Home | History | Annotate | Download | only in ARM
      1 //===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the interfaces that ARM uses to lower LLVM code into a
     11 // selection DAG.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "ARMISelLowering.h"
     16 #include "ARMCallingConv.h"
     17 #include "ARMConstantPoolValue.h"
     18 #include "ARMMachineFunctionInfo.h"
     19 #include "ARMPerfectShuffle.h"
     20 #include "ARMSubtarget.h"
     21 #include "ARMTargetMachine.h"
     22 #include "ARMTargetObjectFile.h"
     23 #include "MCTargetDesc/ARMAddressingModes.h"
     24 #include "llvm/ADT/Statistic.h"
     25 #include "llvm/ADT/StringExtras.h"
     26 #include "llvm/ADT/StringSwitch.h"
     27 #include "llvm/CodeGen/CallingConvLower.h"
     28 #include "llvm/CodeGen/IntrinsicLowering.h"
     29 #include "llvm/CodeGen/MachineBasicBlock.h"
     30 #include "llvm/CodeGen/MachineFrameInfo.h"
     31 #include "llvm/CodeGen/MachineFunction.h"
     32 #include "llvm/CodeGen/MachineInstrBuilder.h"
     33 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     34 #include "llvm/CodeGen/MachineModuleInfo.h"
     35 #include "llvm/CodeGen/MachineRegisterInfo.h"
     36 #include "llvm/CodeGen/SelectionDAG.h"
     37 #include "llvm/IR/CallingConv.h"
     38 #include "llvm/IR/Constants.h"
     39 #include "llvm/IR/Function.h"
     40 #include "llvm/IR/GlobalValue.h"
     41 #include "llvm/IR/IRBuilder.h"
     42 #include "llvm/IR/Instruction.h"
     43 #include "llvm/IR/Instructions.h"
     44 #include "llvm/IR/IntrinsicInst.h"
     45 #include "llvm/IR/Intrinsics.h"
     46 #include "llvm/IR/Type.h"
     47 #include "llvm/MC/MCSectionMachO.h"
     48 #include "llvm/Support/CommandLine.h"
     49 #include "llvm/Support/Debug.h"
     50 #include "llvm/Support/ErrorHandling.h"
     51 #include "llvm/Support/MathExtras.h"
     52 #include "llvm/Support/raw_ostream.h"
     53 #include "llvm/Target/TargetOptions.h"
     54 #include <utility>
     55 using namespace llvm;
     56 
     57 #define DEBUG_TYPE "arm-isel"
     58 
     59 STATISTIC(NumTailCalls, "Number of tail calls");
     60 STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
     61 STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
     62 
     63 cl::opt<bool>
     64 EnableARMLongCalls("arm-long-calls", cl::Hidden,
     65   cl::desc("Generate calls via indirect call instructions"),
     66   cl::init(false));
     67 
     68 static cl::opt<bool>
     69 ARMInterworking("arm-interworking", cl::Hidden,
     70   cl::desc("Enable / disable ARM interworking (for debugging only)"),
     71   cl::init(true));
     72 
     73 namespace {
     74   class ARMCCState : public CCState {
     75   public:
     76     ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
     77                SmallVectorImpl<CCValAssign> &locs, LLVMContext &C,
     78                ParmContext PC)
     79         : CCState(CC, isVarArg, MF, locs, C) {
     80       assert(((PC == Call) || (PC == Prologue)) &&
     81              "ARMCCState users must specify whether their context is call"
     82              "or prologue generation.");
     83       CallOrPrologue = PC;
     84     }
     85   };
     86 }
     87 
     88 // The APCS parameter registers.
     89 static const MCPhysReg GPRArgRegs[] = {
     90   ARM::R0, ARM::R1, ARM::R2, ARM::R3
     91 };
     92 
     93 void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
     94                                        MVT PromotedBitwiseVT) {
     95   if (VT != PromotedLdStVT) {
     96     setOperationAction(ISD::LOAD, VT, Promote);
     97     AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
     98 
     99     setOperationAction(ISD::STORE, VT, Promote);
    100     AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
    101   }
    102 
    103   MVT ElemTy = VT.getVectorElementType();
    104   if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
    105     setOperationAction(ISD::SETCC, VT, Custom);
    106   setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
    107   setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
    108   if (ElemTy == MVT::i32) {
    109     setOperationAction(ISD::SINT_TO_FP, VT, Custom);
    110     setOperationAction(ISD::UINT_TO_FP, VT, Custom);
    111     setOperationAction(ISD::FP_TO_SINT, VT, Custom);
    112     setOperationAction(ISD::FP_TO_UINT, VT, Custom);
    113   } else {
    114     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
    115     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
    116     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
    117     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
    118   }
    119   setOperationAction(ISD::BUILD_VECTOR,      VT, Custom);
    120   setOperationAction(ISD::VECTOR_SHUFFLE,    VT, Custom);
    121   setOperationAction(ISD::CONCAT_VECTORS,    VT, Legal);
    122   setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
    123   setOperationAction(ISD::SELECT,            VT, Expand);
    124   setOperationAction(ISD::SELECT_CC,         VT, Expand);
    125   setOperationAction(ISD::VSELECT,           VT, Expand);
    126   setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
    127   if (VT.isInteger()) {
    128     setOperationAction(ISD::SHL, VT, Custom);
    129     setOperationAction(ISD::SRA, VT, Custom);
    130     setOperationAction(ISD::SRL, VT, Custom);
    131   }
    132 
    133   // Promote all bit-wise operations.
    134   if (VT.isInteger() && VT != PromotedBitwiseVT) {
    135     setOperationAction(ISD::AND, VT, Promote);
    136     AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
    137     setOperationAction(ISD::OR,  VT, Promote);
    138     AddPromotedToType (ISD::OR,  VT, PromotedBitwiseVT);
    139     setOperationAction(ISD::XOR, VT, Promote);
    140     AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
    141   }
    142 
    143   // Neon does not support vector divide/remainder operations.
    144   setOperationAction(ISD::SDIV, VT, Expand);
    145   setOperationAction(ISD::UDIV, VT, Expand);
    146   setOperationAction(ISD::FDIV, VT, Expand);
    147   setOperationAction(ISD::SREM, VT, Expand);
    148   setOperationAction(ISD::UREM, VT, Expand);
    149   setOperationAction(ISD::FREM, VT, Expand);
    150 }
    151 
    152 void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
    153   addRegisterClass(VT, &ARM::DPRRegClass);
    154   addTypeForNEON(VT, MVT::f64, MVT::v2i32);
    155 }
    156 
    157 void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
    158   addRegisterClass(VT, &ARM::DPairRegClass);
    159   addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
    160 }
    161 
    162 ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM,
    163                                      const ARMSubtarget &STI)
    164     : TargetLowering(TM), Subtarget(&STI) {
    165   RegInfo = Subtarget->getRegisterInfo();
    166   Itins = Subtarget->getInstrItineraryData();
    167 
    168   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
    169 
    170   if (Subtarget->isTargetMachO()) {
    171     // Uses VFP for Thumb libfuncs if available.
    172     if (Subtarget->isThumb() && Subtarget->hasVFP2() &&
    173         Subtarget->hasARMOps() && !TM.Options.UseSoftFloat) {
    174       // Single-precision floating-point arithmetic.
    175       setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
    176       setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
    177       setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
    178       setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
    179 
    180       // Double-precision floating-point arithmetic.
    181       setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
    182       setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
    183       setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
    184       setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
    185 
    186       // Single-precision comparisons.
    187       setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
    188       setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
    189       setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
    190       setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
    191       setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
    192       setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
    193       setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
    194       setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
    195 
    196       setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
    197       setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
    198       setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
    199       setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
    200       setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
    201       setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
    202       setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
    203       setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
    204 
    205       // Double-precision comparisons.
    206       setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
    207       setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
    208       setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
    209       setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
    210       setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
    211       setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
    212       setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
    213       setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
    214 
    215       setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
    216       setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
    217       setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
    218       setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
    219       setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
    220       setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
    221       setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
    222       setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
    223 
    224       // Floating-point to integer conversions.
    225       // i64 conversions are done via library routines even when generating VFP
    226       // instructions, so use the same ones.
    227       setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
    228       setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
    229       setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
    230       setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
    231 
    232       // Conversions between floating types.
    233       setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
    234       setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
    235 
    236       // Integer to floating-point conversions.
    237       // i64 conversions are done via library routines even when generating VFP
    238       // instructions, so use the same ones.
    239       // FIXME: There appears to be some naming inconsistency in ARM libgcc:
    240       // e.g., __floatunsidf vs. __floatunssidfvfp.
    241       setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
    242       setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
    243       setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
    244       setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
    245     }
    246   }
    247 
    248   // These libcalls are not available in 32-bit.
    249   setLibcallName(RTLIB::SHL_I128, nullptr);
    250   setLibcallName(RTLIB::SRL_I128, nullptr);
    251   setLibcallName(RTLIB::SRA_I128, nullptr);
    252 
    253   if (Subtarget->isAAPCS_ABI() && !Subtarget->isTargetMachO() &&
    254       !Subtarget->isTargetWindows()) {
    255     static const struct {
    256       const RTLIB::Libcall Op;
    257       const char * const Name;
    258       const CallingConv::ID CC;
    259       const ISD::CondCode Cond;
    260     } LibraryCalls[] = {
    261       // Double-precision floating-point arithmetic helper functions
    262       // RTABI chapter 4.1.2, Table 2
    263       { RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    264       { RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    265       { RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    266       { RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    267 
    268       // Double-precision floating-point comparison helper functions
    269       // RTABI chapter 4.1.2, Table 3
    270       { RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
    271       { RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
    272       { RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
    273       { RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
    274       { RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
    275       { RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
    276       { RTLIB::UO_F64,  "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
    277       { RTLIB::O_F64,   "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
    278 
    279       // Single-precision floating-point arithmetic helper functions
    280       // RTABI chapter 4.1.2, Table 4
    281       { RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    282       { RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    283       { RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    284       { RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    285 
    286       // Single-precision floating-point comparison helper functions
    287       // RTABI chapter 4.1.2, Table 5
    288       { RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
    289       { RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
    290       { RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
    291       { RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
    292       { RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
    293       { RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
    294       { RTLIB::UO_F32,  "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
    295       { RTLIB::O_F32,   "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
    296 
    297       // Floating-point to integer conversions.
    298       // RTABI chapter 4.1.2, Table 6
    299       { RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    300       { RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    301       { RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    302       { RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    303       { RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    304       { RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    305       { RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    306       { RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    307 
    308       // Conversions between floating types.
    309       // RTABI chapter 4.1.2, Table 7
    310       { RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    311       { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    312       { RTLIB::FPEXT_F32_F64,   "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    313 
    314       // Integer to floating-point conversions.
    315       // RTABI chapter 4.1.2, Table 8
    316       { RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    317       { RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    318       { RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    319       { RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    320       { RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    321       { RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    322       { RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    323       { RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    324 
    325       // Long long helper functions
    326       // RTABI chapter 4.2, Table 9
    327       { RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    328       { RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    329       { RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    330       { RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    331 
    332       // Integer division functions
    333       // RTABI chapter 4.3.1
    334       { RTLIB::SDIV_I8,  "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    335       { RTLIB::SDIV_I16, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    336       { RTLIB::SDIV_I32, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    337       { RTLIB::SDIV_I64, "__aeabi_ldivmod",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    338       { RTLIB::UDIV_I8,  "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    339       { RTLIB::UDIV_I16, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    340       { RTLIB::UDIV_I32, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    341       { RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    342 
    343       // Memory operations
    344       // RTABI chapter 4.3.4
    345       { RTLIB::MEMCPY,  "__aeabi_memcpy",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    346       { RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    347       { RTLIB::MEMSET,  "__aeabi_memset",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    348     };
    349 
    350     for (const auto &LC : LibraryCalls) {
    351       setLibcallName(LC.Op, LC.Name);
    352       setLibcallCallingConv(LC.Op, LC.CC);
    353       if (LC.Cond != ISD::SETCC_INVALID)
    354         setCmpLibcallCC(LC.Op, LC.Cond);
    355     }
    356   }
    357 
    358   if (Subtarget->isTargetWindows()) {
    359     static const struct {
    360       const RTLIB::Libcall Op;
    361       const char * const Name;
    362       const CallingConv::ID CC;
    363     } LibraryCalls[] = {
    364       { RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP },
    365       { RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP },
    366       { RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP },
    367       { RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP },
    368       { RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP },
    369       { RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP },
    370       { RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP },
    371       { RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP },
    372     };
    373 
    374     for (const auto &LC : LibraryCalls) {
    375       setLibcallName(LC.Op, LC.Name);
    376       setLibcallCallingConv(LC.Op, LC.CC);
    377     }
    378   }
    379 
    380   // Use divmod compiler-rt calls for iOS 5.0 and later.
    381   if (Subtarget->getTargetTriple().isiOS() &&
    382       !Subtarget->getTargetTriple().isOSVersionLT(5, 0)) {
    383     setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
    384     setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
    385   }
    386 
    387   // The half <-> float conversion functions are always soft-float, but are
    388   // needed for some targets which use a hard-float calling convention by
    389   // default.
    390   if (Subtarget->isAAPCS_ABI()) {
    391     setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS);
    392     setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS);
    393     setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS);
    394   } else {
    395     setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS);
    396     setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS);
    397     setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS);
    398   }
    399 
    400   if (Subtarget->isThumb1Only())
    401     addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
    402   else
    403     addRegisterClass(MVT::i32, &ARM::GPRRegClass);
    404   if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
    405       !Subtarget->isThumb1Only()) {
    406     addRegisterClass(MVT::f32, &ARM::SPRRegClass);
    407     addRegisterClass(MVT::f64, &ARM::DPRRegClass);
    408   }
    409 
    410   for (MVT VT : MVT::vector_valuetypes()) {
    411     for (MVT InnerVT : MVT::vector_valuetypes()) {
    412       setTruncStoreAction(VT, InnerVT, Expand);
    413       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
    414       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
    415       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
    416     }
    417 
    418     setOperationAction(ISD::MULHS, VT, Expand);
    419     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
    420     setOperationAction(ISD::MULHU, VT, Expand);
    421     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
    422 
    423     setOperationAction(ISD::BSWAP, VT, Expand);
    424   }
    425 
    426   setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
    427   setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
    428 
    429   if (Subtarget->hasNEON()) {
    430     addDRTypeForNEON(MVT::v2f32);
    431     addDRTypeForNEON(MVT::v8i8);
    432     addDRTypeForNEON(MVT::v4i16);
    433     addDRTypeForNEON(MVT::v2i32);
    434     addDRTypeForNEON(MVT::v1i64);
    435 
    436     addQRTypeForNEON(MVT::v4f32);
    437     addQRTypeForNEON(MVT::v2f64);
    438     addQRTypeForNEON(MVT::v16i8);
    439     addQRTypeForNEON(MVT::v8i16);
    440     addQRTypeForNEON(MVT::v4i32);
    441     addQRTypeForNEON(MVT::v2i64);
    442 
    443     // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
    444     // neither Neon nor VFP support any arithmetic operations on it.
    445     // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
    446     // supported for v4f32.
    447     setOperationAction(ISD::FADD, MVT::v2f64, Expand);
    448     setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
    449     setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
    450     // FIXME: Code duplication: FDIV and FREM are expanded always, see
    451     // ARMTargetLowering::addTypeForNEON method for details.
    452     setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
    453     setOperationAction(ISD::FREM, MVT::v2f64, Expand);
    454     // FIXME: Create unittest.
    455     // In another words, find a way when "copysign" appears in DAG with vector
    456     // operands.
    457     setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
    458     // FIXME: Code duplication: SETCC has custom operation action, see
    459     // ARMTargetLowering::addTypeForNEON method for details.
    460     setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
    461     // FIXME: Create unittest for FNEG and for FABS.
    462     setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
    463     setOperationAction(ISD::FABS, MVT::v2f64, Expand);
    464     setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
    465     setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
    466     setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
    467     setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
    468     setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
    469     setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
    470     setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
    471     setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
    472     setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
    473     setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
    474     // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
    475     setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
    476     setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
    477     setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
    478     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
    479     setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
    480     setOperationAction(ISD::FMA, MVT::v2f64, Expand);
    481 
    482     setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
    483     setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
    484     setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
    485     setOperationAction(ISD::FPOWI, MVT::v4f32, Expand);
    486     setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
    487     setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
    488     setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
    489     setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
    490     setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
    491     setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
    492     setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
    493     setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
    494     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
    495     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
    496     setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
    497 
    498     // Mark v2f32 intrinsics.
    499     setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
    500     setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
    501     setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
    502     setOperationAction(ISD::FPOWI, MVT::v2f32, Expand);
    503     setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
    504     setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
    505     setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
    506     setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
    507     setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
    508     setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
    509     setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
    510     setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
    511     setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
    512     setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
    513     setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
    514 
    515     // Neon does not support some operations on v1i64 and v2i64 types.
    516     setOperationAction(ISD::MUL, MVT::v1i64, Expand);
    517     // Custom handling for some quad-vector types to detect VMULL.
    518     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
    519     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
    520     setOperationAction(ISD::MUL, MVT::v2i64, Custom);
    521     // Custom handling for some vector types to avoid expensive expansions
    522     setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
    523     setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
    524     setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
    525     setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
    526     setOperationAction(ISD::SETCC, MVT::v1i64, Expand);
    527     setOperationAction(ISD::SETCC, MVT::v2i64, Expand);
    528     // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
    529     // a destination type that is wider than the source, and nor does
    530     // it have a FP_TO_[SU]INT instruction with a narrower destination than
    531     // source.
    532     setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
    533     setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
    534     setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
    535     setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
    536 
    537     setOperationAction(ISD::FP_ROUND,   MVT::v2f32, Expand);
    538     setOperationAction(ISD::FP_EXTEND,  MVT::v2f64, Expand);
    539 
    540     // NEON does not have single instruction CTPOP for vectors with element
    541     // types wider than 8-bits.  However, custom lowering can leverage the
    542     // v8i8/v16i8 vcnt instruction.
    543     setOperationAction(ISD::CTPOP,      MVT::v2i32, Custom);
    544     setOperationAction(ISD::CTPOP,      MVT::v4i32, Custom);
    545     setOperationAction(ISD::CTPOP,      MVT::v4i16, Custom);
    546     setOperationAction(ISD::CTPOP,      MVT::v8i16, Custom);
    547 
    548     // NEON only has FMA instructions as of VFP4.
    549     if (!Subtarget->hasVFP4()) {
    550       setOperationAction(ISD::FMA, MVT::v2f32, Expand);
    551       setOperationAction(ISD::FMA, MVT::v4f32, Expand);
    552     }
    553 
    554     setTargetDAGCombine(ISD::INTRINSIC_VOID);
    555     setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
    556     setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
    557     setTargetDAGCombine(ISD::SHL);
    558     setTargetDAGCombine(ISD::SRL);
    559     setTargetDAGCombine(ISD::SRA);
    560     setTargetDAGCombine(ISD::SIGN_EXTEND);
    561     setTargetDAGCombine(ISD::ZERO_EXTEND);
    562     setTargetDAGCombine(ISD::ANY_EXTEND);
    563     setTargetDAGCombine(ISD::SELECT_CC);
    564     setTargetDAGCombine(ISD::BUILD_VECTOR);
    565     setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
    566     setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
    567     setTargetDAGCombine(ISD::STORE);
    568     setTargetDAGCombine(ISD::FP_TO_SINT);
    569     setTargetDAGCombine(ISD::FP_TO_UINT);
    570     setTargetDAGCombine(ISD::FDIV);
    571     setTargetDAGCombine(ISD::LOAD);
    572 
    573     // It is legal to extload from v4i8 to v4i16 or v4i32.
    574     for (MVT Ty : {MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v4i16, MVT::v2i16,
    575                    MVT::v2i32}) {
    576       for (MVT VT : MVT::integer_vector_valuetypes()) {
    577         setLoadExtAction(ISD::EXTLOAD, VT, Ty, Legal);
    578         setLoadExtAction(ISD::ZEXTLOAD, VT, Ty, Legal);
    579         setLoadExtAction(ISD::SEXTLOAD, VT, Ty, Legal);
    580       }
    581     }
    582   }
    583 
    584   // ARM and Thumb2 support UMLAL/SMLAL.
    585   if (!Subtarget->isThumb1Only())
    586     setTargetDAGCombine(ISD::ADDC);
    587 
    588   if (Subtarget->isFPOnlySP()) {
    589     // When targetting a floating-point unit with only single-precision
    590     // operations, f64 is legal for the few double-precision instructions which
    591     // are present However, no double-precision operations other than moves,
    592     // loads and stores are provided by the hardware.
    593     setOperationAction(ISD::FADD,       MVT::f64, Expand);
    594     setOperationAction(ISD::FSUB,       MVT::f64, Expand);
    595     setOperationAction(ISD::FMUL,       MVT::f64, Expand);
    596     setOperationAction(ISD::FMA,        MVT::f64, Expand);
    597     setOperationAction(ISD::FDIV,       MVT::f64, Expand);
    598     setOperationAction(ISD::FREM,       MVT::f64, Expand);
    599     setOperationAction(ISD::FCOPYSIGN,  MVT::f64, Expand);
    600     setOperationAction(ISD::FGETSIGN,   MVT::f64, Expand);
    601     setOperationAction(ISD::FNEG,       MVT::f64, Expand);
    602     setOperationAction(ISD::FABS,       MVT::f64, Expand);
    603     setOperationAction(ISD::FSQRT,      MVT::f64, Expand);
    604     setOperationAction(ISD::FSIN,       MVT::f64, Expand);
    605     setOperationAction(ISD::FCOS,       MVT::f64, Expand);
    606     setOperationAction(ISD::FPOWI,      MVT::f64, Expand);
    607     setOperationAction(ISD::FPOW,       MVT::f64, Expand);
    608     setOperationAction(ISD::FLOG,       MVT::f64, Expand);
    609     setOperationAction(ISD::FLOG2,      MVT::f64, Expand);
    610     setOperationAction(ISD::FLOG10,     MVT::f64, Expand);
    611     setOperationAction(ISD::FEXP,       MVT::f64, Expand);
    612     setOperationAction(ISD::FEXP2,      MVT::f64, Expand);
    613     setOperationAction(ISD::FCEIL,      MVT::f64, Expand);
    614     setOperationAction(ISD::FTRUNC,     MVT::f64, Expand);
    615     setOperationAction(ISD::FRINT,      MVT::f64, Expand);
    616     setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
    617     setOperationAction(ISD::FFLOOR,     MVT::f64, Expand);
    618     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
    619     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
    620     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
    621     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
    622     setOperationAction(ISD::FP_TO_SINT, MVT::f64, Custom);
    623     setOperationAction(ISD::FP_TO_UINT, MVT::f64, Custom);
    624     setOperationAction(ISD::FP_ROUND,   MVT::f32, Custom);
    625     setOperationAction(ISD::FP_EXTEND,  MVT::f64, Custom);
    626   }
    627 
    628   computeRegisterProperties(Subtarget->getRegisterInfo());
    629 
    630   // ARM does not have floating-point extending loads.
    631   for (MVT VT : MVT::fp_valuetypes()) {
    632     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
    633     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
    634   }
    635 
    636   // ... or truncating stores
    637   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
    638   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
    639   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
    640 
    641   // ARM does not have i1 sign extending load.
    642   for (MVT VT : MVT::integer_valuetypes())
    643     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
    644 
    645   // ARM supports all 4 flavors of integer indexed load / store.
    646   if (!Subtarget->isThumb1Only()) {
    647     for (unsigned im = (unsigned)ISD::PRE_INC;
    648          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
    649       setIndexedLoadAction(im,  MVT::i1,  Legal);
    650       setIndexedLoadAction(im,  MVT::i8,  Legal);
    651       setIndexedLoadAction(im,  MVT::i16, Legal);
    652       setIndexedLoadAction(im,  MVT::i32, Legal);
    653       setIndexedStoreAction(im, MVT::i1,  Legal);
    654       setIndexedStoreAction(im, MVT::i8,  Legal);
    655       setIndexedStoreAction(im, MVT::i16, Legal);
    656       setIndexedStoreAction(im, MVT::i32, Legal);
    657     }
    658   }
    659 
    660   setOperationAction(ISD::SADDO, MVT::i32, Custom);
    661   setOperationAction(ISD::UADDO, MVT::i32, Custom);
    662   setOperationAction(ISD::SSUBO, MVT::i32, Custom);
    663   setOperationAction(ISD::USUBO, MVT::i32, Custom);
    664 
    665   // i64 operation support.
    666   setOperationAction(ISD::MUL,     MVT::i64, Expand);
    667   setOperationAction(ISD::MULHU,   MVT::i32, Expand);
    668   if (Subtarget->isThumb1Only()) {
    669     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
    670     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
    671   }
    672   if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
    673       || (Subtarget->isThumb2() && !Subtarget->hasThumb2DSP()))
    674     setOperationAction(ISD::MULHS, MVT::i32, Expand);
    675 
    676   setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
    677   setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
    678   setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
    679   setOperationAction(ISD::SRL,       MVT::i64, Custom);
    680   setOperationAction(ISD::SRA,       MVT::i64, Custom);
    681 
    682   if (!Subtarget->isThumb1Only()) {
    683     // FIXME: We should do this for Thumb1 as well.
    684     setOperationAction(ISD::ADDC,    MVT::i32, Custom);
    685     setOperationAction(ISD::ADDE,    MVT::i32, Custom);
    686     setOperationAction(ISD::SUBC,    MVT::i32, Custom);
    687     setOperationAction(ISD::SUBE,    MVT::i32, Custom);
    688   }
    689 
    690   // ARM does not have ROTL.
    691   setOperationAction(ISD::ROTL,  MVT::i32, Expand);
    692   setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
    693   setOperationAction(ISD::CTPOP, MVT::i32, Expand);
    694   if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
    695     setOperationAction(ISD::CTLZ, MVT::i32, Expand);
    696 
    697   // These just redirect to CTTZ and CTLZ on ARM.
    698   setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i32  , Expand);
    699   setOperationAction(ISD::CTLZ_ZERO_UNDEF  , MVT::i32  , Expand);
    700 
    701   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
    702 
    703   // Only ARMv6 has BSWAP.
    704   if (!Subtarget->hasV6Ops())
    705     setOperationAction(ISD::BSWAP, MVT::i32, Expand);
    706 
    707   if (!(Subtarget->hasDivide() && Subtarget->isThumb2()) &&
    708       !(Subtarget->hasDivideInARMMode() && !Subtarget->isThumb())) {
    709     // These are expanded into libcalls if the cpu doesn't have HW divider.
    710     setOperationAction(ISD::SDIV,  MVT::i32, Expand);
    711     setOperationAction(ISD::UDIV,  MVT::i32, Expand);
    712   }
    713 
    714   // FIXME: Also set divmod for SREM on EABI
    715   setOperationAction(ISD::SREM,  MVT::i32, Expand);
    716   setOperationAction(ISD::UREM,  MVT::i32, Expand);
    717   // Register based DivRem for AEABI (RTABI 4.2)
    718   if (Subtarget->isTargetAEABI()) {
    719     setLibcallName(RTLIB::SDIVREM_I8,  "__aeabi_idivmod");
    720     setLibcallName(RTLIB::SDIVREM_I16, "__aeabi_idivmod");
    721     setLibcallName(RTLIB::SDIVREM_I32, "__aeabi_idivmod");
    722     setLibcallName(RTLIB::SDIVREM_I64, "__aeabi_ldivmod");
    723     setLibcallName(RTLIB::UDIVREM_I8,  "__aeabi_uidivmod");
    724     setLibcallName(RTLIB::UDIVREM_I16, "__aeabi_uidivmod");
    725     setLibcallName(RTLIB::UDIVREM_I32, "__aeabi_uidivmod");
    726     setLibcallName(RTLIB::UDIVREM_I64, "__aeabi_uldivmod");
    727 
    728     setLibcallCallingConv(RTLIB::SDIVREM_I8, CallingConv::ARM_AAPCS);
    729     setLibcallCallingConv(RTLIB::SDIVREM_I16, CallingConv::ARM_AAPCS);
    730     setLibcallCallingConv(RTLIB::SDIVREM_I32, CallingConv::ARM_AAPCS);
    731     setLibcallCallingConv(RTLIB::SDIVREM_I64, CallingConv::ARM_AAPCS);
    732     setLibcallCallingConv(RTLIB::UDIVREM_I8, CallingConv::ARM_AAPCS);
    733     setLibcallCallingConv(RTLIB::UDIVREM_I16, CallingConv::ARM_AAPCS);
    734     setLibcallCallingConv(RTLIB::UDIVREM_I32, CallingConv::ARM_AAPCS);
    735     setLibcallCallingConv(RTLIB::UDIVREM_I64, CallingConv::ARM_AAPCS);
    736 
    737     setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
    738     setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
    739   } else {
    740     setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
    741     setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
    742   }
    743 
    744   setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
    745   setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
    746   setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
    747   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
    748   setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
    749 
    750   setOperationAction(ISD::TRAP, MVT::Other, Legal);
    751 
    752   // Use the default implementation.
    753   setOperationAction(ISD::VASTART,            MVT::Other, Custom);
    754   setOperationAction(ISD::VAARG,              MVT::Other, Expand);
    755   setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
    756   setOperationAction(ISD::VAEND,              MVT::Other, Expand);
    757   setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
    758   setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
    759 
    760   if (!Subtarget->isTargetMachO()) {
    761     // Non-MachO platforms may return values in these registers via the
    762     // personality function.
    763     setExceptionPointerRegister(ARM::R0);
    764     setExceptionSelectorRegister(ARM::R1);
    765   }
    766 
    767   if (Subtarget->getTargetTriple().isWindowsItaniumEnvironment())
    768     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
    769   else
    770     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
    771 
    772   // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
    773   // the default expansion. If we are targeting a single threaded system,
    774   // then set them all for expand so we can lower them later into their
    775   // non-atomic form.
    776   if (TM.Options.ThreadModel == ThreadModel::Single)
    777     setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other, Expand);
    778   else if (Subtarget->hasAnyDataBarrier() && !Subtarget->isThumb1Only()) {
    779     // ATOMIC_FENCE needs custom lowering; the others should have been expanded
    780     // to ldrex/strex loops already.
    781     setOperationAction(ISD::ATOMIC_FENCE,     MVT::Other, Custom);
    782 
    783     // On v8, we have particularly efficient implementations of atomic fences
    784     // if they can be combined with nearby atomic loads and stores.
    785     if (!Subtarget->hasV8Ops()) {
    786       // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
    787       setInsertFencesForAtomic(true);
    788     }
    789   } else {
    790     // If there's anything we can use as a barrier, go through custom lowering
    791     // for ATOMIC_FENCE.
    792     setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other,
    793                        Subtarget->hasAnyDataBarrier() ? Custom : Expand);
    794 
    795     // Set them all for expansion, which will force libcalls.
    796     setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
    797     setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
    798     setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
    799     setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
    800     setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
    801     setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
    802     setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
    803     setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
    804     setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
    805     setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
    806     setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
    807     setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
    808     // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
    809     // Unordered/Monotonic case.
    810     setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
    811     setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
    812   }
    813 
    814   setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
    815 
    816   // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
    817   if (!Subtarget->hasV6Ops()) {
    818     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
    819     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
    820   }
    821   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
    822 
    823   if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
    824       !Subtarget->isThumb1Only()) {
    825     // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
    826     // iff target supports vfp2.
    827     setOperationAction(ISD::BITCAST, MVT::i64, Custom);
    828     setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
    829   }
    830 
    831   // We want to custom lower some of our intrinsics.
    832   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
    833   if (Subtarget->isTargetDarwin()) {
    834     setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
    835     setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
    836     setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
    837   }
    838 
    839   setOperationAction(ISD::SETCC,     MVT::i32, Expand);
    840   setOperationAction(ISD::SETCC,     MVT::f32, Expand);
    841   setOperationAction(ISD::SETCC,     MVT::f64, Expand);
    842   setOperationAction(ISD::SELECT,    MVT::i32, Custom);
    843   setOperationAction(ISD::SELECT,    MVT::f32, Custom);
    844   setOperationAction(ISD::SELECT,    MVT::f64, Custom);
    845   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
    846   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
    847   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
    848 
    849   setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
    850   setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
    851   setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
    852   setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
    853   setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
    854 
    855   // We don't support sin/cos/fmod/copysign/pow
    856   setOperationAction(ISD::FSIN,      MVT::f64, Expand);
    857   setOperationAction(ISD::FSIN,      MVT::f32, Expand);
    858   setOperationAction(ISD::FCOS,      MVT::f32, Expand);
    859   setOperationAction(ISD::FCOS,      MVT::f64, Expand);
    860   setOperationAction(ISD::FSINCOS,   MVT::f64, Expand);
    861   setOperationAction(ISD::FSINCOS,   MVT::f32, Expand);
    862   setOperationAction(ISD::FREM,      MVT::f64, Expand);
    863   setOperationAction(ISD::FREM,      MVT::f32, Expand);
    864   if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
    865       !Subtarget->isThumb1Only()) {
    866     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
    867     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
    868   }
    869   setOperationAction(ISD::FPOW,      MVT::f64, Expand);
    870   setOperationAction(ISD::FPOW,      MVT::f32, Expand);
    871 
    872   if (!Subtarget->hasVFP4()) {
    873     setOperationAction(ISD::FMA, MVT::f64, Expand);
    874     setOperationAction(ISD::FMA, MVT::f32, Expand);
    875   }
    876 
    877   // Various VFP goodness
    878   if (!TM.Options.UseSoftFloat && !Subtarget->isThumb1Only()) {
    879     // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
    880     if (!Subtarget->hasFPARMv8() || Subtarget->isFPOnlySP()) {
    881       setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
    882       setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
    883     }
    884 
    885     // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
    886     if (!Subtarget->hasFP16()) {
    887       setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
    888       setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
    889     }
    890   }
    891 
    892   // Combine sin / cos into one node or libcall if possible.
    893   if (Subtarget->hasSinCos()) {
    894     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
    895     setLibcallName(RTLIB::SINCOS_F64, "sincos");
    896     if (Subtarget->getTargetTriple().isiOS()) {
    897       // For iOS, we don't want to the normal expansion of a libcall to
    898       // sincos. We want to issue a libcall to __sincos_stret.
    899       setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
    900       setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
    901     }
    902   }
    903 
    904   // FP-ARMv8 implements a lot of rounding-like FP operations.
    905   if (Subtarget->hasFPARMv8()) {
    906     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
    907     setOperationAction(ISD::FCEIL, MVT::f32, Legal);
    908     setOperationAction(ISD::FROUND, MVT::f32, Legal);
    909     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
    910     setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
    911     setOperationAction(ISD::FRINT, MVT::f32, Legal);
    912     if (!Subtarget->isFPOnlySP()) {
    913       setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
    914       setOperationAction(ISD::FCEIL, MVT::f64, Legal);
    915       setOperationAction(ISD::FROUND, MVT::f64, Legal);
    916       setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
    917       setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
    918       setOperationAction(ISD::FRINT, MVT::f64, Legal);
    919     }
    920   }
    921   // We have target-specific dag combine patterns for the following nodes:
    922   // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
    923   setTargetDAGCombine(ISD::ADD);
    924   setTargetDAGCombine(ISD::SUB);
    925   setTargetDAGCombine(ISD::MUL);
    926   setTargetDAGCombine(ISD::AND);
    927   setTargetDAGCombine(ISD::OR);
    928   setTargetDAGCombine(ISD::XOR);
    929 
    930   if (Subtarget->hasV6Ops())
    931     setTargetDAGCombine(ISD::SRL);
    932 
    933   setStackPointerRegisterToSaveRestore(ARM::SP);
    934 
    935   if (TM.Options.UseSoftFloat || Subtarget->isThumb1Only() ||
    936       !Subtarget->hasVFP2())
    937     setSchedulingPreference(Sched::RegPressure);
    938   else
    939     setSchedulingPreference(Sched::Hybrid);
    940 
    941   //// temporary - rewrite interface to use type
    942   MaxStoresPerMemset = 8;
    943   MaxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
    944   MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
    945   MaxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 4 : 2;
    946   MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
    947   MaxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 4 : 2;
    948 
    949   // On ARM arguments smaller than 4 bytes are extended, so all arguments
    950   // are at least 4 bytes aligned.
    951   setMinStackArgumentAlignment(4);
    952 
    953   // Prefer likely predicted branches to selects on out-of-order cores.
    954   PredictableSelectIsExpensive = Subtarget->isLikeA9();
    955 
    956   setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
    957 }
    958 
    959 // FIXME: It might make sense to define the representative register class as the
    960 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
    961 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
    962 // SPR's representative would be DPR_VFP2. This should work well if register
    963 // pressure tracking were modified such that a register use would increment the
    964 // pressure of the register class's representative and all of it's super
    965 // classes' representatives transitively. We have not implemented this because
    966 // of the difficulty prior to coalescing of modeling operand register classes
    967 // due to the common occurrence of cross class copies and subregister insertions
    968 // and extractions.
    969 std::pair<const TargetRegisterClass *, uint8_t>
    970 ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
    971                                            MVT VT) const {
    972   const TargetRegisterClass *RRC = nullptr;
    973   uint8_t Cost = 1;
    974   switch (VT.SimpleTy) {
    975   default:
    976     return TargetLowering::findRepresentativeClass(TRI, VT);
    977   // Use DPR as representative register class for all floating point
    978   // and vector types. Since there are 32 SPR registers and 32 DPR registers so
    979   // the cost is 1 for both f32 and f64.
    980   case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
    981   case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
    982     RRC = &ARM::DPRRegClass;
    983     // When NEON is used for SP, only half of the register file is available
    984     // because operations that define both SP and DP results will be constrained
    985     // to the VFP2 class (D0-D15). We currently model this constraint prior to
    986     // coalescing by double-counting the SP regs. See the FIXME above.
    987     if (Subtarget->useNEONForSinglePrecisionFP())
    988       Cost = 2;
    989     break;
    990   case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
    991   case MVT::v4f32: case MVT::v2f64:
    992     RRC = &ARM::DPRRegClass;
    993     Cost = 2;
    994     break;
    995   case MVT::v4i64:
    996     RRC = &ARM::DPRRegClass;
    997     Cost = 4;
    998     break;
    999   case MVT::v8i64:
   1000     RRC = &ARM::DPRRegClass;
   1001     Cost = 8;
   1002     break;
   1003   }
   1004   return std::make_pair(RRC, Cost);
   1005 }
   1006 
   1007 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
   1008   switch (Opcode) {
   1009   default: return nullptr;
   1010   case ARMISD::Wrapper:       return "ARMISD::Wrapper";
   1011   case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
   1012   case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
   1013   case ARMISD::CALL:          return "ARMISD::CALL";
   1014   case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
   1015   case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
   1016   case ARMISD::tCALL:         return "ARMISD::tCALL";
   1017   case ARMISD::BRCOND:        return "ARMISD::BRCOND";
   1018   case ARMISD::BR_JT:         return "ARMISD::BR_JT";
   1019   case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
   1020   case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
   1021   case ARMISD::INTRET_FLAG:   return "ARMISD::INTRET_FLAG";
   1022   case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
   1023   case ARMISD::CMP:           return "ARMISD::CMP";
   1024   case ARMISD::CMN:           return "ARMISD::CMN";
   1025   case ARMISD::CMPZ:          return "ARMISD::CMPZ";
   1026   case ARMISD::CMPFP:         return "ARMISD::CMPFP";
   1027   case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
   1028   case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
   1029   case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
   1030 
   1031   case ARMISD::CMOV:          return "ARMISD::CMOV";
   1032 
   1033   case ARMISD::RBIT:          return "ARMISD::RBIT";
   1034 
   1035   case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
   1036   case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
   1037   case ARMISD::RRX:           return "ARMISD::RRX";
   1038 
   1039   case ARMISD::ADDC:          return "ARMISD::ADDC";
   1040   case ARMISD::ADDE:          return "ARMISD::ADDE";
   1041   case ARMISD::SUBC:          return "ARMISD::SUBC";
   1042   case ARMISD::SUBE:          return "ARMISD::SUBE";
   1043 
   1044   case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
   1045   case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
   1046 
   1047   case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
   1048   case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
   1049 
   1050   case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
   1051 
   1052   case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
   1053 
   1054   case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
   1055 
   1056   case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
   1057 
   1058   case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
   1059 
   1060   case ARMISD::WIN__CHKSTK:   return "ARMISD:::WIN__CHKSTK";
   1061 
   1062   case ARMISD::VCEQ:          return "ARMISD::VCEQ";
   1063   case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
   1064   case ARMISD::VCGE:          return "ARMISD::VCGE";
   1065   case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
   1066   case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
   1067   case ARMISD::VCGEU:         return "ARMISD::VCGEU";
   1068   case ARMISD::VCGT:          return "ARMISD::VCGT";
   1069   case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
   1070   case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
   1071   case ARMISD::VCGTU:         return "ARMISD::VCGTU";
   1072   case ARMISD::VTST:          return "ARMISD::VTST";
   1073 
   1074   case ARMISD::VSHL:          return "ARMISD::VSHL";
   1075   case ARMISD::VSHRs:         return "ARMISD::VSHRs";
   1076   case ARMISD::VSHRu:         return "ARMISD::VSHRu";
   1077   case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
   1078   case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
   1079   case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
   1080   case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
   1081   case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
   1082   case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
   1083   case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
   1084   case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
   1085   case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
   1086   case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
   1087   case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
   1088   case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
   1089   case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
   1090   case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
   1091   case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
   1092   case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
   1093   case ARMISD::VMOVFPIMM:     return "ARMISD::VMOVFPIMM";
   1094   case ARMISD::VDUP:          return "ARMISD::VDUP";
   1095   case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
   1096   case ARMISD::VEXT:          return "ARMISD::VEXT";
   1097   case ARMISD::VREV64:        return "ARMISD::VREV64";
   1098   case ARMISD::VREV32:        return "ARMISD::VREV32";
   1099   case ARMISD::VREV16:        return "ARMISD::VREV16";
   1100   case ARMISD::VZIP:          return "ARMISD::VZIP";
   1101   case ARMISD::VUZP:          return "ARMISD::VUZP";
   1102   case ARMISD::VTRN:          return "ARMISD::VTRN";
   1103   case ARMISD::VTBL1:         return "ARMISD::VTBL1";
   1104   case ARMISD::VTBL2:         return "ARMISD::VTBL2";
   1105   case ARMISD::VMULLs:        return "ARMISD::VMULLs";
   1106   case ARMISD::VMULLu:        return "ARMISD::VMULLu";
   1107   case ARMISD::UMLAL:         return "ARMISD::UMLAL";
   1108   case ARMISD::SMLAL:         return "ARMISD::SMLAL";
   1109   case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
   1110   case ARMISD::FMAX:          return "ARMISD::FMAX";
   1111   case ARMISD::FMIN:          return "ARMISD::FMIN";
   1112   case ARMISD::VMAXNM:        return "ARMISD::VMAX";
   1113   case ARMISD::VMINNM:        return "ARMISD::VMIN";
   1114   case ARMISD::BFI:           return "ARMISD::BFI";
   1115   case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
   1116   case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
   1117   case ARMISD::VBSL:          return "ARMISD::VBSL";
   1118   case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
   1119   case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
   1120   case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
   1121   case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
   1122   case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
   1123   case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
   1124   case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
   1125   case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
   1126   case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
   1127   case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
   1128   case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
   1129   case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
   1130   case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
   1131   case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
   1132   case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
   1133   case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
   1134   case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
   1135   case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
   1136   case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
   1137   case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
   1138   }
   1139 }
   1140 
   1141 EVT ARMTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
   1142   if (!VT.isVector()) return getPointerTy();
   1143   return VT.changeVectorElementTypeToInteger();
   1144 }
   1145 
   1146 /// getRegClassFor - Return the register class that should be used for the
   1147 /// specified value type.
   1148 const TargetRegisterClass *ARMTargetLowering::getRegClassFor(MVT VT) const {
   1149   // Map v4i64 to QQ registers but do not make the type legal. Similarly map
   1150   // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
   1151   // load / store 4 to 8 consecutive D registers.
   1152   if (Subtarget->hasNEON()) {
   1153     if (VT == MVT::v4i64)
   1154       return &ARM::QQPRRegClass;
   1155     if (VT == MVT::v8i64)
   1156       return &ARM::QQQQPRRegClass;
   1157   }
   1158   return TargetLowering::getRegClassFor(VT);
   1159 }
   1160 
   1161 // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
   1162 // source/dest is aligned and the copy size is large enough. We therefore want
   1163 // to align such objects passed to memory intrinsics.
   1164 bool ARMTargetLowering::shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize,
   1165                                                unsigned &PrefAlign) const {
   1166   if (!isa<MemIntrinsic>(CI))
   1167     return false;
   1168   MinSize = 8;
   1169   // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
   1170   // cycle faster than 4-byte aligned LDM.
   1171   PrefAlign = (Subtarget->hasV6Ops() && !Subtarget->isMClass() ? 8 : 4);
   1172   return true;
   1173 }
   1174 
   1175 // Create a fast isel object.
   1176 FastISel *
   1177 ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
   1178                                   const TargetLibraryInfo *libInfo) const {
   1179   return ARM::createFastISel(funcInfo, libInfo);
   1180 }
   1181 
   1182 Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
   1183   unsigned NumVals = N->getNumValues();
   1184   if (!NumVals)
   1185     return Sched::RegPressure;
   1186 
   1187   for (unsigned i = 0; i != NumVals; ++i) {
   1188     EVT VT = N->getValueType(i);
   1189     if (VT == MVT::Glue || VT == MVT::Other)
   1190       continue;
   1191     if (VT.isFloatingPoint() || VT.isVector())
   1192       return Sched::ILP;
   1193   }
   1194 
   1195   if (!N->isMachineOpcode())
   1196     return Sched::RegPressure;
   1197 
   1198   // Load are scheduled for latency even if there instruction itinerary
   1199   // is not available.
   1200   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
   1201   const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
   1202 
   1203   if (MCID.getNumDefs() == 0)
   1204     return Sched::RegPressure;
   1205   if (!Itins->isEmpty() &&
   1206       Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
   1207     return Sched::ILP;
   1208 
   1209   return Sched::RegPressure;
   1210 }
   1211 
   1212 //===----------------------------------------------------------------------===//
   1213 // Lowering Code
   1214 //===----------------------------------------------------------------------===//
   1215 
   1216 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
   1217 static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
   1218   switch (CC) {
   1219   default: llvm_unreachable("Unknown condition code!");
   1220   case ISD::SETNE:  return ARMCC::NE;
   1221   case ISD::SETEQ:  return ARMCC::EQ;
   1222   case ISD::SETGT:  return ARMCC::GT;
   1223   case ISD::SETGE:  return ARMCC::GE;
   1224   case ISD::SETLT:  return ARMCC::LT;
   1225   case ISD::SETLE:  return ARMCC::LE;
   1226   case ISD::SETUGT: return ARMCC::HI;
   1227   case ISD::SETUGE: return ARMCC::HS;
   1228   case ISD::SETULT: return ARMCC::LO;
   1229   case ISD::SETULE: return ARMCC::LS;
   1230   }
   1231 }
   1232 
   1233 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
   1234 static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
   1235                         ARMCC::CondCodes &CondCode2) {
   1236   CondCode2 = ARMCC::AL;
   1237   switch (CC) {
   1238   default: llvm_unreachable("Unknown FP condition!");
   1239   case ISD::SETEQ:
   1240   case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
   1241   case ISD::SETGT:
   1242   case ISD::SETOGT: CondCode = ARMCC::GT; break;
   1243   case ISD::SETGE:
   1244   case ISD::SETOGE: CondCode = ARMCC::GE; break;
   1245   case ISD::SETOLT: CondCode = ARMCC::MI; break;
   1246   case ISD::SETOLE: CondCode = ARMCC::LS; break;
   1247   case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
   1248   case ISD::SETO:   CondCode = ARMCC::VC; break;
   1249   case ISD::SETUO:  CondCode = ARMCC::VS; break;
   1250   case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
   1251   case ISD::SETUGT: CondCode = ARMCC::HI; break;
   1252   case ISD::SETUGE: CondCode = ARMCC::PL; break;
   1253   case ISD::SETLT:
   1254   case ISD::SETULT: CondCode = ARMCC::LT; break;
   1255   case ISD::SETLE:
   1256   case ISD::SETULE: CondCode = ARMCC::LE; break;
   1257   case ISD::SETNE:
   1258   case ISD::SETUNE: CondCode = ARMCC::NE; break;
   1259   }
   1260 }
   1261 
   1262 //===----------------------------------------------------------------------===//
   1263 //                      Calling Convention Implementation
   1264 //===----------------------------------------------------------------------===//
   1265 
   1266 #include "ARMGenCallingConv.inc"
   1267 
   1268 /// getEffectiveCallingConv - Get the effective calling convention, taking into
   1269 /// account presence of floating point hardware and calling convention
   1270 /// limitations, such as support for variadic functions.
   1271 CallingConv::ID
   1272 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC,
   1273                                            bool isVarArg) const {
   1274   switch (CC) {
   1275   default:
   1276     llvm_unreachable("Unsupported calling convention");
   1277   case CallingConv::ARM_AAPCS:
   1278   case CallingConv::ARM_APCS:
   1279   case CallingConv::GHC:
   1280     return CC;
   1281   case CallingConv::ARM_AAPCS_VFP:
   1282     return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP;
   1283   case CallingConv::C:
   1284     if (!Subtarget->isAAPCS_ABI())
   1285       return CallingConv::ARM_APCS;
   1286     else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() &&
   1287              getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
   1288              !isVarArg)
   1289       return CallingConv::ARM_AAPCS_VFP;
   1290     else
   1291       return CallingConv::ARM_AAPCS;
   1292   case CallingConv::Fast:
   1293     if (!Subtarget->isAAPCS_ABI()) {
   1294       if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg)
   1295         return CallingConv::Fast;
   1296       return CallingConv::ARM_APCS;
   1297     } else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg)
   1298       return CallingConv::ARM_AAPCS_VFP;
   1299     else
   1300       return CallingConv::ARM_AAPCS;
   1301   }
   1302 }
   1303 
   1304 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given
   1305 /// CallingConvention.
   1306 CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
   1307                                                  bool Return,
   1308                                                  bool isVarArg) const {
   1309   switch (getEffectiveCallingConv(CC, isVarArg)) {
   1310   default:
   1311     llvm_unreachable("Unsupported calling convention");
   1312   case CallingConv::ARM_APCS:
   1313     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
   1314   case CallingConv::ARM_AAPCS:
   1315     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
   1316   case CallingConv::ARM_AAPCS_VFP:
   1317     return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
   1318   case CallingConv::Fast:
   1319     return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
   1320   case CallingConv::GHC:
   1321     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
   1322   }
   1323 }
   1324 
   1325 /// LowerCallResult - Lower the result values of a call into the
   1326 /// appropriate copies out of appropriate physical registers.
   1327 SDValue
   1328 ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
   1329                                    CallingConv::ID CallConv, bool isVarArg,
   1330                                    const SmallVectorImpl<ISD::InputArg> &Ins,
   1331                                    SDLoc dl, SelectionDAG &DAG,
   1332                                    SmallVectorImpl<SDValue> &InVals,
   1333                                    bool isThisReturn, SDValue ThisVal) const {
   1334 
   1335   // Assign locations to each value returned by this call.
   1336   SmallVector<CCValAssign, 16> RVLocs;
   1337   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
   1338                     *DAG.getContext(), Call);
   1339   CCInfo.AnalyzeCallResult(Ins,
   1340                            CCAssignFnForNode(CallConv, /* Return*/ true,
   1341                                              isVarArg));
   1342 
   1343   // Copy all of the result registers out of their specified physreg.
   1344   for (unsigned i = 0; i != RVLocs.size(); ++i) {
   1345     CCValAssign VA = RVLocs[i];
   1346 
   1347     // Pass 'this' value directly from the argument to return value, to avoid
   1348     // reg unit interference
   1349     if (i == 0 && isThisReturn) {
   1350       assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
   1351              "unexpected return calling convention register assignment");
   1352       InVals.push_back(ThisVal);
   1353       continue;
   1354     }
   1355 
   1356     SDValue Val;
   1357     if (VA.needsCustom()) {
   1358       // Handle f64 or half of a v2f64.
   1359       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
   1360                                       InFlag);
   1361       Chain = Lo.getValue(1);
   1362       InFlag = Lo.getValue(2);
   1363       VA = RVLocs[++i]; // skip ahead to next loc
   1364       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
   1365                                       InFlag);
   1366       Chain = Hi.getValue(1);
   1367       InFlag = Hi.getValue(2);
   1368       if (!Subtarget->isLittle())
   1369         std::swap (Lo, Hi);
   1370       Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
   1371 
   1372       if (VA.getLocVT() == MVT::v2f64) {
   1373         SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
   1374         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
   1375                           DAG.getConstant(0, MVT::i32));
   1376 
   1377         VA = RVLocs[++i]; // skip ahead to next loc
   1378         Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
   1379         Chain = Lo.getValue(1);
   1380         InFlag = Lo.getValue(2);
   1381         VA = RVLocs[++i]; // skip ahead to next loc
   1382         Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
   1383         Chain = Hi.getValue(1);
   1384         InFlag = Hi.getValue(2);
   1385         if (!Subtarget->isLittle())
   1386           std::swap (Lo, Hi);
   1387         Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
   1388         Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
   1389                           DAG.getConstant(1, MVT::i32));
   1390       }
   1391     } else {
   1392       Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
   1393                                InFlag);
   1394       Chain = Val.getValue(1);
   1395       InFlag = Val.getValue(2);
   1396     }
   1397 
   1398     switch (VA.getLocInfo()) {
   1399     default: llvm_unreachable("Unknown loc info!");
   1400     case CCValAssign::Full: break;
   1401     case CCValAssign::BCvt:
   1402       Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
   1403       break;
   1404     }
   1405 
   1406     InVals.push_back(Val);
   1407   }
   1408 
   1409   return Chain;
   1410 }
   1411 
   1412 /// LowerMemOpCallTo - Store the argument to the stack.
