Home | History | Annotate | Download | only in PowerPC
      1 //===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the interfaces that PPC uses to lower LLVM code into a
     11 // selection DAG.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
     16 #define LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
     17 
     18 #include "PPC.h"
     19 #include "PPCInstrInfo.h"
     20 #include "PPCRegisterInfo.h"
     21 #include "llvm/CodeGen/CallingConvLower.h"
     22 #include "llvm/CodeGen/SelectionDAG.h"
     23 #include "llvm/Target/TargetLowering.h"
     24 
     25 namespace llvm {
     26   namespace PPCISD {
     27     enum NodeType {
     28       // Start the numbering where the builtin ops and target ops leave off.
     29       FIRST_NUMBER = ISD::BUILTIN_OP_END,
     30 
     31       /// FSEL - Traditional three-operand fsel node.
     32       ///
     33       FSEL,
     34 
     35       /// FCFID - The FCFID instruction, taking an f64 operand and producing
     36       /// and f64 value containing the FP representation of the integer that
     37       /// was temporarily in the f64 operand.
     38       FCFID,
     39 
     40       /// Newer FCFID[US] integer-to-floating-point conversion instructions for
     41       /// unsigned integers and single-precision outputs.
     42       FCFIDU, FCFIDS, FCFIDUS,
     43 
     44       /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
     45       /// operand, producing an f64 value containing the integer representation
     46       /// of that FP value.
     47       FCTIDZ, FCTIWZ,
     48 
     49       /// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for
     50       /// unsigned integers.
     51       FCTIDUZ, FCTIWUZ,
     52 
     53       /// Reciprocal estimate instructions (unary FP ops).
     54       FRE, FRSQRTE,
     55 
     56       // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
     57       // three v4f32 operands and producing a v4f32 result.
     58       VMADDFP, VNMSUBFP,
     59 
     60       /// VPERM - The PPC VPERM Instruction.
     61       ///
     62       VPERM,
     63 
     64       /// The CMPB instruction (takes two operands of i32 or i64).
     65       CMPB,
     66 
     67       /// Hi/Lo - These represent the high and low 16-bit parts of a global
     68       /// address respectively.  These nodes have two operands, the first of
     69       /// which must be a TargetGlobalAddress, and the second of which must be a
     70       /// Constant.  Selected naively, these turn into 'lis G+C' and 'li G+C',
     71       /// though these are usually folded into other nodes.
     72       Hi, Lo,
     73 
     74       /// The following two target-specific nodes are used for calls through
     75       /// function pointers in the 64-bit SVR4 ABI.
     76 
     77       /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
     78       /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
     79       /// compute an allocation on the stack.
     80       DYNALLOC,
     81 
     82       /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
     83       /// at function entry, used for PIC code.
     84       GlobalBaseReg,
     85 
     86       /// These nodes represent the 32-bit PPC shifts that operate on 6-bit
     87       /// shift amounts.  These nodes are generated by the multi-precision shift
     88       /// code.
     89       SRL, SRA, SHL,
     90 
     91       /// The combination of sra[wd]i and addze used to implemented signed
     92       /// integer division by a power of 2. The first operand is the dividend,
     93       /// and the second is the constant shift amount (representing the
     94       /// divisor).
     95       SRA_ADDZE,
     96 
     97       /// CALL - A direct function call.
     98       /// CALL_NOP is a call with the special NOP which follows 64-bit
     99       /// SVR4 calls.
    100       CALL, CALL_NOP,
    101 
    102       /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
    103       /// MTCTR instruction.
    104       MTCTR,
    105 
    106       /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
    107       /// BCTRL instruction.
    108       BCTRL,
    109 
    110       /// CHAIN,FLAG = BCTRL(CHAIN, ADDR, INFLAG) - The combination of a bctrl
    111       /// instruction and the TOC reload required on SVR4 PPC64.
    112       BCTRL_LOAD_TOC,
    113 
    114       /// Return with a flag operand, matched by 'blr'
    115       RET_FLAG,
    116 
    117       /// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction.
    118       /// This copies the bits corresponding to the specified CRREG into the
    119       /// resultant GPR.  Bits corresponding to other CR regs are undefined.
    120       MFOCRF,
    121 
    122       /// Direct move from a VSX register to a GPR
    123       MFVSR,
    124 
    125       /// Direct move from a GPR to a VSX register (algebraic)
    126       MTVSRA,
    127 
    128       /// Direct move from a GPR to a VSX register (zero)
    129       MTVSRZ,
    130 
    131       // FIXME: Remove these once the ANDI glue bug is fixed:
    132       /// i1 = ANDIo_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the
    133       /// eq or gt bit of CR0 after executing andi. x, 1. This is used to
    134       /// implement truncation of i32 or i64 to i1.
