, "overflow");
   1526   }
   1527   // Deoptimize if remainder will not be 0.
   1528   if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
   1529       divisor != 1 && divisor != -1) {
   1530     int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
   1531     __ test(dividend, Immediate(mask));
   1532     DeoptimizeIf(not_zero, instr, "lost precision");
   1533   }
   1534   __ Move(result, dividend);
   1535   int32_t shift = WhichPowerOf2Abs(divisor);
   1536   if (shift > 0) {
   1537     // The arithmetic shift is always OK, the 'if' is an optimization only.
   1538     if (shift > 1) __ sar(result, 31);
   1539     __ shr(result, 32 - shift);
   1540     __ add(result, dividend);
   1541     __ sar(result, shift);
   1542   }
   1543   if (divisor < 0) __ neg(result);
   1544 }
   1545 
   1546 
   1547 void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
   1548   Register dividend = ToRegister(instr->dividend());
   1549   int32_t divisor = instr->divisor();
   1550   DCHECK(ToRegister(instr->result()).is(edx));
   1551 
   1552   if (divisor == 0) {
   1553     DeoptimizeIf(no_condition, instr, "division by zero");
   1554     return;
   1555   }
   1556 
   1557   // Check for (0 / -x) that will produce negative zero.
   1558   HDiv* hdiv = instr->hydrogen();
   1559   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
   1560     __ test(dividend, dividend);
   1561     DeoptimizeIf(zero, instr, "minus zero");
   1562   }
   1563 
   1564   __ TruncatingDiv(dividend, Abs(divisor));
   1565   if (divisor < 0) __ neg(edx);
   1566 
   1567   if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
   1568     __ mov(eax, edx);
   1569     __ imul(eax, eax, divisor);
   1570     __ sub(eax, dividend);
   1571     DeoptimizeIf(not_equal, instr, "lost precision");
   1572   }
   1573 }
   1574 
   1575 
   1576 // TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
   1577 void LCodeGen::DoDivI(LDivI* instr) {
   1578   HBinaryOperation* hdiv = instr->hydrogen();
   1579   Register dividend = ToRegister(instr->dividend());
   1580   Register divisor = ToRegister(instr->divisor());
   1581   Register remainder = ToRegister(instr->temp());
   1582   DCHECK(dividend.is(eax));
   1583   DCHECK(remainder.is(edx));
   1584   DCHECK(ToRegister(instr->result()).is(eax));
   1585   DCHECK(!divisor.is(eax));
   1586   DCHECK(!divisor.is(edx));
   1587 
   1588   // Check for x / 0.
   1589   if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
   1590     __ test(divisor, divisor);
   1591     DeoptimizeIf(zero, instr, "division by zero");
   1592   }
   1593 
   1594   // Check for (0 / -x) that will produce negative zero.
   1595   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
   1596     Label dividend_not_zero;
   1597     __ test(dividend, dividend);
   1598     __ j(not_zero, &dividend_not_zero, Label::kNear);
   1599     __ test(divisor, divisor);
   1600     DeoptimizeIf(sign, instr, "minus zero");
   1601     __ bind(&dividend_not_zero);
   1602   }
   1603 
   1604   // Check for (kMinInt / -1).
   1605   if (hdiv->CheckFlag(HValue::kCanOverflow)) {
   1606     Label dividend_not_min_int;
   1607     __ cmp(dividend, kMinInt);
   1608     __ j(not_zero, &dividend_not_min_int, Label::kNear);
   1609     __ cmp(divisor, -1);
   1610     DeoptimizeIf(zero, instr, "overflow");
   1611     __ bind(&dividend_not_min_int);
   1612   }
   1613 
   1614   // Sign extend to edx (= remainder).
   1615   __ cdq();
   1616   __ idiv(divisor);
   1617 
   1618   if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
   1619     // Deoptimize if remainder is not 0.
   1620     __ test(remainder, remainder);
   1621     DeoptimizeIf(not_zero, instr, "lost precision");
   1622   }
   1623 }
   1624 
   1625 
   1626 void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
   1627   Register dividend = ToRegister(instr->dividend());
   1628   int32_t divisor = instr->divisor();
   1629   DCHECK(dividend.is(ToRegister(instr->result())));
   1630 
   1631   // If the divisor is positive, things are easy: There can be no deopts and we
   1632   // can simply do an arithmetic right shift.
   1633   if (divisor == 1) return;
   1634   int32_t shift = WhichPowerOf2Abs(divisor);
   1635   if (divisor > 1) {
   1636     __ sar(dividend, shift);
   1637     return;
   1638   }
   1639 
   1640   // If the divisor is negative, we have to negate and handle edge cases.
   1641   __ neg(dividend);
   1642   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   1643     DeoptimizeIf(zero, instr, "minus zero");
   1644   }
   1645 
   1646   // Dividing by -1 is basically negation, unless we overflow.
   1647   if (divisor == -1) {
   1648     if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
   1649       DeoptimizeIf(overflow, instr, "overflow");
   1650     }
   1651     return;
   1652   }
   1653 
   1654   // If the negation could not overflow, simply shifting is OK.
   1655   if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
   1656     __ sar(dividend, shift);
   1657     return;
   1658   }
   1659 
   1660   Label not_kmin_int, done;
   1661   __ j(no_overflow, &not_kmin_int, Label::kNear);
   1662   __ mov(dividend, Immediate(kMinInt / divisor));
   1663   __ jmp(&done, Label::kNear);
   1664   __ bind(&not_kmin_int);
   1665   __ sar(dividend, shift);
   1666   __ bind(&done);
   1667 }
   1668 
   1669 
   1670 void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
   1671   Register dividend = ToRegister(instr->dividend());
   1672   int32_t divisor = instr->divisor();
   1673   DCHECK(ToRegister(instr->result()).is(edx));
   1674 
   1675   if (divisor == 0) {
   1676     DeoptimizeIf(no_condition, instr, "division by zero");
   1677     return;
   1678   }
   1679 
   1680   // Check for (0 / -x) that will produce negative zero.
   1681   HMathFloorOfDiv* hdiv = instr->hydrogen();
   1682   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
   1683     __ test(dividend, dividend);
   1684     DeoptimizeIf(zero, instr, "minus zero");
   1685   }
   1686 
   1687   // Easy case: We need no dynamic check for the dividend and the flooring
   1688   // division is the same as the truncating division.
   1689   if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
   1690       (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
   1691     __ TruncatingDiv(dividend, Abs(divisor));
   1692     if (divisor < 0) __ neg(edx);
   1693     return;
   1694   }
   1695 
   1696   // In the general case we may need to adjust before and after the truncating
   1697   // division to get a flooring division.
   1698   Register temp = ToRegister(instr->temp3());
   1699   DCHECK(!temp.is(dividend) && !temp.is(eax) && !temp.is(edx));
   1700   Label needs_adjustment, done;
   1701   __ cmp(dividend, Immediate(0));
   1702   __ j(divisor > 0 ? less : greater, &needs_adjustment, Label::kNear);
   1703   __ TruncatingDiv(dividend, Abs(divisor));
   1704   if (divisor < 0) __ neg(edx);
   1705   __ jmp(&done, Label::kNear);
   1706   __ bind(&needs_adjustment);
   1707   __ lea(temp, Operand(dividend, divisor > 0 ? 1 : -1));
   1708   __ TruncatingDiv(temp, Abs(divisor));
   1709   if (divisor < 0) __ neg(edx);
   1710   __ dec(edx);
   1711   __ bind(&done);
   1712 }
   1713 
   1714 
   1715 // TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
   1716 void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
   1717   HBinaryOperation* hdiv = instr->hydrogen();
   1718   Register dividend = ToRegister(instr->dividend());
   1719   Register divisor = ToRegister(instr->divisor());
   1720   Register remainder = ToRegister(instr->temp());
   1721   Register result = ToRegister(instr->result());
   1722   DCHECK(dividend.is(eax));
   1723   DCHECK(remainder.is(edx));
   1724   DCHECK(result.is(eax));
   1725   DCHECK(!divisor.is(eax));
   1726   DCHECK(!divisor.is(edx));
   1727 
   1728   // Check for x / 0.
   1729   if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
   1730     __ test(divisor, divisor);
   1731     DeoptimizeIf(zero, instr, "division by zero");
   1732   }
   1733 
   1734   // Check for (0 / -x) that will produce negative zero.
   1735   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
   1736     Label dividend_not_zero;
   1737     __ test(dividend, dividend);
   1738     __ j(not_zero, &dividend_not_zero, Label::kNear);
   1739     __ test(divisor, divisor);
   1740     DeoptimizeIf(sign, instr, "minus zero");
   1741     __ bind(&dividend_not_zero);
   1742   }
   1743 
   1744   // Check for (kMinInt / -1).
   1745   if (hdiv->CheckFlag(HValue::kCanOverflow)) {
   1746     Label dividend_not_min_int;
   1747     __ cmp(dividend, kMinInt);
   1748     __ j(not_zero, &dividend_not_min_int, Label::kNear);
   1749     __ cmp(divisor, -1);
   1750     DeoptimizeIf(zero, instr, "overflow");
   1751     __ bind(&dividend_not_min_int);
   1752   }
   1753 
   1754   // Sign extend to edx (= remainder).
   1755   __ cdq();
   1756   __ idiv(divisor);
   1757 
   1758   Label done;
   1759   __ test(remainder, remainder);
   1760   __ j(zero, &done, Label::kNear);
   1761   __ xor_(remainder, divisor);
   1762   __ sar(remainder, 31);
   1763   __ add(result, remainder);
   1764   __ bind(&done);
   1765 }
   1766 
   1767 
   1768 void LCodeGen::DoMulI(LMulI* instr) {
   1769   Register left = ToRegister(instr->left());
   1770   LOperand* right = instr->right();
   1771 
   1772   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   1773     __ mov(ToRegister(instr->temp()), left);
   1774   }
   1775 
   1776   if (right->IsConstantOperand()) {
   1777     // Try strength reductions on the multiplication.
   1778     // All replacement instructions are at most as long as the imul
   1779     // and have better latency.
   1780     int constant = ToInteger32(LConstantOperand::cast(right));
   1781     if (constant == -1) {
   1782       __ neg(left);
   1783     } else if (constant == 0) {
   1784       __ xor_(left, Operand(left));
   1785     } else if (constant == 2) {
   1786       __ add(left, Operand(left));
   1787     } else if (!instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
   1788       // If we know that the multiplication can't overflow, it's safe to
   1789       // use instructions that don't set the overflow flag for the
   1790       // multiplication.
   1791       switch (constant) {
   1792         case 1:
   1793           // Do nothing.
   1794           break;
   1795         case 3:
   1796           __ lea(left, Operand(left, left, times_2, 0));
   1797           break;
   1798         case 4:
   1799           __ shl(left, 2);
   1800           break;
   1801         case 5:
   1802           __ lea(left, Operand(left, left, times_4, 0));
   1803           break;
   1804         case 8:
   1805           __ shl(left, 3);
   1806           break;
   1807         case 9:
   1808           __ lea(left, Operand(left, left, times_8, 0));
   1809           break;
   1810         case 16:
   1811           __ shl(left, 4);
   1812           break;
   1813         default:
   1814           __ imul(left, left, constant);
   1815           break;
   1816       }
   1817     } else {
   1818       __ imul(left, left, constant);
   1819     }
   1820   } else {
   1821     if (instr->hydrogen()->representation().IsSmi()) {
   1822       __ SmiUntag(left);
   1823     }
   1824     __ imul(left, ToOperand(right));
   1825   }
   1826 
   1827   if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
   1828     DeoptimizeIf(overflow, instr, "overflow");
   1829   }
   1830 
   1831   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   1832     // Bail out if the result is supposed to be negative zero.
   1833     Label done;
   1834     __ test(left, Operand(left));
   1835     __ j(not_zero, &done);
   1836     if (right->IsConstantOperand()) {
   1837       if (ToInteger32(LConstantOperand::cast(right)) < 0) {
   1838         DeoptimizeIf(no_condition, instr, "minus zero");
   1839       } else if (ToInteger32(LConstantOperand::cast(right)) == 0) {
   1840         __ cmp(ToRegister(instr->temp()), Immediate(0));
   1841         DeoptimizeIf(less, instr, "minus zero");
   1842       }
   1843     } else {
   1844       // Test the non-zero operand for negative sign.
   1845       __ or_(ToRegister(instr->temp()), ToOperand(right));
   1846       DeoptimizeIf(sign, instr, "minus zero");
   1847     }
   1848     __ bind(&done);
   1849   }
   1850 }
   1851 
   1852 
   1853 void LCodeGen::DoBitI(LBitI* instr) {
   1854   LOperand* left = instr->left();
   1855   LOperand* right = instr->right();
   1856   DCHECK(left->Equals(instr->result()));
   1857   DCHECK(left->IsRegister());
   1858 
   1859   if (right->IsConstantOperand()) {
   1860     int32_t right_operand =
   1861         ToRepresentation(LConstantOperand::cast(right),
   1862                          instr->hydrogen()->representation());
   1863     switch (instr->op()) {
   1864       case Token::BIT_AND:
   1865         __ and_(ToRegister(left), right_operand);
   1866         break;
   1867       case Token::BIT_OR:
   1868         __ or_(ToRegister(left), right_operand);
   1869         break;
   1870       case Token::BIT_XOR:
   1871         if (right_operand == int32_t(~0)) {
   1872           __ not_(ToRegister(left));
   1873         } else {
   1874           __ xor_(ToRegister(left), right_operand);
   1875         }
   1876         break;
   1877       default:
   1878         UNREACHABLE();
   1879         break;
   1880     }
   1881   } else {
   1882     switch (instr->op()) {
   1883       case Token::BIT_AND:
   1884         __ and_(ToRegister(left), ToOperand(right));
   1885         break;
   1886       case Token::BIT_OR:
   1887         __ or_(ToRegister(left), ToOperand(right));
   1888         break;
   1889       case Token::BIT_XOR:
   1890         __ xor_(ToRegister(left), ToOperand(right));
   1891         break;
   1892       default:
   1893         UNREACHABLE();
   1894         break;
   1895     }
   1896   }
   1897 }
   1898 
   1899 
   1900 void LCodeGen::DoShiftI(LShiftI* instr) {
   1901   LOperand* left = instr->left();
   1902   LOperand* right = instr->right();
   1903   DCHECK(left->Equals(instr->result()));
   1904   DCHECK(left->IsRegister());
   1905   if (right->IsRegister()) {
   1906     DCHECK(ToRegister(right).is(ecx));
   1907 
   1908     switch (instr->op()) {
   1909       case Token::ROR:
   1910         __ ror_cl(ToRegister(left));
   1911         break;
   1912       case Token::SAR:
   1913         __ sar_cl(ToRegister(left));
   1914         break;
   1915       case Token::SHR:
   1916         __ shr_cl(ToRegister(left));
   1917         if (instr->can_deopt()) {
   1918           __ test(ToRegister(left), ToRegister(left));
   1919           DeoptimizeIf(sign, instr, "negative value");
   1920         }
   1921         break;
   1922       case Token::SHL:
   1923         __ shl_cl(ToRegister(left));
   1924         break;
   1925       default:
   1926         UNREACHABLE();
   1927         break;
   1928     }
   1929   } else {
   1930     int value = ToInteger32(LConstantOperand::cast(right));
   1931     uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
   1932     switch (instr->op()) {
   1933       case Token::ROR:
   1934         if (shift_count == 0 && instr->can_deopt()) {
   1935           __ test(ToRegister(left), ToRegister(left));
   1936           DeoptimizeIf(sign, instr, "negative value");
   1937         } else {
   1938           __ ror(ToRegister(left), shift_count);
   1939         }
   1940         break;
   1941       case Token::SAR:
   1942         if (shift_count != 0) {
   1943           __ sar(ToRegister(left), shift_count);
   1944         }
   1945         break;
   1946       case Token::SHR:
   1947         if (shift_count != 0) {
   1948           __ shr(ToRegister(left), shift_count);
   1949         } else if (instr->can_deopt()) {
   1950           __ test(ToRegister(left), ToRegister(left));
   1951           DeoptimizeIf(sign, instr, "negative value");
   1952         }
   1953         break;
   1954       case Token::SHL:
   1955         if (shift_count != 0) {
   1956           if (instr->hydrogen_value()->representation().IsSmi() &&
   1957               instr->can_deopt()) {
   1958             if (shift_count != 1) {
   1959               __ shl(ToRegister(left), shift_count - 1);
   1960             }
   1961             __ SmiTag(ToRegister(left));
   1962             DeoptimizeIf(overflow, instr, "overflow");
   1963           } else {
   1964             __ shl(ToRegister(left), shift_count);
   1965           }
   1966         }
   1967         break;
   1968       default:
   1969         UNREACHABLE();
   1970         break;
   1971     }
   1972   }
   1973 }
   1974 
   1975 
   1976 void LCodeGen::DoSubI(LSubI* instr) {
   1977   LOperand* left = instr->left();
   1978   LOperand* right = instr->right();
   1979   DCHECK(left->Equals(instr->result()));
   1980 
   1981   if (right->IsConstantOperand()) {
   1982     __ sub(ToOperand(left),
   1983            ToImmediate(right, instr->hydrogen()->representation()));
   1984   } else {
   1985     __ sub(ToRegister(left), ToOperand(right));
   1986   }
   1987   if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
   1988     DeoptimizeIf(overflow, instr, "overflow");
   1989   }
   1990 }
   1991 
   1992 
   1993 void LCodeGen::DoConstantI(LConstantI* instr) {
   1994   __ Move(ToRegister(instr->result()), Immediate(instr->value()));
   1995 }
   1996 
   1997 
   1998 void LCodeGen::DoConstantS(LConstantS* instr) {
   1999   __ Move(ToRegister(instr->result()), Immediate(instr->value()));
   2000 }
   2001 
   2002 
   2003 void LCodeGen::DoConstantD(LConstantD* instr) {
   2004   double v = instr->value();
   2005   uint64_t int_val = bit_cast<uint64_t, double>(v);
   2006   int32_t lower = static_cast<int32_t>(int_val);
   2007   int32_t upper = static_cast<int32_t>(int_val >> (kBitsPerInt));
   2008   DCHECK(instr->result()->IsDoubleRegister());
   2009 
   2010   __ push(Immediate(upper));
   2011   __ push(Immediate(lower));
   2012   X87Register reg = ToX87Register(instr->result());
   2013   X87Mov(reg, Operand(esp, 0));
   2014   __ add(Operand(esp), Immediate(kDoubleSize));
   2015 }
   2016 
   2017 
   2018 void LCodeGen::DoConstantE(LConstantE* instr) {
   2019   __ lea(ToRegister(instr->result()), Operand::StaticVariable(instr->value()));
   2020 }
   2021 
   2022 
   2023 void LCodeGen::DoConstantT(LConstantT* instr) {
   2024   Register reg = ToRegister(instr->result());
   2025   Handle<Object> object = instr->value(isolate());
   2026   AllowDeferredHandleDereference smi_check;
   2027   __ LoadObject(reg, object);
   2028 }
   2029 
   2030 
   2031 void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) {
   2032   Register result = ToRegister(instr->result());
   2033   Register map = ToRegister(instr->value());
   2034   __ EnumLength(result, map);
   2035 }
   2036 
   2037 
   2038 void LCodeGen::DoDateField(LDateField* instr) {
   2039   Register object = ToRegister(instr->date());
   2040   Register result = ToRegister(instr->result());
   2041   Register scratch = ToRegister(instr->temp());
   2042   Smi* index = instr->index();
   2043   Label runtime, done;
   2044   DCHECK(object.is(result));
   2045   DCHECK(object.is(eax));
   2046 
   2047   __ test(object, Immediate(kSmiTagMask));
   2048   DeoptimizeIf(zero, instr, "Smi");
   2049   __ CmpObjectType(object, JS_DATE_TYPE, scratch);
   2050   DeoptimizeIf(not_equal, instr, "not a date object");
   2051 
   2052   if (index->value() == 0) {
   2053     __ mov(result, FieldOperand(object, JSDate::kValueOffset));
   2054   } else {
   2055     if (index->value() < JSDate::kFirstUncachedField) {
   2056       ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
   2057       __ mov(scratch, Operand::StaticVariable(stamp));
   2058       __ cmp(scratch, FieldOperand(object, JSDate::kCacheStampOffset));
   2059       __ j(not_equal, &runtime, Label::kNear);
   2060       __ mov(result, FieldOperand(object, JSDate::kValueOffset +
   2061                                           kPointerSize * index->value()));
   2062       __ jmp(&done, Label::kNear);
   2063     }
   2064     __ bind(&runtime);
   2065     __ PrepareCallCFunction(2, scratch);
   2066     __ mov(Operand(esp, 0), object);
   2067     __ mov(Operand(esp, 1 * kPointerSize), Immediate(index));
   2068     __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
   2069     __ bind(&done);
   2070   }
   2071 }
   2072 
   2073 
   2074 Operand LCodeGen::BuildSeqStringOperand(Register string,
   2075                                         LOperand* index,
   2076                                         String::Encoding encoding) {
   2077   if (index->IsConstantOperand()) {
   2078     int offset = ToRepresentation(LConstantOperand::cast(index),
   2079                                   Representation::Integer32());
   2080     if (encoding == String::TWO_BYTE_ENCODING) {
   2081       offset *= kUC16Size;
   2082     }
   2083     STATIC_ASSERT(kCharSize == 1);
   2084     return FieldOperand(string, SeqString::kHeaderSize + offset);
   2085   }
   2086   return FieldOperand(
   2087       string, ToRegister(index),
   2088       encoding == String::ONE_BYTE_ENCODING ? times_1 : times_2,
   2089       SeqString::kHeaderSize);
   2090 }
   2091 
   2092 
   2093 void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
   2094   String::Encoding encoding = instr->hydrogen()->encoding();
   2095   Register result = ToRegister(instr->result());
   2096   Register string = ToRegister(instr->string());
   2097 
   2098   if (FLAG_debug_code) {
   2099     __ push(string);
   2100     __ mov(string, FieldOperand(string, HeapObject::kMapOffset));
   2101     __ movzx_b(string, FieldOperand(string, Map::kInstanceTypeOffset));
   2102 
   2103     __ and_(string, Immediate(kStringRepresentationMask | kStringEncodingMask));
   2104     static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
   2105     static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
   2106     __ cmp(string, Immediate(encoding == String::ONE_BYTE_ENCODING
   2107                              ? one_byte_seq_type : two_byte_seq_type));
   2108     __ Check(equal, kUnexpectedStringType);
   2109     __ pop(string);
   2110   }
   2111 
   2112   Operand operand = BuildSeqStringOperand(string, instr->index(), encoding);
   2113   if (encoding == String::ONE_BYTE_ENCODING) {
   2114     __ movzx_b(result, operand);
   2115   } else {
   2116     __ movzx_w(result, operand);
   2117   }
   2118 }
   2119 
   2120 
   2121 void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
   2122   String::Encoding encoding = instr->hydrogen()->encoding();
   2123   Register string = ToRegister(instr->string());
   2124 
   2125   if (FLAG_debug_code) {
   2126     Register value = ToRegister(instr->value());
   2127     Register index = ToRegister(instr->index());
   2128     static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
   2129     static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
   2130     int encoding_mask =
   2131         instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
   2132         ? one_byte_seq_type : two_byte_seq_type;
   2133     __ EmitSeqStringSetCharCheck(string, index, value, encoding_mask);
   2134   }
   2135 
   2136   Operand operand = BuildSeqStringOperand(string, instr->index(), encoding);
   2137   if (instr->value()->IsConstantOperand()) {
   2138     int value = ToRepresentation(LConstantOperand::cast(instr->value()),
   2139                                  Representation::Integer32());
   2140     DCHECK_LE(0, value);
   2141     if (encoding == String::ONE_BYTE_ENCODING) {
   2142       DCHECK_LE(value, String::kMaxOneByteCharCode);
   2143       __ mov_b(operand, static_cast<int8_t>(value));
   2144     } else {
   2145       DCHECK_LE(value, String::kMaxUtf16CodeUnit);
   2146       __ mov_w(operand, static_cast<int16_t>(value));
   2147     }
   2148   } else {
   2149     Register value = ToRegister(instr->value());
   2150     if (encoding == String::ONE_BYTE_ENCODING) {
   2151       __ mov_b(operand, value);
   2152     } else {
   2153       __ mov_w(operand, value);
   2154     }
   2155   }
   2156 }
   2157 
   2158 
   2159 void LCodeGen::DoAddI(LAddI* instr) {
   2160   LOperand* left = instr->left();
   2161   LOperand* right = instr->right();
   2162 
   2163   if (LAddI::UseLea(instr->hydrogen()) && !left->Equals(instr->result())) {
   2164     if (right->IsConstantOperand()) {
   2165       int32_t offset = ToRepresentation(LConstantOperand::cast(right),
   2166                                         instr->hydrogen()->representation());
   2167       __ lea(ToRegister(instr->result()), MemOperand(ToRegister(left), offset));
   2168     } else {
   2169       Operand address(ToRegister(left), ToRegister(right), times_1, 0);
   2170       __ lea(ToRegister(instr->result()), address);
   2171     }
   2172   } else {
   2173     if (right->IsConstantOperand()) {
   2174       __ add(ToOperand(left),
   2175              ToImmediate(right, instr->hydrogen()->representation()));
   2176     } else {
   2177       __ add(ToRegister(left), ToOperand(right));
   2178     }
   2179     if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
   2180       DeoptimizeIf(overflow, instr, "overflow");
   2181     }
   2182   }
   2183 }
   2184 
   2185 
   2186 void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
   2187   LOperand* left = instr->left();
   2188   LOperand* right = instr->right();
   2189   DCHECK(left->Equals(instr->result()));
   2190   HMathMinMax::Operation operation = instr->hydrogen()->operation();
   2191   if (instr->hydrogen()->representation().IsSmiOrInteger32()) {
   2192     Label return_left;
   2193     Condition condition = (operation == HMathMinMax::kMathMin)
   2194         ? less_equal
   2195         : greater_equal;
   2196     if (right->IsConstantOperand()) {
   2197       Operand left_op = ToOperand(left);
   2198       Immediate immediate = ToImmediate(LConstantOperand::cast(instr->right()),
   2199                                         instr->hydrogen()->representation());
   2200       __ cmp(left_op, immediate);
   2201       __ j(condition, &return_left, Label::kNear);
   2202       __ mov(left_op, immediate);
   2203     } else {
   2204       Register left_reg = ToRegister(left);
   2205       Operand right_op = ToOperand(right);
   2206       __ cmp(left_reg, right_op);
   2207       __ j(condition, &return_left, Label::kNear);
   2208       __ mov(left_reg, right_op);
   2209     }
   2210     __ bind(&return_left);
   2211   } else {
   2212     DCHECK(instr->hydrogen()->representation().IsDouble());
   2213     Label check_nan_left, check_zero, return_left, return_right;
   2214     Condition condition = (operation == HMathMinMax::kMathMin) ? below : above;
   2215     X87Register left_reg = ToX87Register(left);
   2216     X87Register right_reg = ToX87Register(right);
   2217 
   2218     X87PrepareBinaryOp(left_reg, right_reg, ToX87Register(instr->result()));
   2219     __ fld(1);
   2220     __ fld(1);
   2221     __ FCmp();
   2222     __ j(parity_even, &check_nan_left, Label::kNear);  // At least one NaN.