   1413 SDValue
   1414 ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
   1415                                     SDValue StackPtr, SDValue Arg,
   1416                                     SDLoc dl, SelectionDAG &DAG,
   1417                                     const CCValAssign &VA,
   1418                                     ISD::ArgFlagsTy Flags) const {
   1419   unsigned LocMemOffset = VA.getLocMemOffset();
   1420   SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
   1421   PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
   1422   return DAG.getStore(Chain, dl, Arg, PtrOff,
   1423                       MachinePointerInfo::getStack(LocMemOffset),
   1424                       false, false, 0);
   1425 }
   1426 
   1427 void ARMTargetLowering::PassF64ArgInRegs(SDLoc dl, SelectionDAG &DAG,
   1428                                          SDValue Chain, SDValue &Arg,
   1429                                          RegsToPassVector &RegsToPass,
   1430                                          CCValAssign &VA, CCValAssign &NextVA,
   1431                                          SDValue &StackPtr,
   1432                                          SmallVectorImpl<SDValue> &MemOpChains,
   1433                                          ISD::ArgFlagsTy Flags) const {
   1434 
   1435   SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
   1436                               DAG.getVTList(MVT::i32, MVT::i32), Arg);
   1437   unsigned id = Subtarget->isLittle() ? 0 : 1;
   1438   RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id)));
   1439 
   1440   if (NextVA.isRegLoc())
   1441     RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id)));
   1442   else {
   1443     assert(NextVA.isMemLoc());
   1444     if (!StackPtr.getNode())
   1445       StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
   1446 
   1447     MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1-id),
   1448                                            dl, DAG, NextVA,
   1449                                            Flags));
   1450   }
   1451 }
   1452 
   1453 /// LowerCall - Lowering a call into a callseq_start <-
   1454 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
   1455 /// nodes.
   1456 SDValue
   1457 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
   1458                              SmallVectorImpl<SDValue> &InVals) const {
   1459   SelectionDAG &DAG                     = CLI.DAG;
   1460   SDLoc &dl                          = CLI.DL;
   1461   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
   1462   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
   1463   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
   1464   SDValue Chain                         = CLI.Chain;
   1465   SDValue Callee                        = CLI.Callee;
   1466   bool &isTailCall                      = CLI.IsTailCall;
   1467   CallingConv::ID CallConv              = CLI.CallConv;
   1468   bool doesNotRet                       = CLI.DoesNotReturn;
   1469   bool isVarArg                         = CLI.IsVarArg;
   1470 
   1471   MachineFunction &MF = DAG.getMachineFunction();
   1472   bool isStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
   1473   bool isThisReturn   = false;
   1474   bool isSibCall      = false;
   1475 
   1476   // Disable tail calls if they're not supported.
   1477   if (!Subtarget->supportsTailCall() || MF.getTarget().Options.DisableTailCalls)
   1478     isTailCall = false;
   1479 
   1480   if (isTailCall) {
   1481     // Check if it's really possible to do a tail call.
   1482     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
   1483                     isVarArg, isStructRet, MF.getFunction()->hasStructRetAttr(),
   1484                                                    Outs, OutVals, Ins, DAG);
   1485     if (!isTailCall && CLI.CS && CLI.CS->isMustTailCall())
   1486       report_fatal_error("failed to perform tail call elimination on a call "
   1487                          "site marked musttail");
   1488     // We don't support GuaranteedTailCallOpt for ARM, only automatically
   1489     // detected sibcalls.
   1490     if (isTailCall) {
   1491       ++NumTailCalls;
   1492       isSibCall = true;
   1493     }
   1494   }
   1495 
   1496   // Analyze operands of the call, assigning locations to each operand.
   1497   SmallVector<CCValAssign, 16> ArgLocs;
   1498   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
   1499                     *DAG.getContext(), Call);
   1500   CCInfo.AnalyzeCallOperands(Outs,
   1501                              CCAssignFnForNode(CallConv, /* Return*/ false,
   1502                                                isVarArg));
   1503 
   1504   // Get a count of how many bytes are to be pushed on the stack.
   1505   unsigned NumBytes = CCInfo.getNextStackOffset();
   1506 
   1507   // For tail calls, memory operands are available in our caller's stack.
   1508   if (isSibCall)
   1509     NumBytes = 0;
   1510 
   1511   // Adjust the stack pointer for the new arguments...
   1512   // These operations are automatically eliminated by the prolog/epilog pass
   1513   if (!isSibCall)
   1514     Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
   1515                                  dl);
   1516 
   1517   SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
   1518 
   1519   RegsToPassVector RegsToPass;
   1520   SmallVector<SDValue, 8> MemOpChains;
   1521 
   1522   // Walk the register/memloc assignments, inserting copies/loads.  In the case
   1523   // of tail call optimization, arguments are handled later.
   1524   for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
   1525        i != e;
   1526        ++i, ++realArgIdx) {
   1527     CCValAssign &VA = ArgLocs[i];
   1528     SDValue Arg = OutVals[realArgIdx];
   1529     ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
   1530     bool isByVal = Flags.isByVal();
   1531 
   1532     // Promote the value if needed.
   1533     switch (VA.getLocInfo()) {
   1534     default: llvm_unreachable("Unknown loc info!");
   1535     case CCValAssign::Full: break;
   1536     case CCValAssign::SExt:
   1537       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
   1538       break;
   1539     case CCValAssign::ZExt:
   1540       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
   1541       break;
   1542     case CCValAssign::AExt:
   1543       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
   1544       break;
   1545     case CCValAssign::BCvt:
   1546       Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
   1547       break;
   1548     }
   1549 
   1550     // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
   1551     if (VA.needsCustom()) {
   1552       if (VA.getLocVT() == MVT::v2f64) {
   1553         SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
   1554                                   DAG.getConstant(0, MVT::i32));
   1555         SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
   1556                                   DAG.getConstant(1, MVT::i32));
   1557 
   1558         PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
   1559                          VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
   1560 
   1561         VA = ArgLocs[++i]; // skip ahead to next loc
   1562         if (VA.isRegLoc()) {
   1563           PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
   1564                            VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
   1565         } else {
   1566           assert(VA.isMemLoc());
   1567 
   1568           MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
   1569                                                  dl, DAG, VA, Flags));
   1570         }
   1571       } else {
   1572         PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
   1573                          StackPtr, MemOpChains, Flags);
   1574       }
   1575     } else if (VA.isRegLoc()) {
   1576       if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i32) {
   1577         assert(VA.getLocVT() == MVT::i32 &&
   1578                "unexpected calling convention register assignment");
   1579         assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&
   1580                "unexpected use of 'returned'");
   1581         isThisReturn = true;
   1582       }
   1583       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
   1584     } else if (isByVal) {
   1585       assert(VA.isMemLoc());
   1586       unsigned offset = 0;
   1587 
   1588       // True if this byval aggregate will be split between registers
   1589       // and memory.
   1590       unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
   1591       unsigned CurByValIdx = CCInfo.getInRegsParamsProcessed();
   1592 
   1593       if (CurByValIdx < ByValArgsCount) {
   1594 
   1595         unsigned RegBegin, RegEnd;
   1596         CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
   1597 
   1598         EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   1599         unsigned int i, j;
   1600         for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
   1601           SDValue Const = DAG.getConstant(4*i, MVT::i32);
   1602           SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
   1603           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
   1604                                      MachinePointerInfo(),
   1605                                      false, false, false,
   1606                                      DAG.InferPtrAlignment(AddArg));
   1607           MemOpChains.push_back(Load.getValue(1));
   1608           RegsToPass.push_back(std::make_pair(j, Load));
   1609         }
   1610 
   1611         // If parameter size outsides register area, "offset" value
   1612         // helps us to calculate stack slot for remained part properly.
   1613         offset = RegEnd - RegBegin;
   1614 
   1615         CCInfo.nextInRegsParam();
   1616       }
   1617 
   1618       if (Flags.getByValSize() > 4*offset) {
   1619         unsigned LocMemOffset = VA.getLocMemOffset();
   1620         SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset);
   1621         SDValue Dst = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr,
   1622                                   StkPtrOff);
   1623         SDValue SrcOffset = DAG.getIntPtrConstant(4*offset);
   1624         SDValue Src = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg, SrcOffset);
   1625         SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset,
   1626                                            MVT::i32);
   1627         SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), MVT::i32);
   1628 
   1629         SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
   1630         SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
   1631         MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
   1632                                           Ops));
   1633       }
   1634     } else if (!isSibCall) {
   1635       assert(VA.isMemLoc());
   1636 
   1637       MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
   1638                                              dl, DAG, VA, Flags));
   1639     }
   1640   }
   1641 
   1642   if (!MemOpChains.empty())
   1643     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
   1644 
   1645   // Build a sequence of copy-to-reg nodes chained together with token chain
   1646   // and flag operands which copy the outgoing args into the appropriate regs.
   1647   SDValue InFlag;
   1648   // Tail call byval lowering might overwrite argument registers so in case of
   1649   // tail call optimization the copies to registers are lowered later.
   1650   if (!isTailCall)
   1651     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   1652       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   1653                                RegsToPass[i].second, InFlag);
   1654       InFlag = Chain.getValue(1);
   1655     }
   1656 
   1657   // For tail calls lower the arguments to the 'real' stack slot.
   1658   if (isTailCall) {
   1659     // Force all the incoming stack arguments to be loaded from the stack
   1660     // before any new outgoing arguments are stored to the stack, because the
   1661     // outgoing stack slots may alias the incoming argument stack slots, and
   1662     // the alias isn't otherwise explicit. This is slightly more conservative
   1663     // than necessary, because it means that each store effectively depends
   1664     // on every argument instead of just those arguments it would clobber.
   1665 
   1666     // Do not flag preceding copytoreg stuff together with the following stuff.
   1667     InFlag = SDValue();
   1668     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   1669       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   1670                                RegsToPass[i].second, InFlag);
   1671       InFlag = Chain.getValue(1);
   1672     }
   1673     InFlag = SDValue();
   1674   }
   1675 
   1676   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
   1677   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
   1678   // node so that legalize doesn't hack it.
   1679   bool isDirect = false;
   1680   bool isARMFunc = false;
   1681   bool isLocalARMFunc = false;
   1682   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   1683 
   1684   if (EnableARMLongCalls) {
   1685     assert((Subtarget->isTargetWindows() ||
   1686             getTargetMachine().getRelocationModel() == Reloc::Static) &&
   1687            "long-calls with non-static relocation model!");
   1688     // Handle a global address or an external symbol. If it's not one of
   1689     // those, the target's already in a register, so we don't need to do
   1690     // anything extra.
   1691     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
   1692       const GlobalValue *GV = G->getGlobal();
   1693       // Create a constant pool entry for the callee address
   1694       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   1695       ARMConstantPoolValue *CPV =
   1696         ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
   1697 
   1698       // Get the address of the callee into a register
   1699       SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
   1700       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   1701       Callee = DAG.getLoad(getPointerTy(), dl,
   1702                            DAG.getEntryNode(), CPAddr,
   1703                            MachinePointerInfo::getConstantPool(),
   1704                            false, false, false, 0);
   1705     } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
   1706       const char *Sym = S->getSymbol();
   1707 
   1708       // Create a constant pool entry for the callee address
   1709       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   1710       ARMConstantPoolValue *CPV =
   1711         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
   1712                                       ARMPCLabelIndex, 0);
   1713       // Get the address of the callee into a register
   1714       SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
   1715       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   1716       Callee = DAG.getLoad(getPointerTy(), dl,
   1717                            DAG.getEntryNode(), CPAddr,
   1718                            MachinePointerInfo::getConstantPool(),
   1719                            false, false, false, 0);
   1720     }
   1721   } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
   1722     const GlobalValue *GV = G->getGlobal();
   1723     isDirect = true;
   1724     bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
   1725     bool isStub = (isExt && Subtarget->isTargetMachO()) &&
   1726                    getTargetMachine().getRelocationModel() != Reloc::Static;
   1727     isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
   1728     // ARM call to a local ARM function is predicable.
   1729     isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
   1730     // tBX takes a register source operand.
   1731     if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
   1732       assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?");
   1733       Callee = DAG.getNode(ARMISD::WrapperPIC, dl, getPointerTy(),
   1734                            DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
   1735                                                       0, ARMII::MO_NONLAZY));
   1736       Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
   1737                            MachinePointerInfo::getGOT(), false, false, true, 0);
   1738     } else if (Subtarget->isTargetCOFF()) {
   1739       assert(Subtarget->isTargetWindows() &&
   1740              "Windows is the only supported COFF target");
   1741       unsigned TargetFlags = GV->hasDLLImportStorageClass()
   1742                                  ? ARMII::MO_DLLIMPORT
   1743                                  : ARMII::MO_NO_FLAG;
   1744       Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), /*Offset=*/0,
   1745                                           TargetFlags);
   1746       if (GV->hasDLLImportStorageClass())
   1747         Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
   1748                              DAG.getNode(ARMISD::Wrapper, dl, getPointerTy(),
   1749                                          Callee), MachinePointerInfo::getGOT(),
   1750                              false, false, false, 0);
   1751     } else {
   1752       // On ELF targets for PIC code, direct calls should go through the PLT
   1753       unsigned OpFlags = 0;
   1754       if (Subtarget->isTargetELF() &&
   1755           getTargetMachine().getRelocationModel() == Reloc::PIC_)
   1756         OpFlags = ARMII::MO_PLT;
   1757       Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
   1758     }
   1759   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
   1760     isDirect = true;
   1761     bool isStub = Subtarget->isTargetMachO() &&
   1762                   getTargetMachine().getRelocationModel() != Reloc::Static;
   1763     isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
   1764     // tBX takes a register source operand.
   1765     const char *Sym = S->getSymbol();
   1766     if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
   1767       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   1768       ARMConstantPoolValue *CPV =
   1769         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
   1770                                       ARMPCLabelIndex, 4);
   1771       SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
   1772       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   1773       Callee = DAG.getLoad(getPointerTy(), dl,
   1774                            DAG.getEntryNode(), CPAddr,
   1775                            MachinePointerInfo::getConstantPool(),
   1776                            false, false, false, 0);
   1777       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
   1778       Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
   1779                            getPointerTy(), Callee, PICLabel);
   1780     } else {
   1781       unsigned OpFlags = 0;
   1782       // On ELF targets for PIC code, direct calls should go through the PLT
   1783       if (Subtarget->isTargetELF() &&
   1784                   getTargetMachine().getRelocationModel() == Reloc::PIC_)
   1785         OpFlags = ARMII::MO_PLT;
   1786       Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
   1787     }
   1788   }
   1789 
   1790   // FIXME: handle tail calls differently.
   1791   unsigned CallOpc;
   1792   bool HasMinSizeAttr = MF.getFunction()->hasFnAttribute(Attribute::MinSize);
   1793   if (Subtarget->isThumb()) {
   1794     if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
   1795       CallOpc = ARMISD::CALL_NOLINK;
   1796     else
   1797       CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
   1798   } else {
   1799     if (!isDirect && !Subtarget->hasV5TOps())
   1800       CallOpc = ARMISD::CALL_NOLINK;
   1801     else if (doesNotRet && isDirect && Subtarget->hasRAS() &&
   1802                // Emit regular call when code size is the priority
   1803                !HasMinSizeAttr)
   1804       // "mov lr, pc; b _foo" to avoid confusing the RSP
   1805       CallOpc = ARMISD::CALL_NOLINK;
   1806     else
   1807       CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
   1808   }
   1809 
   1810   std::vector<SDValue> Ops;
   1811   Ops.push_back(Chain);
   1812   Ops.push_back(Callee);
   1813 
   1814   // Add argument registers to the end of the list so that they are known live
   1815   // into the call.
   1816   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
   1817     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
   1818                                   RegsToPass[i].second.getValueType()));
   1819 
   1820   // Add a register mask operand representing the call-preserved registers.
   1821   if (!isTailCall) {
   1822     const uint32_t *Mask;
   1823     const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
   1824     if (isThisReturn) {
   1825       // For 'this' returns, use the R0-preserving mask if applicable
   1826       Mask = ARI->getThisReturnPreservedMask(MF, CallConv);
   1827       if (!Mask) {
   1828         // Set isThisReturn to false if the calling convention is not one that
   1829         // allows 'returned' to be modeled in this way, so LowerCallResult does
   1830         // not try to pass 'this' straight through
   1831         isThisReturn = false;
   1832         Mask = ARI->getCallPreservedMask(MF, CallConv);
   1833       }
   1834     } else
   1835       Mask = ARI->getCallPreservedMask(MF, CallConv);
   1836 
   1837     assert(Mask && "Missing call preserved mask for calling convention");
   1838     Ops.push_back(DAG.getRegisterMask(Mask));
   1839   }
   1840 
   1841   if (InFlag.getNode())
   1842     Ops.push_back(InFlag);
   1843 
   1844   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   1845   if (isTailCall)
   1846     return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops);
   1847 
   1848   // Returns a chain and a flag for retval copy to use.
   1849   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
   1850   InFlag = Chain.getValue(1);
   1851 
   1852   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
   1853                              DAG.getIntPtrConstant(0, true), InFlag, dl);
   1854   if (!Ins.empty())
   1855     InFlag = Chain.getValue(1);
   1856 
   1857   // Handle result values, copying them out of physregs into vregs that we
   1858   // return.
   1859   return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
   1860                          InVals, isThisReturn,
   1861                          isThisReturn ? OutVals[0] : SDValue());
   1862 }
   1863 
   1864 /// HandleByVal - Every parameter *after* a byval parameter is passed
   1865 /// on the stack.  Remember the next parameter register to allocate,
   1866 /// and then confiscate the rest of the parameter registers to insure
   1867 /// this.
   1868 void ARMTargetLowering::HandleByVal(CCState *State, unsigned &Size,
   1869                                     unsigned Align) const {
   1870   assert((State->getCallOrPrologue() == Prologue ||
   1871           State->getCallOrPrologue() == Call) &&
   1872          "unhandled ParmContext");
   1873 
   1874   // Byval (as with any stack) slots are always at least 4 byte aligned.
   1875   Align = std::max(Align, 4U);
   1876 
   1877   unsigned Reg = State->AllocateReg(GPRArgRegs);
   1878   if (!Reg)
   1879     return;
   1880 
   1881   unsigned AlignInRegs = Align / 4;
   1882   unsigned Waste = (ARM::R4 - Reg) % AlignInRegs;
   1883   for (unsigned i = 0; i < Waste; ++i)
   1884     Reg = State->AllocateReg(GPRArgRegs);
   1885 
   1886   if (!Reg)
   1887     return;
   1888 
   1889   unsigned Excess = 4 * (ARM::R4 - Reg);
   1890 
   1891   // Special case when NSAA != SP and parameter size greater than size of
   1892   // all remained GPR regs. In that case we can't split parameter, we must
   1893   // send it to stack. We also must set NCRN to R4, so waste all
   1894   // remained registers.
   1895   const unsigned NSAAOffset = State->getNextStackOffset();
   1896   if (NSAAOffset != 0 && Size > Excess) {
   1897     while (State->AllocateReg(GPRArgRegs))
   1898       ;
   1899     return;
   1900   }
   1901 
   1902   // First register for byval parameter is the first register that wasn't
   1903   // allocated before this method call, so it would be "reg".
   1904   // If parameter is small enough to be saved in range [reg, r4), then
   1905   // the end (first after last) register would be reg + param-size-in-regs,
   1906   // else parameter would be splitted between registers and stack,
   1907   // end register would be r4 in this case.
   1908   unsigned ByValRegBegin = Reg;
   1909   unsigned ByValRegEnd = std::min<unsigned>(Reg + Size / 4, ARM::R4);
   1910   State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
   1911   // Note, first register is allocated in the beginning of function already,
   1912   // allocate remained amount of registers we need.
   1913   for (unsigned i = Reg + 1; i != ByValRegEnd; ++i)
   1914     State->AllocateReg(GPRArgRegs);
   1915   // A byval parameter that is split between registers and memory needs its
   1916   // size truncated here.
   1917   // In the case where the entire structure fits in registers, we set the
   1918   // size in memory to zero.
   1919   Size = std::max<int>(Size - Excess, 0);
   1920 }
   1921 
   1922 
   1923 /// MatchingStackOffset - Return true if the given stack call argument is
   1924 /// already available in the same position (relatively) of the caller's
   1925 /// incoming argument stack.
   1926 static
   1927 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
   1928                          MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
   1929                          const TargetInstrInfo *TII) {
   1930   unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
   1931   int FI = INT_MAX;
   1932   if (Arg.getOpcode() == ISD::CopyFromReg) {
   1933     unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
   1934     if (!TargetRegisterInfo::isVirtualRegister(VR))
   1935       return false;
   1936     MachineInstr *Def = MRI->getVRegDef(VR);
   1937     if (!Def)
   1938       return false;
   1939     if (!Flags.isByVal()) {
   1940       if (!TII->isLoadFromStackSlot(Def, FI))
   1941         return false;
   1942     } else {
   1943       return false;
   1944     }
   1945   } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
   1946     if (Flags.isByVal())
   1947       // ByVal argument is passed in as a pointer but it's now being
   1948       // dereferenced. e.g.
   1949       // define @foo(%struct.X* %A) {
   1950       //   tail call @bar(%struct.X* byval %A)
   1951       // }
   1952       return false;
   1953     SDValue Ptr = Ld->getBasePtr();
   1954     FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
   1955     if (!FINode)
   1956       return false;
   1957     FI = FINode->getIndex();
   1958   } else
   1959     return false;
   1960 
   1961   assert(FI != INT_MAX);
   1962   if (!MFI->isFixedObjectIndex(FI))
   1963     return false;
   1964   return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
   1965 }
   1966 
   1967 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
   1968 /// for tail call optimization. Targets which want to do tail call
   1969 /// optimization should implement this function.
   1970 bool
   1971 ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
   1972                                                      CallingConv::ID CalleeCC,
   1973                                                      bool isVarArg,
   1974                                                      bool isCalleeStructRet,
   1975                                                      bool isCallerStructRet,
   1976                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
   1977                                     const SmallVectorImpl<SDValue> &OutVals,
   1978                                     const SmallVectorImpl<ISD::InputArg> &Ins,
   1979                                                      SelectionDAG& DAG) const {
   1980   const Function *CallerF = DAG.getMachineFunction().getFunction();
   1981   CallingConv::ID CallerCC = CallerF->getCallingConv();
   1982   bool CCMatch = CallerCC == CalleeCC;
   1983 
   1984   // Look for obvious safe cases to perform tail call optimization that do not
   1985   // require ABI changes. This is what gcc calls sibcall.
   1986 
   1987   // Do not sibcall optimize vararg calls unless the call site is not passing
   1988   // any arguments.
   1989   if (isVarArg && !Outs.empty())
   1990     return false;
   1991 
   1992   // Exception-handling functions need a special set of instructions to indicate
   1993   // a return to the hardware. Tail-calling another function would probably
   1994   // break this.
   1995   if (CallerF->hasFnAttribute("interrupt"))
   1996     return false;
   1997 
   1998   // Also avoid sibcall optimization if either caller or callee uses struct
   1999   // return semantics.
   2000   if (isCalleeStructRet || isCallerStructRet)
   2001     return false;
   2002 
   2003   // FIXME: Completely disable sibcall for Thumb1 since ThumbRegisterInfo::
   2004   // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
   2005   // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
   2006   // support in the assembler and linker to be used. This would need to be
   2007   // fixed to fully support tail calls in Thumb1.
   2008   //
   2009   // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
   2010   // LR.  This means if we need to reload LR, it takes an extra instructions,
   2011   // which outweighs the value of the tail call; but here we don't know yet
   2012   // whether LR is going to be used.  Probably the right approach is to
   2013   // generate the tail call here and turn it back into CALL/RET in
   2014   // emitEpilogue if LR is used.
   2015 
   2016   // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
   2017   // but we need to make sure there are enough registers; the only valid
   2018   // registers are the 4 used for parameters.  We don't currently do this
   2019   // case.
   2020   if (Subtarget->isThumb1Only())
   2021     return false;
   2022 
   2023   // Externally-defined functions with weak linkage should not be
   2024   // tail-called on ARM when the OS does not support dynamic
   2025   // pre-emption of symbols, as the AAELF spec requires normal calls
   2026   // to undefined weak functions to be replaced with a NOP or jump to the
   2027   // next instruction. The behaviour of branch instructions in this
   2028   // situation (as used for tail calls) is implementation-defined, so we
   2029   // cannot rely on the linker replacing the tail call with a return.
   2030   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
   2031     const GlobalValue *GV = G->getGlobal();
   2032     const Triple TT(getTargetMachine().getTargetTriple());
   2033     if (GV->hasExternalWeakLinkage() &&
   2034         (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
   2035       return false;
   2036   }
   2037 
   2038   // If the calling conventions do not match, then we'd better make sure the
   2039   // results are returned in the same way as what the caller expects.
   2040   if (!CCMatch) {
   2041     SmallVector<CCValAssign, 16> RVLocs1;
   2042     ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), RVLocs1,
   2043                        *DAG.getContext(), Call);
   2044     CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
   2045 
   2046     SmallVector<CCValAssign, 16> RVLocs2;
   2047     ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), RVLocs2,
   2048                        *DAG.getContext(), Call);
   2049     CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
   2050 
   2051     if (RVLocs1.size() != RVLocs2.size())
   2052       return false;
   2053     for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
   2054       if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
   2055         return false;
   2056       if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
   2057         return false;
   2058       if (RVLocs1[i].isRegLoc()) {
   2059         if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
   2060           return false;
   2061       } else {
   2062         if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
   2063           return false;
   2064       }
   2065     }
   2066   }
   2067 
   2068   // If Caller's vararg or byval argument has been split between registers and
   2069   // stack, do not perform tail call, since part of the argument is in caller's
   2070   // local frame.
   2071   const ARMFunctionInfo *AFI_Caller = DAG.getMachineFunction().
   2072                                       getInfo<ARMFunctionInfo>();
   2073   if (AFI_Caller->getArgRegsSaveSize())
   2074     return false;
   2075 
   2076   // If the callee takes no arguments then go on to check the results of the
   2077   // call.
   2078   if (!Outs.empty()) {
   2079     // Check if stack adjustment is needed. For now, do not do this if any
   2080     // argument is passed on the stack.
   2081     SmallVector<CCValAssign, 16> ArgLocs;
   2082     ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
   2083                       *DAG.getContext(), Call);
   2084     CCInfo.AnalyzeCallOperands(Outs,
   2085                                CCAssignFnForNode(CalleeCC, false, isVarArg));
   2086     if (CCInfo.getNextStackOffset()) {
   2087       MachineFunction &MF = DAG.getMachineFunction();
   2088 
   2089       // Check if the arguments are already laid out in the right way as
   2090       // the caller's fixed stack objects.
   2091       MachineFrameInfo *MFI = MF.getFrameInfo();
   2092       const MachineRegisterInfo *MRI = &MF.getRegInfo();
   2093       const TargetInstrInfo *TII = Subtarget->getInstrInfo();
   2094       for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
   2095            i != e;
   2096            ++i, ++realArgIdx) {
   2097         CCValAssign &VA = ArgLocs[i];
   2098         EVT RegVT = VA.getLocVT();
   2099         SDValue Arg = OutVals[realArgIdx];
   2100         ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
   2101         if (VA.getLocInfo() == CCValAssign::Indirect)
   2102           return false;
   2103         if (VA.needsCustom()) {
   2104           // f64 and vector types are split into multiple registers or
   2105           // register/stack-slot combinations.  The types will not match
   2106           // the registers; give up on memory f64 refs until we figure
   2107           // out what to do about this.
   2108           if (!VA.isRegLoc())
   2109             return false;
   2110           if (!ArgLocs[++i].isRegLoc())
   2111             return false;
   2112           if (RegVT == MVT::v2f64) {
   2113             if (!ArgLocs[++i].isRegLoc())
   2114               return false;
   2115             if (!ArgLocs[++i].isRegLoc())
   2116               return false;
   2117           }
   2118         } else if (!VA.isRegLoc()) {
   2119           if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
   2120                                    MFI, MRI, TII))
   2121             return false;
   2122         }
   2123       }
   2124     }
   2125   }
   2126 
   2127   return true;
   2128 }
   2129 
   2130 bool
   2131 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
   2132                                   MachineFunction &MF, bool isVarArg,
   2133                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
   2134                                   LLVMContext &Context) const {
   2135   SmallVector<CCValAssign, 16> RVLocs;
   2136   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
   2137   return CCInfo.CheckReturn(Outs, CCAssignFnForNode(CallConv, /*Return=*/true,
   2138                                                     isVarArg));
   2139 }
   2140 
   2141 static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
   2142                                     SDLoc DL, SelectionDAG &DAG) {
   2143   const MachineFunction &MF = DAG.getMachineFunction();
   2144   const Function *F = MF.getFunction();
   2145 
   2146   StringRef IntKind = F->getFnAttribute("interrupt").getValueAsString();
   2147 
   2148   // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
   2149   // version of the "preferred return address". These offsets affect the return
   2150   // instruction if this is a return from PL1 without hypervisor extensions.
   2151   //    IRQ/FIQ: +4     "subs pc, lr, #4"
   2152   //    SWI:     0      "subs pc, lr, #0"
   2153   //    ABORT:   +4     "subs pc, lr, #4"
   2154   //    UNDEF:   +4/+2  "subs pc, lr, #0"
   2155   // UNDEF varies depending on where the exception came from ARM or Thumb
   2156   // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
   2157 
   2158   int64_t LROffset;
   2159   if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" ||
   2160       IntKind == "ABORT")
   2161     LROffset = 4;
   2162   else if (IntKind == "SWI" || IntKind == "UNDEF")
   2163     LROffset = 0;
   2164   else
   2165     report_fatal_error("Unsupported interrupt attribute. If present, value "
   2166                        "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
   2167 
   2168   RetOps.insert(RetOps.begin() + 1, DAG.getConstant(LROffset, MVT::i32, false));
   2169 
   2170   return DAG.getNode(ARMISD::INTRET_FLAG, DL, MVT::Other, RetOps);
   2171 }
   2172 
   2173 SDValue
   2174 ARMTargetLowering::LowerReturn(SDValue Chain,
   2175                                CallingConv::ID CallConv, bool isVarArg,
   2176                                const SmallVectorImpl<ISD::OutputArg> &Outs,
   2177                                const SmallVectorImpl<SDValue> &OutVals,
   2178                                SDLoc dl, SelectionDAG &DAG) const {
   2179 
   2180   // CCValAssign - represent the assignment of the return value to a location.
   2181   SmallVector<CCValAssign, 16> RVLocs;
   2182 
   2183   // CCState - Info about the registers and stack slots.
   2184   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
   2185                     *DAG.getContext(), Call);
   2186 
   2187   // Analyze outgoing return values.
   2188   CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
   2189                                                isVarArg));
   2190 
   2191   SDValue Flag;
   2192   SmallVector<SDValue, 4> RetOps;
   2193   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
   2194   bool isLittleEndian = Subtarget->isLittle();
   2195 
   2196   MachineFunction &MF = DAG.getMachineFunction();
   2197   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2198   AFI->setReturnRegsCount(RVLocs.size());
   2199 
   2200   // Copy the result values into the output registers.
   2201   for (unsigned i = 0, realRVLocIdx = 0;
   2202        i != RVLocs.size();
   2203        ++i, ++realRVLocIdx) {
   2204     CCValAssign &VA = RVLocs[i];
   2205     assert(VA.isRegLoc() && "Can only return in registers!");
   2206 
   2207     SDValue Arg = OutVals[realRVLocIdx];
   2208 
   2209     switch (VA.getLocInfo()) {
   2210     default: llvm_unreachable("Unknown loc info!");
   2211     case CCValAssign::Full: break;
   2212     case CCValAssign::BCvt:
   2213       Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
   2214       break;
   2215     }
   2216 
   2217     if (VA.needsCustom()) {
   2218       if (VA.getLocVT() == MVT::v2f64) {
   2219         // Extract the first half and return it in two registers.
   2220         SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
   2221                                    DAG.getConstant(0, MVT::i32));
   2222         SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
   2223                                        DAG.getVTList(MVT::i32, MVT::i32), Half);
   2224 
   2225         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
   2226                                  HalfGPRs.getValue(isLittleEndian ? 0 : 1),
   2227                                  Flag);
   2228         Flag = Chain.getValue(1);
   2229         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
   2230         VA = RVLocs[++i]; // skip ahead to next loc
   2231         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
   2232                                  HalfGPRs.getValue(isLittleEndian ? 1 : 0),
   2233                                  Flag);
   2234         Flag = Chain.getValue(1);
   2235         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
   2236         VA = RVLocs[++i]; // skip ahead to next loc
   2237 
   2238         // Extract the 2nd half and fall through to handle it as an f64 value.
   2239         Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
   2240                           DAG.getConstant(1, MVT::i32));
   2241       }
   2242       // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
   2243       // available.
   2244       SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
   2245                                   DAG.getVTList(MVT::i32, MVT::i32), Arg);
   2246       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
   2247                                fmrrd.getValue(isLittleEndian ? 0 : 1),
   2248                                Flag);
   2249       Flag = Chain.getValue(1);
   2250       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
   2251       VA = RVLocs[++i]; // skip ahead to next loc
   2252       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
   2253                                fmrrd.getValue(isLittleEndian ? 1 : 0),
   2254                                Flag);
   2255     } else
   2256       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
   2257 
   2258     // Guarantee that all emitted copies are
   2259     // stuck together, avoiding something bad.
   2260     Flag = Chain.getValue(1);
   2261     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
   2262   }
   2263 
   2264   // Update chain and glue.
   2265   RetOps[0] = Chain;
   2266   if (Flag.getNode())
   2267     RetOps.push_back(Flag);
   2268 
   2269   // CPUs which aren't M-class use a special sequence to return from
   2270   // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
   2271   // though we use "subs pc, lr, #N").
   2272   //
   2273   // M-class CPUs actually use a normal return sequence with a special
   2274   // (hardware-provided) value in LR, so the normal code path works.
   2275   if (DAG.getMachineFunction().getFunction()->hasFnAttribute("interrupt") &&
   2276       !Subtarget->isMClass()) {
   2277     if (Subtarget->isThumb1Only())
   2278       report_fatal_error("interrupt attribute is not supported in Thumb1");
   2279     return LowerInterruptReturn(RetOps, dl, DAG);
   2280   }
   2281 
   2282   return DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, RetOps);
   2283 }
   2284 
   2285 bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
   2286   if (N->getNumValues() != 1)
   2287     return false;
   2288   if (!N->hasNUsesOfValue(1, 0))
   2289     return false;
   2290 
   2291   SDValue TCChain = Chain;
   2292   SDNode *Copy = *N->use_begin();
   2293   if (Copy->getOpcode() == ISD::CopyToReg) {
   2294     // If the copy has a glue operand, we conservatively assume it isn't safe to
   2295     // perform a tail call.
   2296     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
   2297       return false;
   2298     TCChain = Copy->getOperand(0);
   2299   } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
   2300     SDNode *VMov = Copy;
   2301     // f64 returned in a pair of GPRs.
   2302     SmallPtrSet<SDNode*, 2> Copies;
   2303     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
   2304          UI != UE; ++UI) {
   2305       if (UI->getOpcode() != ISD::CopyToReg)
   2306         return false;
   2307       Copies.insert(*UI);
   2308     }
   2309     if (Copies.size() > 2)
   2310       return false;
   2311 
   2312     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
   2313          UI != UE; ++UI) {
   2314       SDValue UseChain = UI->getOperand(0);
   2315       if (Copies.count(UseChain.getNode()))
   2316         // Second CopyToReg
   2317         Copy = *UI;
   2318       else {
   2319         // We are at the top of this chain.
   2320         // If the copy has a glue operand, we conservatively assume it
   2321         // isn't safe to perform a tail call.
   2322         if (UI->getOperand(UI->getNumOperands()-1).getValueType() == MVT::Glue)
   2323           return false;
   2324         // First CopyToReg
   2325         TCChain = UseChain;
   2326       }
   2327     }
   2328   } else if (Copy->getOpcode() == ISD::BITCAST) {
   2329     // f32 returned in a single GPR.
   2330     if (!Copy->hasOneUse())
   2331       return false;
   2332     Copy = *Copy->use_begin();
   2333     if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
   2334       return false;
   2335     // If the copy has a glue operand, we conservatively assume it isn't safe to
   2336     // perform a tail call.
   2337     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
   2338       return false;
   2339     TCChain = Copy->getOperand(0);
   2340   } else {
   2341     return false;
   2342   }
   2343 
   2344   bool HasRet = false;
   2345   for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
   2346        UI != UE; ++UI) {
   2347     if (UI->getOpcode() != ARMISD::RET_FLAG &&
   2348         UI->getOpcode() != ARMISD::INTRET_FLAG)
   2349       return false;
   2350     HasRet = true;
   2351   }
   2352 
   2353   if (!HasRet)
   2354     return false;
   2355 
   2356   Chain = TCChain;
   2357   return true;
   2358 }
   2359 
   2360 bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
   2361   if (!Subtarget->supportsTailCall())
   2362     return false;
   2363 
   2364   if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
   2365     return false;
   2366 
   2367   return !Subtarget->isThumb1Only();
   2368 }
   2369 
   2370 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
   2371 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
   2372 // one of the above mentioned nodes. It has to be wrapped because otherwise
   2373 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
   2374 // be used to form addressing mode. These wrapped nodes will be selected
   2375 // into MOVi.
   2376 static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
   2377   EVT PtrVT = Op.getValueType();
   2378   // FIXME there is no actual debug info here
   2379   SDLoc dl(Op);
   2380   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
   2381   SDValue Res;
   2382   if (CP->isMachineConstantPoolEntry())
   2383     Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
   2384                                     CP->getAlignment());
   2385   else
   2386     Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
   2387                                     CP->getAlignment());
   2388   return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
   2389 }
   2390 
   2391 unsigned ARMTargetLowering::getJumpTableEncoding() const {
   2392   return MachineJumpTableInfo::EK_Inline;
   2393 }
   2394 
   2395 SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
   2396                                              SelectionDAG &DAG) const {
   2397   MachineFunction &MF = DAG.getMachineFunction();
   2398   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2399   unsigned ARMPCLabelIndex = 0;
   2400   SDLoc DL(Op);
   2401   EVT PtrVT = getPointerTy();
   2402   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
   2403   Reloc::Model RelocM = getTargetMachine().getRelocationModel();
   2404   SDValue CPAddr;
   2405   if (RelocM == Reloc::Static) {
   2406     CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
   2407   } else {
   2408     unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
   2409     ARMPCLabelIndex = AFI->createPICLabelUId();
   2410     ARMConstantPoolValue *CPV =
   2411       ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
   2412                                       ARMCP::CPBlockAddress, PCAdj);
   2413     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2414   }
   2415   CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
   2416   SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
   2417                                MachinePointerInfo::getConstantPool(),
   2418                                false, false, false, 0);
   2419   if (RelocM == Reloc::Static)
   2420     return Result;
   2421   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
   2422   return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
   2423 }
   2424 
   2425 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
   2426 SDValue
   2427 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
   2428                                                  SelectionDAG &DAG) const {
   2429   SDLoc dl(GA);
   2430   EVT PtrVT = getPointerTy();
   2431   unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
   2432   MachineFunction &MF = DAG.getMachineFunction();
   2433   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2434   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   2435   ARMConstantPoolValue *CPV =
   2436     ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
   2437                                     ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
   2438   SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2439   Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
   2440   Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
   2441                          MachinePointerInfo::getConstantPool(),
   2442                          false, false, false, 0);
   2443   SDValue Chain = Argument.getValue(1);
   2444 
   2445   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
   2446   Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
   2447 
   2448   // call __tls_get_addr.
   2449   ArgListTy Args;
   2450   ArgListEntry Entry;
   2451   Entry.Node = Argument;
   2452   Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
   2453   Args.push_back(Entry);
   2454 
   2455   // FIXME: is there useful debug info available here?
   2456   TargetLowering::CallLoweringInfo CLI(DAG);
   2457   CLI.setDebugLoc(dl).setChain(Chain)
   2458     .setCallee(CallingConv::C, Type::getInt32Ty(*DAG.getContext()),
   2459                DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args),
   2460                0);
   2461 
   2462   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
   2463   return CallResult.first;
   2464 }
   2465 
   2466 // Lower ISD::GlobalTLSAddress using the "initial exec" or
   2467 // "local exec" model.
   2468 SDValue
   2469 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
   2470                                         SelectionDAG &DAG,
   2471                                         TLSModel::Model model) const {
   2472   const GlobalValue *GV = GA->getGlobal();
   2473   SDLoc dl(GA);
   2474   SDValue Offset;
   2475   SDValue Chain = DAG.getEntryNode();
   2476   EVT PtrVT = getPointerTy();
   2477   // Get the Thread Pointer
   2478   SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
   2479 
   2480   if (model == TLSModel::InitialExec) {
   2481     MachineFunction &MF = DAG.getMachineFunction();
   2482     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2483     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   2484     // Initial exec model.
   2485     unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
   2486     ARMConstantPoolValue *CPV =
   2487       ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
   2488                                       ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
   2489                                       true);
   2490     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2491     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
   2492     Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
   2493                          MachinePointerInfo::getConstantPool(),
   2494                          false, false, false, 0);
   2495     Chain = Offset.getValue(1);
   2496 
   2497     SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
   2498     Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
   2499 
   2500     Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
   2501                          MachinePointerInfo::getConstantPool(),
   2502                          false, false, false, 0);
   2503   } else {
   2504     // local exec model
   2505     assert(model == TLSModel::LocalExec);
   2506     ARMConstantPoolValue *CPV =
   2507       ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
   2508     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2509     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
   2510     Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
   2511                          MachinePointerInfo::getConstantPool(),
   2512                          false, false, false, 0);
   2513   }
   2514 
   2515   // The address of the thread local variable is the add of the thread
   2516   // pointer with the offset of the variable.
   2517   return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
   2518 }
   2519 
   2520 SDValue
   2521 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
   2522   // TODO: implement the "local dynamic" model
   2523   assert(Subtarget->isTargetELF() &&
   2524          "TLS not implemented for non-ELF targets");
   2525   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
   2526 
   2527   TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
   2528 
   2529   switch (model) {
   2530     case TLSModel::GeneralDynamic:
   2531     case TLSModel::LocalDynamic:
   2532       return LowerToTLSGeneralDynamicModel(GA, DAG);
   2533     case TLSModel::InitialExec:
   2534     case TLSModel::LocalExec:
   2535       return LowerToTLSExecModels(GA, DAG, model);
   2536   }
   2537   llvm_unreachable("bogus TLS model");
   2538 }
   2539 
   2540 SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
   2541                                                  SelectionDAG &DAG) const {
   2542   EVT PtrVT = getPointerTy();
   2543   SDLoc dl(Op);
   2544   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
   2545   if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
   2546     bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
   2547     ARMConstantPoolValue *CPV =
   2548       ARMConstantPoolConstant::Create(GV,
   2549                                       UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
   2550     SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2551     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   2552     SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
   2553                                  CPAddr,
   2554                                  MachinePointerInfo::getConstantPool(),
   2555                                  false, false, false, 0);
   2556     SDValue Chain = Result.getValue(1);
   2557     SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
   2558     Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
   2559     if (!UseGOTOFF)
   2560       Result = DAG.getLoad(PtrVT, dl, Chain, Result,
   2561                            MachinePointerInfo::getGOT(),
   2562                            false, false, false, 0);
   2563     return Result;
   2564   }
   2565 
   2566   // If we have T2 ops, we can materialize the address directly via movt/movw
   2567   // pair. This is always cheaper.
   2568   if (Subtarget->useMovt(DAG.getMachineFunction())) {
   2569     ++NumMovwMovt;
   2570     // FIXME: Once remat is capable of dealing with instructions with register
   2571     // operands, expand this into two nodes.
   2572     return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
   2573                        DAG.getTargetGlobalAddress(GV, dl, PtrVT));
   2574   } else {
   2575     SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
   2576     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   2577     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
   2578                        MachinePointerInfo::getConstantPool(),
   2579                        false, false, false, 0);
   2580   }
   2581 }
   2582 
   2583 SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
   2584                                                     SelectionDAG &DAG) const {
   2585   EVT PtrVT = getPointerTy();
   2586   SDLoc dl(Op);
   2587   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
   2588   Reloc::Model RelocM = getTargetMachine().getRelocationModel();
   2589 
   2590   if (Subtarget->useMovt(DAG.getMachineFunction()))
   2591     ++NumMovwMovt;
   2592 
   2593   // FIXME: Once remat is capable of dealing with instructions with register
   2594   // operands, expand this into multiple nodes
   2595   unsigned Wrapper =
   2596       RelocM == Reloc::PIC_ ? ARMISD::WrapperPIC : ARMISD::Wrapper;
   2597 
   2598   SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY);
   2599   SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G);
   2600 
   2601   if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
   2602     Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
   2603                          MachinePointerInfo::getGOT(), false, false, false, 0);
   2604   return Result;
   2605 }
   2606 
   2607 SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op,
   2608                                                      SelectionDAG &DAG) const {
   2609   assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported");
   2610   assert(Subtarget->useMovt(DAG.getMachineFunction()) &&
   2611          "Windows on ARM expects to use movw/movt");
   2612 
   2613   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
   2614   const ARMII::TOF TargetFlags =
   2615     (GV->hasDLLImportStorageClass() ? ARMII::MO_DLLIMPORT : ARMII::MO_NO_FLAG);
   2616   EVT PtrVT = getPointerTy();
   2617   SDValue Result;
   2618   SDLoc DL(Op);
   2619 
   2620   ++NumMovwMovt;
   2621 
   2622   // FIXME: Once remat is capable of dealing with instructions with register
   2623   // operands, expand this into two nodes.
   2624   Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT,
   2625                        DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*Offset=*/0,
   2626                                                   TargetFlags));
   2627   if (GV->hasDLLImportStorageClass())
   2628     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
   2629                          MachinePointerInfo::getGOT(), false, false, false, 0);
   2630   return Result;
   2631 }
   2632 
   2633 SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
   2634                                                     SelectionDAG &DAG) const {
   2635   assert(Subtarget->isTargetELF() &&
   2636          "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
   2637   MachineFunction &MF = DAG.getMachineFunction();
   2638   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2639   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   2640   EVT PtrVT = getPointerTy();
   2641   SDLoc dl(Op);
   2642   unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
   2643   ARMConstantPoolValue *CPV =
   2644     ARMConstantPoolSymbol::Create(*DAG.getContext(), "_GLOBAL_OFFSET_TABLE_",
   2645                                   ARMPCLabelIndex, PCAdj);
   2646   SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2647   CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   2648   SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
   2649                                MachinePointerInfo::getConstantPool(),
   2650                                false, false, false, 0);
   2651   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
   2652   return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
   2653 }
   2654 
   2655 SDValue
   2656 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
   2657   SDLoc dl(Op);
   2658   SDValue Val = DAG.getConstant(0, MVT::i32);
   2659   return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
   2660                      DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
   2661                      Op.getOperand(1), Val);
   2662 }
   2663 
   2664 SDValue
   2665 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
   2666   SDLoc dl(Op);
   2667   return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
   2668                      Op.getOperand(1), DAG.getConstant(0, MVT::i32));
   2669 }
   2670 
   2671 SDValue
   2672 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
   2673                                           const ARMSubtarget *Subtarget) const {
   2674   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   2675   SDLoc dl(Op);
   2676   switch (IntNo) {
   2677   default: return SDValue();    // Don't custom lower most intrinsics.
   2678   case Intrinsic::arm_rbit: {
   2679     assert(Op.getOperand(1).getValueType() == MVT::i32 &&
   2680            "RBIT intrinsic must have i32 type!");
   2681     return DAG.getNode(ARMISD::RBIT, dl, MVT::i32, Op.getOperand(1));
   2682   }
   2683   case Intrinsic::arm_thread_pointer: {
   2684     EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   2685     return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
   2686   }
   2687   case Intrinsic::eh_sjlj_lsda: {
   2688     MachineFunction &MF = DAG.getMachineFunction();
   2689     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2690     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   2691     EVT PtrVT = getPointerTy();
   2692     Reloc::Model RelocM = getTargetMachine().getRelocationModel();
   2693     SDValue CPAddr;
   2694     unsigned PCAdj = (RelocM != Reloc::PIC_)
   2695       ? 0 : (Subtarget->isThumb() ? 4 : 8);
   2696     ARMConstantPoolValue *CPV =
   2697       ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex,
   2698                                       ARMCP::CPLSDA, PCAdj);
   2699     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2700     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   2701     SDValue Result =
   2702       DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
   2703                   MachinePointerInfo::getConstantPool(),
   2704                   false, false, false, 0);
   2705 
   2706     if (RelocM == Reloc::PIC_) {
   2707       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
   2708       Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
   2709     }
   2710     return Result;
   2711   }
   2712   case Intrinsic::arm_neon_vmulls:
   2713   case Intrinsic::arm_neon_vmullu: {
   2714     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
   2715       ? ARMISD::VMULLs : ARMISD::VMULLu;
   2716     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
   2717                        Op.getOperand(1), Op.getOperand(2));
   2718   }
   2719   }
   2720 }
   2721 
   2722 static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
   2723                                  const ARMSubtarget *Subtarget) {
   2724   // FIXME: handle "fence singlethread" more efficiently.
   2725   SDLoc dl(Op);
   2726   if (!Subtarget->hasDataBarrier()) {
   2727     // Some ARMv6 cpus can support data barriers with an mcr instruction.
   2728     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
   2729     // here.
   2730     assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
   2731            "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
   2732     return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
   2733                        DAG.getConstant(0, MVT::i32));
   2734   }
   2735 
   2736   ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1));
   2737   AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue());
   2738   ARM_MB::MemBOpt Domain = ARM_MB::ISH;
   2739   if (Subtarget->isMClass()) {
   2740     // Only a full system barrier exists in the M-class architectures.
   2741     Domain = ARM_MB::SY;
   2742   } else if (Subtarget->isSwift() && Ord == Release) {
   2743     // Swift happens to implement ISHST barriers in a way that's compatible with
   2744     // Release semantics but weaker than ISH so we'd be fools not to use
   2745     // it. Beware: other processors probably don't!
   2746     Domain = ARM_MB::ISHST;
   2747   }
   2748 
   2749   return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0),
   2750                      DAG.getConstant(Intrinsic::arm_dmb, MVT::i32),
   2751                      DAG.getConstant(Domain, MVT::i32));
   2752 }
   2753 
   2754 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
   2755                              const ARMSubtarget *Subtarget) {
   2756   // ARM pre v5TE and Thumb1 does not have preload instructions.
   2757   if (!(Subtarget->isThumb2() ||
   2758         (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
   2759     // Just preserve the chain.
   2760     return Op.getOperand(0);
   2761 
   2762   SDLoc dl(Op);
   2763   unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
   2764   if (!isRead &&
   2765       (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
   2766     // ARMv7 with MP extension has PLDW.
   2767     return Op.getOperand(0);
   2768 
   2769   unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
   2770   if (Subtarget->isThumb()) {
   2771     // Invert the bits.
   2772     isRead = ~isRead & 1;
   2773     isData = ~isData & 1;
   2774   }
   2775 
   2776   return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
   2777                      Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
   2778                      DAG.getConstant(isData, MVT::i32));
   2779 }
   2780 
   2781 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
   2782   MachineFunction &MF = DAG.getMachineFunction();
   2783   ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
   2784 
   2785   // vastart just stores the address of the VarArgsFrameIndex slot into the
   2786   // memory location argument.
   2787   SDLoc dl(Op);
   2788   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
   2789   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   2790   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   2791   return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
   2792                       MachinePointerInfo(SV), false, false, 0);
   2793 }
   2794 
   2795 SDValue
   2796 ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
   2797                                         SDValue &Root, SelectionDAG &DAG,
   2798                                         SDLoc dl) const {
   2799   MachineFunction &MF = DAG.getMachineFunction();
   2800   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2801 
   2802   const TargetRegisterClass *RC;
   2803   if (AFI->isThumb1OnlyFunction())
   2804     RC = &ARM::tGPRRegClass;
   2805   else
   2806     RC = &ARM::GPRRegClass;
   2807 
   2808   // Transform the arguments stored in physical registers into virtual ones.
   2809   unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
   2810   SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
   2811 
   2812   SDValue ArgValue2;
   2813   if (NextVA.isMemLoc()) {
   2814     MachineFrameInfo *MFI = MF.getFrameInfo();
   2815     int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
   2816 
   2817     // Create load node to retrieve arguments from the stack.
   2818     SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
   2819     ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
   2820                             MachinePointerInfo::getFixedStack(FI),
   2821                             false, false, false, 0);
   2822   } else {
   2823     Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
   2824     ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
   2825   }
   2826   if (!Subtarget->isLittle())
   2827     std::swap (ArgValue, ArgValue2);
   2828   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
   2829 }
   2830 
   2831 // The remaining GPRs hold either the beginning of variable-argument
   2832 // data, or the beginning of an aggregate passed by value (usually
   2833 // byval).  Either way, we allocate stack slots adjacent to the data
   2834 // provided by our caller, and store the unallocated registers there.
   2835 // If this is a variadic function, the va_list pointer will begin with
   2836 // these values; otherwise, this reassembles a (byval) structure that
   2837 // was split between registers and memory.
   2838 // Return: The frame index registers were stored into.
   2839 int
   2840 ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
   2841                                   SDLoc dl, SDValue &Chain,
   2842                                   const Value *OrigArg,
   2843                                   unsigned InRegsParamRecordIdx,
   2844                                   int ArgOffset,
   2845                                   unsigned ArgSize) const {
   2846   // Currently, two use-cases possible:
   2847   // Case #1. Non-var-args function, and we meet first byval parameter.
   2848   //          Setup first unallocated register as first byval register;
   2849   //          eat all remained registers
   2850   //          (these two actions are performed by HandleByVal method).
   2851   //          Then, here, we initialize stack frame with
   2852   //          "store-reg" instructions.
   2853   // Case #2. Var-args function, that doesn't contain byval parameters.
   2854   //          The same: eat all remained unallocated registers,
   2855   //          initialize stack frame.