    135       ANDIo_1_EQ_BIT, ANDIo_1_GT_BIT,
    136 
    137       // READ_TIME_BASE - A read of the 64-bit time-base register on a 32-bit
    138       // target (returns (Lo, Hi)). It takes a chain operand.
    139       READ_TIME_BASE,
    140 
    141       // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
    142       EH_SJLJ_SETJMP,
    143 
    144       // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
    145       EH_SJLJ_LONGJMP,
    146 
    147       /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
    148       /// instructions.  For lack of better number, we use the opcode number
    149       /// encoding for the OPC field to identify the compare.  For example, 838
    150       /// is VCMPGTSH.
    151       VCMP,
    152 
    153       /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
    154       /// altivec VCMP*o instructions.  For lack of better number, we use the
    155       /// opcode number encoding for the OPC field to identify the compare.  For
    156       /// example, 838 is VCMPGTSH.
    157       VCMPo,
    158 
    159       /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
    160       /// corresponds to the COND_BRANCH pseudo instruction.  CRRC is the
    161       /// condition register to branch on, OPC is the branch opcode to use (e.g.
    162       /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
    163       /// an optional input flag argument.
    164       COND_BRANCH,
    165 
    166       /// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based
    167       /// loops.
    168       BDNZ, BDZ,
    169 
    170       /// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding
    171       /// towards zero.  Used only as part of the long double-to-int
    172       /// conversion sequence.
    173       FADDRTZ,
    174 
    175       /// F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
    176       MFFS,
    177 
    178       /// TC_RETURN - A tail call return.
    179       ///   operand #0 chain
    180       ///   operand #1 callee (register or absolute)
    181       ///   operand #2 stack adjustment
    182       ///   operand #3 optional in flag
    183       TC_RETURN,
    184 
    185       /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
    186       CR6SET,
    187       CR6UNSET,
    188 
    189       /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by initial-exec TLS
    190       /// on PPC32.
    191       PPC32_GOT,
    192 
    193       /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by general dynamic and
    194       /// local dynamic TLS on PPC32.
    195       PPC32_PICGOT,
    196 
    197       /// G8RC = ADDIS_GOT_TPREL_HA %X2, Symbol - Used by the initial-exec
    198       /// TLS model, produces an ADDIS8 instruction that adds the GOT
    199       /// base to sym\@got\@tprel\@ha.
    200       ADDIS_GOT_TPREL_HA,
    201 
    202       /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
    203       /// TLS model, produces a LD instruction with base register G8RReg
    204       /// and offset sym\@got\@tprel\@l.  This completes the addition that
    205       /// finds the offset of "sym" relative to the thread pointer.
    206       LD_GOT_TPREL_L,
    207 
    208       /// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS
    209       /// model, produces an ADD instruction that adds the contents of
    210       /// G8RReg to the thread pointer.  Symbol contains a relocation
    211       /// sym\@tls which is to be replaced by the thread pointer and
    212       /// identifies to the linker that the instruction is part of a
    213       /// TLS sequence.
    214       ADD_TLS,
    215 
    216       /// G8RC = ADDIS_TLSGD_HA %X2, Symbol - For the general-dynamic TLS
    217       /// model, produces an ADDIS8 instruction that adds the GOT base
    218       /// register to sym\@got\@tlsgd\@ha.
    219       ADDIS_TLSGD_HA,
    220 
    221       /// %X3 = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
    222       /// model, produces an ADDI8 instruction that adds G8RReg to
    223       /// sym\@got\@tlsgd\@l and stores the result in X3.  Hidden by
    224       /// ADDIS_TLSGD_L_ADDR until after register assignment.
    225       ADDI_TLSGD_L,
    226 
    227       /// %X3 = GET_TLS_ADDR %X3, Symbol - For the general-dynamic TLS
    228       /// model, produces a call to __tls_get_addr(sym\@tlsgd).  Hidden by
    229       /// ADDIS_TLSGD_L_ADDR until after register assignment.
    230       GET_TLS_ADDR,
    231 
    232       /// G8RC = ADDI_TLSGD_L_ADDR G8RReg, Symbol, Symbol - Op that
    233       /// combines ADDI_TLSGD_L and GET_TLS_ADDR until expansion following
    234       /// register assignment.