   2223     __ j(equal, &check_zero, Label::kNear);            // left == right.
   2224     __ j(condition, &return_left, Label::kNear);
   2225     __ jmp(&return_right, Label::kNear);
   2226 
   2227     __ bind(&check_zero);
   2228     __ fld(0);
   2229     __ fldz();
   2230     __ FCmp();
   2231     __ j(not_equal, &return_left, Label::kNear);  // left == right != 0.
   2232     // At this point, both left and right are either 0 or -0.
   2233     if (operation == HMathMinMax::kMathMin) {
   2234       // Push st0 and st1 to stack, then pop them to temp registers and OR them,
   2235       // load it to left.
   2236       Register scratch_reg = ToRegister(instr->temp());
   2237       __ fld(1);
   2238       __ fld(1);
   2239       __ sub(esp, Immediate(2 * kPointerSize));
   2240       __ fstp_s(MemOperand(esp, 0));
   2241       __ fstp_s(MemOperand(esp, kPointerSize));
   2242       __ pop(scratch_reg);
   2243       __ xor_(MemOperand(esp, 0), scratch_reg);
   2244       X87Mov(left_reg, MemOperand(esp, 0), kX87FloatOperand);
   2245       __ pop(scratch_reg);  // restore esp
   2246     } else {
   2247       // Since we operate on +0 and/or -0, addsd and andsd have the same effect.
   2248       X87Fxch(left_reg);
   2249       __ fadd(1);
   2250     }
   2251     __ jmp(&return_left, Label::kNear);
   2252 
   2253     __ bind(&check_nan_left);
   2254     __ fld(0);
   2255     __ fld(0);
   2256     __ FCmp();                                      // NaN check.
   2257     __ j(parity_even, &return_left, Label::kNear);  // left == NaN.
   2258 
   2259     __ bind(&return_right);
   2260     X87Fxch(left_reg);
   2261     X87Mov(left_reg, right_reg);
   2262 
   2263     __ bind(&return_left);
   2264   }
   2265 }
   2266 
   2267 
   2268 void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
   2269   X87Register left = ToX87Register(instr->left());
   2270   X87Register right = ToX87Register(instr->right());
   2271   X87Register result = ToX87Register(instr->result());
   2272   if (instr->op() != Token::MOD) {
   2273     X87PrepareBinaryOp(left, right, result);
   2274   }
   2275   // Set the precision control to double-precision.
   2276   __ X87SetFPUCW(0x027F);
   2277   switch (instr->op()) {
   2278     case Token::ADD:
   2279       __ fadd_i(1);
   2280       break;
   2281     case Token::SUB:
   2282       __ fsub_i(1);
   2283       break;
   2284     case Token::MUL:
   2285       __ fmul_i(1);
   2286       break;
   2287     case Token::DIV:
   2288       __ fdiv_i(1);
   2289       break;
   2290     case Token::MOD: {
   2291       // Pass two doubles as arguments on the stack.
   2292       __ PrepareCallCFunction(4, eax);
   2293       X87Mov(Operand(esp, 1 * kDoubleSize), right);
   2294       X87Mov(Operand(esp, 0), left);
   2295       X87Free(right);
   2296       DCHECK(left.is(result));
   2297       X87PrepareToWrite(result);
   2298       __ CallCFunction(
   2299           ExternalReference::mod_two_doubles_operation(isolate()),
   2300           4);
   2301 
   2302       // Return value is in st(0) on ia32.
   2303       X87CommitWrite(result);
   2304       break;
   2305     }
   2306     default:
   2307       UNREACHABLE();
   2308       break;
   2309   }
   2310 
   2311   // Restore the default value of control word.
   2312   __ X87SetFPUCW(0x037F);
   2313 }
   2314 
   2315 
   2316 void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
   2317   DCHECK(ToRegister(instr->context()).is(esi));
   2318   DCHECK(ToRegister(instr->left()).is(edx));
   2319   DCHECK(ToRegister(instr->right()).is(eax));
   2320   DCHECK(ToRegister(instr->result()).is(eax));
   2321 
   2322   Handle<Code> code =
   2323       CodeFactory::BinaryOpIC(isolate(), instr->op(), NO_OVERWRITE).code();
   2324   CallCode(code, RelocInfo::CODE_TARGET, instr);
   2325 }
   2326 
   2327 
   2328 template<class InstrType>
   2329 void LCodeGen::EmitBranch(InstrType instr, Condition cc) {
   2330   int left_block = instr->TrueDestination(chunk_);
   2331   int right_block = instr->FalseDestination(chunk_);
   2332 
   2333   int next_block = GetNextEmittedBlock();
   2334 
   2335   if (right_block == left_block || cc == no_condition) {
   2336     EmitGoto(left_block);
   2337   } else if (left_block == next_block) {
   2338     __ j(NegateCondition(cc), chunk_->GetAssemblyLabel(right_block));
   2339   } else if (right_block == next_block) {
   2340     __ j(cc, chunk_->GetAssemblyLabel(left_block));
   2341   } else {
   2342     __ j(cc, chunk_->GetAssemblyLabel(left_block));
   2343     __ jmp(chunk_->GetAssemblyLabel(right_block));
   2344   }
   2345 }
   2346 
   2347 
   2348 template<class InstrType>
   2349 void LCodeGen::EmitFalseBranch(InstrType instr, Condition cc) {
   2350   int false_block = instr->FalseDestination(chunk_);
   2351   if (cc == no_condition) {
   2352     __ jmp(chunk_->GetAssemblyLabel(false_block));
   2353   } else {
   2354     __ j(cc, chunk_->GetAssemblyLabel(false_block));
   2355   }
   2356 }
   2357 
   2358 
   2359 void LCodeGen::DoBranch(LBranch* instr) {
   2360   Representation r = instr->hydrogen()->value()->representation();
   2361   if (r.IsSmiOrInteger32()) {
   2362     Register reg = ToRegister(instr->value());
   2363     __ test(reg, Operand(reg));
   2364     EmitBranch(instr, not_zero);
   2365   } else if (r.IsDouble()) {
   2366     X87Register reg = ToX87Register(instr->value());
   2367     X87LoadForUsage(reg);
   2368     __ fldz();
   2369     __ FCmp();
   2370     EmitBranch(instr, not_zero);
   2371   } else {
   2372     DCHECK(r.IsTagged());
   2373     Register reg = ToRegister(instr->value());
   2374     HType type = instr->hydrogen()->value()->type();
   2375     if (type.IsBoolean()) {
   2376       DCHECK(!info()->IsStub());
   2377       __ cmp(reg, factory()->true_value());
   2378       EmitBranch(instr, equal);
   2379     } else if (type.IsSmi()) {
   2380       DCHECK(!info()->IsStub());
   2381       __ test(reg, Operand(reg));
   2382       EmitBranch(instr, not_equal);
   2383     } else if (type.IsJSArray()) {
   2384       DCHECK(!info()->IsStub());
   2385       EmitBranch(instr, no_condition);
   2386     } else if (type.IsHeapNumber()) {
   2387       UNREACHABLE();
   2388     } else if (type.IsString()) {
   2389       DCHECK(!info()->IsStub());
   2390       __ cmp(FieldOperand(reg, String::kLengthOffset), Immediate(0));
   2391       EmitBranch(instr, not_equal);
   2392     } else {
   2393       ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types();
   2394       if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic();
   2395 
   2396       if (expected.Contains(ToBooleanStub::UNDEFINED)) {
   2397         // undefined -> false.
   2398         __ cmp(reg, factory()->undefined_value());
   2399         __ j(equal, instr->FalseLabel(chunk_));
   2400       }
   2401       if (expected.Contains(ToBooleanStub::BOOLEAN)) {
   2402         // true -> true.
   2403         __ cmp(reg, factory()->true_value());
   2404         __ j(equal, instr->TrueLabel(chunk_));
   2405         // false -> false.
   2406         __ cmp(reg, factory()->false_value());
   2407         __ j(equal, instr->FalseLabel(chunk_));
   2408       }
   2409       if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
   2410         // 'null' -> false.
   2411         __ cmp(reg, factory()->null_value());
   2412         __ j(equal, instr->FalseLabel(chunk_));
   2413       }
   2414 
   2415       if (expected.Contains(ToBooleanStub::SMI)) {
   2416         // Smis: 0 -> false, all other -> true.
   2417         __ test(reg, Operand(reg));
   2418         __ j(equal, instr->FalseLabel(chunk_));
   2419         __ JumpIfSmi(reg, instr->TrueLabel(chunk_));
   2420       } else if (expected.NeedsMap()) {
   2421         // If we need a map later and have a Smi -> deopt.
   2422         __ test(reg, Immediate(kSmiTagMask));
   2423         DeoptimizeIf(zero, instr, "Smi");
   2424       }
   2425 
   2426       Register map = no_reg;  // Keep the compiler happy.
   2427       if (expected.NeedsMap()) {
   2428         map = ToRegister(instr->temp());
   2429         DCHECK(!map.is(reg));
   2430         __ mov(map, FieldOperand(reg, HeapObject::kMapOffset));
   2431 
   2432         if (expected.CanBeUndetectable()) {
   2433           // Undetectable -> false.
   2434           __ test_b(FieldOperand(map, Map::kBitFieldOffset),
   2435                     1 << Map::kIsUndetectable);
   2436           __ j(not_zero, instr->FalseLabel(chunk_));
   2437         }
   2438       }
   2439 
   2440       if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) {
   2441         // spec object -> true.
   2442         __ CmpInstanceType(map, FIRST_SPEC_OBJECT_TYPE);
   2443         __ j(above_equal, instr->TrueLabel(chunk_));
   2444       }
   2445 
   2446       if (expected.Contains(ToBooleanStub::STRING)) {
   2447         // String value -> false iff empty.
   2448         Label not_string;
   2449         __ CmpInstanceType(map, FIRST_NONSTRING_TYPE);
   2450         __ j(above_equal, &not_string, Label::kNear);
   2451         __ cmp(FieldOperand(reg, String::kLengthOffset), Immediate(0));
   2452         __ j(not_zero, instr->TrueLabel(chunk_));
   2453         __ jmp(instr->FalseLabel(chunk_));
   2454         __ bind(&not_string);
   2455       }
   2456 
   2457       if (expected.Contains(ToBooleanStub::SYMBOL)) {
   2458         // Symbol value -> true.
   2459         __ CmpInstanceType(map, SYMBOL_TYPE);
   2460         __ j(equal, instr->TrueLabel(chunk_));
   2461       }
   2462 
   2463       if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) {
   2464         // heap number -> false iff +0, -0, or NaN.
   2465         Label not_heap_number;
   2466         __ cmp(FieldOperand(reg, HeapObject::kMapOffset),
   2467                factory()->heap_number_map());
   2468         __ j(not_equal, &not_heap_number, Label::kNear);
   2469         __ fldz();
   2470         __ fld_d(FieldOperand(reg, HeapNumber::kValueOffset));
   2471         __ FCmp();
   2472         __ j(zero, instr->FalseLabel(chunk_));
   2473         __ jmp(instr->TrueLabel(chunk_));
   2474         __ bind(&not_heap_number);
   2475       }
   2476 
   2477       if (!expected.IsGeneric()) {
   2478         // We've seen something for the first time -> deopt.
   2479         // This can only happen if we are not generic already.
   2480         DeoptimizeIf(no_condition, instr, "unexpected object");
   2481       }
   2482     }
   2483   }
   2484 }
   2485 
   2486 
   2487 void LCodeGen::EmitGoto(int block) {
   2488   if (!IsNextEmittedBlock(block)) {
   2489     __ jmp(chunk_->GetAssemblyLabel(LookupDestination(block)));
   2490   }
   2491 }
   2492 
   2493 
   2494 void LCodeGen::DoClobberDoubles(LClobberDoubles* instr) {
   2495 }
   2496 
   2497 
   2498 void LCodeGen::DoGoto(LGoto* instr) {
   2499   EmitGoto(instr->block_id());
   2500 }
   2501 
   2502 
   2503 Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
   2504   Condition cond = no_condition;
   2505   switch (op) {
   2506     case Token::EQ:
   2507     case Token::EQ_STRICT:
   2508       cond = equal;
   2509       break;
   2510     case Token::NE:
   2511     case Token::NE_STRICT:
   2512       cond = not_equal;
   2513       break;
   2514     case Token::LT:
   2515       cond = is_unsigned ? below : less;
   2516       break;
   2517     case Token::GT:
   2518       cond = is_unsigned ? above : greater;
   2519       break;
   2520     case Token::LTE:
   2521       cond = is_unsigned ? below_equal : less_equal;
   2522       break;
   2523     case Token::GTE:
   2524       cond = is_unsigned ? above_equal : greater_equal;
   2525       break;
   2526     case Token::IN:
   2527     case Token::INSTANCEOF:
   2528     default:
   2529       UNREACHABLE();
   2530   }
   2531   return cond;
   2532 }
   2533 
   2534 
   2535 void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
   2536   LOperand* left = instr->left();
   2537   LOperand* right = instr->right();
   2538   bool is_unsigned =
   2539       instr->is_double() ||
   2540       instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
   2541       instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
   2542   Condition cc = TokenToCondition(instr->op(), is_unsigned);
   2543 
   2544   if (left->IsConstantOperand() && right->IsConstantOperand()) {
   2545     // We can statically evaluate the comparison.
   2546     double left_val = ToDouble(LConstantOperand::cast(left));
   2547     double right_val = ToDouble(LConstantOperand::cast(right));
   2548     int next_block = EvalComparison(instr->op(), left_val, right_val) ?
   2549         instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_);
   2550     EmitGoto(next_block);
   2551   } else {
   2552     if (instr->is_double()) {
   2553       X87LoadForUsage(ToX87Register(right), ToX87Register(left));
   2554       __ FCmp();
   2555       // Don't base result on EFLAGS when a NaN is involved. Instead
   2556       // jump to the false block.
   2557       __ j(parity_even, instr->FalseLabel(chunk_));
   2558     } else {
   2559       if (right->IsConstantOperand()) {
   2560         __ cmp(ToOperand(left),
   2561                ToImmediate(right, instr->hydrogen()->representation()));
   2562       } else if (left->IsConstantOperand()) {
   2563         __ cmp(ToOperand(right),
   2564                ToImmediate(left, instr->hydrogen()->representation()));
   2565         // We commuted the operands, so commute the condition.
   2566         cc = CommuteCondition(cc);
   2567       } else {
   2568         __ cmp(ToRegister(left), ToOperand(right));
   2569       }
   2570     }
   2571     EmitBranch(instr, cc);
   2572   }
   2573 }
   2574 
   2575 
   2576 void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
   2577   Register left = ToRegister(instr->left());
   2578 
   2579   if (instr->right()->IsConstantOperand()) {
   2580     Handle<Object> right = ToHandle(LConstantOperand::cast(instr->right()));
   2581     __ CmpObject(left, right);
   2582   } else {
   2583     Operand right = ToOperand(instr->right());
   2584     __ cmp(left, right);
   2585   }
   2586   EmitBranch(instr, equal);
   2587 }
   2588 
   2589 
   2590 void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) {
   2591   if (instr->hydrogen()->representation().IsTagged()) {
   2592     Register input_reg = ToRegister(instr->object());
   2593     __ cmp(input_reg, factory()->the_hole_value());
   2594     EmitBranch(instr, equal);
   2595     return;
   2596   }
   2597 
   2598   // Put the value to the top of stack
   2599   X87Register src = ToX87Register(instr->object());
   2600   X87LoadForUsage(src);
   2601   __ fld(0);
   2602   __ fld(0);
   2603   __ FCmp();
   2604   Label ok;
   2605   __ j(parity_even, &ok, Label::kNear);
   2606   __ fstp(0);
   2607   EmitFalseBranch(instr, no_condition);
   2608   __ bind(&ok);
   2609 
   2610 
   2611   __ sub(esp, Immediate(kDoubleSize));
   2612   __ fstp_d(MemOperand(esp, 0));
   2613 
   2614   __ add(esp, Immediate(kDoubleSize));
   2615   int offset = sizeof(kHoleNanUpper32);
   2616   __ cmp(MemOperand(esp, -offset), Immediate(kHoleNanUpper32));
   2617   EmitBranch(instr, equal);
   2618 }
   2619 
   2620 
   2621 void LCodeGen::DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch* instr) {
   2622   Representation rep = instr->hydrogen()->value()->representation();
   2623   DCHECK(!rep.IsInteger32());
   2624 
   2625   if (rep.IsDouble()) {
   2626     X87Register input = ToX87Register(instr->value());
   2627     X87LoadForUsage(input);
   2628     __ FXamMinusZero();
   2629     EmitBranch(instr, equal);
   2630   } else {
   2631     Register value = ToRegister(instr->value());
   2632     Handle<Map> map = masm()->isolate()->factory()->heap_number_map();
   2633     __ CheckMap(value, map, instr->FalseLabel(chunk()), DO_SMI_CHECK);
   2634     __ cmp(FieldOperand(value, HeapNumber::kExponentOffset),
   2635            Immediate(0x1));
   2636     EmitFalseBranch(instr, no_overflow);
   2637     __ cmp(FieldOperand(value, HeapNumber::kMantissaOffset),
   2638            Immediate(0x00000000));
   2639     EmitBranch(instr, equal);
   2640   }
   2641 }
   2642 
   2643 
   2644 Condition LCodeGen::EmitIsObject(Register input,
   2645                                  Register temp1,
   2646                                  Label* is_not_object,
   2647                                  Label* is_object) {
   2648   __ JumpIfSmi(input, is_not_object);
   2649 
   2650   __ cmp(input, isolate()->factory()->null_value());
   2651   __ j(equal, is_object);
   2652 
   2653   __ mov(temp1, FieldOperand(input, HeapObject::kMapOffset));
   2654   // Undetectable objects behave like undefined.
   2655   __ test_b(FieldOperand(temp1, Map::kBitFieldOffset),
   2656             1 << Map::kIsUndetectable);
   2657   __ j(not_zero, is_not_object);
   2658 
   2659   __ movzx_b(temp1, FieldOperand(temp1, Map::kInstanceTypeOffset));
   2660   __ cmp(temp1, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE);
   2661   __ j(below, is_not_object);
   2662   __ cmp(temp1, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
   2663   return below_equal;
   2664 }
   2665 
   2666 
   2667 void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) {
   2668   Register reg = ToRegister(instr->value());
   2669   Register temp = ToRegister(instr->temp());
   2670 
   2671   Condition true_cond = EmitIsObject(
   2672       reg, temp, instr->FalseLabel(chunk_), instr->TrueLabel(chunk_));
   2673 
   2674   EmitBranch(instr, true_cond);
   2675 }
   2676 
   2677 
   2678 Condition LCodeGen::EmitIsString(Register input,
   2679                                  Register temp1,
   2680                                  Label* is_not_string,
   2681                                  SmiCheck check_needed = INLINE_SMI_CHECK) {
   2682   if (check_needed == INLINE_SMI_CHECK) {
   2683     __ JumpIfSmi(input, is_not_string);
   2684   }
   2685 
   2686   Condition cond = masm_->IsObjectStringType(input, temp1, temp1);
   2687 
   2688   return cond;
   2689 }
   2690 
   2691 
   2692 void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
   2693   Register reg = ToRegister(instr->value());
   2694   Register temp = ToRegister(instr->temp());
   2695 
   2696   SmiCheck check_needed =
   2697       instr->hydrogen()->value()->type().IsHeapObject()
   2698           ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
   2699 
   2700   Condition true_cond = EmitIsString(
   2701       reg, temp, instr->FalseLabel(chunk_), check_needed);
   2702 
   2703   EmitBranch(instr, true_cond);
   2704 }
   2705 
   2706 
   2707 void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
   2708   Operand input = ToOperand(instr->value());
   2709 
   2710   __ test(input, Immediate(kSmiTagMask));
   2711   EmitBranch(instr, zero);
   2712 }
   2713 
   2714 
   2715 void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
   2716   Register input = ToRegister(instr->value());
   2717   Register temp = ToRegister(instr->temp());
   2718 
   2719   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
   2720     STATIC_ASSERT(kSmiTag == 0);
   2721     __ JumpIfSmi(input, instr->FalseLabel(chunk_));
   2722   }
   2723   __ mov(temp, FieldOperand(input, HeapObject::kMapOffset));
   2724   __ test_b(FieldOperand(temp, Map::kBitFieldOffset),
   2725             1 << Map::kIsUndetectable);
   2726   EmitBranch(instr, not_zero);
   2727 }
   2728 
   2729 
   2730 static Condition ComputeCompareCondition(Token::Value op) {
   2731   switch (op) {
   2732     case Token::EQ_STRICT:
   2733     case Token::EQ:
   2734       return equal;
   2735     case Token::LT:
   2736       return less;
   2737     case Token::GT:
   2738       return greater;
   2739     case Token::LTE:
   2740       return less_equal;
   2741     case Token::GTE:
   2742       return greater_equal;
   2743     default:
   2744       UNREACHABLE();
   2745       return no_condition;
   2746   }
   2747 }
   2748 
   2749 
   2750 void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
   2751   Token::Value op = instr->op();
   2752 
   2753   Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
   2754   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   2755 
   2756   Condition condition = ComputeCompareCondition(op);
   2757   __ test(eax, Operand(eax));
   2758 
   2759   EmitBranch(instr, condition);
   2760 }
   2761 
   2762 
   2763 static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
   2764   InstanceType from = instr->from();
   2765   InstanceType to = instr->to();
   2766   if (from == FIRST_TYPE) return to;
   2767   DCHECK(from == to || to == LAST_TYPE);
   2768   return from;
   2769 }
   2770 
   2771 
   2772 static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
   2773   InstanceType from = instr->from();
   2774   InstanceType to = instr->to();
   2775   if (from == to) return equal;
   2776   if (to == LAST_TYPE) return above_equal;
   2777   if (from == FIRST_TYPE) return below_equal;
   2778   UNREACHABLE();
   2779   return equal;
   2780 }
   2781 
   2782 
   2783 void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
   2784   Register input = ToRegister(instr->value());
   2785   Register temp = ToRegister(instr->temp());
   2786 
   2787   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
   2788     __ JumpIfSmi(input, instr->FalseLabel(chunk_));
   2789   }
   2790 
   2791   __ CmpObjectType(input, TestType(instr->hydrogen()), temp);
   2792   EmitBranch(instr, BranchCondition(instr->hydrogen()));
   2793 }
   2794 
   2795 
   2796 void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
   2797   Register input = ToRegister(instr->value());
   2798   Register result = ToRegister(instr->result());
   2799 
   2800   __ AssertString(input);
   2801 
   2802   __ mov(result, FieldOperand(input, String::kHashFieldOffset));
   2803   __ IndexFromHash(result, result);
   2804 }
   2805 
   2806 
   2807 void LCodeGen::DoHasCachedArrayIndexAndBranch(
   2808     LHasCachedArrayIndexAndBranch* instr) {
   2809   Register input = ToRegister(instr->value());
   2810 
   2811   __ test(FieldOperand(input, String::kHashFieldOffset),
   2812           Immediate(String::kContainsCachedArrayIndexMask));
   2813   EmitBranch(instr, equal);
   2814 }
   2815 
   2816 
   2817 // Branches to a label or falls through with the answer in the z flag.  Trashes
   2818 // the temp registers, but not the input.
