Home | History | Annotate | Download | only in Mips
      1 //===-- MipsSEISelLowering.cpp - MipsSE DAG Lowering Interface --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Subclass of MipsTargetLowering specialized for mips32/64.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 #include "MipsSEISelLowering.h"
     14 #include "MipsMachineFunction.h"
     15 #include "MipsRegisterInfo.h"
     16 #include "MipsTargetMachine.h"
     17 #include "llvm/CodeGen/MachineInstrBuilder.h"
     18 #include "llvm/CodeGen/MachineRegisterInfo.h"
     19 #include "llvm/IR/Intrinsics.h"
     20 #include "llvm/Support/CommandLine.h"
     21 #include "llvm/Support/Debug.h"
     22 #include "llvm/Support/raw_ostream.h"
     23 #include "llvm/Target/TargetInstrInfo.h"
     24 
     25 using namespace llvm;
     26 
     27 #define DEBUG_TYPE "mips-isel"
     28 
     29 static cl::opt<bool>
     30 EnableMipsTailCalls("enable-mips-tail-calls", cl::Hidden,
     31                     cl::desc("MIPS: Enable tail calls."), cl::init(false));
     32 
     33 static cl::opt<bool> NoDPLoadStore("mno-ldc1-sdc1", cl::init(false),
     34                                    cl::desc("Expand double precision loads and "
     35                                             "stores to their single precision "
     36                                             "counterparts"));
     37 
     38 MipsSETargetLowering::MipsSETargetLowering(const MipsTargetMachine &TM,
     39                                            const MipsSubtarget &STI)
     40     : MipsTargetLowering(TM, STI) {
     41   // Set up the register classes
     42   addRegisterClass(MVT::i32, &Mips::GPR32RegClass);
     43 
     44   if (Subtarget.isGP64bit())
     45     addRegisterClass(MVT::i64, &Mips::GPR64RegClass);
     46 
     47   if (Subtarget.hasDSP() || Subtarget.hasMSA()) {
     48     // Expand all truncating stores and extending loads.
     49     for (MVT VT0 : MVT::vector_valuetypes()) {
     50       for (MVT VT1 : MVT::vector_valuetypes()) {
     51         setTruncStoreAction(VT0, VT1, Expand);
     52         setLoadExtAction(ISD::SEXTLOAD, VT0, VT1, Expand);
     53         setLoadExtAction(ISD::ZEXTLOAD, VT0, VT1, Expand);
     54         setLoadExtAction(ISD::EXTLOAD, VT0, VT1, Expand);
     55       }
     56     }
     57   }
     58 
     59   if (Subtarget.hasDSP()) {
     60     MVT::SimpleValueType VecTys[2] = {MVT::v2i16, MVT::v4i8};
     61 
     62     for (unsigned i = 0; i < array_lengthof(VecTys); ++i) {
     63       addRegisterClass(VecTys[i], &Mips::DSPRRegClass);
     64 
     65       // Expand all builtin opcodes.
     66       for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
     67         setOperationAction(Opc, VecTys[i], Expand);
     68 
     69       setOperationAction(ISD::ADD, VecTys[i], Legal);
     70       setOperationAction(ISD::SUB, VecTys[i], Legal);
     71       setOperationAction(ISD::LOAD, VecTys[i], Legal);
     72       setOperationAction(ISD::STORE, VecTys[i], Legal);
     73       setOperationAction(ISD::BITCAST, VecTys[i], Legal);
     74     }
     75 
     76     setTargetDAGCombine(ISD::SHL);
     77     setTargetDAGCombine(ISD::SRA);
     78     setTargetDAGCombine(ISD::SRL);
     79     setTargetDAGCombine(ISD::SETCC);
     80     setTargetDAGCombine(ISD::VSELECT);
     81   }
     82 
     83   if (Subtarget.hasDSPR2())
     84     setOperationAction(ISD::MUL, MVT::v2i16, Legal);
     85 
     86   if (Subtarget.hasMSA()) {
     87     addMSAIntType(MVT::v16i8, &Mips::MSA128BRegClass);
     88     addMSAIntType(MVT::v8i16, &Mips::MSA128HRegClass);
     89     addMSAIntType(MVT::v4i32, &Mips::MSA128WRegClass);
     90     addMSAIntType(MVT::v2i64, &Mips::MSA128DRegClass);
     91     addMSAFloatType(MVT::v8f16, &Mips::MSA128HRegClass);
     92     addMSAFloatType(MVT::v4f32, &Mips::MSA128WRegClass);
     93     addMSAFloatType(MVT::v2f64, &Mips::MSA128DRegClass);
     94 
     95     setTargetDAGCombine(ISD::AND);
     96     setTargetDAGCombine(ISD::OR);
     97     setTargetDAGCombine(ISD::SRA);
     98     setTargetDAGCombine(ISD::VSELECT);
     99     setTargetDAGCombine(ISD::XOR);
    100   }
    101 
    102   if (!Subtarget.abiUsesSoftFloat()) {
    103     addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
    104 
    105     // When dealing with single precision only, use libcalls
    106     if (!Subtarget.isSingleFloat()) {
    107       if (Subtarget.isFP64bit())
    108         addRegisterClass(MVT::f64, &Mips::FGR64RegClass);
    109       else
    110         addRegisterClass(MVT::f64, &Mips::AFGR64RegClass);
    111     }
    112   }
    113 
    114   setOperationAction(ISD::SMUL_LOHI,          MVT::i32, Custom);
    115   setOperationAction(ISD::UMUL_LOHI,          MVT::i32, Custom);
    116   setOperationAction(ISD::MULHS,              MVT::i32, Custom);
    117   setOperationAction(ISD::MULHU,              MVT::i32, Custom);
    118 
    119   if (Subtarget.hasCnMips())
    120     setOperationAction(ISD::MUL,              MVT::i64, Legal);
    121   else if (Subtarget.isGP64bit())
    122     setOperationAction(ISD::MUL,              MVT::i64, Custom);
    123 
    124   if (Subtarget.isGP64bit()) {
    125     setOperationAction(ISD::SMUL_LOHI,        MVT::i64, Custom);
    126     setOperationAction(ISD::UMUL_LOHI,        MVT::i64, Custom);
    127     setOperationAction(ISD::MULHS,            MVT::i64, Custom);
    128     setOperationAction(ISD::MULHU,            MVT::i64, Custom);
    129     setOperationAction(ISD::SDIVREM,          MVT::i64, Custom);
    130     setOperationAction(ISD::UDIVREM,          MVT::i64, Custom);
    131   }
    132 
    133   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
    134   setOperationAction(ISD::INTRINSIC_W_CHAIN,  MVT::i64, Custom);
    135 
    136   setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
    137   setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
    138   setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Custom);
    139   setOperationAction(ISD::LOAD,               MVT::i32, Custom);
    140   setOperationAction(ISD::STORE,              MVT::i32, Custom);
    141 
    142   setTargetDAGCombine(ISD::ADDE);
    143   setTargetDAGCombine(ISD::SUBE);
    144   setTargetDAGCombine(ISD::MUL);
    145 
    146   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
    147   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
    148   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
    149 
    150   if (NoDPLoadStore) {
    151     setOperationAction(ISD::LOAD, MVT::f64, Custom);
    152     setOperationAction(ISD::STORE, MVT::f64, Custom);
    153   }
    154 
    155   if (Subtarget.hasMips32r6()) {
    156     // MIPS32r6 replaces the accumulator-based multiplies with a three register
    157     // instruction
    158     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
    159     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
    160     setOperationAction(ISD::MUL, MVT::i32, Legal);
    161     setOperationAction(ISD::MULHS, MVT::i32, Legal);
    162     setOperationAction(ISD::MULHU, MVT::i32, Legal);
    163 
    164     // MIPS32r6 replaces the accumulator-based division/remainder with separate
    165     // three register division and remainder instructions.
    166     setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
    167     setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
    168     setOperationAction(ISD::SDIV, MVT::i32, Legal);
    169     setOperationAction(ISD::UDIV, MVT::i32, Legal);
    170     setOperationAction(ISD::SREM, MVT::i32, Legal);
    171     setOperationAction(ISD::UREM, MVT::i32, Legal);
    172 
    173     // MIPS32r6 replaces conditional moves with an equivalent that removes the
    174     // need for three GPR read ports.
    175     setOperationAction(ISD::SETCC, MVT::i32, Legal);
    176     setOperationAction(ISD::SELECT, MVT::i32, Legal);
    177     setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
    178 
    179     setOperationAction(ISD::SETCC, MVT::f32, Legal);
    180     setOperationAction(ISD::SELECT, MVT::f32, Legal);
    181     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
    182 
    183     assert(Subtarget.isFP64bit() && "FR=1 is required for MIPS32r6");
    184     setOperationAction(ISD::SETCC, MVT::f64, Legal);
    185     setOperationAction(ISD::SELECT, MVT::f64, Legal);
    186     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
    187 
    188     setOperationAction(ISD::BRCOND, MVT::Other, Legal);
    189 
    190     // Floating point > and >= are supported via < and <=
    191     setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
    192     setCondCodeAction(ISD::SETOGT, MVT::f32, Expand);
    193     setCondCodeAction(ISD::SETUGE, MVT::f32, Expand);
    194     setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
    195 
    196     setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
    197     setCondCodeAction(ISD::SETOGT, MVT::f64, Expand);
    198     setCondCodeAction(ISD::SETUGE, MVT::f64, Expand);
    199     setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
    200   }
    201 
    202   if (Subtarget.hasMips64r6()) {
    203     // MIPS64r6 replaces the accumulator-based multiplies with a three register
    204     // instruction
    205     setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
    206     setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
    207     setOperationAction(ISD::MUL, MVT::i64, Legal);
    208     setOperationAction(ISD::MULHS, MVT::i64, Legal);
    209     setOperationAction(ISD::MULHU, MVT::i64, Legal);
    210 
    211     // MIPS32r6 replaces the accumulator-based division/remainder with separate
    212     // three register division and remainder instructions.
    213     setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
    214     setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
    215     setOperationAction(ISD::SDIV, MVT::i64, Legal);
    216     setOperationAction(ISD::UDIV, MVT::i64, Legal);
    217     setOperationAction(ISD::SREM, MVT::i64, Legal);
    218     setOperationAction(ISD::UREM, MVT::i64, Legal);
    219 
    220     // MIPS64r6 replaces conditional moves with an equivalent that removes the
    221     // need for three GPR read ports.