   2856 
   2857   MachineFunction &MF = DAG.getMachineFunction();
   2858   MachineFrameInfo *MFI = MF.getFrameInfo();
   2859   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2860   unsigned RBegin, REnd;
   2861   if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
   2862     CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
   2863   } else {
   2864     unsigned RBeginIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
   2865     RBegin = RBeginIdx == 4 ? (unsigned)ARM::R4 : GPRArgRegs[RBeginIdx];
   2866     REnd = ARM::R4;
   2867   }
   2868 
   2869   if (REnd != RBegin)
   2870     ArgOffset = -4 * (ARM::R4 - RBegin);
   2871 
   2872   int FrameIndex = MFI->CreateFixedObject(ArgSize, ArgOffset, false);
   2873   SDValue FIN = DAG.getFrameIndex(FrameIndex, getPointerTy());
   2874 
   2875   SmallVector<SDValue, 4> MemOps;
   2876   const TargetRegisterClass *RC =
   2877       AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
   2878 
   2879   for (unsigned Reg = RBegin, i = 0; Reg < REnd; ++Reg, ++i) {
   2880     unsigned VReg = MF.addLiveIn(Reg, RC);
   2881     SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
   2882     SDValue Store =
   2883         DAG.getStore(Val.getValue(1), dl, Val, FIN,
   2884                      MachinePointerInfo(OrigArg, 4 * i), false, false, 0);
   2885     MemOps.push_back(Store);
   2886     FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
   2887                       DAG.getConstant(4, getPointerTy()));
   2888   }
   2889 
   2890   if (!MemOps.empty())
   2891     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
   2892   return FrameIndex;
   2893 }
   2894 
   2895 // Setup stack frame, the va_list pointer will start from.
   2896 void
   2897 ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
   2898                                         SDLoc dl, SDValue &Chain,
   2899                                         unsigned ArgOffset,
   2900                                         unsigned TotalArgRegsSaveSize,
   2901                                         bool ForceMutable) const {
   2902   MachineFunction &MF = DAG.getMachineFunction();
   2903   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2904 
   2905   // Try to store any remaining integer argument regs
   2906   // to their spots on the stack so that they may be loaded by deferencing
   2907   // the result of va_next.
   2908   // If there is no regs to be stored, just point address after last
   2909   // argument passed via stack.
   2910   int FrameIndex = StoreByValRegs(CCInfo, DAG, dl, Chain, nullptr,
   2911                                   CCInfo.getInRegsParamsCount(),
   2912                                   CCInfo.getNextStackOffset(), 4);
   2913   AFI->setVarArgsFrameIndex(FrameIndex);
   2914 }
   2915 
   2916 SDValue
   2917 ARMTargetLowering::LowerFormalArguments(SDValue Chain,
   2918                                         CallingConv::ID CallConv, bool isVarArg,
   2919                                         const SmallVectorImpl<ISD::InputArg>
   2920                                           &Ins,
   2921                                         SDLoc dl, SelectionDAG &DAG,
   2922                                         SmallVectorImpl<SDValue> &InVals)
   2923                                           const {
   2924   MachineFunction &MF = DAG.getMachineFunction();
   2925   MachineFrameInfo *MFI = MF.getFrameInfo();
   2926 
   2927   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2928 
   2929   // Assign locations to all of the incoming arguments.
   2930   SmallVector<CCValAssign, 16> ArgLocs;
   2931   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
   2932                     *DAG.getContext(), Prologue);
   2933   CCInfo.AnalyzeFormalArguments(Ins,
   2934                                 CCAssignFnForNode(CallConv, /* Return*/ false,
   2935                                                   isVarArg));
   2936 
   2937   SmallVector<SDValue, 16> ArgValues;
   2938   SDValue ArgValue;
   2939   Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
   2940   unsigned CurArgIdx = 0;
   2941 
   2942   // Initially ArgRegsSaveSize is zero.
   2943   // Then we increase this value each time we meet byval parameter.
   2944   // We also increase this value in case of varargs function.
   2945   AFI->setArgRegsSaveSize(0);
   2946 
   2947   // Calculate the amount of stack space that we need to allocate to store
   2948   // byval and variadic arguments that are passed in registers.
   2949   // We need to know this before we allocate the first byval or variadic
   2950   // argument, as they will be allocated a stack slot below the CFA (Canonical
   2951   // Frame Address, the stack pointer at entry to the function).
   2952   unsigned ArgRegBegin = ARM::R4;
   2953   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   2954     if (CCInfo.getInRegsParamsProcessed() >= CCInfo.getInRegsParamsCount())
   2955       break;
   2956 
   2957     CCValAssign &VA = ArgLocs[i];
   2958     unsigned Index = VA.getValNo();
   2959     ISD::ArgFlagsTy Flags = Ins[Index].Flags;
   2960     if (!Flags.isByVal())
   2961       continue;
   2962 
   2963     assert(VA.isMemLoc() && "unexpected byval pointer in reg");
   2964     unsigned RBegin, REnd;
   2965     CCInfo.getInRegsParamInfo(CCInfo.getInRegsParamsProcessed(), RBegin, REnd);
   2966     ArgRegBegin = std::min(ArgRegBegin, RBegin);
   2967 
   2968     CCInfo.nextInRegsParam();
   2969   }
   2970   CCInfo.rewindByValRegsInfo();
   2971 
   2972   int lastInsIndex = -1;
   2973   if (isVarArg && MFI->hasVAStart()) {
   2974     unsigned RegIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
   2975     if (RegIdx != array_lengthof(GPRArgRegs))
   2976       ArgRegBegin = std::min(ArgRegBegin, (unsigned)GPRArgRegs[RegIdx]);
   2977   }
   2978 
   2979   unsigned TotalArgRegsSaveSize = 4 * (ARM::R4 - ArgRegBegin);
   2980   AFI->setArgRegsSaveSize(TotalArgRegsSaveSize);
   2981 
   2982   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   2983     CCValAssign &VA = ArgLocs[i];
   2984     if (Ins[VA.getValNo()].isOrigArg()) {
   2985       std::advance(CurOrigArg,
   2986                    Ins[VA.getValNo()].getOrigArgIndex() - CurArgIdx);
   2987       CurArgIdx = Ins[VA.getValNo()].getOrigArgIndex();
   2988     }
   2989     // Arguments stored in registers.
   2990     if (VA.isRegLoc()) {
   2991       EVT RegVT = VA.getLocVT();
   2992 
   2993       if (VA.needsCustom()) {
   2994         // f64 and vector types are split up into multiple registers or
   2995         // combinations of registers and stack slots.
   2996         if (VA.getLocVT() == MVT::v2f64) {
   2997           SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
   2998                                                    Chain, DAG, dl);
   2999           VA = ArgLocs[++i]; // skip ahead to next loc
   3000           SDValue ArgValue2;
   3001           if (VA.isMemLoc()) {
   3002             int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
   3003             SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
   3004             ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
   3005                                     MachinePointerInfo::getFixedStack(FI),
   3006                                     false, false, false, 0);
   3007           } else {
   3008             ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
   3009                                              Chain, DAG, dl);
   3010           }
   3011           ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
   3012           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
   3013                                  ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
   3014           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
   3015                                  ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
   3016         } else
   3017           ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
   3018 
   3019       } else {
   3020         const TargetRegisterClass *RC;
   3021 
   3022         if (RegVT == MVT::f32)
   3023           RC = &ARM::SPRRegClass;
   3024         else if (RegVT == MVT::f64)
   3025           RC = &ARM::DPRRegClass;
   3026         else if (RegVT == MVT::v2f64)
   3027           RC = &ARM::QPRRegClass;
   3028         else if (RegVT == MVT::i32)
   3029           RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
   3030                                            : &ARM::GPRRegClass;
   3031         else
   3032           llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
   3033 
   3034         // Transform the arguments in physical registers into virtual ones.
   3035         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
   3036         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
   3037       }
   3038 
   3039       // If this is an 8 or 16-bit value, it is really passed promoted
   3040       // to 32 bits.  Insert an assert[sz]ext to capture this, then
   3041       // truncate to the right size.
   3042       switch (VA.getLocInfo()) {
   3043       default: llvm_unreachable("Unknown loc info!");
   3044       case CCValAssign::Full: break;
   3045       case CCValAssign::BCvt:
   3046         ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
   3047         break;
   3048       case CCValAssign::SExt:
   3049         ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
   3050                                DAG.getValueType(VA.getValVT()));
   3051         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
   3052         break;
   3053       case CCValAssign::ZExt:
   3054         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
   3055                                DAG.getValueType(VA.getValVT()));
   3056         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
   3057         break;
   3058       }
   3059 
   3060       InVals.push_back(ArgValue);
   3061 
   3062     } else { // VA.isRegLoc()
   3063 
   3064       // sanity check
   3065       assert(VA.isMemLoc());
   3066       assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
   3067 
   3068       int index = VA.getValNo();
   3069 
   3070       // Some Ins[] entries become multiple ArgLoc[] entries.
   3071       // Process them only once.
   3072       if (index != lastInsIndex)
   3073         {
   3074           ISD::ArgFlagsTy Flags = Ins[index].Flags;
   3075           // FIXME: For now, all byval parameter objects are marked mutable.
   3076           // This can be changed with more analysis.
   3077           // In case of tail call optimization mark all arguments mutable.
   3078           // Since they could be overwritten by lowering of arguments in case of
   3079           // a tail call.
   3080           if (Flags.isByVal()) {
   3081             assert(Ins[index].isOrigArg() &&
   3082                    "Byval arguments cannot be implicit");
   3083             unsigned CurByValIndex = CCInfo.getInRegsParamsProcessed();
   3084 
   3085             int FrameIndex = StoreByValRegs(CCInfo, DAG, dl, Chain, CurOrigArg,
   3086                                             CurByValIndex, VA.getLocMemOffset(),
   3087                                             Flags.getByValSize());
   3088             InVals.push_back(DAG.getFrameIndex(FrameIndex, getPointerTy()));
   3089             CCInfo.nextInRegsParam();
   3090           } else {
   3091             unsigned FIOffset = VA.getLocMemOffset();
   3092             int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
   3093                                             FIOffset, true);
   3094 
   3095             // Create load nodes to retrieve arguments from the stack.
   3096             SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
   3097             InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
   3098                                          MachinePointerInfo::getFixedStack(FI),
   3099                                          false, false, false, 0));
   3100           }
   3101           lastInsIndex = index;
   3102         }
   3103     }
   3104   }
   3105 
   3106   // varargs
   3107   if (isVarArg && MFI->hasVAStart())
   3108     VarArgStyleRegisters(CCInfo, DAG, dl, Chain,
   3109                          CCInfo.getNextStackOffset(),
   3110                          TotalArgRegsSaveSize);
   3111 
   3112   AFI->setArgumentStackSize(CCInfo.getNextStackOffset());
   3113 
   3114   return Chain;
   3115 }
   3116 
   3117 /// isFloatingPointZero - Return true if this is +0.0.
   3118 static bool isFloatingPointZero(SDValue Op) {
   3119   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
   3120     return CFP->getValueAPF().isPosZero();
   3121   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
   3122     // Maybe this has already been legalized into the constant pool?
   3123     if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
   3124       SDValue WrapperOp = Op.getOperand(1).getOperand(0);
   3125       if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
   3126         if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
   3127           return CFP->getValueAPF().isPosZero();
   3128     }
   3129   } else if (Op->getOpcode() == ISD::BITCAST &&
   3130              Op->getValueType(0) == MVT::f64) {
   3131     // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
   3132     // created by LowerConstantFP().
   3133     SDValue BitcastOp = Op->getOperand(0);
   3134     if (BitcastOp->getOpcode() == ARMISD::VMOVIMM) {
   3135       SDValue MoveOp = BitcastOp->getOperand(0);
   3136       if (MoveOp->getOpcode() == ISD::TargetConstant &&
   3137           cast<ConstantSDNode>(MoveOp)->getZExtValue() == 0) {
   3138         return true;
   3139       }
   3140     }
   3141   }
   3142   return false;
   3143 }
   3144 
   3145 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
   3146 /// the given operands.
   3147 SDValue
   3148 ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
   3149                              SDValue &ARMcc, SelectionDAG &DAG,
   3150                              SDLoc dl) const {
   3151   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
   3152     unsigned C = RHSC->getZExtValue();
   3153     if (!isLegalICmpImmediate(C)) {
   3154       // Constant does not fit, try adjusting it by one?
   3155       switch (CC) {
   3156       default: break;
   3157       case ISD::SETLT:
   3158       case ISD::SETGE:
   3159         if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
   3160           CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
   3161           RHS = DAG.getConstant(C-1, MVT::i32);
   3162         }
   3163         break;
   3164       case ISD::SETULT:
   3165       case ISD::SETUGE:
   3166         if (C != 0 && isLegalICmpImmediate(C-1)) {
   3167           CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
   3168           RHS = DAG.getConstant(C-1, MVT::i32);
   3169         }
   3170         break;
   3171       case ISD::SETLE:
   3172       case ISD::SETGT:
   3173         if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
   3174           CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
   3175           RHS = DAG.getConstant(C+1, MVT::i32);
   3176         }
   3177         break;
   3178       case ISD::SETULE:
   3179       case ISD::SETUGT:
   3180         if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
   3181           CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
   3182           RHS = DAG.getConstant(C+1, MVT::i32);
   3183         }
   3184         break;
   3185       }
   3186     }
   3187   }
   3188 
   3189   ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
   3190   ARMISD::NodeType CompareType;
   3191   switch (CondCode) {
   3192   default:
   3193     CompareType = ARMISD::CMP;
   3194     break;
   3195   case ARMCC::EQ:
   3196   case ARMCC::NE:
   3197     // Uses only Z Flag
   3198     CompareType = ARMISD::CMPZ;
   3199     break;
   3200   }
   3201   ARMcc = DAG.getConstant(CondCode, MVT::i32);
   3202   return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
   3203 }
   3204 
   3205 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
   3206 SDValue
   3207 ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
   3208                              SDLoc dl) const {
   3209   assert(!Subtarget->isFPOnlySP() || RHS.getValueType() != MVT::f64);
   3210   SDValue Cmp;
   3211   if (!isFloatingPointZero(RHS))
   3212     Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
   3213   else
   3214     Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
   3215   return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
   3216 }
   3217 
   3218 /// duplicateCmp - Glue values can have only one use, so this function
   3219 /// duplicates a comparison node.
   3220 SDValue
   3221 ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
   3222   unsigned Opc = Cmp.getOpcode();
   3223   SDLoc DL(Cmp);
   3224   if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
   3225     return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
   3226 
   3227   assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
   3228   Cmp = Cmp.getOperand(0);
   3229   Opc = Cmp.getOpcode();
   3230   if (Opc == ARMISD::CMPFP)
   3231     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
   3232   else {
   3233     assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
   3234     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
   3235   }
   3236   return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
   3237 }
   3238 
   3239 std::pair<SDValue, SDValue>
   3240 ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG,
   3241                                  SDValue &ARMcc) const {
   3242   assert(Op.getValueType() == MVT::i32 &&  "Unsupported value type");
   3243 
   3244   SDValue Value, OverflowCmp;
   3245   SDValue LHS = Op.getOperand(0);
   3246   SDValue RHS = Op.getOperand(1);
   3247 
   3248 
   3249   // FIXME: We are currently always generating CMPs because we don't support
   3250   // generating CMN through the backend. This is not as good as the natural
   3251   // CMP case because it causes a register dependency and cannot be folded
   3252   // later.
   3253 
   3254   switch (Op.getOpcode()) {
   3255   default:
   3256     llvm_unreachable("Unknown overflow instruction!");
   3257   case ISD::SADDO:
   3258     ARMcc = DAG.getConstant(ARMCC::VC, MVT::i32);
   3259     Value = DAG.getNode(ISD::ADD, SDLoc(Op), Op.getValueType(), LHS, RHS);
   3260     OverflowCmp = DAG.getNode(ARMISD::CMP, SDLoc(Op), MVT::Glue, Value, LHS);
   3261     break;
   3262   case ISD::UADDO:
   3263     ARMcc = DAG.getConstant(ARMCC::HS, MVT::i32);
   3264     Value = DAG.getNode(ISD::ADD, SDLoc(Op), Op.getValueType(), LHS, RHS);
   3265     OverflowCmp = DAG.getNode(ARMISD::CMP, SDLoc(Op), MVT::Glue, Value, LHS);
   3266     break;
   3267   case ISD::SSUBO:
   3268     ARMcc = DAG.getConstant(ARMCC::VC, MVT::i32);
   3269     Value = DAG.getNode(ISD::SUB, SDLoc(Op), Op.getValueType(), LHS, RHS);
   3270     OverflowCmp = DAG.getNode(ARMISD::CMP, SDLoc(Op), MVT::Glue, LHS, RHS);
   3271     break;
   3272   case ISD::USUBO:
   3273     ARMcc = DAG.getConstant(ARMCC::HS, MVT::i32);
   3274     Value = DAG.getNode(ISD::SUB, SDLoc(Op), Op.getValueType(), LHS, RHS);
   3275     OverflowCmp = DAG.getNode(ARMISD::CMP, SDLoc(Op), MVT::Glue, LHS, RHS);
   3276     break;
   3277   } // switch (...)
   3278 
   3279   return std::make_pair(Value, OverflowCmp);
   3280 }
   3281 
   3282 
   3283 SDValue
   3284 ARMTargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
   3285   // Let legalize expand this if it isn't a legal type yet.
   3286   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
   3287     return SDValue();
   3288 
   3289   SDValue Value, OverflowCmp;
   3290   SDValue ARMcc;
   3291   std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc);
   3292   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   3293   // We use 0 and 1 as false and true values.
   3294   SDValue TVal = DAG.getConstant(1, MVT::i32);
   3295   SDValue FVal = DAG.getConstant(0, MVT::i32);
   3296   EVT VT = Op.getValueType();
   3297 
   3298   SDValue Overflow = DAG.getNode(ARMISD::CMOV, SDLoc(Op), VT, TVal, FVal,
   3299                                  ARMcc, CCR, OverflowCmp);
   3300 
   3301   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
   3302   return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), VTs, Value, Overflow);
   3303 }
   3304 
   3305 
   3306 SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
   3307   SDValue Cond = Op.getOperand(0);
   3308   SDValue SelectTrue = Op.getOperand(1);
   3309   SDValue SelectFalse = Op.getOperand(2);
   3310   SDLoc dl(Op);
   3311   unsigned Opc = Cond.getOpcode();
   3312 
   3313   if (Cond.getResNo() == 1 &&
   3314       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
   3315        Opc == ISD::USUBO)) {
   3316     if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
   3317       return SDValue();
   3318 
   3319     SDValue Value, OverflowCmp;
   3320     SDValue ARMcc;
   3321     std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
   3322     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   3323     EVT VT = Op.getValueType();
   3324 
   3325     return getCMOV(SDLoc(Op), VT, SelectTrue, SelectFalse, ARMcc, CCR,
   3326                    OverflowCmp, DAG);
   3327   }
   3328 
   3329   // Convert:
   3330   //
   3331   //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
   3332   //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
   3333   //
   3334   if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
   3335     const ConstantSDNode *CMOVTrue =
   3336       dyn_cast<ConstantSDNode>(Cond.getOperand(0));
   3337     const ConstantSDNode *CMOVFalse =
   3338       dyn_cast<ConstantSDNode>(Cond.getOperand(1));
   3339 
   3340     if (CMOVTrue && CMOVFalse) {
   3341       unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
   3342       unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
   3343 
   3344       SDValue True;
   3345       SDValue False;
   3346       if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
   3347         True = SelectTrue;
   3348         False = SelectFalse;
   3349       } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
   3350         True = SelectFalse;
   3351         False = SelectTrue;
   3352       }
   3353 
   3354       if (True.getNode() && False.getNode()) {
   3355         EVT VT = Op.getValueType();
   3356         SDValue ARMcc = Cond.getOperand(2);
   3357         SDValue CCR = Cond.getOperand(3);
   3358         SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
   3359         assert(True.getValueType() == VT);
   3360         return getCMOV(dl, VT, True, False, ARMcc, CCR, Cmp, DAG);
   3361       }
   3362     }
   3363   }
   3364 
   3365   // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
   3366   // undefined bits before doing a full-word comparison with zero.
   3367   Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
   3368                      DAG.getConstant(1, Cond.getValueType()));
   3369 
   3370   return DAG.getSelectCC(dl, Cond,
   3371                          DAG.getConstant(0, Cond.getValueType()),
   3372                          SelectTrue, SelectFalse, ISD::SETNE);
   3373 }
   3374 
   3375 static ISD::CondCode getInverseCCForVSEL(ISD::CondCode CC) {
   3376   if (CC == ISD::SETNE)
   3377     return ISD::SETEQ;
   3378   return ISD::getSetCCInverse(CC, true);
   3379 }
   3380 
   3381 static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
   3382                                  bool &swpCmpOps, bool &swpVselOps) {
   3383   // Start by selecting the GE condition code for opcodes that return true for
   3384   // 'equality'
   3385   if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE ||
   3386       CC == ISD::SETULE)
   3387     CondCode = ARMCC::GE;
   3388 
   3389   // and GT for opcodes that return false for 'equality'.
   3390   else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT ||
   3391            CC == ISD::SETULT)
   3392     CondCode = ARMCC::GT;
   3393 
   3394   // Since we are constrained to GE/GT, if the opcode contains 'less', we need
   3395   // to swap the compare operands.
   3396   if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT ||
   3397       CC == ISD::SETULT)
   3398     swpCmpOps = true;
   3399 
   3400   // Both GT and GE are ordered comparisons, and return false for 'unordered'.
   3401   // If we have an unordered opcode, we need to swap the operands to the VSEL
   3402   // instruction (effectively negating the condition).
   3403   //
   3404   // This also has the effect of swapping which one of 'less' or 'greater'
   3405   // returns true, so we also swap the compare operands. It also switches
   3406   // whether we return true for 'equality', so we compensate by picking the
   3407   // opposite condition code to our original choice.
   3408   if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE ||
   3409       CC == ISD::SETUGT) {
   3410     swpCmpOps = !swpCmpOps;
   3411     swpVselOps = !swpVselOps;
   3412     CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT;
   3413   }
   3414 
   3415   // 'ordered' is 'anything but unordered', so use the VS condition code and
   3416   // swap the VSEL operands.
   3417   if (CC == ISD::SETO) {
   3418     CondCode = ARMCC::VS;
   3419     swpVselOps = true;
   3420   }
   3421 
   3422   // 'unordered or not equal' is 'anything but equal', so use the EQ condition
   3423   // code and swap the VSEL operands.
   3424   if (CC == ISD::SETUNE) {
   3425     CondCode = ARMCC::EQ;
   3426     swpVselOps = true;
   3427   }
   3428 }
   3429 
   3430 SDValue ARMTargetLowering::getCMOV(SDLoc dl, EVT VT, SDValue FalseVal,
   3431                                    SDValue TrueVal, SDValue ARMcc, SDValue CCR,
   3432                                    SDValue Cmp, SelectionDAG &DAG) const {
   3433   if (Subtarget->isFPOnlySP() && VT == MVT::f64) {
   3434     FalseVal = DAG.getNode(ARMISD::VMOVRRD, dl,
   3435                            DAG.getVTList(MVT::i32, MVT::i32), FalseVal);
   3436     TrueVal = DAG.getNode(ARMISD::VMOVRRD, dl,
   3437                           DAG.getVTList(MVT::i32, MVT::i32), TrueVal);
   3438 
   3439     SDValue TrueLow = TrueVal.getValue(0);
   3440     SDValue TrueHigh = TrueVal.getValue(1);
   3441     SDValue FalseLow = FalseVal.getValue(0);
   3442     SDValue FalseHigh = FalseVal.getValue(1);
   3443 
   3444     SDValue Low = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseLow, TrueLow,
   3445                               ARMcc, CCR, Cmp);
   3446     SDValue High = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseHigh, TrueHigh,
   3447                                ARMcc, CCR, duplicateCmp(Cmp, DAG));
   3448 
   3449     return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Low, High);
   3450   } else {
   3451     return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,
   3452                        Cmp);
   3453   }
   3454 }
   3455 
   3456 SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
   3457   EVT VT = Op.getValueType();
   3458   SDValue LHS = Op.getOperand(0);
   3459   SDValue RHS = Op.getOperand(1);
   3460   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
   3461   SDValue TrueVal = Op.getOperand(2);
   3462   SDValue FalseVal = Op.getOperand(3);
   3463   SDLoc dl(Op);
   3464 
   3465   if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) {
   3466     DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC,
   3467                                                     dl);
   3468 
   3469     // If softenSetCCOperands only returned one value, we should compare it to
   3470     // zero.
   3471     if (!RHS.getNode()) {
   3472       RHS = DAG.getConstant(0, LHS.getValueType());
   3473       CC = ISD::SETNE;
   3474     }
   3475   }
   3476 
   3477   if (LHS.getValueType() == MVT::i32) {
   3478     // Try to generate VSEL on ARMv8.
   3479     // The VSEL instruction can't use all the usual ARM condition
   3480     // codes: it only has two bits to select the condition code, so it's
   3481     // constrained to use only GE, GT, VS and EQ.
   3482     //
   3483     // To implement all the various ISD::SETXXX opcodes, we sometimes need to
   3484     // swap the operands of the previous compare instruction (effectively
   3485     // inverting the compare condition, swapping 'less' and 'greater') and
   3486     // sometimes need to swap the operands to the VSEL (which inverts the
   3487     // condition in the sense of firing whenever the previous condition didn't)
   3488     if (Subtarget->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 ||
   3489                                     TrueVal.getValueType() == MVT::f64)) {
   3490       ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
   3491       if (CondCode == ARMCC::LT || CondCode == ARMCC::LE ||
   3492           CondCode == ARMCC::VC || CondCode == ARMCC::NE) {
   3493         CC = getInverseCCForVSEL(CC);
   3494         std::swap(TrueVal, FalseVal);
   3495       }
   3496     }
   3497 
   3498     SDValue ARMcc;
   3499     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   3500     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
   3501     return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
   3502   }
   3503 
   3504   ARMCC::CondCodes CondCode, CondCode2;
   3505   FPCCToARMCC(CC, CondCode, CondCode2);
   3506 
   3507   // Try to generate VMAXNM/VMINNM on ARMv8.
   3508   if (Subtarget->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 ||
   3509                                   TrueVal.getValueType() == MVT::f64)) {
   3510     // We can use VMAXNM/VMINNM for a compare followed by a select with the
   3511     // same operands, as follows:
   3512     //   c = fcmp [?gt, ?ge, ?lt, ?le] a, b
   3513     //   select c, a, b
   3514     // In NoNaNsFPMath the CC will have been changed from, e.g., 'ogt' to 'gt'.
   3515     // We only do this transformation in UnsafeFPMath and for no-NaNs
   3516     // comparisons, because signed zeros and NaNs are handled differently than
   3517     // the original code sequence.
   3518     // FIXME: There are more cases that can be transformed even with NaNs,
   3519     // signed zeroes and safe math.  E.g. in the following, the result will be
   3520     // FalseVal if a is a NaN or -0./0. and that's what vmaxnm will give, too.
   3521     //   c = fcmp ogt, a, 0. ; select c, a, 0. => vmaxnm a, 0.
   3522     // FIXME: There is similar code that allows some extensions in
   3523     // AArch64TargetLowering::LowerSELECT_CC that should be shared with this
   3524     // code.
   3525     if (getTargetMachine().Options.UnsafeFPMath) {
   3526       if (LHS == TrueVal && RHS == FalseVal) {
   3527         if (CC == ISD::SETGT || CC == ISD::SETGE)
   3528           return DAG.getNode(ARMISD::VMAXNM, dl, VT, TrueVal, FalseVal);
   3529         if (CC == ISD::SETLT || CC == ISD::SETLE)
   3530           return DAG.getNode(ARMISD::VMINNM, dl, VT, TrueVal, FalseVal);
   3531       } else if (LHS == FalseVal && RHS == TrueVal) {
   3532         if (CC == ISD::SETLT || CC == ISD::SETLE)
   3533           return DAG.getNode(ARMISD::VMAXNM, dl, VT, TrueVal, FalseVal);
   3534         if (CC == ISD::SETGT || CC == ISD::SETGE)
   3535           return DAG.getNode(ARMISD::VMINNM, dl, VT, TrueVal, FalseVal);
   3536       }
   3537     }
   3538 
   3539     bool swpCmpOps = false;
   3540     bool swpVselOps = false;
   3541     checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps);
   3542 
   3543     if (CondCode == ARMCC::GT || CondCode == ARMCC::GE ||
   3544         CondCode == ARMCC::VS || CondCode == ARMCC::EQ) {
   3545       if (swpCmpOps)
   3546         std::swap(LHS, RHS);
   3547       if (swpVselOps)
   3548         std::swap(TrueVal, FalseVal);
   3549     }
   3550   }
   3551 
   3552   SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
   3553   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
   3554   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   3555   SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
   3556   if (CondCode2 != ARMCC::AL) {
   3557     SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
   3558     // FIXME: Needs another CMP because flag can have but one use.
   3559     SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
   3560     Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, CCR, Cmp2, DAG);
   3561   }
   3562   return Result;
   3563 }
   3564 
   3565 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
   3566 /// to morph to an integer compare sequence.
   3567 static bool canChangeToInt(SDValue Op, bool &SeenZero,
   3568                            const ARMSubtarget *Subtarget) {
   3569   SDNode *N = Op.getNode();
   3570   if (!N->hasOneUse())
   3571     // Otherwise it requires moving the value from fp to integer registers.
   3572     return false;
   3573   if (!N->getNumValues())
   3574     return false;
   3575   EVT VT = Op.getValueType();
   3576   if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
   3577     // f32 case is generally profitable. f64 case only makes sense when vcmpe +
   3578     // vmrs are very slow, e.g. cortex-a8.
   3579     return false;
   3580 
   3581   if (isFloatingPointZero(Op)) {
   3582     SeenZero = true;
   3583     return true;
   3584   }
   3585   return ISD::isNormalLoad(N);
   3586 }
   3587 
   3588 static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
   3589   if (isFloatingPointZero(Op))
   3590     return DAG.getConstant(0, MVT::i32);
   3591 
   3592   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
   3593     return DAG.getLoad(MVT::i32, SDLoc(Op),
   3594                        Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
   3595                        Ld->isVolatile(), Ld->isNonTemporal(),
   3596                        Ld->isInvariant(), Ld->getAlignment());
   3597 
   3598   llvm_unreachable("Unknown VFP cmp argument!");
   3599 }
   3600 
   3601 static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
   3602                            SDValue &RetVal1, SDValue &RetVal2) {
   3603   if (isFloatingPointZero(Op)) {
   3604     RetVal1 = DAG.getConstant(0, MVT::i32);
   3605     RetVal2 = DAG.getConstant(0, MVT::i32);
   3606     return;
   3607   }
   3608 
   3609   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
   3610     SDValue Ptr = Ld->getBasePtr();
   3611     RetVal1 = DAG.getLoad(MVT::i32, SDLoc(Op),
   3612                           Ld->getChain(), Ptr,
   3613                           Ld->getPointerInfo(),
   3614                           Ld->isVolatile(), Ld->isNonTemporal(),
   3615                           Ld->isInvariant(), Ld->getAlignment());
   3616 
   3617     EVT PtrType = Ptr.getValueType();
   3618     unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
   3619     SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(Op),
   3620                                  PtrType, Ptr, DAG.getConstant(4, PtrType));
   3621     RetVal2 = DAG.getLoad(MVT::i32, SDLoc(Op),
   3622                           Ld->getChain(), NewPtr,
   3623                           Ld->getPointerInfo().getWithOffset(4),
   3624                           Ld->isVolatile(), Ld->isNonTemporal(),
   3625                           Ld->isInvariant(), NewAlign);
   3626     return;
   3627   }
   3628 
   3629   llvm_unreachable("Unknown VFP cmp argument!");
   3630 }
   3631 
   3632 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
   3633 /// f32 and even f64 comparisons to integer ones.
   3634 SDValue
   3635 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
   3636   SDValue Chain = Op.getOperand(0);
   3637   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
   3638   SDValue LHS = Op.getOperand(2);
   3639   SDValue RHS = Op.getOperand(3);
   3640   SDValue Dest = Op.getOperand(4);
   3641   SDLoc dl(Op);
   3642 
   3643   bool LHSSeenZero = false;
   3644   bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
   3645   bool RHSSeenZero = false;
   3646   bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
   3647   if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
   3648     // If unsafe fp math optimization is enabled and there are no other uses of
   3649     // the CMP operands, and the condition code is EQ or NE, we can optimize it
   3650     // to an integer comparison.
   3651     if (CC == ISD::SETOEQ)
   3652       CC = ISD::SETEQ;
   3653     else if (CC == ISD::SETUNE)
   3654       CC = ISD::SETNE;
   3655 
   3656     SDValue Mask = DAG.getConstant(0x7fffffff, MVT::i32);
   3657     SDValue ARMcc;
   3658     if (LHS.getValueType() == MVT::f32) {
   3659       LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
   3660                         bitcastf32Toi32(LHS, DAG), Mask);
   3661       RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
   3662                         bitcastf32Toi32(RHS, DAG), Mask);
   3663       SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
   3664       SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   3665       return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
   3666                          Chain, Dest, ARMcc, CCR, Cmp);
   3667     }
   3668 
   3669     SDValue LHS1, LHS2;
   3670     SDValue RHS1, RHS2;
   3671     expandf64Toi32(LHS, DAG, LHS1, LHS2);
   3672     expandf64Toi32(RHS, DAG, RHS1, RHS2);
   3673     LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
   3674     RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
   3675     ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
   3676     ARMcc = DAG.getConstant(CondCode, MVT::i32);
   3677     SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
   3678     SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
   3679     return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops);
   3680   }
   3681 
   3682   return SDValue();
   3683 }
   3684 
   3685 SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
   3686   SDValue Chain = Op.getOperand(0);
   3687   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
   3688   SDValue LHS = Op.getOperand(2);
   3689   SDValue RHS = Op.getOperand(3);
   3690   SDValue Dest = Op.getOperand(4);
   3691   SDLoc dl(Op);
   3692 
   3693   if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) {
   3694     DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC,
   3695                                                     dl);
   3696 
   3697     // If softenSetCCOperands only returned one value, we should compare it to
   3698     // zero.
   3699     if (!RHS.getNode()) {
   3700       RHS = DAG.getConstant(0, LHS.getValueType());
   3701       CC = ISD::SETNE;
   3702     }
   3703   }
   3704 
   3705   if (LHS.getValueType() == MVT::i32) {
   3706     SDValue ARMcc;
   3707     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
   3708     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   3709     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
   3710                        Chain, Dest, ARMcc, CCR, Cmp);
   3711   }
   3712 
   3713   assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
   3714 
   3715   if (getTargetMachine().Options.UnsafeFPMath &&
   3716       (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
   3717        CC == ISD::SETNE || CC == ISD::SETUNE)) {
   3718     SDValue Result = OptimizeVFPBrcond(Op, DAG);
   3719     if (Result.getNode())
   3720       return Result;
   3721   }
   3722 
   3723   ARMCC::CondCodes CondCode, CondCode2;
   3724   FPCCToARMCC(CC, CondCode, CondCode2);
   3725 
   3726   SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
   3727   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
   3728   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   3729   SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
   3730   SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
   3731   SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
   3732   if (CondCode2 != ARMCC::AL) {
   3733     ARMcc = DAG.getConstant(CondCode2, MVT::i32);
   3734     SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
   3735     Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
   3736   }
   3737   return Res;
   3738 }
   3739 
   3740 SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
   3741   SDValue Chain = Op.getOperand(0);
   3742   SDValue Table = Op.getOperand(1);
   3743   SDValue Index = Op.getOperand(2);
   3744   SDLoc dl(Op);
   3745 
   3746   EVT PTy = getPointerTy();
   3747   JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
   3748   ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
   3749   SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
   3750   SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
   3751   Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
   3752   Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
   3753   SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
   3754   if (Subtarget->isThumb2()) {
   3755     // Thumb2 uses a two-level jump. That is, it jumps into the jump table
   3756     // which does another jump to the destination. This also makes it easier
   3757     // to translate it to TBB / TBH later.
   3758     // FIXME: This might not work if the function is extremely large.
   3759     return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
   3760                        Addr, Op.getOperand(2), JTI, UId);
   3761   }
   3762   if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
   3763     Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
   3764                        MachinePointerInfo::getJumpTable(),
   3765                        false, false, false, 0);
   3766     Chain = Addr.getValue(1);
   3767     Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
   3768     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
   3769   } else {
   3770     Addr = DAG.getLoad(PTy, dl, Chain, Addr,
   3771                        MachinePointerInfo::getJumpTable(),
   3772                        false, false, false, 0);
   3773     Chain = Addr.getValue(1);
   3774     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
   3775   }
   3776 }
   3777 
   3778 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
   3779   EVT VT = Op.getValueType();
   3780   SDLoc dl(Op);
   3781 
   3782   if (Op.getValueType().getVectorElementType() == MVT::i32) {
   3783     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
   3784       return Op;
   3785     return DAG.UnrollVectorOp(Op.getNode());
   3786   }
   3787 
   3788   assert(Op.getOperand(0).getValueType() == MVT::v4f32 &&
   3789          "Invalid type for custom lowering!");
   3790   if (VT != MVT::v4i16)
   3791     return DAG.UnrollVectorOp(Op.getNode());
   3792 
   3793   Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0));
   3794   return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
   3795 }
   3796 
   3797 SDValue ARMTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const {
   3798   EVT VT = Op.getValueType();
   3799   if (VT.isVector())
   3800     return LowerVectorFP_TO_INT(Op, DAG);
   3801   if (Subtarget->isFPOnlySP() && Op.getOperand(0).getValueType() == MVT::f64) {
   3802     RTLIB::Libcall LC;
   3803     if (Op.getOpcode() == ISD::FP_TO_SINT)
   3804       LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(),
   3805                               Op.getValueType());
   3806     else
   3807       LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(),
   3808                               Op.getValueType());
   3809     return makeLibCall(DAG, LC, Op.getValueType(), &Op.getOperand(0), 1,
   3810                        /*isSigned*/ false, SDLoc(Op)).first;
   3811   }
   3812 
   3813   return Op;
   3814 }
   3815 
   3816 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
   3817   EVT VT = Op.getValueType();
   3818   SDLoc dl(Op);
   3819 
   3820   if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
   3821     if (VT.getVectorElementType() == MVT::f32)
   3822       return Op;
   3823     return DAG.UnrollVectorOp(Op.getNode());
   3824   }
   3825 
   3826   assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
   3827          "Invalid type for custom lowering!");
   3828   if (VT != MVT::v4f32)
   3829     return DAG.UnrollVectorOp(Op.getNode());
   3830 
   3831   unsigned CastOpc;
   3832   unsigned Opc;
   3833   switch (Op.getOpcode()) {
   3834   default: llvm_unreachable("Invalid opcode!");
   3835   case ISD::SINT_TO_FP:
   3836     CastOpc = ISD::SIGN_EXTEND;
   3837     Opc = ISD::SINT_TO_FP;
   3838     break;
   3839   case ISD::UINT_TO_FP:
   3840     CastOpc = ISD::ZERO_EXTEND;
   3841     Opc = ISD::UINT_TO_FP;
   3842     break;
   3843   }
   3844 
   3845   Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
   3846   return DAG.getNode(Opc, dl, VT, Op);
   3847 }
   3848 
   3849 SDValue ARMTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const {
   3850   EVT VT = Op.getValueType();
   3851   if (VT.isVector())
   3852     return LowerVectorINT_TO_FP(Op, DAG);
   3853   if (Subtarget->isFPOnlySP() && Op.getValueType() == MVT::f64) {
   3854     RTLIB::Libcall LC;
   3855     if (Op.getOpcode() == ISD::SINT_TO_FP)
   3856       LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(),
   3857                               Op.getValueType());
   3858     else
   3859       LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(),
   3860                               Op.getValueType());
   3861     return makeLibCall(DAG, LC, Op.getValueType(), &Op.getOperand(0), 1,
   3862                        /*isSigned*/ false, SDLoc(Op)).first;
   3863   }
   3864 
   3865   return Op;
   3866 }
   3867 
   3868 SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
   3869   // Implement fcopysign with a fabs and a conditional fneg.
   3870   SDValue Tmp0 = Op.getOperand(0);
   3871   SDValue Tmp1 = Op.getOperand(1);
   3872   SDLoc dl(Op);
   3873   EVT VT = Op.getValueType();
   3874   EVT SrcVT = Tmp1.getValueType();
   3875   bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
   3876     Tmp0.getOpcode() == ARMISD::VMOVDRR;
   3877   bool UseNEON = !InGPR && Subtarget->hasNEON();
   3878 
   3879   if (UseNEON) {
   3880     // Use VBSL to copy the sign bit.
   3881     unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
   3882     SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
   3883                                DAG.getTargetConstant(EncodedVal, MVT::i32));
   3884     EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
   3885     if (VT == MVT::f64)
   3886       Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
   3887                          DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
   3888                          DAG.getConstant(32, MVT::i32));
   3889     else /*if (VT == MVT::f32)*/
   3890       Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
   3891     if (SrcVT == MVT::f32) {
   3892       Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
   3893       if (VT == MVT::f64)
   3894         Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
   3895                            DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
   3896                            DAG.getConstant(32, MVT::i32));
   3897     } else if (VT == MVT::f32)
   3898       Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
   3899                          DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
   3900                          DAG.getConstant(32, MVT::i32));
   3901     Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
   3902     Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
   3903 
   3904     SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
   3905                                             MVT::i32);
   3906     AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
   3907     SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
   3908                                   DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
   3909 
   3910     SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
   3911                               DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
   3912                               DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
   3913     if (VT == MVT::f32) {
   3914       Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
   3915       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
   3916                         DAG.getConstant(0, MVT::i32));
   3917     } else {
   3918       Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
   3919     }
   3920 
   3921     return Res;
   3922   }
   3923 
   3924   // Bitcast operand 1 to i32.
   3925   if (SrcVT == MVT::f64)
   3926     Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
   3927                        Tmp1).getValue(1);
   3928   Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
   3929 
   3930   // Or in the signbit with integer operations.
   3931   SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32);
   3932   SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32);
   3933   Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
   3934   if (VT == MVT::f32) {
   3935     Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
   3936                        DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
   3937     return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
   3938                        DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
   3939   }
   3940 
   3941   // f64: Or the high part with signbit and then combine two parts.
   3942   Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
   3943                      Tmp0);
   3944   SDValue Lo = Tmp0.getValue(0);
   3945   SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
   3946   Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
   3947   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
   3948 }
   3949 
   3950 SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
   3951   MachineFunction &MF = DAG.getMachineFunction();
   3952   MachineFrameInfo *MFI = MF.getFrameInfo();
   3953   MFI->setReturnAddressIsTaken(true);
   3954 
   3955   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
   3956     return SDValue();
   3957 
   3958   EVT VT = Op.getValueType();
   3959   SDLoc dl(Op);
   3960   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   3961   if (Depth) {
   3962     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
   3963     SDValue Offset = DAG.getConstant(4, MVT::i32);
   3964     return DAG.getLoad(VT, dl, DAG.getEntryNode(),
   3965                        DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
   3966                        MachinePointerInfo(), false, false, false, 0);
   3967   }
   3968 
   3969   // Return LR, which contains the return address. Mark it an implicit live-in.
   3970   unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
   3971   return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
   3972 }
   3973 
   3974 SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
   3975   const ARMBaseRegisterInfo &ARI =
   3976     *static_cast<const ARMBaseRegisterInfo*>(RegInfo);
   3977   MachineFunction &MF = DAG.getMachineFunction();
   3978   MachineFrameInfo *MFI = MF.getFrameInfo();
   3979   MFI->setFrameAddressIsTaken(true);
   3980 
   3981   EVT VT = Op.getValueType();
   3982   SDLoc dl(Op);  // FIXME probably not meaningful
   3983   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   3984   unsigned FrameReg = ARI.getFrameRegister(MF);
   3985   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
   3986   while (Depth--)
   3987     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
   3988                             MachinePointerInfo(),
   3989                             false, false, false, 0);
   3990   return FrameAddr;
   3991 }
   3992 
   3993 // FIXME? Maybe this could be a TableGen attribute on some registers and
   3994 // this table could be generated automatically from RegInfo.
   3995 unsigned ARMTargetLowering::getRegisterByName(const char* RegName,
   3996                                               EVT VT) const {
   3997   unsigned Reg = StringSwitch<unsigned>(RegName)
   3998                        .Case("sp", ARM::SP)
   3999                        .Default(0);
   4000   if (Reg)
   4001     return Reg;
   4002   report_fatal_error("Invalid register name global variable");
   4003 }
   4004 
   4005 /// ExpandBITCAST - If the target supports VFP, this function is called to
   4006 /// expand a bit convert where either the source or destination type is i64 to
   4007 /// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
   4008 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
   4009 /// vectors), since the legalizer won't know what to do with that.
   4010 static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
   4011   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   4012   SDLoc dl(N);
   4013   SDValue Op = N->getOperand(0);
   4014 
   4015   // This function is only supposed to be called for i64 types, either as the
   4016   // source or destination of the bit convert.
   4017   EVT SrcVT = Op.getValueType();
   4018   EVT DstVT = N->getValueType(0);
   4019   assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
   4020          "ExpandBITCAST called for non-i64 type");
   4021 
   4022   // Turn i64->f64 into VMOVDRR.
   4023   if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
   4024     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
   4025                              DAG.getConstant(0, MVT::i32));
   4026     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
   4027                              DAG.getConstant(1, MVT::i32));
   4028     return DAG.getNode(ISD::BITCAST, dl, DstVT,
   4029                        DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
   4030   }
   4031 
   4032   // Turn f64->i64 into VMOVRRD.
   4033   if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
   4034     SDValue Cvt;
   4035     if (TLI.isBigEndian() && SrcVT.isVector() &&
   4036         SrcVT.getVectorNumElements() > 1)
   4037       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
   4038                         DAG.getVTList(MVT::i32, MVT::i32),
   4039                         DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op));
   4040     else
   4041       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
   4042                         DAG.getVTList(MVT::i32, MVT::i32), Op);
   4043     // Merge the pieces into a single i64 value.
   4044     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
   4045   }
   4046 
   4047   return SDValue();
   4048 }
   4049 
   4050 /// getZeroVector - Returns a vector of specified type with all zero elements.
   4051 /// Zero vectors are used to represent vector negation and in those cases
   4052 /// will be implemented with the NEON VNEG instruction.  However, VNEG does
   4053 /// not support i64 elements, so sometimes the zero vectors will need to be
   4054 /// explicitly constructed.  Regardless, use a canonical VMOV to create the
   4055 /// zero vector.
   4056 static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, SDLoc dl) {
   4057   assert(VT.isVector() && "Expected a vector type");
   4058   // The canonical modified immediate encoding of a zero vector is....0!
   4059   SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
   4060   EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
   4061   SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
   4062   return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
   4063 }
   4064 
   4065 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
   4066 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
   4067 SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
   4068                                                 SelectionDAG &DAG) const {
   4069   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
   4070   EVT VT = Op.getValueType();
   4071   unsigned VTBits = VT.getSizeInBits();
   4072   SDLoc dl(Op);
   4073   SDValue ShOpLo = Op.getOperand(0);
   4074   SDValue ShOpHi = Op.getOperand(1);
   4075   SDValue ShAmt  = Op.getOperand(2);
   4076   SDValue ARMcc;
   4077   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
   4078 
   4079   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
   4080 
   4081   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
   4082                                  DAG.getConstant(VTBits, MVT::i32), ShAmt);
   4083   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
   4084   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
   4085                                    DAG.getConstant(VTBits, MVT::i32));
   4086   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
   4087   SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
   4088   SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
   4089 
   4090   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   4091   SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
   4092                           ARMcc, DAG, dl);
   4093   SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
   4094   SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
   4095                            CCR, Cmp);
   4096 
   4097   SDValue Ops[2] = { Lo, Hi };
   4098   return DAG.getMergeValues(Ops, dl);
   4099 }
   4100 
   4101 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
   4102 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
   4103 SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
   4104                                                SelectionDAG &DAG) const {
   4105   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
   4106   EVT VT = Op.getValueType();
   4107   unsigned VTBits = VT.getSizeInBits();
   4108   SDLoc dl(Op);
   4109   SDValue ShOpLo = Op.getOperand(0);
   4110   SDValue ShOpHi = Op.getOperand(1);
   4111   SDValue ShAmt  = Op.getOperand(2);
   4112   SDValue ARMcc;
   4113 
   4114   assert(Op.getOpcode() == ISD::SHL_PARTS);
   4115   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
   4116                                  DAG.getConstant(VTBits, MVT::i32), ShAmt);
   4117   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
   4118   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
   4119                                    DAG.getConstant(VTBits, MVT::i32));
   4120   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
   4121   SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
   4122 
   4123   SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
   4124   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   4125   SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
   4126                           ARMcc, DAG, dl);
   4127   SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
   4128   SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
   4129                            CCR, Cmp);
   4130 
   4131   SDValue Ops[2] = { Lo, Hi };
   4132   return DAG.getMergeValues(Ops, dl);
   4133 }
   4134 
   4135 SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
   4136                                             SelectionDAG &DAG) const {
   4137   // The rounding mode is in bits 23:22 of the FPSCR.
   4138   // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
   4139   // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
   4140   // so that the shift + and get folded into a bitfield extract.
   4141   SDLoc dl(Op);
   4142   SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
   4143                               DAG.getConstant(Intrinsic::arm_get_fpscr,
   4144                                               MVT::i32));
   4145   SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
   4146                                   DAG.getConstant(1U << 22, MVT::i32));
   4147   SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
   4148                               DAG.getConstant(22, MVT::i32));
   4149   return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
   4150                      DAG.getConstant(3, MVT::i32));
   4151 }
   4152 
   4153 static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
   4154                          const ARMSubtarget *ST) {
   4155   EVT VT = N->getValueType(0);
   4156   SDLoc dl(N);
   4157 
   4158   if (!ST->hasV6T2Ops())
   4159     return SDValue();
   4160 
   4161   SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
   4162   return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
   4163 }
   4164 
   4165 /// getCTPOP16BitCounts - Returns a v8i8/v16i8 vector containing the bit-count
   4166 /// for each 16-bit element from operand, repeated.  The basic idea is to
   4167 /// leverage vcnt to get the 8-bit counts, gather and add the results.
   4168 ///
   4169 /// Trace for v4i16:
   4170 /// input    = [v0    v1    v2    v3   ] (vi 16-bit element)
   4171 /// cast: N0 = [w0 w1 w2 w3 w4 w5 w6 w7] (v0 = [w0 w1], wi 8-bit element)
   4172 /// vcnt: N1 = [b0 b1 b2 b3 b4 b5 b6 b7] (bi = bit-count of 8-bit element wi)
   4173 /// vrev: N2 = [b1 b0 b3 b2 b5 b4 b7 b6]
   4174 ///            [b0 b1 b2 b3 b4 b5 b6 b7]
   4175 ///           +[b1 b0 b3 b2 b5 b4 b7 b6]
   4176 /// N3=N1+N2 = [k0 k0 k1 k1 k2 k2 k3 k3] (k0 = b0+b1 = bit-count of 16-bit v0,
   4177 /// vuzp:    = [k0 k1 k2 k3 k0 k1 k2 k3]  each ki is 8-bits)
   4178 static SDValue getCTPOP16BitCounts(SDNode *N, SelectionDAG &DAG) {
   4179   EVT VT = N->getValueType(0);
   4180   SDLoc DL(N);
   4181 
   4182   EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
   4183   SDValue N0 = DAG.getNode(ISD::BITCAST, DL, VT8Bit, N->getOperand(0));
   4184   SDValue N1 = DAG.getNode(ISD::CTPOP, DL, VT8Bit, N0);
   4185   SDValue N2 = DAG.getNode(ARMISD::VREV16, DL, VT8Bit, N1);
   4186   SDValue N3 = DAG.getNode(ISD::ADD, DL, VT8Bit, N1, N2);
   4187   return DAG.getNode(ARMISD::VUZP, DL, VT8Bit, N3, N3);
   4188 }
   4189 
   4190 /// lowerCTPOP16BitElements - Returns a v4i16/v8i16 vector containing the
   4191 /// bit-count for each 16-bit element from the operand.  We need slightly
   4192 /// different sequencing for v4i16 and v8i16 to stay within NEON's available
   4193 /// 64/128-bit registers.
   4194 ///
   4195 /// Trace for v4i16:
   4196 /// input           = [v0    v1    v2    v3    ] (vi 16-bit element)
   4197 /// v8i8: BitCounts = [k0 k1 k2 k3 k0 k1 k2 k3 ] (ki is the bit-count of vi)
   4198 /// v8i16:Extended  = [k0    k1    k2    k3    k0    k1    k2    k3    ]
   4199 /// v4i16:Extracted = [k0    k1    k2    k3    ]
   4200 static SDValue lowerCTPOP16BitElements(SDNode *N, SelectionDAG &DAG) {
   4201   EVT VT = N->getValueType(0);
   4202   SDLoc DL(N);
   4203 
   4204   SDValue BitCounts = getCTPOP16BitCounts(N, DAG);
   4205   if (VT.is64BitVector()) {
   4206     SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, BitCounts);
   4207     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, Extended,
   4208                        DAG.getIntPtrConstant(0));
   4209   } else {
   4210     SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8,
   4211                                     BitCounts, DAG.getIntPtrConstant(0));
   4212     return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, Extracted);
   4213   }
   4214 }
   4215 
   4216 /// lowerCTPOP32BitElements - Returns a v2i32/v4i32 vector containing the
   4217 /// bit-count for each 32-bit element from the operand.  The idea here is
   4218 /// to split the vector into 16-bit elements, leverage the 16-bit count
   4219 /// routine, and then combine the results.