   2819 void LCodeGen::EmitClassOfTest(Label* is_true,
   2820                                Label* is_false,
   2821                                Handle<String>class_name,
   2822                                Register input,
   2823                                Register temp,
   2824                                Register temp2) {
   2825   DCHECK(!input.is(temp));
   2826   DCHECK(!input.is(temp2));
   2827   DCHECK(!temp.is(temp2));
   2828   __ JumpIfSmi(input, is_false);
   2829 
   2830   if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
   2831     // Assuming the following assertions, we can use the same compares to test
   2832     // for both being a function type and being in the object type range.
   2833     STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
   2834     STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
   2835                   FIRST_SPEC_OBJECT_TYPE + 1);
   2836     STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
   2837                   LAST_SPEC_OBJECT_TYPE - 1);
   2838     STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
   2839     __ CmpObjectType(input, FIRST_SPEC_OBJECT_TYPE, temp);
   2840     __ j(below, is_false);
   2841     __ j(equal, is_true);
   2842     __ CmpInstanceType(temp, LAST_SPEC_OBJECT_TYPE);
   2843     __ j(equal, is_true);
   2844   } else {
   2845     // Faster code path to avoid two compares: subtract lower bound from the
   2846     // actual type and do a signed compare with the width of the type range.
   2847     __ mov(temp, FieldOperand(input, HeapObject::kMapOffset));
   2848     __ movzx_b(temp2, FieldOperand(temp, Map::kInstanceTypeOffset));
   2849     __ sub(Operand(temp2), Immediate(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
   2850     __ cmp(Operand(temp2), Immediate(LAST_NONCALLABLE_SPEC_OBJECT_TYPE -
   2851                                      FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
   2852     __ j(above, is_false);
   2853   }
   2854 
   2855   // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range.
   2856   // Check if the constructor in the map is a function.
   2857   __ mov(temp, FieldOperand(temp, Map::kConstructorOffset));
   2858   // Objects with a non-function constructor have class 'Object'.
   2859   __ CmpObjectType(temp, JS_FUNCTION_TYPE, temp2);
   2860   if (String::Equals(class_name, isolate()->factory()->Object_string())) {
   2861     __ j(not_equal, is_true);
   2862   } else {
   2863     __ j(not_equal, is_false);
   2864   }
   2865 
   2866   // temp now contains the constructor function. Grab the
   2867   // instance class name from there.
   2868   __ mov(temp, FieldOperand(temp, JSFunction::kSharedFunctionInfoOffset));
   2869   __ mov(temp, FieldOperand(temp,
   2870                             SharedFunctionInfo::kInstanceClassNameOffset));
   2871   // The class name we are testing against is internalized since it's a literal.
   2872   // The name in the constructor is internalized because of the way the context
   2873   // is booted.  This routine isn't expected to work for random API-created
   2874   // classes and it doesn't have to because you can't access it with natives
   2875   // syntax.  Since both sides are internalized it is sufficient to use an
   2876   // identity comparison.
   2877   __ cmp(temp, class_name);
   2878   // End with the answer in the z flag.
   2879 }
   2880 
   2881 
   2882 void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
   2883   Register input = ToRegister(instr->value());
   2884   Register temp = ToRegister(instr->temp());
   2885   Register temp2 = ToRegister(instr->temp2());
   2886 
   2887   Handle<String> class_name = instr->hydrogen()->class_name();
   2888 
   2889   EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
   2890       class_name, input, temp, temp2);
   2891 
   2892   EmitBranch(instr, equal);
   2893 }
   2894 
   2895 
   2896 void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
   2897   Register reg = ToRegister(instr->value());
   2898   __ cmp(FieldOperand(reg, HeapObject::kMapOffset), instr->map());
   2899   EmitBranch(instr, equal);
   2900 }
   2901 
   2902 
   2903 void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
   2904   // Object and function are in fixed registers defined by the stub.
   2905   DCHECK(ToRegister(instr->context()).is(esi));
   2906   InstanceofStub stub(isolate(), InstanceofStub::kArgsInRegisters);
   2907   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   2908 
   2909   Label true_value, done;
   2910   __ test(eax, Operand(eax));
   2911   __ j(zero, &true_value, Label::kNear);
   2912   __ mov(ToRegister(instr->result()), factory()->false_value());
   2913   __ jmp(&done, Label::kNear);
   2914   __ bind(&true_value);
   2915   __ mov(ToRegister(instr->result()), factory()->true_value());
   2916   __ bind(&done);
   2917 }
   2918 
   2919 
   2920 void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) {
   2921   class DeferredInstanceOfKnownGlobal FINAL : public LDeferredCode {
   2922    public:
   2923     DeferredInstanceOfKnownGlobal(LCodeGen* codegen,
   2924                                   LInstanceOfKnownGlobal* instr,
   2925                                   const X87Stack& x87_stack)
   2926         : LDeferredCode(codegen, x87_stack), instr_(instr) { }
   2927     virtual void Generate() OVERRIDE {
   2928       codegen()->DoDeferredInstanceOfKnownGlobal(instr_, &map_check_);
   2929     }
   2930     virtual LInstruction* instr() OVERRIDE { return instr_; }
   2931     Label* map_check() { return &map_check_; }
   2932    private:
   2933     LInstanceOfKnownGlobal* instr_;
   2934     Label map_check_;
   2935   };
   2936 
   2937   DeferredInstanceOfKnownGlobal* deferred;
   2938   deferred = new(zone()) DeferredInstanceOfKnownGlobal(this, instr, x87_stack_);
   2939 
   2940   Label done, false_result;
   2941   Register object = ToRegister(instr->value());
   2942   Register temp = ToRegister(instr->temp());
   2943 
   2944   // A Smi is not an instance of anything.
   2945   __ JumpIfSmi(object, &false_result, Label::kNear);
   2946 
   2947   // This is the inlined call site instanceof cache. The two occurences of the
   2948   // hole value will be patched to the last map/result pair generated by the
   2949   // instanceof stub.
   2950   Label cache_miss;
   2951   Register map = ToRegister(instr->temp());
   2952   __ mov(map, FieldOperand(object, HeapObject::kMapOffset));
   2953   __ bind(deferred->map_check());  // Label for calculating code patching.
   2954   Handle<Cell> cache_cell = factory()->NewCell(factory()->the_hole_value());
   2955   __ cmp(map, Operand::ForCell(cache_cell));  // Patched to cached map.
   2956   __ j(not_equal, &cache_miss, Label::kNear);
   2957   __ mov(eax, factory()->the_hole_value());  // Patched to either true or false.
   2958   __ jmp(&done, Label::kNear);
   2959 
   2960   // The inlined call site cache did not match. Check for null and string
   2961   // before calling the deferred code.
   2962   __ bind(&cache_miss);
   2963   // Null is not an instance of anything.
   2964   __ cmp(object, factory()->null_value());
   2965   __ j(equal, &false_result, Label::kNear);
   2966 
   2967   // String values are not instances of anything.
   2968   Condition is_string = masm_->IsObjectStringType(object, temp, temp);
   2969   __ j(is_string, &false_result, Label::kNear);
   2970 
   2971   // Go to the deferred code.
   2972   __ jmp(deferred->entry());
   2973 
   2974   __ bind(&false_result);
   2975   __ mov(ToRegister(instr->result()), factory()->false_value());
   2976 
   2977   // Here result has either true or false. Deferred code also produces true or
   2978   // false object.
   2979   __ bind(deferred->exit());
   2980   __ bind(&done);
   2981 }
   2982 
   2983 
   2984 void LCodeGen::DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr,
   2985                                                Label* map_check) {
   2986   PushSafepointRegistersScope scope(this);
   2987 
   2988   InstanceofStub::Flags flags = InstanceofStub::kNoFlags;
   2989   flags = static_cast<InstanceofStub::Flags>(
   2990       flags | InstanceofStub::kArgsInRegisters);
   2991   flags = static_cast<InstanceofStub::Flags>(
   2992       flags | InstanceofStub::kCallSiteInlineCheck);
   2993   flags = static_cast<InstanceofStub::Flags>(
   2994       flags | InstanceofStub::kReturnTrueFalseObject);
   2995   InstanceofStub stub(isolate(), flags);
   2996 
   2997   // Get the temp register reserved by the instruction. This needs to be a
   2998   // register which is pushed last by PushSafepointRegisters as top of the
   2999   // stack is used to pass the offset to the location of the map check to
   3000   // the stub.
   3001   Register temp = ToRegister(instr->temp());
   3002   DCHECK(MacroAssembler::SafepointRegisterStackIndex(temp) == 0);
   3003   __ LoadHeapObject(InstanceofStub::right(), instr->function());
   3004   static const int kAdditionalDelta = 13;
   3005   int delta = masm_->SizeOfCodeGeneratedSince(map_check) + kAdditionalDelta;
   3006   __ mov(temp, Immediate(delta));
   3007   __ StoreToSafepointRegisterSlot(temp, temp);
   3008   CallCodeGeneric(stub.GetCode(),
   3009                   RelocInfo::CODE_TARGET,
   3010                   instr,
   3011                   RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
   3012   // Get the deoptimization index of the LLazyBailout-environment that
   3013   // corresponds to this instruction.
   3014   LEnvironment* env = instr->GetDeferredLazyDeoptimizationEnvironment();
   3015   safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
   3016 
   3017   // Put the result value into the eax slot and restore all registers.
   3018   __ StoreToSafepointRegisterSlot(eax, eax);
   3019 }
   3020 
   3021 
   3022 void LCodeGen::DoCmpT(LCmpT* instr) {
   3023   Token::Value op = instr->op();
   3024 
   3025   Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
   3026   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   3027 
   3028   Condition condition = ComputeCompareCondition(op);
   3029   Label true_value, done;
   3030   __ test(eax, Operand(eax));
   3031   __ j(condition, &true_value, Label::kNear);
   3032   __ mov(ToRegister(instr->result()), factory()->false_value());
   3033   __ jmp(&done, Label::kNear);
   3034   __ bind(&true_value);
   3035   __ mov(ToRegister(instr->result()), factory()->true_value());
   3036   __ bind(&done);
   3037 }
   3038 
   3039 
   3040 void LCodeGen::EmitReturn(LReturn* instr, bool dynamic_frame_alignment) {
   3041   int extra_value_count = dynamic_frame_alignment ? 2 : 1;
   3042 
   3043   if (instr->has_constant_parameter_count()) {
   3044     int parameter_count = ToInteger32(instr->constant_parameter_count());
   3045     if (dynamic_frame_alignment && FLAG_debug_code) {
   3046       __ cmp(Operand(esp,
   3047                      (parameter_count + extra_value_count) * kPointerSize),
   3048              Immediate(kAlignmentZapValue));
   3049       __ Assert(equal, kExpectedAlignmentMarker);
   3050     }
   3051     __ Ret((parameter_count + extra_value_count) * kPointerSize, ecx);
   3052   } else {
   3053     Register reg = ToRegister(instr->parameter_count());
   3054     // The argument count parameter is a smi
   3055     __ SmiUntag(reg);
   3056     Register return_addr_reg = reg.is(ecx) ? ebx : ecx;
   3057     if (dynamic_frame_alignment && FLAG_debug_code) {
   3058       DCHECK(extra_value_count == 2);
   3059       __ cmp(Operand(esp, reg, times_pointer_size,
   3060                      extra_value_count * kPointerSize),
   3061              Immediate(kAlignmentZapValue));
   3062       __ Assert(equal, kExpectedAlignmentMarker);
   3063     }
   3064 
   3065     // emit code to restore stack based on instr->parameter_count()
   3066     __ pop(return_addr_reg);  // save return address
   3067     if (dynamic_frame_alignment) {
   3068       __ inc(reg);  // 1 more for alignment
   3069     }
   3070     __ shl(reg, kPointerSizeLog2);
   3071     __ add(esp, reg);
   3072     __ jmp(return_addr_reg);
   3073   }
   3074 }
   3075 
   3076 
   3077 void LCodeGen::DoReturn(LReturn* instr) {
   3078   if (FLAG_trace && info()->IsOptimizing()) {
   3079     // Preserve the return value on the stack and rely on the runtime call
   3080     // to return the value in the same register.  We're leaving the code
   3081     // managed by the register allocator and tearing down the frame, it's
   3082     // safe to write to the context register.
   3083     __ push(eax);
   3084     __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
   3085     __ CallRuntime(Runtime::kTraceExit, 1);
   3086   }
   3087   if (dynamic_frame_alignment_) {
   3088     // Fetch the state of the dynamic frame alignment.
   3089     __ mov(edx, Operand(ebp,
   3090       JavaScriptFrameConstants::kDynamicAlignmentStateOffset));
   3091   }
   3092   int no_frame_start = -1;
   3093   if (NeedsEagerFrame()) {
   3094     __ mov(esp, ebp);
   3095     __ pop(ebp);
   3096     no_frame_start = masm_->pc_offset();
   3097   }
   3098   if (dynamic_frame_alignment_) {
   3099     Label no_padding;
   3100     __ cmp(edx, Immediate(kNoAlignmentPadding));
   3101     __ j(equal, &no_padding, Label::kNear);
   3102 
   3103     EmitReturn(instr, true);
   3104     __ bind(&no_padding);
   3105   }
   3106 
   3107   EmitReturn(instr, false);
   3108   if (no_frame_start != -1) {
   3109     info()->AddNoFrameRange(no_frame_start, masm_->pc_offset());
   3110   }
   3111 }
   3112 
   3113 
   3114 void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) {
   3115   Register result = ToRegister(instr->result());
   3116   __ mov(result, Operand::ForCell(instr->hydrogen()->cell().handle()));
   3117   if (instr->hydrogen()->RequiresHoleCheck()) {
   3118     __ cmp(result, factory()->the_hole_value());
   3119     DeoptimizeIf(equal, instr, "hole");
   3120   }
   3121 }
   3122 
   3123 
   3124 template <class T>
   3125 void LCodeGen::EmitVectorLoadICRegisters(T* instr) {
   3126   DCHECK(FLAG_vector_ics);
   3127   Register vector = ToRegister(instr->temp_vector());
   3128   DCHECK(vector.is(VectorLoadICDescriptor::VectorRegister()));
   3129   __ mov(vector, instr->hydrogen()->feedback_vector());
   3130   // No need to allocate this register.
   3131   DCHECK(VectorLoadICDescriptor::SlotRegister().is(eax));
   3132   __ mov(VectorLoadICDescriptor::SlotRegister(),
   3133          Immediate(Smi::FromInt(instr->hydrogen()->slot())));
   3134 }
   3135 
   3136 
   3137 void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
   3138   DCHECK(ToRegister(instr->context()).is(esi));
   3139   DCHECK(ToRegister(instr->global_object())
   3140              .is(LoadDescriptor::ReceiverRegister()));
   3141   DCHECK(ToRegister(instr->result()).is(eax));
   3142 
   3143   __ mov(LoadDescriptor::NameRegister(), instr->name());
   3144   if (FLAG_vector_ics) {
   3145     EmitVectorLoadICRegisters<LLoadGlobalGeneric>(instr);
   3146   }
   3147   ContextualMode mode = instr->for_typeof() ? NOT_CONTEXTUAL : CONTEXTUAL;
   3148   Handle<Code> ic = CodeFactory::LoadIC(isolate(), mode).code();
   3149   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   3150 }
   3151 
   3152 
   3153 void LCodeGen::DoStoreGlobalCell(LStoreGlobalCell* instr) {
   3154   Register value = ToRegister(instr->value());
   3155   Handle<PropertyCell> cell_handle = instr->hydrogen()->cell().handle();
   3156 
   3157   // If the cell we are storing to contains the hole it could have
   3158   // been deleted from the property dictionary. In that case, we need
   3159   // to update the property details in the property dictionary to mark
   3160   // it as no longer deleted. We deoptimize in that case.
   3161   if (instr->hydrogen()->RequiresHoleCheck()) {
   3162     __ cmp(Operand::ForCell(cell_handle), factory()->the_hole_value());
   3163     DeoptimizeIf(equal, instr, "hole");
   3164   }
   3165 
   3166   // Store the value.
   3167   __ mov(Operand::ForCell(cell_handle), value);
   3168   // Cells are always rescanned, so no write barrier here.
   3169 }
   3170 
   3171 
   3172 void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
   3173   Register context = ToRegister(instr->context());
   3174   Register result = ToRegister(instr->result());
   3175   __ mov(result, ContextOperand(context, instr->slot_index()));
   3176 
   3177   if (instr->hydrogen()->RequiresHoleCheck()) {
   3178     __ cmp(result, factory()->the_hole_value());
   3179     if (instr->hydrogen()->DeoptimizesOnHole()) {
   3180       DeoptimizeIf(equal, instr, "hole");
   3181     } else {
   3182       Label is_not_hole;
   3183       __ j(not_equal, &is_not_hole, Label::kNear);
   3184       __ mov(result, factory()->undefined_value());
   3185       __ bind(&is_not_hole);
   3186     }
   3187   }
   3188 }
   3189 
   3190 
   3191 void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
   3192   Register context = ToRegister(instr->context());
   3193   Register value = ToRegister(instr->value());
   3194 
   3195   Label skip_assignment;
   3196 
   3197   Operand target = ContextOperand(context, instr->slot_index());
   3198   if (instr->hydrogen()->RequiresHoleCheck()) {
   3199     __ cmp(target, factory()->the_hole_value());
   3200     if (instr->hydrogen()->DeoptimizesOnHole()) {
   3201       DeoptimizeIf(equal, instr, "hole");
   3202     } else {
   3203       __ j(not_equal, &skip_assignment, Label::kNear);
   3204     }
   3205   }
   3206 
   3207   __ mov(target, value);
   3208   if (instr->hydrogen()->NeedsWriteBarrier()) {
   3209     SmiCheck check_needed =
   3210         instr->hydrogen()->value()->type().IsHeapObject()
   3211             ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
   3212     Register temp = ToRegister(instr->temp());
   3213     int offset = Context::SlotOffset(instr->slot_index());
   3214     __ RecordWriteContextSlot(context, offset, value, temp, kSaveFPRegs,
   3215                               EMIT_REMEMBERED_SET, check_needed);
   3216   }
   3217 
   3218   __ bind(&skip_assignment);
   3219 }
   3220 
   3221 
   3222 void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
   3223   HObjectAccess access = instr->hydrogen()->access();
   3224   int offset = access.offset();
   3225 
   3226   if (access.IsExternalMemory()) {
   3227     Register result = ToRegister(instr->result());
   3228     MemOperand operand = instr->object()->IsConstantOperand()
   3229         ? MemOperand::StaticVariable(ToExternalReference(
   3230                 LConstantOperand::cast(instr->object())))
   3231         : MemOperand(ToRegister(instr->object()), offset);
   3232     __ Load(result, operand, access.representation());
   3233     return;
   3234   }
   3235 
   3236   Register object = ToRegister(instr->object());
   3237   if (instr->hydrogen()->representation().IsDouble()) {
   3238     X87Mov(ToX87Register(instr->result()), FieldOperand(object, offset));
   3239     return;
   3240   }
   3241 
   3242   Register result = ToRegister(instr->result());
   3243   if (!access.IsInobject()) {
   3244     __ mov(result, FieldOperand(object, JSObject::kPropertiesOffset));
   3245     object = result;
   3246   }
   3247   __ Load(result, FieldOperand(object, offset), access.representation());
   3248 }
   3249 
   3250 
   3251 void LCodeGen::EmitPushTaggedOperand(LOperand* operand) {
   3252   DCHECK(!operand->IsDoubleRegister());
   3253   if (operand->IsConstantOperand()) {
   3254     Handle<Object> object = ToHandle(LConstantOperand::cast(operand));
   3255     AllowDeferredHandleDereference smi_check;
   3256     if (object->IsSmi()) {
   3257       __ Push(Handle<Smi>::cast(object));
   3258     } else {
   3259       __ PushHeapObject(Handle<HeapObject>::cast(object));
   3260     }
   3261   } else if (operand->IsRegister()) {
   3262     __ push(ToRegister(operand));
   3263   } else {
   3264     __ push(ToOperand(operand));
   3265   }
   3266 }
   3267 
   3268 
   3269 void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
   3270   DCHECK(ToRegister(instr->context()).is(esi));
   3271   DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
   3272   DCHECK(ToRegister(instr->result()).is(eax));
   3273 
   3274   __ mov(LoadDescriptor::NameRegister(), instr->name());
   3275   if (FLAG_vector_ics) {
   3276     EmitVectorLoadICRegisters<LLoadNamedGeneric>(instr);
   3277   }
   3278   Handle<Code> ic = CodeFactory::LoadIC(isolate(), NOT_CONTEXTUAL).code();
   3279   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   3280 }
   3281 
   3282 
   3283 void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
   3284   Register function = ToRegister(instr->function());
   3285   Register temp = ToRegister(instr->temp());
   3286   Register result = ToRegister(instr->result());
   3287 
   3288   // Get the prototype or initial map from the function.
   3289   __ mov(result,
   3290          FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
   3291 
   3292   // Check that the function has a prototype or an initial map.
   3293   __ cmp(Operand(result), Immediate(factory()->the_hole_value()));
   3294   DeoptimizeIf(equal, instr, "hole");
   3295 
   3296   // If the function does not have an initial map, we're done.
   3297   Label done;
   3298   __ CmpObjectType(result, MAP_TYPE, temp);
   3299   __ j(not_equal, &done, Label::kNear);
   3300 
   3301   // Get the prototype from the initial map.
   3302   __ mov(result, FieldOperand(result, Map::kPrototypeOffset));
   3303 
   3304   // All done.
   3305   __ bind(&done);
   3306 }
   3307 
   3308 
   3309 void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
   3310   Register result = ToRegister(instr->result());
   3311   __ LoadRoot(result, instr->index());
   3312 }
   3313 
   3314 
   3315 void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
   3316   Register arguments = ToRegister(instr->arguments());
   3317   Register result = ToRegister(instr->result());
   3318   if (instr->length()->IsConstantOperand() &&
   3319       instr->index()->IsConstantOperand()) {
   3320     int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
   3321     int const_length = ToInteger32(LConstantOperand::cast(instr->length()));
   3322     int index = (const_length - const_index) + 1;
   3323     __ mov(result, Operand(arguments, index * kPointerSize));
   3324   } else {
   3325     Register length = ToRegister(instr->length());
   3326     Operand index = ToOperand(instr->index());
   3327     // There are two words between the frame pointer and the last argument.
   3328     // Subtracting from length accounts for one of them add one more.