    222     setOperationAction(ISD::SETCC, MVT::i64, Legal);
    223     setOperationAction(ISD::SELECT, MVT::i64, Legal);
    224     setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
    225   }
    226 
    227   computeRegisterProperties(Subtarget.getRegisterInfo());
    228 }
    229 
    230 const MipsTargetLowering *
    231 llvm::createMipsSETargetLowering(const MipsTargetMachine &TM,
    232                                  const MipsSubtarget &STI) {
    233   return new MipsSETargetLowering(TM, STI);
    234 }
    235 
    236 const TargetRegisterClass *
    237 MipsSETargetLowering::getRepRegClassFor(MVT VT) const {
    238   if (VT == MVT::Untyped)
    239     return Subtarget.hasDSP() ? &Mips::ACC64DSPRegClass : &Mips::ACC64RegClass;
    240 
    241   return TargetLowering::getRepRegClassFor(VT);
    242 }
    243 
    244 // Enable MSA support for the given integer type and Register class.
    245 void MipsSETargetLowering::
    246 addMSAIntType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
    247   addRegisterClass(Ty, RC);
    248 
    249   // Expand all builtin opcodes.
    250   for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
    251     setOperationAction(Opc, Ty, Expand);
    252 
    253   setOperationAction(ISD::BITCAST, Ty, Legal);
    254   setOperationAction(ISD::LOAD, Ty, Legal);
    255   setOperationAction(ISD::STORE, Ty, Legal);
    256   setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Custom);
    257   setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
    258   setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
    259 
    260   setOperationAction(ISD::ADD, Ty, Legal);
    261   setOperationAction(ISD::AND, Ty, Legal);
    262   setOperationAction(ISD::CTLZ, Ty, Legal);
    263   setOperationAction(ISD::CTPOP, Ty, Legal);
    264   setOperationAction(ISD::MUL, Ty, Legal);
    265   setOperationAction(ISD::OR, Ty, Legal);
    266   setOperationAction(ISD::SDIV, Ty, Legal);
    267   setOperationAction(ISD::SREM, Ty, Legal);
    268   setOperationAction(ISD::SHL, Ty, Legal);
    269   setOperationAction(ISD::SRA, Ty, Legal);
    270   setOperationAction(ISD::SRL, Ty, Legal);
    271   setOperationAction(ISD::SUB, Ty, Legal);
    272   setOperationAction(ISD::UDIV, Ty, Legal);
    273   setOperationAction(ISD::UREM, Ty, Legal);
    274   setOperationAction(ISD::VECTOR_SHUFFLE, Ty, Custom);
    275   setOperationAction(ISD::VSELECT, Ty, Legal);
    276   setOperationAction(ISD::XOR, Ty, Legal);
    277 
    278   if (Ty == MVT::v4i32 || Ty == MVT::v2i64) {
    279     setOperationAction(ISD::FP_TO_SINT, Ty, Legal);
    280     setOperationAction(ISD::FP_TO_UINT, Ty, Legal);
    281     setOperationAction(ISD::SINT_TO_FP, Ty, Legal);
    282     setOperationAction(ISD::UINT_TO_FP, Ty, Legal);
    283   }
    284 
    285   setOperationAction(ISD::SETCC, Ty, Legal);
    286   setCondCodeAction(ISD::SETNE, Ty, Expand);
    287   setCondCodeAction(ISD::SETGE, Ty, Expand);
    288   setCondCodeAction(ISD::SETGT, Ty, Expand);
    289   setCondCodeAction(ISD::SETUGE, Ty, Expand);
    290   setCondCodeAction(ISD::SETUGT, Ty, Expand);
    291 }
    292 
    293 // Enable MSA support for the given floating-point type and Register class.
    294 void MipsSETargetLowering::
    295 addMSAFloatType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
    296   addRegisterClass(Ty, RC);
    297 
    298   // Expand all builtin opcodes.
    299   for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
    300     setOperationAction(Opc, Ty, Expand);
    301 
    302   setOperationAction(ISD::LOAD, Ty, Legal);
    303   setOperationAction(ISD::STORE, Ty, Legal);
    304   setOperationAction(ISD::BITCAST, Ty, Legal);
    305   setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Legal);
    306   setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
    307   setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
    308 
    309   if (Ty != MVT::v8f16) {
    310     setOperationAction(ISD::FABS,  Ty, Legal);
    311     setOperationAction(ISD::FADD,  Ty, Legal);
    312     setOperationAction(ISD::FDIV,  Ty, Legal);
    313     setOperationAction(ISD::FEXP2, Ty, Legal);
    314     setOperationAction(ISD::FLOG2, Ty, Legal);
    315     setOperationAction(ISD::FMA,   Ty, Legal);
    316     setOperationAction(ISD::FMUL,  Ty, Legal);
    317     setOperationAction(ISD::FRINT, Ty, Legal);
    318     setOperationAction(ISD::FSQRT, Ty, Legal);
    319     setOperationAction(ISD::FSUB,  Ty, Legal);
    320     setOperationAction(ISD::VSELECT, Ty, Legal);
    321 
    322     setOperationAction(ISD::SETCC, Ty, Legal);
    323     setCondCodeAction(ISD::SETOGE, Ty, Expand);
    324     setCondCodeAction(ISD::SETOGT, Ty, Expand);
    325     setCondCodeAction(ISD::SETUGE, Ty, Expand);
    326     setCondCodeAction(ISD::SETUGT, Ty, Expand);
    327     setCondCodeAction(ISD::SETGE,  Ty, Expand);
    328     setCondCodeAction(ISD::SETGT,  Ty, Expand);
    329   }
    330 }
    331 
    332 bool
    333 MipsSETargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
    334                                                      unsigned,
    335                                                      unsigned,
    336                                                      bool *Fast) const {
    337   MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
    338 
    339   if (Subtarget.systemSupportsUnalignedAccess()) {
    340     // MIPS32r6/MIPS64r6 is required to support unaligned access. It's
    341     // implementation defined whether this is handled by hardware, software, or
    342     // a hybrid of the two but it's expected that most implementations will
    343     // handle the majority of cases in hardware.
    344     if (Fast)
    345       *Fast = true;
    346     return true;
    347   }
    348 
    349   switch (SVT) {
    350   case MVT::i64:
    351   case MVT::i32:
    352     if (Fast)
    353       *Fast = true;
    354     return true;
    355   default:
    356     return false;
    357   }
    358 }
    359 
    360 SDValue MipsSETargetLowering::LowerOperation(SDValue Op,
    361                                              SelectionDAG &DAG) const {
    362   switch(Op.getOpcode()) {
    363   case ISD::LOAD:  return lowerLOAD(Op, DAG);
    364   case ISD::STORE: return lowerSTORE(Op, DAG);
    365   case ISD::SMUL_LOHI: return lowerMulDiv(Op, MipsISD::Mult, true, true, DAG);
    366   case ISD::UMUL_LOHI: return lowerMulDiv(Op, MipsISD::Multu, true, true, DAG);
    367   case ISD::MULHS:     return lowerMulDiv(Op, MipsISD::Mult, false, true, DAG);
    368   case ISD::MULHU:     return lowerMulDiv(Op, MipsISD::Multu, false, true, DAG);
    369   case ISD::MUL:       return lowerMulDiv(Op, MipsISD::Mult, true, false, DAG);
    370   case ISD::SDIVREM:   return lowerMulDiv(Op, MipsISD::DivRem, true, true, DAG);
    371   case ISD::UDIVREM:   return lowerMulDiv(Op, MipsISD::DivRemU, true, true,
    372                                           DAG);
    373   case ISD::INTRINSIC_WO_CHAIN: return lowerINTRINSIC_WO_CHAIN(Op, DAG);
    374   case ISD::INTRINSIC_W_CHAIN:  return lowerINTRINSIC_W_CHAIN(Op, DAG);
    375   case ISD::INTRINSIC_VOID:     return lowerINTRINSIC_VOID(Op, DAG);
    376   case ISD::EXTRACT_VECTOR_ELT: return lowerEXTRACT_VECTOR_ELT(Op, DAG);
    377   case ISD::BUILD_VECTOR:       return lowerBUILD_VECTOR(Op, DAG);
    378   case ISD::VECTOR_SHUFFLE:     return lowerVECTOR_SHUFFLE(Op, DAG);
    379   }
    380 
    381   return MipsTargetLowering::LowerOperation(Op, DAG);
    382 }
    383 
    384 // selectMADD -
    385 // Transforms a subgraph in CurDAG if the following pattern is found:
    386 //  (addc multLo, Lo0), (adde multHi, Hi0),
    387 // where,
    388 //  multHi/Lo: product of multiplication
    389 //  Lo0: initial value of Lo register
    390 //  Hi0: initial value of Hi register
    391 // Return true if pattern matching was successful.
    392 static bool selectMADD(SDNode *ADDENode, SelectionDAG *CurDAG) {
    393   // ADDENode's second operand must be a flag output of an ADDC node in order
    394   // for the matching to be successful.
    395   SDNode *ADDCNode = ADDENode->getOperand(2).getNode();
    396 
    397   if (ADDCNode->getOpcode() != ISD::ADDC)
    398     return false;
    399 
    400   SDValue MultHi = ADDENode->getOperand(0);
    401   SDValue MultLo = ADDCNode->getOperand(0);
    402   SDNode *MultNode = MultHi.getNode();
    403   unsigned MultOpc = MultHi.getOpcode();
    404 
    405   // MultHi and MultLo must be generated by the same node,
    406   if (MultLo.getNode() != MultNode)
    407     return false;
    408 
    409   // and it must be a multiplication.
    410   if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
    411     return false;
    412 
    413   // MultLo amd MultHi must be the first and second output of MultNode
    414   // respectively.
    415   if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
    416     return false;
    417 
    418   // Transform this to a MADD only if ADDENode and ADDCNode are the only users
    419   // of the values of MultNode, in which case MultNode will be removed in later
    420   // phases.
    421   // If there exist users other than ADDENode or ADDCNode, this function returns
    422   // here, which will result in MultNode being mapped to a single MULT
    423   // instruction node rather than a pair of MULT and MADD instructions being
    424   // produced.
    425   if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
    426     return false;
    427 
    428   SDLoc DL(ADDENode);
    429 
    430   // Initialize accumulator.
    431   SDValue ACCIn = CurDAG->getNode(MipsISD::MTLOHI, DL, MVT::Untyped,
    432                                   ADDCNode->getOperand(1),
    433                                   ADDENode->getOperand(1));
    434 
    435   // create MipsMAdd(u) node
    436   MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd;
    437 
    438   SDValue MAdd = CurDAG->getNode(MultOpc, DL, MVT::Untyped,
    439                                  MultNode->getOperand(0),// Factor 0
    440                                  MultNode->getOperand(1),// Factor 1
    441                                  ACCIn);
    442 
    443   // replace uses of adde and addc here
    444   if (!SDValue(ADDCNode, 0).use_empty()) {
    445     SDValue LoOut = CurDAG->getNode(MipsISD::MFLO, DL, MVT::i32, MAdd);
    446     CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), LoOut);
    447   }
    448   if (!SDValue(ADDENode, 0).use_empty()) {
    449     SDValue HiOut = CurDAG->getNode(MipsISD::MFHI, DL, MVT::i32, MAdd);
    450     CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), HiOut);
    451   }
    452 
    453   return true;
    454 }
    455 
    456 // selectMSUB -
    457 // Transforms a subgraph in CurDAG if the following pattern is found:
    458 //  (addc Lo0, multLo), (sube Hi0, multHi),
    459 // where,
    460 //  multHi/Lo: product of multiplication
    461 //  Lo0: initial value of Lo register
    462 //  Hi0: initial value of Hi register
    463 // Return true if pattern matching was successful.