    235       ADDI_TLSGD_L_ADDR,
    236 
    237       /// G8RC = ADDIS_TLSLD_HA %X2, Symbol - For the local-dynamic TLS
    238       /// model, produces an ADDIS8 instruction that adds the GOT base
    239       /// register to sym\@got\@tlsld\@ha.
    240       ADDIS_TLSLD_HA,
    241 
    242       /// %X3 = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
    243       /// model, produces an ADDI8 instruction that adds G8RReg to
    244       /// sym\@got\@tlsld\@l and stores the result in X3.  Hidden by
    245       /// ADDIS_TLSLD_L_ADDR until after register assignment.
    246       ADDI_TLSLD_L,
    247 
    248       /// %X3 = GET_TLSLD_ADDR %X3, Symbol - For the local-dynamic TLS
    249       /// model, produces a call to __tls_get_addr(sym\@tlsld).  Hidden by
    250       /// ADDIS_TLSLD_L_ADDR until after register assignment.
    251       GET_TLSLD_ADDR,
    252 
    253       /// G8RC = ADDI_TLSLD_L_ADDR G8RReg, Symbol, Symbol - Op that
    254       /// combines ADDI_TLSLD_L and GET_TLSLD_ADDR until expansion
    255       /// following register assignment.
    256       ADDI_TLSLD_L_ADDR,
    257 
    258       /// G8RC = ADDIS_DTPREL_HA %X3, Symbol - For the local-dynamic TLS
    259       /// model, produces an ADDIS8 instruction that adds X3 to
    260       /// sym\@dtprel\@ha.
    261       ADDIS_DTPREL_HA,
    262 
    263       /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
    264       /// model, produces an ADDI8 instruction that adds G8RReg to
    265       /// sym\@got\@dtprel\@l.
    266       ADDI_DTPREL_L,
    267 
    268       /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
    269       /// during instruction selection to optimize a BUILD_VECTOR into
    270       /// operations on splats.  This is necessary to avoid losing these
    271       /// optimizations due to constant folding.
    272       VADD_SPLAT,
    273 
    274       /// CHAIN = SC CHAIN, Imm128 - System call.  The 7-bit unsigned
    275       /// operand identifies the operating system entry point.
    276       SC,
    277 
    278       /// VSRC, CHAIN = XXSWAPD CHAIN, VSRC - Occurs only for little
    279       /// endian.  Maps to an xxswapd instruction that corrects an lxvd2x
    280       /// or stxvd2x instruction.  The chain is necessary because the
    281       /// sequence replaces a load and needs to provide the same number
    282       /// of outputs.
    283       XXSWAPD,
    284 
    285       /// QVFPERM = This corresponds to the QPX qvfperm instruction.
    286       QVFPERM,
    287 
    288       /// QVGPCI = This corresponds to the QPX qvgpci instruction.
    289       QVGPCI,
    290 
    291       /// QVALIGNI = This corresponds to the QPX qvaligni instruction.
    292       QVALIGNI,
    293 
    294       /// QVESPLATI = This corresponds to the QPX qvesplati instruction.
    295       QVESPLATI,
    296 
    297       /// QBFLT = Access the underlying QPX floating-point boolean
    298       /// representation.
    299       QBFLT,
    300 
    301       /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
    302       /// byte-swapping store instruction.  It byte-swaps the low "Type" bits of
    303       /// the GPRC input, then stores it through Ptr.  Type can be either i16 or
    304       /// i32.
    305       STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE,
    306 
    307       /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
    308       /// byte-swapping load instruction.  It loads "Type" bits, byte swaps it,
    309       /// then puts it in the bottom bits of the GPRC.  TYPE can be either i16
    310       /// or i32.
    311       LBRX,
    312 
    313       /// STFIWX - The STFIWX instruction.  The first operand is an input token
    314       /// chain, then an f64 value to store, then an address to store it to.
    315       STFIWX,
    316 
    317       /// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point
    318       /// load which sign-extends from a 32-bit integer value into the
    319       /// destination 64-bit register.
    320       LFIWAX,
    321 
    322       /// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point
    323       /// load which zero-extends from a 32-bit integer value into the
    324       /// destination 64-bit register.
    325       LFIWZX,
    326 
    327       /// VSRC, CHAIN = LXVD2X_LE CHAIN, Ptr - Occurs only for little endian.
    328       /// Maps directly to an lxvd2x instruction that will be followed by
    329       /// an xxswapd.