   3329     __ sub(length, index);
   3330     __ mov(result, Operand(arguments, length, times_4, kPointerSize));
   3331   }
   3332 }
   3333 
   3334 
   3335 void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) {
   3336   ElementsKind elements_kind = instr->elements_kind();
   3337   LOperand* key = instr->key();
   3338   if (!key->IsConstantOperand() &&
   3339       ExternalArrayOpRequiresTemp(instr->hydrogen()->key()->representation(),
   3340                                   elements_kind)) {
   3341     __ SmiUntag(ToRegister(key));
   3342   }
   3343   Operand operand(BuildFastArrayOperand(
   3344       instr->elements(),
   3345       key,
   3346       instr->hydrogen()->key()->representation(),
   3347       elements_kind,
   3348       instr->base_offset()));
   3349   if (elements_kind == EXTERNAL_FLOAT32_ELEMENTS ||
   3350       elements_kind == FLOAT32_ELEMENTS) {
   3351     X87Mov(ToX87Register(instr->result()), operand, kX87FloatOperand);
   3352   } else if (elements_kind == EXTERNAL_FLOAT64_ELEMENTS ||
   3353              elements_kind == FLOAT64_ELEMENTS) {
   3354     X87Mov(ToX87Register(instr->result()), operand);
   3355   } else {
   3356     Register result(ToRegister(instr->result()));
   3357     switch (elements_kind) {
   3358       case EXTERNAL_INT8_ELEMENTS:
   3359       case INT8_ELEMENTS:
   3360         __ movsx_b(result, operand);
   3361         break;
   3362       case EXTERNAL_UINT8_CLAMPED_ELEMENTS:
   3363       case EXTERNAL_UINT8_ELEMENTS:
   3364       case UINT8_ELEMENTS:
   3365       case UINT8_CLAMPED_ELEMENTS:
   3366         __ movzx_b(result, operand);
   3367         break;
   3368       case EXTERNAL_INT16_ELEMENTS:
   3369       case INT16_ELEMENTS:
   3370         __ movsx_w(result, operand);
   3371         break;
   3372       case EXTERNAL_UINT16_ELEMENTS:
   3373       case UINT16_ELEMENTS:
   3374         __ movzx_w(result, operand);
   3375         break;
   3376       case EXTERNAL_INT32_ELEMENTS:
   3377       case INT32_ELEMENTS:
   3378         __ mov(result, operand);
   3379         break;
   3380       case EXTERNAL_UINT32_ELEMENTS:
   3381       case UINT32_ELEMENTS:
   3382         __ mov(result, operand);
   3383         if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
   3384           __ test(result, Operand(result));
   3385           DeoptimizeIf(negative, instr, "negative value");
   3386         }
   3387         break;
   3388       case EXTERNAL_FLOAT32_ELEMENTS:
   3389       case EXTERNAL_FLOAT64_ELEMENTS:
   3390       case FLOAT32_ELEMENTS:
   3391       case FLOAT64_ELEMENTS:
   3392       case FAST_SMI_ELEMENTS:
   3393       case FAST_ELEMENTS:
   3394       case FAST_DOUBLE_ELEMENTS:
   3395       case FAST_HOLEY_SMI_ELEMENTS:
   3396       case FAST_HOLEY_ELEMENTS:
   3397       case FAST_HOLEY_DOUBLE_ELEMENTS:
   3398       case DICTIONARY_ELEMENTS:
   3399       case SLOPPY_ARGUMENTS_ELEMENTS:
   3400         UNREACHABLE();
   3401         break;
   3402     }
   3403   }
   3404 }
   3405 
   3406 
   3407 void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) {
   3408   if (instr->hydrogen()->RequiresHoleCheck()) {
   3409     Operand hole_check_operand = BuildFastArrayOperand(
   3410         instr->elements(), instr->key(),
   3411         instr->hydrogen()->key()->representation(),
   3412         FAST_DOUBLE_ELEMENTS,
   3413         instr->base_offset() + sizeof(kHoleNanLower32));
   3414     __ cmp(hole_check_operand, Immediate(kHoleNanUpper32));
   3415     DeoptimizeIf(equal, instr, "hole");
   3416   }
   3417 
   3418   Operand double_load_operand = BuildFastArrayOperand(
   3419       instr->elements(),
   3420       instr->key(),
   3421       instr->hydrogen()->key()->representation(),
   3422       FAST_DOUBLE_ELEMENTS,
   3423       instr->base_offset());
   3424   X87Mov(ToX87Register(instr->result()), double_load_operand);
   3425 }
   3426 
   3427 
   3428 void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) {
   3429   Register result = ToRegister(instr->result());
   3430 
   3431   // Load the result.
   3432   __ mov(result,
   3433          BuildFastArrayOperand(instr->elements(), instr->key(),
   3434                                instr->hydrogen()->key()->representation(),
   3435                                FAST_ELEMENTS, instr->base_offset()));
   3436 
   3437   // Check for the hole value.
   3438   if (instr->hydrogen()->RequiresHoleCheck()) {
   3439     if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) {
   3440       __ test(result, Immediate(kSmiTagMask));
   3441       DeoptimizeIf(not_equal, instr, "not a Smi");
   3442     } else {
   3443       __ cmp(result, factory()->the_hole_value());
   3444       DeoptimizeIf(equal, instr, "hole");
   3445     }
   3446   }
   3447 }
   3448 
   3449 
   3450 void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) {
   3451   if (instr->is_typed_elements()) {
   3452     DoLoadKeyedExternalArray(instr);
   3453   } else if (instr->hydrogen()->representation().IsDouble()) {
   3454     DoLoadKeyedFixedDoubleArray(instr);
   3455   } else {
   3456     DoLoadKeyedFixedArray(instr);
   3457   }
   3458 }
   3459 
   3460 
   3461 Operand LCodeGen::BuildFastArrayOperand(
   3462     LOperand* elements_pointer,
   3463     LOperand* key,
   3464     Representation key_representation,
   3465     ElementsKind elements_kind,
   3466     uint32_t base_offset) {
   3467   Register elements_pointer_reg = ToRegister(elements_pointer);
   3468   int element_shift_size = ElementsKindToShiftSize(elements_kind);
   3469   int shift_size = element_shift_size;
   3470   if (key->IsConstantOperand()) {
   3471     int constant_value = ToInteger32(LConstantOperand::cast(key));
   3472     if (constant_value & 0xF0000000) {
   3473       Abort(kArrayIndexConstantValueTooBig);
   3474     }
   3475     return Operand(elements_pointer_reg,
   3476                    ((constant_value) << shift_size)
   3477                        + base_offset);
   3478   } else {
   3479     // Take the tag bit into account while computing the shift size.
   3480     if (key_representation.IsSmi() && (shift_size >= 1)) {
   3481       shift_size -= kSmiTagSize;
   3482     }
   3483     ScaleFactor scale_factor = static_cast<ScaleFactor>(shift_size);
   3484     return Operand(elements_pointer_reg,
   3485                    ToRegister(key),
   3486                    scale_factor,
   3487                    base_offset);
   3488   }
   3489 }
   3490 
   3491 
   3492 void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
   3493   DCHECK(ToRegister(instr->context()).is(esi));
   3494   DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
   3495   DCHECK(ToRegister(instr->key()).is(LoadDescriptor::NameRegister()));
   3496 
   3497   if (FLAG_vector_ics) {
   3498     EmitVectorLoadICRegisters<LLoadKeyedGeneric>(instr);
   3499   }
   3500 
   3501   Handle<Code> ic = CodeFactory::KeyedLoadIC(isolate()).code();
   3502   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   3503 }
   3504 
   3505 
   3506 void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
   3507   Register result = ToRegister(instr->result());
   3508 
   3509   if (instr->hydrogen()->from_inlined()) {
   3510     __ lea(result, Operand(esp, -2 * kPointerSize));
   3511   } else {
   3512     // Check for arguments adapter frame.
   3513     Label done, adapted;
   3514     __ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
   3515     __ mov(result, Operand(result, StandardFrameConstants::kContextOffset));
   3516     __ cmp(Operand(result),
   3517            Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
   3518     __ j(equal, &adapted, Label::kNear);
   3519 
   3520     // No arguments adaptor frame.
   3521     __ mov(result, Operand(ebp));
   3522     __ jmp(&done, Label::kNear);
   3523 
   3524     // Arguments adaptor frame present.
   3525     __ bind(&adapted);
   3526     __ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
   3527 
   3528     // Result is the frame pointer for the frame if not adapted and for the real
   3529     // frame below the adaptor frame if adapted.
   3530     __ bind(&done);
   3531   }
   3532 }
   3533 
   3534 
   3535 void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
   3536   Operand elem = ToOperand(instr->elements());
   3537   Register result = ToRegister(instr->result());
   3538 
   3539   Label done;
   3540 
   3541   // If no arguments adaptor frame the number of arguments is fixed.
   3542   __ cmp(ebp, elem);
   3543   __ mov(result, Immediate(scope()->num_parameters()));
   3544   __ j(equal, &done, Label::kNear);
   3545 
   3546   // Arguments adaptor frame present. Get argument length from there.
   3547   __ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
   3548   __ mov(result, Operand(result,
   3549                          ArgumentsAdaptorFrameConstants::kLengthOffset));
   3550   __ SmiUntag(result);
   3551 
   3552   // Argument length is in result register.
   3553   __ bind(&done);
   3554 }
   3555 
   3556 
   3557 void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
   3558   Register receiver = ToRegister(instr->receiver());
   3559   Register function = ToRegister(instr->function());
   3560 
   3561   // If the receiver is null or undefined, we have to pass the global
   3562   // object as a receiver to normal functions. Values have to be
   3563   // passed unchanged to builtins and strict-mode functions.
   3564   Label receiver_ok, global_object;
   3565   Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
   3566   Register scratch = ToRegister(instr->temp());
   3567 
   3568   if (!instr->hydrogen()->known_function()) {
   3569     // Do not transform the receiver to object for strict mode
   3570     // functions.
   3571     __ mov(scratch,
   3572            FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
   3573     __ test_b(FieldOperand(scratch, SharedFunctionInfo::kStrictModeByteOffset),
   3574               1 << SharedFunctionInfo::kStrictModeBitWithinByte);
   3575     __ j(not_equal, &receiver_ok, dist);
   3576 
   3577     // Do not transform the receiver to object for builtins.
   3578     __ test_b(FieldOperand(scratch, SharedFunctionInfo::kNativeByteOffset),
   3579               1 << SharedFunctionInfo::kNativeBitWithinByte);
   3580     __ j(not_equal, &receiver_ok, dist);
   3581   }
   3582 
   3583   // Normal function. Replace undefined or null with global receiver.
   3584   __ cmp(receiver, factory()->null_value());
   3585   __ j(equal, &global_object, Label::kNear);
   3586   __ cmp(receiver, factory()->undefined_value());
   3587   __ j(equal, &global_object, Label::kNear);
   3588 
   3589   // The receiver should be a JS object.
   3590   __ test(receiver, Immediate(kSmiTagMask));
   3591   DeoptimizeIf(equal, instr, "Smi");
   3592   __ CmpObjectType(receiver, FIRST_SPEC_OBJECT_TYPE, scratch);
   3593   DeoptimizeIf(below, instr, "not a JavaScript object");
   3594 
   3595   __ jmp(&receiver_ok, Label::kNear);
   3596   __ bind(&global_object);
   3597   __ mov(receiver, FieldOperand(function, JSFunction::kContextOffset));
   3598   const int global_offset = Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX);
   3599   __ mov(receiver, Operand(receiver, global_offset));
   3600   const int proxy_offset = GlobalObject::kGlobalProxyOffset;
   3601   __ mov(receiver, FieldOperand(receiver, proxy_offset));
   3602   __ bind(&receiver_ok);
   3603 }
   3604 
   3605 
   3606 void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
   3607   Register receiver = ToRegister(instr->receiver());
   3608   Register function = ToRegister(instr->function());
   3609   Register length = ToRegister(instr->length());
   3610   Register elements = ToRegister(instr->elements());
   3611   DCHECK(receiver.is(eax));  // Used for parameter count.
   3612   DCHECK(function.is(edi));  // Required by InvokeFunction.
   3613   DCHECK(ToRegister(instr->result()).is(eax));
   3614 
   3615   // Copy the arguments to this function possibly from the
   3616   // adaptor frame below it.
   3617   const uint32_t kArgumentsLimit = 1 * KB;
   3618   __ cmp(length, kArgumentsLimit);
   3619   DeoptimizeIf(above, instr, "too many arguments");
   3620 
   3621   __ push(receiver);
   3622   __ mov(receiver, length);
   3623 
   3624   // Loop through the arguments pushing them onto the execution
   3625   // stack.
   3626   Label invoke, loop;
   3627   // length is a small non-negative integer, due to the test above.
   3628   __ test(length, Operand(length));
   3629   __ j(zero, &invoke, Label::kNear);
   3630   __ bind(&loop);
   3631   __ push(Operand(elements, length, times_pointer_size, 1 * kPointerSize));
   3632   __ dec(length);
   3633   __ j(not_zero, &loop);
   3634 
   3635   // Invoke the function.
   3636   __ bind(&invoke);
   3637   DCHECK(instr->HasPointerMap());
   3638   LPointerMap* pointers = instr->pointer_map();
   3639   SafepointGenerator safepoint_generator(
   3640       this, pointers, Safepoint::kLazyDeopt);
   3641   ParameterCount actual(eax);
   3642   __ InvokeFunction(function, actual, CALL_FUNCTION, safepoint_generator);
   3643 }
   3644 
   3645 
   3646 void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
   3647   __ int3();
   3648 }
   3649 
   3650 
   3651 void LCodeGen::DoPushArgument(LPushArgument* instr) {
   3652   LOperand* argument = instr->value();
   3653   EmitPushTaggedOperand(argument);
   3654 }
   3655 
   3656 
   3657 void LCodeGen::DoDrop(LDrop* instr) {
   3658   __ Drop(instr->count());
   3659 }
   3660 
   3661 
   3662 void LCodeGen::DoThisFunction(LThisFunction* instr) {
   3663   Register result = ToRegister(instr->result());
   3664   __ mov(result, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
   3665 }
   3666 
   3667 
   3668 void LCodeGen::DoContext(LContext* instr) {
   3669   Register result = ToRegister(instr->result());
   3670   if (info()->IsOptimizing()) {
   3671     __ mov(result, Operand(ebp, StandardFrameConstants::kContextOffset));
   3672   } else {
   3673     // If there is no frame, the context must be in esi.
   3674     DCHECK(result.is(esi));
   3675   }
   3676 }
   3677 
   3678 
   3679 void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
   3680   DCHECK(ToRegister(instr->context()).is(esi));
   3681   __ push(esi);  // The context is the first argument.
   3682   __ push(Immediate(instr->hydrogen()->pairs()));
   3683   __ push(Immediate(Smi::FromInt(instr->hydrogen()->flags())));
   3684   CallRuntime(Runtime::kDeclareGlobals, 3, instr);
   3685 }
   3686 
   3687 
   3688 void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
   3689                                  int formal_parameter_count,
   3690                                  int arity,
   3691                                  LInstruction* instr,
   3692                                  EDIState edi_state) {
   3693   bool dont_adapt_arguments =
   3694       formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
   3695   bool can_invoke_directly =
   3696       dont_adapt_arguments || formal_parameter_count == arity;
   3697 
   3698   if (can_invoke_directly) {
   3699     if (edi_state == EDI_UNINITIALIZED) {
   3700       __ LoadHeapObject(edi, function);
   3701     }
   3702 
   3703     // Change context.
   3704     __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
   3705 
   3706     // Set eax to arguments count if adaption is not needed. Assumes that eax
   3707     // is available to write to at this point.
   3708     if (dont_adapt_arguments) {
   3709       __ mov(eax, arity);
   3710     }
   3711 
   3712     // Invoke function directly.
   3713     if (function.is_identical_to(info()->closure())) {
   3714       __ CallSelf();
   3715     } else {
   3716       __ call(FieldOperand(edi, JSFunction::kCodeEntryOffset));
   3717     }
   3718     RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
   3719   } else {
   3720     // We need to adapt arguments.
   3721     LPointerMap* pointers = instr->pointer_map();
   3722     SafepointGenerator generator(
   3723         this, pointers, Safepoint::kLazyDeopt);
   3724     ParameterCount count(arity);
   3725     ParameterCount expected(formal_parameter_count);
   3726     __ InvokeFunction(function, expected, count, CALL_FUNCTION, generator);
   3727   }
   3728 }
   3729 
   3730 
   3731 void LCodeGen::DoTailCallThroughMegamorphicCache(
   3732     LTailCallThroughMegamorphicCache* instr) {
   3733   Register receiver = ToRegister(instr->receiver());
   3734   Register name = ToRegister(instr->name());
   3735   DCHECK(receiver.is(LoadDescriptor::ReceiverRegister()));
   3736   DCHECK(name.is(LoadDescriptor::NameRegister()));
   3737 
   3738   Register scratch = ebx;
   3739   Register extra = eax;
   3740   DCHECK(!scratch.is(receiver) && !scratch.is(name));
   3741   DCHECK(!extra.is(receiver) && !extra.is(name));
   3742 
   3743   // Important for the tail-call.
   3744   bool must_teardown_frame = NeedsEagerFrame();
   3745 
   3746   // The probe will tail call to a handler if found.
   3747   isolate()->stub_cache()->GenerateProbe(masm(), instr->hydrogen()->flags(),
   3748                                          must_teardown_frame, receiver, name,
   3749                                          scratch, extra);
   3750 
   3751   // Tail call to miss if we ended up here.
   3752   if (must_teardown_frame) __ leave();
   3753   LoadIC::GenerateMiss(masm());
   3754 }
   3755 
   3756 
   3757 void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
   3758   DCHECK(ToRegister(instr->result()).is(eax));
   3759 
   3760   LPointerMap* pointers = instr->pointer_map();
   3761   SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
   3762 
   3763   if (instr->target()->IsConstantOperand()) {
   3764     LConstantOperand* target = LConstantOperand::cast(instr->target());
   3765     Handle<Code> code = Handle<Code>::cast(ToHandle(target));
   3766     generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
   3767     __ call(code, RelocInfo::CODE_TARGET);
   3768   } else {
   3769     DCHECK(instr->target()->IsRegister());
   3770     Register target = ToRegister(instr->target());
   3771     generator.BeforeCall(__ CallSize(Operand(target)));
   3772     __ add(target, Immediate(Code::kHeaderSize - kHeapObjectTag));
   3773     __ call(target);
   3774   }
   3775   generator.AfterCall();
   3776 }
   3777 
   3778 
   3779 void LCodeGen::DoCallJSFunction(LCallJSFunction* instr) {
   3780   DCHECK(ToRegister(instr->function()).is(edi));
   3781   DCHECK(ToRegister(instr->result()).is(eax));
   3782 
   3783   if (instr->hydrogen()->pass_argument_count()) {
   3784     __ mov(eax, instr->arity());
   3785   }
   3786 
   3787   // Change context.
   3788   __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
   3789 
   3790   bool is_self_call = false;
   3791   if (instr->hydrogen()->function()->IsConstant()) {
   3792     HConstant* fun_const = HConstant::cast(instr->hydrogen()->function());
   3793     Handle<JSFunction> jsfun =
   3794       Handle<JSFunction>::cast(fun_const->handle(isolate()));
   3795     is_self_call = jsfun.is_identical_to(info()->closure());
   3796   }
   3797 
   3798   if (is_self_call) {
   3799     __ CallSelf();
   3800   } else {
   3801     __ call(FieldOperand(edi, JSFunction::kCodeEntryOffset));
   3802   }
   3803 
   3804   RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
   3805 }
   3806 
   3807 
   3808 void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) {
   3809   Register input_reg = ToRegister(instr->value());
   3810   __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
   3811          factory()->heap_number_map());
   3812   DeoptimizeIf(not_equal, instr, "not a heap number");
   3813 
   3814   Label slow, allocated, done;
   3815   Register tmp = input_reg.is(eax) ? ecx : eax;
   3816   Register tmp2 = tmp.is(ecx) ? edx : input_reg.is(ecx) ? edx : ecx;
   3817 
   3818   // Preserve the value of all registers.
   3819   PushSafepointRegistersScope scope(this);
   3820 
   3821   __ mov(tmp, FieldOperand(input_reg, HeapNumber::kExponentOffset));
   3822   // Check the sign of the argument. If the argument is positive, just
   3823   // return it. We do not need to patch the stack since |input| and
   3824   // |result| are the same register and |input| will be restored
   3825   // unchanged by popping safepoint registers.
   3826   __ test(tmp, Immediate(HeapNumber::kSignMask));
   3827   __ j(zero, &done, Label::kNear);
   3828 
   3829   __ AllocateHeapNumber(tmp, tmp2, no_reg, &slow);
   3830   __ jmp(&allocated, Label::kNear);
   3831 
   3832   // Slow case: Call the runtime system to do the number allocation.
   3833   __ bind(&slow);
   3834   CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0,
   3835                           instr, instr->context());
   3836   // Set the pointer to the new heap number in tmp.
   3837   if (!tmp.is(eax)) __ mov(tmp, eax);
   3838   // Restore input_reg after call to runtime.
   3839   __ LoadFromSafepointRegisterSlot(input_reg, input_reg);
   3840 
   3841   __ bind(&allocated);
   3842   __ mov(tmp2, FieldOperand(input_reg, HeapNumber::kExponentOffset));
   3843   __ and_(tmp2, ~HeapNumber::kSignMask);
   3844   __ mov(FieldOperand(tmp, HeapNumber::kExponentOffset), tmp2);
   3845   __ mov(tmp2, FieldOperand(input_reg, HeapNumber::kMantissaOffset));
   3846   __ mov(FieldOperand(tmp, HeapNumber::kMantissaOffset), tmp2);
   3847   __ StoreToSafepointRegisterSlot(input_reg, tmp);
   3848 
   3849   __ bind(&done);
   3850 }
   3851 
   3852 
   3853 void LCodeGen::EmitIntegerMathAbs(LMathAbs* instr) {
   3854   Register input_reg = ToRegister(instr->value());
   3855   __ test(input_reg, Operand(input_reg));
   3856   Label is_positive;
   3857   __ j(not_sign, &is_positive, Label::kNear);
   3858   __ neg(input_reg);  // Sets flags.
   3859   DeoptimizeIf(negative, instr, "overflow");
   3860   __ bind(&is_positive);
   3861 }
   3862 
   3863 
   3864 void LCodeGen::DoMathAbs(LMathAbs* instr) {
   3865   // Class for deferred case.
   3866   class DeferredMathAbsTaggedHeapNumber FINAL : public LDeferredCode {
   3867    public:
   3868     DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen,
   3869                                     LMathAbs* instr,
   3870                                     const X87Stack& x87_stack)
   3871         : LDeferredCode(codegen, x87_stack), instr_(instr) { }
   3872     virtual void Generate() OVERRIDE {
   3873       codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
   3874     }
   3875     virtual LInstruction* instr() OVERRIDE { return instr_; }
   3876    private:
   3877     LMathAbs* instr_;
   3878   };
   3879 
   3880   DCHECK(instr->value()->Equals(instr->result()));
   3881   Representation r = instr->hydrogen()->value()->representation();
   3882 
   3883   if (r.IsDouble()) {
   3884     X87Register value = ToX87Register(instr->value());
   3885     X87Fxch(value);
   3886     __ fabs();
   3887   } else if (r.IsSmiOrInteger32()) {
   3888     EmitIntegerMathAbs(instr);
   3889   } else {  // Tagged case.
   3890     DeferredMathAbsTaggedHeapNumber* deferred =
   3891         new(zone()) DeferredMathAbsTaggedHeapNumber(this, instr, x87_stack_);
   3892     Register input_reg = ToRegister(instr->value());
   3893     // Smi check.
   3894     __ JumpIfNotSmi(input_reg, deferred->entry());
   3895     EmitIntegerMathAbs(instr);
   3896     __ bind(deferred->exit());
   3897   }
   3898 }
   3899 
   3900 
   3901 void LCodeGen::DoMathFloor(LMathFloor* instr) {
   3902   Register output_reg = ToRegister(instr->result());
   3903   X87Register input_reg = ToX87Register(instr->value());
   3904   X87Fxch(input_reg);
   3905 
   3906   Label not_minus_zero, done;
   3907   // Deoptimize on unordered.
   3908   __ fldz();
   3909   __ fld(1);
   3910   __ FCmp();
   3911   DeoptimizeIf(parity_even, instr, "NaN");
   3912   __ j(below, &not_minus_zero, Label::kNear);
   3913 
   3914   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   3915     // Check for negative zero.
   3916     __ j(not_equal, &not_minus_zero, Label::kNear);
   3917     // +- 0.0.
   3918     __ fld(0);
   3919     __ FXamSign();
   3920     DeoptimizeIf(not_zero, instr, "minus zero");
   3921     __ Move(output_reg, Immediate(0));
   3922     __ jmp(&done, Label::kFar);
   3923   }
   3924 
   3925   // Positive input.
   3926   // rc=01B, round down.
   3927   __ bind(&not_minus_zero);
   3928   __ fnclex();
   3929   __ X87SetRC(0x0400);
   3930   __ sub(esp, Immediate(kPointerSize));
   3931   __ fist_s(Operand(esp, 0));
   3932   __ pop(output_reg);
   3933   __ X87CheckIA();
   3934   DeoptimizeIf(equal, instr, "overflow");
   3935   __ fnclex();
   3936   __ X87SetRC(0x0000);
   3937   __ bind(&done);
   3938 }
   3939 
   3940 
   3941 void LCodeGen::DoMathRound(LMathRound* instr) {
   3942   X87Register input_reg = ToX87Register(instr->value());
   3943   Register result = ToRegister(instr->result());
   3944   X87Fxch(input_reg);
   3945   Label below_one_half, below_minus_one_half, done;
   3946 
   3947   ExternalReference one_half = ExternalReference::address_of_one_half();
   3948   ExternalReference minus_one_half =
   3949       ExternalReference::address_of_minus_one_half();
   3950 
   3951   __ fld_d(Operand::StaticVariable(one_half));
   3952   __ fld(1);
   3953   __ FCmp();
   3954   __ j(carry, &below_one_half);
   3955 
   3956   // Use rounds towards zero, since 0.5 <= x, we use floor(0.5 + x)
   3957   __ fld(0);
   3958   __ fadd_d(Operand::StaticVariable(one_half));
   3959   // rc=11B, round toward zero.
   3960   __ X87SetRC(0x0c00);
   3961   __ sub(esp, Immediate(kPointerSize));
   3962   // Clear exception bits.
   3963   __ fnclex();
   3964   __ fistp_s(MemOperand(esp, 0));
   3965   // Check overflow.
   3966   __ X87CheckIA();
   3967   __ pop(result);
   3968   DeoptimizeIf(equal, instr, "conversion overflow");
   3969   __ fnclex();
   3970   // Restore round mode.