    464 static bool selectMSUB(SDNode *SUBENode, SelectionDAG *CurDAG) {
    465   // SUBENode's second operand must be a flag output of an SUBC node in order
    466   // for the matching to be successful.
    467   SDNode *SUBCNode = SUBENode->getOperand(2).getNode();
    468 
    469   if (SUBCNode->getOpcode() != ISD::SUBC)
    470     return false;
    471 
    472   SDValue MultHi = SUBENode->getOperand(1);
    473   SDValue MultLo = SUBCNode->getOperand(1);
    474   SDNode *MultNode = MultHi.getNode();
    475   unsigned MultOpc = MultHi.getOpcode();
    476 
    477   // MultHi and MultLo must be generated by the same node,
    478   if (MultLo.getNode() != MultNode)
    479     return false;
    480 
    481   // and it must be a multiplication.
    482   if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
    483     return false;
    484 
    485   // MultLo amd MultHi must be the first and second output of MultNode
    486   // respectively.
    487   if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
    488     return false;
    489 
    490   // Transform this to a MSUB only if SUBENode and SUBCNode are the only users
    491   // of the values of MultNode, in which case MultNode will be removed in later
    492   // phases.
    493   // If there exist users other than SUBENode or SUBCNode, this function returns
    494   // here, which will result in MultNode being mapped to a single MULT
    495   // instruction node rather than a pair of MULT and MSUB instructions being
    496   // produced.
    497   if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
    498     return false;
    499 
    500   SDLoc DL(SUBENode);
    501 
    502   // Initialize accumulator.
    503   SDValue ACCIn = CurDAG->getNode(MipsISD::MTLOHI, DL, MVT::Untyped,
    504                                   SUBCNode->getOperand(0),
    505                                   SUBENode->getOperand(0));
    506 
    507   // create MipsSub(u) node
    508   MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub;
    509 
    510   SDValue MSub = CurDAG->getNode(MultOpc, DL, MVT::Glue,
    511                                  MultNode->getOperand(0),// Factor 0
    512                                  MultNode->getOperand(1),// Factor 1
    513                                  ACCIn);
    514 
    515   // replace uses of sube and subc here
    516   if (!SDValue(SUBCNode, 0).use_empty()) {
    517     SDValue LoOut = CurDAG->getNode(MipsISD::MFLO, DL, MVT::i32, MSub);
    518     CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), LoOut);
    519   }
    520   if (!SDValue(SUBENode, 0).use_empty()) {
    521     SDValue HiOut = CurDAG->getNode(MipsISD::MFHI, DL, MVT::i32, MSub);
    522     CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), HiOut);
    523   }
    524 
    525   return true;
    526 }
    527 
    528 static SDValue performADDECombine(SDNode *N, SelectionDAG &DAG,
    529                                   TargetLowering::DAGCombinerInfo &DCI,
    530                                   const MipsSubtarget &Subtarget) {
    531   if (DCI.isBeforeLegalize())
    532     return SDValue();
    533 
    534   if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() &&
    535       N->getValueType(0) == MVT::i32 && selectMADD(N, &DAG))
    536     return SDValue(N, 0);
    537 
    538   return SDValue();
    539 }
    540 
    541 // Fold zero extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT
    542 //
    543 // Performs the following transformations:
    544 // - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to zero extension if its
    545 //   sign/zero-extension is completely overwritten by the new one performed by
    546 //   the ISD::AND.
    547 // - Removes redundant zero extensions performed by an ISD::AND.
    548 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
    549                                  TargetLowering::DAGCombinerInfo &DCI,
    550                                  const MipsSubtarget &Subtarget) {
    551   if (!Subtarget.hasMSA())
    552     return SDValue();
    553 
    554   SDValue Op0 = N->getOperand(0);
    555   SDValue Op1 = N->getOperand(1);
    556   unsigned Op0Opcode = Op0->getOpcode();
    557 
    558   // (and (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d)
    559   // where $d + 1 == 2^n and n == 32
    560   // or    $d + 1 == 2^n and n <= 32 and ZExt
    561   // -> (MipsVExtractZExt $a, $b, $c)
    562   if (Op0Opcode == MipsISD::VEXTRACT_SEXT_ELT ||
    563       Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT) {
    564     ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(Op1);
    565 
    566     if (!Mask)
    567       return SDValue();
    568 
    569     int32_t Log2IfPositive = (Mask->getAPIntValue() + 1).exactLogBase2();
    570 
    571     if (Log2IfPositive <= 0)
    572       return SDValue(); // Mask+1 is not a power of 2
    573 
    574     SDValue Op0Op2 = Op0->getOperand(2);
    575     EVT ExtendTy = cast<VTSDNode>(Op0Op2)->getVT();
    576     unsigned ExtendTySize = ExtendTy.getSizeInBits();
    577     unsigned Log2 = Log2IfPositive;
    578 
    579     if ((Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT && Log2 >= ExtendTySize) ||
    580         Log2 == ExtendTySize) {
    581       SDValue Ops[] = { Op0->getOperand(0), Op0->getOperand(1), Op0Op2 };
    582       return DAG.getNode(MipsISD::VEXTRACT_ZEXT_ELT, SDLoc(Op0),
    583                          Op0->getVTList(),
    584                          makeArrayRef(Ops, Op0->getNumOperands()));
    585     }
    586   }
    587 
    588   return SDValue();
    589 }
    590 
    591 // Determine if the specified node is a constant vector splat.
    592 //
    593 // Returns true and sets Imm if:
    594 // * N is a ISD::BUILD_VECTOR representing a constant splat
    595 //
    596 // This function is quite similar to MipsSEDAGToDAGISel::selectVSplat. The
    597 // differences are that it assumes the MSA has already been checked and the
    598 // arbitrary requirement for a maximum of 32-bit integers isn't applied (and
    599 // must not be in order for binsri.d to be selectable).
    600 static bool isVSplat(SDValue N, APInt &Imm, bool IsLittleEndian) {
    601   BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N.getNode());
    602 
    603   if (!Node)
    604     return false;
    605 
    606   APInt SplatValue, SplatUndef;
    607   unsigned SplatBitSize;
    608   bool HasAnyUndefs;
    609 
    610   if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
    611                              8, !IsLittleEndian))
    612     return false;
    613 
    614   Imm = SplatValue;
    615 
    616   return true;
    617 }
    618 
    619 // Test whether the given node is an all-ones build_vector.
    620 static bool isVectorAllOnes(SDValue N) {
    621   // Look through bitcasts. Endianness doesn't matter because we are looking
    622   // for an all-ones value.
    623   if (N->getOpcode() == ISD::BITCAST)
    624     N = N->getOperand(0);
    625 
    626   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N);
    627 
    628   if (!BVN)
    629     return false;
    630 
    631   APInt SplatValue, SplatUndef;
    632   unsigned SplatBitSize;
    633   bool HasAnyUndefs;
    634 
    635   // Endianness doesn't matter in this context because we are looking for
    636   // an all-ones value.
    637   if (BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs))
    638     return SplatValue.isAllOnesValue();
    639 
    640   return false;
    641 }
    642 
    643 // Test whether N is the bitwise inverse of OfNode.
    644 static bool isBitwiseInverse(SDValue N, SDValue OfNode) {
    645   if (N->getOpcode() != ISD::XOR)
    646     return false;
    647 
    648   if (isVectorAllOnes(N->getOperand(0)))
    649     return N->getOperand(1) == OfNode;
    650 
    651   if (isVectorAllOnes(N->getOperand(1)))
    652     return N->getOperand(0) == OfNode;
    653 
    654   return false;
    655 }
    656 
    657 // Perform combines where ISD::OR is the root node.
    658 //
    659 // Performs the following transformations:
    660 // - (or (and $a, $mask), (and $b, $inv_mask)) => (vselect $mask, $a, $b)
    661 //   where $inv_mask is the bitwise inverse of $mask and the 'or' has a 128-bit
    662 //   vector type.
    663 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
    664                                 TargetLowering::DAGCombinerInfo &DCI,
    665                                 const MipsSubtarget &Subtarget) {
    666   if (!Subtarget.hasMSA())
    667     return SDValue();
    668 
    669   EVT Ty = N->getValueType(0);
    670 
    671   if (!Ty.is128BitVector())
    672     return SDValue();
    673 
    674   SDValue Op0 = N->getOperand(0);
    675   SDValue Op1 = N->getOperand(1);
    676 
    677   if (Op0->getOpcode() == ISD::AND && Op1->getOpcode() == ISD::AND) {
    678     SDValue Op0Op0 = Op0->getOperand(0);
    679     SDValue Op0Op1 = Op0->getOperand(1);
    680     SDValue Op1Op0 = Op1->getOperand(0);
    681     SDValue Op1Op1 = Op1->getOperand(1);
    682     bool IsLittleEndian = !Subtarget.isLittle();
    683 
    684     SDValue IfSet, IfClr, Cond;
    685     bool IsConstantMask = false;
    686     APInt Mask, InvMask;
    687 
    688     // If Op0Op0 is an appropriate mask, try to find it's inverse in either
    689     // Op1Op0, or Op1Op1. Keep track of the Cond, IfSet, and IfClr nodes, while
    690     // looking.
    691     // IfClr will be set if we find a valid match.
    692     if (isVSplat(Op0Op0, Mask, IsLittleEndian)) {
    693       Cond = Op0Op0;
    694       IfSet = Op0Op1;
    695 
    696       if (isVSplat(Op1Op0, InvMask, IsLittleEndian) &&
    697           Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
    698         IfClr = Op1Op1;
    699       else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) &&
    700                Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
    701         IfClr = Op1Op0;
    702 
    703       IsConstantMask = true;
    704     }
    705 
    706     // If IfClr is not yet set, and Op0Op1 is an appropriate mask, try the same
    707     // thing again using this mask.
    708     // IfClr will be set if we find a valid match.
    709     if (!IfClr.getNode() && isVSplat(Op0Op1, Mask, IsLittleEndian)) {
    710       Cond = Op0Op1;
    711       IfSet = Op0Op0;
    712 
    713       if (isVSplat(Op1Op0, InvMask, IsLittleEndian) &&
    714           Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
    715         IfClr = Op1Op1;
    716       else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) &&
    717                Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
    718         IfClr = Op1Op0;
    719 
    720       IsConstantMask = true;
    721     }
    722 
    723     // If IfClr is not yet set, try looking for a non-constant match.