   4220 ///
   4221 /// Trace for v2i32 (v4i32 similar with Extracted/Extended exchanged):
   4222 /// input    = [v0    v1    ] (vi: 32-bit elements)
   4223 /// Bitcast  = [w0 w1 w2 w3 ] (wi: 16-bit elements, v0 = [w0 w1])
   4224 /// Counts16 = [k0 k1 k2 k3 ] (ki: 16-bit elements, bit-count of wi)
   4225 /// vrev: N0 = [k1 k0 k3 k2 ]
   4226 ///            [k0 k1 k2 k3 ]
   4227 ///       N1 =+[k1 k0 k3 k2 ]
   4228 ///            [k0 k2 k1 k3 ]
   4229 ///       N2 =+[k1 k3 k0 k2 ]
   4230 ///            [k0    k2    k1    k3    ]
   4231 /// Extended =+[k1    k3    k0    k2    ]
   4232 ///            [k0    k2    ]
   4233 /// Extracted=+[k1    k3    ]
   4234 ///
   4235 static SDValue lowerCTPOP32BitElements(SDNode *N, SelectionDAG &DAG) {
   4236   EVT VT = N->getValueType(0);
   4237   SDLoc DL(N);
   4238 
   4239   EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
   4240 
   4241   SDValue Bitcast = DAG.getNode(ISD::BITCAST, DL, VT16Bit, N->getOperand(0));
   4242   SDValue Counts16 = lowerCTPOP16BitElements(Bitcast.getNode(), DAG);
   4243   SDValue N0 = DAG.getNode(ARMISD::VREV32, DL, VT16Bit, Counts16);
   4244   SDValue N1 = DAG.getNode(ISD::ADD, DL, VT16Bit, Counts16, N0);
   4245   SDValue N2 = DAG.getNode(ARMISD::VUZP, DL, VT16Bit, N1, N1);
   4246 
   4247   if (VT.is64BitVector()) {
   4248     SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, N2);
   4249     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i32, Extended,
   4250                        DAG.getIntPtrConstant(0));
   4251   } else {
   4252     SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, N2,
   4253                                     DAG.getIntPtrConstant(0));
   4254     return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, Extracted);
   4255   }
   4256 }
   4257 
   4258 static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
   4259                           const ARMSubtarget *ST) {
   4260   EVT VT = N->getValueType(0);
   4261 
   4262   assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
   4263   assert((VT == MVT::v2i32 || VT == MVT::v4i32 ||
   4264           VT == MVT::v4i16 || VT == MVT::v8i16) &&
   4265          "Unexpected type for custom ctpop lowering");
   4266 
   4267   if (VT.getVectorElementType() == MVT::i32)
   4268     return lowerCTPOP32BitElements(N, DAG);
   4269   else
   4270     return lowerCTPOP16BitElements(N, DAG);
   4271 }
   4272 
   4273 static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
   4274                           const ARMSubtarget *ST) {
   4275   EVT VT = N->getValueType(0);
   4276   SDLoc dl(N);
   4277 
   4278   if (!VT.isVector())
   4279     return SDValue();
   4280 
   4281   // Lower vector shifts on NEON to use VSHL.
   4282   assert(ST->hasNEON() && "unexpected vector shift");
   4283 
   4284   // Left shifts translate directly to the vshiftu intrinsic.
   4285   if (N->getOpcode() == ISD::SHL)
   4286     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   4287                        DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
   4288                        N->getOperand(0), N->getOperand(1));
   4289 
   4290   assert((N->getOpcode() == ISD::SRA ||
   4291           N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
   4292 
   4293   // NEON uses the same intrinsics for both left and right shifts.  For
   4294   // right shifts, the shift amounts are negative, so negate the vector of
   4295   // shift amounts.
   4296   EVT ShiftVT = N->getOperand(1).getValueType();
   4297   SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
   4298                                      getZeroVector(ShiftVT, DAG, dl),
   4299                                      N->getOperand(1));
   4300   Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
   4301                              Intrinsic::arm_neon_vshifts :
   4302                              Intrinsic::arm_neon_vshiftu);
   4303   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   4304                      DAG.getConstant(vshiftInt, MVT::i32),
   4305                      N->getOperand(0), NegatedCount);
   4306 }
   4307 
   4308 static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
   4309                                 const ARMSubtarget *ST) {
   4310   EVT VT = N->getValueType(0);
   4311   SDLoc dl(N);
   4312 
   4313   // We can get here for a node like i32 = ISD::SHL i32, i64
   4314   if (VT != MVT::i64)
   4315     return SDValue();
   4316 
   4317   assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
   4318          "Unknown shift to lower!");
   4319 
   4320   // We only lower SRA, SRL of 1 here, all others use generic lowering.
   4321   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
   4322       cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
   4323     return SDValue();
   4324 
   4325   // If we are in thumb mode, we don't have RRX.
   4326   if (ST->isThumb1Only()) return SDValue();
   4327 
   4328   // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
   4329   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
   4330                            DAG.getConstant(0, MVT::i32));
   4331   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
   4332                            DAG.getConstant(1, MVT::i32));
   4333 
   4334   // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
   4335   // captures the result into a carry flag.
   4336   unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
   4337   Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi);
   4338 
   4339   // The low part is an ARMISD::RRX operand, which shifts the carry in.
   4340   Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
   4341 
   4342   // Merge the pieces into a single i64 value.
   4343  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
   4344 }
   4345 
   4346 static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
   4347   SDValue TmpOp0, TmpOp1;
   4348   bool Invert = false;
   4349   bool Swap = false;
   4350   unsigned Opc = 0;
   4351 
   4352   SDValue Op0 = Op.getOperand(0);
   4353   SDValue Op1 = Op.getOperand(1);
   4354   SDValue CC = Op.getOperand(2);
   4355   EVT CmpVT = Op0.getValueType().changeVectorElementTypeToInteger();
   4356   EVT VT = Op.getValueType();
   4357   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
   4358   SDLoc dl(Op);
   4359 
   4360   if (Op1.getValueType().isFloatingPoint()) {
   4361     switch (SetCCOpcode) {
   4362     default: llvm_unreachable("Illegal FP comparison");
   4363     case ISD::SETUNE:
   4364     case ISD::SETNE:  Invert = true; // Fallthrough
   4365     case ISD::SETOEQ:
   4366     case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
   4367     case ISD::SETOLT:
   4368     case ISD::SETLT: Swap = true; // Fallthrough
   4369     case ISD::SETOGT:
   4370     case ISD::SETGT:  Opc = ARMISD::VCGT; break;
   4371     case ISD::SETOLE:
   4372     case ISD::SETLE:  Swap = true; // Fallthrough
   4373     case ISD::SETOGE:
   4374     case ISD::SETGE: Opc = ARMISD::VCGE; break;
   4375     case ISD::SETUGE: Swap = true; // Fallthrough
   4376     case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
   4377     case ISD::SETUGT: Swap = true; // Fallthrough
   4378     case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
   4379     case ISD::SETUEQ: Invert = true; // Fallthrough
   4380     case ISD::SETONE:
   4381       // Expand this to (OLT | OGT).
   4382       TmpOp0 = Op0;
   4383       TmpOp1 = Op1;
   4384       Opc = ISD::OR;
   4385       Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0);
   4386       Op1 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp0, TmpOp1);
   4387       break;
   4388     case ISD::SETUO: Invert = true; // Fallthrough
   4389     case ISD::SETO:
   4390       // Expand this to (OLT | OGE).
   4391       TmpOp0 = Op0;
   4392       TmpOp1 = Op1;
   4393       Opc = ISD::OR;
   4394       Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0);
   4395       Op1 = DAG.getNode(ARMISD::VCGE, dl, CmpVT, TmpOp0, TmpOp1);
   4396       break;
   4397     }
   4398   } else {
   4399     // Integer comparisons.
   4400     switch (SetCCOpcode) {
   4401     default: llvm_unreachable("Illegal integer comparison");
   4402     case ISD::SETNE:  Invert = true;
   4403     case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
   4404     case ISD::SETLT:  Swap = true;
   4405     case ISD::SETGT:  Opc = ARMISD::VCGT; break;
   4406     case ISD::SETLE:  Swap = true;
   4407     case ISD::SETGE:  Opc = ARMISD::VCGE; break;
   4408     case ISD::SETULT: Swap = true;
   4409     case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
   4410     case ISD::SETULE: Swap = true;
   4411     case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
   4412     }
   4413 
   4414     // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
   4415     if (Opc == ARMISD::VCEQ) {
   4416 
   4417       SDValue AndOp;
   4418       if (ISD::isBuildVectorAllZeros(Op1.getNode()))
   4419         AndOp = Op0;
   4420       else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
   4421         AndOp = Op1;
   4422 
   4423       // Ignore bitconvert.
   4424       if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
   4425         AndOp = AndOp.getOperand(0);
   4426 
   4427       if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
   4428         Opc = ARMISD::VTST;
   4429         Op0 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(0));
   4430         Op1 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(1));
   4431         Invert = !Invert;
   4432       }
   4433     }
   4434   }
   4435 
   4436   if (Swap)
   4437     std::swap(Op0, Op1);
   4438 
   4439   // If one of the operands is a constant vector zero, attempt to fold the
   4440   // comparison to a specialized compare-against-zero form.
   4441   SDValue SingleOp;
   4442   if (ISD::isBuildVectorAllZeros(Op1.getNode()))
   4443     SingleOp = Op0;
   4444   else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
   4445     if (Opc == ARMISD::VCGE)
   4446       Opc = ARMISD::VCLEZ;
   4447     else if (Opc == ARMISD::VCGT)
   4448       Opc = ARMISD::VCLTZ;
   4449     SingleOp = Op1;
   4450   }
   4451 
   4452   SDValue Result;
   4453   if (SingleOp.getNode()) {
   4454     switch (Opc) {
   4455     case ARMISD::VCEQ:
   4456       Result = DAG.getNode(ARMISD::VCEQZ, dl, CmpVT, SingleOp); break;
   4457     case ARMISD::VCGE:
   4458       Result = DAG.getNode(ARMISD::VCGEZ, dl, CmpVT, SingleOp); break;
   4459     case ARMISD::VCLEZ:
   4460       Result = DAG.getNode(ARMISD::VCLEZ, dl, CmpVT, SingleOp); break;
   4461     case ARMISD::VCGT:
   4462       Result = DAG.getNode(ARMISD::VCGTZ, dl, CmpVT, SingleOp); break;
   4463     case ARMISD::VCLTZ:
   4464       Result = DAG.getNode(ARMISD::VCLTZ, dl, CmpVT, SingleOp); break;
   4465     default:
   4466       Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1);
   4467     }
   4468   } else {
   4469      Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1);
   4470   }
   4471 
   4472   Result = DAG.getSExtOrTrunc(Result, dl, VT);
   4473 
   4474   if (Invert)
   4475     Result = DAG.getNOT(dl, Result, VT);
   4476 
   4477   return Result;
   4478 }
   4479 
   4480 /// isNEONModifiedImm - Check if the specified splat value corresponds to a
   4481 /// valid vector constant for a NEON instruction with a "modified immediate"
   4482 /// operand (e.g., VMOV).  If so, return the encoded value.
   4483 static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
   4484                                  unsigned SplatBitSize, SelectionDAG &DAG,
   4485                                  EVT &VT, bool is128Bits, NEONModImmType type) {
   4486   unsigned OpCmode, Imm;
   4487 
   4488   // SplatBitSize is set to the smallest size that splats the vector, so a
   4489   // zero vector will always have SplatBitSize == 8.  However, NEON modified
   4490   // immediate instructions others than VMOV do not support the 8-bit encoding
   4491   // of a zero vector, and the default encoding of zero is supposed to be the
   4492   // 32-bit version.
   4493   if (SplatBits == 0)
   4494     SplatBitSize = 32;
   4495 
   4496   switch (SplatBitSize) {
   4497   case 8:
   4498     if (type != VMOVModImm)
   4499       return SDValue();
   4500     // Any 1-byte value is OK.  Op=0, Cmode=1110.
   4501     assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
   4502     OpCmode = 0xe;
   4503     Imm = SplatBits;
   4504     VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
   4505     break;
   4506 
   4507   case 16:
   4508     // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
   4509     VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
   4510     if ((SplatBits & ~0xff) == 0) {
   4511       // Value = 0x00nn: Op=x, Cmode=100x.
   4512       OpCmode = 0x8;
   4513       Imm = SplatBits;
   4514       break;
   4515     }
   4516     if ((SplatBits & ~0xff00) == 0) {
   4517       // Value = 0xnn00: Op=x, Cmode=101x.
   4518       OpCmode = 0xa;
   4519       Imm = SplatBits >> 8;
   4520       break;
   4521     }
   4522     return SDValue();
   4523 
   4524   case 32:
   4525     // NEON's 32-bit VMOV supports splat values where:
   4526     // * only one byte is nonzero, or
   4527     // * the least significant byte is 0xff and the second byte is nonzero, or
   4528     // * the least significant 2 bytes are 0xff and the third is nonzero.
   4529     VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
   4530     if ((SplatBits & ~0xff) == 0) {
   4531       // Value = 0x000000nn: Op=x, Cmode=000x.
   4532       OpCmode = 0;
   4533       Imm = SplatBits;
   4534       break;
   4535     }
   4536     if ((SplatBits & ~0xff00) == 0) {
   4537       // Value = 0x0000nn00: Op=x, Cmode=001x.
   4538       OpCmode = 0x2;
   4539       Imm = SplatBits >> 8;
   4540       break;
   4541     }
   4542     if ((SplatBits & ~0xff0000) == 0) {
   4543       // Value = 0x00nn0000: Op=x, Cmode=010x.
   4544       OpCmode = 0x4;
   4545       Imm = SplatBits >> 16;
   4546       break;
   4547     }
   4548     if ((SplatBits & ~0xff000000) == 0) {
   4549       // Value = 0xnn000000: Op=x, Cmode=011x.
   4550       OpCmode = 0x6;
   4551       Imm = SplatBits >> 24;
   4552       break;
   4553     }
   4554 
   4555     // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
   4556     if (type == OtherModImm) return SDValue();
   4557 
   4558     if ((SplatBits & ~0xffff) == 0 &&
   4559         ((SplatBits | SplatUndef) & 0xff) == 0xff) {
   4560       // Value = 0x0000nnff: Op=x, Cmode=1100.
   4561       OpCmode = 0xc;
   4562       Imm = SplatBits >> 8;
   4563       break;
   4564     }
   4565 
   4566     if ((SplatBits & ~0xffffff) == 0 &&
   4567         ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
   4568       // Value = 0x00nnffff: Op=x, Cmode=1101.
   4569       OpCmode = 0xd;
   4570       Imm = SplatBits >> 16;
   4571       break;
   4572     }
   4573 
   4574     // Note: there are a few 32-bit splat values (specifically: 00ffff00,
   4575     // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
   4576     // VMOV.I32.  A (very) minor optimization would be to replicate the value
   4577     // and fall through here to test for a valid 64-bit splat.  But, then the
   4578     // caller would also need to check and handle the change in size.
   4579     return SDValue();
   4580 
   4581   case 64: {
   4582     if (type != VMOVModImm)
   4583       return SDValue();
   4584     // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
   4585     uint64_t BitMask = 0xff;
   4586     uint64_t Val = 0;
   4587     unsigned ImmMask = 1;
   4588     Imm = 0;
   4589     for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
   4590       if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
   4591         Val |= BitMask;
   4592         Imm |= ImmMask;
   4593       } else if ((SplatBits & BitMask) != 0) {
   4594         return SDValue();
   4595       }
   4596       BitMask <<= 8;
   4597       ImmMask <<= 1;
   4598     }
   4599 
   4600     if (DAG.getTargetLoweringInfo().isBigEndian())
   4601       // swap higher and lower 32 bit word
   4602       Imm = ((Imm & 0xf) << 4) | ((Imm & 0xf0) >> 4);
   4603 
   4604     // Op=1, Cmode=1110.
   4605     OpCmode = 0x1e;
   4606     VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
   4607     break;
   4608   }
   4609 
   4610   default:
   4611     llvm_unreachable("unexpected size for isNEONModifiedImm");
   4612   }
   4613 
   4614   unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
   4615   return DAG.getTargetConstant(EncodedVal, MVT::i32);
   4616 }
   4617 
   4618 SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
   4619                                            const ARMSubtarget *ST) const {
   4620   if (!ST->hasVFP3())
   4621     return SDValue();
   4622 
   4623   bool IsDouble = Op.getValueType() == MVT::f64;
   4624   ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
   4625 
   4626   // Use the default (constant pool) lowering for double constants when we have
   4627   // an SP-only FPU
   4628   if (IsDouble && Subtarget->isFPOnlySP())
   4629     return SDValue();
   4630 
   4631   // Try splatting with a VMOV.f32...
   4632   APFloat FPVal = CFP->getValueAPF();
   4633   int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal);
   4634 
   4635   if (ImmVal != -1) {
   4636     if (IsDouble || !ST->useNEONForSinglePrecisionFP()) {
   4637       // We have code in place to select a valid ConstantFP already, no need to
   4638       // do any mangling.
   4639       return Op;
   4640     }
   4641 
   4642     // It's a float and we are trying to use NEON operations where
   4643     // possible. Lower it to a splat followed by an extract.
   4644     SDLoc DL(Op);
   4645     SDValue NewVal = DAG.getTargetConstant(ImmVal, MVT::i32);
   4646     SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
   4647                                       NewVal);
   4648     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
   4649                        DAG.getConstant(0, MVT::i32));
   4650   }
   4651 
   4652   // The rest of our options are NEON only, make sure that's allowed before
   4653   // proceeding..
   4654   if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP()))
   4655     return SDValue();
   4656 
   4657   EVT VMovVT;
   4658   uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue();
   4659 
   4660   // It wouldn't really be worth bothering for doubles except for one very
   4661   // important value, which does happen to match: 0.0. So make sure we don't do
   4662   // anything stupid.
   4663   if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32))
   4664     return SDValue();
   4665 
   4666   // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
   4667   SDValue NewVal = isNEONModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, VMovVT,
   4668                                      false, VMOVModImm);
   4669   if (NewVal != SDValue()) {
   4670     SDLoc DL(Op);
   4671     SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
   4672                                       NewVal);
   4673     if (IsDouble)
   4674       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
   4675 
   4676     // It's a float: cast and extract a vector element.
   4677     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
   4678                                        VecConstant);
   4679     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
   4680                        DAG.getConstant(0, MVT::i32));
   4681   }
   4682 
   4683   // Finally, try a VMVN.i32
   4684   NewVal = isNEONModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, VMovVT,
   4685                              false, VMVNModImm);
   4686   if (NewVal != SDValue()) {
   4687     SDLoc DL(Op);
   4688     SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
   4689 
   4690     if (IsDouble)
   4691       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
   4692 
   4693     // It's a float: cast and extract a vector element.
   4694     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
   4695                                        VecConstant);
   4696     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
   4697                        DAG.getConstant(0, MVT::i32));
   4698   }
   4699 
   4700   return SDValue();
   4701 }
   4702 
   4703 // check if an VEXT instruction can handle the shuffle mask when the
   4704 // vector sources of the shuffle are the same.
   4705 static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
   4706   unsigned NumElts = VT.getVectorNumElements();
   4707 
   4708   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
   4709   if (M[0] < 0)
   4710     return false;
   4711 
   4712   Imm = M[0];
   4713 
   4714   // If this is a VEXT shuffle, the immediate value is the index of the first
   4715   // element.  The other shuffle indices must be the successive elements after
   4716   // the first one.
   4717   unsigned ExpectedElt = Imm;
   4718   for (unsigned i = 1; i < NumElts; ++i) {
   4719     // Increment the expected index.  If it wraps around, just follow it
   4720     // back to index zero and keep going.
   4721     ++ExpectedElt;
   4722     if (ExpectedElt == NumElts)
   4723       ExpectedElt = 0;
   4724 
   4725     if (M[i] < 0) continue; // ignore UNDEF indices
   4726     if (ExpectedElt != static_cast<unsigned>(M[i]))
   4727       return false;
   4728   }
   4729 
   4730   return true;
   4731 }
   4732 
   4733 
   4734 static bool isVEXTMask(ArrayRef<int> M, EVT VT,
   4735                        bool &ReverseVEXT, unsigned &Imm) {
   4736   unsigned NumElts = VT.getVectorNumElements();
   4737   ReverseVEXT = false;
   4738 
   4739   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
   4740   if (M[0] < 0)
   4741     return false;
   4742 
   4743   Imm = M[0];
   4744 
   4745   // If this is a VEXT shuffle, the immediate value is the index of the first
   4746   // element.  The other shuffle indices must be the successive elements after
   4747   // the first one.
   4748   unsigned ExpectedElt = Imm;
   4749   for (unsigned i = 1; i < NumElts; ++i) {
   4750     // Increment the expected index.  If it wraps around, it may still be
   4751     // a VEXT but the source vectors must be swapped.
   4752     ExpectedElt += 1;
   4753     if (ExpectedElt == NumElts * 2) {
   4754       ExpectedElt = 0;
   4755       ReverseVEXT = true;
   4756     }
   4757 
   4758     if (M[i] < 0) continue; // ignore UNDEF indices
   4759     if (ExpectedElt != static_cast<unsigned>(M[i]))
   4760       return false;
   4761   }
   4762 
   4763   // Adjust the index value if the source operands will be swapped.
   4764   if (ReverseVEXT)
   4765     Imm -= NumElts;
   4766 
   4767   return true;
   4768 }
   4769 
   4770 /// isVREVMask - Check if a vector shuffle corresponds to a VREV
   4771 /// instruction with the specified blocksize.  (The order of the elements
   4772 /// within each block of the vector is reversed.)
   4773 static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
   4774   assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
   4775          "Only possible block sizes for VREV are: 16, 32, 64");
   4776 
   4777   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   4778   if (EltSz == 64)
   4779     return false;
   4780 
   4781   unsigned NumElts = VT.getVectorNumElements();
   4782   unsigned BlockElts = M[0] + 1;
   4783   // If the first shuffle index is UNDEF, be optimistic.
   4784   if (M[0] < 0)
   4785     BlockElts = BlockSize / EltSz;
   4786 
   4787   if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
   4788     return false;
   4789 
   4790   for (unsigned i = 0; i < NumElts; ++i) {
   4791     if (M[i] < 0) continue; // ignore UNDEF indices
   4792     if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
   4793       return false;
   4794   }
   4795 
   4796   return true;
   4797 }
   4798 
   4799 static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
   4800   // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
   4801   // range, then 0 is placed into the resulting vector. So pretty much any mask
   4802   // of 8 elements can work here.
   4803   return VT == MVT::v8i8 && M.size() == 8;
   4804 }
   4805 
   4806 static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
   4807   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   4808   if (EltSz == 64)
   4809     return false;
   4810 
   4811   unsigned NumElts = VT.getVectorNumElements();
   4812   WhichResult = (M[0] == 0 ? 0 : 1);
   4813   for (unsigned i = 0; i < NumElts; i += 2) {
   4814     if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
   4815         (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
   4816       return false;
   4817   }
   4818   return true;
   4819 }
   4820 
   4821 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
   4822 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
   4823 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
   4824 static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
   4825   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   4826   if (EltSz == 64)
   4827     return false;
   4828 
   4829   unsigned NumElts = VT.getVectorNumElements();
   4830   WhichResult = (M[0] == 0 ? 0 : 1);
   4831   for (unsigned i = 0; i < NumElts; i += 2) {
   4832     if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
   4833         (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
   4834       return false;
   4835   }
   4836   return true;
   4837 }
   4838 
   4839 static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
   4840   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   4841   if (EltSz == 64)
   4842     return false;
   4843 
   4844   unsigned NumElts = VT.getVectorNumElements();
   4845   WhichResult = (M[0] == 0 ? 0 : 1);
   4846   for (unsigned i = 0; i != NumElts; ++i) {
   4847     if (M[i] < 0) continue; // ignore UNDEF indices
   4848     if ((unsigned) M[i] != 2 * i + WhichResult)
   4849       return false;
   4850   }
   4851 
   4852   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
   4853   if (VT.is64BitVector() && EltSz == 32)
   4854     return false;
   4855 
   4856   return true;
   4857 }
   4858 
   4859 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
   4860 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
   4861 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
   4862 static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
   4863   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   4864   if (EltSz == 64)
   4865     return false;
   4866 
   4867   unsigned Half = VT.getVectorNumElements() / 2;
   4868   WhichResult = (M[0] == 0 ? 0 : 1);
   4869   for (unsigned j = 0; j != 2; ++j) {
   4870     unsigned Idx = WhichResult;
   4871     for (unsigned i = 0; i != Half; ++i) {
   4872       int MIdx = M[i + j * Half];
   4873       if (MIdx >= 0 && (unsigned) MIdx != Idx)
   4874         return false;
   4875       Idx += 2;
   4876     }
   4877   }
   4878 
   4879   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
   4880   if (VT.is64BitVector() && EltSz == 32)
   4881     return false;
   4882 
   4883   return true;
   4884 }
   4885 
   4886 static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
   4887   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   4888   if (EltSz == 64)
   4889     return false;
   4890 
   4891   unsigned NumElts = VT.getVectorNumElements();
   4892   WhichResult = (M[0] == 0 ? 0 : 1);
   4893   unsigned Idx = WhichResult * NumElts / 2;
   4894   for (unsigned i = 0; i != NumElts; i += 2) {
   4895     if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
   4896         (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
   4897       return false;
   4898     Idx += 1;
   4899   }
   4900 
   4901   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
   4902   if (VT.is64BitVector() && EltSz == 32)
   4903     return false;
   4904 
   4905   return true;
   4906 }
   4907 
   4908 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
   4909 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
   4910 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
   4911 static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
   4912   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   4913   if (EltSz == 64)
   4914     return false;
   4915 
   4916   unsigned NumElts = VT.getVectorNumElements();
   4917   WhichResult = (M[0] == 0 ? 0 : 1);
   4918   unsigned Idx = WhichResult * NumElts / 2;
   4919   for (unsigned i = 0; i != NumElts; i += 2) {
   4920     if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
   4921         (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
   4922       return false;
   4923     Idx += 1;
   4924   }
   4925 
   4926   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
   4927   if (VT.is64BitVector() && EltSz == 32)
   4928     return false;
   4929 
   4930   return true;
   4931 }
   4932 
   4933 /// \return true if this is a reverse operation on an vector.
   4934 static bool isReverseMask(ArrayRef<int> M, EVT VT) {
   4935   unsigned NumElts = VT.getVectorNumElements();
   4936   // Make sure the mask has the right size.
   4937   if (NumElts != M.size())
   4938       return false;
   4939 
   4940   // Look for <15, ..., 3, -1, 1, 0>.
   4941   for (unsigned i = 0; i != NumElts; ++i)
   4942     if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
   4943       return false;
   4944 
   4945   return true;
   4946 }
   4947 
   4948 // If N is an integer constant that can be moved into a register in one
   4949 // instruction, return an SDValue of such a constant (will become a MOV
   4950 // instruction).  Otherwise return null.
   4951 static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
   4952                                      const ARMSubtarget *ST, SDLoc dl) {
   4953   uint64_t Val;
   4954   if (!isa<ConstantSDNode>(N))
   4955     return SDValue();
   4956   Val = cast<ConstantSDNode>(N)->getZExtValue();
   4957 
   4958   if (ST->isThumb1Only()) {
   4959     if (Val <= 255 || ~Val <= 255)
   4960       return DAG.getConstant(Val, MVT::i32);
   4961   } else {
   4962     if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
   4963       return DAG.getConstant(Val, MVT::i32);
   4964   }
   4965   return SDValue();
   4966 }
   4967 
   4968 // If this is a case we can't handle, return null and let the default
   4969 // expansion code take care of it.
   4970 SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
   4971                                              const ARMSubtarget *ST) const {
   4972   BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
   4973   SDLoc dl(Op);
   4974   EVT VT = Op.getValueType();
   4975 
   4976   APInt SplatBits, SplatUndef;
   4977   unsigned SplatBitSize;
   4978   bool HasAnyUndefs;
   4979   if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
   4980     if (SplatBitSize <= 64) {
   4981       // Check if an immediate VMOV works.
   4982       EVT VmovVT;
   4983       SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
   4984                                       SplatUndef.getZExtValue(), SplatBitSize,
   4985                                       DAG, VmovVT, VT.is128BitVector(),
   4986                                       VMOVModImm);
   4987       if (Val.getNode()) {
   4988         SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
   4989         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
   4990       }
   4991 
   4992       // Try an immediate VMVN.
   4993       uint64_t NegatedImm = (~SplatBits).getZExtValue();
   4994       Val = isNEONModifiedImm(NegatedImm,
   4995                                       SplatUndef.getZExtValue(), SplatBitSize,
   4996                                       DAG, VmovVT, VT.is128BitVector(),
   4997                                       VMVNModImm);
   4998       if (Val.getNode()) {
   4999         SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
   5000         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
   5001       }
   5002 
   5003       // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
   5004       if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
   5005         int ImmVal = ARM_AM::getFP32Imm(SplatBits);
   5006         if (ImmVal != -1) {
   5007           SDValue Val = DAG.getTargetConstant(ImmVal, MVT::i32);
   5008           return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
   5009         }
   5010       }
   5011     }
   5012   }
   5013 
   5014   // Scan through the operands to see if only one value is used.
   5015   //
   5016   // As an optimisation, even if more than one value is used it may be more
   5017   // profitable to splat with one value then change some lanes.
   5018   //
   5019   // Heuristically we decide to do this if the vector has a "dominant" value,
   5020   // defined as splatted to more than half of the lanes.
   5021   unsigned NumElts = VT.getVectorNumElements();
   5022   bool isOnlyLowElement = true;
   5023   bool usesOnlyOneValue = true;
   5024   bool hasDominantValue = false;
   5025   bool isConstant = true;
   5026 
   5027   // Map of the number of times a particular SDValue appears in the
   5028   // element list.
   5029   DenseMap<SDValue, unsigned> ValueCounts;
   5030   SDValue Value;
   5031   for (unsigned i = 0; i < NumElts; ++i) {
   5032     SDValue V = Op.getOperand(i);
   5033     if (V.getOpcode() == ISD::UNDEF)
   5034       continue;
   5035     if (i > 0)
   5036       isOnlyLowElement = false;
   5037     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
   5038       isConstant = false;
   5039 
   5040     ValueCounts.insert(std::make_pair(V, 0));
   5041     unsigned &Count = ValueCounts[V];
   5042 
   5043     // Is this value dominant? (takes up more than half of the lanes)
   5044     if (++Count > (NumElts / 2)) {
   5045       hasDominantValue = true;
   5046       Value = V;
   5047     }
   5048   }
   5049   if (ValueCounts.size() != 1)
   5050     usesOnlyOneValue = false;
   5051   if (!Value.getNode() && ValueCounts.size() > 0)
   5052     Value = ValueCounts.begin()->first;
   5053 
   5054   if (ValueCounts.size() == 0)
   5055     return DAG.getUNDEF(VT);
   5056 
   5057   // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
   5058   // Keep going if we are hitting this case.
   5059   if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
   5060     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
   5061 
   5062   unsigned EltSize = VT.getVectorElementType().getSizeInBits();
   5063 
   5064   // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
   5065   // i32 and try again.
   5066   if (hasDominantValue && EltSize <= 32) {
   5067     if (!isConstant) {
   5068       SDValue N;
   5069 
   5070       // If we are VDUPing a value that comes directly from a vector, that will
   5071       // cause an unnecessary move to and from a GPR, where instead we could
   5072       // just use VDUPLANE. We can only do this if the lane being extracted
   5073       // is at a constant index, as the VDUP from lane instructions only have
   5074       // constant-index forms.
   5075       if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
   5076           isa<ConstantSDNode>(Value->getOperand(1))) {
   5077         // We need to create a new undef vector to use for the VDUPLANE if the
   5078         // size of the vector from which we get the value is different than the
   5079         // size of the vector that we need to create. We will insert the element
   5080         // such that the register coalescer will remove unnecessary copies.
   5081         if (VT != Value->getOperand(0).getValueType()) {
   5082           ConstantSDNode *constIndex;
   5083           constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1));
   5084           assert(constIndex && "The index is not a constant!");
   5085           unsigned index = constIndex->getAPIntValue().getLimitedValue() %
   5086                              VT.getVectorNumElements();
   5087           N =  DAG.getNode(ARMISD::VDUPLANE, dl, VT,
   5088                  DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
   5089                         Value, DAG.getConstant(index, MVT::i32)),
   5090                            DAG.getConstant(index, MVT::i32));
   5091         } else
   5092           N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
   5093                         Value->getOperand(0), Value->getOperand(1));
   5094       } else
   5095         N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
   5096 
   5097       if (!usesOnlyOneValue) {
   5098         // The dominant value was splatted as 'N', but we now have to insert
   5099         // all differing elements.
   5100         for (unsigned I = 0; I < NumElts; ++I) {
   5101           if (Op.getOperand(I) == Value)
   5102             continue;
   5103           SmallVector<SDValue, 3> Ops;
   5104           Ops.push_back(N);
   5105           Ops.push_back(Op.getOperand(I));
   5106           Ops.push_back(DAG.getConstant(I, MVT::i32));
   5107           N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops);
   5108         }
   5109       }
   5110       return N;
   5111     }
   5112     if (VT.getVectorElementType().isFloatingPoint()) {
   5113       SmallVector<SDValue, 8> Ops;
   5114       for (unsigned i = 0; i < NumElts; ++i)
   5115         Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
   5116                                   Op.getOperand(i)));
   5117       EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
   5118       SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops);
   5119       Val = LowerBUILD_VECTOR(Val, DAG, ST);
   5120       if (Val.getNode())
   5121         return DAG.getNode(ISD::BITCAST, dl, VT, Val);
   5122     }
   5123     if (usesOnlyOneValue) {
   5124       SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
   5125       if (isConstant && Val.getNode())
   5126         return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
   5127     }
   5128   }
   5129 
   5130   // If all elements are constants and the case above didn't get hit, fall back
   5131   // to the default expansion, which will generate a load from the constant
   5132   // pool.
   5133   if (isConstant)
   5134     return SDValue();
   5135 
   5136   // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
   5137   if (NumElts >= 4) {
   5138     SDValue shuffle = ReconstructShuffle(Op, DAG);
   5139     if (shuffle != SDValue())
   5140       return shuffle;
   5141   }
   5142 
   5143   // Vectors with 32- or 64-bit elements can be built by directly assigning
   5144   // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
   5145   // will be legalized.
   5146   if (EltSize >= 32) {
   5147     // Do the expansion with floating-point types, since that is what the VFP
   5148     // registers are defined to use, and since i64 is not legal.
   5149     EVT EltVT = EVT::getFloatingPointVT(EltSize);
   5150     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
   5151     SmallVector<SDValue, 8> Ops;
   5152     for (unsigned i = 0; i < NumElts; ++i)
   5153       Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
   5154     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
   5155     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
   5156   }
   5157 
   5158   // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
   5159   // know the default expansion would otherwise fall back on something even
   5160   // worse. For a vector with one or two non-undef values, that's
   5161   // scalar_to_vector for the elements followed by a shuffle (provided the
   5162   // shuffle is valid for the target) and materialization element by element
   5163   // on the stack followed by a load for everything else.
   5164   if (!isConstant && !usesOnlyOneValue) {
   5165     SDValue Vec = DAG.getUNDEF(VT);
   5166     for (unsigned i = 0 ; i < NumElts; ++i) {
   5167       SDValue V = Op.getOperand(i);
   5168       if (V.getOpcode() == ISD::UNDEF)
   5169         continue;
   5170       SDValue LaneIdx = DAG.getConstant(i, MVT::i32);
   5171       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
   5172     }
   5173     return Vec;
   5174   }
   5175 
   5176   return SDValue();
   5177 }
   5178 
   5179 // Gather data to see if the operation can be modelled as a
   5180 // shuffle in combination with VEXTs.
   5181 SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
   5182                                               SelectionDAG &DAG) const {
   5183   SDLoc dl(Op);
   5184   EVT VT = Op.getValueType();
   5185   unsigned NumElts = VT.getVectorNumElements();
   5186 
   5187   SmallVector<SDValue, 2> SourceVecs;
   5188   SmallVector<unsigned, 2> MinElts;
   5189   SmallVector<unsigned, 2> MaxElts;
   5190 
   5191   for (unsigned i = 0; i < NumElts; ++i) {
   5192     SDValue V = Op.getOperand(i);
   5193     if (V.getOpcode() == ISD::UNDEF)
   5194       continue;
   5195     else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
   5196       // A shuffle can only come from building a vector from various
   5197       // elements of other vectors.
   5198       return SDValue();
   5199     } else if (V.getOperand(0).getValueType().getVectorElementType() !=
   5200                VT.getVectorElementType()) {
   5201       // This code doesn't know how to handle shuffles where the vector
   5202       // element types do not match (this happens because type legalization
   5203       // promotes the return type of EXTRACT_VECTOR_ELT).
   5204       // FIXME: It might be appropriate to extend this code to handle
   5205       // mismatched types.
   5206       return SDValue();
   5207     }
   5208 
   5209     // Record this extraction against the appropriate vector if possible...
   5210     SDValue SourceVec = V.getOperand(0);
   5211     // If the element number isn't a constant, we can't effectively
   5212     // analyze what's going on.
   5213     if (!isa<ConstantSDNode>(V.getOperand(1)))
   5214       return SDValue();
   5215     unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
   5216     bool FoundSource = false;
   5217     for (unsigned j = 0; j < SourceVecs.size(); ++j) {
   5218       if (SourceVecs[j] == SourceVec) {
   5219         if (MinElts[j] > EltNo)
   5220           MinElts[j] = EltNo;
   5221         if (MaxElts[j] < EltNo)
   5222           MaxElts[j] = EltNo;
   5223         FoundSource = true;
   5224         break;
   5225       }
   5226     }
   5227 
   5228     // Or record a new source if not...
   5229     if (!FoundSource) {
   5230       SourceVecs.push_back(SourceVec);
   5231       MinElts.push_back(EltNo);
   5232       MaxElts.push_back(EltNo);
   5233     }
   5234   }
   5235 
   5236   // Currently only do something sane when at most two source vectors
   5237   // involved.
   5238   if (SourceVecs.size() > 2)
   5239     return SDValue();
   5240 
   5241   SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
   5242   int VEXTOffsets[2] = {0, 0};
   5243 
   5244   // This loop extracts the usage patterns of the source vectors
   5245   // and prepares appropriate SDValues for a shuffle if possible.
   5246   for (unsigned i = 0; i < SourceVecs.size(); ++i) {
   5247     if (SourceVecs[i].getValueType() == VT) {
   5248       // No VEXT necessary
   5249       ShuffleSrcs[i] = SourceVecs[i];
   5250       VEXTOffsets[i] = 0;
   5251       continue;
   5252     } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
   5253       // It probably isn't worth padding out a smaller vector just to
   5254       // break it down again in a shuffle.
   5255       return SDValue();
   5256     }
   5257 
   5258     // Since only 64-bit and 128-bit vectors are legal on ARM and
   5259     // we've eliminated the other cases...
   5260     assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts &&
   5261            "unexpected vector sizes in ReconstructShuffle");
   5262 
   5263     if (MaxElts[i] - MinElts[i] >= NumElts) {
   5264       // Span too large for a VEXT to cope
   5265       return SDValue();
   5266     }
   5267 
   5268     if (MinElts[i] >= NumElts) {
   5269       // The extraction can just take the second half
   5270       VEXTOffsets[i] = NumElts;
   5271       ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
   5272                                    SourceVecs[i],
   5273                                    DAG.getIntPtrConstant(NumElts));
   5274     } else if (MaxElts[i] < NumElts) {
   5275       // The extraction can just take the first half
   5276       VEXTOffsets[i] = 0;
   5277       ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
   5278                                    SourceVecs[i],
   5279                                    DAG.getIntPtrConstant(0));
   5280     } else {
   5281       // An actual VEXT is needed
   5282       VEXTOffsets[i] = MinElts[i];
   5283       SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
   5284                                      SourceVecs[i],
   5285                                      DAG.getIntPtrConstant(0));
   5286       SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
   5287                                      SourceVecs[i],
   5288                                      DAG.getIntPtrConstant(NumElts));
   5289       ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2,
   5290                                    DAG.getConstant(VEXTOffsets[i], MVT::i32));
   5291     }
   5292   }
   5293 
   5294   SmallVector<int, 8> Mask;
   5295 
   5296   for (unsigned i = 0; i < NumElts; ++i) {
   5297     SDValue Entry = Op.getOperand(i);
   5298     if (Entry.getOpcode() == ISD::UNDEF) {
   5299       Mask.push_back(-1);
   5300       continue;
   5301     }
   5302 
   5303     SDValue ExtractVec = Entry.getOperand(0);
   5304     int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i)
   5305                                           .getOperand(1))->getSExtValue();
   5306     if (ExtractVec == SourceVecs[0]) {
   5307       Mask.push_back(ExtractElt - VEXTOffsets[0]);
   5308     } else {
   5309       Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
   5310     }
   5311   }
   5312 
   5313   // Final check before we try to produce nonsense...
   5314   if (isShuffleMaskLegal(Mask, VT))
   5315     return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
   5316                                 &Mask[0]);
   5317 
   5318   return SDValue();
   5319 }
   5320 
   5321 /// isShuffleMaskLegal - Targets can use this to indicate that they only
   5322 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
   5323 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
   5324 /// are assumed to be legal.
   5325 bool
   5326 ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
   5327                                       EVT VT) const {
   5328   if (VT.getVectorNumElements() == 4 &&
   5329       (VT.is128BitVector() || VT.is64BitVector())) {
   5330     unsigned PFIndexes[4];
   5331     for (unsigned i = 0; i != 4; ++i) {
   5332       if (M[i] < 0)
   5333         PFIndexes[i] = 8;
   5334       else
   5335         PFIndexes[i] = M[i];
   5336     }
   5337 
   5338     // Compute the index in the perfect shuffle table.
   5339     unsigned PFTableIndex =
   5340       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
   5341     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
   5342     unsigned Cost = (PFEntry >> 30);
   5343 
   5344     if (Cost <= 4)
   5345       return true;
   5346   }
   5347 
   5348   bool ReverseVEXT;
   5349   unsigned Imm, WhichResult;
   5350 
   5351   unsigned EltSize = VT.getVectorElementType().getSizeInBits();
   5352   return (EltSize >= 32 ||
   5353           ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
   5354           isVREVMask(M, VT, 64) ||
   5355           isVREVMask(M, VT, 32) ||
   5356           isVREVMask(M, VT, 16) ||
   5357           isVEXTMask(M, VT, ReverseVEXT, Imm) ||
   5358           isVTBLMask(M, VT) ||
   5359           isVTRNMask(M, VT, WhichResult) ||
   5360           isVUZPMask(M, VT, WhichResult) ||
   5361           isVZIPMask(M, VT, WhichResult) ||
   5362           isVTRN_v_undef_Mask(M, VT, WhichResult) ||
   5363           isVUZP_v_undef_Mask(M, VT, WhichResult) ||
   5364           isVZIP_v_undef_Mask(M, VT, WhichResult) ||
   5365           ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(M, VT)));
   5366 }
   5367 
   5368 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
   5369 /// the specified operations to build the shuffle.
   5370 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
   5371                                       SDValue RHS, SelectionDAG &DAG,
   5372                                       SDLoc dl) {
   5373   unsigned OpNum = (PFEntry >> 26) & 0x0F;
   5374   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
   5375   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
   5376 
   5377   enum {
   5378     OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
   5379     OP_VREV,
   5380     OP_VDUP0,
   5381     OP_VDUP1,
   5382     OP_VDUP2,
   5383     OP_VDUP3,
   5384     OP_VEXT1,
   5385     OP_VEXT2,
   5386     OP_VEXT3,
   5387     OP_VUZPL, // VUZP, left result
   5388     OP_VUZPR, // VUZP, right result
   5389     OP_VZIPL, // VZIP, left result
   5390     OP_VZIPR, // VZIP, right result
   5391     OP_VTRNL, // VTRN, left result
   5392     OP_VTRNR  // VTRN, right result
   5393   };
   5394 
   5395   if (OpNum == OP_COPY) {
   5396     if (LHSID == (1*9+2)*9+3) return LHS;
   5397     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
   5398     return RHS;
   5399   }
   5400 
   5401   SDValue OpLHS, OpRHS;
   5402   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
   5403   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
   5404   EVT VT = OpLHS.getValueType();
   5405 
   5406   switch (OpNum) {
   5407   default: llvm_unreachable("Unknown shuffle opcode!");
   5408   case OP_VREV:
   5409     // VREV divides the vector in half and swaps within the half.
   5410     if (VT.getVectorElementType() == MVT::i32 ||
   5411         VT.getVectorElementType() == MVT::f32)
   5412       return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
   5413     // vrev <4 x i16> -> VREV32
   5414     if (VT.getVectorElementType() == MVT::i16)
   5415       return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
   5416     // vrev <4 x i8> -> VREV16
   5417     assert(VT.getVectorElementType() == MVT::i8);
   5418     return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
   5419   case OP_VDUP0:
   5420   case OP_VDUP1:
   5421   case OP_VDUP2:
   5422   case OP_VDUP3:
   5423     return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
   5424                        OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
   5425   case OP_VEXT1:
   5426   case OP_VEXT2:
   5427   case OP_VEXT3:
   5428     return DAG.getNode(ARMISD::VEXT, dl, VT,
   5429                        OpLHS, OpRHS,
   5430                        DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
   5431   case OP_VUZPL:
   5432   case OP_VUZPR:
   5433     return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
   5434                        OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
   5435   case OP_VZIPL:
   5436   case OP_VZIPR:
   5437     return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
   5438                        OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
   5439   case OP_VTRNL:
   5440   case OP_VTRNR:
   5441     return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
   5442                        OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
   5443   }
   5444 }
   5445 
   5446 static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
   5447                                        ArrayRef<int> ShuffleMask,
   5448                                        SelectionDAG &DAG) {
   5449   // Check to see if we can use the VTBL instruction.
   5450   SDValue V1 = Op.getOperand(0);
   5451   SDValue V2 = Op.getOperand(1);
   5452   SDLoc DL(Op);
   5453 
   5454   SmallVector<SDValue, 8> VTBLMask;
   5455   for (ArrayRef<int>::iterator
   5456          I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
   5457     VTBLMask.push_back(DAG.getConstant(*I, MVT::i32));
   5458 
   5459   if (V2.getNode()->getOpcode() == ISD::UNDEF)
   5460     return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
   5461                        DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8, VTBLMask));
   5462 
   5463   return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
   5464                      DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8, VTBLMask));
   5465 }
   5466 
   5467 static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,
   5468                                                       SelectionDAG &DAG) {
   5469   SDLoc DL(Op);
   5470   SDValue OpLHS = Op.getOperand(0);
   5471   EVT VT = OpLHS.getValueType();
   5472 
   5473   assert((VT == MVT::v8i16 || VT == MVT::v16i8) &&
   5474          "Expect an v8i16/v16i8 type");
   5475   OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS);
   5476   // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
   5477   // extract the first 8 bytes into the top double word and the last 8 bytes
   5478   // into the bottom double word. The v8i16 case is similar.
   5479   unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4;
   5480   return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS,
   5481                      DAG.getConstant(ExtractNum, MVT::i32));
   5482 }
   5483 
   5484 static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
   5485   SDValue V1 = Op.getOperand(0);
   5486   SDValue V2 = Op.getOperand(1);
   5487   SDLoc dl(Op);
   5488   EVT VT = Op.getValueType();
   5489   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
   5490 
   5491   // Convert shuffles that are directly supported on NEON to target-specific
   5492   // DAG nodes, instead of keeping them as shuffles and matching them again
   5493   // during code selection.  This is more efficient and avoids the possibility
   5494   // of inconsistencies between legalization and selection.
   5495   // FIXME: floating-point vectors should be canonicalized to integer vectors
   5496   // of the same time so that they get CSEd properly.
   5497   ArrayRef<int> ShuffleMask = SVN->getMask();
   5498 
   5499   unsigned EltSize = VT.getVectorElementType().getSizeInBits();
   5500   if (EltSize <= 32) {
   5501     if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
   5502       int Lane = SVN->getSplatIndex();
   5503       // If this is undef splat, generate it via "just" vdup, if possible.
   5504       if (Lane == -1) Lane = 0;
   5505 
   5506       // Test if V1 is a SCALAR_TO_VECTOR.
   5507       if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
   5508         return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
   5509       }
   5510       // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
   5511       // (and probably will turn into a SCALAR_TO_VECTOR once legalization
   5512       // reaches it).
   5513       if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
   5514           !isa<ConstantSDNode>(V1.getOperand(0))) {
   5515         bool IsScalarToVector = true;
   5516         for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
   5517           if (V1.getOperand(i).getOpcode() != ISD::UNDEF) {
   5518             IsScalarToVector = false;
   5519             break;
   5520           }
   5521         if (IsScalarToVector)
   5522           return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
   5523       }
   5524       return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
   5525                          DAG.getConstant(Lane, MVT::i32));
   5526     }
   5527 
   5528     bool ReverseVEXT;
   5529     unsigned Imm;
   5530     if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
   5531       if (ReverseVEXT)
   5532         std::swap(V1, V2);
   5533       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
   5534                          DAG.getConstant(Imm, MVT::i32));
   5535     }
   5536 
   5537     if (isVREVMask(ShuffleMask, VT, 64))
   5538       return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
   5539     if (isVREVMask(ShuffleMask, VT, 32))
   5540       return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
   5541     if (isVREVMask(ShuffleMask, VT, 16))
   5542       return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
   5543 
   5544     if (V2->getOpcode() == ISD::UNDEF &&
   5545         isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
   5546       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
   5547                          DAG.getConstant(Imm, MVT::i32));
   5548     }
   5549 
   5550     // Check for Neon shuffles that modify both input vectors in place.
   5551     // If both results are used, i.e., if there are two shuffles with the same
   5552     // source operands and with masks corresponding to both results of one of
   5553     // these operations, DAG memoization will ensure that a single node is
   5554     // used for both shuffles.
   5555     unsigned WhichResult;
   5556     if (isVTRNMask(ShuffleMask, VT, WhichResult))
   5557       return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
   5558                          V1, V2).getValue(WhichResult);
   5559     if (isVUZPMask(ShuffleMask, VT, WhichResult))
   5560       return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
   5561                          V1, V2).getValue(WhichResult);
   5562     if (isVZIPMask(ShuffleMask, VT, WhichResult))
   5563       return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
   5564                          V1, V2).getValue(WhichResult);
   5565 
   5566     if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
   5567       return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
   5568                          V1, V1).getValue(WhichResult);
   5569     if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
   5570       return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
   5571                          V1, V1).getValue(WhichResult);
   5572     if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
   5573       return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
   5574                          V1, V1).getValue(WhichResult);
   5575   }
   5576 
   5577   // If the shuffle is not directly supported and it has 4 elements, use
   5578   // the PerfectShuffle-generated table to synthesize it from other shuffles.
   5579   unsigned NumElts = VT.getVectorNumElements();
   5580   if (NumElts == 4) {
   5581     unsigned PFIndexes[4];
   5582     for (unsigned i = 0; i != 4; ++i) {
   5583       if (ShuffleMask[i] < 0)
   5584         PFIndexes[i] = 8;
   5585       else
   5586         PFIndexes[i] = ShuffleMask[i];
   5587     }
   5588 
   5589     // Compute the index in the perfect shuffle table.
   5590     unsigned PFTableIndex =
   5591       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
   5592     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
   5593     unsigned Cost = (PFEntry >> 30);
   5594 
   5595     if (Cost <= 4)
   5596       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
   5597   }
   5598 
   5599   // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
   5600   if (EltSize >= 32) {
   5601     // Do the expansion with floating-point types, since that is what the VFP
   5602     // registers are defined to use, and since i64 is not legal.
   5603     EVT EltVT = EVT::getFloatingPointVT(EltSize);
   5604     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
   5605     V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
   5606     V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
   5607     SmallVector<SDValue, 8> Ops;
   5608     for (unsigned i = 0; i < NumElts; ++i) {
   5609       if (ShuffleMask[i] < 0)
   5610         Ops.push_back(DAG.getUNDEF(EltVT));
   5611       else
   5612         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
   5613                                   ShuffleMask[i] < (int)NumElts ? V1 : V2,
   5614                                   DAG.getConstant(ShuffleMask[i] & (NumElts-1),
   5615                                                   MVT::i32)));
   5616     }
   5617     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
   5618     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
   5619   }
   5620 
   5621   if ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT))
   5622     return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG);
   5623 
   5624   if (VT == MVT::v8i8) {
   5625     SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG);
   5626     if (NewOp.getNode())
   5627       return NewOp;
   5628   }
   5629 
   5630   return SDValue();
   5631 }
   5632 
   5633 static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
   5634   // INSERT_VECTOR_ELT is legal only for immediate indexes.
   5635   SDValue Lane = Op.getOperand(2);
   5636   if (!isa<ConstantSDNode>(Lane))
   5637     return SDValue();
   5638 
   5639   return Op;
   5640 }
   5641 
   5642 static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
   5643   // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
   5644   SDValue Lane = Op.getOperand(1);
   5645   if (!isa<ConstantSDNode>(Lane))
   5646     return SDValue();
   5647 
   5648   SDValue Vec = Op.getOperand(0);
   5649   if (Op.getValueType() == MVT::i32 &&
   5650       Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
   5651     SDLoc dl(Op);
   5652     return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
   5653   }
   5654 
   5655   return Op;
   5656 }
   5657 
   5658 static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
   5659   // The only time a CONCAT_VECTORS operation can have legal types is when
   5660   // two 64-bit vectors are concatenated to a 128-bit vector.
   5661   assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
   5662          "unexpected CONCAT_VECTORS");
   5663   SDLoc dl(Op);
   5664   SDValue Val = DAG.getUNDEF(MVT::v2f64);
   5665   SDValue Op0 = Op.getOperand(0);
   5666   SDValue Op1 = Op.getOperand(1);
   5667   if (Op0.getOpcode() != ISD::UNDEF)
   5668     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
   5669                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
   5670                       DAG.getIntPtrConstant(0));
   5671   if (Op1.getOpcode() != ISD::UNDEF)
   5672     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
   5673                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
   5674                       DAG.getIntPtrConstant(1));
   5675   return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
   5676 }
   5677 
   5678 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
   5679 /// element has been zero/sign-extended, depending on the isSigned parameter,
   5680 /// from an integer type half its size.
   5681 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
   5682                                    bool isSigned) {
   5683   // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
   5684   EVT VT = N->getValueType(0);
   5685   if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
   5686     SDNode *BVN = N->getOperand(0).getNode();
   5687     if (BVN->getValueType(0) != MVT::v4i32 ||
   5688         BVN->getOpcode() != ISD::BUILD_VECTOR)
   5689       return false;
   5690     unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
   5691     unsigned HiElt = 1 - LoElt;
   5692     ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
   5693     ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
   5694     ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
   5695     ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
   5696     if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
   5697       return false;
   5698     if (isSigned) {
   5699       if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
   5700           Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
   5701         return true;
   5702     } else {
   5703       if (Hi0->isNullValue() && Hi1->isNullValue())
   5704         return true;
   5705     }
   5706     return false;
   5707   }
   5708 
   5709   if (N->getOpcode() != ISD::BUILD_VECTOR)
   5710     return false;
   5711 
   5712   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
   5713     SDNode *Elt = N->getOperand(i).getNode();
   5714     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
   5715       unsigned EltSize = VT.getVectorElementType().getSizeInBits();
   5716       unsigned HalfSize = EltSize / 2;
   5717       if (isSigned) {
   5718         if (!isIntN(HalfSize, C->getSExtValue()))
   5719           return false;
   5720       } else {
   5721         if (!isUIntN(HalfSize, C->getZExtValue()))
   5722           return false;
   5723       }
   5724       continue;
   5725     }
   5726     return false;
   5727   }
   5728 
   5729   return true;
   5730 }
   5731 
   5732 /// isSignExtended - Check if a node is a vector value that is sign-extended
   5733 /// or a constant BUILD_VECTOR with sign-extended elements.