    330       LXVD2X,
    331 
    332       /// CHAIN = STXVD2X CHAIN, VSRC, Ptr - Occurs only for little endian.
    333       /// Maps directly to an stxvd2x instruction that will be preceded by
    334       /// an xxswapd.
    335       STXVD2X,
    336 
    337       /// QBRC, CHAIN = QVLFSb CHAIN, Ptr
    338       /// The 4xf32 load used for v4i1 constants.
    339       QVLFSb,
    340 
    341       /// GPRC = TOC_ENTRY GA, TOC
    342       /// Loads the entry for GA from the TOC, where the TOC base is given by
    343       /// the last operand.
    344       TOC_ENTRY
    345     };
    346   }
    347 
    348   /// Define some predicates that are used for node matching.
    349   namespace PPC {
    350     /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
    351     /// VPKUHUM instruction.
    352     bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
    353                               SelectionDAG &DAG);
    354 
    355     /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
    356     /// VPKUWUM instruction.
    357     bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
    358                               SelectionDAG &DAG);
    359 
    360     /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
    361     /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
    362     bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
    363                             unsigned ShuffleKind, SelectionDAG &DAG);
    364 
    365     /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
    366     /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
    367     bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
    368                             unsigned ShuffleKind, SelectionDAG &DAG);
    369 
    370     /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the
    371     /// shift amount, otherwise return -1.
    372     int isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
    373                             SelectionDAG &DAG);
    374 
    375     /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
    376     /// specifies a splat of a single element that is suitable for input to
    377     /// VSPLTB/VSPLTH/VSPLTW.
    378     bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
    379 
    380     /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
    381     /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
    382     unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize, SelectionDAG &DAG);
    383 
    384     /// get_VSPLTI_elt - If this is a build_vector of constants which can be
    385     /// formed by using a vspltis[bhw] instruction of the specified element
    386     /// size, return the constant being splatted.  The ByteSize field indicates
    387     /// the number of bytes of each element [124] -> [bhw].
    388     SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
    389 
    390     /// If this is a qvaligni shuffle mask, return the shift
    391     /// amount, otherwise return -1.
    392     int isQVALIGNIShuffleMask(SDNode *N);
    393   }
    394 
    395   class PPCTargetLowering : public TargetLowering {
    396     const PPCSubtarget &Subtarget;
    397 
    398   public:
    399     explicit PPCTargetLowering(const PPCTargetMachine &TM,
    400                                const PPCSubtarget &STI);
    401 
    402     /// getTargetNodeName() - This method returns the name of a target specific
    403     /// DAG node.
    404     const char *getTargetNodeName(unsigned Opcode) const override;
    405 
    406     MVT getScalarShiftAmountTy(EVT LHSTy) const override { return MVT::i32; }
    407 
    408     bool isCheapToSpeculateCttz() const override {
    409       return true;
    410     }
    411 
    412     bool isCheapToSpeculateCtlz() const override {
    413       return true;
    414     }
    415 
    416     /// getSetCCResultType - Return the ISD::SETCC ValueType
    417     EVT getSetCCResultType(LLVMContext &Context, EVT VT) const override;
    418 
    419     /// Return true if target always beneficiates from combining into FMA for a
    420     /// given value type. This must typically return false on targets where FMA
    421     /// takes more cycles to execute than FADD.
    422     bool enableAggressiveFMAFusion(EVT VT) const override;
    423 
    424     /// getPreIndexedAddressParts - returns true by value, base pointer and
    425     /// offset pointer and addressing mode by reference if the node's address
    426     /// can be legally represented as pre-indexed load / store address.
    427     bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
    428                                    SDValue &Offset,
    429                                    ISD::MemIndexedMode &AM,
    430                                    SelectionDAG &DAG) const override;
    431 
    432     /// SelectAddressRegReg - Given the specified addressed, check to see if it
    433     /// can be represented as an indexed [r+r] operation.  Returns false if it
    434     /// can be more efficiently represented with [r+imm].
    435     bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
    436                              SelectionDAG &DAG) const;
    437 
    438     /// SelectAddressRegImm - Returns true if the address N can be represented
    439     /// by a base register plus a signed 16-bit displacement [r+imm], and if it
    440     /// is not better represented as reg+reg.  If Aligned is true, only accept
    441     /// displacements suitable for STD and friends, i.e. multiples of 4.
    442     bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
    443                              SelectionDAG &DAG, bool Aligned) const;
    444 
    445     /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
    446     /// represented as an indexed [r+r] operation.