    724     // IfClr will be set if we find a valid match amongst the eight
    725     // possibilities.
    726     if (!IfClr.getNode()) {
    727       if (isBitwiseInverse(Op0Op0, Op1Op0)) {
    728         Cond = Op1Op0;
    729         IfSet = Op1Op1;
    730         IfClr = Op0Op1;
    731       } else if (isBitwiseInverse(Op0Op1, Op1Op0)) {
    732         Cond = Op1Op0;
    733         IfSet = Op1Op1;
    734         IfClr = Op0Op0;
    735       } else if (isBitwiseInverse(Op0Op0, Op1Op1)) {
    736         Cond = Op1Op1;
    737         IfSet = Op1Op0;
    738         IfClr = Op0Op1;
    739       } else if (isBitwiseInverse(Op0Op1, Op1Op1)) {
    740         Cond = Op1Op1;
    741         IfSet = Op1Op0;
    742         IfClr = Op0Op0;
    743       } else if (isBitwiseInverse(Op1Op0, Op0Op0)) {
    744         Cond = Op0Op0;
    745         IfSet = Op0Op1;
    746         IfClr = Op1Op1;
    747       } else if (isBitwiseInverse(Op1Op1, Op0Op0)) {
    748         Cond = Op0Op0;
    749         IfSet = Op0Op1;
    750         IfClr = Op1Op0;
    751       } else if (isBitwiseInverse(Op1Op0, Op0Op1)) {
    752         Cond = Op0Op1;
    753         IfSet = Op0Op0;
    754         IfClr = Op1Op1;
    755       } else if (isBitwiseInverse(Op1Op1, Op0Op1)) {
    756         Cond = Op0Op1;
    757         IfSet = Op0Op0;
    758         IfClr = Op1Op0;
    759       }
    760     }
    761 
    762     // At this point, IfClr will be set if we have a valid match.
    763     if (!IfClr.getNode())
    764       return SDValue();
    765 
    766     assert(Cond.getNode() && IfSet.getNode());
    767 
    768     // Fold degenerate cases.
    769     if (IsConstantMask) {
    770       if (Mask.isAllOnesValue())
    771         return IfSet;
    772       else if (Mask == 0)
    773         return IfClr;
    774     }
    775 
    776     // Transform the DAG into an equivalent VSELECT.
    777     return DAG.getNode(ISD::VSELECT, SDLoc(N), Ty, Cond, IfSet, IfClr);
    778   }
    779 
    780   return SDValue();
    781 }
    782 
    783 static SDValue performSUBECombine(SDNode *N, SelectionDAG &DAG,
    784                                   TargetLowering::DAGCombinerInfo &DCI,
    785                                   const MipsSubtarget &Subtarget) {
    786   if (DCI.isBeforeLegalize())
    787     return SDValue();
    788 
    789   if (Subtarget.hasMips32() && N->getValueType(0) == MVT::i32 &&
    790       selectMSUB(N, &DAG))
    791     return SDValue(N, 0);
    792 
    793   return SDValue();
    794 }
    795 
    796 static SDValue genConstMult(SDValue X, uint64_t C, SDLoc DL, EVT VT,
    797                             EVT ShiftTy, SelectionDAG &DAG) {
    798   // Clear the upper (64 - VT.sizeInBits) bits.
    799   C &= ((uint64_t)-1) >> (64 - VT.getSizeInBits());
    800 
    801   // Return 0.
    802   if (C == 0)
    803     return DAG.getConstant(0, VT);
    804 
    805   // Return x.
    806   if (C == 1)
    807     return X;
    808 
    809   // If c is power of 2, return (shl x, log2(c)).
    810   if (isPowerOf2_64(C))
    811     return DAG.getNode(ISD::SHL, DL, VT, X,
    812                        DAG.getConstant(Log2_64(C), ShiftTy));
    813 
    814   unsigned Log2Ceil = Log2_64_Ceil(C);
    815   uint64_t Floor = 1LL << Log2_64(C);
    816   uint64_t Ceil = Log2Ceil == 64 ? 0LL : 1LL << Log2Ceil;
    817 
    818   // If |c - floor_c| <= |c - ceil_c|,
    819   // where floor_c = pow(2, floor(log2(c))) and ceil_c = pow(2, ceil(log2(c))),
    820   // return (add constMult(x, floor_c), constMult(x, c - floor_c)).
    821   if (C - Floor <= Ceil - C) {
    822     SDValue Op0 = genConstMult(X, Floor, DL, VT, ShiftTy, DAG);
    823     SDValue Op1 = genConstMult(X, C - Floor, DL, VT, ShiftTy, DAG);
    824     return DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
    825   }
    826 
    827   // If |c - floor_c| > |c - ceil_c|,
    828   // return (sub constMult(x, ceil_c), constMult(x, ceil_c - c)).
    829   SDValue Op0 = genConstMult(X, Ceil, DL, VT, ShiftTy, DAG);
    830   SDValue Op1 = genConstMult(X, Ceil - C, DL, VT, ShiftTy, DAG);
    831   return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
    832 }
    833 
    834 static SDValue performMULCombine(SDNode *N, SelectionDAG &DAG,
    835                                  const TargetLowering::DAGCombinerInfo &DCI,
    836                                  const MipsSETargetLowering *TL) {
    837   EVT VT = N->getValueType(0);
    838 
    839   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
    840     if (!VT.isVector())
    841       return genConstMult(N->getOperand(0), C->getZExtValue(), SDLoc(N),
    842                           VT, TL->getScalarShiftAmountTy(VT), DAG);
    843 
    844   return SDValue(N, 0);
    845 }
    846 
    847 static SDValue performDSPShiftCombine(unsigned Opc, SDNode *N, EVT Ty,
    848                                       SelectionDAG &DAG,
    849                                       const MipsSubtarget &Subtarget) {
    850   // See if this is a vector splat immediate node.
    851   APInt SplatValue, SplatUndef;
    852   unsigned SplatBitSize;
    853   bool HasAnyUndefs;
    854   unsigned EltSize = Ty.getVectorElementType().getSizeInBits();
    855   BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
    856 
    857   if (!Subtarget.hasDSP())
    858     return SDValue();
    859 
    860   if (!BV ||
    861       !BV->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
    862                            EltSize, !Subtarget.isLittle()) ||
    863       (SplatBitSize != EltSize) ||
    864       (SplatValue.getZExtValue() >= EltSize))
    865     return SDValue();
    866 
    867   return DAG.getNode(Opc, SDLoc(N), Ty, N->getOperand(0),
    868                      DAG.getConstant(SplatValue.getZExtValue(), MVT::i32));
    869 }
    870 
    871 static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG,
    872                                  TargetLowering::DAGCombinerInfo &DCI,
    873                                  const MipsSubtarget &Subtarget) {
    874   EVT Ty = N->getValueType(0);
    875 
    876   if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
    877     return SDValue();
    878 
    879   return performDSPShiftCombine(MipsISD::SHLL_DSP, N, Ty, DAG, Subtarget);
    880 }
    881 
    882 // Fold sign-extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT for MSA and fold
    883 // constant splats into MipsISD::SHRA_DSP for DSPr2.
    884 //
    885 // Performs the following transformations:
    886 // - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to sign extension if its
    887 //   sign/zero-extension is completely overwritten by the new one performed by
    888 //   the ISD::SRA and ISD::SHL nodes.
    889 // - Removes redundant sign extensions performed by an ISD::SRA and ISD::SHL
    890 //   sequence.
    891 //
    892 // See performDSPShiftCombine for more information about the transformation
    893 // used for DSPr2.
    894 static SDValue performSRACombine(SDNode *N, SelectionDAG &DAG,
    895                                  TargetLowering::DAGCombinerInfo &DCI,
    896                                  const MipsSubtarget &Subtarget) {
    897   EVT Ty = N->getValueType(0);
    898 
    899   if (Subtarget.hasMSA()) {
    900     SDValue Op0 = N->getOperand(0);
    901     SDValue Op1 = N->getOperand(1);
    902 
    903     // (sra (shl (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d), imm:$d)
    904     // where $d + sizeof($c) == 32
    905     // or    $d + sizeof($c) <= 32 and SExt
    906     // -> (MipsVExtractSExt $a, $b, $c)
    907     if (Op0->getOpcode() == ISD::SHL && Op1 == Op0->getOperand(1)) {
    908       SDValue Op0Op0 = Op0->getOperand(0);
    909       ConstantSDNode *ShAmount = dyn_cast<ConstantSDNode>(Op1);
    910 
    911       if (!ShAmount)
    912         return SDValue();
    913 
    914       if (Op0Op0->getOpcode() != MipsISD::VEXTRACT_SEXT_ELT &&
    915           Op0Op0->getOpcode() != MipsISD::VEXTRACT_ZEXT_ELT)
    916         return SDValue();
    917 
    918       EVT ExtendTy = cast<VTSDNode>(Op0Op0->getOperand(2))->getVT();
    919       unsigned TotalBits = ShAmount->getZExtValue() + ExtendTy.getSizeInBits();
    920 
    921       if (TotalBits == 32 ||
    922           (Op0Op0->getOpcode() == MipsISD::VEXTRACT_SEXT_ELT &&
    923            TotalBits <= 32)) {
    924         SDValue Ops[] = { Op0Op0->getOperand(0), Op0Op0->getOperand(1),
    925                           Op0Op0->getOperand(2) };
    926         return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, SDLoc(Op0Op0),
    927                            Op0Op0->getVTList(),
    928                            makeArrayRef(Ops, Op0Op0->getNumOperands()));
    929       }
    930     }
    931   }
    932 
    933   if ((Ty != MVT::v2i16) && ((Ty != MVT::v4i8) || !Subtarget.hasDSPR2()))
    934     return SDValue();
    935 
    936   return performDSPShiftCombine(MipsISD::SHRA_DSP, N, Ty, DAG, Subtarget);
    937 }
    938 
    939 
    940 static SDValue performSRLCombine(SDNode *N, SelectionDAG &DAG,
    941                                  TargetLowering::DAGCombinerInfo &DCI,
    942                                  const MipsSubtarget &Subtarget) {
    943   EVT Ty = N->getValueType(0);
    944 
    945   if (((Ty != MVT::v2i16) || !Subtarget.hasDSPR2()) && (Ty != MVT::v4i8))
    946     return SDValue();
    947 
    948   return performDSPShiftCombine(MipsISD::SHRL_DSP, N, Ty, DAG, Subtarget);
    949 }
    950 
    951 static bool isLegalDSPCondCode(EVT Ty, ISD::CondCode CC) {
    952   bool IsV216 = (Ty == MVT::v2i16);
    953 
    954   switch (CC) {
    955   case ISD::SETEQ:
    956   case ISD::SETNE:  return true;
    957   case ISD::SETLT:
    958   case ISD::SETLE:
    959   case ISD::SETGT:
    960   case ISD::SETGE:  return IsV216;
    961   case ISD::SETULT:
    962   case ISD::SETULE:
    963   case ISD::SETUGT:
    964   case ISD::SETUGE: return !IsV216;
    965   default:          return false;
    966   }
    967 }
    968 
    969 static SDValue performSETCCCombine(SDNode *N, SelectionDAG &DAG) {
    970   EVT Ty = N->getValueType(0);
    971 
    972   if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
    973     return SDValue();
    974 
    975   if (!isLegalDSPCondCode(Ty, cast<CondCodeSDNode>(N->getOperand(2))->get()))
    976     return SDValue();
    977 
    978   return DAG.getNode(MipsISD::SETCC_DSP, SDLoc(N), Ty, N->getOperand(0),
    979                      N->getOperand(1), N->getOperand(2));
    980 }
    981 
    982 static SDValue performVSELECTCombine(SDNode *N, SelectionDAG &DAG) {
    983   EVT Ty = N->getValueType(0);
    984 
    985   if (Ty.is128BitVector() && Ty.isInteger()) {
    986     // Try the following combines:
    987     //   (vselect (setcc $a, $b, SETLT), $b, $a)) -> (vsmax $a, $b)
    988     //   (vselect (setcc $a, $b, SETLE), $b, $a)) -> (vsmax $a, $b)
    989     //   (vselect (setcc $a, $b, SETLT), $a, $b)) -> (vsmin $a, $b)
    990     //   (vselect (setcc $a, $b, SETLE), $a, $b)) -> (vsmin $a, $b)
    991     //   (vselect (setcc $a, $b, SETULT), $b, $a)) -> (vumax $a, $b)
    992     //   (vselect (setcc $a, $b, SETULE), $b, $a)) -> (vumax $a, $b)
    993     //   (vselect (setcc $a, $b, SETULT), $a, $b)) -> (vumin $a, $b)
    994     //   (vselect (setcc $a, $b, SETULE), $a, $b)) -> (vumin $a, $b)
    995     // SETGT/SETGE/SETUGT/SETUGE variants of these will show up initially but
    996     // will be expanded to equivalent SETLT/SETLE/SETULT/SETULE versions by the
    997     // legalizer.