   5734 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
   5735   if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
   5736     return true;
   5737   if (isExtendedBUILD_VECTOR(N, DAG, true))
   5738     return true;
   5739   return false;
   5740 }
   5741 
   5742 /// isZeroExtended - Check if a node is a vector value that is zero-extended
   5743 /// or a constant BUILD_VECTOR with zero-extended elements.
   5744 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
   5745   if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
   5746     return true;
   5747   if (isExtendedBUILD_VECTOR(N, DAG, false))
   5748     return true;
   5749   return false;
   5750 }
   5751 
   5752 static EVT getExtensionTo64Bits(const EVT &OrigVT) {
   5753   if (OrigVT.getSizeInBits() >= 64)
   5754     return OrigVT;
   5755 
   5756   assert(OrigVT.isSimple() && "Expecting a simple value type");
   5757 
   5758   MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
   5759   switch (OrigSimpleTy) {
   5760   default: llvm_unreachable("Unexpected Vector Type");
   5761   case MVT::v2i8:
   5762   case MVT::v2i16:
   5763      return MVT::v2i32;
   5764   case MVT::v4i8:
   5765     return  MVT::v4i16;
   5766   }
   5767 }
   5768 
   5769 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
   5770 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
   5771 /// We insert the required extension here to get the vector to fill a D register.
   5772 static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
   5773                                             const EVT &OrigTy,
   5774                                             const EVT &ExtTy,
   5775                                             unsigned ExtOpcode) {
   5776   // The vector originally had a size of OrigTy. It was then extended to ExtTy.
   5777   // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
   5778   // 64-bits we need to insert a new extension so that it will be 64-bits.
   5779   assert(ExtTy.is128BitVector() && "Unexpected extension size");
   5780   if (OrigTy.getSizeInBits() >= 64)
   5781     return N;
   5782 
   5783   // Must extend size to at least 64 bits to be used as an operand for VMULL.
   5784   EVT NewVT = getExtensionTo64Bits(OrigTy);
   5785 
   5786   return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
   5787 }
   5788 
   5789 /// SkipLoadExtensionForVMULL - return a load of the original vector size that
   5790 /// does not do any sign/zero extension. If the original vector is less
   5791 /// than 64 bits, an appropriate extension will be added after the load to
   5792 /// reach a total size of 64 bits. We have to add the extension separately
   5793 /// because ARM does not have a sign/zero extending load for vectors.
   5794 static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
   5795   EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT());
   5796 
   5797   // The load already has the right type.
   5798   if (ExtendedTy == LD->getMemoryVT())
   5799     return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(),
   5800                 LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
   5801                 LD->isNonTemporal(), LD->isInvariant(),
   5802                 LD->getAlignment());
   5803 
   5804   // We need to create a zextload/sextload. We cannot just create a load
   5805   // followed by a zext/zext node because LowerMUL is also run during normal
   5806   // operation legalization where we can't create illegal types.
   5807   return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
   5808                         LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
   5809                         LD->getMemoryVT(), LD->isVolatile(), LD->isInvariant(),
   5810                         LD->isNonTemporal(), LD->getAlignment());
   5811 }
   5812 
   5813 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
   5814 /// extending load, or BUILD_VECTOR with extended elements, return the
   5815 /// unextended value. The unextended vector should be 64 bits so that it can
   5816 /// be used as an operand to a VMULL instruction. If the original vector size
   5817 /// before extension is less than 64 bits we add a an extension to resize
   5818 /// the vector to 64 bits.
   5819 static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
   5820   if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
   5821     return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
   5822                                         N->getOperand(0)->getValueType(0),
   5823                                         N->getValueType(0),
   5824                                         N->getOpcode());
   5825 
   5826   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
   5827     return SkipLoadExtensionForVMULL(LD, DAG);
   5828 
   5829   // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
   5830   // have been legalized as a BITCAST from v4i32.
   5831   if (N->getOpcode() == ISD::BITCAST) {
   5832     SDNode *BVN = N->getOperand(0).getNode();
   5833     assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
   5834            BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
   5835     unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
   5836     return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), MVT::v2i32,
   5837                        BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
   5838   }
   5839   // Construct a new BUILD_VECTOR with elements truncated to half the size.
   5840   assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
   5841   EVT VT = N->getValueType(0);
   5842   unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
   5843   unsigned NumElts = VT.getVectorNumElements();
   5844   MVT TruncVT = MVT::getIntegerVT(EltSize);
   5845   SmallVector<SDValue, 8> Ops;
   5846   for (unsigned i = 0; i != NumElts; ++i) {
   5847     ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
   5848     const APInt &CInt = C->getAPIntValue();
   5849     // Element types smaller than 32 bits are not legal, so use i32 elements.
   5850     // The values are implicitly truncated so sext vs. zext doesn't matter.
   5851     Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), MVT::i32));
   5852   }
   5853   return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
   5854                      MVT::getVectorVT(TruncVT, NumElts), Ops);
   5855 }
   5856 
   5857 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
   5858   unsigned Opcode = N->getOpcode();
   5859   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
   5860     SDNode *N0 = N->getOperand(0).getNode();
   5861     SDNode *N1 = N->getOperand(1).getNode();
   5862     return N0->hasOneUse() && N1->hasOneUse() &&
   5863       isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
   5864   }
   5865   return false;
   5866 }
   5867 
   5868 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
   5869   unsigned Opcode = N->getOpcode();
   5870   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
   5871     SDNode *N0 = N->getOperand(0).getNode();
   5872     SDNode *N1 = N->getOperand(1).getNode();
   5873     return N0->hasOneUse() && N1->hasOneUse() &&
   5874       isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
   5875   }
   5876   return false;
   5877 }
   5878 
   5879 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
   5880   // Multiplications are only custom-lowered for 128-bit vectors so that
   5881   // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
   5882   EVT VT = Op.getValueType();
   5883   assert(VT.is128BitVector() && VT.isInteger() &&
   5884          "unexpected type for custom-lowering ISD::MUL");
   5885   SDNode *N0 = Op.getOperand(0).getNode();
   5886   SDNode *N1 = Op.getOperand(1).getNode();
   5887   unsigned NewOpc = 0;
   5888   bool isMLA = false;
   5889   bool isN0SExt = isSignExtended(N0, DAG);
   5890   bool isN1SExt = isSignExtended(N1, DAG);
   5891   if (isN0SExt && isN1SExt)
   5892     NewOpc = ARMISD::VMULLs;
   5893   else {
   5894     bool isN0ZExt = isZeroExtended(N0, DAG);
   5895     bool isN1ZExt = isZeroExtended(N1, DAG);
   5896     if (isN0ZExt && isN1ZExt)
   5897       NewOpc = ARMISD::VMULLu;
   5898     else if (isN1SExt || isN1ZExt) {
   5899       // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
   5900       // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
   5901       if (isN1SExt && isAddSubSExt(N0, DAG)) {
   5902         NewOpc = ARMISD::VMULLs;
   5903         isMLA = true;
   5904       } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
   5905         NewOpc = ARMISD::VMULLu;
   5906         isMLA = true;
   5907       } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
   5908         std::swap(N0, N1);
   5909         NewOpc = ARMISD::VMULLu;
   5910         isMLA = true;
   5911       }
   5912     }
   5913 
   5914     if (!NewOpc) {
   5915       if (VT == MVT::v2i64)
   5916         // Fall through to expand this.  It is not legal.
   5917         return SDValue();
   5918       else
   5919         // Other vector multiplications are legal.
   5920         return Op;
   5921     }
   5922   }
   5923 
   5924   // Legalize to a VMULL instruction.
   5925   SDLoc DL(Op);
   5926   SDValue Op0;
   5927   SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
   5928   if (!isMLA) {
   5929     Op0 = SkipExtensionForVMULL(N0, DAG);
   5930     assert(Op0.getValueType().is64BitVector() &&
   5931            Op1.getValueType().is64BitVector() &&
   5932            "unexpected types for extended operands to VMULL");
   5933     return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
   5934   }
   5935 
   5936   // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
   5937   // isel lowering to take advantage of no-stall back to back vmul + vmla.
   5938   //   vmull q0, d4, d6
   5939   //   vmlal q0, d5, d6
   5940   // is faster than
   5941   //   vaddl q0, d4, d5
   5942   //   vmovl q1, d6
   5943   //   vmul  q0, q0, q1
   5944   SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
   5945   SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
   5946   EVT Op1VT = Op1.getValueType();
   5947   return DAG.getNode(N0->getOpcode(), DL, VT,
   5948                      DAG.getNode(NewOpc, DL, VT,
   5949                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
   5950                      DAG.getNode(NewOpc, DL, VT,
   5951                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
   5952 }
   5953 
   5954 static SDValue
   5955 LowerSDIV_v4i8(SDValue X, SDValue Y, SDLoc dl, SelectionDAG &DAG) {
   5956   // Convert to float
   5957   // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
   5958   // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
   5959   X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
   5960   Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
   5961   X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
   5962   Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
   5963   // Get reciprocal estimate.
   5964   // float4 recip = vrecpeq_f32(yf);
   5965   Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   5966                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y);
   5967   // Because char has a smaller range than uchar, we can actually get away
   5968   // without any newton steps.  This requires that we use a weird bias
   5969   // of 0xb000, however (again, this has been exhaustively tested).
   5970   // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
   5971   X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
   5972   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
   5973   Y = DAG.getConstant(0xb000, MVT::i32);
   5974   Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y);
   5975   X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
   5976   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
   5977   // Convert back to short.
   5978   X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
   5979   X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
   5980   return X;
   5981 }
   5982 
   5983 static SDValue
   5984 LowerSDIV_v4i16(SDValue N0, SDValue N1, SDLoc dl, SelectionDAG &DAG) {
   5985   SDValue N2;
   5986   // Convert to float.
   5987   // float4 yf = vcvt_f32_s32(vmovl_s16(y));
   5988   // float4 xf = vcvt_f32_s32(vmovl_s16(x));
   5989   N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
   5990   N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
   5991   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
   5992   N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
   5993 
   5994   // Use reciprocal estimate and one refinement step.
   5995   // float4 recip = vrecpeq_f32(yf);
   5996   // recip *= vrecpsq_f32(yf, recip);
   5997   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   5998                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
   5999   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   6000                    DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
   6001                    N1, N2);
   6002   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
   6003   // Because short has a smaller range than ushort, we can actually get away
   6004   // with only a single newton step.  This requires that we use a weird bias
   6005   // of 89, however (again, this has been exhaustively tested).
   6006   // float4 result = as_float4(as_int4(xf*recip) + 0x89);
   6007   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
   6008   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
   6009   N1 = DAG.getConstant(0x89, MVT::i32);
   6010   N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
   6011   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
   6012   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
   6013   // Convert back to integer and return.
   6014   // return vmovn_s32(vcvt_s32_f32(result));
   6015   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
   6016   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
   6017   return N0;
   6018 }
   6019 
   6020 static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
   6021   EVT VT = Op.getValueType();
   6022   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
   6023          "unexpected type for custom-lowering ISD::SDIV");
   6024 
   6025   SDLoc dl(Op);
   6026   SDValue N0 = Op.getOperand(0);
   6027   SDValue N1 = Op.getOperand(1);
   6028   SDValue N2, N3;
   6029 
   6030   if (VT == MVT::v8i8) {
   6031     N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
   6032     N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
   6033 
   6034     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
   6035                      DAG.getIntPtrConstant(4));
   6036     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
   6037                      DAG.getIntPtrConstant(4));
   6038     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
   6039                      DAG.getIntPtrConstant(0));
   6040     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
   6041                      DAG.getIntPtrConstant(0));
   6042 
   6043     N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
   6044     N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
   6045 
   6046     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
   6047     N0 = LowerCONCAT_VECTORS(N0, DAG);
   6048 
   6049     N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
   6050     return N0;
   6051   }
   6052   return LowerSDIV_v4i16(N0, N1, dl, DAG);
   6053 }
   6054 
   6055 static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
   6056   EVT VT = Op.getValueType();
   6057   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
   6058          "unexpected type for custom-lowering ISD::UDIV");
   6059 
   6060   SDLoc dl(Op);
   6061   SDValue N0 = Op.getOperand(0);
   6062   SDValue N1 = Op.getOperand(1);
   6063   SDValue N2, N3;
   6064 
   6065   if (VT == MVT::v8i8) {
   6066     N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
   6067     N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
   6068 
   6069     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
   6070                      DAG.getIntPtrConstant(4));
   6071     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
   6072                      DAG.getIntPtrConstant(4));
   6073     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
   6074                      DAG.getIntPtrConstant(0));
   6075     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
   6076                      DAG.getIntPtrConstant(0));
   6077 
   6078     N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
   6079     N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
   6080 
   6081     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
   6082     N0 = LowerCONCAT_VECTORS(N0, DAG);
   6083 
   6084     N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
   6085                      DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32),
   6086                      N0);
   6087     return N0;
   6088   }
   6089 
   6090   // v4i16 sdiv ... Convert to float.
   6091   // float4 yf = vcvt_f32_s32(vmovl_u16(y));
   6092   // float4 xf = vcvt_f32_s32(vmovl_u16(x));
   6093   N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
   6094   N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
   6095   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
   6096   SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
   6097 
   6098   // Use reciprocal estimate and two refinement steps.
   6099   // float4 recip = vrecpeq_f32(yf);
   6100   // recip *= vrecpsq_f32(yf, recip);
   6101   // recip *= vrecpsq_f32(yf, recip);
   6102   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   6103                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), BN1);
   6104   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   6105                    DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
   6106                    BN1, N2);
   6107   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
   6108   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   6109                    DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
   6110                    BN1, N2);
   6111   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
   6112   // Simply multiplying by the reciprocal estimate can leave us a few ulps
   6113   // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
   6114   // and that it will never cause us to return an answer too large).
   6115   // float4 result = as_float4(as_int4(xf*recip) + 2);
   6116   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
   6117   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
   6118   N1 = DAG.getConstant(2, MVT::i32);
   6119   N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
   6120   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
   6121   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
   6122   // Convert back to integer and return.
   6123   // return vmovn_u32(vcvt_s32_f32(result));
   6124   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
   6125   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
   6126   return N0;
   6127 }
   6128 
   6129 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
   6130   EVT VT = Op.getNode()->getValueType(0);
   6131   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
   6132 
   6133   unsigned Opc;
   6134   bool ExtraOp = false;
   6135   switch (Op.getOpcode()) {
   6136   default: llvm_unreachable("Invalid code");
   6137   case ISD::ADDC: Opc = ARMISD::ADDC; break;
   6138   case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
   6139   case ISD::SUBC: Opc = ARMISD::SUBC; break;
   6140   case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
   6141   }
   6142 
   6143   if (!ExtraOp)
   6144     return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
   6145                        Op.getOperand(1));
   6146   return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
   6147                      Op.getOperand(1), Op.getOperand(2));
   6148 }
   6149 
   6150 SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
   6151   assert(Subtarget->isTargetDarwin());
   6152 
   6153   // For iOS, we want to call an alternative entry point: __sincos_stret,
   6154   // return values are passed via sret.
   6155   SDLoc dl(Op);
   6156   SDValue Arg = Op.getOperand(0);
   6157   EVT ArgVT = Arg.getValueType();
   6158   Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
   6159 
   6160   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
   6161   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   6162 
   6163   // Pair of floats / doubles used to pass the result.
   6164   StructType *RetTy = StructType::get(ArgTy, ArgTy, nullptr);
   6165 
   6166   // Create stack object for sret.
   6167   const uint64_t ByteSize = TLI.getDataLayout()->getTypeAllocSize(RetTy);
   6168   const unsigned StackAlign = TLI.getDataLayout()->getPrefTypeAlignment(RetTy);
   6169   int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
   6170   SDValue SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy());
   6171 
   6172   ArgListTy Args;
   6173   ArgListEntry Entry;
   6174 
   6175   Entry.Node = SRet;
   6176   Entry.Ty = RetTy->getPointerTo();
   6177   Entry.isSExt = false;
   6178   Entry.isZExt = false;
   6179   Entry.isSRet = true;
   6180   Args.push_back(Entry);
   6181 
   6182   Entry.Node = Arg;
   6183   Entry.Ty = ArgTy;
   6184   Entry.isSExt = false;
   6185   Entry.isZExt = false;
   6186   Args.push_back(Entry);
   6187 
   6188   const char *LibcallName  = (ArgVT == MVT::f64)
   6189   ? "__sincos_stret" : "__sincosf_stret";
   6190   SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy());
   6191 
   6192   TargetLowering::CallLoweringInfo CLI(DAG);
   6193   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
   6194     .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), Callee,
   6195                std::move(Args), 0)
   6196     .setDiscardResult();
   6197 
   6198   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
   6199 
   6200   SDValue LoadSin = DAG.getLoad(ArgVT, dl, CallResult.second, SRet,
   6201                                 MachinePointerInfo(), false, false, false, 0);
   6202 
   6203   // Address of cos field.
   6204   SDValue Add = DAG.getNode(ISD::ADD, dl, getPointerTy(), SRet,
   6205                             DAG.getIntPtrConstant(ArgVT.getStoreSize()));
   6206   SDValue LoadCos = DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add,
   6207                                 MachinePointerInfo(), false, false, false, 0);
   6208 
   6209   SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
   6210   return DAG.getNode(ISD::MERGE_VALUES, dl, Tys,
   6211                      LoadSin.getValue(0), LoadCos.getValue(0));
   6212 }
   6213 
   6214 static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
   6215   // Monotonic load/store is legal for all targets
   6216   if (cast<AtomicSDNode>(Op)->getOrdering() <= Monotonic)
   6217     return Op;
   6218 
   6219   // Acquire/Release load/store is not legal for targets without a
   6220   // dmb or equivalent available.
   6221   return SDValue();
   6222 }
   6223 
   6224 static void ReplaceREADCYCLECOUNTER(SDNode *N,
   6225                                     SmallVectorImpl<SDValue> &Results,
   6226                                     SelectionDAG &DAG,
   6227                                     const ARMSubtarget *Subtarget) {
   6228   SDLoc DL(N);
   6229   SDValue Cycles32, OutChain;
   6230 
   6231   if (Subtarget->hasPerfMon()) {
   6232     // Under Power Management extensions, the cycle-count is:
   6233     //    mrc p15, #0, <Rt>, c9, c13, #0
   6234     SDValue Ops[] = { N->getOperand(0), // Chain
   6235                       DAG.getConstant(Intrinsic::arm_mrc, MVT::i32),
   6236                       DAG.getConstant(15, MVT::i32),
   6237                       DAG.getConstant(0, MVT::i32),
   6238                       DAG.getConstant(9, MVT::i32),
   6239                       DAG.getConstant(13, MVT::i32),
   6240                       DAG.getConstant(0, MVT::i32)
   6241     };
   6242 
   6243     Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
   6244                            DAG.getVTList(MVT::i32, MVT::Other), Ops);
   6245     OutChain = Cycles32.getValue(1);
   6246   } else {
   6247     // Intrinsic is defined to return 0 on unsupported platforms. Technically
   6248     // there are older ARM CPUs that have implementation-specific ways of
   6249     // obtaining this information (FIXME!).
   6250     Cycles32 = DAG.getConstant(0, MVT::i32);
   6251     OutChain = DAG.getEntryNode();
   6252   }
   6253 
   6254 
   6255   SDValue Cycles64 = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64,
   6256                                  Cycles32, DAG.getConstant(0, MVT::i32));
   6257   Results.push_back(Cycles64);
   6258   Results.push_back(OutChain);
   6259 }
   6260 
   6261 SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
   6262   switch (Op.getOpcode()) {
   6263   default: llvm_unreachable("Don't know how to custom lower this!");
   6264   case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
   6265   case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
   6266   case ISD::GlobalAddress:
   6267     switch (Subtarget->getTargetTriple().getObjectFormat()) {
   6268     default: llvm_unreachable("unknown object format");
   6269     case Triple::COFF:
   6270       return LowerGlobalAddressWindows(Op, DAG);
   6271     case Triple::ELF:
   6272       return LowerGlobalAddressELF(Op, DAG);
   6273     case Triple::MachO:
   6274       return LowerGlobalAddressDarwin(Op, DAG);
   6275     }
   6276   case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
   6277   case ISD::SELECT:        return LowerSELECT(Op, DAG);
   6278   case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
   6279   case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
   6280   case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
   6281   case ISD::VASTART:       return LowerVASTART(Op, DAG);
   6282   case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
   6283   case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
   6284   case ISD::SINT_TO_FP:
   6285   case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
   6286   case ISD::FP_TO_SINT:
   6287   case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
   6288   case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
   6289   case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
   6290   case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
   6291   case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
   6292   case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
   6293   case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
   6294   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
   6295                                                                Subtarget);
   6296   case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG);
   6297   case ISD::SHL:
   6298   case ISD::SRL:
   6299   case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
   6300   case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
   6301   case ISD::SRL_PARTS:
   6302   case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
   6303   case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
   6304   case ISD::CTPOP:         return LowerCTPOP(Op.getNode(), DAG, Subtarget);
   6305   case ISD::SETCC:         return LowerVSETCC(Op, DAG);
   6306   case ISD::ConstantFP:    return LowerConstantFP(Op, DAG, Subtarget);
   6307   case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
   6308   case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
   6309   case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
   6310   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
   6311   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
   6312   case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
   6313   case ISD::MUL:           return LowerMUL(Op, DAG);
   6314   case ISD::SDIV:          return LowerSDIV(Op, DAG);
   6315   case ISD::UDIV:          return LowerUDIV(Op, DAG);
   6316   case ISD::ADDC:
   6317   case ISD::ADDE:
   6318   case ISD::SUBC:
   6319   case ISD::SUBE:          return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
   6320   case ISD::SADDO:
   6321   case ISD::UADDO:
   6322   case ISD::SSUBO:
   6323   case ISD::USUBO:
   6324     return LowerXALUO(Op, DAG);
   6325   case ISD::ATOMIC_LOAD:
   6326   case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
   6327   case ISD::FSINCOS:       return LowerFSINCOS(Op, DAG);
   6328   case ISD::SDIVREM:
   6329   case ISD::UDIVREM:       return LowerDivRem(Op, DAG);
   6330   case ISD::DYNAMIC_STACKALLOC:
   6331     if (Subtarget->getTargetTriple().isWindowsItaniumEnvironment())
   6332       return LowerDYNAMIC_STACKALLOC(Op, DAG);
   6333     llvm_unreachable("Don't know how to custom lower this!");
   6334   case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
   6335   case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
   6336   }
   6337 }
   6338 
   6339 /// ReplaceNodeResults - Replace the results of node with an illegal result
   6340 /// type with new values built out of custom code.
   6341 void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
   6342                                            SmallVectorImpl<SDValue>&Results,
   6343                                            SelectionDAG &DAG) const {
   6344   SDValue Res;
   6345   switch (N->getOpcode()) {
   6346   default:
   6347     llvm_unreachable("Don't know how to custom expand this!");
   6348   case ISD::BITCAST:
   6349     Res = ExpandBITCAST(N, DAG);
   6350     break;
   6351   case ISD::SRL:
   6352   case ISD::SRA:
   6353     Res = Expand64BitShift(N, DAG, Subtarget);
   6354     break;
   6355   case ISD::READCYCLECOUNTER:
   6356     ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget);
   6357     return;
   6358   }
   6359   if (Res.getNode())
   6360     Results.push_back(Res);
   6361 }
   6362 
   6363 //===----------------------------------------------------------------------===//
   6364 //                           ARM Scheduler Hooks
   6365 //===----------------------------------------------------------------------===//
   6366 
   6367 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
   6368 /// registers the function context.
   6369 void ARMTargetLowering::
   6370 SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB,
   6371                        MachineBasicBlock *DispatchBB, int FI) const {
   6372   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
   6373   DebugLoc dl = MI->getDebugLoc();
   6374   MachineFunction *MF = MBB->getParent();
   6375   MachineRegisterInfo *MRI = &MF->getRegInfo();
   6376   MachineConstantPool *MCP = MF->getConstantPool();
   6377   ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
   6378   const Function *F = MF->getFunction();
   6379 
   6380   bool isThumb = Subtarget->isThumb();
   6381   bool isThumb2 = Subtarget->isThumb2();
   6382 
   6383   unsigned PCLabelId = AFI->createPICLabelUId();
   6384   unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
   6385   ARMConstantPoolValue *CPV =
   6386     ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj);
   6387   unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
   6388 
   6389   const TargetRegisterClass *TRC = isThumb ? &ARM::tGPRRegClass
   6390                                            : &ARM::GPRRegClass;
   6391 
   6392   // Grab constant pool and fixed stack memory operands.
   6393   MachineMemOperand *CPMMO =
   6394     MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(),
   6395                              MachineMemOperand::MOLoad, 4, 4);
   6396 
   6397   MachineMemOperand *FIMMOSt =
   6398     MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
   6399                              MachineMemOperand::MOStore, 4, 4);
   6400 
   6401   // Load the address of the dispatch MBB into the jump buffer.
   6402   if (isThumb2) {
   6403     // Incoming value: jbuf
   6404     //   ldr.n  r5, LCPI1_1
   6405     //   orr    r5, r5, #1
   6406     //   add    r5, pc
   6407     //   str    r5, [$jbuf, #+4] ; &jbuf[1]
   6408     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   6409     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
   6410                    .addConstantPoolIndex(CPI)
   6411                    .addMemOperand(CPMMO));
   6412     // Set the low bit because of thumb mode.
   6413     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
   6414     AddDefaultCC(
   6415       AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
   6416                      .addReg(NewVReg1, RegState::Kill)
   6417                      .addImm(0x01)));
   6418     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
   6419     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
   6420       .addReg(NewVReg2, RegState::Kill)
   6421       .addImm(PCLabelId);
   6422     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
   6423                    .addReg(NewVReg3, RegState::Kill)
   6424                    .addFrameIndex(FI)
   6425                    .addImm(36)  // &jbuf[1] :: pc
   6426                    .addMemOperand(FIMMOSt));
   6427   } else if (isThumb) {
   6428     // Incoming value: jbuf
   6429     //   ldr.n  r1, LCPI1_4
   6430     //   add    r1, pc
   6431     //   mov    r2, #1
   6432     //   orrs   r1, r2
   6433     //   add    r2, $jbuf, #+4 ; &jbuf[1]
   6434     //   str    r1, [r2]
   6435     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   6436     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
   6437                    .addConstantPoolIndex(CPI)
   6438                    .addMemOperand(CPMMO));
   6439     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
   6440     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
   6441       .addReg(NewVReg1, RegState::Kill)
   6442       .addImm(PCLabelId);
   6443     // Set the low bit because of thumb mode.
   6444     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
   6445     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
   6446                    .addReg(ARM::CPSR, RegState::Define)
   6447                    .addImm(1));
   6448     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
   6449     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
   6450                    .addReg(ARM::CPSR, RegState::Define)
   6451                    .addReg(NewVReg2, RegState::Kill)
   6452                    .addReg(NewVReg3, RegState::Kill));
   6453     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
   6454     BuildMI(*MBB, MI, dl, TII->get(ARM::tADDframe), NewVReg5)
   6455             .addFrameIndex(FI)
   6456             .addImm(36); // &jbuf[1] :: pc
   6457     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
   6458                    .addReg(NewVReg4, RegState::Kill)
   6459                    .addReg(NewVReg5, RegState::Kill)
   6460                    .addImm(0)
   6461                    .addMemOperand(FIMMOSt));
   6462   } else {
   6463     // Incoming value: jbuf
   6464     //   ldr  r1, LCPI1_1
   6465     //   add  r1, pc, r1
   6466     //   str  r1, [$jbuf, #+4] ; &jbuf[1]
   6467     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   6468     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12),  NewVReg1)
   6469                    .addConstantPoolIndex(CPI)
   6470                    .addImm(0)
   6471                    .addMemOperand(CPMMO));
   6472     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
   6473     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
   6474                    .addReg(NewVReg1, RegState::Kill)
   6475                    .addImm(PCLabelId));
   6476     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
   6477                    .addReg(NewVReg2, RegState::Kill)
   6478                    .addFrameIndex(FI)
   6479                    .addImm(36)  // &jbuf[1] :: pc
   6480                    .addMemOperand(FIMMOSt));
   6481   }
   6482 }
   6483 
   6484 MachineBasicBlock *ARMTargetLowering::
   6485 EmitSjLjDispatchBlock(MachineInstr *MI, MachineBasicBlock *MBB) const {
   6486   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
   6487   DebugLoc dl = MI->getDebugLoc();
   6488   MachineFunction *MF = MBB->getParent();
   6489   MachineRegisterInfo *MRI = &MF->getRegInfo();
   6490   ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
   6491   MachineFrameInfo *MFI = MF->getFrameInfo();
   6492   int FI = MFI->getFunctionContextIndex();
   6493 
   6494   const TargetRegisterClass *TRC = Subtarget->isThumb() ? &ARM::tGPRRegClass
   6495                                                         : &ARM::GPRnopcRegClass;
   6496 
   6497   // Get a mapping of the call site numbers to all of the landing pads they're
   6498   // associated with.
   6499   DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad;
   6500   unsigned MaxCSNum = 0;
   6501   MachineModuleInfo &MMI = MF->getMMI();
   6502   for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
   6503        ++BB) {
   6504     if (!BB->isLandingPad()) continue;
   6505 
   6506     // FIXME: We should assert that the EH_LABEL is the first MI in the landing
   6507     // pad.
   6508     for (MachineBasicBlock::iterator
   6509            II = BB->begin(), IE = BB->end(); II != IE; ++II) {
   6510       if (!II->isEHLabel()) continue;
   6511 
   6512       MCSymbol *Sym = II->getOperand(0).getMCSymbol();
   6513       if (!MMI.hasCallSiteLandingPad(Sym)) continue;
   6514 
   6515       SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym);
   6516       for (SmallVectorImpl<unsigned>::iterator
   6517              CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
   6518            CSI != CSE; ++CSI) {
   6519         CallSiteNumToLPad[*CSI].push_back(BB);
   6520         MaxCSNum = std::max(MaxCSNum, *CSI);
   6521       }
   6522       break;
   6523     }
   6524   }
   6525 
   6526   // Get an ordered list of the machine basic blocks for the jump table.
   6527   std::vector<MachineBasicBlock*> LPadList;
   6528   SmallPtrSet<MachineBasicBlock*, 64> InvokeBBs;
   6529   LPadList.reserve(CallSiteNumToLPad.size());
   6530   for (unsigned I = 1; I <= MaxCSNum; ++I) {
   6531     SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
   6532     for (SmallVectorImpl<MachineBasicBlock*>::iterator
   6533            II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
   6534       LPadList.push_back(*II);
   6535       InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
   6536     }
   6537   }
   6538 
   6539   assert(!LPadList.empty() &&
   6540          "No landing pad destinations for the dispatch jump table!");
   6541 
   6542   // Create the jump table and associated information.
   6543   MachineJumpTableInfo *JTI =
   6544     MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
   6545   unsigned MJTI = JTI->createJumpTableIndex(LPadList);
   6546   unsigned UId = AFI->createJumpTableUId();
   6547   Reloc::Model RelocM = getTargetMachine().getRelocationModel();
   6548 
   6549   // Create the MBBs for the dispatch code.
   6550 
   6551   // Shove the dispatch's address into the return slot in the function context.
   6552   MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
   6553   DispatchBB->setIsLandingPad();
   6554 
   6555   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
   6556   unsigned trap_opcode;
   6557   if (Subtarget->isThumb())
   6558     trap_opcode = ARM::tTRAP;
   6559   else
   6560     trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
   6561 
   6562   BuildMI(TrapBB, dl, TII->get(trap_opcode));
   6563   DispatchBB->addSuccessor(TrapBB);
   6564 
   6565   MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
   6566   DispatchBB->addSuccessor(DispContBB);
   6567 
   6568   // Insert and MBBs.
   6569   MF->insert(MF->end(), DispatchBB);
   6570   MF->insert(MF->end(), DispContBB);
   6571   MF->insert(MF->end(), TrapBB);
   6572 
   6573   // Insert code into the entry block that creates and registers the function
   6574   // context.
   6575   SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
   6576 
   6577   MachineMemOperand *FIMMOLd =
   6578     MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
   6579                              MachineMemOperand::MOLoad |
   6580                              MachineMemOperand::MOVolatile, 4, 4);
   6581 
   6582   MachineInstrBuilder MIB;
   6583   MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
   6584 
   6585   const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
   6586   const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
   6587 
   6588   // Add a register mask with no preserved registers.  This results in all
   6589   // registers being marked as clobbered.
   6590   MIB.addRegMask(RI.getNoPreservedMask());
   6591 
   6592   unsigned NumLPads = LPadList.size();
   6593   if (Subtarget->isThumb2()) {
   6594     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   6595     AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
   6596                    .addFrameIndex(FI)
   6597                    .addImm(4)
   6598                    .addMemOperand(FIMMOLd));
   6599 
   6600     if (NumLPads < 256) {
   6601       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
   6602                      .addReg(NewVReg1)
   6603                      .addImm(LPadList.size()));
   6604     } else {
   6605       unsigned VReg1 = MRI->createVirtualRegister(TRC);
   6606       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
   6607                      .addImm(NumLPads & 0xFFFF));
   6608 
   6609       unsigned VReg2 = VReg1;
   6610       if ((NumLPads & 0xFFFF0000) != 0) {
   6611         VReg2 = MRI->createVirtualRegister(TRC);
   6612         AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
   6613                        .addReg(VReg1)
   6614                        .addImm(NumLPads >> 16));
   6615       }
   6616 
   6617       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
   6618                      .addReg(NewVReg1)
   6619                      .addReg(VReg2));
   6620     }
   6621 
   6622     BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
   6623       .addMBB(TrapBB)
   6624       .addImm(ARMCC::HI)
   6625       .addReg(ARM::CPSR);
   6626 
   6627     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
   6628     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg3)
   6629                    .addJumpTableIndex(MJTI)
   6630                    .addImm(UId));
   6631 
   6632     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
   6633     AddDefaultCC(
   6634       AddDefaultPred(
   6635         BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
   6636         .addReg(NewVReg3, RegState::Kill)
   6637         .addReg(NewVReg1)
   6638         .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
   6639 
   6640     BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
   6641       .addReg(NewVReg4, RegState::Kill)
   6642       .addReg(NewVReg1)
   6643       .addJumpTableIndex(MJTI)
   6644       .addImm(UId);
   6645   } else if (Subtarget->isThumb()) {
   6646     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   6647     AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
   6648                    .addFrameIndex(FI)
   6649                    .addImm(1)
   6650                    .addMemOperand(FIMMOLd));
   6651 
   6652     if (NumLPads < 256) {
   6653       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
   6654                      .addReg(NewVReg1)
   6655                      .addImm(NumLPads));
   6656     } else {
   6657       MachineConstantPool *ConstantPool = MF->getConstantPool();
   6658       Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
   6659       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
   6660 
   6661       // MachineConstantPool wants an explicit alignment.
   6662       unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
   6663       if (Align == 0)
   6664         Align = getDataLayout()->getTypeAllocSize(C->getType());
   6665       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
   6666 
   6667       unsigned VReg1 = MRI->createVirtualRegister(TRC);
   6668       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
   6669                      .addReg(VReg1, RegState::Define)
   6670                      .addConstantPoolIndex(Idx));
   6671       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
   6672                      .addReg(NewVReg1)
   6673                      .addReg(VReg1));
   6674     }
   6675 
   6676     BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
   6677       .addMBB(TrapBB)
   6678       .addImm(ARMCC::HI)
   6679       .addReg(ARM::CPSR);
   6680 
   6681     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
   6682     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
   6683                    .addReg(ARM::CPSR, RegState::Define)
   6684                    .addReg(NewVReg1)
   6685                    .addImm(2));
   6686 
   6687     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
   6688     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
   6689                    .addJumpTableIndex(MJTI)
   6690                    .addImm(UId));
   6691 
   6692     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
   6693     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
   6694                    .addReg(ARM::CPSR, RegState::Define)
   6695                    .addReg(NewVReg2, RegState::Kill)
   6696                    .addReg(NewVReg3));
   6697 
   6698     MachineMemOperand *JTMMOLd =
   6699       MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
   6700                                MachineMemOperand::MOLoad, 4, 4);
   6701 
   6702     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
   6703     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
   6704                    .addReg(NewVReg4, RegState::Kill)
   6705                    .addImm(0)
   6706                    .addMemOperand(JTMMOLd));
   6707 
   6708     unsigned NewVReg6 = NewVReg5;
   6709     if (RelocM == Reloc::PIC_) {
   6710       NewVReg6 = MRI->createVirtualRegister(TRC);
   6711       AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
   6712                      .addReg(ARM::CPSR, RegState::Define)
   6713                      .addReg(NewVReg5, RegState::Kill)
   6714                      .addReg(NewVReg3));
   6715     }
   6716 
   6717     BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
   6718       .addReg(NewVReg6, RegState::Kill)
   6719       .addJumpTableIndex(MJTI)
   6720       .addImm(UId);
   6721   } else {
   6722     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   6723     AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
   6724                    .addFrameIndex(FI)
   6725                    .addImm(4)
   6726                    .addMemOperand(FIMMOLd));
   6727 
   6728     if (NumLPads < 256) {
   6729       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
   6730                      .addReg(NewVReg1)
   6731                      .addImm(NumLPads));
   6732     } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
   6733       unsigned VReg1 = MRI->createVirtualRegister(TRC);
   6734       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
   6735                      .addImm(NumLPads & 0xFFFF));
   6736 
   6737       unsigned VReg2 = VReg1;
   6738       if ((NumLPads & 0xFFFF0000) != 0) {
   6739         VReg2 = MRI->createVirtualRegister(TRC);
   6740         AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
   6741                        .addReg(VReg1)
   6742                        .addImm(NumLPads >> 16));
   6743       }
   6744 
   6745       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
   6746                      .addReg(NewVReg1)
   6747                      .addReg(VReg2));
   6748     } else {
   6749       MachineConstantPool *ConstantPool = MF->getConstantPool();
   6750       Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
   6751       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
   6752 
   6753       // MachineConstantPool wants an explicit alignment.
   6754       unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
   6755       if (Align == 0)
   6756         Align = getDataLayout()->getTypeAllocSize(C->getType());
   6757       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
   6758 
   6759       unsigned VReg1 = MRI->createVirtualRegister(TRC);
   6760       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
   6761                      .addReg(VReg1, RegState::Define)
   6762                      .addConstantPoolIndex(Idx)
   6763                      .addImm(0));
   6764       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
   6765                      .addReg(NewVReg1)
   6766                      .addReg(VReg1, RegState::Kill));
   6767     }
   6768 
   6769     BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
   6770       .addMBB(TrapBB)
   6771       .addImm(ARMCC::HI)
   6772       .addReg(ARM::CPSR);
   6773 
   6774     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
   6775     AddDefaultCC(
   6776       AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
   6777                      .addReg(NewVReg1)
   6778                      .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
   6779     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
   6780     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
   6781                    .addJumpTableIndex(MJTI)
   6782                    .addImm(UId));
   6783 
   6784     MachineMemOperand *JTMMOLd =
   6785       MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
   6786                                MachineMemOperand::MOLoad, 4, 4);
   6787     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
   6788     AddDefaultPred(
   6789       BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
   6790       .addReg(NewVReg3, RegState::Kill)
   6791       .addReg(NewVReg4)
   6792       .addImm(0)
   6793       .addMemOperand(JTMMOLd));
   6794 
   6795     if (RelocM == Reloc::PIC_) {
   6796       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
   6797         .addReg(NewVReg5, RegState::Kill)
   6798         .addReg(NewVReg4)
   6799         .addJumpTableIndex(MJTI)
   6800         .addImm(UId);
   6801     } else {
   6802       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
   6803         .addReg(NewVReg5, RegState::Kill)
   6804         .addJumpTableIndex(MJTI)
   6805         .addImm(UId);
   6806     }
   6807   }
   6808 
   6809   // Add the jump table entries as successors to the MBB.
   6810   SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
   6811   for (std::vector<MachineBasicBlock*>::iterator
   6812          I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
   6813     MachineBasicBlock *CurMBB = *I;
   6814     if (SeenMBBs.insert(CurMBB).second)
   6815       DispContBB->addSuccessor(CurMBB);
   6816   }
   6817 
   6818   // N.B. the order the invoke BBs are processed in doesn't matter here.
   6819   const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF);
   6820   SmallVector<MachineBasicBlock*, 64> MBBLPads;
   6821   for (MachineBasicBlock *BB : InvokeBBs) {
   6822 
   6823     // Remove the landing pad successor from the invoke block and replace it
   6824     // with the new dispatch block.
   6825     SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
   6826                                                   BB->succ_end());
   6827     while (!Successors.empty()) {
   6828       MachineBasicBlock *SMBB = Successors.pop_back_val();
   6829       if (SMBB->isLandingPad()) {
   6830         BB->removeSuccessor(SMBB);
   6831         MBBLPads.push_back(SMBB);
   6832       }
   6833     }
   6834 
   6835     BB->addSuccessor(DispatchBB);
   6836 
   6837     // Find the invoke call and mark all of the callee-saved registers as
   6838     // 'implicit defined' so that they're spilled. This prevents code from
   6839     // moving instructions to before the EH block, where they will never be
   6840     // executed.
   6841     for (MachineBasicBlock::reverse_iterator
   6842            II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
   6843       if (!II->isCall()) continue;
   6844 
   6845       DenseMap<unsigned, bool> DefRegs;
   6846       for (MachineInstr::mop_iterator
   6847              OI = II->operands_begin(), OE = II->operands_end();
   6848            OI != OE; ++OI) {
   6849         if (!OI->isReg()) continue;
   6850         DefRegs[OI->getReg()] = true;
   6851       }
   6852 
   6853       MachineInstrBuilder MIB(*MF, &*II);
   6854 
   6855       for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
   6856         unsigned Reg = SavedRegs[i];
   6857         if (Subtarget->isThumb2() &&
   6858             !ARM::tGPRRegClass.contains(Reg) &&
   6859             !ARM::hGPRRegClass.contains(Reg))
   6860           continue;
   6861         if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
   6862           continue;
   6863         if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
   6864           continue;
   6865         if (!DefRegs[Reg])
   6866           MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
   6867       }
   6868 
   6869       break;
   6870     }
   6871   }
   6872 
   6873   // Mark all former landing pads as non-landing pads. The dispatch is the only
   6874   // landing pad now.
   6875   for (SmallVectorImpl<MachineBasicBlock*>::iterator
   6876          I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
   6877     (*I)->setIsLandingPad(false);
   6878 
   6879   // The instruction is gone now.
   6880   MI->eraseFromParent();
   6881 
   6882   return MBB;
   6883 }
   6884 
   6885 static
   6886 MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
   6887   for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
   6888        E = MBB->succ_end(); I != E; ++I)
   6889     if (*I != Succ)
   6890       return *I;
   6891   llvm_unreachable("Expecting a BB with two successors!");
   6892 }
   6893 
   6894 /// Return the load opcode for a given load size. If load size >= 8,
   6895 /// neon opcode will be returned.
   6896 static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) {
   6897   if (LdSize >= 8)
   6898     return LdSize == 16 ? ARM::VLD1q32wb_fixed
   6899                         : LdSize == 8 ? ARM::VLD1d32wb_fixed : 0;
   6900   if (IsThumb1)
   6901     return LdSize == 4 ? ARM::tLDRi
   6902                        : LdSize == 2 ? ARM::tLDRHi
   6903                                      : LdSize == 1 ? ARM::tLDRBi : 0;
   6904   if (IsThumb2)
   6905     return LdSize == 4 ? ARM::t2LDR_POST
   6906                        : LdSize == 2 ? ARM::t2LDRH_POST
   6907                                      : LdSize == 1 ? ARM::t2LDRB_POST : 0;
   6908   return LdSize == 4 ? ARM::LDR_POST_IMM
   6909                      : LdSize == 2 ? ARM::LDRH_POST
   6910                                    : LdSize == 1 ? ARM::LDRB_POST_IMM : 0;
   6911 }
   6912 
   6913 /// Return the store opcode for a given store size. If store size >= 8,
   6914 /// neon opcode will be returned.
   6915 static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) {
   6916   if (StSize >= 8)
   6917     return StSize == 16 ? ARM::VST1q32wb_fixed
   6918                         : StSize == 8 ? ARM::VST1d32wb_fixed : 0;
   6919   if (IsThumb1)
   6920     return StSize == 4 ? ARM::tSTRi
   6921                        : StSize == 2 ? ARM::tSTRHi
   6922                                      : StSize == 1 ? ARM::tSTRBi : 0;
   6923   if (IsThumb2)
   6924     return StSize == 4 ? ARM::t2STR_POST
   6925                        : StSize == 2 ? ARM::t2STRH_POST
   6926                                      : StSize == 1 ? ARM::t2STRB_POST : 0;
   6927   return StSize == 4 ? ARM::STR_POST_IMM
   6928                      : StSize == 2 ? ARM::STRH_POST
   6929                                    : StSize == 1 ? ARM::STRB_POST_IMM : 0;
   6930 }
   6931 
   6932 /// Emit a post-increment load operation with given size. The instructions
   6933 /// will be added to BB at Pos.
   6934 static void emitPostLd(MachineBasicBlock *BB, MachineInstr *Pos,
   6935                        const TargetInstrInfo *TII, DebugLoc dl,
   6936                        unsigned LdSize, unsigned Data, unsigned AddrIn,
   6937                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
   6938   unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2);
   6939   assert(LdOpc != 0 && "Should have a load opcode");
   6940   if (LdSize >= 8) {
   6941     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
   6942                        .addReg(AddrOut, RegState::Define).addReg(AddrIn)
   6943                        .addImm(0));
   6944   } else if (IsThumb1) {
   6945     // load + update AddrIn
   6946     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
   6947                        .addReg(AddrIn).addImm(0));
   6948     MachineInstrBuilder MIB =
   6949         BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut);
   6950     MIB = AddDefaultT1CC(MIB);
   6951     MIB.addReg(AddrIn).addImm(LdSize);
   6952     AddDefaultPred(MIB);
   6953   } else if (IsThumb2) {
   6954     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
   6955                        .addReg(AddrOut, RegState::Define).addReg(AddrIn)
   6956                        .addImm(LdSize));
   6957   } else { // arm
   6958     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
   6959                        .addReg(AddrOut, RegState::Define).addReg(AddrIn)
   6960                        .addReg(0).addImm(LdSize));
   6961   }
   6962 }
   6963 
   6964 /// Emit a post-increment store operation with given size. The instructions
   6965 /// will be added to BB at Pos.
   6966 static void emitPostSt(MachineBasicBlock *BB, MachineInstr *Pos,
   6967                        const TargetInstrInfo *TII, DebugLoc dl,
   6968                        unsigned StSize, unsigned Data, unsigned AddrIn,
   6969                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
   6970   unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2);
   6971   assert(StOpc != 0 && "Should have a store opcode");
   6972   if (StSize >= 8) {
   6973     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
   6974                        .addReg(AddrIn).addImm(0).addReg(Data));
   6975   } else if (IsThumb1) {
   6976     // store + update AddrIn
   6977     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc)).addReg(Data)
   6978                        .addReg(AddrIn).addImm(0));
   6979     MachineInstrBuilder MIB =
   6980         BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut);
   6981     MIB = AddDefaultT1CC(MIB);
   6982     MIB.addReg(AddrIn).addImm(StSize);
   6983     AddDefaultPred(MIB);
   6984   } else if (IsThumb2) {
   6985     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
   6986                        .addReg(Data).addReg(AddrIn).addImm(StSize));
   6987   } else { // arm
   6988     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
   6989                        .addReg(Data).addReg(AddrIn).addReg(0)
   6990                        .addImm(StSize));
   6991   }
   6992 }
   6993 
   6994 MachineBasicBlock *
   6995 ARMTargetLowering::EmitStructByval(MachineInstr *MI,
   6996                                    MachineBasicBlock *BB) const {
   6997   // This pseudo instruction has 3 operands: dst, src, size
   6998   // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
   6999   // Otherwise, we will generate unrolled scalar copies.
   7000   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
   7001   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   7002   MachineFunction::iterator It = BB;
   7003   ++It;
   7004 
   7005   unsigned dest = MI->getOperand(0).getReg();
   7006   unsigned src = MI->getOperand(1).getReg();
   7007   unsigned SizeVal = MI->getOperand(2).getImm();
   7008   unsigned Align = MI->getOperand(3).getImm();
   7009   DebugLoc dl = MI->getDebugLoc();
   7010 
   7011   MachineFunction *MF = BB->getParent();
   7012   MachineRegisterInfo &MRI = MF->getRegInfo();
   7013   unsigned UnitSize = 0;
   7014   const TargetRegisterClass *TRC = nullptr;
   7015   const TargetRegisterClass *VecTRC = nullptr;
   7016 
   7017   bool IsThumb1 = Subtarget->isThumb1Only();
   7018   bool IsThumb2 = Subtarget->isThumb2();
   7019 
   7020   if (Align & 1) {
   7021     UnitSize = 1;
   7022   } else if (Align & 2) {
   7023     UnitSize = 2;
   7024   } else {
   7025     // Check whether we can use NEON instructions.
   7026     if (!MF->getFunction()->hasFnAttribute(Attribute::NoImplicitFloat) &&
   7027         Subtarget->hasNEON()) {
   7028       if ((Align % 16 == 0) && SizeVal >= 16)
   7029         UnitSize = 16;
   7030       else if ((Align % 8 == 0) && SizeVal >= 8)
   7031         UnitSize = 8;
   7032     }
   7033     // Can't use NEON instructions.
   7034     if (UnitSize == 0)
   7035       UnitSize = 4;
   7036   }
   7037 
   7038   // Select the correct opcode and register class for unit size load/store
   7039   bool IsNeon = UnitSize >= 8;
   7040   TRC = (IsThumb1 || IsThumb2) ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
   7041   if (IsNeon)
   7042     VecTRC = UnitSize == 16 ? &ARM::DPairRegClass
   7043                             : UnitSize == 8 ? &ARM::DPRRegClass
   7044                                             : nullptr;
   7045 
   7046   unsigned BytesLeft = SizeVal % UnitSize;
   7047   unsigned LoopSize = SizeVal - BytesLeft;
   7048 
   7049   if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
   7050     // Use LDR and STR to copy.
   7051     // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
   7052     // [destOut] = STR_POST(scratch, destIn, UnitSize)
   7053     unsigned srcIn = src;
   7054     unsigned destIn = dest;
   7055     for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
   7056       unsigned srcOut = MRI.createVirtualRegister(TRC);
   7057       unsigned destOut = MRI.createVirtualRegister(TRC);
   7058       unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
   7059       emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut,
   7060                  IsThumb1, IsThumb2);
   7061       emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut,
   7062                  IsThumb1, IsThumb2);
   7063       srcIn = srcOut;
   7064       destIn = destOut;
   7065     }
   7066 
   7067     // Handle the leftover bytes with LDRB and STRB.
   7068     // [scratch, srcOut] = LDRB_POST(srcIn, 1)
   7069     // [destOut] = STRB_POST(scratch, destIn, 1)
   7070     for (unsigned i = 0; i < BytesLeft; i++) {
   7071       unsigned srcOut = MRI.createVirtualRegister(TRC);
   7072       unsigned destOut = MRI.createVirtualRegister(TRC);
   7073       unsigned scratch = MRI.createVirtualRegister(TRC);
   7074       emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut,
   7075                  IsThumb1, IsThumb2);
   7076       emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut,
   7077                  IsThumb1, IsThumb2);
   7078       srcIn = srcOut;
   7079       destIn = destOut;
   7080     }
   7081     MI->eraseFromParent();   // The instruction is gone now.
   7082     return BB;
   7083   }
   7084 
   7085   // Expand the pseudo op to a loop.
   7086   // thisMBB:
   7087   //   ...
   7088   //   movw varEnd, # --> with thumb2
   7089   //   movt varEnd, #
   7090   //   ldrcp varEnd, idx --> without thumb2
   7091   //   fallthrough --> loopMBB
   7092   // loopMBB:
   7093   //   PHI varPhi, varEnd, varLoop
   7094   //   PHI srcPhi, src, srcLoop
   7095   //   PHI destPhi, dst, destLoop
   7096   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
   7097   //   [destLoop] = STR_POST(scratch, destPhi, UnitSize)
   7098   //   subs varLoop, varPhi, #UnitSize
   7099   //   bne loopMBB
   7100   //   fallthrough --> exitMBB
   7101   // exitMBB:
   7102   //   epilogue to handle left-over bytes
   7103   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
   7104   //   [destOut] = STRB_POST(scratch, destLoop, 1)
   7105   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   7106   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   7107   MF->insert(It, loopMBB);
   7108   MF->insert(It, exitMBB);
   7109 
   7110   // Transfer the remainder of BB and its successor edges to exitMBB.
   7111   exitMBB->splice(exitMBB->begin(), BB,
   7112                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
   7113   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   7114 
   7115   // Load an immediate to varEnd.
   7116   unsigned varEnd = MRI.createVirtualRegister(TRC);
   7117   if (Subtarget->useMovt(*MF)) {
   7118     unsigned Vtmp = varEnd;
   7119     if ((LoopSize & 0xFFFF0000) != 0)
   7120       Vtmp = MRI.createVirtualRegister(TRC);
   7121     AddDefaultPred(BuildMI(BB, dl,
   7122                            TII->get(IsThumb2 ? ARM::t2MOVi16 : ARM::MOVi16),
   7123                            Vtmp).addImm(LoopSize & 0xFFFF));
   7124 
   7125     if ((LoopSize & 0xFFFF0000) != 0)
   7126       AddDefaultPred(BuildMI(BB, dl,
   7127                              TII->get(IsThumb2 ? ARM::t2MOVTi16 : ARM::MOVTi16),
   7128                              varEnd)
   7129                          .addReg(Vtmp)
   7130                          .addImm(LoopSize >> 16));
   7131   } else {
   7132     MachineConstantPool *ConstantPool = MF->getConstantPool();
   7133     Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
   7134     const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
   7135 
   7136     // MachineConstantPool wants an explicit alignment.