    447     bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
    448                                  SelectionDAG &DAG) const;
    449 
    450     Sched::Preference getSchedulingPreference(SDNode *N) const override;
    451 
    452     /// LowerOperation - Provide custom lowering hooks for some operations.
    453     ///
    454     SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
    455 
    456     /// ReplaceNodeResults - Replace the results of node with an illegal result
    457     /// type with new values built out of custom code.
    458     ///
    459     void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
    460                             SelectionDAG &DAG) const override;
    461 
    462     SDValue expandVSXLoadForLE(SDNode *N, DAGCombinerInfo &DCI) const;
    463     SDValue expandVSXStoreForLE(SDNode *N, DAGCombinerInfo &DCI) const;
    464 
    465     SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
    466 
    467     SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
    468                           std::vector<SDNode *> *Created) const override;
    469 
    470     unsigned getRegisterByName(const char* RegName, EVT VT) const override;
    471 
    472     void computeKnownBitsForTargetNode(const SDValue Op,
    473                                        APInt &KnownZero,
    474                                        APInt &KnownOne,
    475                                        const SelectionDAG &DAG,
    476                                        unsigned Depth = 0) const override;
    477 
    478     unsigned getPrefLoopAlignment(MachineLoop *ML) const override;
    479 
    480     Instruction* emitLeadingFence(IRBuilder<> &Builder, AtomicOrdering Ord,
    481                                   bool IsStore, bool IsLoad) const override;
    482     Instruction* emitTrailingFence(IRBuilder<> &Builder, AtomicOrdering Ord,
    483                                    bool IsStore, bool IsLoad) const override;
    484 
    485     MachineBasicBlock *
    486       EmitInstrWithCustomInserter(MachineInstr *MI,
    487                                   MachineBasicBlock *MBB) const override;
    488     MachineBasicBlock *EmitAtomicBinary(MachineInstr *MI,
    489                                         MachineBasicBlock *MBB,
    490                                         unsigned AtomicSize,
    491                                         unsigned BinOpcode) const;
    492     MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr *MI,
    493                                                 MachineBasicBlock *MBB,
    494                                             bool is8bit, unsigned Opcode) const;
    495 
    496     MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr *MI,
    497                                         MachineBasicBlock *MBB) const;
    498 
    499     MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr *MI,
    500                                          MachineBasicBlock *MBB) const;
    501 
    502     ConstraintType
    503     getConstraintType(const std::string &Constraint) const override;
    504 
    505     /// Examine constraint string and operand type and determine a weight value.
    506     /// The operand object must already have been set up with the operand type.
    507     ConstraintWeight getSingleConstraintMatchWeight(
    508       AsmOperandInfo &info, const char *constraint) const override;
    509 
    510     std::pair<unsigned, const TargetRegisterClass *>
    511     getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
    512                                  const std::string &Constraint,
    513                                  MVT VT) const override;
    514 
    515     /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
    516     /// function arguments in the caller parameter area.  This is the actual
    517     /// alignment, not its logarithm.
    518     unsigned getByValTypeAlignment(Type *Ty) const override;
    519 
    520     /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
    521     /// vector.  If it is invalid, don't add anything to Ops.
    522     void LowerAsmOperandForConstraint(SDValue Op,
    523                                       std::string &Constraint,
    524                                       std::vector<SDValue> &Ops,
    525                                       SelectionDAG &DAG) const override;
    526 
    527     unsigned getInlineAsmMemConstraint(
    528         const std::string &ConstraintCode) const override {
    529       if (ConstraintCode == "es")
    530         return InlineAsm::Constraint_es;
    531       else if (ConstraintCode == "o")
    532         return InlineAsm::Constraint_o;
    533       else if (ConstraintCode == "Q")
    534         return InlineAsm::Constraint_Q;
    535       else if (ConstraintCode == "Z")
    536         return InlineAsm::Constraint_Z;
    537       else if (ConstraintCode == "Zy")
    538         return InlineAsm::Constraint_Zy;
    539       return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
    540     }
    541 
    542     /// isLegalAddressingMode - Return true if the addressing mode represented
    543     /// by AM is legal for this target, for a load/store of the specified type.
    544     bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const override;
    545 
    546     /// isLegalICmpImmediate - Return true if the specified immediate is legal
    547     /// icmp immediate, that is the target has icmp instructions which can
    548     /// compare a register against the immediate without having to materialize
    549     /// the immediate into a register.
    550     bool isLegalICmpImmediate(int64_t Imm) const override;
    551 
    552     /// isLegalAddImmediate - Return true if the specified immediate is legal
    553     /// add immediate, that is the target has add instructions which can
    554     /// add a register and the immediate without having to materialize
    555     /// the immediate into a register.