    998     SDValue Op0 = N->getOperand(0);
    999 
   1000     if (Op0->getOpcode() != ISD::SETCC)
   1001       return SDValue();
   1002 
   1003     ISD::CondCode CondCode = cast<CondCodeSDNode>(Op0->getOperand(2))->get();
   1004     bool Signed;
   1005 
   1006     if (CondCode == ISD::SETLT  || CondCode == ISD::SETLE)
   1007       Signed = true;
   1008     else if (CondCode == ISD::SETULT || CondCode == ISD::SETULE)
   1009       Signed = false;
   1010     else
   1011       return SDValue();
   1012 
   1013     SDValue Op1 = N->getOperand(1);
   1014     SDValue Op2 = N->getOperand(2);
   1015     SDValue Op0Op0 = Op0->getOperand(0);
   1016     SDValue Op0Op1 = Op0->getOperand(1);
   1017 
   1018     if (Op1 == Op0Op0 && Op2 == Op0Op1)
   1019       return DAG.getNode(Signed ? MipsISD::VSMIN : MipsISD::VUMIN, SDLoc(N),
   1020                          Ty, Op1, Op2);
   1021     else if (Op1 == Op0Op1 && Op2 == Op0Op0)
   1022       return DAG.getNode(Signed ? MipsISD::VSMAX : MipsISD::VUMAX, SDLoc(N),
   1023                          Ty, Op1, Op2);
   1024   } else if ((Ty == MVT::v2i16) || (Ty == MVT::v4i8)) {
   1025     SDValue SetCC = N->getOperand(0);
   1026 
   1027     if (SetCC.getOpcode() != MipsISD::SETCC_DSP)
   1028       return SDValue();
   1029 
   1030     return DAG.getNode(MipsISD::SELECT_CC_DSP, SDLoc(N), Ty,
   1031                        SetCC.getOperand(0), SetCC.getOperand(1),
   1032                        N->getOperand(1), N->getOperand(2), SetCC.getOperand(2));
   1033   }
   1034 
   1035   return SDValue();
   1036 }
   1037 
   1038 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG,
   1039                                  const MipsSubtarget &Subtarget) {
   1040   EVT Ty = N->getValueType(0);
   1041 
   1042   if (Subtarget.hasMSA() && Ty.is128BitVector() && Ty.isInteger()) {
   1043     // Try the following combines:
   1044     //   (xor (or $a, $b), (build_vector allones))
   1045     //   (xor (or $a, $b), (bitcast (build_vector allones)))
   1046     SDValue Op0 = N->getOperand(0);
   1047     SDValue Op1 = N->getOperand(1);
   1048     SDValue NotOp;
   1049 
   1050     if (ISD::isBuildVectorAllOnes(Op0.getNode()))
   1051       NotOp = Op1;
   1052     else if (ISD::isBuildVectorAllOnes(Op1.getNode()))
   1053       NotOp = Op0;
   1054     else
   1055       return SDValue();
   1056 
   1057     if (NotOp->getOpcode() == ISD::OR)
   1058       return DAG.getNode(MipsISD::VNOR, SDLoc(N), Ty, NotOp->getOperand(0),
   1059                          NotOp->getOperand(1));
   1060   }
   1061 
   1062   return SDValue();
   1063 }
   1064 
   1065 SDValue
   1066 MipsSETargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
   1067   SelectionDAG &DAG = DCI.DAG;
   1068   SDValue Val;
   1069 
   1070   switch (N->getOpcode()) {
   1071   case ISD::ADDE:
   1072     return performADDECombine(N, DAG, DCI, Subtarget);
   1073   case ISD::AND:
   1074     Val = performANDCombine(N, DAG, DCI, Subtarget);
   1075     break;
   1076   case ISD::OR:
   1077     Val = performORCombine(N, DAG, DCI, Subtarget);
   1078     break;
   1079   case ISD::SUBE:
   1080     return performSUBECombine(N, DAG, DCI, Subtarget);
   1081   case ISD::MUL:
   1082     return performMULCombine(N, DAG, DCI, this);
   1083   case ISD::SHL:
   1084     return performSHLCombine(N, DAG, DCI, Subtarget);
   1085   case ISD::SRA:
   1086     return performSRACombine(N, DAG, DCI, Subtarget);
   1087   case ISD::SRL:
   1088     return performSRLCombine(N, DAG, DCI, Subtarget);
   1089   case ISD::VSELECT:
   1090     return performVSELECTCombine(N, DAG);
   1091   case ISD::XOR:
   1092     Val = performXORCombine(N, DAG, Subtarget);
   1093     break;
   1094   case ISD::SETCC:
   1095     Val = performSETCCCombine(N, DAG);
   1096     break;
   1097   }
   1098 
   1099   if (Val.getNode()) {
   1100     DEBUG(dbgs() << "\nMipsSE DAG Combine:\n";
   1101           N->printrWithDepth(dbgs(), &DAG);
   1102           dbgs() << "\n=> \n";
   1103           Val.getNode()->printrWithDepth(dbgs(), &DAG);
   1104           dbgs() << "\n");
   1105     return Val;
   1106   }
   1107 
   1108   return MipsTargetLowering::PerformDAGCombine(N, DCI);
   1109 }
   1110 
   1111 MachineBasicBlock *
   1112 MipsSETargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
   1113                                                   MachineBasicBlock *BB) const {
   1114   switch (MI->getOpcode()) {
   1115   default:
   1116     return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB);
   1117   case Mips::BPOSGE32_PSEUDO:
   1118     return emitBPOSGE32(MI, BB);
   1119   case Mips::SNZ_B_PSEUDO:
   1120     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_B);
   1121   case Mips::SNZ_H_PSEUDO:
   1122     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_H);
   1123   case Mips::SNZ_W_PSEUDO:
   1124     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_W);
   1125   case Mips::SNZ_D_PSEUDO:
   1126     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_D);
   1127   case Mips::SNZ_V_PSEUDO:
   1128     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_V);
   1129   case Mips::SZ_B_PSEUDO:
   1130     return emitMSACBranchPseudo(MI, BB, Mips::BZ_B);
   1131   case Mips::SZ_H_PSEUDO:
   1132     return emitMSACBranchPseudo(MI, BB, Mips::BZ_H);
   1133   case Mips::SZ_W_PSEUDO:
   1134     return emitMSACBranchPseudo(MI, BB, Mips::BZ_W);
   1135   case Mips::SZ_D_PSEUDO:
   1136     return emitMSACBranchPseudo(MI, BB, Mips::BZ_D);
   1137   case Mips::SZ_V_PSEUDO:
   1138     return emitMSACBranchPseudo(MI, BB, Mips::BZ_V);
   1139   case Mips::COPY_FW_PSEUDO:
   1140     return emitCOPY_FW(MI, BB);
   1141   case Mips::COPY_FD_PSEUDO:
   1142     return emitCOPY_FD(MI, BB);
   1143   case Mips::INSERT_FW_PSEUDO:
   1144     return emitINSERT_FW(MI, BB);
   1145   case Mips::INSERT_FD_PSEUDO:
   1146     return emitINSERT_FD(MI, BB);
   1147   case Mips::INSERT_B_VIDX_PSEUDO:
   1148     return emitINSERT_DF_VIDX(MI, BB, 1, false);
   1149   case Mips::INSERT_H_VIDX_PSEUDO:
   1150     return emitINSERT_DF_VIDX(MI, BB, 2, false);
   1151   case Mips::INSERT_W_VIDX_PSEUDO:
   1152     return emitINSERT_DF_VIDX(MI, BB, 4, false);
   1153   case Mips::INSERT_D_VIDX_PSEUDO:
   1154     return emitINSERT_DF_VIDX(MI, BB, 8, false);
   1155   case Mips::INSERT_FW_VIDX_PSEUDO:
   1156     return emitINSERT_DF_VIDX(MI, BB, 4, true);
   1157   case Mips::INSERT_FD_VIDX_PSEUDO:
   1158     return emitINSERT_DF_VIDX(MI, BB, 8, true);
   1159   case Mips::FILL_FW_PSEUDO:
   1160     return emitFILL_FW(MI, BB);
   1161   case Mips::FILL_FD_PSEUDO:
   1162     return emitFILL_FD(MI, BB);
   1163   case Mips::FEXP2_W_1_PSEUDO:
   1164     return emitFEXP2_W_1(MI, BB);
   1165   case Mips::FEXP2_D_1_PSEUDO:
   1166     return emitFEXP2_D_1(MI, BB);
   1167   }
   1168 }
   1169 
   1170 bool MipsSETargetLowering::isEligibleForTailCallOptimization(
   1171     const CCState &CCInfo, unsigned NextStackOffset,
   1172     const MipsFunctionInfo &FI) const {
   1173   if (!EnableMipsTailCalls)
   1174     return false;
   1175 
   1176   // Return false if either the callee or caller has a byval argument.