   3971   __ X87SetRC(0x0000);
   3972   __ jmp(&done);
   3973 
   3974   __ bind(&below_one_half);
   3975   __ fld_d(Operand::StaticVariable(minus_one_half));
   3976   __ fld(1);
   3977   __ FCmp();
   3978   __ j(carry, &below_minus_one_half);
   3979   // We return 0 for the input range [+0, 0.5[, or [-0.5, 0.5[ if
   3980   // we can ignore the difference between a result of -0 and +0.
   3981   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
   3982     // If the sign is positive, we return +0.
   3983     __ fld(0);
   3984     __ FXamSign();
   3985     DeoptimizeIf(not_zero, instr, "minus zero");
   3986   }
   3987   __ Move(result, Immediate(0));
   3988   __ jmp(&done);
   3989 
   3990   __ bind(&below_minus_one_half);
   3991   __ fld(0);
   3992   __ fadd_d(Operand::StaticVariable(one_half));
   3993   // rc=01B, round down.
   3994   __ X87SetRC(0x0400);
   3995   __ sub(esp, Immediate(kPointerSize));
   3996   // Clear exception bits.
   3997   __ fnclex();
   3998   __ fistp_s(MemOperand(esp, 0));
   3999   // Check overflow.
   4000   __ X87CheckIA();
   4001   __ pop(result);
   4002   DeoptimizeIf(equal, instr, "conversion overflow");
   4003   __ fnclex();
   4004   // Restore round mode.
   4005   __ X87SetRC(0x0000);
   4006 
   4007   __ bind(&done);
   4008 }
   4009 
   4010 
   4011 void LCodeGen::DoMathFround(LMathFround* instr) {
   4012   X87Register input_reg = ToX87Register(instr->value());
   4013   X87Fxch(input_reg);
   4014   __ sub(esp, Immediate(kPointerSize));
   4015   __ fstp_s(MemOperand(esp, 0));
   4016   X87Fld(MemOperand(esp, 0), kX87FloatOperand);
   4017   __ add(esp, Immediate(kPointerSize));
   4018 }
   4019 
   4020 
   4021 void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
   4022   X87Register input = ToX87Register(instr->value());
   4023   X87Register result_reg = ToX87Register(instr->result());
   4024   Register temp_result = ToRegister(instr->temp1());
   4025   Register temp = ToRegister(instr->temp2());
   4026   Label slow, done, smi, finish;
   4027   DCHECK(result_reg.is(input));
   4028 
   4029   // Store input into Heap number and call runtime function kMathExpRT.
   4030   if (FLAG_inline_new) {
   4031     __ AllocateHeapNumber(temp_result, temp, no_reg, &slow);
   4032     __ jmp(&done, Label::kNear);
   4033   }
   4034 
   4035   // Slow case: Call the runtime system to do the number allocation.
   4036   __ bind(&slow);
   4037   {
   4038     // TODO(3095996): Put a valid pointer value in the stack slot where the
   4039     // result register is stored, as this register is in the pointer map, but
   4040     // contains an integer value.
   4041     __ Move(temp_result, Immediate(0));
   4042 
   4043     // Preserve the value of all registers.
   4044     PushSafepointRegistersScope scope(this);
   4045 
   4046     __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
   4047     __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
   4048     RecordSafepointWithRegisters(
   4049        instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
   4050     __ StoreToSafepointRegisterSlot(temp_result, eax);
   4051   }
   4052   __ bind(&done);
   4053   X87LoadForUsage(input);
   4054   __ fstp_d(FieldOperand(temp_result, HeapNumber::kValueOffset));
   4055 
   4056   {
   4057     // Preserve the value of all registers.
   4058     PushSafepointRegistersScope scope(this);
   4059 
   4060     __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
   4061     __ push(temp_result);
   4062     __ CallRuntimeSaveDoubles(Runtime::kMathSqrtRT);
   4063     RecordSafepointWithRegisters(instr->pointer_map(), 1,
   4064                                  Safepoint::kNoLazyDeopt);
   4065     __ StoreToSafepointRegisterSlot(temp_result, eax);
   4066   }
   4067   X87PrepareToWrite(result_reg);
   4068   // return value of MathExpRT is Smi or Heap Number.
   4069   __ JumpIfSmi(temp_result, &smi);
   4070   // Heap number(double)
   4071   __ fld_d(FieldOperand(temp_result, HeapNumber::kValueOffset));
   4072   __ jmp(&finish);
   4073   // SMI
   4074   __ bind(&smi);
   4075   __ SmiUntag(temp_result);
   4076   __ push(temp_result);
   4077   __ fild_s(MemOperand(esp, 0));
   4078   __ pop(temp_result);
   4079   __ bind(&finish);
   4080   X87CommitWrite(result_reg);
   4081 }
   4082 
   4083 
   4084 void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
   4085   X87Register input_reg = ToX87Register(instr->value());
   4086   DCHECK(ToX87Register(instr->result()).is(input_reg));
   4087   X87Fxch(input_reg);
   4088   // Note that according to ECMA-262 15.8.2.13:
   4089   // Math.pow(-Infinity, 0.5) == Infinity
   4090   // Math.sqrt(-Infinity) == NaN
   4091   Label done, sqrt;
   4092   // Check base for -Infinity. C3 == 0, C2 == 1, C1 == 1 and C0 == 1
   4093   __ fxam();
   4094   __ push(eax);
   4095   __ fnstsw_ax();
   4096   __ and_(eax, Immediate(0x4700));
   4097   __ cmp(eax, Immediate(0x0700));
   4098   __ j(not_equal, &sqrt, Label::kNear);
   4099   // If input is -Infinity, return Infinity.
   4100   __ fchs();
   4101   __ jmp(&done, Label::kNear);
   4102 
   4103   // Square root.
   4104   __ bind(&sqrt);
   4105   __ fldz();
   4106   __ faddp();  // Convert -0 to +0.
   4107   __ fsqrt();
   4108   __ bind(&done);
   4109   __ pop(eax);
   4110 }
   4111 
   4112 
   4113 void LCodeGen::DoPower(LPower* instr) {
   4114   Representation exponent_type = instr->hydrogen()->right()->representation();
   4115   X87Register result = ToX87Register(instr->result());
   4116   // Having marked this as a call, we can use any registers.
   4117   X87Register base = ToX87Register(instr->left());
   4118   ExternalReference one_half = ExternalReference::address_of_one_half();
   4119 
   4120   if (exponent_type.IsSmi()) {
   4121     Register exponent = ToRegister(instr->right());
   4122     X87LoadForUsage(base);
   4123     __ SmiUntag(exponent);
   4124     __ push(exponent);
   4125     __ fild_s(MemOperand(esp, 0));
   4126     __ pop(exponent);
   4127   } else if (exponent_type.IsTagged()) {
   4128     Register exponent = ToRegister(instr->right());
   4129     Register temp = exponent.is(ecx) ? eax : ecx;
   4130     Label no_deopt, done;
   4131     X87LoadForUsage(base);
   4132     __ JumpIfSmi(exponent, &no_deopt);
   4133     __ CmpObjectType(exponent, HEAP_NUMBER_TYPE, temp);
   4134     DeoptimizeIf(not_equal, instr, "not a heap number");
   4135     // Heap number(double)
   4136     __ fld_d(FieldOperand(exponent, HeapNumber::kValueOffset));
   4137     __ jmp(&done);
   4138     // SMI
   4139     __ bind(&no_deopt);
   4140     __ SmiUntag(exponent);
   4141     __ push(exponent);
   4142     __ fild_s(MemOperand(esp, 0));
   4143     __ pop(exponent);
   4144     __ bind(&done);
   4145   } else if (exponent_type.IsInteger32()) {
   4146     Register exponent = ToRegister(instr->right());
   4147     X87LoadForUsage(base);
   4148     __ push(exponent);
   4149     __ fild_s(MemOperand(esp, 0));
   4150     __ pop(exponent);
   4151   } else {
   4152     DCHECK(exponent_type.IsDouble());
   4153     X87Register exponent_double = ToX87Register(instr->right());
   4154     X87LoadForUsage(base, exponent_double);
   4155   }
   4156 
   4157   // FP data stack {base, exponent(TOS)}.
   4158   // Handle (exponent==+-0.5 && base == -0).
   4159   Label not_plus_0;
   4160   __ fld(0);
   4161   __ fabs();
   4162   X87Fld(Operand::StaticVariable(one_half), kX87DoubleOperand);
   4163   __ FCmp();
   4164   __ j(parity_even, &not_plus_0, Label::kNear);  // NaN.
   4165   __ j(not_equal, &not_plus_0, Label::kNear);
   4166   __ fldz();
   4167   // FP data stack {base, exponent(TOS), zero}.
   4168   __ faddp(2);
   4169   __ bind(&not_plus_0);
   4170 
   4171   {
   4172     __ PrepareCallCFunction(4, eax);
   4173     __ fstp_d(MemOperand(esp, kDoubleSize));  // Exponent value.
   4174     __ fstp_d(MemOperand(esp, 0));            // Base value.
   4175     X87PrepareToWrite(result);
   4176     __ CallCFunction(ExternalReference::power_double_double_function(isolate()),
   4177                      4);
   4178     // Return value is in st(0) on ia32.
   4179     X87CommitWrite(result);
   4180   }
   4181 }
   4182 
   4183 
   4184 void LCodeGen::DoMathLog(LMathLog* instr) {
   4185   DCHECK(instr->value()->Equals(instr->result()));
   4186   X87Register input_reg = ToX87Register(instr->value());
   4187   X87Fxch(input_reg);
   4188 
   4189   Label positive, done, zero, nan_result;
   4190   __ fldz();
   4191   __ fld(1);
   4192   __ FCmp();
   4193   __ j(below, &nan_result, Label::kNear);
   4194   __ j(equal, &zero, Label::kNear);
   4195   // Positive input.
   4196   // {input, ln2}.
   4197   __ fldln2();
   4198   // {ln2, input}.
   4199   __ fxch();
   4200   // {result}.
   4201   __ fyl2x();
   4202   __ jmp(&done, Label::kNear);
   4203 
   4204   __ bind(&nan_result);
   4205   ExternalReference nan =
   4206       ExternalReference::address_of_canonical_non_hole_nan();
   4207   X87PrepareToWrite(input_reg);
   4208   __ fld_d(Operand::StaticVariable(nan));
   4209   X87CommitWrite(input_reg);
   4210   __ jmp(&done, Label::kNear);
   4211 
   4212   __ bind(&zero);
   4213   ExternalReference ninf = ExternalReference::address_of_negative_infinity();
   4214   X87PrepareToWrite(input_reg);
   4215   __ fld_d(Operand::StaticVariable(ninf));
   4216   X87CommitWrite(input_reg);
   4217 
   4218   __ bind(&done);
   4219 }
   4220 
   4221 
   4222 void LCodeGen::DoMathClz32(LMathClz32* instr) {
   4223   Register input = ToRegister(instr->value());
   4224   Register result = ToRegister(instr->result());
   4225   Label not_zero_input;
   4226   __ bsr(result, input);
   4227 
   4228   __ j(not_zero, &not_zero_input);
   4229   __ Move(result, Immediate(63));  // 63^31 == 32
   4230 
   4231   __ bind(&not_zero_input);
   4232   __ xor_(result, Immediate(31));  // for x in [0..31], 31^x == 31-x.
   4233 }
   4234 
   4235 
   4236 void LCodeGen::DoMathExp(LMathExp* instr) {
   4237   X87Register input = ToX87Register(instr->value());
   4238   X87Register result_reg = ToX87Register(instr->result());
   4239   Register temp_result = ToRegister(instr->temp1());
   4240   Register temp = ToRegister(instr->temp2());
   4241   Label slow, done, smi, finish;
   4242   DCHECK(result_reg.is(input));
   4243 
   4244   // Store input into Heap number and call runtime function kMathExpRT.
   4245   if (FLAG_inline_new) {
   4246     __ AllocateHeapNumber(temp_result, temp, no_reg, &slow);
   4247     __ jmp(&done, Label::kNear);
   4248   }
   4249 
   4250   // Slow case: Call the runtime system to do the number allocation.
   4251   __ bind(&slow);
   4252   {
   4253     // TODO(3095996): Put a valid pointer value in the stack slot where the
   4254     // result register is stored, as this register is in the pointer map, but
   4255     // contains an integer value.
   4256     __ Move(temp_result, Immediate(0));
   4257 
   4258     // Preserve the value of all registers.
   4259     PushSafepointRegistersScope scope(this);
   4260 
   4261     __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
   4262     __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
   4263     RecordSafepointWithRegisters(instr->pointer_map(), 0,
   4264                                  Safepoint::kNoLazyDeopt);
   4265     __ StoreToSafepointRegisterSlot(temp_result, eax);
   4266   }
   4267   __ bind(&done);
   4268   X87LoadForUsage(input);
   4269   __ fstp_d(FieldOperand(temp_result, HeapNumber::kValueOffset));
   4270 
   4271   {
   4272     // Preserve the value of all registers.
   4273     PushSafepointRegistersScope scope(this);
   4274 
   4275     __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
   4276     __ push(temp_result);
   4277     __ CallRuntimeSaveDoubles(Runtime::kMathExpRT);
   4278     RecordSafepointWithRegisters(instr->pointer_map(), 1,
   4279                                  Safepoint::kNoLazyDeopt);
   4280     __ StoreToSafepointRegisterSlot(temp_result, eax);
   4281   }
   4282   X87PrepareToWrite(result_reg);
   4283   // return value of MathExpRT is Smi or Heap Number.
   4284   __ JumpIfSmi(temp_result, &smi);
   4285   // Heap number(double)
   4286   __ fld_d(FieldOperand(temp_result, HeapNumber::kValueOffset));
   4287   __ jmp(&finish);
   4288   // SMI
   4289   __ bind(&smi);
   4290   __ SmiUntag(temp_result);
   4291   __ push(temp_result);
   4292   __ fild_s(MemOperand(esp, 0));
   4293   __ pop(temp_result);
   4294   __ bind(&finish);
   4295   X87CommitWrite(result_reg);
   4296 }
   4297 
   4298 
   4299 void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
   4300   DCHECK(ToRegister(instr->context()).is(esi));
   4301   DCHECK(ToRegister(instr->function()).is(edi));
   4302   DCHECK(instr->HasPointerMap());
   4303 
   4304   Handle<JSFunction> known_function = instr->hydrogen()->known_function();
   4305   if (known_function.is_null()) {
   4306     LPointerMap* pointers = instr->pointer_map();
   4307     SafepointGenerator generator(
   4308         this, pointers, Safepoint::kLazyDeopt);
   4309     ParameterCount count(instr->arity());
   4310     __ InvokeFunction(edi, count, CALL_FUNCTION, generator);
   4311   } else {
   4312     CallKnownFunction(known_function,
   4313                       instr->hydrogen()->formal_parameter_count(),
   4314                       instr->arity(),
   4315                       instr,
   4316                       EDI_CONTAINS_TARGET);
   4317   }
   4318 }
   4319 
   4320 
   4321 void LCodeGen::DoCallFunction(LCallFunction* instr) {
   4322   DCHECK(ToRegister(instr->context()).is(esi));
   4323   DCHECK(ToRegister(instr->function()).is(edi));
   4324   DCHECK(ToRegister(instr->result()).is(eax));
   4325 
   4326   int arity = instr->arity();
   4327   CallFunctionStub stub(isolate(), arity, instr->hydrogen()->function_flags());
   4328   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   4329 }
   4330 
   4331 
   4332 void LCodeGen::DoCallNew(LCallNew* instr) {
   4333   DCHECK(ToRegister(instr->context()).is(esi));
   4334   DCHECK(ToRegister(instr->constructor()).is(edi));
   4335   DCHECK(ToRegister(instr->result()).is(eax));
   4336 
   4337   // No cell in ebx for construct type feedback in optimized code
   4338   __ mov(ebx, isolate()->factory()->undefined_value());
   4339   CallConstructStub stub(isolate(), NO_CALL_CONSTRUCTOR_FLAGS);
   4340   __ Move(eax, Immediate(instr->arity()));
   4341   CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
   4342 }
   4343 
   4344 
   4345 void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
   4346   DCHECK(ToRegister(instr->context()).is(esi));
   4347   DCHECK(ToRegister(instr->constructor()).is(edi));
   4348   DCHECK(ToRegister(instr->result()).is(eax));
   4349 
   4350   __ Move(eax, Immediate(instr->arity()));
   4351   __ mov(ebx, isolate()->factory()->undefined_value());
   4352   ElementsKind kind = instr->hydrogen()->elements_kind();
   4353   AllocationSiteOverrideMode override_mode =
   4354       (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
   4355           ? DISABLE_ALLOCATION_SITES
   4356           : DONT_OVERRIDE;
   4357 
   4358   if (instr->arity() == 0) {
   4359     ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
   4360     CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
   4361   } else if (instr->arity() == 1) {
   4362     Label done;
   4363     if (IsFastPackedElementsKind(kind)) {
   4364       Label packed_case;
   4365       // We might need a change here
   4366       // look at the first argument
   4367       __ mov(ecx, Operand(esp, 0));
   4368       __ test(ecx, ecx);
   4369       __ j(zero, &packed_case, Label::kNear);
   4370 
   4371       ElementsKind holey_kind = GetHoleyElementsKind(kind);
   4372       ArraySingleArgumentConstructorStub stub(isolate(),
   4373                                               holey_kind,
   4374                                               override_mode);
   4375       CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
   4376       __ jmp(&done, Label::kNear);
   4377       __ bind(&packed_case);
   4378     }
   4379 
   4380     ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
   4381     CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
   4382     __ bind(&done);
   4383   } else {
   4384     ArrayNArgumentsConstructorStub stub(isolate(), kind, override_mode);
   4385     CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
   4386   }
   4387 }
   4388 
   4389 
   4390 void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
   4391   DCHECK(ToRegister(instr->context()).is(esi));
   4392   CallRuntime(instr->function(), instr->arity(), instr, instr->save_doubles());
   4393 }
   4394 
   4395 
   4396 void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
   4397   Register function = ToRegister(instr->function());
   4398   Register code_object = ToRegister(instr->code_object());
   4399   __ lea(code_object, FieldOperand(code_object, Code::kHeaderSize));
   4400   __ mov(FieldOperand(function, JSFunction::kCodeEntryOffset), code_object);
   4401 }
   4402 
   4403 
   4404 void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
   4405   Register result = ToRegister(instr->result());
   4406   Register base = ToRegister(instr->base_object());
   4407   if (instr->offset()->IsConstantOperand()) {
   4408     LConstantOperand* offset = LConstantOperand::cast(instr->offset());
   4409     __ lea(result, Operand(base, ToInteger32(offset)));
   4410   } else {
   4411     Register offset = ToRegister(instr->offset());
   4412     __ lea(result, Operand(base, offset, times_1, 0));
   4413   }
   4414 }
   4415 
   4416 
   4417 void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
   4418   Representation representation = instr->hydrogen()->field_representation();
   4419 
   4420   HObjectAccess access = instr->hydrogen()->access();
   4421   int offset = access.offset();
   4422 
   4423   if (access.IsExternalMemory()) {
   4424     DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
   4425     MemOperand operand = instr->object()->IsConstantOperand()
   4426         ? MemOperand::StaticVariable(
   4427             ToExternalReference(LConstantOperand::cast(instr->object())))
   4428         : MemOperand(ToRegister(instr->object()), offset);
   4429     if (instr->value()->IsConstantOperand()) {
   4430       LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
   4431       __ mov(operand, Immediate(ToInteger32(operand_value)));
   4432     } else {
   4433       Register value = ToRegister(instr->value());
   4434       __ Store(value, operand, representation);
   4435     }
   4436     return;
   4437   }
   4438 
   4439   Register object = ToRegister(instr->object());
   4440   __ AssertNotSmi(object);
   4441   DCHECK(!representation.IsSmi() ||
   4442          !instr->value()->IsConstantOperand() ||
   4443          IsSmi(LConstantOperand::cast(instr->value())));
   4444   if (representation.IsDouble()) {
   4445     DCHECK(access.IsInobject());
   4446     DCHECK(!instr->hydrogen()->has_transition());
   4447     DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
   4448     X87Register value = ToX87Register(instr->value());
   4449     X87Mov(FieldOperand(object, offset), value);
   4450     return;
   4451   }
   4452 
   4453   if (instr->hydrogen()->has_transition()) {
   4454     Handle<Map> transition = instr->hydrogen()->transition_map();
   4455     AddDeprecationDependency(transition);
   4456     __ mov(FieldOperand(object, HeapObject::kMapOffset), transition);
   4457     if (instr->hydrogen()->NeedsWriteBarrierForMap()) {
   4458       Register temp = ToRegister(instr->temp());
   4459       Register temp_map = ToRegister(instr->temp_map());
   4460       __ mov(temp_map, transition);
   4461       __ mov(FieldOperand(object, HeapObject::kMapOffset), temp_map);
   4462       // Update the write barrier for the map field.
   4463       __ RecordWriteForMap(object, transition, temp_map, temp, kSaveFPRegs);
   4464     }
   4465   }
   4466 
   4467   // Do the store.
   4468   Register write_register = object;
   4469   if (!access.IsInobject()) {
   4470     write_register = ToRegister(instr->temp());
   4471     __ mov(write_register, FieldOperand(object, JSObject::kPropertiesOffset));
   4472   }
   4473 
   4474   MemOperand operand = FieldOperand(write_register, offset);
   4475   if (instr->value()->IsConstantOperand()) {
   4476     LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
   4477     if (operand_value->IsRegister()) {
   4478       Register value = ToRegister(operand_value);
   4479       __ Store(value, operand, representation);
   4480     } else if (representation.IsInteger32()) {
   4481       Immediate immediate = ToImmediate(operand_value, representation);
   4482       DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
   4483       __ mov(operand, immediate);
   4484     } else {
   4485       Handle<Object> handle_value = ToHandle(operand_value);
   4486       DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
   4487       __ mov(operand, handle_value);
   4488     }
   4489   } else {
   4490     Register value = ToRegister(instr->value());
   4491     __ Store(value, operand, representation);
   4492   }
   4493 
   4494   if (instr->hydrogen()->NeedsWriteBarrier()) {
   4495     Register value = ToRegister(instr->value());
   4496     Register temp = access.IsInobject() ? ToRegister(instr->temp()) : object;
   4497     // Update the write barrier for the object for in-object properties.