    556     bool isLegalAddImmediate(int64_t Imm) const override;
    557 
    558     /// isTruncateFree - Return true if it's free to truncate a value of
    559     /// type Ty1 to type Ty2. e.g. On PPC it's free to truncate a i64 value in
    560     /// register X1 to i32 by referencing its sub-register R1.
    561     bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
    562     bool isTruncateFree(EVT VT1, EVT VT2) const override;
    563 
    564     bool isZExtFree(SDValue Val, EVT VT2) const override;
    565 
    566     bool isFPExtFree(EVT VT) const override;
    567 
    568     /// \brief Returns true if it is beneficial to convert a load of a constant
    569     /// to just the constant itself.
    570     bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
    571                                            Type *Ty) const override;
    572 
    573     bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;
    574 
    575     bool getTgtMemIntrinsic(IntrinsicInfo &Info,
    576                             const CallInst &I,
    577                             unsigned Intrinsic) const override;
    578 
    579     /// getOptimalMemOpType - Returns the target specific optimal type for load
    580     /// and store operations as a result of memset, memcpy, and memmove
    581     /// lowering. If DstAlign is zero that means it's safe to destination
    582     /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
    583     /// means there isn't a need to check it against alignment requirement,
    584     /// probably because the source does not need to be loaded. If 'IsMemset' is
    585     /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
    586     /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
    587     /// source is constant so it does not need to be loaded.
    588     /// It returns EVT::Other if the type should be determined using generic
    589     /// target-independent logic.
    590     EVT
    591     getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
    592                         bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
    593                         MachineFunction &MF) const override;
    594 
    595     /// Is unaligned memory access allowed for the given type, and is it fast
    596     /// relative to software emulation.
    597     bool allowsMisalignedMemoryAccesses(EVT VT,
    598                                         unsigned AddrSpace,
    599                                         unsigned Align = 1,
    600                                         bool *Fast = nullptr) const override;
    601 
    602     /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
    603     /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
    604     /// expanded to FMAs when this method returns true, otherwise fmuladd is
    605     /// expanded to fmul + fadd.
    606     bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;
    607 
    608     const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
    609 
    610     // Should we expand the build vector with shuffles?
    611     bool
    612     shouldExpandBuildVectorWithShuffles(EVT VT,
    613                                         unsigned DefinedValues) const override;
    614 
    615     /// createFastISel - This method returns a target-specific FastISel object,
    616     /// or null if the target does not support "fast" instruction selection.
    617     FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
    618                              const TargetLibraryInfo *LibInfo) const override;
    619 
    620     /// \brief Returns true if an argument of type Ty needs to be passed in a
    621     /// contiguous block of registers in calling convention CallConv.
    622     bool functionArgumentNeedsConsecutiveRegisters(
    623       Type *Ty, CallingConv::ID CallConv, bool isVarArg) const override {
    624       // We support any array type as "consecutive" block in the parameter
    625       // save area.  The element type defines the alignment requirement and
    626       // whether the argument should go in GPRs, FPRs, or VRs if available.
    627       //
    628       // Note that clang uses this capability both to implement the ELFv2
    629       // homogeneous float/vector aggregate ABI, and to avoid having to use
    630       // "byval" when passing aggregates that might fully fit in registers.