   1177   if (CCInfo.getInRegsParamsCount() > 0 || FI.hasByvalArg())
   1178     return false;
   1179 
   1180   // Return true if the callee's argument area is no larger than the
   1181   // caller's.
   1182   return NextStackOffset <= FI.getIncomingArgSize();
   1183 }
   1184 
   1185 void MipsSETargetLowering::
   1186 getOpndList(SmallVectorImpl<SDValue> &Ops,
   1187             std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
   1188             bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
   1189             bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
   1190             SDValue Chain) const {
   1191   Ops.push_back(Callee);
   1192   MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal,
   1193                                   InternalLinkage, IsCallReloc, CLI, Callee,
   1194                                   Chain);
   1195 }
   1196 
   1197 SDValue MipsSETargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
   1198   LoadSDNode &Nd = *cast<LoadSDNode>(Op);
   1199 
   1200   if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
   1201     return MipsTargetLowering::lowerLOAD(Op, DAG);
   1202 
   1203   // Replace a double precision load with two i32 loads and a buildpair64.
   1204   SDLoc DL(Op);
   1205   SDValue Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
   1206   EVT PtrVT = Ptr.getValueType();
   1207 
   1208   // i32 load from lower address.
   1209   SDValue Lo = DAG.getLoad(MVT::i32, DL, Chain, Ptr,
   1210                            MachinePointerInfo(), Nd.isVolatile(),
   1211                            Nd.isNonTemporal(), Nd.isInvariant(),
   1212                            Nd.getAlignment());
   1213 
   1214   // i32 load from higher address.
   1215   Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, PtrVT));
   1216   SDValue Hi = DAG.getLoad(MVT::i32, DL, Lo.getValue(1), Ptr,
   1217                            MachinePointerInfo(), Nd.isVolatile(),
   1218                            Nd.isNonTemporal(), Nd.isInvariant(),
   1219                            std::min(Nd.getAlignment(), 4U));
   1220 
   1221   if (!Subtarget.isLittle())
   1222     std::swap(Lo, Hi);
   1223 
   1224   SDValue BP = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
   1225   SDValue Ops[2] = {BP, Hi.getValue(1)};
   1226   return DAG.getMergeValues(Ops, DL);
   1227 }
   1228 
   1229 SDValue MipsSETargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
   1230   StoreSDNode &Nd = *cast<StoreSDNode>(Op);
   1231 
   1232   if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
   1233     return MipsTargetLowering::lowerSTORE(Op, DAG);
   1234 
   1235   // Replace a double precision store with two extractelement64s and i32 stores.
   1236   SDLoc DL(Op);
   1237   SDValue Val = Nd.getValue(), Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
   1238   EVT PtrVT = Ptr.getValueType();
   1239   SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
   1240                            Val, DAG.getConstant(0, MVT::i32));
   1241   SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
   1242                            Val, DAG.getConstant(1, MVT::i32));
   1243 
   1244   if (!Subtarget.isLittle())
   1245     std::swap(Lo, Hi);
   1246 
   1247   // i32 store to lower address.
   1248   Chain = DAG.getStore(Chain, DL, Lo, Ptr, MachinePointerInfo(),
   1249                        Nd.isVolatile(), Nd.isNonTemporal(), Nd.getAlignment(),
   1250                        Nd.getAAInfo());
   1251 
   1252   // i32 store to higher address.
   1253   Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, PtrVT));
   1254   return DAG.getStore(Chain, DL, Hi, Ptr, MachinePointerInfo(),
   1255                       Nd.isVolatile(), Nd.isNonTemporal(),
   1256                       std::min(Nd.getAlignment(), 4U), Nd.getAAInfo());
   1257 }
   1258 
   1259 SDValue MipsSETargetLowering::lowerMulDiv(SDValue Op, unsigned NewOpc,
   1260                                           bool HasLo, bool HasHi,
   1261                                           SelectionDAG &DAG) const {
   1262   // MIPS32r6/MIPS64r6 removed accumulator based multiplies.
   1263   assert(!Subtarget.hasMips32r6());
   1264 
   1265   EVT Ty = Op.getOperand(0).getValueType();
   1266   SDLoc DL(Op);
   1267   SDValue Mult = DAG.getNode(NewOpc, DL, MVT::Untyped,
   1268                              Op.getOperand(0), Op.getOperand(1));
   1269   SDValue Lo, Hi;
   1270 
   1271   if (HasLo)
   1272     Lo = DAG.getNode(MipsISD::MFLO, DL, Ty, Mult);
   1273   if (HasHi)
   1274     Hi = DAG.getNode(MipsISD::MFHI, DL, Ty, Mult);
   1275 
   1276   if (!HasLo || !HasHi)
   1277     return HasLo ? Lo : Hi;
   1278 
   1279   SDValue Vals[] = { Lo, Hi };
   1280   return DAG.getMergeValues(Vals, DL);
   1281 }
   1282 
   1283 
   1284 static SDValue initAccumulator(SDValue In, SDLoc DL, SelectionDAG &DAG) {
   1285   SDValue InLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, In,
   1286                              DAG.getConstant(0, MVT::i32));
   1287   SDValue InHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, In,
   1288                              DAG.getConstant(1, MVT::i32));
   1289   return DAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped, InLo, InHi);
   1290 }
   1291 
   1292 static SDValue extractLOHI(SDValue Op, SDLoc DL, SelectionDAG &DAG) {
   1293   SDValue Lo = DAG.getNode(MipsISD::MFLO, DL, MVT::i32, Op);
   1294   SDValue Hi = DAG.getNode(MipsISD::MFHI, DL, MVT::i32, Op);
   1295   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
   1296 }
   1297 
   1298 // This function expands mips intrinsic nodes which have 64-bit input operands
   1299 // or output values.
   1300 //
   1301 // out64 = intrinsic-node in64
   1302 // =>
   1303 // lo = copy (extract-element (in64, 0))
   1304 // hi = copy (extract-element (in64, 1))
   1305 // mips-specific-node
   1306 // v0 = copy lo
   1307 // v1 = copy hi
   1308 // out64 = merge-values (v0, v1)
   1309 //
   1310 static SDValue lowerDSPIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
   1311   SDLoc DL(Op);
   1312   bool HasChainIn = Op->getOperand(0).getValueType() == MVT::Other;
   1313   SmallVector<SDValue, 3> Ops;
   1314   unsigned OpNo = 0;
   1315 
   1316   // See if Op has a chain input.
   1317   if (HasChainIn)
   1318     Ops.push_back(Op->getOperand(OpNo++));
   1319 
   1320   // The next operand is the intrinsic opcode.
   1321   assert(Op->getOperand(OpNo).getOpcode() == ISD::TargetConstant);
   1322 
   1323   // See if the next operand has type i64.
   1324   SDValue Opnd = Op->getOperand(++OpNo), In64;
   1325 
   1326   if (Opnd.getValueType() == MVT::i64)
   1327     In64 = initAccumulator(Opnd, DL, DAG);
   1328   else
   1329     Ops.push_back(Opnd);
   1330 
   1331   // Push the remaining operands.
   1332   for (++OpNo ; OpNo < Op->getNumOperands(); ++OpNo)
   1333     Ops.push_back(Op->getOperand(OpNo));
   1334 
   1335   // Add In64 to the end of the list.
   1336   if (In64.getNode())
   1337     Ops.push_back(In64);
   1338 
   1339   // Scan output.
   1340   SmallVector<EVT, 2> ResTys;
   1341 
   1342   for (SDNode::value_iterator I = Op->value_begin(), E = Op->value_end();
   1343        I != E; ++I)
   1344     ResTys.push_back((*I == MVT::i64) ? MVT::Untyped : *I);
   1345 
   1346   // Create node.
   1347   SDValue Val = DAG.getNode(Opc, DL, ResTys, Ops);
   1348   SDValue Out = (ResTys[0] == MVT::Untyped) ? extractLOHI(Val, DL, DAG) : Val;
   1349 
   1350   if (!HasChainIn)
   1351     return Out;
   1352 
   1353   assert(Val->getValueType(1) == MVT::Other);
   1354   SDValue Vals[] = { Out, SDValue(Val.getNode(), 1) };
   1355   return DAG.getMergeValues(Vals, DL);
   1356 }
   1357 
   1358 // Lower an MSA copy intrinsic into the specified SelectionDAG node
   1359 static SDValue lowerMSACopyIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
   1360   SDLoc DL(Op);
   1361   SDValue Vec = Op->getOperand(1);
   1362   SDValue Idx = Op->getOperand(2);
   1363   EVT ResTy = Op->getValueType(0);
   1364   EVT EltTy = Vec->getValueType(0).getVectorElementType();
   1365 
   1366   SDValue Result = DAG.getNode(Opc, DL, ResTy, Vec, Idx,
   1367                                DAG.getValueType(EltTy));
   1368 
   1369   return Result;
   1370 }
   1371 
   1372 static SDValue lowerMSASplatZExt(SDValue Op, unsigned OpNr, SelectionDAG &DAG) {
   1373   EVT ResVecTy = Op->getValueType(0);
   1374   EVT ViaVecTy = ResVecTy;
   1375   SDLoc DL(Op);
   1376 
   1377   // When ResVecTy == MVT::v2i64, LaneA is the upper 32 bits of the lane and
   1378   // LaneB is the lower 32-bits. Otherwise LaneA and LaneB are alternating
   1379   // lanes.
   1380   SDValue LaneA;
   1381   SDValue LaneB = Op->getOperand(2);
   1382 
   1383   if (ResVecTy == MVT::v2i64) {
   1384     LaneA = DAG.getConstant(0, MVT::i32);
   1385     ViaVecTy = MVT::v4i32;
   1386   } else
   1387     LaneA = LaneB;
   1388 
   1389   SDValue Ops[16] = { LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB,
   1390                       LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB };
   1391 
   1392   SDValue Result = DAG.getNode(ISD::BUILD_VECTOR, DL, ViaVecTy,
   1393                        makeArrayRef(Ops, ViaVecTy.getVectorNumElements()));
   1394 
   1395   if (ViaVecTy != ResVecTy)
   1396     Result = DAG.getNode(ISD::BITCAST, DL, ResVecTy, Result);
   1397 
   1398   return Result;
   1399 }
   1400 
   1401 static SDValue lowerMSASplatImm(SDValue Op, unsigned ImmOp, SelectionDAG &DAG) {
   1402   return DAG.getConstant(Op->getConstantOperandVal(ImmOp), Op->getValueType(0));
   1403 }
   1404 
   1405 static SDValue getBuildVectorSplat(EVT VecTy, SDValue SplatValue,
   1406                                    bool BigEndian, SelectionDAG &DAG) {
   1407   EVT ViaVecTy = VecTy;
   1408   SDValue SplatValueA = SplatValue;
   1409   SDValue SplatValueB = SplatValue;
   1410   SDLoc DL(SplatValue);
   1411 
   1412   if (VecTy == MVT::v2i64) {
   1413     // v2i64 BUILD_VECTOR must be performed via v4i32 so split into i32's.