   7137     unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
   7138     if (Align == 0)
   7139       Align = getDataLayout()->getTypeAllocSize(C->getType());
   7140     unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
   7141 
   7142     if (IsThumb1)
   7143       AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci)).addReg(
   7144           varEnd, RegState::Define).addConstantPoolIndex(Idx));
   7145     else
   7146       AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp)).addReg(
   7147           varEnd, RegState::Define).addConstantPoolIndex(Idx).addImm(0));
   7148   }
   7149   BB->addSuccessor(loopMBB);
   7150 
   7151   // Generate the loop body:
   7152   //   varPhi = PHI(varLoop, varEnd)
   7153   //   srcPhi = PHI(srcLoop, src)
   7154   //   destPhi = PHI(destLoop, dst)
   7155   MachineBasicBlock *entryBB = BB;
   7156   BB = loopMBB;
   7157   unsigned varLoop = MRI.createVirtualRegister(TRC);
   7158   unsigned varPhi = MRI.createVirtualRegister(TRC);
   7159   unsigned srcLoop = MRI.createVirtualRegister(TRC);
   7160   unsigned srcPhi = MRI.createVirtualRegister(TRC);
   7161   unsigned destLoop = MRI.createVirtualRegister(TRC);
   7162   unsigned destPhi = MRI.createVirtualRegister(TRC);
   7163 
   7164   BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
   7165     .addReg(varLoop).addMBB(loopMBB)
   7166     .addReg(varEnd).addMBB(entryBB);
   7167   BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
   7168     .addReg(srcLoop).addMBB(loopMBB)
   7169     .addReg(src).addMBB(entryBB);
   7170   BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
   7171     .addReg(destLoop).addMBB(loopMBB)
   7172     .addReg(dest).addMBB(entryBB);
   7173 
   7174   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
   7175   //   [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
   7176   unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
   7177   emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop,
   7178              IsThumb1, IsThumb2);
   7179   emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop,
   7180              IsThumb1, IsThumb2);
   7181 
   7182   // Decrement loop variable by UnitSize.
   7183   if (IsThumb1) {
   7184     MachineInstrBuilder MIB =
   7185         BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop);
   7186     MIB = AddDefaultT1CC(MIB);
   7187     MIB.addReg(varPhi).addImm(UnitSize);
   7188     AddDefaultPred(MIB);
   7189   } else {
   7190     MachineInstrBuilder MIB =
   7191         BuildMI(*BB, BB->end(), dl,
   7192                 TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
   7193     AddDefaultCC(AddDefaultPred(MIB.addReg(varPhi).addImm(UnitSize)));
   7194     MIB->getOperand(5).setReg(ARM::CPSR);
   7195     MIB->getOperand(5).setIsDef(true);
   7196   }
   7197   BuildMI(*BB, BB->end(), dl,
   7198           TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc))
   7199       .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
   7200 
   7201   // loopMBB can loop back to loopMBB or fall through to exitMBB.
   7202   BB->addSuccessor(loopMBB);
   7203   BB->addSuccessor(exitMBB);
   7204 
   7205   // Add epilogue to handle BytesLeft.
   7206   BB = exitMBB;
   7207   MachineInstr *StartOfExit = exitMBB->begin();
   7208 
   7209   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
   7210   //   [destOut] = STRB_POST(scratch, destLoop, 1)
   7211   unsigned srcIn = srcLoop;
   7212   unsigned destIn = destLoop;
   7213   for (unsigned i = 0; i < BytesLeft; i++) {
   7214     unsigned srcOut = MRI.createVirtualRegister(TRC);
   7215     unsigned destOut = MRI.createVirtualRegister(TRC);
   7216     unsigned scratch = MRI.createVirtualRegister(TRC);
   7217     emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut,
   7218                IsThumb1, IsThumb2);
   7219     emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut,
   7220                IsThumb1, IsThumb2);
   7221     srcIn = srcOut;
   7222     destIn = destOut;
   7223   }
   7224 
   7225   MI->eraseFromParent();   // The instruction is gone now.
   7226   return BB;
   7227 }
   7228 
   7229 MachineBasicBlock *
   7230 ARMTargetLowering::EmitLowered__chkstk(MachineInstr *MI,
   7231                                        MachineBasicBlock *MBB) const {
   7232   const TargetMachine &TM = getTargetMachine();
   7233   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
   7234   DebugLoc DL = MI->getDebugLoc();
   7235 
   7236   assert(Subtarget->isTargetWindows() &&
   7237          "__chkstk is only supported on Windows");
   7238   assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode");
   7239 
   7240   // __chkstk takes the number of words to allocate on the stack in R4, and
   7241   // returns the stack adjustment in number of bytes in R4.  This will not
   7242   // clober any other registers (other than the obvious lr).
   7243   //
   7244   // Although, technically, IP should be considered a register which may be
   7245   // clobbered, the call itself will not touch it.  Windows on ARM is a pure
   7246   // thumb-2 environment, so there is no interworking required.  As a result, we
   7247   // do not expect a veneer to be emitted by the linker, clobbering IP.
   7248   //
   7249   // Each module receives its own copy of __chkstk, so no import thunk is
   7250   // required, again, ensuring that IP is not clobbered.
   7251   //
   7252   // Finally, although some linkers may theoretically provide a trampoline for
   7253   // out of range calls (which is quite common due to a 32M range limitation of
   7254   // branches for Thumb), we can generate the long-call version via
   7255   // -mcmodel=large, alleviating the need for the trampoline which may clobber
   7256   // IP.
   7257 
   7258   switch (TM.getCodeModel()) {
   7259   case CodeModel::Small:
   7260   case CodeModel::Medium:
   7261   case CodeModel::Default:
   7262   case CodeModel::Kernel:
   7263     BuildMI(*MBB, MI, DL, TII.get(ARM::tBL))
   7264       .addImm((unsigned)ARMCC::AL).addReg(0)
   7265       .addExternalSymbol("__chkstk")
   7266       .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
   7267       .addReg(ARM::R4, RegState::Implicit | RegState::Define)
   7268       .addReg(ARM::R12, RegState::Implicit | RegState::Define | RegState::Dead);
   7269     break;
   7270   case CodeModel::Large:
   7271   case CodeModel::JITDefault: {
   7272     MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
   7273     unsigned Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
   7274 
   7275     BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg)
   7276       .addExternalSymbol("__chkstk");
   7277     BuildMI(*MBB, MI, DL, TII.get(ARM::tBLXr))
   7278       .addImm((unsigned)ARMCC::AL).addReg(0)
   7279       .addReg(Reg, RegState::Kill)
   7280       .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
   7281       .addReg(ARM::R4, RegState::Implicit | RegState::Define)
   7282       .addReg(ARM::R12, RegState::Implicit | RegState::Define | RegState::Dead);
   7283     break;
   7284   }
   7285   }
   7286 
   7287   AddDefaultCC(AddDefaultPred(BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr),
   7288                                       ARM::SP)
   7289                               .addReg(ARM::SP).addReg(ARM::R4)));
   7290 
   7291   MI->eraseFromParent();
   7292   return MBB;
   7293 }
   7294 
   7295 MachineBasicBlock *
   7296 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
   7297                                                MachineBasicBlock *BB) const {
   7298   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
   7299   DebugLoc dl = MI->getDebugLoc();
   7300   bool isThumb2 = Subtarget->isThumb2();
   7301   switch (MI->getOpcode()) {
   7302   default: {
   7303     MI->dump();
   7304     llvm_unreachable("Unexpected instr type to insert");
   7305   }
   7306   // The Thumb2 pre-indexed stores have the same MI operands, they just
   7307   // define them differently in the .td files from the isel patterns, so
   7308   // they need pseudos.
   7309   case ARM::t2STR_preidx:
   7310     MI->setDesc(TII->get(ARM::t2STR_PRE));
   7311     return BB;
   7312   case ARM::t2STRB_preidx:
   7313     MI->setDesc(TII->get(ARM::t2STRB_PRE));
   7314     return BB;
   7315   case ARM::t2STRH_preidx:
   7316     MI->setDesc(TII->get(ARM::t2STRH_PRE));
   7317     return BB;
   7318 
   7319   case ARM::STRi_preidx:
   7320   case ARM::STRBi_preidx: {
   7321     unsigned NewOpc = MI->getOpcode() == ARM::STRi_preidx ?
   7322       ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM;
   7323     // Decode the offset.
   7324     unsigned Offset = MI->getOperand(4).getImm();
   7325     bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
   7326     Offset = ARM_AM::getAM2Offset(Offset);
   7327     if (isSub)
   7328       Offset = -Offset;
   7329 
   7330     MachineMemOperand *MMO = *MI->memoperands_begin();
   7331     BuildMI(*BB, MI, dl, TII->get(NewOpc))
   7332       .addOperand(MI->getOperand(0))  // Rn_wb
   7333       .addOperand(MI->getOperand(1))  // Rt
   7334       .addOperand(MI->getOperand(2))  // Rn
   7335       .addImm(Offset)                 // offset (skip GPR==zero_reg)
   7336       .addOperand(MI->getOperand(5))  // pred
   7337       .addOperand(MI->getOperand(6))
   7338       .addMemOperand(MMO);
   7339     MI->eraseFromParent();
   7340     return BB;
   7341   }
   7342   case ARM::STRr_preidx:
   7343   case ARM::STRBr_preidx:
   7344   case ARM::STRH_preidx: {
   7345     unsigned NewOpc;
   7346     switch (MI->getOpcode()) {
   7347     default: llvm_unreachable("unexpected opcode!");
   7348     case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
   7349     case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
   7350     case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
   7351     }
   7352     MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
   7353     for (unsigned i = 0; i < MI->getNumOperands(); ++i)
   7354       MIB.addOperand(MI->getOperand(i));
   7355     MI->eraseFromParent();
   7356     return BB;
   7357   }
   7358 
   7359   case ARM::tMOVCCr_pseudo: {
   7360     // To "insert" a SELECT_CC instruction, we actually have to insert the
   7361     // diamond control-flow pattern.  The incoming instruction knows the
   7362     // destination vreg to set, the condition code register to branch on, the
   7363     // true/false values to select between, and a branch opcode to use.
   7364     const BasicBlock *LLVM_BB = BB->getBasicBlock();
   7365     MachineFunction::iterator It = BB;
   7366     ++It;
   7367 
   7368     //  thisMBB:
   7369     //  ...
   7370     //   TrueVal = ...
   7371     //   cmpTY ccX, r1, r2
   7372     //   bCC copy1MBB
   7373     //   fallthrough --> copy0MBB
   7374     MachineBasicBlock *thisMBB  = BB;
   7375     MachineFunction *F = BB->getParent();
   7376     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
   7377     MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
   7378     F->insert(It, copy0MBB);
   7379     F->insert(It, sinkMBB);
   7380 
   7381     // Transfer the remainder of BB and its successor edges to sinkMBB.
   7382     sinkMBB->splice(sinkMBB->begin(), BB,
   7383                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
   7384     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
   7385 
   7386     BB->addSuccessor(copy0MBB);
   7387     BB->addSuccessor(sinkMBB);
   7388 
   7389     BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
   7390       .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
   7391 
   7392     //  copy0MBB:
   7393     //   %FalseValue = ...
   7394     //   # fallthrough to sinkMBB
   7395     BB = copy0MBB;
   7396 
   7397     // Update machine-CFG edges
   7398     BB->addSuccessor(sinkMBB);
   7399 
   7400     //  sinkMBB:
   7401     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
   7402     //  ...
   7403     BB = sinkMBB;
   7404     BuildMI(*BB, BB->begin(), dl,
   7405             TII->get(ARM::PHI), MI->getOperand(0).getReg())
   7406       .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
   7407       .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
   7408 
   7409     MI->eraseFromParent();   // The pseudo instruction is gone now.
   7410     return BB;
   7411   }
   7412 
   7413   case ARM::BCCi64:
   7414   case ARM::BCCZi64: {
   7415     // If there is an unconditional branch to the other successor, remove it.
   7416     BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end());
   7417 
   7418     // Compare both parts that make up the double comparison separately for
   7419     // equality.
   7420     bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
   7421 
   7422     unsigned LHS1 = MI->getOperand(1).getReg();
   7423     unsigned LHS2 = MI->getOperand(2).getReg();
   7424     if (RHSisZero) {
   7425       AddDefaultPred(BuildMI(BB, dl,
   7426                              TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
   7427                      .addReg(LHS1).addImm(0));
   7428       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
   7429         .addReg(LHS2).addImm(0)
   7430         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
   7431     } else {
   7432       unsigned RHS1 = MI->getOperand(3).getReg();
   7433       unsigned RHS2 = MI->getOperand(4).getReg();
   7434       AddDefaultPred(BuildMI(BB, dl,
   7435                              TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
   7436                      .addReg(LHS1).addReg(RHS1));
   7437       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
   7438         .addReg(LHS2).addReg(RHS2)
   7439         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
   7440     }
   7441 
   7442     MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
   7443     MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
   7444     if (MI->getOperand(0).getImm() == ARMCC::NE)
   7445       std::swap(destMBB, exitMBB);
   7446 
   7447     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
   7448       .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
   7449     if (isThumb2)
   7450       AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB));
   7451     else
   7452       BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
   7453 
   7454     MI->eraseFromParent();   // The pseudo instruction is gone now.
   7455     return BB;
   7456   }
   7457 
   7458   case ARM::Int_eh_sjlj_setjmp:
   7459   case ARM::Int_eh_sjlj_setjmp_nofp:
   7460   case ARM::tInt_eh_sjlj_setjmp:
   7461   case ARM::t2Int_eh_sjlj_setjmp:
   7462   case ARM::t2Int_eh_sjlj_setjmp_nofp:
   7463     EmitSjLjDispatchBlock(MI, BB);
   7464     return BB;
   7465 
   7466   case ARM::ABS:
   7467   case ARM::t2ABS: {
   7468     // To insert an ABS instruction, we have to insert the
   7469     // diamond control-flow pattern.  The incoming instruction knows the
   7470     // source vreg to test against 0, the destination vreg to set,
   7471     // the condition code register to branch on, the
   7472     // true/false values to select between, and a branch opcode to use.
   7473     // It transforms
   7474     //     V1 = ABS V0
   7475     // into
   7476     //     V2 = MOVS V0
   7477     //     BCC                      (branch to SinkBB if V0 >= 0)
   7478     //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
   7479     //     SinkBB: V1 = PHI(V2, V3)
   7480     const BasicBlock *LLVM_BB = BB->getBasicBlock();
   7481     MachineFunction::iterator BBI = BB;
   7482     ++BBI;
   7483     MachineFunction *Fn = BB->getParent();
   7484     MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
   7485     MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
   7486     Fn->insert(BBI, RSBBB);
   7487     Fn->insert(BBI, SinkBB);
   7488 
   7489     unsigned int ABSSrcReg = MI->getOperand(1).getReg();
   7490     unsigned int ABSDstReg = MI->getOperand(0).getReg();
   7491     bool isThumb2 = Subtarget->isThumb2();
   7492     MachineRegisterInfo &MRI = Fn->getRegInfo();
   7493     // In Thumb mode S must not be specified if source register is the SP or
   7494     // PC and if destination register is the SP, so restrict register class
   7495     unsigned NewRsbDstReg =
   7496       MRI.createVirtualRegister(isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass);
   7497 
   7498     // Transfer the remainder of BB and its successor edges to sinkMBB.
   7499     SinkBB->splice(SinkBB->begin(), BB,
   7500                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
   7501     SinkBB->transferSuccessorsAndUpdatePHIs(BB);
   7502 
   7503     BB->addSuccessor(RSBBB);
   7504     BB->addSuccessor(SinkBB);
   7505 
   7506     // fall through to SinkMBB
   7507     RSBBB->addSuccessor(SinkBB);
   7508 
   7509     // insert a cmp at the end of BB
   7510     AddDefaultPred(BuildMI(BB, dl,
   7511                            TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
   7512                    .addReg(ABSSrcReg).addImm(0));
   7513 
   7514     // insert a bcc with opposite CC to ARMCC::MI at the end of BB
   7515     BuildMI(BB, dl,
   7516       TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
   7517       .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
   7518 
   7519     // insert rsbri in RSBBB
   7520     // Note: BCC and rsbri will be converted into predicated rsbmi
   7521     // by if-conversion pass
   7522     BuildMI(*RSBBB, RSBBB->begin(), dl,
   7523       TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
   7524       .addReg(ABSSrcReg, RegState::Kill)
   7525       .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
   7526 
   7527     // insert PHI in SinkBB,
   7528     // reuse ABSDstReg to not change uses of ABS instruction
   7529     BuildMI(*SinkBB, SinkBB->begin(), dl,
   7530       TII->get(ARM::PHI), ABSDstReg)
   7531       .addReg(NewRsbDstReg).addMBB(RSBBB)
   7532       .addReg(ABSSrcReg).addMBB(BB);
   7533 
   7534     // remove ABS instruction
   7535     MI->eraseFromParent();
   7536 
   7537     // return last added BB
   7538     return SinkBB;
   7539   }
   7540   case ARM::COPY_STRUCT_BYVAL_I32:
   7541     ++NumLoopByVals;
   7542     return EmitStructByval(MI, BB);
   7543   case ARM::WIN__CHKSTK:
   7544     return EmitLowered__chkstk(MI, BB);
   7545   }
   7546 }
   7547 
   7548 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
   7549                                                       SDNode *Node) const {
   7550   const MCInstrDesc *MCID = &MI->getDesc();
   7551   // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
   7552   // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
   7553   // operand is still set to noreg. If needed, set the optional operand's
   7554   // register to CPSR, and remove the redundant implicit def.
   7555   //
   7556   // e.g. ADCS (..., CPSR<imp-def>) -> ADC (... opt:CPSR<def>).
   7557 
   7558   // Rename pseudo opcodes.
   7559   unsigned NewOpc = convertAddSubFlagsOpcode(MI->getOpcode());
   7560   if (NewOpc) {
   7561     const ARMBaseInstrInfo *TII = Subtarget->getInstrInfo();
   7562     MCID = &TII->get(NewOpc);
   7563 
   7564     assert(MCID->getNumOperands() == MI->getDesc().getNumOperands() + 1 &&
   7565            "converted opcode should be the same except for cc_out");
   7566 
   7567     MI->setDesc(*MCID);
   7568 
   7569     // Add the optional cc_out operand
   7570     MI->addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
   7571   }
   7572   unsigned ccOutIdx = MCID->getNumOperands() - 1;
   7573 
   7574   // Any ARM instruction that sets the 's' bit should specify an optional
   7575   // "cc_out" operand in the last operand position.
   7576   if (!MI->hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
   7577     assert(!NewOpc && "Optional cc_out operand required");
   7578     return;
   7579   }
   7580   // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
   7581   // since we already have an optional CPSR def.
   7582   bool definesCPSR = false;
   7583   bool deadCPSR = false;
   7584   for (unsigned i = MCID->getNumOperands(), e = MI->getNumOperands();
   7585        i != e; ++i) {
   7586     const MachineOperand &MO = MI->getOperand(i);
   7587     if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
   7588       definesCPSR = true;
   7589       if (MO.isDead())
   7590         deadCPSR = true;
   7591       MI->RemoveOperand(i);
   7592       break;
   7593     }
   7594   }
   7595   if (!definesCPSR) {
   7596     assert(!NewOpc && "Optional cc_out operand required");
   7597     return;
   7598   }
   7599   assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
   7600   if (deadCPSR) {
   7601     assert(!MI->getOperand(ccOutIdx).getReg() &&
   7602            "expect uninitialized optional cc_out operand");
   7603     return;
   7604   }
   7605 
   7606   // If this instruction was defined with an optional CPSR def and its dag node
   7607   // had a live implicit CPSR def, then activate the optional CPSR def.
   7608   MachineOperand &MO = MI->getOperand(ccOutIdx);
   7609   MO.setReg(ARM::CPSR);
   7610   MO.setIsDef(true);
   7611 }
   7612 
   7613 //===----------------------------------------------------------------------===//
   7614 //                           ARM Optimization Hooks
   7615 //===----------------------------------------------------------------------===//
   7616 
   7617 // Helper function that checks if N is a null or all ones constant.
   7618 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
   7619   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
   7620   if (!C)
   7621     return false;
   7622   return AllOnes ? C->isAllOnesValue() : C->isNullValue();
   7623 }
   7624 
   7625 // Return true if N is conditionally 0 or all ones.
   7626 // Detects these expressions where cc is an i1 value:
   7627 //
   7628 //   (select cc 0, y)   [AllOnes=0]
   7629 //   (select cc y, 0)   [AllOnes=0]
   7630 //   (zext cc)          [AllOnes=0]
   7631 //   (sext cc)          [AllOnes=0/1]
   7632 //   (select cc -1, y)  [AllOnes=1]
   7633 //   (select cc y, -1)  [AllOnes=1]
   7634 //
   7635 // Invert is set when N is the null/all ones constant when CC is false.
   7636 // OtherOp is set to the alternative value of N.
   7637 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
   7638                                        SDValue &CC, bool &Invert,
   7639                                        SDValue &OtherOp,
   7640                                        SelectionDAG &DAG) {
   7641   switch (N->getOpcode()) {
   7642   default: return false;
   7643   case ISD::SELECT: {
   7644     CC = N->getOperand(0);
   7645     SDValue N1 = N->getOperand(1);
   7646     SDValue N2 = N->getOperand(2);
   7647     if (isZeroOrAllOnes(N1, AllOnes)) {
   7648       Invert = false;
   7649       OtherOp = N2;
   7650       return true;
   7651     }
   7652     if (isZeroOrAllOnes(N2, AllOnes)) {
   7653       Invert = true;
   7654       OtherOp = N1;
   7655       return true;
   7656     }
   7657     return false;
   7658   }
   7659   case ISD::ZERO_EXTEND:
   7660     // (zext cc) can never be the all ones value.
   7661     if (AllOnes)
   7662       return false;
   7663     // Fall through.
   7664   case ISD::SIGN_EXTEND: {
   7665     EVT VT = N->getValueType(0);
   7666     CC = N->getOperand(0);
   7667     if (CC.getValueType() != MVT::i1)
   7668       return false;
   7669     Invert = !AllOnes;
   7670     if (AllOnes)
   7671       // When looking for an AllOnes constant, N is an sext, and the 'other'
   7672       // value is 0.
   7673       OtherOp = DAG.getConstant(0, VT);
   7674     else if (N->getOpcode() == ISD::ZERO_EXTEND)
   7675       // When looking for a 0 constant, N can be zext or sext.
   7676       OtherOp = DAG.getConstant(1, VT);
   7677     else
   7678       OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
   7679     return true;
   7680   }
   7681   }
   7682 }
   7683 
   7684 // Combine a constant select operand into its use:
   7685 //
   7686 //   (add (select cc, 0, c), x)  -> (select cc, x, (add, x, c))
   7687 //   (sub x, (select cc, 0, c))  -> (select cc, x, (sub, x, c))
   7688 //   (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))  [AllOnes=1]
   7689 //   (or  (select cc, 0, c), x)  -> (select cc, x, (or, x, c))
   7690 //   (xor (select cc, 0, c), x)  -> (select cc, x, (xor, x, c))
   7691 //
   7692 // The transform is rejected if the select doesn't have a constant operand that
   7693 // is null, or all ones when AllOnes is set.
   7694 //
   7695 // Also recognize sext/zext from i1:
   7696 //
   7697 //   (add (zext cc), x) -> (select cc (add x, 1), x)
   7698 //   (add (sext cc), x) -> (select cc (add x, -1), x)
   7699 //
   7700 // These transformations eventually create predicated instructions.
   7701 //
   7702 // @param N       The node to transform.
   7703 // @param Slct    The N operand that is a select.
   7704 // @param OtherOp The other N operand (x above).
   7705 // @param DCI     Context.
   7706 // @param AllOnes Require the select constant to be all ones instead of null.
   7707 // @returns The new node, or SDValue() on failure.
   7708 static
   7709 SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
   7710                             TargetLowering::DAGCombinerInfo &DCI,
   7711                             bool AllOnes = false) {
   7712   SelectionDAG &DAG = DCI.DAG;
   7713   EVT VT = N->getValueType(0);
   7714   SDValue NonConstantVal;
   7715   SDValue CCOp;
   7716   bool SwapSelectOps;
   7717   if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
   7718                                   NonConstantVal, DAG))
   7719     return SDValue();
   7720 
   7721   // Slct is now know to be the desired identity constant when CC is true.
   7722   SDValue TrueVal = OtherOp;
   7723   SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
   7724                                  OtherOp, NonConstantVal);
   7725   // Unless SwapSelectOps says CC should be false.
   7726   if (SwapSelectOps)
   7727     std::swap(TrueVal, FalseVal);
   7728 
   7729   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
   7730                      CCOp, TrueVal, FalseVal);
   7731 }
   7732 
   7733 // Attempt combineSelectAndUse on each operand of a commutative operator N.
   7734 static
   7735 SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
   7736                                        TargetLowering::DAGCombinerInfo &DCI) {
   7737   SDValue N0 = N->getOperand(0);
   7738   SDValue N1 = N->getOperand(1);
   7739   if (N0.getNode()->hasOneUse()) {
   7740     SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes);
   7741     if (Result.getNode())
   7742       return Result;
   7743   }
   7744   if (N1.getNode()->hasOneUse()) {
   7745     SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes);
   7746     if (Result.getNode())
   7747       return Result;
   7748   }
   7749   return SDValue();
   7750 }
   7751 
   7752 // AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction
   7753 // (only after legalization).
   7754 static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1,
   7755                                  TargetLowering::DAGCombinerInfo &DCI,
   7756                                  const ARMSubtarget *Subtarget) {
   7757 
   7758   // Only perform optimization if after legalize, and if NEON is available. We
   7759   // also expected both operands to be BUILD_VECTORs.
   7760   if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
   7761       || N0.getOpcode() != ISD::BUILD_VECTOR
   7762       || N1.getOpcode() != ISD::BUILD_VECTOR)
   7763     return SDValue();
   7764 
   7765   // Check output type since VPADDL operand elements can only be 8, 16, or 32.
   7766   EVT VT = N->getValueType(0);
   7767   if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
   7768     return SDValue();
   7769 
   7770   // Check that the vector operands are of the right form.
   7771   // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
   7772   // operands, where N is the size of the formed vector.
   7773   // Each EXTRACT_VECTOR should have the same input vector and odd or even
   7774   // index such that we have a pair wise add pattern.
   7775 
   7776   // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
   7777   if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
   7778     return SDValue();
   7779   SDValue Vec = N0->getOperand(0)->getOperand(0);
   7780   SDNode *V = Vec.getNode();
   7781   unsigned nextIndex = 0;
   7782 
   7783   // For each operands to the ADD which are BUILD_VECTORs,
   7784   // check to see if each of their operands are an EXTRACT_VECTOR with
   7785   // the same vector and appropriate index.
   7786   for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
   7787     if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
   7788         && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
   7789 
   7790       SDValue ExtVec0 = N0->getOperand(i);
   7791       SDValue ExtVec1 = N1->getOperand(i);
   7792 
   7793       // First operand is the vector, verify its the same.
   7794       if (V != ExtVec0->getOperand(0).getNode() ||
   7795           V != ExtVec1->getOperand(0).getNode())
   7796         return SDValue();
   7797 
   7798       // Second is the constant, verify its correct.
   7799       ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
   7800       ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
   7801 
   7802       // For the constant, we want to see all the even or all the odd.
   7803       if (!C0 || !C1 || C0->getZExtValue() != nextIndex
   7804           || C1->getZExtValue() != nextIndex+1)
   7805         return SDValue();
   7806 
   7807       // Increment index.
   7808       nextIndex+=2;
   7809     } else
   7810       return SDValue();
   7811   }
   7812 
   7813   // Create VPADDL node.
   7814   SelectionDAG &DAG = DCI.DAG;
   7815   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   7816 
   7817   // Build operand list.
   7818   SmallVector<SDValue, 8> Ops;
   7819   Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls,
   7820                                 TLI.getPointerTy()));
   7821 
   7822   // Input is the vector.
   7823   Ops.push_back(Vec);
   7824 
   7825   // Get widened type and narrowed type.
   7826   MVT widenType;
   7827   unsigned numElem = VT.getVectorNumElements();
   7828 
   7829   EVT inputLaneType = Vec.getValueType().getVectorElementType();
   7830   switch (inputLaneType.getSimpleVT().SimpleTy) {
   7831     case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
   7832     case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
   7833     case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
   7834     default:
   7835       llvm_unreachable("Invalid vector element type for padd optimization.");
   7836   }
   7837 
   7838   SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), widenType, Ops);
   7839   unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE;
   7840   return DAG.getNode(ExtOp, SDLoc(N), VT, tmp);
   7841 }
   7842 
   7843 static SDValue findMUL_LOHI(SDValue V) {
   7844   if (V->getOpcode() == ISD::UMUL_LOHI ||
   7845       V->getOpcode() == ISD::SMUL_LOHI)
   7846     return V;
   7847   return SDValue();
   7848 }
   7849 
   7850 static SDValue AddCombineTo64bitMLAL(SDNode *AddcNode,
   7851                                      TargetLowering::DAGCombinerInfo &DCI,
   7852                                      const ARMSubtarget *Subtarget) {
   7853 
   7854   if (Subtarget->isThumb1Only()) return SDValue();
   7855 
   7856   // Only perform the checks after legalize when the pattern is available.
   7857   if (DCI.isBeforeLegalize()) return SDValue();
   7858 
   7859   // Look for multiply add opportunities.
   7860   // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
   7861   // each add nodes consumes a value from ISD::UMUL_LOHI and there is
   7862   // a glue link from the first add to the second add.
   7863   // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
   7864   // a S/UMLAL instruction.
   7865   //          loAdd   UMUL_LOHI
   7866   //            \    / :lo    \ :hi
   7867   //             \  /          \          [no multiline comment]
   7868   //              ADDC         |  hiAdd
   7869   //                 \ :glue  /  /
   7870   //                  \      /  /
   7871   //                    ADDE
   7872   //
   7873   assert(AddcNode->getOpcode() == ISD::ADDC && "Expect an ADDC");
   7874   SDValue AddcOp0 = AddcNode->getOperand(0);
   7875   SDValue AddcOp1 = AddcNode->getOperand(1);
   7876 
   7877   // Check if the two operands are from the same mul_lohi node.
   7878   if (AddcOp0.getNode() == AddcOp1.getNode())
   7879     return SDValue();
   7880 
   7881   assert(AddcNode->getNumValues() == 2 &&
   7882          AddcNode->getValueType(0) == MVT::i32 &&
   7883          "Expect ADDC with two result values. First: i32");
   7884 
   7885   // Check that we have a glued ADDC node.
   7886   if (AddcNode->getValueType(1) != MVT::Glue)
   7887     return SDValue();
   7888 
   7889   // Check that the ADDC adds the low result of the S/UMUL_LOHI.
   7890   if (AddcOp0->getOpcode() != ISD::UMUL_LOHI &&
   7891       AddcOp0->getOpcode() != ISD::SMUL_LOHI &&
   7892       AddcOp1->getOpcode() != ISD::UMUL_LOHI &&
   7893       AddcOp1->getOpcode() != ISD::SMUL_LOHI)
   7894     return SDValue();
   7895 
   7896   // Look for the glued ADDE.
   7897   SDNode* AddeNode = AddcNode->getGluedUser();
   7898   if (!AddeNode)
   7899     return SDValue();
   7900 
   7901   // Make sure it is really an ADDE.
   7902   if (AddeNode->getOpcode() != ISD::ADDE)
   7903     return SDValue();
   7904 
   7905   assert(AddeNode->getNumOperands() == 3 &&
   7906          AddeNode->getOperand(2).getValueType() == MVT::Glue &&
   7907          "ADDE node has the wrong inputs");
   7908 
   7909   // Check for the triangle shape.
   7910   SDValue AddeOp0 = AddeNode->getOperand(0);
   7911   SDValue AddeOp1 = AddeNode->getOperand(1);
   7912 
   7913   // Make sure that the ADDE operands are not coming from the same node.
   7914   if (AddeOp0.getNode() == AddeOp1.getNode())
   7915     return SDValue();
   7916 
   7917   // Find the MUL_LOHI node walking up ADDE's operands.
   7918   bool IsLeftOperandMUL = false;
   7919   SDValue MULOp = findMUL_LOHI(AddeOp0);
   7920   if (MULOp == SDValue())
   7921    MULOp = findMUL_LOHI(AddeOp1);
   7922   else
   7923     IsLeftOperandMUL = true;
   7924   if (MULOp == SDValue())
   7925     return SDValue();
   7926 
   7927   // Figure out the right opcode.
   7928   unsigned Opc = MULOp->getOpcode();
   7929   unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
   7930 
   7931   // Figure out the high and low input values to the MLAL node.
   7932   SDValue* HiAdd = nullptr;
   7933   SDValue* LoMul = nullptr;
   7934   SDValue* LowAdd = nullptr;
   7935 
   7936   // Ensure that ADDE is from high result of ISD::SMUL_LOHI.
   7937   if ((AddeOp0 != MULOp.getValue(1)) && (AddeOp1 != MULOp.getValue(1)))
   7938     return SDValue();
   7939 
   7940   if (IsLeftOperandMUL)
   7941     HiAdd = &AddeOp1;
   7942   else
   7943     HiAdd = &AddeOp0;
   7944 
   7945 
   7946   // Ensure that LoMul and LowAdd are taken from correct ISD::SMUL_LOHI node
   7947   // whose low result is fed to the ADDC we are checking.
   7948 
   7949   if (AddcOp0 == MULOp.getValue(0)) {
   7950     LoMul = &AddcOp0;
   7951     LowAdd = &AddcOp1;
   7952   }
   7953   if (AddcOp1 == MULOp.getValue(0)) {
   7954     LoMul = &AddcOp1;
   7955     LowAdd = &AddcOp0;
   7956   }
   7957 
   7958   if (!LoMul)
   7959     return SDValue();
   7960 
   7961   // Create the merged node.
   7962   SelectionDAG &DAG = DCI.DAG;
   7963 
   7964   // Build operand list.
   7965   SmallVector<SDValue, 8> Ops;
   7966   Ops.push_back(LoMul->getOperand(0));
   7967   Ops.push_back(LoMul->getOperand(1));
   7968   Ops.push_back(*LowAdd);
   7969   Ops.push_back(*HiAdd);
   7970 
   7971   SDValue MLALNode =  DAG.getNode(FinalOpc, SDLoc(AddcNode),
   7972                                  DAG.getVTList(MVT::i32, MVT::i32), Ops);
   7973 
   7974   // Replace the ADDs' nodes uses by the MLA node's values.
   7975   SDValue HiMLALResult(MLALNode.getNode(), 1);
   7976   DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
   7977 
   7978   SDValue LoMLALResult(MLALNode.getNode(), 0);
   7979   DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
   7980 
   7981   // Return original node to notify the driver to stop replacing.
   7982   SDValue resNode(AddcNode, 0);
   7983   return resNode;
   7984 }
   7985 
   7986 /// PerformADDCCombine - Target-specific dag combine transform from
   7987 /// ISD::ADDC, ISD::ADDE, and ISD::MUL_LOHI to MLAL.
   7988 static SDValue PerformADDCCombine(SDNode *N,
   7989                                  TargetLowering::DAGCombinerInfo &DCI,
   7990                                  const ARMSubtarget *Subtarget) {
   7991 
   7992   return AddCombineTo64bitMLAL(N, DCI, Subtarget);
   7993 
   7994 }
   7995 
   7996 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
   7997 /// operands N0 and N1.  This is a helper for PerformADDCombine that is
   7998 /// called with the default operands, and if that fails, with commuted
   7999 /// operands.
   8000 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
   8001                                           TargetLowering::DAGCombinerInfo &DCI,
   8002                                           const ARMSubtarget *Subtarget){
   8003 
   8004   // Attempt to create vpaddl for this add.
   8005   SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget);
   8006   if (Result.getNode())
   8007     return Result;
   8008 
   8009   // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
   8010   if (N0.getNode()->hasOneUse()) {
   8011     SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
   8012     if (Result.getNode()) return Result;
   8013   }
   8014   return SDValue();
   8015 }
   8016 
   8017 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
   8018 ///
   8019 static SDValue PerformADDCombine(SDNode *N,
   8020                                  TargetLowering::DAGCombinerInfo &DCI,
   8021                                  const ARMSubtarget *Subtarget) {
   8022   SDValue N0 = N->getOperand(0);
   8023   SDValue N1 = N->getOperand(1);
   8024 
   8025   // First try with the default operand order.
   8026   SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget);
   8027   if (Result.getNode())
   8028     return Result;
   8029 
   8030   // If that didn't work, try again with the operands commuted.
   8031   return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
   8032 }
   8033 
   8034 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
   8035 ///
   8036 static SDValue PerformSUBCombine(SDNode *N,
   8037                                  TargetLowering::DAGCombinerInfo &DCI) {
   8038   SDValue N0 = N->getOperand(0);
   8039   SDValue N1 = N->getOperand(1);
   8040 
   8041   // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
   8042   if (N1.getNode()->hasOneUse()) {
   8043     SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
   8044     if (Result.getNode()) return Result;
   8045   }
   8046 
   8047   return SDValue();
   8048 }
   8049 
   8050 /// PerformVMULCombine
   8051 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
   8052 /// special multiplier accumulator forwarding.
   8053 ///   vmul d3, d0, d2
   8054 ///   vmla d3, d1, d2
   8055 /// is faster than
   8056 ///   vadd d3, d0, d1
   8057 ///   vmul d3, d3, d2
   8058 //  However, for (A + B) * (A + B),
   8059 //    vadd d2, d0, d1
   8060 //    vmul d3, d0, d2
   8061 //    vmla d3, d1, d2
   8062 //  is slower than
   8063 //    vadd d2, d0, d1
   8064 //    vmul d3, d2, d2
   8065 static SDValue PerformVMULCombine(SDNode *N,
   8066                                   TargetLowering::DAGCombinerInfo &DCI,
   8067                                   const ARMSubtarget *Subtarget) {
   8068   if (!Subtarget->hasVMLxForwarding())
   8069     return SDValue();
   8070 
   8071   SelectionDAG &DAG = DCI.DAG;
   8072   SDValue N0 = N->getOperand(0);
   8073   SDValue N1 = N->getOperand(1);
   8074   unsigned Opcode = N0.getOpcode();
   8075   if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
   8076       Opcode != ISD::FADD && Opcode != ISD::FSUB) {
   8077     Opcode = N1.getOpcode();
   8078     if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
   8079         Opcode != ISD::FADD && Opcode != ISD::FSUB)
   8080       return SDValue();
   8081     std::swap(N0, N1);
   8082   }
   8083 
   8084   if (N0 == N1)
   8085     return SDValue();
   8086 
   8087   EVT VT = N->getValueType(0);
   8088   SDLoc DL(N);
   8089   SDValue N00 = N0->getOperand(0);
   8090   SDValue N01 = N0->getOperand(1);
   8091   return DAG.getNode(Opcode, DL, VT,
   8092                      DAG.getNode(ISD::MUL, DL, VT, N00, N1),
   8093                      DAG.getNode(ISD::MUL, DL, VT, N01, N1));
   8094 }
   8095 
   8096 static SDValue PerformMULCombine(SDNode *N,
   8097                                  TargetLowering::DAGCombinerInfo &DCI,
   8098                                  const ARMSubtarget *Subtarget) {
   8099   SelectionDAG &DAG = DCI.DAG;
   8100 
   8101   if (Subtarget->isThumb1Only())
   8102     return SDValue();
   8103 
   8104   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
   8105     return SDValue();
   8106 
   8107   EVT VT = N->getValueType(0);
   8108   if (VT.is64BitVector() || VT.is128BitVector())
   8109     return PerformVMULCombine(N, DCI, Subtarget);
   8110   if (VT != MVT::i32)
   8111     return SDValue();
   8112 
   8113   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
   8114   if (!C)
   8115     return SDValue();
   8116 
   8117   int64_t MulAmt = C->getSExtValue();
   8118   unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt);
   8119 
   8120   ShiftAmt = ShiftAmt & (32 - 1);
   8121   SDValue V = N->getOperand(0);
   8122   SDLoc DL(N);
   8123 
   8124   SDValue Res;
   8125   MulAmt >>= ShiftAmt;
   8126 
   8127   if (MulAmt >= 0) {
   8128     if (isPowerOf2_32(MulAmt - 1)) {
   8129       // (mul x, 2^N + 1) => (add (shl x, N), x)
   8130       Res = DAG.getNode(ISD::ADD, DL, VT,
   8131                         V,
   8132                         DAG.getNode(ISD::SHL, DL, VT,
   8133                                     V,
   8134                                     DAG.getConstant(Log2_32(MulAmt - 1),
   8135                                                     MVT::i32)));
   8136     } else if (isPowerOf2_32(MulAmt + 1)) {
   8137       // (mul x, 2^N - 1) => (sub (shl x, N), x)
   8138       Res = DAG.getNode(ISD::SUB, DL, VT,
   8139                         DAG.getNode(ISD::SHL, DL, VT,
   8140                                     V,
   8141                                     DAG.getConstant(Log2_32(MulAmt + 1),
   8142                                                     MVT::i32)),
   8143                         V);
   8144     } else
   8145       return SDValue();
   8146   } else {
   8147     uint64_t MulAmtAbs = -MulAmt;
   8148     if (isPowerOf2_32(MulAmtAbs + 1)) {
   8149       // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
   8150       Res = DAG.getNode(ISD::SUB, DL, VT,
   8151                         V,
   8152                         DAG.getNode(ISD::SHL, DL, VT,
   8153                                     V,
   8154                                     DAG.getConstant(Log2_32(MulAmtAbs + 1),
   8155                                                     MVT::i32)));
   8156     } else if (isPowerOf2_32(MulAmtAbs - 1)) {
   8157       // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
   8158       Res = DAG.getNode(ISD::ADD, DL, VT,
   8159                         V,
   8160                         DAG.getNode(ISD::SHL, DL, VT,
   8161                                     V,
   8162                                     DAG.getConstant(Log2_32(MulAmtAbs-1),
   8163                                                     MVT::i32)));
   8164       Res = DAG.getNode(ISD::SUB, DL, VT,
   8165                         DAG.getConstant(0, MVT::i32),Res);
   8166 
   8167     } else
   8168       return SDValue();
   8169   }
   8170 
   8171   if (ShiftAmt != 0)
   8172     Res = DAG.getNode(ISD::SHL, DL, VT,
   8173                       Res, DAG.getConstant(ShiftAmt, MVT::i32));
   8174 
   8175   // Do not add new nodes to DAG combiner worklist.
   8176   DCI.CombineTo(N, Res, false);
   8177   return SDValue();
   8178 }
   8179 
   8180 static SDValue PerformANDCombine(SDNode *N,
   8181                                  TargetLowering::DAGCombinerInfo &DCI,
   8182                                  const ARMSubtarget *Subtarget) {
   8183 
   8184   // Attempt to use immediate-form VBIC
   8185   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
   8186   SDLoc dl(N);
   8187   EVT VT = N->getValueType(0);
   8188   SelectionDAG &DAG = DCI.DAG;
   8189 
   8190   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
   8191     return SDValue();
   8192 
   8193   APInt SplatBits, SplatUndef;
   8194   unsigned SplatBitSize;
   8195   bool HasAnyUndefs;
   8196   if (BVN &&
   8197       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
   8198     if (SplatBitSize <= 64) {
   8199       EVT VbicVT;
   8200       SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
   8201                                       SplatUndef.getZExtValue(), SplatBitSize,
   8202                                       DAG, VbicVT, VT.is128BitVector(),
   8203                                       OtherModImm);
   8204       if (Val.getNode()) {
   8205         SDValue Input =
   8206           DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
   8207         SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
   8208         return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
   8209       }
   8210     }
   8211   }
   8212 
   8213   if (!Subtarget->isThumb1Only()) {
   8214     // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
   8215     SDValue Result = combineSelectAndUseCommutative(N, true, DCI);
   8216     if (Result.getNode())
   8217       return Result;
   8218   }
   8219 
   8220   return SDValue();
   8221 }
   8222 
   8223 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
   8224 static SDValue PerformORCombine(SDNode *N,
   8225                                 TargetLowering::DAGCombinerInfo &DCI,
   8226                                 const ARMSubtarget *Subtarget) {
   8227   // Attempt to use immediate-form VORR
   8228   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
   8229   SDLoc dl(N);
   8230   EVT VT = N->getValueType(0);
   8231   SelectionDAG &DAG = DCI.DAG;
   8232 
   8233   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
   8234     return SDValue();
   8235 
   8236   APInt SplatBits, SplatUndef;
   8237   unsigned SplatBitSize;
   8238   bool HasAnyUndefs;
   8239   if (BVN && Subtarget->hasNEON() &&
   8240       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
   8241     if (SplatBitSize <= 64) {
   8242       EVT VorrVT;
   8243       SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
   8244                                       SplatUndef.getZExtValue(), SplatBitSize,
   8245                                       DAG, VorrVT, VT.is128BitVector(),
   8246                                       OtherModImm);
   8247       if (Val.getNode()) {
   8248         SDValue Input =
   8249           DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
   8250         SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
   8251         return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
   8252       }
   8253     }
   8254   }
   8255 
   8256   if (!Subtarget->isThumb1Only()) {
   8257     // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
   8258     SDValue Result = combineSelectAndUseCommutative(N, false, DCI);
   8259     if (Result.getNode())
   8260       return Result;
   8261   }
   8262 
   8263   // The code below optimizes (or (and X, Y), Z).
   8264   // The AND operand needs to have a single user to make these optimizations
   8265   // profitable.
   8266   SDValue N0 = N->getOperand(0);
   8267   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
   8268     return SDValue();
   8269   SDValue N1 = N->getOperand(1);
   8270 
   8271   // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
   8272   if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
   8273       DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
   8274     APInt SplatUndef;
   8275     unsigned SplatBitSize;
   8276     bool HasAnyUndefs;
   8277 
   8278     APInt SplatBits0, SplatBits1;
   8279     BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
   8280     BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
   8281     // Ensure that the second operand of both ands are constants
   8282     if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
   8283                                       HasAnyUndefs) && !HasAnyUndefs) {
   8284         if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
   8285                                           HasAnyUndefs) && !HasAnyUndefs) {
   8286             // Ensure that the bit width of the constants are the same and that
   8287             // the splat arguments are logical inverses as per the pattern we
   8288             // are trying to simplify.
   8289             if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
   8290                 SplatBits0 == ~SplatBits1) {
   8291                 // Canonicalize the vector type to make instruction selection
   8292                 // simpler.
   8293                 EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
   8294                 SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
   8295                                              N0->getOperand(1),
   8296                                              N0->getOperand(0),
   8297                                              N1->getOperand(0));
   8298                 return DAG.getNode(ISD::BITCAST, dl, VT, Result);
   8299             }
   8300         }
   8301     }
   8302   }
   8303 
   8304   // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
   8305   // reasonable.
   8306 
   8307   // BFI is only available on V6T2+
   8308   if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
   8309     return SDValue();
   8310 
   8311   SDLoc DL(N);
   8312   // 1) or (and A, mask), val => ARMbfi A, val, mask
   8313   //      iff (val & mask) == val
   8314   //
   8315   // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
   8316   //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
   8317   //          && mask == ~mask2
   8318   //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
   8319   //          && ~mask == mask2
   8320   //  (i.e., copy a bitfield value into another bitfield of the same width)
   8321 
   8322   if (VT != MVT::i32)
   8323     return SDValue();
   8324 
   8325   SDValue N00 = N0.getOperand(0);
   8326 
   8327   // The value and the mask need to be constants so we can verify this is
   8328   // actually a bitfield set. If the mask is 0xffff, we can do better
   8329   // via a movt instruction, so don't use BFI in that case.
   8330   SDValue MaskOp = N0.getOperand(1);
   8331   ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
   8332   if (!MaskC)
   8333     return SDValue();
   8334   unsigned Mask = MaskC->getZExtValue();
   8335   if (Mask == 0xffff)
   8336     return SDValue();
   8337   SDValue Res;
   8338   // Case (1): or (and A, mask), val => ARMbfi A, val, mask
   8339   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
   8340   if (N1C) {
   8341     unsigned Val = N1C->getZExtValue();
   8342     if ((Val & ~Mask) != Val)
   8343       return SDValue();
   8344 
   8345     if (ARM::isBitFieldInvertedMask(Mask)) {
   8346       Val >>= countTrailingZeros(~Mask);
   8347 
   8348       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
   8349                         DAG.getConstant(Val, MVT::i32),
   8350                         DAG.getConstant(Mask, MVT::i32));
   8351 
   8352       // Do not add new nodes to DAG combiner worklist.
   8353       DCI.CombineTo(N, Res, false);
   8354       return SDValue();
   8355     }
   8356   } else if (N1.getOpcode() == ISD::AND) {
   8357     // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
   8358     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
   8359     if (!N11C)
   8360       return SDValue();
   8361     unsigned Mask2 = N11C->getZExtValue();
   8362 
   8363     // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
   8364     // as is to match.
   8365     if (ARM::isBitFieldInvertedMask(Mask) &&
   8366         (Mask == ~Mask2)) {
   8367       // The pack halfword instruction works better for masks that fit it,
   8368       // so use that when it's available.
   8369       if (Subtarget->hasT2ExtractPack() &&
   8370           (Mask == 0xffff || Mask == 0xffff0000))
   8371         return SDValue();
   8372       // 2a
   8373       unsigned amt = countTrailingZeros(Mask2);
   8374       Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
   8375                         DAG.getConstant(amt, MVT::i32));
   8376       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
   8377                         DAG.getConstant(Mask, MVT::i32));
   8378       // Do not add new nodes to DAG combiner worklist.
   8379       DCI.CombineTo(N, Res, false);
   8380       return SDValue();
   8381     } else if (ARM::isBitFieldInvertedMask(~Mask) &&
   8382                (~Mask == Mask2)) {
   8383       // The pack halfword instruction works better for masks that fit it,
   8384       // so use that when it's available.
   8385       if (Subtarget->hasT2ExtractPack() &&
   8386           (Mask2 == 0xffff || Mask2 == 0xffff0000))
   8387         return SDValue();
   8388       // 2b
   8389       unsigned lsb = countTrailingZeros(Mask);
   8390       Res = DAG.getNode(ISD::SRL, DL, VT, N00,
   8391                         DAG.getConstant(lsb, MVT::i32));
   8392       Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
   8393                         DAG.getConstant(Mask2, MVT::i32));
   8394       // Do not add new nodes to DAG combiner worklist.
   8395       DCI.CombineTo(N, Res, false);
   8396       return SDValue();
   8397     }
   8398   }
   8399 
   8400   if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
   8401       N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
   8402       ARM::isBitFieldInvertedMask(~Mask)) {
   8403     // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
   8404     // where lsb(mask) == #shamt and masked bits of B are known zero.
   8405     SDValue ShAmt = N00.getOperand(1);
   8406     unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
   8407     unsigned LSB = countTrailingZeros(Mask);
   8408     if (ShAmtC != LSB)
   8409       return SDValue();
   8410 
   8411     Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
   8412                       DAG.getConstant(~Mask, MVT::i32));
   8413 
   8414     // Do not add new nodes to DAG combiner worklist.
   8415     DCI.CombineTo(N, Res, false);
   8416   }
   8417 
   8418   return SDValue();
   8419 }
   8420 
   8421 static SDValue PerformXORCombine(SDNode *N,
   8422                                  TargetLowering::DAGCombinerInfo &DCI,
   8423                                  const ARMSubtarget *Subtarget) {
   8424   EVT VT = N->getValueType(0);
   8425   SelectionDAG &DAG = DCI.DAG;
   8426 
   8427   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
   8428     return SDValue();
   8429 
   8430   if (!Subtarget->isThumb1Only()) {
   8431     // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
   8432     SDValue Result = combineSelectAndUseCommutative(N, false, DCI);
   8433     if (Result.getNode())
   8434       return Result;
   8435   }
   8436 
   8437   return SDValue();
   8438 }
   8439 
   8440 /// PerformBFICombine - (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
   8441 /// the bits being cleared by the AND are not demanded by the BFI.
   8442 static SDValue PerformBFICombine(SDNode *N,
   8443                                  TargetLowering::DAGCombinerInfo &DCI) {
   8444   SDValue N1 = N->getOperand(1);
   8445   if (N1.getOpcode() == ISD::AND) {
   8446     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
   8447     if (!N11C)
   8448       return SDValue();
   8449     unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
   8450     unsigned LSB = countTrailingZeros(~InvMask);
   8451     unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB;
   8452     assert(Width <
   8453                static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
   8454            "undefined behavior");
   8455     unsigned Mask = (1u << Width) - 1;
   8456     unsigned Mask2 = N11C->getZExtValue();
   8457     if ((Mask & (~Mask2)) == 0)
   8458       return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0),
   8459                              N->getOperand(0), N1.getOperand(0),
   8460                              N->getOperand(2));
   8461   }
   8462   return SDValue();
   8463 }
   8464 
   8465 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
   8466 /// ARMISD::VMOVRRD.
   8467 static SDValue PerformVMOVRRDCombine(SDNode *N,
   8468                                      TargetLowering::DAGCombinerInfo &DCI,
   8469                                      const ARMSubtarget *Subtarget) {
   8470   // vmovrrd(vmovdrr x, y) -> x,y
   8471   SDValue InDouble = N->getOperand(0);
   8472   if (InDouble.getOpcode() == ARMISD::VMOVDRR && !Subtarget->isFPOnlySP())
   8473     return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
   8474 
   8475   // vmovrrd(load f64) -> (load i32), (load i32)
   8476   SDNode *InNode = InDouble.getNode();
   8477   if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
   8478       InNode->getValueType(0) == MVT::f64 &&
   8479       InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
   8480       !cast<LoadSDNode>(InNode)->isVolatile()) {
   8481     // TODO: Should this be done for non-FrameIndex operands?