   4498     __ RecordWriteField(write_register, offset, value, temp, kSaveFPRegs,
   4499                         EMIT_REMEMBERED_SET,
   4500                         instr->hydrogen()->SmiCheckForWriteBarrier(),
   4501                         instr->hydrogen()->PointersToHereCheckForValue());
   4502   }
   4503 }
   4504 
   4505 
   4506 void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
   4507   DCHECK(ToRegister(instr->context()).is(esi));
   4508   DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
   4509   DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
   4510 
   4511   __ mov(StoreDescriptor::NameRegister(), instr->name());
   4512   Handle<Code> ic = StoreIC::initialize_stub(isolate(), instr->strict_mode());
   4513   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   4514 }
   4515 
   4516 
   4517 void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
   4518   Condition cc = instr->hydrogen()->allow_equality() ? above : above_equal;
   4519   if (instr->index()->IsConstantOperand()) {
   4520     __ cmp(ToOperand(instr->length()),
   4521            ToImmediate(LConstantOperand::cast(instr->index()),
   4522                        instr->hydrogen()->length()->representation()));
   4523     cc = CommuteCondition(cc);
   4524   } else if (instr->length()->IsConstantOperand()) {
   4525     __ cmp(ToOperand(instr->index()),
   4526            ToImmediate(LConstantOperand::cast(instr->length()),
   4527                        instr->hydrogen()->index()->representation()));
   4528   } else {
   4529     __ cmp(ToRegister(instr->index()), ToOperand(instr->length()));
   4530   }
   4531   if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
   4532     Label done;
   4533     __ j(NegateCondition(cc), &done, Label::kNear);
   4534     __ int3();
   4535     __ bind(&done);
   4536   } else {
   4537     DeoptimizeIf(cc, instr, "out of bounds");
   4538   }
   4539 }
   4540 
   4541 
   4542 void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) {
   4543   ElementsKind elements_kind = instr->elements_kind();
   4544   LOperand* key = instr->key();
   4545   if (!key->IsConstantOperand() &&
   4546       ExternalArrayOpRequiresTemp(instr->hydrogen()->key()->representation(),
   4547                                   elements_kind)) {
   4548     __ SmiUntag(ToRegister(key));
   4549   }
   4550   Operand operand(BuildFastArrayOperand(
   4551       instr->elements(),
   4552       key,
   4553       instr->hydrogen()->key()->representation(),
   4554       elements_kind,
   4555       instr->base_offset()));
   4556   if (elements_kind == EXTERNAL_FLOAT32_ELEMENTS ||
   4557       elements_kind == FLOAT32_ELEMENTS) {
   4558     X87Mov(operand, ToX87Register(instr->value()), kX87FloatOperand);
   4559   } else if (elements_kind == EXTERNAL_FLOAT64_ELEMENTS ||
   4560              elements_kind == FLOAT64_ELEMENTS) {
   4561     X87Mov(operand, ToX87Register(instr->value()));
   4562   } else {
   4563     Register value = ToRegister(instr->value());
   4564     switch (elements_kind) {
   4565       case EXTERNAL_UINT8_CLAMPED_ELEMENTS:
   4566       case EXTERNAL_UINT8_ELEMENTS:
   4567       case EXTERNAL_INT8_ELEMENTS:
   4568       case UINT8_ELEMENTS:
   4569       case INT8_ELEMENTS:
   4570       case UINT8_CLAMPED_ELEMENTS:
   4571         __ mov_b(operand, value);
   4572         break;
   4573       case EXTERNAL_INT16_ELEMENTS:
   4574       case EXTERNAL_UINT16_ELEMENTS:
   4575       case UINT16_ELEMENTS:
   4576       case INT16_ELEMENTS:
   4577         __ mov_w(operand, value);
   4578         break;
   4579       case EXTERNAL_INT32_ELEMENTS:
   4580       case EXTERNAL_UINT32_ELEMENTS:
   4581       case UINT32_ELEMENTS:
   4582       case INT32_ELEMENTS:
   4583         __ mov(operand, value);
   4584         break;
   4585       case EXTERNAL_FLOAT32_ELEMENTS:
   4586       case EXTERNAL_FLOAT64_ELEMENTS:
   4587       case FLOAT32_ELEMENTS:
   4588       case FLOAT64_ELEMENTS:
   4589       case FAST_SMI_ELEMENTS:
   4590       case FAST_ELEMENTS:
   4591       case FAST_DOUBLE_ELEMENTS:
   4592       case FAST_HOLEY_SMI_ELEMENTS:
   4593       case FAST_HOLEY_ELEMENTS:
   4594       case FAST_HOLEY_DOUBLE_ELEMENTS:
   4595       case DICTIONARY_ELEMENTS:
   4596       case SLOPPY_ARGUMENTS_ELEMENTS:
   4597         UNREACHABLE();
   4598         break;
   4599     }
   4600   }
   4601 }
   4602 
   4603 
   4604 void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) {
   4605   ExternalReference canonical_nan_reference =
   4606       ExternalReference::address_of_canonical_non_hole_nan();
   4607   Operand double_store_operand = BuildFastArrayOperand(
   4608       instr->elements(),
   4609       instr->key(),
   4610       instr->hydrogen()->key()->representation(),
   4611       FAST_DOUBLE_ELEMENTS,
   4612       instr->base_offset());
   4613 
   4614   // Can't use SSE2 in the serializer
   4615   if (instr->hydrogen()->IsConstantHoleStore()) {
   4616     // This means we should store the (double) hole. No floating point
   4617     // registers required.
   4618     double nan_double = FixedDoubleArray::hole_nan_as_double();
   4619     uint64_t int_val = bit_cast<uint64_t, double>(nan_double);
   4620     int32_t lower = static_cast<int32_t>(int_val);
   4621     int32_t upper = static_cast<int32_t>(int_val >> (kBitsPerInt));
   4622 
   4623     __ mov(double_store_operand, Immediate(lower));
   4624     Operand double_store_operand2 = BuildFastArrayOperand(
   4625         instr->elements(),
   4626         instr->key(),
   4627         instr->hydrogen()->key()->representation(),
   4628         FAST_DOUBLE_ELEMENTS,
   4629         instr->base_offset() + kPointerSize);
   4630     __ mov(double_store_operand2, Immediate(upper));
   4631   } else {
   4632     Label no_special_nan_handling;
   4633     X87Register value = ToX87Register(instr->value());
   4634     X87Fxch(value);
   4635 
   4636     if (instr->NeedsCanonicalization()) {
   4637       __ fld(0);
   4638       __ fld(0);
   4639       __ FCmp();
   4640 
   4641       __ j(parity_odd, &no_special_nan_handling, Label::kNear);
   4642       __ sub(esp, Immediate(kDoubleSize));
   4643       __ fst_d(MemOperand(esp, 0));
   4644       __ cmp(MemOperand(esp, sizeof(kHoleNanLower32)),
   4645              Immediate(kHoleNanUpper32));
   4646       __ add(esp, Immediate(kDoubleSize));
   4647       Label canonicalize;
   4648       __ j(not_equal, &canonicalize, Label::kNear);
   4649       __ jmp(&no_special_nan_handling, Label::kNear);
   4650       __ bind(&canonicalize);
   4651       __ fstp(0);
   4652       __ fld_d(Operand::StaticVariable(canonical_nan_reference));
   4653     }
   4654 
   4655     __ bind(&no_special_nan_handling);
   4656     __ fst_d(double_store_operand);
   4657   }
   4658 }
   4659 
   4660 
   4661 void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) {
   4662   Register elements = ToRegister(instr->elements());
   4663   Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg;
   4664 
   4665   Operand operand = BuildFastArrayOperand(
   4666       instr->elements(),
   4667       instr->key(),
   4668       instr->hydrogen()->key()->representation(),
   4669       FAST_ELEMENTS,
   4670       instr->base_offset());
   4671   if (instr->value()->IsRegister()) {
   4672     __ mov(operand, ToRegister(instr->value()));
   4673   } else {
   4674     LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
   4675     if (IsSmi(operand_value)) {
   4676       Immediate immediate = ToImmediate(operand_value, Representation::Smi());
   4677       __ mov(operand, immediate);
   4678     } else {
   4679       DCHECK(!IsInteger32(operand_value));
   4680       Handle<Object> handle_value = ToHandle(operand_value);
   4681       __ mov(operand, handle_value);
   4682     }
   4683   }
   4684 
   4685   if (instr->hydrogen()->NeedsWriteBarrier()) {
   4686     DCHECK(instr->value()->IsRegister());
   4687     Register value = ToRegister(instr->value());
   4688     DCHECK(!instr->key()->IsConstantOperand());
   4689     SmiCheck check_needed =
   4690         instr->hydrogen()->value()->type().IsHeapObject()
   4691           ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
   4692     // Compute address of modified element and store it into key register.
   4693     __ lea(key, operand);
   4694     __ RecordWrite(elements, key, value, kSaveFPRegs, EMIT_REMEMBERED_SET,
   4695                    check_needed,
   4696                    instr->hydrogen()->PointersToHereCheckForValue());
   4697   }
   4698 }
   4699 
   4700 
   4701 void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) {
   4702   // By cases...external, fast-double, fast
   4703   if (instr->is_typed_elements()) {
   4704     DoStoreKeyedExternalArray(instr);
   4705   } else if (instr->hydrogen()->value()->representation().IsDouble()) {
   4706     DoStoreKeyedFixedDoubleArray(instr);
   4707   } else {
   4708     DoStoreKeyedFixedArray(instr);
   4709   }
   4710 }
   4711 
   4712 
   4713 void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
   4714   DCHECK(ToRegister(instr->context()).is(esi));
   4715   DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
   4716   DCHECK(ToRegister(instr->key()).is(StoreDescriptor::NameRegister()));
   4717   DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
   4718 
   4719   Handle<Code> ic =
   4720       CodeFactory::KeyedStoreIC(isolate(), instr->strict_mode()).code();
   4721   CallCode(ic, RelocInfo::CODE_TARGET, instr);
   4722 }
   4723 
   4724 
   4725 void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
   4726   Register object = ToRegister(instr->object());
   4727   Register temp = ToRegister(instr->temp());
   4728   Label no_memento_found;
   4729   __ TestJSArrayForAllocationMemento(object, temp, &no_memento_found);
   4730   DeoptimizeIf(equal, instr, "memento found");
   4731   __ bind(&no_memento_found);
   4732 }
   4733 
   4734 
   4735 void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
   4736   Register object_reg = ToRegister(instr->object());
   4737 
   4738   Handle<Map> from_map = instr->original_map();
   4739   Handle<Map> to_map = instr->transitioned_map();
   4740   ElementsKind from_kind = instr->from_kind();
   4741   ElementsKind to_kind = instr->to_kind();
   4742 
   4743   Label not_applicable;
   4744   bool is_simple_map_transition =
   4745       IsSimpleMapChangeTransition(from_kind, to_kind);
   4746   Label::Distance branch_distance =
   4747       is_simple_map_transition ? Label::kNear : Label::kFar;
   4748   __ cmp(FieldOperand(object_reg, HeapObject::kMapOffset), from_map);
   4749   __ j(not_equal, &not_applicable, branch_distance);
   4750   if (is_simple_map_transition) {
   4751     Register new_map_reg = ToRegister(instr->new_map_temp());
   4752     __ mov(FieldOperand(object_reg, HeapObject::kMapOffset),
   4753            Immediate(to_map));
   4754     // Write barrier.
   4755     DCHECK_NE(instr->temp(), NULL);
   4756     __ RecordWriteForMap(object_reg, to_map, new_map_reg,
   4757                          ToRegister(instr->temp()), kDontSaveFPRegs);
   4758   } else {
   4759     DCHECK(ToRegister(instr->context()).is(esi));
   4760     DCHECK(object_reg.is(eax));
   4761     PushSafepointRegistersScope scope(this);
   4762     __ mov(ebx, to_map);
   4763     bool is_js_array = from_map->instance_type() == JS_ARRAY_TYPE;
   4764     TransitionElementsKindStub stub(isolate(), from_kind, to_kind, is_js_array);
   4765     __ CallStub(&stub);
   4766     RecordSafepointWithLazyDeopt(instr,
   4767         RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
   4768   }
   4769   __ bind(&not_applicable);
   4770 }
   4771 
   4772 
   4773 void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
   4774   class DeferredStringCharCodeAt FINAL : public LDeferredCode {
   4775    public:
   4776     DeferredStringCharCodeAt(LCodeGen* codegen,
   4777                              LStringCharCodeAt* instr,
   4778                              const X87Stack& x87_stack)
   4779         : LDeferredCode(codegen, x87_stack), instr_(instr) { }
   4780     virtual void Generate() OVERRIDE {
   4781       codegen()->DoDeferredStringCharCodeAt(instr_);
   4782     }
   4783     virtual LInstruction* instr() OVERRIDE { return instr_; }
   4784    private:
   4785     LStringCharCodeAt* instr_;
   4786   };
   4787 
   4788   DeferredStringCharCodeAt* deferred =
   4789       new(zone()) DeferredStringCharCodeAt(this, instr, x87_stack_);
   4790 
   4791   StringCharLoadGenerator::Generate(masm(),
   4792                                     factory(),
   4793                                     ToRegister(instr->string()),
   4794                                     ToRegister(instr->index()),
   4795                                     ToRegister(instr->result()),
   4796                                     deferred->entry());
   4797   __ bind(deferred->exit());
   4798 }
   4799 
   4800 
   4801 void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
   4802   Register string = ToRegister(instr->string());
   4803   Register result = ToRegister(instr->result());
   4804 
   4805   // TODO(3095996): Get rid of this. For now, we need to make the
   4806   // result register contain a valid pointer because it is already
   4807   // contained in the register pointer map.
   4808   __ Move(result, Immediate(0));
   4809 
   4810   PushSafepointRegistersScope scope(this);
   4811   __ push(string);
   4812   // Push the index as a smi. This is safe because of the checks in
   4813   // DoStringCharCodeAt above.
   4814   STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue);
   4815   if (instr->index()->IsConstantOperand()) {
   4816     Immediate immediate = ToImmediate(LConstantOperand::cast(instr->index()),
   4817                                       Representation::Smi());
   4818     __ push(immediate);
   4819   } else {
   4820     Register index = ToRegister(instr->index());
   4821     __ SmiTag(index);
   4822     __ push(index);
   4823   }
   4824   CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2,
   4825                           instr, instr->context());
   4826   __ AssertSmi(eax);
   4827   __ SmiUntag(eax);
   4828   __ StoreToSafepointRegisterSlot(result, eax);
   4829 }
   4830 
   4831 
   4832 void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
   4833   class DeferredStringCharFromCode FINAL : public LDeferredCode {
   4834    public:
   4835     DeferredStringCharFromCode(LCodeGen* codegen,
   4836                                LStringCharFromCode* instr,
   4837                                const X87Stack& x87_stack)
   4838         : LDeferredCode(codegen, x87_stack), instr_(instr) { }
   4839     virtual void Generate() OVERRIDE {
   4840       codegen()->DoDeferredStringCharFromCode(instr_);
   4841     }
   4842     virtual LInstruction* instr() OVERRIDE { return instr_; }
   4843    private:
   4844     LStringCharFromCode* instr_;
   4845   };
   4846 
   4847   DeferredStringCharFromCode* deferred =
   4848       new(zone()) DeferredStringCharFromCode(this, instr, x87_stack_);
   4849 
   4850   DCHECK(instr->hydrogen()->value()->representation().IsInteger32());
   4851   Register char_code = ToRegister(instr->char_code());
   4852   Register result = ToRegister(instr->result());
   4853   DCHECK(!char_code.is(result));
   4854 
   4855   __ cmp(char_code, String::kMaxOneByteCharCode);
   4856   __ j(above, deferred->entry());
   4857   __ Move(result, Immediate(factory()->single_character_string_cache()));
   4858   __ mov(result, FieldOperand(result,
   4859                               char_code, times_pointer_size,
   4860                               FixedArray::kHeaderSize));
   4861   __ cmp(result, factory()->undefined_value());
   4862   __ j(equal, deferred->entry());
   4863   __ bind(deferred->exit());
   4864 }
   4865 
   4866 
   4867 void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
   4868   Register char_code = ToRegister(instr->char_code());
   4869   Register result = ToRegister(instr->result());
   4870 
   4871   // TODO(3095996): Get rid of this. For now, we need to make the
   4872   // result register contain a valid pointer because it is already
   4873   // contained in the register pointer map.
   4874   __ Move(result, Immediate(0));
   4875 
   4876   PushSafepointRegistersScope scope(this);
   4877   __ SmiTag(char_code);
   4878   __ push(char_code);
   4879   CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr, instr->context());
   4880   __ StoreToSafepointRegisterSlot(result, eax);
   4881 }
   4882 
   4883 
   4884 void LCodeGen::DoStringAdd(LStringAdd* instr) {
   4885   DCHECK(ToRegister(instr->context()).is(esi));
   4886   DCHECK(ToRegister(instr->left()).is(edx));
   4887   DCHECK(ToRegister(instr->right()).is(eax));
   4888   StringAddStub stub(isolate(),
   4889                      instr->hydrogen()->flags(),
   4890                      instr->hydrogen()->pretenure_flag());
   4891   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   4892 }
   4893 
   4894 
   4895 void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
   4896   LOperand* input = instr->value();
   4897   LOperand* output = instr->result();
   4898   DCHECK(input->IsRegister() || input->IsStackSlot());
   4899   DCHECK(output->IsDoubleRegister());
   4900   if (input->IsRegister()) {
   4901     Register input_reg = ToRegister(input);
   4902     __ push(input_reg);
   4903     X87Mov(ToX87Register(output), Operand(esp, 0), kX87IntOperand);
   4904     __ pop(input_reg);
   4905   } else {
   4906     X87Mov(ToX87Register(output), ToOperand(input), kX87IntOperand);
   4907   }
   4908 }
   4909 
   4910 
   4911 void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
   4912   LOperand* input = instr->value();
   4913   LOperand* output = instr->result();
   4914   X87Register res = ToX87Register(output);
   4915   X87PrepareToWrite(res);
   4916   __ LoadUint32NoSSE2(ToRegister(input));
   4917   X87CommitWrite(res);
   4918 }
   4919 
   4920 
   4921 void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
   4922   class DeferredNumberTagI FINAL : public LDeferredCode {
   4923    public:
   4924     DeferredNumberTagI(LCodeGen* codegen,
   4925                        LNumberTagI* instr,
   4926                        const X87Stack& x87_stack)
   4927         : LDeferredCode(codegen, x87_stack), instr_(instr) { }
   4928     virtual void Generate() OVERRIDE {
   4929       codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp(),
   4930                                        SIGNED_INT32);
   4931     }
   4932     virtual LInstruction* instr() OVERRIDE { return instr_; }
   4933    private:
   4934     LNumberTagI* instr_;
   4935   };
   4936 
   4937   LOperand* input = instr->value();
   4938   DCHECK(input->IsRegister() && input->Equals(instr->result()));
   4939   Register reg = ToRegister(input);
   4940 
   4941   DeferredNumberTagI* deferred =
   4942       new(zone()) DeferredNumberTagI(this, instr, x87_stack_);
   4943   __ SmiTag(reg);
   4944   __ j(overflow, deferred->entry());
   4945   __ bind(deferred->exit());
   4946 }
   4947 
   4948 
   4949 void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
   4950   class DeferredNumberTagU FINAL : public LDeferredCode {
   4951    public:
   4952     DeferredNumberTagU(LCodeGen* codegen,
   4953                        LNumberTagU* instr,
   4954                        const X87Stack& x87_stack)
   4955         : LDeferredCode(codegen, x87_stack), instr_(instr) { }
   4956     virtual void Generate() OVERRIDE {
   4957       codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp(),
   4958                                        UNSIGNED_INT32);
   4959     }
   4960     virtual LInstruction* instr() OVERRIDE { return instr_; }
   4961    private:
   4962     LNumberTagU* instr_;
   4963   };
   4964 
   4965   LOperand* input = instr->value();
   4966   DCHECK(input->IsRegister() && input->Equals(instr->result()));
   4967   Register reg = ToRegister(input);
   4968 
   4969   DeferredNumberTagU* deferred =
   4970       new(zone()) DeferredNumberTagU(this, instr, x87_stack_);
   4971   __ cmp(reg, Immediate(Smi::kMaxValue));
   4972   __ j(above, deferred->entry());
   4973   __ SmiTag(reg);
   4974   __ bind(deferred->exit());
   4975 }
   4976 
   4977 
   4978 void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr,
   4979                                      LOperand* value,
   4980                                      LOperand* temp,
   4981                                      IntegerSignedness signedness) {
   4982   Label done, slow;
   4983   Register reg = ToRegister(value);
   4984   Register tmp = ToRegister(temp);
   4985 
   4986   if (signedness == SIGNED_INT32) {
   4987     // There was overflow, so bits 30 and 31 of the original integer
   4988     // disagree. Try to allocate a heap number in new space and store
   4989     // the value in there. If that fails, call the runtime system.
   4990     __ SmiUntag(reg);
   4991     __ xor_(reg, 0x80000000);
   4992     __ push(reg);
   4993     __ fild_s(Operand(esp, 0));
   4994     __ pop(reg);
   4995   } else {
   4996     // There's no fild variant for unsigned values, so zero-extend to a 64-bit
   4997     // int manually.
   4998     __ push(Immediate(0));
   4999     __ push(reg);
   5000     __ fild_d(Operand(esp, 0));
   5001     __ pop(reg);
   5002     __ pop(reg);
   5003   }
   5004 
   5005   if (FLAG_inline_new) {
   5006     __ AllocateHeapNumber(reg, tmp, no_reg, &slow);
   5007     __ jmp(&done, Label::kNear);
   5008   }
   5009 
   5010   // Slow case: Call the runtime system to do the number allocation.
   5011   __ bind(&slow);
   5012   {
   5013     // TODO(3095996): Put a valid pointer value in the stack slot where the
   5014     // result register is stored, as this register is in the pointer map, but
   5015     // contains an integer value.
   5016     __ Move(reg, Immediate(0));
   5017 
   5018     // Preserve the value of all registers.
   5019     PushSafepointRegistersScope scope(this);
   5020 
   5021     // NumberTagI and NumberTagD use the context from the frame, rather than
   5022     // the environment's HContext or HInlinedContext value.
   5023     // They only call Runtime::kAllocateHeapNumber.
   5024     // The corresponding HChange instructions are added in a phase that does
   5025     // not have easy access to the local context.
   5026     __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
   5027     __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
   5028     RecordSafepointWithRegisters(
   5029         instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
   5030     __ StoreToSafepointRegisterSlot(reg, eax);
   5031   }
   5032 
   5033   __ bind(&done);
   5034   __ fstp_d(FieldOperand(reg, HeapNumber::kValueOffset));
   5035 }
   5036 
   5037 
   5038 void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
   5039   class DeferredNumberTagD FINAL : public LDeferredCode {
   5040    public:
   5041     DeferredNumberTagD(LCodeGen* codegen,
   5042                        LNumberTagD* instr,
   5043                        const X87Stack& x87_stack)
   5044         : LDeferredCode(codegen, x87_stack), instr_(instr) { }
   5045     virtual void Generate() OVERRIDE {
   5046       codegen()->DoDeferredNumberTagD(instr_);
   5047     }
   5048     virtual LInstruction* instr() OVERRIDE { return instr_; }
   5049    private:
   5050     LNumberTagD* instr_;
   5051   };
   5052 
   5053   Register reg = ToRegister(instr->result());
   5054 
   5055   // Put the value to the top of stack
   5056   X87Register src = ToX87Register(instr->value());
   5057   // Don't use X87LoadForUsage here, which is only used by Instruction which
   5058   // clobbers fp registers.
   5059   x87_stack_.Fxch(src);
   5060 
   5061   DeferredNumberTagD* deferred =
   5062       new(zone()) DeferredNumberTagD(this, instr, x87_stack_);
   5063   if (FLAG_inline_new) {
   5064     Register tmp = ToRegister(instr->temp());
   5065     __ AllocateHeapNumber(reg, tmp, no_reg, deferred->entry());
   5066   } else {
   5067     __ jmp(deferred->entry());
   5068   }
   5069   __ bind(deferred->exit());
   5070   __ fst_d(FieldOperand(reg, HeapNumber::kValueOffset));
   5071 }
   5072 
   5073 
   5074 void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
   5075   // TODO(3095996): Get rid of this. For now, we need to make the
   5076   // result register contain a valid pointer because it is already
   5077   // contained in the register pointer map.
   5078   Register reg = ToRegister(instr->result());
   5079   __ Move(reg, Immediate(0));
   5080 
   5081   PushSafepointRegistersScope scope(this);
   5082   // NumberTagI and NumberTagD use the context from the frame, rather than
   5083   // the environment's HContext or HInlinedContext value.
   5084   // They only call Runtime::kAllocateHeapNumber.
   5085   // The corresponding HChange instructions are added in a phase that does
   5086   // not have easy access to the local context.
   5087   __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
   5088   __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
   5089   RecordSafepointWithRegisters(
   5090       instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
   5091   __ StoreToSafepointRegisterSlot(reg, eax);
   5092 }
   5093 
   5094 
   5095 void LCodeGen::DoSmiTag(LSmiTag* instr) {
   5096   HChange* hchange = instr->hydrogen();
   5097   Register input = ToRegister(instr->value());
   5098   if (hchange->CheckFlag(HValue::kCanOverflow) &&
   5099       hchange->value()->CheckFlag(HValue::kUint32)) {
   5100     __ test(input, Immediate(0xc0000000));
   5101     DeoptimizeIf(not_zero, instr, "overflow");
   5102   }
   5103   __ SmiTag(input);
   5104   if (hchange->CheckFlag(HValue::kCanOverflow) &&
   5105       !hchange->value()->CheckFlag(HValue::kUint32)) {
   5106     DeoptimizeIf(overflow, instr, "overflow");
   5107   }
   5108 }
   5109 
   5110 
   5111 void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
   5112   LOperand* input = instr->value();
   5113   Register result = ToRegister(input);
   5114   DCHECK(input->IsRegister() && input->Equals(instr->result()));
   5115   if (instr->needs_check()) {
   5116     __ test(result, Immediate(kSmiTagMask));
   5117     DeoptimizeIf(not_zero, instr, "not a Smi");
   5118   } else {
   5119     __ AssertSmi(result);
   5120   }
   5121   __ SmiUntag(result);
   5122 }
   5123 
   5124 
   5125 void LCodeGen::EmitNumberUntagDNoSSE2(LNumberUntagD* instr, Register input_reg,
   5126                                       Register temp_reg, X87Register res_reg,
   5127                                       NumberUntagDMode mode) {
   5128   bool can_convert_undefined_to_nan =
   5129       instr->hydrogen()->can_convert_undefined_to_nan();
   5130   bool deoptimize_on_minus_zero = instr->hydrogen()->deoptimize_on_minus_zero();
   5131 
   5132   Label load_smi, done;
   5133 
   5134   X87PrepareToWrite(res_reg);
   5135   if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
   5136     // Smi check.
   5137     __ JumpIfSmi(input_reg, &load_smi);
   5138 
   5139     // Heap number map check.
   5140     __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
   5141            factory()->heap_number_map());
   5142     if (!can_convert_undefined_to_nan) {
   5143       DeoptimizeIf(not_equal, instr, "not a heap number");
   5144     } else {
   5145       Label heap_number, convert;
   5146       __ j(equal, &heap_number);
   5147 
   5148       // Convert undefined (or hole) to NaN.