   1414     ViaVecTy = MVT::v4i32;
   1415 
   1416     SplatValueA = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValue);
   1417     SplatValueB = DAG.getNode(ISD::SRL, DL, MVT::i64, SplatValue,
   1418                               DAG.getConstant(32, MVT::i32));
   1419     SplatValueB = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValueB);
   1420   }
   1421 
   1422   // We currently hold the parts in little endian order. Swap them if
   1423   // necessary.
   1424   if (BigEndian)
   1425     std::swap(SplatValueA, SplatValueB);
   1426 
   1427   SDValue Ops[16] = { SplatValueA, SplatValueB, SplatValueA, SplatValueB,
   1428                       SplatValueA, SplatValueB, SplatValueA, SplatValueB,
   1429                       SplatValueA, SplatValueB, SplatValueA, SplatValueB,
   1430                       SplatValueA, SplatValueB, SplatValueA, SplatValueB };
   1431 
   1432   SDValue Result = DAG.getNode(ISD::BUILD_VECTOR, DL, ViaVecTy,
   1433                        makeArrayRef(Ops, ViaVecTy.getVectorNumElements()));
   1434 
   1435   if (VecTy != ViaVecTy)
   1436     Result = DAG.getNode(ISD::BITCAST, DL, VecTy, Result);
   1437 
   1438   return Result;
   1439 }
   1440 
   1441 static SDValue lowerMSABinaryBitImmIntr(SDValue Op, SelectionDAG &DAG,
   1442                                         unsigned Opc, SDValue Imm,
   1443                                         bool BigEndian) {
   1444   EVT VecTy = Op->getValueType(0);
   1445   SDValue Exp2Imm;
   1446   SDLoc DL(Op);
   1447 
   1448   // The DAG Combiner can't constant fold bitcasted vectors yet so we must do it
   1449   // here for now.
   1450   if (VecTy == MVT::v2i64) {
   1451     if (ConstantSDNode *CImm = dyn_cast<ConstantSDNode>(Imm)) {
   1452       APInt BitImm = APInt(64, 1) << CImm->getAPIntValue();
   1453 
   1454       SDValue BitImmHiOp = DAG.getConstant(BitImm.lshr(32).trunc(32), MVT::i32);
   1455       SDValue BitImmLoOp = DAG.getConstant(BitImm.trunc(32), MVT::i32);
   1456 
   1457       if (BigEndian)
   1458         std::swap(BitImmLoOp, BitImmHiOp);
   1459 
   1460       Exp2Imm =
   1461           DAG.getNode(ISD::BITCAST, DL, MVT::v2i64,
   1462                       DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v4i32, BitImmLoOp,
   1463                                   BitImmHiOp, BitImmLoOp, BitImmHiOp));
   1464     }
   1465   }
   1466 
   1467   if (!Exp2Imm.getNode()) {
   1468     // We couldnt constant fold, do a vector shift instead
   1469 
   1470     // Extend i32 to i64 if necessary. Sign or zero extend doesn't matter since
   1471     // only values 0-63 are valid.
   1472     if (VecTy == MVT::v2i64)
   1473       Imm = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Imm);
   1474 
   1475     Exp2Imm = getBuildVectorSplat(VecTy, Imm, BigEndian, DAG);
   1476 
   1477     Exp2Imm =
   1478         DAG.getNode(ISD::SHL, DL, VecTy, DAG.getConstant(1, VecTy), Exp2Imm);
   1479   }
   1480 
   1481   return DAG.getNode(Opc, DL, VecTy, Op->getOperand(1), Exp2Imm);
   1482 }
   1483 
   1484 static SDValue lowerMSABitClear(SDValue Op, SelectionDAG &DAG) {
   1485   EVT ResTy = Op->getValueType(0);
   1486   SDLoc DL(Op);
   1487   SDValue One = DAG.getConstant(1, ResTy);
   1488   SDValue Bit = DAG.getNode(ISD::SHL, DL, ResTy, One, Op->getOperand(2));
   1489 
   1490   return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1),
   1491                      DAG.getNOT(DL, Bit, ResTy));
   1492 }
   1493 
   1494 static SDValue lowerMSABitClearImm(SDValue Op, SelectionDAG &DAG) {
   1495   SDLoc DL(Op);
   1496   EVT ResTy = Op->getValueType(0);
   1497   APInt BitImm = APInt(ResTy.getVectorElementType().getSizeInBits(), 1)
   1498                  << cast<ConstantSDNode>(Op->getOperand(2))->getAPIntValue();
   1499   SDValue BitMask = DAG.getConstant(~BitImm, ResTy);
   1500 
   1501   return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1), BitMask);
   1502 }
   1503 
   1504 SDValue MipsSETargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
   1505                                                       SelectionDAG &DAG) const {
   1506   SDLoc DL(Op);
   1507 
   1508   switch (cast<ConstantSDNode>(Op->getOperand(0))->getZExtValue()) {
   1509   default:
   1510     return SDValue();
   1511   case Intrinsic::mips_shilo:
   1512     return lowerDSPIntr(Op, DAG, MipsISD::SHILO);
   1513   case Intrinsic::mips_dpau_h_qbl:
   1514     return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBL);
   1515   case Intrinsic::mips_dpau_h_qbr:
   1516     return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBR);
   1517   case Intrinsic::mips_dpsu_h_qbl:
   1518     return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBL);
   1519   case Intrinsic::mips_dpsu_h_qbr:
   1520     return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBR);
   1521   case Intrinsic::mips_dpa_w_ph:
   1522     return lowerDSPIntr(Op, DAG, MipsISD::DPA_W_PH);
   1523   case Intrinsic::mips_dps_w_ph:
   1524     return lowerDSPIntr(Op, DAG, MipsISD::DPS_W_PH);
   1525   case Intrinsic::mips_dpax_w_ph:
   1526     return lowerDSPIntr(Op, DAG, MipsISD::DPAX_W_PH);
   1527   case Intrinsic::mips_dpsx_w_ph:
   1528     return lowerDSPIntr(Op, DAG, MipsISD::DPSX_W_PH);
   1529   case Intrinsic::mips_mulsa_w_ph:
   1530     return lowerDSPIntr(Op, DAG, MipsISD::MULSA_W_PH);
   1531   case Intrinsic::mips_mult:
   1532     return lowerDSPIntr(Op, DAG, MipsISD::Mult);
   1533   case Intrinsic::mips_multu:
   1534     return lowerDSPIntr(Op, DAG, MipsISD::Multu);
   1535   case Intrinsic::mips_madd:
   1536     return lowerDSPIntr(Op, DAG, MipsISD::MAdd);
   1537   case Intrinsic::mips_maddu:
   1538     return lowerDSPIntr(Op, DAG, MipsISD::MAddu);
   1539   case Intrinsic::mips_msub:
   1540     return lowerDSPIntr(Op, DAG, MipsISD::MSub);
   1541   case Intrinsic::mips_msubu:
   1542     return lowerDSPIntr(Op, DAG, MipsISD::MSubu);
   1543   case Intrinsic::mips_addv_b:
   1544   case Intrinsic::mips_addv_h:
   1545   case Intrinsic::mips_addv_w:
   1546   case Intrinsic::mips_addv_d:
   1547     return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
   1548                        Op->getOperand(2));
   1549   case Intrinsic::mips_addvi_b:
   1550   case Intrinsic::mips_addvi_h:
   1551   case Intrinsic::mips_addvi_w:
   1552   case Intrinsic::mips_addvi_d:
   1553     return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
   1554                        lowerMSASplatImm(Op, 2, DAG));
   1555   case Intrinsic::mips_and_v:
   1556     return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
   1557                        Op->getOperand(2));
   1558   case Intrinsic::mips_andi_b:
   1559     return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
   1560                        lowerMSASplatImm(Op, 2, DAG));
   1561   case Intrinsic::mips_bclr_b:
   1562   case Intrinsic::mips_bclr_h:
   1563   case Intrinsic::mips_bclr_w:
   1564   case Intrinsic::mips_bclr_d:
   1565     return lowerMSABitClear(Op, DAG);
   1566   case Intrinsic::mips_bclri_b:
   1567   case Intrinsic::mips_bclri_h:
   1568   case Intrinsic::mips_bclri_w:
   1569   case Intrinsic::mips_bclri_d:
   1570     return lowerMSABitClearImm(Op, DAG);
   1571   case Intrinsic::mips_binsli_b:
   1572   case Intrinsic::mips_binsli_h:
   1573   case Intrinsic::mips_binsli_w:
   1574   case Intrinsic::mips_binsli_d: {
   1575     // binsli_x(IfClear, IfSet, nbits) -> (vselect LBitsMask, IfSet, IfClear)
   1576     EVT VecTy = Op->getValueType(0);
   1577     EVT EltTy = VecTy.getVectorElementType();
   1578     APInt Mask = APInt::getHighBitsSet(EltTy.getSizeInBits(),
   1579                                        Op->getConstantOperandVal(3));
   1580     return DAG.getNode(ISD::VSELECT, DL, VecTy,
   1581                        DAG.getConstant(Mask, VecTy, true), Op->getOperand(2),
   1582                        Op->getOperand(1));
   1583   }
   1584   case Intrinsic::mips_binsri_b:
   1585   case Intrinsic::mips_binsri_h:
   1586   case Intrinsic::mips_binsri_w:
   1587   case Intrinsic::mips_binsri_d: {
   1588     // binsri_x(IfClear, IfSet, nbits) -> (vselect RBitsMask, IfSet, IfClear)
   1589     EVT VecTy = Op->getValueType(0);
   1590     EVT EltTy = VecTy.getVectorElementType();
   1591     APInt Mask = APInt::getLowBitsSet(EltTy.getSizeInBits(),
   1592                                       Op->getConstantOperandVal(3));
   1593     return DAG.getNode(ISD::VSELECT, DL, VecTy,
   1594                        DAG.getConstant(Mask, VecTy, true), Op->getOperand(2),
   1595                        Op->getOperand(1));
   1596   }
   1597   case Intrinsic::mips_bmnz_v:
   1598     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
   1599                        Op->getOperand(2), Op->getOperand(1));
   1600   case Intrinsic::mips_bmnzi_b:
   1601     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
   1602                        lowerMSASplatImm(Op, 3, DAG), Op->getOperand(2),
   1603                        Op->getOperand(1));
   1604   case Intrinsic::mips_bmz_v:
   1605     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
   1606                        Op->getOperand(1), Op->getOperand(2));
   1607   case Intrinsic::mips_bmzi_b:
   1608     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
   1609                        lowerMSASplatImm(Op, 3, DAG), Op->getOperand(1),
   1610                        Op->getOperand(2));
   1611   case Intrinsic::mips_bneg_b:
   1612   case Intrinsic::mips_bneg_h:
   1613   case Intrinsic::mips_bneg_w:
   1614   case Intrinsic::mips_bneg_d: {
   1615     EVT VecTy = Op->getValueType(0);
   1616     SDValue One = DAG.getConstant(1, VecTy);
   1617 