   8482     LoadSDNode *LD = cast<LoadSDNode>(InNode);
   8483 
   8484     SelectionDAG &DAG = DCI.DAG;
   8485     SDLoc DL(LD);
   8486     SDValue BasePtr = LD->getBasePtr();
   8487     SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
   8488                                  LD->getPointerInfo(), LD->isVolatile(),
   8489                                  LD->isNonTemporal(), LD->isInvariant(),
   8490                                  LD->getAlignment());
   8491 
   8492     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
   8493                                     DAG.getConstant(4, MVT::i32));
   8494     SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
   8495                                  LD->getPointerInfo(), LD->isVolatile(),
   8496                                  LD->isNonTemporal(), LD->isInvariant(),
   8497                                  std::min(4U, LD->getAlignment() / 2));
   8498 
   8499     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
   8500     if (DCI.DAG.getTargetLoweringInfo().isBigEndian())
   8501       std::swap (NewLD1, NewLD2);
   8502     SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
   8503     return Result;
   8504   }
   8505 
   8506   return SDValue();
   8507 }
   8508 
   8509 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
   8510 /// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
   8511 static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
   8512   // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
   8513   SDValue Op0 = N->getOperand(0);
   8514   SDValue Op1 = N->getOperand(1);
   8515   if (Op0.getOpcode() == ISD::BITCAST)
   8516     Op0 = Op0.getOperand(0);
   8517   if (Op1.getOpcode() == ISD::BITCAST)
   8518     Op1 = Op1.getOperand(0);
   8519   if (Op0.getOpcode() == ARMISD::VMOVRRD &&
   8520       Op0.getNode() == Op1.getNode() &&
   8521       Op0.getResNo() == 0 && Op1.getResNo() == 1)
   8522     return DAG.getNode(ISD::BITCAST, SDLoc(N),
   8523                        N->getValueType(0), Op0.getOperand(0));
   8524   return SDValue();
   8525 }
   8526 
   8527 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
   8528 /// are normal, non-volatile loads.  If so, it is profitable to bitcast an
   8529 /// i64 vector to have f64 elements, since the value can then be loaded
   8530 /// directly into a VFP register.
   8531 static bool hasNormalLoadOperand(SDNode *N) {
   8532   unsigned NumElts = N->getValueType(0).getVectorNumElements();
   8533   for (unsigned i = 0; i < NumElts; ++i) {
   8534     SDNode *Elt = N->getOperand(i).getNode();
   8535     if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
   8536       return true;
   8537   }
   8538   return false;
   8539 }
   8540 
   8541 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
   8542 /// ISD::BUILD_VECTOR.
   8543 static SDValue PerformBUILD_VECTORCombine(SDNode *N,
   8544                                           TargetLowering::DAGCombinerInfo &DCI,
   8545                                           const ARMSubtarget *Subtarget) {
   8546   // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
   8547   // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
   8548   // into a pair of GPRs, which is fine when the value is used as a scalar,
   8549   // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
   8550   SelectionDAG &DAG = DCI.DAG;
   8551   if (N->getNumOperands() == 2) {
   8552     SDValue RV = PerformVMOVDRRCombine(N, DAG);
   8553     if (RV.getNode())
   8554       return RV;
   8555   }
   8556 
   8557   // Load i64 elements as f64 values so that type legalization does not split
   8558   // them up into i32 values.
   8559   EVT VT = N->getValueType(0);
   8560   if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
   8561     return SDValue();
   8562   SDLoc dl(N);
   8563   SmallVector<SDValue, 8> Ops;
   8564   unsigned NumElts = VT.getVectorNumElements();
   8565   for (unsigned i = 0; i < NumElts; ++i) {
   8566     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
   8567     Ops.push_back(V);
   8568     // Make the DAGCombiner fold the bitcast.
   8569     DCI.AddToWorklist(V.getNode());
   8570   }
   8571   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
   8572   SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops);
   8573   return DAG.getNode(ISD::BITCAST, dl, VT, BV);
   8574 }
   8575 
   8576 /// \brief Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
   8577 static SDValue
   8578 PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
   8579   // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
   8580   // At that time, we may have inserted bitcasts from integer to float.
   8581   // If these bitcasts have survived DAGCombine, change the lowering of this
   8582   // BUILD_VECTOR in something more vector friendly, i.e., that does not
   8583   // force to use floating point types.
   8584 
   8585   // Make sure we can change the type of the vector.
   8586   // This is possible iff:
   8587   // 1. The vector is only used in a bitcast to a integer type. I.e.,
   8588   //    1.1. Vector is used only once.
   8589   //    1.2. Use is a bit convert to an integer type.
   8590   // 2. The size of its operands are 32-bits (64-bits are not legal).
   8591   EVT VT = N->getValueType(0);
   8592   EVT EltVT = VT.getVectorElementType();
   8593 
   8594   // Check 1.1. and 2.
   8595   if (EltVT.getSizeInBits() != 32 || !N->hasOneUse())
   8596     return SDValue();
   8597 
   8598   // By construction, the input type must be float.
   8599   assert(EltVT == MVT::f32 && "Unexpected type!");
   8600 
   8601   // Check 1.2.
   8602   SDNode *Use = *N->use_begin();
   8603   if (Use->getOpcode() != ISD::BITCAST ||
   8604       Use->getValueType(0).isFloatingPoint())
   8605     return SDValue();
   8606 
   8607   // Check profitability.
   8608   // Model is, if more than half of the relevant operands are bitcast from
   8609   // i32, turn the build_vector into a sequence of insert_vector_elt.
   8610   // Relevant operands are everything that is not statically
   8611   // (i.e., at compile time) bitcasted.
   8612   unsigned NumOfBitCastedElts = 0;
   8613   unsigned NumElts = VT.getVectorNumElements();
   8614   unsigned NumOfRelevantElts = NumElts;
   8615   for (unsigned Idx = 0; Idx < NumElts; ++Idx) {
   8616     SDValue Elt = N->getOperand(Idx);
   8617     if (Elt->getOpcode() == ISD::BITCAST) {
   8618       // Assume only bit cast to i32 will go away.
   8619       if (Elt->getOperand(0).getValueType() == MVT::i32)
   8620         ++NumOfBitCastedElts;
   8621     } else if (Elt.getOpcode() == ISD::UNDEF || isa<ConstantSDNode>(Elt))
   8622       // Constants are statically casted, thus do not count them as
   8623       // relevant operands.
   8624       --NumOfRelevantElts;
   8625   }
   8626 
   8627   // Check if more than half of the elements require a non-free bitcast.
   8628   if (NumOfBitCastedElts <= NumOfRelevantElts / 2)
   8629     return SDValue();
   8630 
   8631   SelectionDAG &DAG = DCI.DAG;
   8632   // Create the new vector type.
   8633   EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
   8634   // Check if the type is legal.
   8635   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   8636   if (!TLI.isTypeLegal(VecVT))
   8637     return SDValue();
   8638 
   8639   // Combine:
   8640   // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
   8641   // => BITCAST INSERT_VECTOR_ELT
   8642   //                      (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
   8643   //                      (BITCAST EN), N.
   8644   SDValue Vec = DAG.getUNDEF(VecVT);
   8645   SDLoc dl(N);
   8646   for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) {
   8647     SDValue V = N->getOperand(Idx);
   8648     if (V.getOpcode() == ISD::UNDEF)
   8649       continue;
   8650     if (V.getOpcode() == ISD::BITCAST &&
   8651         V->getOperand(0).getValueType() == MVT::i32)
   8652       // Fold obvious case.
   8653       V = V.getOperand(0);
   8654     else {
   8655       V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V);
   8656       // Make the DAGCombiner fold the bitcasts.
   8657       DCI.AddToWorklist(V.getNode());
   8658     }
   8659     SDValue LaneIdx = DAG.getConstant(Idx, MVT::i32);
   8660     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx);
   8661   }
   8662   Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec);
   8663   // Make the DAGCombiner fold the bitcasts.
   8664   DCI.AddToWorklist(Vec.getNode());
   8665   return Vec;
   8666 }
   8667 
   8668 /// PerformInsertEltCombine - Target-specific dag combine xforms for
   8669 /// ISD::INSERT_VECTOR_ELT.
   8670 static SDValue PerformInsertEltCombine(SDNode *N,
   8671                                        TargetLowering::DAGCombinerInfo &DCI) {
   8672   // Bitcast an i64 load inserted into a vector to f64.
   8673   // Otherwise, the i64 value will be legalized to a pair of i32 values.
   8674   EVT VT = N->getValueType(0);
   8675   SDNode *Elt = N->getOperand(1).getNode();
   8676   if (VT.getVectorElementType() != MVT::i64 ||
   8677       !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
   8678     return SDValue();
   8679 
   8680   SelectionDAG &DAG = DCI.DAG;
   8681   SDLoc dl(N);
   8682   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
   8683                                  VT.getVectorNumElements());
   8684   SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
   8685   SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
   8686   // Make the DAGCombiner fold the bitcasts.
   8687   DCI.AddToWorklist(Vec.getNode());
   8688   DCI.AddToWorklist(V.getNode());
   8689   SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
   8690                                Vec, V, N->getOperand(2));
   8691   return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
   8692 }
   8693 
   8694 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
   8695 /// ISD::VECTOR_SHUFFLE.
   8696 static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
   8697   // The LLVM shufflevector instruction does not require the shuffle mask
   8698   // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
   8699   // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
   8700   // operands do not match the mask length, they are extended by concatenating
   8701   // them with undef vectors.  That is probably the right thing for other
   8702   // targets, but for NEON it is better to concatenate two double-register
   8703   // size vector operands into a single quad-register size vector.  Do that
   8704   // transformation here:
   8705   //   shuffle(concat(v1, undef), concat(v2, undef)) ->
   8706   //   shuffle(concat(v1, v2), undef)
   8707   SDValue Op0 = N->getOperand(0);
   8708   SDValue Op1 = N->getOperand(1);
   8709   if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
   8710       Op1.getOpcode() != ISD::CONCAT_VECTORS ||
   8711       Op0.getNumOperands() != 2 ||
   8712       Op1.getNumOperands() != 2)
   8713     return SDValue();
   8714   SDValue Concat0Op1 = Op0.getOperand(1);
   8715   SDValue Concat1Op1 = Op1.getOperand(1);
   8716   if (Concat0Op1.getOpcode() != ISD::UNDEF ||
   8717       Concat1Op1.getOpcode() != ISD::UNDEF)
   8718     return SDValue();
   8719   // Skip the transformation if any of the types are illegal.
   8720   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   8721   EVT VT = N->getValueType(0);
   8722   if (!TLI.isTypeLegal(VT) ||
   8723       !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
   8724       !TLI.isTypeLegal(Concat1Op1.getValueType()))
   8725     return SDValue();
   8726 
   8727   SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
   8728                                   Op0.getOperand(0), Op1.getOperand(0));
   8729   // Translate the shuffle mask.
   8730   SmallVector<int, 16> NewMask;
   8731   unsigned NumElts = VT.getVectorNumElements();
   8732   unsigned HalfElts = NumElts/2;
   8733   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
   8734   for (unsigned n = 0; n < NumElts; ++n) {
   8735     int MaskElt = SVN->getMaskElt(n);
   8736     int NewElt = -1;
   8737     if (MaskElt < (int)HalfElts)
   8738       NewElt = MaskElt;
   8739     else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
   8740       NewElt = HalfElts + MaskElt - NumElts;
   8741     NewMask.push_back(NewElt);
   8742   }
   8743   return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat,
   8744                               DAG.getUNDEF(VT), NewMask.data());
   8745 }
   8746 
   8747 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
   8748 /// NEON load/store intrinsics, and generic vector load/stores, to merge
   8749 /// base address updates.
   8750 /// For generic load/stores, the memory type is assumed to be a vector.
   8751 /// The caller is assumed to have checked legality.
   8752 static SDValue CombineBaseUpdate(SDNode *N,
   8753                                  TargetLowering::DAGCombinerInfo &DCI) {
   8754   SelectionDAG &DAG = DCI.DAG;
   8755   const bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
   8756                             N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
   8757   const bool isStore = N->getOpcode() == ISD::STORE;
   8758   const unsigned AddrOpIdx = ((isIntrinsic || isStore) ? 2 : 1);
   8759   SDValue Addr = N->getOperand(AddrOpIdx);
   8760   MemSDNode *MemN = cast<MemSDNode>(N);
   8761 
   8762   // Search for a use of the address operand that is an increment.
   8763   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
   8764          UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
   8765     SDNode *User = *UI;
   8766     if (User->getOpcode() != ISD::ADD ||
   8767         UI.getUse().getResNo() != Addr.getResNo())
   8768       continue;
   8769 
   8770     // Check that the add is independent of the load/store.  Otherwise, folding
   8771     // it would create a cycle.
   8772     if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
   8773       continue;
   8774 
   8775     // Find the new opcode for the updating load/store.
   8776     bool isLoadOp = true;
   8777     bool isLaneOp = false;
   8778     unsigned NewOpc = 0;
   8779     unsigned NumVecs = 0;
   8780     if (isIntrinsic) {
   8781       unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
   8782       switch (IntNo) {
   8783       default: llvm_unreachable("unexpected intrinsic for Neon base update");
   8784       case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
   8785         NumVecs = 1; break;
   8786       case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
   8787         NumVecs = 2; break;
   8788       case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
   8789         NumVecs = 3; break;
   8790       case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
   8791         NumVecs = 4; break;
   8792       case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
   8793         NumVecs = 2; isLaneOp = true; break;
   8794       case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
   8795         NumVecs = 3; isLaneOp = true; break;
   8796       case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
   8797         NumVecs = 4; isLaneOp = true; break;
   8798       case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
   8799         NumVecs = 1; isLoadOp = false; break;
   8800       case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
   8801         NumVecs = 2; isLoadOp = false; break;
   8802       case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
   8803         NumVecs = 3; isLoadOp = false; break;
   8804       case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
   8805         NumVecs = 4; isLoadOp = false; break;
   8806       case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
   8807         NumVecs = 2; isLoadOp = false; isLaneOp = true; break;
   8808       case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
   8809         NumVecs = 3; isLoadOp = false; isLaneOp = true; break;
   8810       case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
   8811         NumVecs = 4; isLoadOp = false; isLaneOp = true; break;
   8812       }
   8813     } else {
   8814       isLaneOp = true;
   8815       switch (N->getOpcode()) {
   8816       default: llvm_unreachable("unexpected opcode for Neon base update");
   8817       case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
   8818       case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
   8819       case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
   8820       case ISD::LOAD:       NewOpc = ARMISD::VLD1_UPD;
   8821         NumVecs = 1; isLaneOp = false; break;
   8822       case ISD::STORE:      NewOpc = ARMISD::VST1_UPD;
   8823         NumVecs = 1; isLaneOp = false; isLoadOp = false; break;
   8824       }
   8825     }
   8826 
   8827     // Find the size of memory referenced by the load/store.
   8828     EVT VecTy;
   8829     if (isLoadOp) {
   8830       VecTy = N->getValueType(0);
   8831     } else if (isIntrinsic) {
   8832       VecTy = N->getOperand(AddrOpIdx+1).getValueType();
   8833     } else {
   8834       assert(isStore && "Node has to be a load, a store, or an intrinsic!");
   8835       VecTy = N->getOperand(1).getValueType();
   8836     }
   8837 
   8838     unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
   8839     if (isLaneOp)
   8840       NumBytes /= VecTy.getVectorNumElements();
   8841 
   8842     // If the increment is a constant, it must match the memory ref size.
   8843     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
   8844     if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
   8845       uint64_t IncVal = CInc->getZExtValue();
   8846       if (IncVal != NumBytes)
   8847         continue;
   8848     } else if (NumBytes >= 3 * 16) {
   8849       // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
   8850       // separate instructions that make it harder to use a non-constant update.
   8851       continue;
   8852     }
   8853 
   8854     // OK, we found an ADD we can fold into the base update.
   8855     // Now, create a _UPD node, taking care of not breaking alignment.
   8856 
   8857     EVT AlignedVecTy = VecTy;
   8858     unsigned Alignment = MemN->getAlignment();
   8859 
   8860     // If this is a less-than-standard-aligned load/store, change the type to
   8861     // match the standard alignment.
   8862     // The alignment is overlooked when selecting _UPD variants; and it's
   8863     // easier to introduce bitcasts here than fix that.
   8864     // There are 3 ways to get to this base-update combine:
   8865     // - intrinsics: they are assumed to be properly aligned (to the standard
   8866     //   alignment of the memory type), so we don't need to do anything.
   8867     // - ARMISD::VLDx nodes: they are only generated from the aforementioned
   8868     //   intrinsics, so, likewise, there's nothing to do.
   8869     // - generic load/store instructions: the alignment is specified as an
   8870     //   explicit operand, rather than implicitly as the standard alignment
   8871     //   of the memory type (like the intrisics).  We need to change the
   8872     //   memory type to match the explicit alignment.  That way, we don't
   8873     //   generate non-standard-aligned ARMISD::VLDx nodes.
   8874     if (isa<LSBaseSDNode>(N)) {
   8875       if (Alignment == 0)
   8876         Alignment = 1;
   8877       if (Alignment < VecTy.getScalarSizeInBits() / 8) {
   8878         MVT EltTy = MVT::getIntegerVT(Alignment * 8);
   8879         assert(NumVecs == 1 && "Unexpected multi-element generic load/store.");
   8880         assert(!isLaneOp && "Unexpected generic load/store lane.");
   8881         unsigned NumElts = NumBytes / (EltTy.getSizeInBits() / 8);
   8882         AlignedVecTy = MVT::getVectorVT(EltTy, NumElts);
   8883       }
   8884       // Don't set an explicit alignment on regular load/stores that we want
   8885       // to transform to VLD/VST 1_UPD nodes.
   8886       // This matches the behavior of regular load/stores, which only get an
   8887       // explicit alignment if the MMO alignment is larger than the standard
   8888       // alignment of the memory type.
   8889       // Intrinsics, however, always get an explicit alignment, set to the
   8890       // alignment of the MMO.
   8891       Alignment = 1;
   8892     }
   8893 
   8894     // Create the new updating load/store node.
   8895     // First, create an SDVTList for the new updating node's results.
   8896     EVT Tys[6];
   8897     unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
   8898     unsigned n;
   8899     for (n = 0; n < NumResultVecs; ++n)
   8900       Tys[n] = AlignedVecTy;
   8901     Tys[n++] = MVT::i32;
   8902     Tys[n] = MVT::Other;
   8903     SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs+2));
   8904 
   8905     // Then, gather the new node's operands.
   8906     SmallVector<SDValue, 8> Ops;
   8907     Ops.push_back(N->getOperand(0)); // incoming chain
   8908     Ops.push_back(N->getOperand(AddrOpIdx));
   8909     Ops.push_back(Inc);
   8910 
   8911     if (StoreSDNode *StN = dyn_cast<StoreSDNode>(N)) {
   8912       // Try to match the intrinsic's signature
   8913       Ops.push_back(StN->getValue());
   8914     } else {
   8915       // Loads (and of course intrinsics) match the intrinsics' signature,
   8916       // so just add all but the alignment operand.
   8917       for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands() - 1; ++i)
   8918         Ops.push_back(N->getOperand(i));
   8919     }
   8920 
   8921     // For all node types, the alignment operand is always the last one.
   8922     Ops.push_back(DAG.getConstant(Alignment, MVT::i32));
   8923 
   8924     // If this is a non-standard-aligned STORE, the penultimate operand is the
   8925     // stored value.  Bitcast it to the aligned type.
   8926     if (AlignedVecTy != VecTy && N->getOpcode() == ISD::STORE) {
   8927       SDValue &StVal = Ops[Ops.size()-2];
   8928       StVal = DAG.getNode(ISD::BITCAST, SDLoc(N), AlignedVecTy, StVal);
   8929     }
   8930 
   8931     SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys,
   8932                                            Ops, AlignedVecTy,
   8933                                            MemN->getMemOperand());
   8934 
   8935     // Update the uses.
   8936     SmallVector<SDValue, 5> NewResults;
   8937     for (unsigned i = 0; i < NumResultVecs; ++i)
   8938       NewResults.push_back(SDValue(UpdN.getNode(), i));
   8939 
   8940     // If this is an non-standard-aligned LOAD, the first result is the loaded
   8941     // value.  Bitcast it to the expected result type.
   8942     if (AlignedVecTy != VecTy && N->getOpcode() == ISD::LOAD) {
   8943       SDValue &LdVal = NewResults[0];
   8944       LdVal = DAG.getNode(ISD::BITCAST, SDLoc(N), VecTy, LdVal);
   8945     }
   8946 
   8947     NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
   8948     DCI.CombineTo(N, NewResults);
   8949     DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
   8950 
   8951     break;
   8952   }
   8953   return SDValue();
   8954 }
   8955 
   8956 static SDValue PerformVLDCombine(SDNode *N,
   8957                                  TargetLowering::DAGCombinerInfo &DCI) {
   8958   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
   8959     return SDValue();
   8960 
   8961   return CombineBaseUpdate(N, DCI);
   8962 }
   8963 
   8964 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
   8965 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
   8966 /// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
   8967 /// return true.
   8968 static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
   8969   SelectionDAG &DAG = DCI.DAG;
   8970   EVT VT = N->getValueType(0);
   8971   // vldN-dup instructions only support 64-bit vectors for N > 1.
   8972   if (!VT.is64BitVector())
   8973     return false;
   8974 
   8975   // Check if the VDUPLANE operand is a vldN-dup intrinsic.
   8976   SDNode *VLD = N->getOperand(0).getNode();
   8977   if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
   8978     return false;
   8979   unsigned NumVecs = 0;
   8980   unsigned NewOpc = 0;
   8981   unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
   8982   if (IntNo == Intrinsic::arm_neon_vld2lane) {
   8983     NumVecs = 2;
   8984     NewOpc = ARMISD::VLD2DUP;
   8985   } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
   8986     NumVecs = 3;
   8987     NewOpc = ARMISD::VLD3DUP;
   8988   } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
   8989     NumVecs = 4;
   8990     NewOpc = ARMISD::VLD4DUP;
   8991   } else {
   8992     return false;
   8993   }
   8994 
   8995   // First check that all the vldN-lane uses are VDUPLANEs and that the lane
   8996   // numbers match the load.
   8997   unsigned VLDLaneNo =
   8998     cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
   8999   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
   9000        UI != UE; ++UI) {
   9001     // Ignore uses of the chain result.
   9002     if (UI.getUse().getResNo() == NumVecs)
   9003       continue;
   9004     SDNode *User = *UI;
   9005     if (User->getOpcode() != ARMISD::VDUPLANE ||
   9006         VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
   9007       return false;
   9008   }
   9009 
   9010   // Create the vldN-dup node.
   9011   EVT Tys[5];
   9012   unsigned n;
   9013   for (n = 0; n < NumVecs; ++n)
   9014     Tys[n] = VT;
   9015   Tys[n] = MVT::Other;
   9016   SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumVecs+1));
   9017   SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
   9018   MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
   9019   SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys,
   9020                                            Ops, VLDMemInt->getMemoryVT(),
   9021                                            VLDMemInt->getMemOperand());
   9022 
   9023   // Update the uses.
   9024   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
   9025        UI != UE; ++UI) {
   9026     unsigned ResNo = UI.getUse().getResNo();
   9027     // Ignore uses of the chain result.
   9028     if (ResNo == NumVecs)
   9029       continue;
   9030     SDNode *User = *UI;
   9031     DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
   9032   }
   9033 
   9034   // Now the vldN-lane intrinsic is dead except for its chain result.
   9035   // Update uses of the chain.
   9036   std::vector<SDValue> VLDDupResults;
   9037   for (unsigned n = 0; n < NumVecs; ++n)
   9038     VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
   9039   VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
   9040   DCI.CombineTo(VLD, VLDDupResults);
   9041 
   9042   return true;
   9043 }
   9044 
   9045 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
   9046 /// ARMISD::VDUPLANE.
   9047 static SDValue PerformVDUPLANECombine(SDNode *N,
   9048                                       TargetLowering::DAGCombinerInfo &DCI) {
   9049   SDValue Op = N->getOperand(0);
   9050 
   9051   // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
   9052   // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
   9053   if (CombineVLDDUP(N, DCI))
   9054     return SDValue(N, 0);
   9055 
   9056   // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
   9057   // redundant.  Ignore bit_converts for now; element sizes are checked below.
   9058   while (Op.getOpcode() == ISD::BITCAST)
   9059     Op = Op.getOperand(0);
   9060   if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
   9061     return SDValue();
   9062 
   9063   // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
   9064   unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
   9065   // The canonical VMOV for a zero vector uses a 32-bit element size.
   9066   unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   9067   unsigned EltBits;
   9068   if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
   9069     EltSize = 8;
   9070   EVT VT = N->getValueType(0);
   9071   if (EltSize > VT.getVectorElementType().getSizeInBits())
   9072     return SDValue();
   9073 
   9074   return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
   9075 }
   9076 
   9077 static SDValue PerformLOADCombine(SDNode *N,
   9078                                   TargetLowering::DAGCombinerInfo &DCI) {
   9079   EVT VT = N->getValueType(0);
   9080 
   9081   // If this is a legal vector load, try to combine it into a VLD1_UPD.
   9082   if (ISD::isNormalLoad(N) && VT.isVector() &&
   9083       DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
   9084     return CombineBaseUpdate(N, DCI);
   9085 
   9086   return SDValue();
   9087 }
   9088 
   9089 /// PerformSTORECombine - Target-specific dag combine xforms for
   9090 /// ISD::STORE.
   9091 static SDValue PerformSTORECombine(SDNode *N,
   9092                                    TargetLowering::DAGCombinerInfo &DCI) {
   9093   StoreSDNode *St = cast<StoreSDNode>(N);
   9094   if (St->isVolatile())
   9095     return SDValue();
   9096 
   9097   // Optimize trunc store (of multiple scalars) to shuffle and store.  First,
   9098   // pack all of the elements in one place.  Next, store to memory in fewer
   9099   // chunks.
   9100   SDValue StVal = St->getValue();
   9101   EVT VT = StVal.getValueType();
   9102   if (St->isTruncatingStore() && VT.isVector()) {
   9103     SelectionDAG &DAG = DCI.DAG;
   9104     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   9105     EVT StVT = St->getMemoryVT();
   9106     unsigned NumElems = VT.getVectorNumElements();
   9107     assert(StVT != VT && "Cannot truncate to the same type");
   9108     unsigned FromEltSz = VT.getVectorElementType().getSizeInBits();
   9109     unsigned ToEltSz = StVT.getVectorElementType().getSizeInBits();
   9110 
   9111     // From, To sizes and ElemCount must be pow of two
   9112     if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
   9113 
   9114     // We are going to use the original vector elt for storing.
   9115     // Accumulated smaller vector elements must be a multiple of the store size.
   9116     if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
   9117 
   9118     unsigned SizeRatio  = FromEltSz / ToEltSz;
   9119     assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
   9120 
   9121     // Create a type on which we perform the shuffle.
   9122     EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
   9123                                      NumElems*SizeRatio);
   9124     assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
   9125 
   9126     SDLoc DL(St);
   9127     SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
   9128     SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
   9129     for (unsigned i = 0; i < NumElems; ++i)
   9130       ShuffleVec[i] = TLI.isBigEndian() ? (i+1) * SizeRatio - 1 : i * SizeRatio;
   9131 
   9132     // Can't shuffle using an illegal type.
   9133     if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
   9134 
   9135     SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
   9136                                 DAG.getUNDEF(WideVec.getValueType()),
   9137                                 ShuffleVec.data());
   9138     // At this point all of the data is stored at the bottom of the
   9139     // register. We now need to save it to mem.
   9140 
   9141     // Find the largest store unit
   9142     MVT StoreType = MVT::i8;
   9143     for (MVT Tp : MVT::integer_valuetypes()) {
   9144       if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
   9145         StoreType = Tp;
   9146     }
   9147     // Didn't find a legal store type.
   9148     if (!TLI.isTypeLegal(StoreType))
   9149       return SDValue();
   9150 
   9151     // Bitcast the original vector into a vector of store-size units
   9152     EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
   9153             StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
   9154     assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
   9155     SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
   9156     SmallVector<SDValue, 8> Chains;
   9157     SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
   9158                                         TLI.getPointerTy());
   9159     SDValue BasePtr = St->getBasePtr();
   9160 
   9161     // Perform one or more big stores into memory.
   9162     unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
   9163     for (unsigned I = 0; I < E; I++) {
   9164       SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
   9165                                    StoreType, ShuffWide,
   9166                                    DAG.getIntPtrConstant(I));
   9167       SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
   9168                                 St->getPointerInfo(), St->isVolatile(),
   9169                                 St->isNonTemporal(), St->getAlignment());
   9170       BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
   9171                             Increment);
   9172       Chains.push_back(Ch);
   9173     }
   9174     return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
   9175   }
   9176 
   9177   if (!ISD::isNormalStore(St))
   9178     return SDValue();
   9179 
   9180   // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
   9181   // ARM stores of arguments in the same cache line.
   9182   if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
   9183       StVal.getNode()->hasOneUse()) {
   9184     SelectionDAG  &DAG = DCI.DAG;
   9185     bool isBigEndian = DAG.getTargetLoweringInfo().isBigEndian();
   9186     SDLoc DL(St);
   9187     SDValue BasePtr = St->getBasePtr();
   9188     SDValue NewST1 = DAG.getStore(St->getChain(), DL,
   9189                                   StVal.getNode()->getOperand(isBigEndian ? 1 : 0 ),
   9190                                   BasePtr, St->getPointerInfo(), St->isVolatile(),
   9191                                   St->isNonTemporal(), St->getAlignment());
   9192 
   9193     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
   9194                                     DAG.getConstant(4, MVT::i32));
   9195     return DAG.getStore(NewST1.getValue(0), DL,
   9196                         StVal.getNode()->getOperand(isBigEndian ? 0 : 1),
   9197                         OffsetPtr, St->getPointerInfo(), St->isVolatile(),
   9198                         St->isNonTemporal(),
   9199                         std::min(4U, St->getAlignment() / 2));
   9200   }
   9201 
   9202   if (StVal.getValueType() == MVT::i64 &&
   9203       StVal.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
   9204 
   9205     // Bitcast an i64 store extracted from a vector to f64.
   9206     // Otherwise, the i64 value will be legalized to a pair of i32 values.
   9207     SelectionDAG &DAG = DCI.DAG;
   9208     SDLoc dl(StVal);
   9209     SDValue IntVec = StVal.getOperand(0);
   9210     EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
   9211                                    IntVec.getValueType().getVectorNumElements());
   9212     SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
   9213     SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
   9214                                  Vec, StVal.getOperand(1));
   9215     dl = SDLoc(N);
   9216     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
   9217     // Make the DAGCombiner fold the bitcasts.
   9218     DCI.AddToWorklist(Vec.getNode());
   9219     DCI.AddToWorklist(ExtElt.getNode());
   9220     DCI.AddToWorklist(V.getNode());
   9221     return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
   9222                         St->getPointerInfo(), St->isVolatile(),
   9223                         St->isNonTemporal(), St->getAlignment(),
   9224                         St->getAAInfo());
   9225   }
   9226 
   9227   // If this is a legal vector store, try to combine it into a VST1_UPD.
   9228   if (ISD::isNormalStore(N) && VT.isVector() &&
   9229       DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
   9230     return CombineBaseUpdate(N, DCI);
   9231 
   9232   return SDValue();
   9233 }
   9234 
   9235 // isConstVecPow2 - Return true if each vector element is a power of 2, all
   9236 // elements are the same constant, C, and Log2(C) ranges from 1 to 32.
   9237 static bool isConstVecPow2(SDValue ConstVec, bool isSigned, uint64_t &C)
   9238 {
   9239   integerPart cN;
   9240   integerPart c0 = 0;
   9241   for (unsigned I = 0, E = ConstVec.getValueType().getVectorNumElements();
   9242        I != E; I++) {
   9243     ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(ConstVec.getOperand(I));
   9244     if (!C)
   9245       return false;
   9246 
   9247     bool isExact;
   9248     APFloat APF = C->getValueAPF();
   9249     if (APF.convertToInteger(&cN, 64, isSigned, APFloat::rmTowardZero, &isExact)
   9250         != APFloat::opOK || !isExact)
   9251       return false;
   9252 
   9253     c0 = (I == 0) ? cN : c0;
   9254     if (!isPowerOf2_64(cN) || c0 != cN || Log2_64(c0) < 1 || Log2_64(c0) > 32)
   9255       return false;
   9256   }
   9257   C = c0;
   9258   return true;
   9259 }
   9260 
   9261 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
   9262 /// can replace combinations of VMUL and VCVT (floating-point to integer)
   9263 /// when the VMUL has a constant operand that is a power of 2.
   9264 ///
   9265 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
   9266 ///  vmul.f32        d16, d17, d16
   9267 ///  vcvt.s32.f32    d16, d16
   9268 /// becomes:
   9269 ///  vcvt.s32.f32    d16, d16, #3
   9270 static SDValue PerformVCVTCombine(SDNode *N,
   9271                                   TargetLowering::DAGCombinerInfo &DCI,
   9272                                   const ARMSubtarget *Subtarget) {
   9273   SelectionDAG &DAG = DCI.DAG;
   9274   SDValue Op = N->getOperand(0);
   9275 
   9276   if (!Subtarget->hasNEON() || !Op.getValueType().isVector() ||
   9277       Op.getOpcode() != ISD::FMUL)
   9278     return SDValue();
   9279 
   9280   uint64_t C;
   9281   SDValue N0 = Op->getOperand(0);
   9282   SDValue ConstVec = Op->getOperand(1);
   9283   bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
   9284 
   9285   if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
   9286       !isConstVecPow2(ConstVec, isSigned, C))
   9287     return SDValue();
   9288 
   9289   MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
   9290   MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
   9291   unsigned NumLanes = Op.getValueType().getVectorNumElements();
   9292   if (FloatTy.getSizeInBits() != 32 || IntTy.getSizeInBits() > 32 ||
   9293       NumLanes > 4) {
   9294     // These instructions only exist converting from f32 to i32. We can handle
   9295     // smaller integers by generating an extra truncate, but larger ones would
   9296     // be lossy. We also can't handle more then 4 lanes, since these intructions
   9297     // only support v2i32/v4i32 types.
   9298     return SDValue();
   9299   }
   9300 
   9301   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
   9302     Intrinsic::arm_neon_vcvtfp2fxu;
   9303   SDValue FixConv =  DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N),
   9304                                  NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
   9305                                  DAG.getConstant(IntrinsicOpcode, MVT::i32), N0,
   9306                                  DAG.getConstant(Log2_64(C), MVT::i32));
   9307 
   9308   if (IntTy.getSizeInBits() < FloatTy.getSizeInBits())
   9309     FixConv = DAG.getNode(ISD::TRUNCATE, SDLoc(N), N->getValueType(0), FixConv);
   9310 
   9311   return FixConv;
   9312 }
   9313 
   9314 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
   9315 /// can replace combinations of VCVT (integer to floating-point) and VDIV
   9316 /// when the VDIV has a constant operand that is a power of 2.
   9317 ///
   9318 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
   9319 ///  vcvt.f32.s32    d16, d16
   9320 ///  vdiv.f32        d16, d17, d16
   9321 /// becomes:
   9322 ///  vcvt.f32.s32    d16, d16, #3
   9323 static SDValue PerformVDIVCombine(SDNode *N,
   9324                                   TargetLowering::DAGCombinerInfo &DCI,
   9325                                   const ARMSubtarget *Subtarget) {
   9326   SelectionDAG &DAG = DCI.DAG;
   9327   SDValue Op = N->getOperand(0);
   9328   unsigned OpOpcode = Op.getNode()->getOpcode();
   9329 
   9330   if (!Subtarget->hasNEON() || !N->getValueType(0).isVector() ||
   9331       (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
   9332     return SDValue();
   9333 
   9334   uint64_t C;
   9335   SDValue ConstVec = N->getOperand(1);
   9336   bool isSigned = OpOpcode == ISD::SINT_TO_FP;
   9337 
   9338   if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
   9339       !isConstVecPow2(ConstVec, isSigned, C))
   9340     return SDValue();
   9341 
   9342   MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
   9343   MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
   9344   if (FloatTy.getSizeInBits() != 32 || IntTy.getSizeInBits() > 32) {
   9345     // These instructions only exist converting from i32 to f32. We can handle
   9346     // smaller integers by generating an extra extend, but larger ones would
   9347     // be lossy.
   9348     return SDValue();
   9349   }
   9350 
   9351   SDValue ConvInput = Op.getOperand(0);
   9352   unsigned NumLanes = Op.getValueType().getVectorNumElements();
   9353   if (IntTy.getSizeInBits() < FloatTy.getSizeInBits())
   9354     ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
   9355                             SDLoc(N), NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
   9356                             ConvInput);
   9357 
   9358   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
   9359     Intrinsic::arm_neon_vcvtfxu2fp;
   9360   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N),
   9361                      Op.getValueType(),
   9362                      DAG.getConstant(IntrinsicOpcode, MVT::i32),
   9363                      ConvInput, DAG.getConstant(Log2_64(C), MVT::i32));
   9364 }
   9365 
   9366 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
   9367 /// operand of a vector shift operation, where all the elements of the
   9368 /// build_vector must have the same constant integer value.
   9369 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
   9370   // Ignore bit_converts.
   9371   while (Op.getOpcode() == ISD::BITCAST)
   9372     Op = Op.getOperand(0);
   9373   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
   9374   APInt SplatBits, SplatUndef;
   9375   unsigned SplatBitSize;
   9376   bool HasAnyUndefs;
   9377   if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
   9378                                       HasAnyUndefs, ElementBits) ||
   9379       SplatBitSize > ElementBits)
   9380     return false;
   9381   Cnt = SplatBits.getSExtValue();
   9382   return true;
   9383 }
   9384 
   9385 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
   9386 /// operand of a vector shift left operation.  That value must be in the range:
   9387 ///   0 <= Value < ElementBits for a left shift; or
   9388 ///   0 <= Value <= ElementBits for a long left shift.
   9389 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
   9390   assert(VT.isVector() && "vector shift count is not a vector type");
   9391   unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
   9392   if (! getVShiftImm(Op, ElementBits, Cnt))
   9393     return false;
   9394   return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
   9395 }
   9396 
   9397 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
   9398 /// operand of a vector shift right operation.  For a shift opcode, the value
   9399 /// is positive, but for an intrinsic the value count must be negative. The
   9400 /// absolute value must be in the range:
   9401 ///   1 <= |Value| <= ElementBits for a right shift; or
   9402 ///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
   9403 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
   9404                          int64_t &Cnt) {
   9405   assert(VT.isVector() && "vector shift count is not a vector type");
   9406   unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
   9407   if (! getVShiftImm(Op, ElementBits, Cnt))
   9408     return false;
   9409   if (isIntrinsic)
   9410     Cnt = -Cnt;
   9411   return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
   9412 }
   9413 
   9414 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
   9415 static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
   9416   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
   9417   switch (IntNo) {
   9418   default:
   9419     // Don't do anything for most intrinsics.
   9420     break;
   9421 
   9422   // Vector shifts: check for immediate versions and lower them.
   9423   // Note: This is done during DAG combining instead of DAG legalizing because
   9424   // the build_vectors for 64-bit vector element shift counts are generally
   9425   // not legal, and it is hard to see their values after they get legalized to
   9426   // loads from a constant pool.
   9427   case Intrinsic::arm_neon_vshifts:
   9428   case Intrinsic::arm_neon_vshiftu:
   9429   case Intrinsic::arm_neon_vrshifts:
   9430   case Intrinsic::arm_neon_vrshiftu:
   9431   case Intrinsic::arm_neon_vrshiftn:
   9432   case Intrinsic::arm_neon_vqshifts:
   9433   case Intrinsic::arm_neon_vqshiftu:
   9434   case Intrinsic::arm_neon_vqshiftsu:
   9435   case Intrinsic::arm_neon_vqshiftns:
   9436   case Intrinsic::arm_neon_vqshiftnu:
   9437   case Intrinsic::arm_neon_vqshiftnsu:
   9438   case Intrinsic::arm_neon_vqrshiftns:
   9439   case Intrinsic::arm_neon_vqrshiftnu:
   9440   case Intrinsic::arm_neon_vqrshiftnsu: {
   9441     EVT VT = N->getOperand(1).getValueType();
   9442     int64_t Cnt;
   9443     unsigned VShiftOpc = 0;
   9444 
   9445     switch (IntNo) {
   9446     case Intrinsic::arm_neon_vshifts:
   9447     case Intrinsic::arm_neon_vshiftu:
   9448       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
   9449         VShiftOpc = ARMISD::VSHL;
   9450         break;
   9451       }
   9452       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
   9453         VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
   9454                      ARMISD::VSHRs : ARMISD::VSHRu);
   9455         break;
   9456       }
   9457       return SDValue();
   9458 
   9459     case Intrinsic::arm_neon_vrshifts:
   9460     case Intrinsic::arm_neon_vrshiftu:
   9461       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
   9462         break;
   9463       return SDValue();
   9464 
   9465     case Intrinsic::arm_neon_vqshifts:
   9466     case Intrinsic::arm_neon_vqshiftu:
   9467       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
   9468         break;
   9469       return SDValue();
   9470 
   9471     case Intrinsic::arm_neon_vqshiftsu:
   9472       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
   9473         break;
   9474       llvm_unreachable("invalid shift count for vqshlu intrinsic");
   9475 
   9476     case Intrinsic::arm_neon_vrshiftn:
   9477     case Intrinsic::arm_neon_vqshiftns:
   9478     case Intrinsic::arm_neon_vqshiftnu:
   9479     case Intrinsic::arm_neon_vqshiftnsu:
   9480     case Intrinsic::arm_neon_vqrshiftns:
   9481     case Intrinsic::arm_neon_vqrshiftnu:
   9482     case Intrinsic::arm_neon_vqrshiftnsu:
   9483       // Narrowing shifts require an immediate right shift.
   9484       if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
   9485         break;
   9486       llvm_unreachable("invalid shift count for narrowing vector shift "
   9487                        "intrinsic");
   9488 
   9489     default:
   9490       llvm_unreachable("unhandled vector shift");
   9491     }
   9492 
   9493     switch (IntNo) {
   9494     case Intrinsic::arm_neon_vshifts:
   9495     case Intrinsic::arm_neon_vshiftu:
   9496       // Opcode already set above.
   9497       break;
   9498     case Intrinsic::arm_neon_vrshifts:
   9499       VShiftOpc = ARMISD::VRSHRs; break;
   9500     case Intrinsic::arm_neon_vrshiftu:
   9501       VShiftOpc = ARMISD::VRSHRu; break;
   9502     case Intrinsic::arm_neon_vrshiftn:
   9503       VShiftOpc = ARMISD::VRSHRN; break;
   9504     case Intrinsic::arm_neon_vqshifts:
   9505       VShiftOpc = ARMISD::VQSHLs; break;
   9506     case Intrinsic::arm_neon_vqshiftu:
   9507       VShiftOpc = ARMISD::VQSHLu; break;
   9508     case Intrinsic::arm_neon_vqshiftsu:
   9509       VShiftOpc = ARMISD::VQSHLsu; break;
   9510     case Intrinsic::arm_neon_vqshiftns:
   9511       VShiftOpc = ARMISD::VQSHRNs; break;
   9512     case Intrinsic::arm_neon_vqshiftnu:
   9513       VShiftOpc = ARMISD::VQSHRNu; break;
   9514     case Intrinsic::arm_neon_vqshiftnsu:
   9515       VShiftOpc = ARMISD::VQSHRNsu; break;
   9516     case Intrinsic::arm_neon_vqrshiftns:
   9517       VShiftOpc = ARMISD::VQRSHRNs; break;
   9518     case Intrinsic::arm_neon_vqrshiftnu:
   9519       VShiftOpc = ARMISD::VQRSHRNu; break;
   9520     case Intrinsic::arm_neon_vqrshiftnsu:
   9521       VShiftOpc = ARMISD::VQRSHRNsu; break;
   9522     }
   9523 
   9524     return DAG.getNode(VShiftOpc, SDLoc(N), N->getValueType(0),
   9525                        N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
   9526   }
   9527 
   9528   case Intrinsic::arm_neon_vshiftins: {
   9529     EVT VT = N->getOperand(1).getValueType();
   9530     int64_t Cnt;
   9531     unsigned VShiftOpc = 0;
   9532 
   9533     if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
   9534       VShiftOpc = ARMISD::VSLI;
   9535     else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
   9536       VShiftOpc = ARMISD::VSRI;
   9537     else {
   9538       llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
   9539     }
   9540 
   9541     return DAG.getNode(VShiftOpc, SDLoc(N), N->getValueType(0),
   9542                        N->getOperand(1), N->getOperand(2),
   9543                        DAG.getConstant(Cnt, MVT::i32));
   9544   }
   9545 
   9546   case Intrinsic::arm_neon_vqrshifts:
   9547   case Intrinsic::arm_neon_vqrshiftu:
   9548     // No immediate versions of these to check for.
   9549     break;
   9550   }
   9551 
   9552   return SDValue();
   9553 }
   9554 
   9555 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
   9556 /// lowers them.  As with the vector shift intrinsics, this is done during DAG
   9557 /// combining instead of DAG legalizing because the build_vectors for 64-bit
   9558 /// vector element shift counts are generally not legal, and it is hard to see
   9559 /// their values after they get legalized to loads from a constant pool.
   9560 static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
   9561                                    const ARMSubtarget *ST) {
   9562   EVT VT = N->getValueType(0);
   9563   if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
   9564     // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
   9565     // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
   9566     SDValue N1 = N->getOperand(1);
   9567     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
   9568       SDValue N0 = N->getOperand(0);
   9569       if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
   9570           DAG.MaskedValueIsZero(N0.getOperand(0),
   9571                                 APInt::getHighBitsSet(32, 16)))
   9572         return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1);
   9573     }
   9574   }
   9575 
   9576   // Nothing to be done for scalar shifts.
   9577   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   9578   if (!VT.isVector() || !TLI.isTypeLegal(VT))
   9579     return SDValue();
   9580 
   9581   assert(ST->hasNEON() && "unexpected vector shift");
   9582   int64_t Cnt;
   9583 
   9584   switch (N->getOpcode()) {
   9585   default: llvm_unreachable("unexpected shift opcode");
   9586 
   9587   case ISD::SHL:
   9588     if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
   9589       return DAG.getNode(ARMISD::VSHL, SDLoc(N), VT, N->getOperand(0),
   9590                          DAG.getConstant(Cnt, MVT::i32));
   9591     break;
   9592 
   9593   case ISD::SRA:
   9594   case ISD::SRL:
   9595     if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
   9596       unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
   9597                             ARMISD::VSHRs : ARMISD::VSHRu);
   9598       return DAG.getNode(VShiftOpc, SDLoc(N), VT, N->getOperand(0),
   9599                          DAG.getConstant(Cnt, MVT::i32));
   9600     }
   9601   }
   9602   return SDValue();
   9603 }
   9604 
   9605 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
   9606 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
   9607 static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
   9608                                     const ARMSubtarget *ST) {
   9609   SDValue N0 = N->getOperand(0);
   9610 
   9611   // Check for sign- and zero-extensions of vector extract operations of 8-
   9612   // and 16-bit vector elements.  NEON supports these directly.  They are
   9613   // handled during DAG combining because type legalization will promote them
   9614   // to 32-bit types and it is messy to recognize the operations after that.
   9615   if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
   9616     SDValue Vec = N0.getOperand(0);
   9617     SDValue Lane = N0.getOperand(1);
   9618     EVT VT = N->getValueType(0);
   9619     EVT EltVT = N0.getValueType();
   9620     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   9621 
   9622     if (VT == MVT::i32 &&
   9623         (EltVT == MVT::i8 || EltVT == MVT::i16) &&
   9624         TLI.isTypeLegal(Vec.getValueType()) &&
   9625         isa<ConstantSDNode>(Lane)) {
   9626 
   9627       unsigned Opc = 0;
   9628       switch (N->getOpcode()) {
   9629       default: llvm_unreachable("unexpected opcode");
   9630       case ISD::SIGN_EXTEND:
   9631         Opc = ARMISD::VGETLANEs;
   9632         break;
   9633       case ISD::ZERO_EXTEND:
   9634       case ISD::ANY_EXTEND:
   9635         Opc = ARMISD::VGETLANEu;
   9636         break;
   9637       }
   9638       return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane);
   9639     }
   9640   }
   9641 
   9642   return SDValue();
   9643 }
   9644 
   9645 /// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
   9646 /// to match f32 max/min patterns to use NEON vmax/vmin instructions.
   9647 static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
   9648                                        const ARMSubtarget *ST) {
   9649   // If the target supports NEON, try to use vmax/vmin instructions for f32
   9650   // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
   9651   // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
   9652   // a NaN; only do the transformation when it matches that behavior.
   9653 
   9654   // For now only do this when using NEON for FP operations; if using VFP, it
   9655   // is not obvious that the benefit outweighs the cost of switching to the
   9656   // NEON pipeline.
   9657   if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
   9658       N->getValueType(0) != MVT::f32)
   9659     return SDValue();
   9660 
   9661   SDValue CondLHS = N->getOperand(0);
   9662   SDValue CondRHS = N->getOperand(1);
   9663   SDValue LHS = N->getOperand(2);
   9664   SDValue RHS = N->getOperand(3);
   9665   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
   9666 
   9667   unsigned Opcode = 0;
   9668   bool IsReversed;
   9669   if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
   9670     IsReversed = false; // x CC y ? x : y
   9671   } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
   9672     IsReversed = true ; // x CC y ? y : x
   9673   } else {
   9674     return SDValue();
   9675   }
   9676 
   9677   bool IsUnordered;
   9678   switch (CC) {
   9679   default: break;
   9680   case ISD::SETOLT:
   9681   case ISD::SETOLE:
   9682   case ISD::SETLT:
   9683   case ISD::SETLE:
   9684   case ISD::SETULT:
   9685   case ISD::SETULE:
   9686     // If LHS is NaN, an ordered comparison will be false and the result will
   9687     // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
   9688     // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
   9689     IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
   9690     if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
   9691       break;
   9692     // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
   9693     // will return -0, so vmin can only be used for unsafe math or if one of
   9694     // the operands is known to be nonzero.
   9695     if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
   9696         !DAG.getTarget().Options.UnsafeFPMath &&
   9697         !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
   9698       break;
   9699     Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
   9700     break;
   9701 
   9702   case ISD::SETOGT:
   9703   case ISD::SETOGE:
   9704   case ISD::SETGT:
   9705   case ISD::SETGE:
   9706   case ISD::SETUGT:
   9707   case ISD::SETUGE:
   9708     // If LHS is NaN, an ordered comparison will be false and the result will
   9709     // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
   9710     // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
   9711     IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
   9712     if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
   9713       break;
   9714     // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
   9715     // will return +0, so vmax can only be used for unsafe math or if one of
   9716     // the operands is known to be nonzero.
   9717     if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
   9718         !DAG.getTarget().Options.UnsafeFPMath &&
   9719         !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
   9720       break;
   9721     Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
   9722     break;
   9723   }
   9724 
   9725   if (!Opcode)
   9726     return SDValue();
   9727   return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), LHS, RHS);
   9728 }
   9729 
   9730 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
   9731 SDValue
   9732 ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
   9733   SDValue Cmp = N->getOperand(4);
   9734   if (Cmp.getOpcode() != ARMISD::CMPZ)
   9735     // Only looking at EQ and NE cases.
   9736     return SDValue();
   9737 
   9738   EVT VT = N->getValueType(0);
   9739   SDLoc dl(N);
   9740   SDValue LHS = Cmp.getOperand(0);
   9741   SDValue RHS = Cmp.getOperand(1);
   9742   SDValue FalseVal = N->getOperand(0);
   9743   SDValue TrueVal = N->getOperand(1);
   9744   SDValue ARMcc = N->getOperand(2);
   9745   ARMCC::CondCodes CC =
   9746     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
   9747 
   9748   // Simplify
   9749   //   mov     r1, r0
   9750   //   cmp     r1, x
   9751   //   mov     r0, y
   9752   //   moveq   r0, x
   9753   // to
   9754   //   cmp     r0, x
   9755   //   movne   r0, y
   9756   //
   9757   //   mov     r1, r0
   9758   //   cmp     r1, x
   9759   //   mov     r0, x
   9760   //   movne   r0, y
   9761   // to
   9762   //   cmp     r0, x
   9763   //   movne   r0, y
   9764   /// FIXME: Turn this into a target neutral optimization?
   9765   SDValue Res;
   9766   if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
   9767     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
   9768                       N->getOperand(3), Cmp);
   9769   } else if (CC == ARMCC::EQ && TrueVal == RHS) {
   9770     SDValue ARMcc;
   9771     SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
   9772     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
   9773                       N->getOperand(3), NewCmp);
   9774   }
   9775 
   9776   if (Res.getNode()) {
   9777     APInt KnownZero, KnownOne;
   9778     DAG.computeKnownBits(SDValue(N,0), KnownZero, KnownOne);
   9779     // Capture demanded bits information that would be otherwise lost.