    631       return Ty->isArrayTy();
    632     }
    633 
    634   private:
    635 
    636     struct ReuseLoadInfo {
    637       SDValue Ptr;
    638       SDValue Chain;
    639       SDValue ResChain;
    640       MachinePointerInfo MPI;
    641       bool IsInvariant;
    642       unsigned Alignment;
    643       AAMDNodes AAInfo;
    644       const MDNode *Ranges;
    645 
    646       ReuseLoadInfo() : IsInvariant(false), Alignment(0), Ranges(nullptr) {}
    647     };
    648 
    649     bool canReuseLoadAddress(SDValue Op, EVT MemVT, ReuseLoadInfo &RLI,
    650                              SelectionDAG &DAG,
    651                              ISD::LoadExtType ET = ISD::NON_EXTLOAD) const;
    652     void spliceIntoChain(SDValue ResChain, SDValue NewResChain,
    653                          SelectionDAG &DAG) const;
    654 
    655     void LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
    656                                 SelectionDAG &DAG, SDLoc dl) const;
    657     SDValue LowerFP_TO_INTDirectMove(SDValue Op, SelectionDAG &DAG,
    658                                      SDLoc dl) const;
    659     SDValue LowerINT_TO_FPDirectMove(SDValue Op, SelectionDAG &DAG,
    660                                      SDLoc dl) const;
    661 
    662     SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
    663     SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
    664 
    665     bool
    666     IsEligibleForTailCallOptimization(SDValue Callee,
    667                                       CallingConv::ID CalleeCC,
    668                                       bool isVarArg,
    669                                       const SmallVectorImpl<ISD::InputArg> &Ins,
    670                                       SelectionDAG& DAG) const;
    671 
    672     SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
    673                                          int SPDiff,
    674                                          SDValue Chain,
    675                                          SDValue &LROpOut,
    676                                          SDValue &FPOpOut,
    677                                          bool isDarwinABI,
    678                                          SDLoc dl) const;
    679 
    680     SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
    681     SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
    682     SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
    683     SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
    684     SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
    685     SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
    686     SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
    687     SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
    688     SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
    689     SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
    690     SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
    691                          const PPCSubtarget &Subtarget) const;
    692     SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG,
    693                        const PPCSubtarget &Subtarget) const;
    694     SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG,
    695                         const PPCSubtarget &Subtarget) const;
    696     SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
    697                                 const PPCSubtarget &Subtarget) const;
    698     SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG,
    699                                       const PPCSubtarget &Subtarget) const;
    700     SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const;
    701     SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const;
    702     SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
    703     SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
    704     SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, SDLoc dl) const;
    705     SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
    706     SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
    707     SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const;
    708     SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const;
    709     SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const;
    710     SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
    711     SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
    712     SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
    713     SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
    714     SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
    715     SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const;
    716     SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
    717 
    718     SDValue LowerVectorLoad(SDValue Op, SelectionDAG &DAG) const;
    719     SDValue LowerVectorStore(SDValue Op, SelectionDAG &DAG) const;
    720 
    721     SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
    722                             CallingConv::ID CallConv, bool isVarArg,
    723                             const SmallVectorImpl<ISD::InputArg> &Ins,
    724                             SDLoc dl, SelectionDAG &DAG,
    725                             SmallVectorImpl<SDValue> &InVals) const;
    726     SDValue FinishCall(CallingConv::ID CallConv, SDLoc dl, bool isTailCall,
    727                        bool isVarArg, bool IsPatchPoint,
    728                        SelectionDAG &DAG,
    729                        SmallVector<std::pair<unsigned, SDValue>, 8>
    730                          &RegsToPass,
    731                        SDValue InFlag, SDValue Chain, SDValue CallSeqStart,
    732                        SDValue &Callee,
    733                        int SPDiff, unsigned NumBytes,
    734                        const SmallVectorImpl<ISD::InputArg> &Ins,
    735                        SmallVectorImpl<SDValue> &InVals,
    736                        ImmutableCallSite *CS) const;
    737 
    738     SDValue
    739       LowerFormalArguments(SDValue Chain,
    740                            CallingConv::ID CallConv, bool isVarArg,
    741                            const SmallVectorImpl<ISD::InputArg> &Ins,
    742                            SDLoc dl, SelectionDAG &DAG,
    743                            SmallVectorImpl<SDValue> &InVals) const override;
    744 