   5149       __ cmp(input_reg, factory()->undefined_value());
   5150       DeoptimizeIf(not_equal, instr, "not a heap number/undefined");
   5151 
   5152       __ bind(&convert);
   5153       ExternalReference nan =
   5154           ExternalReference::address_of_canonical_non_hole_nan();
   5155       __ fld_d(Operand::StaticVariable(nan));
   5156       __ jmp(&done, Label::kNear);
   5157 
   5158       __ bind(&heap_number);
   5159     }
   5160     // Heap number to x87 conversion.
   5161     __ fld_d(FieldOperand(input_reg, HeapNumber::kValueOffset));
   5162     if (deoptimize_on_minus_zero) {
   5163       __ fldz();
   5164       __ FCmp();
   5165       __ fld_d(FieldOperand(input_reg, HeapNumber::kValueOffset));
   5166       __ j(not_zero, &done, Label::kNear);
   5167 
   5168       // Use general purpose registers to check if we have -0.0
   5169       __ mov(temp_reg, FieldOperand(input_reg, HeapNumber::kExponentOffset));
   5170       __ test(temp_reg, Immediate(HeapNumber::kSignMask));
   5171       __ j(zero, &done, Label::kNear);
   5172 
   5173       // Pop FPU stack before deoptimizing.
   5174       __ fstp(0);
   5175       DeoptimizeIf(not_zero, instr, "minus zero");
   5176     }
   5177     __ jmp(&done, Label::kNear);
   5178   } else {
   5179     DCHECK(mode == NUMBER_CANDIDATE_IS_SMI);
   5180   }
   5181 
   5182   __ bind(&load_smi);
   5183   // Clobbering a temp is faster than re-tagging the
   5184   // input register since we avoid dependencies.
   5185   __ mov(temp_reg, input_reg);
   5186   __ SmiUntag(temp_reg);  // Untag smi before converting to float.
   5187   __ push(temp_reg);
   5188   __ fild_s(Operand(esp, 0));
   5189   __ add(esp, Immediate(kPointerSize));
   5190   __ bind(&done);
   5191   X87CommitWrite(res_reg);
   5192 }
   5193 
   5194 
   5195 void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr, Label* done) {
   5196   Register input_reg = ToRegister(instr->value());
   5197 
   5198   // The input was optimistically untagged; revert it.
   5199   STATIC_ASSERT(kSmiTagSize == 1);
   5200   __ lea(input_reg, Operand(input_reg, times_2, kHeapObjectTag));
   5201 
   5202   if (instr->truncating()) {
   5203     Label no_heap_number, check_bools, check_false;
   5204 
   5205     // Heap number map check.
   5206     __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
   5207            factory()->heap_number_map());
   5208     __ j(not_equal, &no_heap_number, Label::kNear);
   5209     __ TruncateHeapNumberToI(input_reg, input_reg);
   5210     __ jmp(done);
   5211 
   5212     __ bind(&no_heap_number);
   5213     // Check for Oddballs. Undefined/False is converted to zero and True to one
   5214     // for truncating conversions.
   5215     __ cmp(input_reg, factory()->undefined_value());
   5216     __ j(not_equal, &check_bools, Label::kNear);
   5217     __ Move(input_reg, Immediate(0));
   5218     __ jmp(done);
   5219 
   5220     __ bind(&check_bools);
   5221     __ cmp(input_reg, factory()->true_value());
   5222     __ j(not_equal, &check_false, Label::kNear);
   5223     __ Move(input_reg, Immediate(1));
   5224     __ jmp(done);
   5225 
   5226     __ bind(&check_false);
   5227     __ cmp(input_reg, factory()->false_value());
   5228     DeoptimizeIf(not_equal, instr, "not a heap number/undefined/true/false");
   5229     __ Move(input_reg, Immediate(0));
   5230   } else {
   5231     // TODO(olivf) Converting a number on the fpu is actually quite slow. We
   5232     // should first try a fast conversion and then bailout to this slow case.
   5233     __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
   5234            isolate()->factory()->heap_number_map());
   5235     DeoptimizeIf(not_equal, instr, "not a heap number");
   5236 
   5237     __ sub(esp, Immediate(kPointerSize));
   5238     __ fld_d(FieldOperand(input_reg, HeapNumber::kValueOffset));
   5239 
   5240     if (instr->hydrogen()->GetMinusZeroMode() == FAIL_ON_MINUS_ZERO) {
   5241       Label no_precision_lost, not_nan, zero_check;
   5242       __ fld(0);
   5243 
   5244       __ fist_s(MemOperand(esp, 0));
   5245       __ fild_s(MemOperand(esp, 0));
   5246       __ FCmp();
   5247       __ pop(input_reg);
   5248 
   5249       __ j(equal, &no_precision_lost, Label::kNear);
   5250       __ fstp(0);
   5251       DeoptimizeIf(no_condition, instr, "lost precision");
   5252       __ bind(&no_precision_lost);
   5253 
   5254       __ j(parity_odd, &not_nan);
   5255       __ fstp(0);
   5256       DeoptimizeIf(no_condition, instr, "NaN");
   5257       __ bind(&not_nan);
   5258 
   5259       __ test(input_reg, Operand(input_reg));
   5260       __ j(zero, &zero_check, Label::kNear);
   5261       __ fstp(0);
   5262       __ jmp(done);
   5263 
   5264       __ bind(&zero_check);
   5265       // To check for minus zero, we load the value again as float, and check
   5266       // if that is still 0.
   5267       __ sub(esp, Immediate(kPointerSize));
   5268       __ fstp_s(Operand(esp, 0));
   5269       __ pop(input_reg);
   5270       __ test(input_reg, Operand(input_reg));
   5271       DeoptimizeIf(not_zero, instr, "minus zero");
   5272     } else {
   5273       __ fist_s(MemOperand(esp, 0));
   5274       __ fild_s(MemOperand(esp, 0));
   5275       __ FCmp();
   5276       __ pop(input_reg);
   5277       DeoptimizeIf(not_equal, instr, "lost precision");
   5278       DeoptimizeIf(parity_even, instr, "NaN");
   5279     }
   5280   }
   5281 }
   5282 
   5283 
   5284 void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
   5285   class DeferredTaggedToI FINAL : public LDeferredCode {
   5286    public:
   5287     DeferredTaggedToI(LCodeGen* codegen,
   5288                       LTaggedToI* instr,
   5289                       const X87Stack& x87_stack)
   5290         : LDeferredCode(codegen, x87_stack), instr_(instr) { }
   5291     virtual void Generate() OVERRIDE {
   5292       codegen()->DoDeferredTaggedToI(instr_, done());
   5293     }
   5294     virtual LInstruction* instr() OVERRIDE { return instr_; }
   5295    private:
   5296     LTaggedToI* instr_;
   5297   };
   5298 
   5299   LOperand* input = instr->value();
   5300   DCHECK(input->IsRegister());
   5301   Register input_reg = ToRegister(input);
   5302   DCHECK(input_reg.is(ToRegister(instr->result())));
   5303 
   5304   if (instr->hydrogen()->value()->representation().IsSmi()) {
   5305     __ SmiUntag(input_reg);
   5306   } else {
   5307     DeferredTaggedToI* deferred =
   5308         new(zone()) DeferredTaggedToI(this, instr, x87_stack_);
   5309     // Optimistically untag the input.
   5310     // If the input is a HeapObject, SmiUntag will set the carry flag.
   5311     STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
   5312     __ SmiUntag(input_reg);
   5313     // Branch to deferred code if the input was tagged.
   5314     // The deferred code will take care of restoring the tag.
   5315     __ j(carry, deferred->entry());
   5316     __ bind(deferred->exit());
   5317   }
   5318 }
   5319 
   5320 
   5321 void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
   5322   LOperand* input = instr->value();
   5323   DCHECK(input->IsRegister());
   5324   LOperand* temp = instr->temp();
   5325   DCHECK(temp->IsRegister());
   5326   LOperand* result = instr->result();
   5327   DCHECK(result->IsDoubleRegister());
   5328 
   5329   Register input_reg = ToRegister(input);
   5330   Register temp_reg = ToRegister(temp);
   5331 
   5332   HValue* value = instr->hydrogen()->value();
   5333   NumberUntagDMode mode = value->representation().IsSmi()
   5334       ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
   5335 
   5336   EmitNumberUntagDNoSSE2(instr, input_reg, temp_reg, ToX87Register(result),
   5337                          mode);
   5338 }
   5339 
   5340 
   5341 void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
   5342   LOperand* input = instr->value();
   5343   DCHECK(input->IsDoubleRegister());
   5344   LOperand* result = instr->result();
   5345   DCHECK(result->IsRegister());
   5346   Register result_reg = ToRegister(result);
   5347 
   5348   if (instr->truncating()) {
   5349     X87Register input_reg = ToX87Register(input);
   5350     X87Fxch(input_reg);
   5351     __ TruncateX87TOSToI(result_reg);
   5352   } else {
   5353     Label lost_precision, is_nan, minus_zero, done;
   5354     X87Register input_reg = ToX87Register(input);
   5355     X87Fxch(input_reg);
   5356     Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
   5357     __ X87TOSToI(result_reg, instr->hydrogen()->GetMinusZeroMode(),
   5358                  &lost_precision, &is_nan, &minus_zero, dist);
   5359     __ jmp(&done);
   5360     __ bind(&lost_precision);
   5361     DeoptimizeIf(no_condition, instr, "lost precision");
   5362     __ bind(&is_nan);
   5363     DeoptimizeIf(no_condition, instr, "NaN");
   5364     __ bind(&minus_zero);
   5365     DeoptimizeIf(no_condition, instr, "minus zero");
   5366     __ bind(&done);
   5367   }
   5368 }
   5369 
   5370 
   5371 void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) {
   5372   LOperand* input = instr->value();
   5373   DCHECK(input->IsDoubleRegister());
   5374   LOperand* result = instr->result();
   5375   DCHECK(result->IsRegister());
   5376   Register result_reg = ToRegister(result);
   5377 
   5378   Label lost_precision, is_nan, minus_zero, done;
   5379   X87Register input_reg = ToX87Register(input);
   5380   X87Fxch(input_reg);
   5381   Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
   5382   __ X87TOSToI(result_reg, instr->hydrogen()->GetMinusZeroMode(),
   5383                &lost_precision, &is_nan, &minus_zero, dist);
   5384   __ jmp(&done);
   5385   __ bind(&lost_precision);
   5386   DeoptimizeIf(no_condition, instr, "lost precision");
   5387   __ bind(&is_nan);
   5388   DeoptimizeIf(no_condition, instr, "NaN");
   5389   __ bind(&minus_zero);
   5390   DeoptimizeIf(no_condition, instr, "minus zero");
   5391   __ bind(&done);
   5392   __ SmiTag(result_reg);
   5393   DeoptimizeIf(overflow, instr, "overflow");
   5394 }
   5395 
   5396 
   5397 void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
   5398   LOperand* input = instr->value();
   5399   __ test(ToOperand(input), Immediate(kSmiTagMask));
   5400   DeoptimizeIf(not_zero, instr, "not a Smi");
   5401 }
   5402 
   5403 
   5404 void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
   5405   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
   5406     LOperand* input = instr->value();
   5407     __ test(ToOperand(input), Immediate(kSmiTagMask));
   5408     DeoptimizeIf(zero, instr, "Smi");
   5409   }
   5410 }
   5411 
   5412 
   5413 void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
   5414   Register input = ToRegister(instr->value());
   5415   Register temp = ToRegister(instr->temp());
   5416 
   5417   __ mov(temp, FieldOperand(input, HeapObject::kMapOffset));
   5418 
   5419   if (instr->hydrogen()->is_interval_check()) {
   5420     InstanceType first;
   5421     InstanceType last;
   5422     instr->hydrogen()->GetCheckInterval(&first, &last);
   5423 
   5424     __ cmpb(FieldOperand(temp, Map::kInstanceTypeOffset),
   5425             static_cast<int8_t>(first));
   5426 
   5427     // If there is only one type in the interval check for equality.
   5428     if (first == last) {
   5429       DeoptimizeIf(not_equal, instr, "wrong instance type");
   5430     } else {
   5431       DeoptimizeIf(below, instr, "wrong instance type");
   5432       // Omit check for the last type.
   5433       if (last != LAST_TYPE) {
   5434         __ cmpb(FieldOperand(temp, Map::kInstanceTypeOffset),
   5435                 static_cast<int8_t>(last));
   5436         DeoptimizeIf(above, instr, "wrong instance type");
   5437       }
   5438     }
   5439   } else {
   5440     uint8_t mask;
   5441     uint8_t tag;
   5442     instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
   5443 
   5444     if (base::bits::IsPowerOfTwo32(mask)) {
   5445       DCHECK(tag == 0 || base::bits::IsPowerOfTwo32(tag));
   5446       __ test_b(FieldOperand(temp, Map::kInstanceTypeOffset), mask);
   5447       DeoptimizeIf(tag == 0 ? not_zero : zero, instr, "wrong instance type");
   5448     } else {
   5449       __ movzx_b(temp, FieldOperand(temp, Map::kInstanceTypeOffset));
   5450       __ and_(temp, mask);
   5451       __ cmp(temp, tag);
   5452       DeoptimizeIf(not_equal, instr, "wrong instance type");
   5453     }
   5454   }
   5455 }
   5456 
   5457 
   5458 void LCodeGen::DoCheckValue(LCheckValue* instr) {
   5459   Handle<HeapObject> object = instr->hydrogen()->object().handle();
   5460   if (instr->hydrogen()->object_in_new_space()) {
   5461     Register reg = ToRegister(instr->value());
   5462     Handle<Cell> cell = isolate()->factory()->NewCell(object);
   5463     __ cmp(reg, Operand::ForCell(cell));
   5464   } else {
   5465     Operand operand = ToOperand(instr->value());
   5466     __ cmp(operand, object);
   5467   }
   5468   DeoptimizeIf(not_equal, instr, "value mismatch");
   5469 }
   5470 
   5471 
   5472 void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
   5473   {
   5474     PushSafepointRegistersScope scope(this);
   5475     __ push(object);
   5476     __ xor_(esi, esi);
   5477     __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
   5478     RecordSafepointWithRegisters(
   5479         instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
   5480 
   5481     __ test(eax, Immediate(kSmiTagMask));
   5482   }
   5483   DeoptimizeIf(zero, instr, "instance migration failed");
   5484 }
   5485 
   5486 
   5487 void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
   5488   class DeferredCheckMaps FINAL : public LDeferredCode {
   5489    public:
   5490     DeferredCheckMaps(LCodeGen* codegen,
   5491                       LCheckMaps* instr,
   5492                       Register object,
   5493                       const X87Stack& x87_stack)
   5494         : LDeferredCode(codegen, x87_stack), instr_(instr), object_(object) {
   5495       SetExit(check_maps());
   5496     }
   5497     virtual void Generate() OVERRIDE {
   5498       codegen()->DoDeferredInstanceMigration(instr_, object_);
   5499     }
   5500     Label* check_maps() { return &check_maps_; }
   5501     virtual LInstruction* instr() OVERRIDE { return instr_; }
   5502    private:
   5503     LCheckMaps* instr_;
   5504     Label check_maps_;
   5505     Register object_;
   5506   };
   5507 
   5508   if (instr->hydrogen()->IsStabilityCheck()) {
   5509     const UniqueSet<Map>* maps = instr->hydrogen()->maps();
   5510     for (int i = 0; i < maps->size(); ++i) {
   5511       AddStabilityDependency(maps->at(i).handle());
   5512     }
   5513     return;
   5514   }
   5515 
   5516   LOperand* input = instr->value();
   5517   DCHECK(input->IsRegister());
   5518   Register reg = ToRegister(input);
   5519 
   5520   DeferredCheckMaps* deferred = NULL;
   5521   if (instr->hydrogen()->HasMigrationTarget()) {
   5522     deferred = new(zone()) DeferredCheckMaps(this, instr, reg, x87_stack_);
   5523     __ bind(deferred->check_maps());
   5524   }
   5525 
   5526   const UniqueSet<Map>* maps = instr->hydrogen()->maps();
   5527   Label success;
   5528   for (int i = 0; i < maps->size() - 1; i++) {
   5529     Handle<Map> map = maps->at(i).handle();
   5530     __ CompareMap(reg, map);
   5531     __ j(equal, &success, Label::kNear);
   5532   }
   5533 
   5534   Handle<Map> map = maps->at(maps->size() - 1).handle();
   5535   __ CompareMap(reg, map);
   5536   if (instr->hydrogen()->HasMigrationTarget()) {
   5537     __ j(not_equal, deferred->entry());
   5538   } else {
   5539     DeoptimizeIf(not_equal, instr, "wrong map");
   5540   }
   5541 
   5542   __ bind(&success);
   5543 }
   5544 
   5545 
   5546 void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
   5547   X87Register value_reg = ToX87Register(instr->unclamped());
   5548   Register result_reg = ToRegister(instr->result());
   5549   X87Fxch(value_reg);
   5550   __ ClampTOSToUint8(result_reg);
   5551 }
   5552 
   5553 
   5554 void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
   5555   DCHECK(instr->unclamped()->Equals(instr->result()));
   5556   Register value_reg = ToRegister(instr->result());
   5557   __ ClampUint8(value_reg);
   5558 }
   5559 
   5560 
   5561 void LCodeGen::DoClampTToUint8NoSSE2(LClampTToUint8NoSSE2* instr) {
   5562   Register input_reg = ToRegister(instr->unclamped());
   5563   Register result_reg = ToRegister(instr->result());
   5564   Register scratch = ToRegister(instr->scratch());
   5565   Register scratch2 = ToRegister(instr->scratch2());
   5566   Register scratch3 = ToRegister(instr->scratch3());
   5567   Label is_smi, done, heap_number, valid_exponent,
   5568       largest_value, zero_result, maybe_nan_or_infinity;
   5569 
   5570   __ JumpIfSmi(input_reg, &is_smi);
   5571 
   5572   // Check for heap number
   5573   __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
   5574          factory()->heap_number_map());
   5575   __ j(equal, &heap_number, Label::kNear);
   5576 
   5577   // Check for undefined. Undefined is converted to zero for clamping
   5578   // conversions.
   5579   __ cmp(input_reg, factory()->undefined_value());
   5580   DeoptimizeIf(not_equal, instr, "not a heap number/undefined");
   5581   __ jmp(&zero_result, Label::kNear);
   5582 
   5583   // Heap number
   5584   __ bind(&heap_number);
   5585 
   5586   // Surprisingly, all of the hand-crafted bit-manipulations below are much
   5587   // faster than the x86 FPU built-in instruction, especially since "banker's
   5588   // rounding" would be additionally very expensive
   5589 
   5590   // Get exponent word.
   5591   __ mov(scratch, FieldOperand(input_reg, HeapNumber::kExponentOffset));
   5592   __ mov(scratch3, FieldOperand(input_reg, HeapNumber::kMantissaOffset));
   5593 
   5594   // Test for negative values --> clamp to zero
   5595   __ test(scratch, scratch);
   5596   __ j(negative, &zero_result, Label::kNear);
   5597 
   5598   // Get exponent alone in scratch2.
   5599   __ mov(scratch2, scratch);
   5600   __ and_(scratch2, HeapNumber::kExponentMask);
   5601   __ shr(scratch2, HeapNumber::kExponentShift);
   5602   __ j(zero, &zero_result, Label::kNear);
   5603   __ sub(scratch2, Immediate(HeapNumber::kExponentBias - 1));
   5604   __ j(negative, &zero_result, Label::kNear);
   5605 
   5606   const uint32_t non_int8_exponent = 7;
   5607   __ cmp(scratch2, Immediate(non_int8_exponent + 1));
   5608   // If the exponent is too big, check for special values.
   5609   __ j(greater, &maybe_nan_or_infinity, Label::kNear);
   5610 
   5611   __ bind(&valid_exponent);
   5612   // Exponent word in scratch, exponent in scratch2. We know that 0 <= exponent
   5613   // < 7. The shift bias is the number of bits to shift the mantissa such that
   5614   // with an exponent of 7 such the that top-most one is in bit 30, allowing
   5615   // detection the rounding overflow of a 255.5 to 256 (bit 31 goes from 0 to
   5616   // 1).
   5617   int shift_bias = (30 - HeapNumber::kExponentShift) - 7 - 1;
   5618   __ lea(result_reg, MemOperand(scratch2, shift_bias));
   5619   // Here result_reg (ecx) is the shift, scratch is the exponent word.  Get the
   5620   // top bits of the mantissa.
   5621   __ and_(scratch, HeapNumber::kMantissaMask);
   5622   // Put back the implicit 1 of the mantissa
   5623   __ or_(scratch, 1 << HeapNumber::kExponentShift);
   5624   // Shift up to round
   5625   __ shl_cl(scratch);
   5626   // Use "banker's rounding" to spec: If fractional part of number is 0.5, then
   5627   // use the bit in the "ones" place and add it to the "halves" place, which has
   5628   // the effect of rounding to even.
   5629   __ mov(scratch2, scratch);
   5630   const uint32_t one_half_bit_shift = 30 - sizeof(uint8_t) * 8;
   5631   const uint32_t one_bit_shift = one_half_bit_shift + 1;
   5632   __ and_(scratch2, Immediate((1 << one_bit_shift) - 1));
   5633   __ cmp(scratch2, Immediate(1 << one_half_bit_shift));
   5634   Label no_round;
   5635   __ j(less, &no_round, Label::kNear);
   5636   Label round_up;
   5637   __ mov(scratch2, Immediate(1 << one_half_bit_shift));
   5638   __ j(greater, &round_up, Label::kNear);
   5639   __ test(scratch3, scratch3);
   5640   __ j(not_zero, &round_up, Label::kNear);
   5641   __ mov(scratch2, scratch);
   5642   __ and_(scratch2, Immediate(1 << one_bit_shift));
   5643   __ shr(scratch2, 1);
   5644   __ bind(&round_up);
   5645   __ add(scratch, scratch2);
   5646   __ j(overflow, &largest_value, Label::kNear);
   5647   __ bind(&no_round);
   5648   __ shr(scratch, 23);
   5649   __ mov(result_reg, scratch);
   5650   __ jmp(&done, Label::kNear);
   5651 
   5652   __ bind(&maybe_nan_or_infinity);
   5653   // Check for NaN/Infinity, all other values map to 255
   5654   __ cmp(scratch2, Immediate(HeapNumber::kInfinityOrNanExponent + 1));
   5655   __ j(not_equal, &largest_value, Label::kNear);
   5656 
   5657   // Check for NaN, which differs from Infinity in that at least one mantissa
   5658   // bit is set.
   5659   __ and_(scratch, HeapNumber::kMantissaMask);
   5660   __ or_(scratch, FieldOperand(input_reg, HeapNumber::kMantissaOffset));
   5661   __ j(not_zero, &zero_result, Label::kNear);  // M!=0 --> NaN
   5662   // Infinity -> Fall through to map to 255.
   5663 
   5664   __ bind(&largest_value);
   5665   __ mov(result_reg, Immediate(255));
   5666   __ jmp(&done, Label::kNear);
   5667 
   5668   __ bind(&zero_result);
   5669   __ xor_(result_reg, result_reg);
   5670   __ jmp(&done, Label::kNear);
   5671 
   5672   // smi
   5673   __ bind(&is_smi);
   5674   if (!input_reg.is(result_reg)) {
   5675     __ mov(result_reg, input_reg);
   5676   }
   5677   __ SmiUntag(result_reg);
   5678   __ ClampUint8(result_reg);
   5679   __ bind(&done);
   5680 }
   5681 
   5682 
   5683 void LCodeGen::DoDoubleBits(LDoubleBits* instr) {
   5684   X87Register value_reg = ToX87Register(instr->value());
   5685   Register result_reg = ToRegister(instr->result());
   5686   X87Fxch(value_reg);
   5687   __ sub(esp, Immediate(kDoubleSize));
   5688   __ fst_d(Operand(esp, 0));
   5689   if (instr->hydrogen()->bits() == HDoubleBits::HIGH) {
   5690     __ mov(result_reg, Operand(esp, kPointerSize));
   5691   } else {
   5692     __ mov(result_reg, Operand(esp, 0));
   5693   }
   5694   __ add(esp, Immediate(kDoubleSize));
   5695 }
   5696 
   5697 
   5698 void LCodeGen::DoConstructDouble(LConstructDouble* instr) {
   5699   Register hi_reg = ToRegister(instr->hi());
   5700   Register lo_reg = ToRegister(instr->lo());
   5701   X87Register result_reg = ToX87Register(instr->result());
   5702   // Follow below pattern to write a x87 fp register.