   9780     if (KnownZero == 0xfffffffe)
   9781       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
   9782                         DAG.getValueType(MVT::i1));
   9783     else if (KnownZero == 0xffffff00)
   9784       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
   9785                         DAG.getValueType(MVT::i8));
   9786     else if (KnownZero == 0xffff0000)
   9787       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
   9788                         DAG.getValueType(MVT::i16));
   9789   }
   9790 
   9791   return Res;
   9792 }
   9793 
   9794 SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
   9795                                              DAGCombinerInfo &DCI) const {
   9796   switch (N->getOpcode()) {
   9797   default: break;
   9798   case ISD::ADDC:       return PerformADDCCombine(N, DCI, Subtarget);
   9799   case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
   9800   case ISD::SUB:        return PerformSUBCombine(N, DCI);
   9801   case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
   9802   case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
   9803   case ISD::XOR:        return PerformXORCombine(N, DCI, Subtarget);
   9804   case ISD::AND:        return PerformANDCombine(N, DCI, Subtarget);
   9805   case ARMISD::BFI:     return PerformBFICombine(N, DCI);
   9806   case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI, Subtarget);
   9807   case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
   9808   case ISD::STORE:      return PerformSTORECombine(N, DCI);
   9809   case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI, Subtarget);
   9810   case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
   9811   case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
   9812   case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
   9813   case ISD::FP_TO_SINT:
   9814   case ISD::FP_TO_UINT: return PerformVCVTCombine(N, DCI, Subtarget);
   9815   case ISD::FDIV:       return PerformVDIVCombine(N, DCI, Subtarget);
   9816   case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
   9817   case ISD::SHL:
   9818   case ISD::SRA:
   9819   case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
   9820   case ISD::SIGN_EXTEND:
   9821   case ISD::ZERO_EXTEND:
   9822   case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
   9823   case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
   9824   case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
   9825   case ISD::LOAD:       return PerformLOADCombine(N, DCI);
   9826   case ARMISD::VLD2DUP:
   9827   case ARMISD::VLD3DUP:
   9828   case ARMISD::VLD4DUP:
   9829     return PerformVLDCombine(N, DCI);
   9830   case ARMISD::BUILD_VECTOR:
   9831     return PerformARMBUILD_VECTORCombine(N, DCI);
   9832   case ISD::INTRINSIC_VOID:
   9833   case ISD::INTRINSIC_W_CHAIN:
   9834     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
   9835     case Intrinsic::arm_neon_vld1:
   9836     case Intrinsic::arm_neon_vld2:
   9837     case Intrinsic::arm_neon_vld3:
   9838     case Intrinsic::arm_neon_vld4:
   9839     case Intrinsic::arm_neon_vld2lane:
   9840     case Intrinsic::arm_neon_vld3lane:
   9841     case Intrinsic::arm_neon_vld4lane:
   9842     case Intrinsic::arm_neon_vst1:
   9843     case Intrinsic::arm_neon_vst2:
   9844     case Intrinsic::arm_neon_vst3:
   9845     case Intrinsic::arm_neon_vst4:
   9846     case Intrinsic::arm_neon_vst2lane:
   9847     case Intrinsic::arm_neon_vst3lane:
   9848     case Intrinsic::arm_neon_vst4lane:
   9849       return PerformVLDCombine(N, DCI);
   9850     default: break;
   9851     }
   9852     break;
   9853   }
   9854   return SDValue();
   9855 }
   9856 
   9857 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
   9858                                                           EVT VT) const {
   9859   return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
   9860 }
   9861 
   9862 bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
   9863                                                        unsigned,
   9864                                                        unsigned,
   9865                                                        bool *Fast) const {
   9866   // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
   9867   bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
   9868 
   9869   switch (VT.getSimpleVT().SimpleTy) {
   9870   default:
   9871     return false;
   9872   case MVT::i8:
   9873   case MVT::i16:
   9874   case MVT::i32: {
   9875     // Unaligned access can use (for example) LRDB, LRDH, LDR
   9876     if (AllowsUnaligned) {
   9877       if (Fast)
   9878         *Fast = Subtarget->hasV7Ops();
   9879       return true;
   9880     }
   9881     return false;
   9882   }
   9883   case MVT::f64:
   9884   case MVT::v2f64: {
   9885     // For any little-endian targets with neon, we can support unaligned ld/st
   9886     // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
   9887     // A big-endian target may also explicitly support unaligned accesses
   9888     if (Subtarget->hasNEON() && (AllowsUnaligned || isLittleEndian())) {
   9889       if (Fast)
   9890         *Fast = true;
   9891       return true;
   9892     }
   9893     return false;
   9894   }
   9895   }
   9896 }
   9897 
   9898 static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
   9899                        unsigned AlignCheck) {
   9900   return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
   9901           (DstAlign == 0 || DstAlign % AlignCheck == 0));
   9902 }
   9903 
   9904 EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
   9905                                            unsigned DstAlign, unsigned SrcAlign,
   9906                                            bool IsMemset, bool ZeroMemset,
   9907                                            bool MemcpyStrSrc,
   9908                                            MachineFunction &MF) const {
   9909   const Function *F = MF.getFunction();
   9910 
   9911   // See if we can use NEON instructions for this...
   9912   if ((!IsMemset || ZeroMemset) && Subtarget->hasNEON() &&
   9913       !F->hasFnAttribute(Attribute::NoImplicitFloat)) {
   9914     bool Fast;
   9915     if (Size >= 16 &&
   9916         (memOpAlign(SrcAlign, DstAlign, 16) ||
   9917          (allowsMisalignedMemoryAccesses(MVT::v2f64, 0, 1, &Fast) && Fast))) {
   9918       return MVT::v2f64;
   9919     } else if (Size >= 8 &&
   9920                (memOpAlign(SrcAlign, DstAlign, 8) ||
   9921                 (allowsMisalignedMemoryAccesses(MVT::f64, 0, 1, &Fast) &&
   9922                  Fast))) {
   9923       return MVT::f64;
   9924     }
   9925   }
   9926 
   9927   // Lowering to i32/i16 if the size permits.
   9928   if (Size >= 4)
   9929     return MVT::i32;
   9930   else if (Size >= 2)
   9931     return MVT::i16;
   9932 
   9933   // Let the target-independent logic figure it out.
   9934   return MVT::Other;
   9935 }
   9936 
   9937 bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
   9938   if (Val.getOpcode() != ISD::LOAD)
   9939     return false;
   9940 
   9941   EVT VT1 = Val.getValueType();
   9942   if (!VT1.isSimple() || !VT1.isInteger() ||
   9943       !VT2.isSimple() || !VT2.isInteger())
   9944     return false;
   9945 
   9946   switch (VT1.getSimpleVT().SimpleTy) {
   9947   default: break;
   9948   case MVT::i1:
   9949   case MVT::i8:
   9950   case MVT::i16:
   9951     // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
   9952     return true;
   9953   }
   9954 
   9955   return false;
   9956 }
   9957 
   9958 bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
   9959   EVT VT = ExtVal.getValueType();
   9960 
   9961   if (!isTypeLegal(VT))
   9962     return false;
   9963 
   9964   // Don't create a loadext if we can fold the extension into a wide/long
   9965   // instruction.
   9966   // If there's more than one user instruction, the loadext is desirable no
   9967   // matter what.  There can be two uses by the same instruction.
   9968   if (ExtVal->use_empty() ||
   9969       !ExtVal->use_begin()->isOnlyUserOf(ExtVal.getNode()))
   9970     return true;
   9971 
   9972   SDNode *U = *ExtVal->use_begin();
   9973   if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB ||
   9974        U->getOpcode() == ISD::SHL || U->getOpcode() == ARMISD::VSHL))
   9975     return false;
   9976 
   9977   return true;
   9978 }
   9979 
   9980 bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
   9981   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
   9982     return false;
   9983 
   9984   if (!isTypeLegal(EVT::getEVT(Ty1)))
   9985     return false;
   9986 
   9987   assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
   9988 
   9989   // Assuming the caller doesn't have a zeroext or signext return parameter,
   9990   // truncation all the way down to i1 is valid.
   9991   return true;
   9992 }
   9993 
   9994 
   9995 static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
   9996   if (V < 0)
   9997     return false;
   9998 
   9999   unsigned Scale = 1;
   10000   switch (VT.getSimpleVT().SimpleTy) {
   10001   default: return false;
   10002   case MVT::i1:
   10003   case MVT::i8:
   10004     // Scale == 1;
   10005     break;
   10006   case MVT::i16:
   10007     // Scale == 2;
   10008     Scale = 2;
   10009     break;
   10010   case MVT::i32:
   10011     // Scale == 4;
   10012     Scale = 4;
   10013     break;
   10014   }
   10015 
   10016   if ((V & (Scale - 1)) != 0)
   10017     return false;
   10018   V /= Scale;
   10019   return V == (V & ((1LL << 5) - 1));
   10020 }
   10021 
   10022 static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
   10023                                       const ARMSubtarget *Subtarget) {
   10024   bool isNeg = false;
   10025   if (V < 0) {
   10026     isNeg = true;
   10027     V = - V;
   10028   }
   10029 
   10030   switch (VT.getSimpleVT().SimpleTy) {
   10031   default: return false;
   10032   case MVT::i1:
   10033   case MVT::i8:
   10034   case MVT::i16:
   10035   case MVT::i32:
   10036     // + imm12 or - imm8
   10037     if (isNeg)
   10038       return V == (V & ((1LL << 8) - 1));
   10039     return V == (V & ((1LL << 12) - 1));
   10040   case MVT::f32:
   10041   case MVT::f64:
   10042     // Same as ARM mode. FIXME: NEON?
   10043     if (!Subtarget->hasVFP2())
   10044       return false;
   10045     if ((V & 3) != 0)
   10046       return false;
   10047     V >>= 2;
   10048     return V == (V & ((1LL << 8) - 1));
   10049   }
   10050 }
   10051 
   10052 /// isLegalAddressImmediate - Return true if the integer value can be used
   10053 /// as the offset of the target addressing mode for load / store of the
   10054 /// given type.
   10055 static bool isLegalAddressImmediate(int64_t V, EVT VT,
   10056                                     const ARMSubtarget *Subtarget) {
   10057   if (V == 0)
   10058     return true;
   10059 
   10060   if (!VT.isSimple())
   10061     return false;
   10062 
   10063   if (Subtarget->isThumb1Only())
   10064     return isLegalT1AddressImmediate(V, VT);
   10065   else if (Subtarget->isThumb2())
   10066     return isLegalT2AddressImmediate(V, VT, Subtarget);
   10067 
   10068   // ARM mode.
   10069   if (V < 0)
   10070     V = - V;
   10071   switch (VT.getSimpleVT().SimpleTy) {
   10072   default: return false;
   10073   case MVT::i1:
   10074   case MVT::i8:
   10075   case MVT::i32:
   10076     // +- imm12
   10077     return V == (V & ((1LL << 12) - 1));
   10078   case MVT::i16:
   10079     // +- imm8
   10080     return V == (V & ((1LL << 8) - 1));
   10081   case MVT::f32:
   10082   case MVT::f64:
   10083     if (!Subtarget->hasVFP2()) // FIXME: NEON?
   10084       return false;
   10085     if ((V & 3) != 0)
   10086       return false;
   10087     V >>= 2;
   10088     return V == (V & ((1LL << 8) - 1));
   10089   }
   10090 }
   10091 
   10092 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
   10093                                                       EVT VT) const {
   10094   int Scale = AM.Scale;
   10095   if (Scale < 0)
   10096     return false;
   10097 
   10098   switch (VT.getSimpleVT().SimpleTy) {
   10099   default: return false;
   10100   case MVT::i1:
   10101   case MVT::i8:
   10102   case MVT::i16:
   10103   case MVT::i32:
   10104     if (Scale == 1)
   10105       return true;
   10106     // r + r << imm
   10107     Scale = Scale & ~1;
   10108     return Scale == 2 || Scale == 4 || Scale == 8;
   10109   case MVT::i64:
   10110     // r + r
   10111     if (((unsigned)AM.HasBaseReg + Scale) <= 2)
   10112       return true;
   10113     return false;
   10114   case MVT::isVoid:
   10115     // Note, we allow "void" uses (basically, uses that aren't loads or
   10116     // stores), because arm allows folding a scale into many arithmetic
   10117     // operations.  This should be made more precise and revisited later.
   10118 
   10119     // Allow r << imm, but the imm has to be a multiple of two.
   10120     if (Scale & 1) return false;
   10121     return isPowerOf2_32(Scale);
   10122   }
   10123 }
   10124 
   10125 /// isLegalAddressingMode - Return true if the addressing mode represented
   10126 /// by AM is legal for this target, for a load/store of the specified type.
   10127 bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
   10128                                               Type *Ty) const {
   10129   EVT VT = getValueType(Ty, true);
   10130   if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
   10131     return false;
   10132 
   10133   // Can never fold addr of global into load/store.
   10134   if (AM.BaseGV)
   10135     return false;
   10136 
   10137   switch (AM.Scale) {
   10138   case 0:  // no scale reg, must be "r+i" or "r", or "i".
   10139     break;
   10140   case 1:
   10141     if (Subtarget->isThumb1Only())
   10142       return false;
   10143     // FALL THROUGH.
   10144   default:
   10145     // ARM doesn't support any R+R*scale+imm addr modes.
   10146     if (AM.BaseOffs)
   10147       return false;
   10148 
   10149     if (!VT.isSimple())
   10150       return false;
   10151 
   10152     if (Subtarget->isThumb2())
   10153       return isLegalT2ScaledAddressingMode(AM, VT);
   10154 
   10155     int Scale = AM.Scale;
   10156     switch (VT.getSimpleVT().SimpleTy) {
   10157     default: return false;
   10158     case MVT::i1:
   10159     case MVT::i8:
   10160     case MVT::i32:
   10161       if (Scale < 0) Scale = -Scale;
   10162       if (Scale == 1)
   10163         return true;
   10164       // r + r << imm
   10165       return isPowerOf2_32(Scale & ~1);
   10166     case MVT::i16:
   10167     case MVT::i64:
   10168       // r + r
   10169       if (((unsigned)AM.HasBaseReg + Scale) <= 2)
   10170         return true;
   10171       return false;
   10172 
   10173     case MVT::isVoid:
   10174       // Note, we allow "void" uses (basically, uses that aren't loads or
   10175       // stores), because arm allows folding a scale into many arithmetic
   10176       // operations.  This should be made more precise and revisited later.
   10177 
   10178       // Allow r << imm, but the imm has to be a multiple of two.
   10179       if (Scale & 1) return false;
   10180       return isPowerOf2_32(Scale);
   10181     }
   10182   }
   10183   return true;
   10184 }
   10185 
   10186 /// isLegalICmpImmediate - Return true if the specified immediate is legal
   10187 /// icmp immediate, that is the target has icmp instructions which can compare
   10188 /// a register against the immediate without having to materialize the
   10189 /// immediate into a register.
   10190 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
   10191   // Thumb2 and ARM modes can use cmn for negative immediates.
   10192   if (!Subtarget->isThumb())
   10193     return ARM_AM::getSOImmVal(std::abs(Imm)) != -1;
   10194   if (Subtarget->isThumb2())
   10195     return ARM_AM::getT2SOImmVal(std::abs(Imm)) != -1;
   10196   // Thumb1 doesn't have cmn, and only 8-bit immediates.
   10197   return Imm >= 0 && Imm <= 255;
   10198 }
   10199 
   10200 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
   10201 /// *or sub* immediate, that is the target has add or sub instructions which can
   10202 /// add a register with the immediate without having to materialize the
   10203 /// immediate into a register.
   10204 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
   10205   // Same encoding for add/sub, just flip the sign.
   10206   int64_t AbsImm = std::abs(Imm);
   10207   if (!Subtarget->isThumb())
   10208     return ARM_AM::getSOImmVal(AbsImm) != -1;
   10209   if (Subtarget->isThumb2())
   10210     return ARM_AM::getT2SOImmVal(AbsImm) != -1;
   10211   // Thumb1 only has 8-bit unsigned immediate.
   10212   return AbsImm >= 0 && AbsImm <= 255;
   10213 }
   10214 
   10215 static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
   10216                                       bool isSEXTLoad, SDValue &Base,
   10217                                       SDValue &Offset, bool &isInc,
   10218                                       SelectionDAG &DAG) {
   10219   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
   10220     return false;
   10221 
   10222   if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
   10223     // AddressingMode 3
   10224     Base = Ptr->getOperand(0);
   10225     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
   10226       int RHSC = (int)RHS->getZExtValue();
   10227       if (RHSC < 0 && RHSC > -256) {
   10228         assert(Ptr->getOpcode() == ISD::ADD);
   10229         isInc = false;
   10230         Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
   10231         return true;
   10232       }
   10233     }
   10234     isInc = (Ptr->getOpcode() == ISD::ADD);
   10235     Offset = Ptr->getOperand(1);
   10236     return true;
   10237   } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
   10238     // AddressingMode 2
   10239     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
   10240       int RHSC = (int)RHS->getZExtValue();
   10241       if (RHSC < 0 && RHSC > -0x1000) {
   10242         assert(Ptr->getOpcode() == ISD::ADD);
   10243         isInc = false;
   10244         Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
   10245         Base = Ptr->getOperand(0);
   10246         return true;
   10247       }
   10248     }
   10249 
   10250     if (Ptr->getOpcode() == ISD::ADD) {
   10251       isInc = true;
   10252       ARM_AM::ShiftOpc ShOpcVal=
   10253         ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
   10254       if (ShOpcVal != ARM_AM::no_shift) {
   10255         Base = Ptr->getOperand(1);
   10256         Offset = Ptr->getOperand(0);
   10257       } else {
   10258         Base = Ptr->getOperand(0);
   10259         Offset = Ptr->getOperand(1);
   10260       }
   10261       return true;
   10262     }
   10263 
   10264     isInc = (Ptr->getOpcode() == ISD::ADD);
   10265     Base = Ptr->getOperand(0);
   10266     Offset = Ptr->getOperand(1);
   10267     return true;
   10268   }
   10269 
   10270   // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
   10271   return false;
   10272 }
   10273 
   10274 static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
   10275                                      bool isSEXTLoad, SDValue &Base,
   10276                                      SDValue &Offset, bool &isInc,
   10277                                      SelectionDAG &DAG) {
   10278   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
   10279     return false;
   10280 
   10281   Base = Ptr->getOperand(0);
   10282   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
   10283     int RHSC = (int)RHS->getZExtValue();
   10284     if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
   10285       assert(Ptr->getOpcode() == ISD::ADD);
   10286       isInc = false;
   10287       Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
   10288       return true;
   10289     } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
   10290       isInc = Ptr->getOpcode() == ISD::ADD;
   10291       Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
   10292       return true;
   10293     }
   10294   }
   10295 
   10296   return false;
   10297 }
   10298 
   10299 /// getPreIndexedAddressParts - returns true by value, base pointer and
   10300 /// offset pointer and addressing mode by reference if the node's address
   10301 /// can be legally represented as pre-indexed load / store address.
   10302 bool
   10303 ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
   10304                                              SDValue &Offset,
   10305                                              ISD::MemIndexedMode &AM,
   10306                                              SelectionDAG &DAG) const {
   10307   if (Subtarget->isThumb1Only())
   10308     return false;
   10309 
   10310   EVT VT;
   10311   SDValue Ptr;
   10312   bool isSEXTLoad = false;
   10313   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
   10314     Ptr = LD->getBasePtr();
   10315     VT  = LD->getMemoryVT();
   10316     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
   10317   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
   10318     Ptr = ST->getBasePtr();
   10319     VT  = ST->getMemoryVT();
   10320   } else
   10321     return false;
   10322 
   10323   bool isInc;
   10324   bool isLegal = false;
   10325   if (Subtarget->isThumb2())
   10326     isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
   10327                                        Offset, isInc, DAG);
   10328   else
   10329     isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
   10330                                         Offset, isInc, DAG);
   10331   if (!isLegal)
   10332     return false;
   10333 
   10334   AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
   10335   return true;
   10336 }
   10337 
   10338 /// getPostIndexedAddressParts - returns true by value, base pointer and
   10339 /// offset pointer and addressing mode by reference if this node can be
   10340 /// combined with a load / store to form a post-indexed load / store.
   10341 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
   10342                                                    SDValue &Base,
   10343                                                    SDValue &Offset,
   10344                                                    ISD::MemIndexedMode &AM,
   10345                                                    SelectionDAG &DAG) const {
   10346   if (Subtarget->isThumb1Only())
   10347     return false;
   10348 
   10349   EVT VT;
   10350   SDValue Ptr;
   10351   bool isSEXTLoad = false;
   10352   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
   10353     VT  = LD->getMemoryVT();
   10354     Ptr = LD->getBasePtr();
   10355     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
   10356   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
   10357     VT  = ST->getMemoryVT();
   10358     Ptr = ST->getBasePtr();
   10359   } else
   10360     return false;
   10361 
   10362   bool isInc;
   10363   bool isLegal = false;
   10364   if (Subtarget->isThumb2())
   10365     isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
   10366                                        isInc, DAG);
   10367   else
   10368     isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
   10369                                         isInc, DAG);
   10370   if (!isLegal)
   10371     return false;
   10372 
   10373   if (Ptr != Base) {
   10374     // Swap base ptr and offset to catch more post-index load / store when
   10375     // it's legal. In Thumb2 mode, offset must be an immediate.
   10376     if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
   10377         !Subtarget->isThumb2())
   10378       std::swap(Base, Offset);
   10379 
   10380     // Post-indexed load / store update the base pointer.
   10381     if (Ptr != Base)
   10382       return false;
   10383   }
   10384 
   10385   AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
   10386   return true;
   10387 }
   10388 
   10389 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
   10390                                                       APInt &KnownZero,
   10391                                                       APInt &KnownOne,
   10392                                                       const SelectionDAG &DAG,
   10393                                                       unsigned Depth) const {
   10394   unsigned BitWidth = KnownOne.getBitWidth();
   10395   KnownZero = KnownOne = APInt(BitWidth, 0);
   10396   switch (Op.getOpcode()) {
   10397   default: break;
   10398   case ARMISD::ADDC:
   10399   case ARMISD::ADDE:
   10400   case ARMISD::SUBC:
   10401   case ARMISD::SUBE:
   10402     // These nodes' second result is a boolean
   10403     if (Op.getResNo() == 0)
   10404       break;
   10405     KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
   10406     break;
   10407   case ARMISD::CMOV: {
   10408     // Bits are known zero/one if known on the LHS and RHS.
   10409     DAG.computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
   10410     if (KnownZero == 0 && KnownOne == 0) return;
   10411 
   10412     APInt KnownZeroRHS, KnownOneRHS;
   10413     DAG.computeKnownBits(Op.getOperand(1), KnownZeroRHS, KnownOneRHS, Depth+1);
   10414     KnownZero &= KnownZeroRHS;
   10415     KnownOne  &= KnownOneRHS;
   10416     return;
   10417   }
   10418   case ISD::INTRINSIC_W_CHAIN: {
   10419     ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
   10420     Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
   10421     switch (IntID) {
   10422     default: return;
   10423     case Intrinsic::arm_ldaex:
   10424     case Intrinsic::arm_ldrex: {
   10425       EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
   10426       unsigned MemBits = VT.getScalarType().getSizeInBits();
   10427       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
   10428       return;
   10429     }
   10430     }
   10431   }
   10432   }
   10433 }
   10434 
   10435 //===----------------------------------------------------------------------===//
   10436 //                           ARM Inline Assembly Support
   10437 //===----------------------------------------------------------------------===//
   10438 
   10439 bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
   10440   // Looking for "rev" which is V6+.
   10441   if (!Subtarget->hasV6Ops())
   10442     return false;
   10443 
   10444   InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
   10445   std::string AsmStr = IA->getAsmString();
   10446   SmallVector<StringRef, 4> AsmPieces;
   10447   SplitString(AsmStr, AsmPieces, ";\n");
   10448 
   10449   switch (AsmPieces.size()) {
   10450   default: return false;
   10451   case 1:
   10452     AsmStr = AsmPieces[0];
   10453     AsmPieces.clear();
   10454     SplitString(AsmStr, AsmPieces, " \t,");
   10455 
   10456     // rev $0, $1
   10457     if (AsmPieces.size() == 3 &&
   10458         AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
   10459         IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
   10460       IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
   10461       if (Ty && Ty->getBitWidth() == 32)
   10462         return IntrinsicLowering::LowerToByteSwap(CI);
   10463     }
   10464     break;
   10465   }
   10466 
   10467   return false;
   10468 }
   10469 
   10470 /// getConstraintType - Given a constraint letter, return the type of
   10471 /// constraint it is for this target.
   10472 ARMTargetLowering::ConstraintType
   10473 ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
   10474   if (Constraint.size() == 1) {
   10475     switch (Constraint[0]) {
   10476     default:  break;
   10477     case 'l': return C_RegisterClass;
   10478     case 'w': return C_RegisterClass;
   10479     case 'h': return C_RegisterClass;
   10480     case 'x': return C_RegisterClass;
   10481     case 't': return C_RegisterClass;
   10482     case 'j': return C_Other; // Constant for movw.
   10483       // An address with a single base register. Due to the way we
   10484       // currently handle addresses it is the same as an 'r' memory constraint.
   10485     case 'Q': return C_Memory;
   10486     }
   10487   } else if (Constraint.size() == 2) {
   10488     switch (Constraint[0]) {
   10489     default: break;
   10490     // All 'U+' constraints are addresses.
   10491     case 'U': return C_Memory;
   10492     }
   10493   }
   10494   return TargetLowering::getConstraintType(Constraint);
   10495 }
   10496 
   10497 /// Examine constraint type and operand type and determine a weight value.
   10498 /// This object must already have been set up with the operand type
   10499 /// and the current alternative constraint selected.
   10500 TargetLowering::ConstraintWeight
   10501 ARMTargetLowering::getSingleConstraintMatchWeight(
   10502     AsmOperandInfo &info, const char *constraint) const {
   10503   ConstraintWeight weight = CW_Invalid;
   10504   Value *CallOperandVal = info.CallOperandVal;
   10505     // If we don't have a value, we can't do a match,
   10506     // but allow it at the lowest weight.
   10507   if (!CallOperandVal)
   10508     return CW_Default;
   10509   Type *type = CallOperandVal->getType();
   10510   // Look at the constraint type.
   10511   switch (*constraint) {
   10512   default:
   10513     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
   10514     break;
   10515   case 'l':
   10516     if (type->isIntegerTy()) {
   10517       if (Subtarget->isThumb())
   10518         weight = CW_SpecificReg;
   10519       else
   10520         weight = CW_Register;
   10521     }
   10522     break;
   10523   case 'w':
   10524     if (type->isFloatingPointTy())
   10525       weight = CW_Register;
   10526     break;
   10527   }
   10528   return weight;
   10529 }
   10530 
   10531 typedef std::pair<unsigned, const TargetRegisterClass*> RCPair;
   10532 RCPair
   10533 ARMTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
   10534                                                 const std::string &Constraint,
   10535                                                 MVT VT) const {
   10536   if (Constraint.size() == 1) {
   10537     // GCC ARM Constraint Letters
   10538     switch (Constraint[0]) {
   10539     case 'l': // Low regs or general regs.
   10540       if (Subtarget->isThumb())
   10541         return RCPair(0U, &ARM::tGPRRegClass);
   10542       return RCPair(0U, &ARM::GPRRegClass);
   10543     case 'h': // High regs or no regs.
   10544       if (Subtarget->isThumb())
   10545         return RCPair(0U, &ARM::hGPRRegClass);
   10546       break;
   10547     case 'r':
   10548       if (Subtarget->isThumb1Only())
   10549         return RCPair(0U, &ARM::tGPRRegClass);
   10550       return RCPair(0U, &ARM::GPRRegClass);
   10551     case 'w':
   10552       if (VT == MVT::Other)
   10553         break;
   10554       if (VT == MVT::f32)
   10555         return RCPair(0U, &ARM::SPRRegClass);
   10556       if (VT.getSizeInBits() == 64)
   10557         return RCPair(0U, &ARM::DPRRegClass);
   10558       if (VT.getSizeInBits() == 128)
   10559         return RCPair(0U, &ARM::QPRRegClass);
   10560       break;
   10561     case 'x':
   10562       if (VT == MVT::Other)
   10563         break;
   10564       if (VT == MVT::f32)
   10565         return RCPair(0U, &ARM::SPR_8RegClass);
   10566       if (VT.getSizeInBits() == 64)
   10567         return RCPair(0U, &ARM::DPR_8RegClass);
   10568       if (VT.getSizeInBits() == 128)
   10569         return RCPair(0U, &ARM::QPR_8RegClass);
   10570       break;
   10571     case 't':
   10572       if (VT == MVT::f32)
   10573         return RCPair(0U, &ARM::SPRRegClass);
   10574       break;
   10575     }
   10576   }
   10577   if (StringRef("{cc}").equals_lower(Constraint))
   10578     return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
   10579 
   10580   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
   10581 }
   10582 
   10583 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
   10584 /// vector.  If it is invalid, don't add anything to Ops.
   10585 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
   10586                                                      std::string &Constraint,
   10587                                                      std::vector<SDValue>&Ops,
   10588                                                      SelectionDAG &DAG) const {
   10589   SDValue Result;
   10590 
   10591   // Currently only support length 1 constraints.
   10592   if (Constraint.length() != 1) return;
   10593 
   10594   char ConstraintLetter = Constraint[0];
   10595   switch (ConstraintLetter) {
   10596   default: break;
   10597   case 'j':
   10598   case 'I': case 'J': case 'K': case 'L':
   10599   case 'M': case 'N': case 'O':
   10600     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
   10601     if (!C)
   10602       return;
   10603 
   10604     int64_t CVal64 = C->getSExtValue();
   10605     int CVal = (int) CVal64;
   10606     // None of these constraints allow values larger than 32 bits.  Check
   10607     // that the value fits in an int.
   10608     if (CVal != CVal64)
   10609       return;
   10610 
   10611     switch (ConstraintLetter) {
   10612       case 'j':
   10613         // Constant suitable for movw, must be between 0 and
   10614         // 65535.
   10615         if (Subtarget->hasV6T2Ops())
   10616           if (CVal >= 0 && CVal <= 65535)
   10617             break;
   10618         return;
   10619       case 'I':
   10620         if (Subtarget->isThumb1Only()) {
   10621           // This must be a constant between 0 and 255, for ADD
   10622           // immediates.
   10623           if (CVal >= 0 && CVal <= 255)
   10624             break;
   10625         } else if (Subtarget->isThumb2()) {
   10626           // A constant that can be used as an immediate value in a
   10627           // data-processing instruction.
   10628           if (ARM_AM::getT2SOImmVal(CVal) != -1)
   10629             break;
   10630         } else {
   10631           // A constant that can be used as an immediate value in a
   10632           // data-processing instruction.
   10633           if (ARM_AM::getSOImmVal(CVal) != -1)
   10634             break;
   10635         }
   10636         return;
   10637 
   10638       case 'J':
   10639         if (Subtarget->isThumb()) {  // FIXME thumb2
   10640           // This must be a constant between -255 and -1, for negated ADD
   10641           // immediates. This can be used in GCC with an "n" modifier that
   10642           // prints the negated value, for use with SUB instructions. It is
   10643           // not useful otherwise but is implemented for compatibility.
   10644           if (CVal >= -255 && CVal <= -1)
   10645             break;
   10646         } else {
   10647           // This must be a constant between -4095 and 4095. It is not clear
   10648           // what this constraint is intended for. Implemented for
   10649           // compatibility with GCC.
   10650           if (CVal >= -4095 && CVal <= 4095)
   10651             break;
   10652         }
   10653         return;
   10654 
   10655       case 'K':
   10656         if (Subtarget->isThumb1Only()) {
   10657           // A 32-bit value where only one byte has a nonzero value. Exclude
   10658           // zero to match GCC. This constraint is used by GCC internally for
   10659           // constants that can be loaded with a move/shift combination.
   10660           // It is not useful otherwise but is implemented for compatibility.
   10661           if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
   10662             break;
   10663         } else if (Subtarget->isThumb2()) {
   10664           // A constant whose bitwise inverse can be used as an immediate
   10665           // value in a data-processing instruction. This can be used in GCC
   10666           // with a "B" modifier that prints the inverted value, for use with
   10667           // BIC and MVN instructions. It is not useful otherwise but is
   10668           // implemented for compatibility.
   10669           if (ARM_AM::getT2SOImmVal(~CVal) != -1)
   10670             break;
   10671         } else {
   10672           // A constant whose bitwise inverse can be used as an immediate
   10673           // value in a data-processing instruction. This can be used in GCC
   10674           // with a "B" modifier that prints the inverted value, for use with
   10675           // BIC and MVN instructions. It is not useful otherwise but is
   10676           // implemented for compatibility.
   10677           if (ARM_AM::getSOImmVal(~CVal) != -1)
   10678             break;
   10679         }
   10680         return;
   10681 
   10682       case 'L':
   10683         if (Subtarget->isThumb1Only()) {
   10684           // This must be a constant between -7 and 7,
   10685           // for 3-operand ADD/SUB immediate instructions.
   10686           if (CVal >= -7 && CVal < 7)
   10687             break;
   10688         } else if (Subtarget->isThumb2()) {
   10689           // A constant whose negation can be used as an immediate value in a
   10690           // data-processing instruction. This can be used in GCC with an "n"
   10691           // modifier that prints the negated value, for use with SUB
   10692           // instructions. It is not useful otherwise but is implemented for
   10693           // compatibility.
   10694           if (ARM_AM::getT2SOImmVal(-CVal) != -1)
   10695             break;
   10696         } else {
   10697           // A constant whose negation can be used as an immediate value in a
   10698           // data-processing instruction. This can be used in GCC with an "n"
   10699           // modifier that prints the negated value, for use with SUB
   10700           // instructions. It is not useful otherwise but is implemented for
   10701           // compatibility.
   10702           if (ARM_AM::getSOImmVal(-CVal) != -1)
   10703             break;
   10704         }
   10705         return;
   10706 
   10707       case 'M':
   10708         if (Subtarget->isThumb()) { // FIXME thumb2
   10709           // This must be a multiple of 4 between 0 and 1020, for
   10710           // ADD sp + immediate.
   10711           if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
   10712             break;
   10713         } else {
   10714           // A power of two or a constant between 0 and 32.  This is used in
   10715           // GCC for the shift amount on shifted register operands, but it is
   10716           // useful in general for any shift amounts.
   10717           if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
   10718             break;
   10719         }
   10720         return;
   10721 
   10722       case 'N':
   10723         if (Subtarget->isThumb()) {  // FIXME thumb2
   10724           // This must be a constant between 0 and 31, for shift amounts.
   10725           if (CVal >= 0 && CVal <= 31)
   10726             break;
   10727         }
   10728         return;
   10729 
   10730       case 'O':
   10731         if (Subtarget->isThumb()) {  // FIXME thumb2
   10732           // This must be a multiple of 4 between -508 and 508, for
   10733           // ADD/SUB sp = sp + immediate.
   10734           if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
   10735             break;
   10736         }
   10737         return;
   10738     }
   10739     Result = DAG.getTargetConstant(CVal, Op.getValueType());
   10740     break;
   10741   }
   10742 
   10743   if (Result.getNode()) {
   10744     Ops.push_back(Result);
   10745     return;
   10746   }
   10747   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
   10748 }
   10749 
   10750 SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
   10751   assert(Subtarget->isTargetAEABI() && "Register-based DivRem lowering only");
   10752   unsigned Opcode = Op->getOpcode();
   10753   assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
   10754          "Invalid opcode for Div/Rem lowering");
   10755   bool isSigned = (Opcode == ISD::SDIVREM);
   10756   EVT VT = Op->getValueType(0);
   10757   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
   10758 
   10759   RTLIB::Libcall LC;
   10760   switch (VT.getSimpleVT().SimpleTy) {
   10761   default: llvm_unreachable("Unexpected request for libcall!");
   10762   case MVT::i8:  LC = isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
   10763   case MVT::i16: LC = isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
   10764   case MVT::i32: LC = isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
   10765   case MVT::i64: LC = isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
   10766   }
   10767 
   10768   SDValue InChain = DAG.getEntryNode();
   10769 
   10770   TargetLowering::ArgListTy Args;
   10771   TargetLowering::ArgListEntry Entry;
   10772   for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) {
   10773     EVT ArgVT = Op->getOperand(i).getValueType();
   10774     Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
   10775     Entry.Node = Op->getOperand(i);
   10776     Entry.Ty = ArgTy;
   10777     Entry.isSExt = isSigned;
   10778     Entry.isZExt = !isSigned;
   10779     Args.push_back(Entry);
   10780   }
   10781 
   10782   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
   10783                                          getPointerTy());
   10784 
   10785   Type *RetTy = (Type*)StructType::get(Ty, Ty, nullptr);
   10786 
   10787   SDLoc dl(Op);
   10788   TargetLowering::CallLoweringInfo CLI(DAG);
   10789   CLI.setDebugLoc(dl).setChain(InChain)
   10790     .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
   10791     .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
   10792 
   10793   std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
   10794   return CallInfo.first;
   10795 }
   10796 
   10797 SDValue
   10798 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
   10799   assert(Subtarget->isTargetWindows() && "unsupported target platform");
   10800   SDLoc DL(Op);
   10801 
   10802   // Get the inputs.
   10803   SDValue Chain = Op.getOperand(0);
   10804   SDValue Size  = Op.getOperand(1);
   10805 
   10806   SDValue Words = DAG.getNode(ISD::SRL, DL, MVT::i32, Size,
   10807                               DAG.getConstant(2, MVT::i32));
   10808 
   10809   SDValue Flag;
   10810   Chain = DAG.getCopyToReg(Chain, DL, ARM::R4, Words, Flag);
   10811   Flag = Chain.getValue(1);
   10812 
   10813   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   10814   Chain = DAG.getNode(ARMISD::WIN__CHKSTK, DL, NodeTys, Chain, Flag);
   10815 
   10816   SDValue NewSP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
   10817   Chain = NewSP.getValue(1);
   10818 
   10819   SDValue Ops[2] = { NewSP, Chain };
   10820   return DAG.getMergeValues(Ops, DL);
   10821 }
   10822 
   10823 SDValue ARMTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
   10824   assert(Op.getValueType() == MVT::f64 && Subtarget->isFPOnlySP() &&
   10825          "Unexpected type for custom-lowering FP_EXTEND");
   10826 
   10827   RTLIB::Libcall LC;
   10828   LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
   10829 
   10830   SDValue SrcVal = Op.getOperand(0);
   10831   return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
   10832                      /*isSigned*/ false, SDLoc(Op)).first;
   10833 }
   10834 
   10835 SDValue ARMTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
   10836   assert(Op.getOperand(0).getValueType() == MVT::f64 &&
   10837          Subtarget->isFPOnlySP() &&
   10838          "Unexpected type for custom-lowering FP_ROUND");
   10839 
   10840   RTLIB::Libcall LC;
   10841   LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
   10842 
   10843   SDValue SrcVal = Op.getOperand(0);
   10844   return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
   10845                      /*isSigned*/ false, SDLoc(Op)).first;
   10846 }
   10847 
   10848 bool
   10849 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
   10850   // The ARM target isn't yet aware of offsets.
   10851   return false;
   10852 }
   10853 
   10854 bool ARM::isBitFieldInvertedMask(unsigned v) {
   10855   if (v == 0xffffffff)
   10856     return false;
   10857 
   10858   // there can be 1's on either or both "outsides", all the "inside"
   10859   // bits must be 0's
   10860   return isShiftedMask_32(~v);
   10861 }
   10862 
   10863 /// isFPImmLegal - Returns true if the target can instruction select the
   10864 /// specified FP immediate natively. If false, the legalizer will
   10865 /// materialize the FP immediate as a load from a constant pool.
   10866 bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
   10867   if (!Subtarget->hasVFP3())
   10868     return false;
   10869   if (VT == MVT::f32)
   10870     return ARM_AM::getFP32Imm(Imm) != -1;
   10871   if (VT == MVT::f64 && !Subtarget->isFPOnlySP())
   10872     return ARM_AM::getFP64Imm(Imm) != -1;
   10873   return false;
   10874 }
   10875 
   10876 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
   10877 /// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
   10878 /// specified in the intrinsic calls.
   10879 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
   10880                                            const CallInst &I,
   10881                                            unsigned Intrinsic) const {
   10882   switch (Intrinsic) {
   10883   case Intrinsic::arm_neon_vld1:
   10884   case Intrinsic::arm_neon_vld2:
   10885   case Intrinsic::arm_neon_vld3:
   10886   case Intrinsic::arm_neon_vld4:
   10887   case Intrinsic::arm_neon_vld2lane:
   10888   case Intrinsic::arm_neon_vld3lane:
   10889   case Intrinsic::arm_neon_vld4lane: {
   10890     Info.opc = ISD::INTRINSIC_W_CHAIN;
   10891     // Conservatively set memVT to the entire set of vectors loaded.
   10892     uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
   10893     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
   10894     Info.ptrVal = I.getArgOperand(0);
   10895     Info.offset = 0;
   10896     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
   10897     Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
   10898     Info.vol = false; // volatile loads with NEON intrinsics not supported
   10899     Info.readMem = true;
   10900     Info.writeMem = false;
   10901     return true;
   10902   }
   10903   case Intrinsic::arm_neon_vst1:
   10904   case Intrinsic::arm_neon_vst2:
   10905   case Intrinsic::arm_neon_vst3:
   10906   case Intrinsic::arm_neon_vst4:
   10907   case Intrinsic::arm_neon_vst2lane:
   10908   case Intrinsic::arm_neon_vst3lane:
   10909   case Intrinsic::arm_neon_vst4lane: {
   10910     Info.opc = ISD::INTRINSIC_VOID;
   10911     // Conservatively set memVT to the entire set of vectors stored.
   10912     unsigned NumElts = 0;
   10913     for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
   10914       Type *ArgTy = I.getArgOperand(ArgI)->getType();
   10915       if (!ArgTy->isVectorTy())
   10916         break;
   10917       NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8;
   10918     }
   10919     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
   10920     Info.ptrVal = I.getArgOperand(0);
   10921     Info.offset = 0;
   10922     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
   10923     Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
   10924     Info.vol = false; // volatile stores with NEON intrinsics not supported
   10925     Info.readMem = false;
   10926     Info.writeMem = true;
   10927     return true;
   10928   }
   10929   case Intrinsic::arm_ldaex:
   10930   case Intrinsic::arm_ldrex: {
   10931     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
   10932     Info.opc = ISD::INTRINSIC_W_CHAIN;
   10933     Info.memVT = MVT::getVT(PtrTy->getElementType());
   10934     Info.ptrVal = I.getArgOperand(0);
   10935     Info.offset = 0;
   10936     Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
   10937     Info.vol = true;
   10938     Info.readMem = true;
   10939     Info.writeMem = false;
   10940     return true;
   10941   }
   10942   case Intrinsic::arm_stlex:
   10943   case Intrinsic::arm_strex: {
   10944     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
   10945     Info.opc = ISD::INTRINSIC_W_CHAIN;
   10946     Info.memVT = MVT::getVT(PtrTy->getElementType());
   10947     Info.ptrVal = I.getArgOperand(1);
   10948     Info.offset = 0;
   10949     Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
   10950     Info.vol = true;
   10951     Info.readMem = false;
   10952     Info.writeMem = true;
   10953     return true;
   10954   }
   10955   case Intrinsic::arm_stlexd:
   10956   case Intrinsic::arm_strexd: {
   10957     Info.opc = ISD::INTRINSIC_W_CHAIN;
   10958     Info.memVT = MVT::i64;
   10959     Info.ptrVal = I.getArgOperand(2);
   10960     Info.offset = 0;
   10961     Info.align = 8;
   10962     Info.vol = true;
   10963     Info.readMem = false;
   10964     Info.writeMem = true;
   10965     return true;
   10966   }
   10967   case Intrinsic::arm_ldaexd:
   10968   case Intrinsic::arm_ldrexd: {
   10969     Info.opc = ISD::INTRINSIC_W_CHAIN;
   10970     Info.memVT = MVT::i64;
   10971     Info.ptrVal = I.getArgOperand(0);
   10972     Info.offset = 0;
   10973     Info.align = 8;
   10974     Info.vol = true;
   10975     Info.readMem = true;
   10976     Info.writeMem = false;
   10977     return true;
   10978   }
   10979   default:
   10980     break;
   10981   }
   10982 
   10983   return false;
   10984 }
   10985 
   10986 /// \brief Returns true if it is beneficial to convert a load of a constant
   10987 /// to just the constant itself.
   10988 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
   10989                                                           Type *Ty) const {
   10990   assert(Ty->isIntegerTy());
   10991 
   10992   unsigned Bits = Ty->getPrimitiveSizeInBits();
   10993   if (Bits == 0 || Bits > 32)
   10994     return false;
   10995   return true;
   10996 }
   10997 
   10998 bool ARMTargetLowering::hasLoadLinkedStoreConditional() const { return true; }
   10999 
   11000 Instruction* ARMTargetLowering::makeDMB(IRBuilder<> &Builder,
   11001                                         ARM_MB::MemBOpt Domain) const {
   11002   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
   11003 
   11004   // First, if the target has no DMB, see what fallback we can use.
   11005   if (!Subtarget->hasDataBarrier()) {
   11006     // Some ARMv6 cpus can support data barriers with an mcr instruction.
   11007     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
   11008     // here.
   11009     if (Subtarget->hasV6Ops() && !Subtarget->isThumb()) {
   11010       Function *MCR = llvm::Intrinsic::getDeclaration(M, Intrinsic::arm_mcr);
   11011       Value* args[6] = {Builder.getInt32(15), Builder.getInt32(0),
   11012                         Builder.getInt32(0), Builder.getInt32(7),
   11013                         Builder.getInt32(10), Builder.getInt32(5)};
   11014       return Builder.CreateCall(MCR, args);
   11015     } else {
   11016       // Instead of using barriers, atomic accesses on these subtargets use
   11017       // libcalls.
   11018       llvm_unreachable("makeDMB on a target so old that it has no barriers");
   11019     }
   11020   } else {
   11021     Function *DMB = llvm::Intrinsic::getDeclaration(M, Intrinsic::arm_dmb);
   11022     // Only a full system barrier exists in the M-class architectures.
   11023     Domain = Subtarget->isMClass() ? ARM_MB::SY : Domain;
   11024     Constant *CDomain = Builder.getInt32(Domain);
   11025     return Builder.CreateCall(DMB, CDomain);
   11026   }
   11027 }
   11028 
   11029 // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
   11030 Instruction* ARMTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
   11031                                          AtomicOrdering Ord, bool IsStore,
   11032                                          bool IsLoad) const {
   11033   if (!getInsertFencesForAtomic())
   11034     return nullptr;
   11035 
   11036   switch (Ord) {
   11037   case NotAtomic:
   11038   case Unordered:
   11039     llvm_unreachable("Invalid fence: unordered/non-atomic");
   11040   case Monotonic:
   11041   case Acquire:
   11042     return nullptr; // Nothing to do
   11043   case SequentiallyConsistent:
   11044     if (!IsStore)
   11045       return nullptr; // Nothing to do
   11046     /*FALLTHROUGH*/
   11047   case Release:
   11048   case AcquireRelease:
   11049     if (Subtarget->isSwift())
   11050       return makeDMB(Builder, ARM_MB::ISHST);
   11051     // FIXME: add a comment with a link to documentation justifying this.
   11052     else
   11053       return makeDMB(Builder, ARM_MB::ISH);
   11054   }
   11055   llvm_unreachable("Unknown fence ordering in emitLeadingFence");
   11056 }
   11057 
   11058 Instruction* ARMTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
   11059                                           AtomicOrdering Ord, bool IsStore,
   11060                                           bool IsLoad) const {
   11061   if (!getInsertFencesForAtomic())
   11062     return nullptr;
   11063 
   11064   switch (Ord) {
   11065   case NotAtomic:
   11066   case Unordered:
   11067     llvm_unreachable("Invalid fence: unordered/not-atomic");
   11068   case Monotonic:
   11069   case Release:
   11070     return nullptr; // Nothing to do
   11071   case Acquire:
   11072   case AcquireRelease:
   11073   case SequentiallyConsistent:
   11074     return makeDMB(Builder, ARM_MB::ISH);
   11075   }
   11076   llvm_unreachable("Unknown fence ordering in emitTrailingFence");
   11077 }
   11078 
   11079 // Loads and stores less than 64-bits are already atomic; ones above that
   11080 // are doomed anyway, so defer to the default libcall and blame the OS when
   11081 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
   11082 // anything for those.
   11083 bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
   11084   unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
   11085   return (Size == 64) && !Subtarget->isMClass();
   11086 }
   11087 
   11088 // Loads and stores less than 64-bits are already atomic; ones above that
   11089 // are doomed anyway, so defer to the default libcall and blame the OS when
   11090 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
   11091 // anything for those.
   11092 // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
   11093 // guarantee, see DDI0406C ARM architecture reference manual,
   11094 // sections A8.8.72-74 LDRD)
   11095 bool ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
   11096   unsigned Size = LI->getType()->getPrimitiveSizeInBits();
   11097   return (Size == 64) && !Subtarget->isMClass();
   11098 }
   11099 
   11100 // For the real atomic operations, we have ldrex/strex up to 32 bits,
   11101 // and up to 64 bits on the non-M profiles
   11102 TargetLoweringBase::AtomicRMWExpansionKind
   11103 ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
   11104   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
   11105   return (Size <= (Subtarget->isMClass() ? 32U : 64U))
   11106              ? AtomicRMWExpansionKind::LLSC
   11107              : AtomicRMWExpansionKind::None;
   11108 }
   11109 
   11110 // This has so far only been implemented for MachO.
   11111 bool ARMTargetLowering::useLoadStackGuardNode() const {
   11112   return Subtarget->isTargetMachO();
   11113 }
   11114 
   11115 bool ARMTargetLowering::canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
   11116                                                   unsigned &Cost) const {
   11117   // If we do not have NEON, vector types are not natively supported.
   11118   if (!Subtarget->hasNEON())
   11119     return false;
   11120 
   11121   // Floating point values and vector values map to the same register file.
   11122   // Therefore, althought we could do a store extract of a vector type, this is
   11123   // better to leave at float as we have more freedom in the addressing mode for
   11124   // those.
   11125   if (VectorTy->isFPOrFPVectorTy())
   11126     return false;
   11127 
   11128   // If the index is unknown at compile time, this is very expensive to lower
   11129   // and it is not possible to combine the store with the extract.
   11130   if (!isa<ConstantInt>(Idx))
   11131     return false;
   11132 
   11133   assert(VectorTy->isVectorTy() && "VectorTy is not a vector type");
   11134   unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth();
   11135   // We can do a store + vector extract on any vector that fits perfectly in a D
   11136   // or Q register.
   11137   if (BitWidth == 64 || BitWidth == 128) {
   11138     Cost = 0;
   11139     return true;
   11140   }
   11141   return false;
   11142 }
   11143 
   11144 Value *ARMTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
   11145                                          AtomicOrdering Ord) const {
   11146   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
   11147   Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
   11148   bool IsAcquire = isAtLeastAcquire(Ord);
   11149 
   11150   // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
   11151   // intrinsic must return {i32, i32} and we have to recombine them into a
   11152   // single i64 here.
   11153   if (ValTy->getPrimitiveSizeInBits() == 64) {
   11154     Intrinsic::ID Int =
   11155         IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd;
   11156     Function *Ldrex = llvm::Intrinsic::getDeclaration(M, Int);
   11157 
   11158     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
   11159     Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi");
   11160 
   11161     Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
   11162     Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
   11163     if (!Subtarget->isLittle())
   11164       std::swap (Lo, Hi);
   11165     Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
   11166     Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
   11167     return Builder.CreateOr(
   11168         Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 32)), "val64");
   11169   }
   11170 
   11171   Type *Tys[] = { Addr->getType() };
   11172   Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex;
   11173   Function *Ldrex = llvm::Intrinsic::getDeclaration(M, Int, Tys);
   11174 
   11175   return Builder.CreateTruncOrBitCast(
   11176       Builder.CreateCall(Ldrex, Addr),
   11177       cast<PointerType>(Addr->getType())->getElementType());
   11178 }
   11179 
   11180 Value *ARMTargetLowering::emitStoreConditional(IRBuilder<> &Builder, Value *Val,
   11181                                                Value *Addr,
   11182                                                AtomicOrdering Ord) const {
   11183   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
   11184   bool IsRelease = isAtLeastRelease(Ord);
   11185 
   11186   // Since the intrinsics must have legal type, the i64 intrinsics take two
   11187   // parameters: "i32, i32". We must marshal Val into the appropriate form
   11188   // before the call.
   11189   if (Val->getType()->getPrimitiveSizeInBits() == 64) {
   11190     Intrinsic::ID Int =
   11191         IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd;
   11192     Function *Strex = Intrinsic::getDeclaration(M, Int);
   11193     Type *Int32Ty = Type::getInt32Ty(M->getContext());
   11194 
   11195     Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo");
   11196     Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi");
   11197     if (!Subtarget->isLittle())
   11198       std::swap (Lo, Hi);
   11199     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
   11200     return Builder.CreateCall3(Strex, Lo, Hi, Addr);
   11201   }
   11202 
   11203   Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex;
   11204   Type *Tys[] = { Addr->getType() };
   11205   Function *Strex = Intrinsic::getDeclaration(M, Int, Tys);
   11206 
   11207   return Builder.CreateCall2(
   11208       Strex, Builder.CreateZExtOrBitCast(
   11209                  Val, Strex->getFunctionType()->getParamType(0)),
   11210       Addr);
   11211 }
   11212 
   11213 enum HABaseType {
   11214   HA_UNKNOWN = 0,
   11215   HA_FLOAT,
   11216   HA_DOUBLE,
   11217   HA_VECT64,
   11218   HA_VECT128
   11219 };
   11220 
   11221 static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base,
   11222                                    uint64_t &Members) {
   11223   if (const StructType *ST = dyn_cast<StructType>(Ty)) {
   11224     for (unsigned i = 0; i < ST->getNumElements(); ++i) {
   11225       uint64_t SubMembers = 0;
   11226       if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers))
   11227         return false;
   11228       Members += SubMembers;
   11229     }
   11230   } else if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
   11231     uint64_t SubMembers = 0;
   11232     if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers))
   11233       return false;
   11234     Members += SubMembers * AT->getNumElements();
   11235   } else if (Ty->isFloatTy()) {
   11236     if (Base != HA_UNKNOWN && Base != HA_FLOAT)
   11237       return false;
   11238     Members = 1;
   11239     Base = HA_FLOAT;
   11240   } else if (Ty->isDoubleTy()) {
   11241     if (Base != HA_UNKNOWN && Base != HA_DOUBLE)
   11242       return false;
   11243     Members = 1;
   11244     Base = HA_DOUBLE;
   11245   } else if (const VectorType *VT = dyn_cast<VectorType>(Ty)) {
   11246     Members = 1;
   11247     switch (Base) {
   11248     case HA_FLOAT:
   11249     case HA_DOUBLE:
   11250       return false;
   11251     case HA_VECT64:
   11252       return VT->getBitWidth() == 64;
   11253     case HA_VECT128:
   11254       return VT->getBitWidth() == 128;
   11255     case HA_UNKNOWN:
   11256       switch (VT->getBitWidth()) {
   11257       case 64:
   11258         Base = HA_VECT64;
   11259         return true;
   11260       case 128:
   11261         Base = HA_VECT128;
   11262         return true;
   11263       default:
   11264         return false;
   11265       }
   11266     }
   11267   }
   11268 
   11269   return (Members > 0 && Members <= 4);
   11270 }
   11271 
   11272 /// \brief Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
   11273 /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
   11274 /// passing according to AAPCS rules.
   11275 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
   11276     Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
   11277   if (getEffectiveCallingConv(CallConv, isVarArg) !=
   11278       CallingConv::ARM_AAPCS_VFP)
   11279     return false;
   11280 
   11281   HABaseType Base = HA_UNKNOWN;
   11282   uint64_t Members = 0;
   11283   bool IsHA = isHomogeneousAggregate(Ty, Base, Members);
   11284   DEBUG(dbgs() << "isHA: " << IsHA << " "; Ty->dump());
   11285 
   11286   bool IsIntArray = Ty->isArrayTy() && Ty->getArrayElementType()->isIntegerTy();
   11287   return IsHA || IsIntArray;
   11288 }
   11289