    745     SDValue
    746       LowerCall(TargetLowering::CallLoweringInfo &CLI,
    747                 SmallVectorImpl<SDValue> &InVals) const override;
    748 
    749     bool
    750       CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
    751                    bool isVarArg,
    752                    const SmallVectorImpl<ISD::OutputArg> &Outs,
    753                    LLVMContext &Context) const override;
    754 
    755     SDValue
    756       LowerReturn(SDValue Chain,
    757                   CallingConv::ID CallConv, bool isVarArg,
    758                   const SmallVectorImpl<ISD::OutputArg> &Outs,
    759                   const SmallVectorImpl<SDValue> &OutVals,
    760                   SDLoc dl, SelectionDAG &DAG) const override;
    761 
    762     SDValue
    763       extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT, SelectionDAG &DAG,
    764                         SDValue ArgVal, SDLoc dl) const;
    765 
    766     SDValue
    767       LowerFormalArguments_Darwin(SDValue Chain,
    768                                   CallingConv::ID CallConv, bool isVarArg,
    769                                   const SmallVectorImpl<ISD::InputArg> &Ins,
    770                                   SDLoc dl, SelectionDAG &DAG,
    771                                   SmallVectorImpl<SDValue> &InVals) const;
    772     SDValue
    773       LowerFormalArguments_64SVR4(SDValue Chain,
    774                                   CallingConv::ID CallConv, bool isVarArg,
    775                                   const SmallVectorImpl<ISD::InputArg> &Ins,
    776                                   SDLoc dl, SelectionDAG &DAG,
    777                                   SmallVectorImpl<SDValue> &InVals) const;
    778     SDValue
    779       LowerFormalArguments_32SVR4(SDValue Chain,
    780                                   CallingConv::ID CallConv, bool isVarArg,
    781                                   const SmallVectorImpl<ISD::InputArg> &Ins,
    782                                   SDLoc dl, SelectionDAG &DAG,
    783                                   SmallVectorImpl<SDValue> &InVals) const;
    784 
    785     SDValue
    786       createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
    787                                  SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
    788                                  SelectionDAG &DAG, SDLoc dl) const;
    789 
    790     SDValue
    791       LowerCall_Darwin(SDValue Chain, SDValue Callee,
    792                        CallingConv::ID CallConv,
    793                        bool isVarArg, bool isTailCall, bool IsPatchPoint,
    794                        const SmallVectorImpl<ISD::OutputArg> &Outs,
    795                        const SmallVectorImpl<SDValue> &OutVals,
    796                        const SmallVectorImpl<ISD::InputArg> &Ins,
    797                        SDLoc dl, SelectionDAG &DAG,
    798                        SmallVectorImpl<SDValue> &InVals,
    799                        ImmutableCallSite *CS) const;
    800     SDValue
    801       LowerCall_64SVR4(SDValue Chain, SDValue Callee,
    802                        CallingConv::ID CallConv,
    803                        bool isVarArg, bool isTailCall, bool IsPatchPoint,
    804                        const SmallVectorImpl<ISD::OutputArg> &Outs,
    805                        const SmallVectorImpl<SDValue> &OutVals,
    806                        const SmallVectorImpl<ISD::InputArg> &Ins,
    807                        SDLoc dl, SelectionDAG &DAG,
    808                        SmallVectorImpl<SDValue> &InVals,
    809                        ImmutableCallSite *CS) const;
    810     SDValue
    811     LowerCall_32SVR4(SDValue Chain, SDValue Callee, CallingConv::ID CallConv,
    812                      bool isVarArg, bool isTailCall, bool IsPatchPoint,
    813                      const SmallVectorImpl<ISD::OutputArg> &Outs,
    814                      const SmallVectorImpl<SDValue> &OutVals,
    815                      const SmallVectorImpl<ISD::InputArg> &Ins,
    816                      SDLoc dl, SelectionDAG &DAG,
    817                      SmallVectorImpl<SDValue> &InVals,
    818                      ImmutableCallSite *CS) const;
    819 
    820     SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
    821     SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
    822 
    823     SDValue DAGCombineExtBoolTrunc(SDNode *N, DAGCombinerInfo &DCI) const;
    824     SDValue DAGCombineTruncBoolExt(SDNode *N, DAGCombinerInfo &DCI) const;
    825     SDValue combineFPToIntToFP(SDNode *N, DAGCombinerInfo &DCI) const;
    826 
    827     SDValue getRsqrtEstimate(SDValue Operand, DAGCombinerInfo &DCI,
    828                              unsigned &RefinementSteps,
    829                              bool &UseOneConstNR) const override;
    830     SDValue getRecipEstimate(SDValue Operand, DAGCombinerInfo &DCI,
    831                              unsigned &RefinementSteps) const override;
    832     bool combineRepeatedFPDivisors(unsigned NumUsers) const override;
    833 
    834     CCAssignFn *useFastISelCCs(unsigned Flag) const;
    835   };
    836 
    837   namespace PPC {
    838     FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
    839                              const TargetLibraryInfo *LibInfo);
    840   }
    841 
    842   bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
    843                                   CCValAssign::LocInfo &LocInfo,
    844                                   ISD::ArgFlagsTy &ArgFlags,
    845                                   CCState &State);
    846 
    847   bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
    848                                          MVT &LocVT,
    849                                          CCValAssign::LocInfo &LocInfo,
    850                                          ISD::ArgFlagsTy &ArgFlags,
    851                                          CCState &State);
    852 
    853   bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
    854                                            MVT &LocVT,
    855                                            CCValAssign::LocInfo &LocInfo,
    856                                            ISD::ArgFlagsTy &ArgFlags,
    857                                            CCState &State);
    858 }
    859 
    860 #endif   // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
    861