   5703   X87PrepareToWrite(result_reg);
   5704   __ sub(esp, Immediate(kDoubleSize));
   5705   __ mov(Operand(esp, 0), lo_reg);
   5706   __ mov(Operand(esp, kPointerSize), hi_reg);
   5707   __ fld_d(Operand(esp, 0));
   5708   __ add(esp, Immediate(kDoubleSize));
   5709   X87CommitWrite(result_reg);
   5710 }
   5711 
   5712 
   5713 void LCodeGen::DoAllocate(LAllocate* instr) {
   5714   class DeferredAllocate FINAL : public LDeferredCode {
   5715    public:
   5716     DeferredAllocate(LCodeGen* codegen,
   5717                      LAllocate* instr,
   5718                      const X87Stack& x87_stack)
   5719         : LDeferredCode(codegen, x87_stack), instr_(instr) { }
   5720     virtual void Generate() OVERRIDE {
   5721       codegen()->DoDeferredAllocate(instr_);
   5722     }
   5723     virtual LInstruction* instr() OVERRIDE { return instr_; }
   5724    private:
   5725     LAllocate* instr_;
   5726   };
   5727 
   5728   DeferredAllocate* deferred =
   5729       new(zone()) DeferredAllocate(this, instr, x87_stack_);
   5730 
   5731   Register result = ToRegister(instr->result());
   5732   Register temp = ToRegister(instr->temp());
   5733 
   5734   // Allocate memory for the object.
   5735   AllocationFlags flags = TAG_OBJECT;
   5736   if (instr->hydrogen()->MustAllocateDoubleAligned()) {
   5737     flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
   5738   }
   5739   if (instr->hydrogen()->IsOldPointerSpaceAllocation()) {
   5740     DCHECK(!instr->hydrogen()->IsOldDataSpaceAllocation());
   5741     DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
   5742     flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_POINTER_SPACE);
   5743   } else if (instr->hydrogen()->IsOldDataSpaceAllocation()) {
   5744     DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
   5745     flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_DATA_SPACE);
   5746   }
   5747 
   5748   if (instr->size()->IsConstantOperand()) {
   5749     int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
   5750     if (size <= Page::kMaxRegularHeapObjectSize) {
   5751       __ Allocate(size, result, temp, no_reg, deferred->entry(), flags);
   5752     } else {
   5753       __ jmp(deferred->entry());
   5754     }
   5755   } else {
   5756     Register size = ToRegister(instr->size());
   5757     __ Allocate(size, result, temp, no_reg, deferred->entry(), flags);
   5758   }
   5759 
   5760   __ bind(deferred->exit());
   5761 
   5762   if (instr->hydrogen()->MustPrefillWithFiller()) {
   5763     if (instr->size()->IsConstantOperand()) {
   5764       int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
   5765       __ mov(temp, (size / kPointerSize) - 1);
   5766     } else {
   5767       temp = ToRegister(instr->size());
   5768       __ shr(temp, kPointerSizeLog2);
   5769       __ dec(temp);
   5770     }
   5771     Label loop;
   5772     __ bind(&loop);
   5773     __ mov(FieldOperand(result, temp, times_pointer_size, 0),
   5774         isolate()->factory()->one_pointer_filler_map());
   5775     __ dec(temp);
   5776     __ j(not_zero, &loop);
   5777   }
   5778 }
   5779 
   5780 
   5781 void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
   5782   Register result = ToRegister(instr->result());
   5783 
   5784   // TODO(3095996): Get rid of this. For now, we need to make the
   5785   // result register contain a valid pointer because it is already
   5786   // contained in the register pointer map.
   5787   __ Move(result, Immediate(Smi::FromInt(0)));
   5788 
   5789   PushSafepointRegistersScope scope(this);
   5790   if (instr->size()->IsRegister()) {
   5791     Register size = ToRegister(instr->size());
   5792     DCHECK(!size.is(result));
   5793     __ SmiTag(ToRegister(instr->size()));
   5794     __ push(size);
   5795   } else {
   5796     int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
   5797     if (size >= 0 && size <= Smi::kMaxValue) {
   5798       __ push(Immediate(Smi::FromInt(size)));
   5799     } else {
   5800       // We should never get here at runtime => abort
   5801       __ int3();
   5802       return;
   5803     }
   5804   }
   5805 
   5806   int flags = AllocateDoubleAlignFlag::encode(
   5807       instr->hydrogen()->MustAllocateDoubleAligned());
   5808   if (instr->hydrogen()->IsOldPointerSpaceAllocation()) {
   5809     DCHECK(!instr->hydrogen()->IsOldDataSpaceAllocation());
   5810     DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
   5811     flags = AllocateTargetSpace::update(flags, OLD_POINTER_SPACE);
   5812   } else if (instr->hydrogen()->IsOldDataSpaceAllocation()) {
   5813     DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
   5814     flags = AllocateTargetSpace::update(flags, OLD_DATA_SPACE);
   5815   } else {
   5816     flags = AllocateTargetSpace::update(flags, NEW_SPACE);
   5817   }
   5818   __ push(Immediate(Smi::FromInt(flags)));
   5819 
   5820   CallRuntimeFromDeferred(
   5821       Runtime::kAllocateInTargetSpace, 2, instr, instr->context());
   5822   __ StoreToSafepointRegisterSlot(result, eax);
   5823 }
   5824 
   5825 
   5826 void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
   5827   DCHECK(ToRegister(instr->value()).is(eax));
   5828   __ push(eax);
   5829   CallRuntime(Runtime::kToFastProperties, 1, instr);
   5830 }
   5831 
   5832 
   5833 void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) {
   5834   DCHECK(ToRegister(instr->context()).is(esi));
   5835   Label materialized;
   5836   // Registers will be used as follows:
   5837   // ecx = literals array.
   5838   // ebx = regexp literal.
   5839   // eax = regexp literal clone.
   5840   // esi = context.
   5841   int literal_offset =
   5842       FixedArray::OffsetOfElementAt(instr->hydrogen()->literal_index());
   5843   __ LoadHeapObject(ecx, instr->hydrogen()->literals());
   5844   __ mov(ebx, FieldOperand(ecx, literal_offset));
   5845   __ cmp(ebx, factory()->undefined_value());
   5846   __ j(not_equal, &materialized, Label::kNear);
   5847 
   5848   // Create regexp literal using runtime function
   5849   // Result will be in eax.
   5850   __ push(ecx);
   5851   __ push(Immediate(Smi::FromInt(instr->hydrogen()->literal_index())));
   5852   __ push(Immediate(instr->hydrogen()->pattern()));
   5853   __ push(Immediate(instr->hydrogen()->flags()));
   5854   CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr);
   5855   __ mov(ebx, eax);
   5856 
   5857   __ bind(&materialized);
   5858   int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
   5859   Label allocated, runtime_allocate;
   5860   __ Allocate(size, eax, ecx, edx, &runtime_allocate, TAG_OBJECT);
   5861   __ jmp(&allocated, Label::kNear);
   5862 
   5863   __ bind(&runtime_allocate);
   5864   __ push(ebx);
   5865   __ push(Immediate(Smi::FromInt(size)));
   5866   CallRuntime(Runtime::kAllocateInNewSpace, 1, instr);
   5867   __ pop(ebx);
   5868 
   5869   __ bind(&allocated);
   5870   // Copy the content into the newly allocated memory.
   5871   // (Unroll copy loop once for better throughput).
   5872   for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) {
   5873     __ mov(edx, FieldOperand(ebx, i));
   5874     __ mov(ecx, FieldOperand(ebx, i + kPointerSize));
   5875     __ mov(FieldOperand(eax, i), edx);
   5876     __ mov(FieldOperand(eax, i + kPointerSize), ecx);
   5877   }
   5878   if ((size % (2 * kPointerSize)) != 0) {
   5879     __ mov(edx, FieldOperand(ebx, size - kPointerSize));
   5880     __ mov(FieldOperand(eax, size - kPointerSize), edx);
   5881   }
   5882 }
   5883 
   5884 
   5885 void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) {
   5886   DCHECK(ToRegister(instr->context()).is(esi));
   5887   // Use the fast case closure allocation code that allocates in new
   5888   // space for nested functions that don't need literals cloning.
   5889   bool pretenure = instr->hydrogen()->pretenure();
   5890   if (!pretenure && instr->hydrogen()->has_no_literals()) {
   5891     FastNewClosureStub stub(isolate(), instr->hydrogen()->strict_mode(),
   5892                             instr->hydrogen()->kind());
   5893     __ mov(ebx, Immediate(instr->hydrogen()->shared_info()));
   5894     CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
   5895   } else {
   5896     __ push(esi);
   5897     __ push(Immediate(instr->hydrogen()->shared_info()));
   5898     __ push(Immediate(pretenure ? factory()->true_value()
   5899                                 : factory()->false_value()));
   5900     CallRuntime(Runtime::kNewClosure, 3, instr);
   5901   }
   5902 }
   5903 
   5904 
   5905 void LCodeGen::DoTypeof(LTypeof* instr) {
   5906   DCHECK(ToRegister(instr->context()).is(esi));
   5907   LOperand* input = instr->value();
   5908   EmitPushTaggedOperand(input);
   5909   CallRuntime(Runtime::kTypeof, 1, instr);
   5910 }
   5911 
   5912 
   5913 void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
   5914   Register input = ToRegister(instr->value());
   5915   Condition final_branch_condition = EmitTypeofIs(instr, input);
   5916   if (final_branch_condition != no_condition) {
   5917     EmitBranch(instr, final_branch_condition);
   5918   }
   5919 }
   5920 
   5921 
   5922 Condition LCodeGen::EmitTypeofIs(LTypeofIsAndBranch* instr, Register input) {
   5923   Label* true_label = instr->TrueLabel(chunk_);
   5924   Label* false_label = instr->FalseLabel(chunk_);
   5925   Handle<String> type_name = instr->type_literal();
   5926   int left_block = instr->TrueDestination(chunk_);
   5927   int right_block = instr->FalseDestination(chunk_);
   5928   int next_block = GetNextEmittedBlock();
   5929 
   5930   Label::Distance true_distance = left_block == next_block ? Label::kNear
   5931                                                            : Label::kFar;
   5932   Label::Distance false_distance = right_block == next_block ? Label::kNear
   5933                                                              : Label::kFar;
   5934   Condition final_branch_condition = no_condition;
   5935   if (String::Equals(type_name, factory()->number_string())) {
   5936     __ JumpIfSmi(input, true_label, true_distance);
   5937     __ cmp(FieldOperand(input, HeapObject::kMapOffset),
   5938            factory()->heap_number_map());
   5939     final_branch_condition = equal;
   5940 
   5941   } else if (String::Equals(type_name, factory()->string_string())) {
   5942     __ JumpIfSmi(input, false_label, false_distance);
   5943     __ CmpObjectType(input, FIRST_NONSTRING_TYPE, input);
   5944     __ j(above_equal, false_label, false_distance);
   5945     __ test_b(FieldOperand(input, Map::kBitFieldOffset),
   5946               1 << Map::kIsUndetectable);
   5947     final_branch_condition = zero;
   5948 
   5949   } else if (String::Equals(type_name, factory()->symbol_string())) {
   5950     __ JumpIfSmi(input, false_label, false_distance);
   5951     __ CmpObjectType(input, SYMBOL_TYPE, input);
   5952     final_branch_condition = equal;
   5953 
   5954   } else if (String::Equals(type_name, factory()->boolean_string())) {
   5955     __ cmp(input, factory()->true_value());
   5956     __ j(equal, true_label, true_distance);
   5957     __ cmp(input, factory()->false_value());
   5958     final_branch_condition = equal;
   5959 
   5960   } else if (String::Equals(type_name, factory()->undefined_string())) {
   5961     __ cmp(input, factory()->undefined_value());
   5962     __ j(equal, true_label, true_distance);
   5963     __ JumpIfSmi(input, false_label, false_distance);
   5964     // Check for undetectable objects => true.
   5965     __ mov(input, FieldOperand(input, HeapObject::kMapOffset));
   5966     __ test_b(FieldOperand(input, Map::kBitFieldOffset),
   5967               1 << Map::kIsUndetectable);
   5968     final_branch_condition = not_zero;
   5969 
   5970   } else if (String::Equals(type_name, factory()->function_string())) {
   5971     STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
   5972     __ JumpIfSmi(input, false_label, false_distance);
   5973     __ CmpObjectType(input, JS_FUNCTION_TYPE, input);
   5974     __ j(equal, true_label, true_distance);
   5975     __ CmpInstanceType(input, JS_FUNCTION_PROXY_TYPE);
   5976     final_branch_condition = equal;
   5977 
   5978   } else if (String::Equals(type_name, factory()->object_string())) {
   5979     __ JumpIfSmi(input, false_label, false_distance);
   5980     __ cmp(input, factory()->null_value());
   5981     __ j(equal, true_label, true_distance);
   5982     __ CmpObjectType(input, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE, input);
   5983     __ j(below, false_label, false_distance);
   5984     __ CmpInstanceType(input, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
   5985     __ j(above, false_label, false_distance);
   5986     // Check for undetectable objects => false.
   5987     __ test_b(FieldOperand(input, Map::kBitFieldOffset),
   5988               1 << Map::kIsUndetectable);
   5989     final_branch_condition = zero;
   5990 
   5991   } else {
   5992     __ jmp(false_label, false_distance);
   5993   }
   5994   return final_branch_condition;
   5995 }
   5996 
   5997 
   5998 void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) {
   5999   Register temp = ToRegister(instr->temp());
   6000 
   6001   EmitIsConstructCall(temp);
   6002   EmitBranch(instr, equal);
   6003 }
   6004 
   6005 
   6006 void LCodeGen::EmitIsConstructCall(Register temp) {
   6007   // Get the frame pointer for the calling frame.
   6008   __ mov(temp, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
   6009 
   6010   // Skip the arguments adaptor frame if it exists.
   6011   Label check_frame_marker;
   6012   __ cmp(Operand(temp, StandardFrameConstants::kContextOffset),
   6013          Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
   6014   __ j(not_equal, &check_frame_marker, Label::kNear);
   6015   __ mov(temp, Operand(temp, StandardFrameConstants::kCallerFPOffset));
   6016 
   6017   // Check the marker in the calling frame.
   6018   __ bind(&check_frame_marker);
   6019   __ cmp(Operand(temp, StandardFrameConstants::kMarkerOffset),
   6020          Immediate(Smi::FromInt(StackFrame::CONSTRUCT)));
   6021 }
   6022 
   6023 
   6024 void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
   6025   if (!info()->IsStub()) {
   6026     // Ensure that we have enough space after the previous lazy-bailout
   6027     // instruction for patching the code here.
   6028     int current_pc = masm()->pc_offset();
   6029     if (current_pc < last_lazy_deopt_pc_ + space_needed) {
   6030       int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
   6031       __ Nop(padding_size);
   6032     }
   6033   }
   6034   last_lazy_deopt_pc_ = masm()->pc_offset();
   6035 }
   6036 
   6037 
   6038 void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
   6039   last_lazy_deopt_pc_ = masm()->pc_offset();
   6040   DCHECK(instr->HasEnvironment());
   6041   LEnvironment* env = instr->environment();
   6042   RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
   6043   safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
   6044 }
   6045 
   6046 
   6047 void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
   6048   Deoptimizer::BailoutType type = instr->hydrogen()->type();
   6049   // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
   6050   // needed return address), even though the implementation of LAZY and EAGER is
   6051   // now identical. When LAZY is eventually completely folded into EAGER, remove
   6052   // the special case below.
   6053   if (info()->IsStub() && type == Deoptimizer::EAGER) {
   6054     type = Deoptimizer::LAZY;
   6055   }
   6056   DeoptimizeIf(no_condition, instr, instr->hydrogen()->reason(), type);
   6057 }
   6058 
   6059 
   6060 void LCodeGen::DoDummy(LDummy* instr) {
   6061   // Nothing to see here, move on!
   6062 }
   6063 
   6064 
   6065 void LCodeGen::DoDummyUse(LDummyUse* instr) {
   6066   // Nothing to see here, move on!
   6067 }
   6068 
   6069 
   6070 void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
   6071   PushSafepointRegistersScope scope(this);
   6072   __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
   6073   __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
   6074   RecordSafepointWithLazyDeopt(
   6075       instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
   6076   DCHECK(instr->HasEnvironment());
   6077   LEnvironment* env = instr->environment();
   6078   safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
   6079 }
   6080 
   6081 
   6082 void LCodeGen::DoStackCheck(LStackCheck* instr) {
   6083   class DeferredStackCheck FINAL : public LDeferredCode {
   6084    public:
   6085     DeferredStackCheck(LCodeGen* codegen,
   6086                        LStackCheck* instr,
   6087                        const X87Stack& x87_stack)
   6088         : LDeferredCode(codegen, x87_stack), instr_(instr) { }
   6089     virtual void Generate() OVERRIDE {
   6090       codegen()->DoDeferredStackCheck(instr_);
   6091     }
   6092     virtual LInstruction* instr() OVERRIDE { return instr_; }
   6093    private:
   6094     LStackCheck* instr_;
   6095   };
   6096 
   6097   DCHECK(instr->HasEnvironment());
   6098   LEnvironment* env = instr->environment();
   6099   // There is no LLazyBailout instruction for stack-checks. We have to
   6100   // prepare for lazy deoptimization explicitly here.
   6101   if (instr->hydrogen()->is_function_entry()) {
   6102     // Perform stack overflow check.
   6103     Label done;
   6104     ExternalReference stack_limit =
   6105         ExternalReference::address_of_stack_limit(isolate());
   6106     __ cmp(esp, Operand::StaticVariable(stack_limit));
   6107     __ j(above_equal, &done, Label::kNear);
   6108 
   6109     DCHECK(instr->context()->IsRegister());
   6110     DCHECK(ToRegister(instr->context()).is(esi));
   6111     CallCode(isolate()->builtins()->StackCheck(),
   6112              RelocInfo::CODE_TARGET,
   6113              instr);
   6114     __ bind(&done);
   6115   } else {
   6116     DCHECK(instr->hydrogen()->is_backwards_branch());
   6117     // Perform stack overflow check if this goto needs it before jumping.
   6118     DeferredStackCheck* deferred_stack_check =
   6119         new(zone()) DeferredStackCheck(this, instr, x87_stack_);
   6120     ExternalReference stack_limit =
   6121         ExternalReference::address_of_stack_limit(isolate());
   6122     __ cmp(esp, Operand::StaticVariable(stack_limit));
   6123     __ j(below, deferred_stack_check->entry());
   6124     EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
   6125     __ bind(instr->done_label());
   6126     deferred_stack_check->SetExit(instr->done_label());
   6127     RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
   6128     // Don't record a deoptimization index for the safepoint here.
   6129     // This will be done explicitly when emitting call and the safepoint in
   6130     // the deferred code.
   6131   }
   6132 }
   6133 
   6134 
   6135 void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
   6136   // This is a pseudo-instruction that ensures that the environment here is
   6137   // properly registered for deoptimization and records the assembler's PC
   6138   // offset.
   6139   LEnvironment* environment = instr->environment();
   6140 
   6141   // If the environment were already registered, we would have no way of
   6142   // backpatching it with the spill slot operands.
   6143   DCHECK(!environment->HasBeenRegistered());
   6144   RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
   6145 
   6146   GenerateOsrPrologue();
   6147 }
   6148 
   6149 
   6150 void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
   6151   DCHECK(ToRegister(instr->context()).is(esi));
   6152   __ cmp(eax, isolate()->factory()->undefined_value());
   6153   DeoptimizeIf(equal, instr, "undefined");
   6154 
   6155   __ cmp(eax, isolate()->factory()->null_value());
   6156   DeoptimizeIf(equal, instr, "null");
   6157 
   6158   __ test(eax, Immediate(kSmiTagMask));
   6159   DeoptimizeIf(zero, instr, "Smi");
   6160 
   6161   STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
   6162   __ CmpObjectType(eax, LAST_JS_PROXY_TYPE, ecx);
   6163   DeoptimizeIf(below_equal, instr, "wrong instance type");
   6164 
   6165   Label use_cache, call_runtime;
   6166   __ CheckEnumCache(&call_runtime);
   6167 
   6168   __ mov(eax, FieldOperand(eax, HeapObject::kMapOffset));
   6169   __ jmp(&use_cache, Label::kNear);
   6170 
   6171   // Get the set of properties to enumerate.
   6172   __ bind(&call_runtime);
   6173   __ push(eax);
   6174   CallRuntime(Runtime::kGetPropertyNamesFast, 1, instr);
   6175 
   6176   __ cmp(FieldOperand(eax, HeapObject::kMapOffset),
   6177          isolate()->factory()->meta_map());
   6178   DeoptimizeIf(not_equal, instr, "wrong map");
   6179   __ bind(&use_cache);
   6180 }
   6181 
   6182 
   6183 void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
   6184   Register map = ToRegister(instr->map());
   6185   Register result = ToRegister(instr->result());
   6186   Label load_cache, done;
   6187   __ EnumLength(result, map);
   6188   __ cmp(result, Immediate(Smi::FromInt(0)));
   6189   __ j(not_equal, &load_cache, Label::kNear);
   6190   __ mov(result, isolate()->factory()->empty_fixed_array());
   6191   __ jmp(&done, Label::kNear);
   6192 
   6193   __ bind(&load_cache);
   6194   __ LoadInstanceDescriptors(map, result);
   6195   __ mov(result,
   6196          FieldOperand(result, DescriptorArray::kEnumCacheOffset));
   6197   __ mov(result,
   6198          FieldOperand(result, FixedArray::SizeFor(instr->idx())));
   6199   __ bind(&done);
   6200   __ test(result, result);
   6201   DeoptimizeIf(equal, instr, "no cache");
   6202 }
   6203 
   6204 
   6205 void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
   6206   Register object = ToRegister(instr->value());
   6207   __ cmp(ToRegister(instr->map()),
   6208          FieldOperand(object, HeapObject::kMapOffset));
   6209   DeoptimizeIf(not_equal, instr, "wrong map");
   6210 }
   6211 
   6212 
   6213 void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
   6214                                            Register object,
   6215                                            Register index) {
   6216   PushSafepointRegistersScope scope(this);
   6217   __ push(object);
   6218   __ push(index);
   6219   __ xor_(esi, esi);
   6220   __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
   6221   RecordSafepointWithRegisters(
   6222       instr->pointer_map(), 2, Safepoint::kNoLazyDeopt);
   6223   __ StoreToSafepointRegisterSlot(object, eax);
   6224 }
   6225 
   6226 
   6227 void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
   6228   class DeferredLoadMutableDouble FINAL : public LDeferredCode {
   6229    public:
   6230     DeferredLoadMutableDouble(LCodeGen* codegen,
   6231                               LLoadFieldByIndex* instr,
   6232                               Register object,
   6233                               Register index,
   6234                               const X87Stack& x87_stack)
   6235         : LDeferredCode(codegen, x87_stack),
   6236           instr_(instr),
   6237           object_(object),
   6238           index_(index) {
   6239     }
   6240     virtual void Generate() OVERRIDE {
   6241       codegen()->DoDeferredLoadMutableDouble(instr_, object_, index_);
   6242     }
   6243     virtual LInstruction* instr() OVERRIDE { return instr_; }
   6244    private:
   6245     LLoadFieldByIndex* instr_;
   6246     Register object_;
   6247     Register index_;
   6248   };
   6249 
   6250   Register object = ToRegister(instr->object());
   6251   Register index = ToRegister(instr->index());
   6252 
   6253   DeferredLoadMutableDouble* deferred;
   6254   deferred = new(zone()) DeferredLoadMutableDouble(
   6255       this, instr, object, index, x87_stack_);
   6256 
   6257   Label out_of_object, done;
   6258   __ test(index, Immediate(Smi::FromInt(1)));
   6259   __ j(not_zero, deferred->entry());
   6260 
   6261   __ sar(index, 1);
   6262 
   6263   __ cmp(index, Immediate(0));
   6264   __ j(less, &out_of_object, Label::kNear);
   6265   __ mov(object, FieldOperand(object,
   6266                               index,
   6267                               times_half_pointer_size,
   6268                               JSObject::kHeaderSize));
   6269   __ jmp(&done, Label::kNear);
   6270 
   6271   __ bind(&out_of_object);
   6272   __ mov(object, FieldOperand(object, JSObject::kPropertiesOffset));
   6273   __ neg(index);
   6274   // Index is now equal to out of object property index plus 1.
   6275   __ mov(object, FieldOperand(object,
   6276                               index,
   6277                               times_half_pointer_size,
   6278                               FixedArray::kHeaderSize - kPointerSize));
   6279   __ bind(deferred->exit());
   6280   __ bind(&done);
   6281 }
   6282 
   6283 
   6284 void LCodeGen::DoStoreFrameContext(LStoreFrameContext* instr) {
   6285   Register context = ToRegister(instr->context());
   6286   __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), context);
   6287 }
   6288 
   6289 
   6290 void LCodeGen::DoAllocateBlockContext(LAllocateBlockContext* instr) {
   6291   Handle<ScopeInfo> scope_info = instr->scope_info();
   6292   __ Push(scope_info);
   6293   __ push(ToRegister(instr->function()));
   6294   CallRuntime(Runtime::kPushBlockContext, 2, instr);
   6295   RecordSafepoint(Safepoint::kNoLazyDeopt);
   6296 }
   6297 
   6298 
   6299 #undef __
   6300 
   6301 } }  // namespace v8::internal
   6302 
   6303 #endif  // V8_TARGET_ARCH_X87
   6304