   1618     return DAG.getNode(ISD::XOR, DL, VecTy, Op->getOperand(1),
   1619                        DAG.getNode(ISD::SHL, DL, VecTy, One,
   1620                                    Op->getOperand(2)));
   1621   }
   1622   case Intrinsic::mips_bnegi_b:
   1623   case Intrinsic::mips_bnegi_h:
   1624   case Intrinsic::mips_bnegi_w:
   1625   case Intrinsic::mips_bnegi_d:
   1626     return lowerMSABinaryBitImmIntr(Op, DAG, ISD::XOR, Op->getOperand(2),
   1627                                     !Subtarget.isLittle());
   1628   case Intrinsic::mips_bnz_b:
   1629   case Intrinsic::mips_bnz_h:
   1630   case Intrinsic::mips_bnz_w:
   1631   case Intrinsic::mips_bnz_d:
   1632     return DAG.getNode(MipsISD::VALL_NONZERO, DL, Op->getValueType(0),
   1633                        Op->getOperand(1));
   1634   case Intrinsic::mips_bnz_v:
   1635     return DAG.getNode(MipsISD::VANY_NONZERO, DL, Op->getValueType(0),
   1636                        Op->getOperand(1));
   1637   case Intrinsic::mips_bsel_v:
   1638     // bsel_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear)
   1639     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
   1640                        Op->getOperand(1), Op->getOperand(3),
   1641                        Op->getOperand(2));
   1642   case Intrinsic::mips_bseli_b:
   1643     // bseli_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear)
   1644     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
   1645                        Op->getOperand(1), lowerMSASplatImm(Op, 3, DAG),
   1646                        Op->getOperand(2));
   1647   case Intrinsic::mips_bset_b:
   1648   case Intrinsic::mips_bset_h:
   1649   case Intrinsic::mips_bset_w:
   1650   case Intrinsic::mips_bset_d: {
   1651     EVT VecTy = Op->getValueType(0);
   1652     SDValue One = DAG.getConstant(1, VecTy);
   1653 
   1654     return DAG.getNode(ISD::OR, DL, VecTy, Op->getOperand(1),
   1655                        DAG.getNode(ISD::SHL, DL, VecTy, One,
   1656                                    Op->getOperand(2)));
   1657   }
   1658   case Intrinsic::mips_bseti_b:
   1659   case Intrinsic::mips_bseti_h:
   1660   case Intrinsic::mips_bseti_w:
   1661   case Intrinsic::mips_bseti_d:
   1662     return lowerMSABinaryBitImmIntr(Op, DAG, ISD::OR, Op->getOperand(2),
   1663                                     !Subtarget.isLittle());
   1664   case Intrinsic::mips_bz_b:
   1665   case Intrinsic::mips_bz_h:
   1666   case Intrinsic::mips_bz_w:
   1667   case Intrinsic::mips_bz_d:
   1668     return DAG.getNode(MipsISD::VALL_ZERO, DL, Op->getValueType(0),
   1669                        Op->getOperand(1));
   1670   case Intrinsic::mips_bz_v:
   1671     return DAG.getNode(MipsISD::VANY_ZERO, DL, Op->getValueType(0),
   1672                        Op->getOperand(1));
   1673   case Intrinsic::mips_ceq_b:
   1674   case Intrinsic::mips_ceq_h:
   1675   case Intrinsic::mips_ceq_w:
   1676   case Intrinsic::mips_ceq_d:
   1677     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1678                         Op->getOperand(2), ISD::SETEQ);
   1679   case Intrinsic::mips_ceqi_b:
   1680   case Intrinsic::mips_ceqi_h:
   1681   case Intrinsic::mips_ceqi_w:
   1682   case Intrinsic::mips_ceqi_d:
   1683     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1684                         lowerMSASplatImm(Op, 2, DAG), ISD::SETEQ);
   1685   case Intrinsic::mips_cle_s_b:
   1686   case Intrinsic::mips_cle_s_h:
   1687   case Intrinsic::mips_cle_s_w:
   1688   case Intrinsic::mips_cle_s_d:
   1689     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1690                         Op->getOperand(2), ISD::SETLE);
   1691   case Intrinsic::mips_clei_s_b:
   1692   case Intrinsic::mips_clei_s_h:
   1693   case Intrinsic::mips_clei_s_w:
   1694   case Intrinsic::mips_clei_s_d:
   1695     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1696                         lowerMSASplatImm(Op, 2, DAG), ISD::SETLE);
   1697   case Intrinsic::mips_cle_u_b:
   1698   case Intrinsic::mips_cle_u_h:
   1699   case Intrinsic::mips_cle_u_w:
   1700   case Intrinsic::mips_cle_u_d:
   1701     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1702                         Op->getOperand(2), ISD::SETULE);
   1703   case Intrinsic::mips_clei_u_b:
   1704   case Intrinsic::mips_clei_u_h:
   1705   case Intrinsic::mips_clei_u_w:
   1706   case Intrinsic::mips_clei_u_d:
   1707     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1708                         lowerMSASplatImm(Op, 2, DAG), ISD::SETULE);
   1709   case Intrinsic::mips_clt_s_b:
   1710   case Intrinsic::mips_clt_s_h:
   1711   case Intrinsic::mips_clt_s_w:
   1712   case Intrinsic::mips_clt_s_d:
   1713     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1714                         Op->getOperand(2), ISD::SETLT);
   1715   case Intrinsic::mips_clti_s_b:
   1716   case Intrinsic::mips_clti_s_h:
   1717   case Intrinsic::mips_clti_s_w:
   1718   case Intrinsic::mips_clti_s_d:
   1719     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1720                         lowerMSASplatImm(Op, 2, DAG), ISD::SETLT);
   1721   case Intrinsic::mips_clt_u_b:
   1722   case Intrinsic::mips_clt_u_h:
   1723   case Intrinsic::mips_clt_u_w:
   1724   case Intrinsic::mips_clt_u_d:
   1725     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1726                         Op->getOperand(2), ISD::SETULT);
   1727   case Intrinsic::mips_clti_u_b:
   1728   case Intrinsic::mips_clti_u_h:
   1729   case Intrinsic::mips_clti_u_w:
   1730   case Intrinsic::mips_clti_u_d:
   1731     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1732                         lowerMSASplatImm(Op, 2, DAG), ISD::SETULT);
   1733   case Intrinsic::mips_copy_s_b:
   1734   case Intrinsic::mips_copy_s_h:
   1735   case Intrinsic::mips_copy_s_w:
   1736     return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
   1737   case Intrinsic::mips_copy_s_d:
   1738     if (Subtarget.hasMips64())
   1739       // Lower directly into VEXTRACT_SEXT_ELT since i64 is legal on Mips64.
   1740       return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
   1741     else {
   1742       // Lower into the generic EXTRACT_VECTOR_ELT node and let the type
   1743       // legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
   1744       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op),
   1745                          Op->getValueType(0), Op->getOperand(1),
   1746                          Op->getOperand(2));
   1747     }
   1748   case Intrinsic::mips_copy_u_b:
   1749   case Intrinsic::mips_copy_u_h:
   1750   case Intrinsic::mips_copy_u_w:
   1751     return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
   1752   case Intrinsic::mips_copy_u_d:
   1753     if (Subtarget.hasMips64())
   1754       // Lower directly into VEXTRACT_ZEXT_ELT since i64 is legal on Mips64.
   1755       return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
   1756     else {
   1757       // Lower into the generic EXTRACT_VECTOR_ELT node and let the type
   1758       // legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
   1759       // Note: When i64 is illegal, this results in copy_s.w instructions
   1760       // instead of copy_u.w instructions. This makes no difference to the
   1761       // behaviour since i64 is only illegal when the register file is 32-bit.
   1762       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op),
   1763                          Op->getValueType(0), Op->getOperand(1),
   1764                          Op->getOperand(2));
   1765     }
   1766   case Intrinsic::mips_div_s_b:
   1767   case Intrinsic::mips_div_s_h:
   1768   case Intrinsic::mips_div_s_w:
   1769   case Intrinsic::mips_div_s_d:
   1770     return DAG.getNode(ISD::SDIV, DL, Op->getValueType(0), Op->getOperand(1),
   1771                        Op->getOperand(2));
   1772   case Intrinsic::mips_div_u_b:
   1773   case Intrinsic::mips_div_u_h:
   1774   case Intrinsic::mips_div_u_w:
   1775   case Intrinsic::mips_div_u_d:
   1776     return DAG.getNode(ISD::UDIV, DL, Op->getValueType(0), Op->getOperand(1),
   1777                        Op->getOperand(2));
   1778   case Intrinsic::mips_fadd_w:
   1779   case Intrinsic::mips_fadd_d:
   1780     return DAG.getNode(ISD::FADD, DL, Op->getValueType(0), Op->getOperand(1),
   1781                        Op->getOperand(2));
   1782   // Don't lower mips_fcaf_[wd] since LLVM folds SETFALSE condcodes away
   1783   case Intrinsic::mips_fceq_w:
   1784   case Intrinsic::mips_fceq_d:
   1785     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1786                         Op->getOperand(2), ISD::SETOEQ);
   1787   case Intrinsic::mips_fcle_w:
   1788   case Intrinsic::mips_fcle_d:
   1789     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1790                         Op->getOperand(2), ISD::SETOLE);
   1791   case Intrinsic::mips_fclt_w:
   1792   case Intrinsic::mips_fclt_d:
   1793     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1794                         Op->getOperand(2), ISD::SETOLT);
   1795   case Intrinsic::mips_fcne_w:
   1796   case Intrinsic::mips_fcne_d:
   1797     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1798                         Op->getOperand(2), ISD::SETONE);
   1799   case Intrinsic::mips_fcor_w:
   1800   case Intrinsic::mips_fcor_d:
   1801     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1802                         Op->getOperand(2), ISD::SETO);
   1803   case Intrinsic::mips_fcueq_w:
   1804   case Intrinsic::mips_fcueq_d:
   1805     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1806                         Op->getOperand(2), ISD::SETUEQ);
   1807   case Intrinsic::mips_fcule_w:
   1808   case Intrinsic::mips_fcule_d:
   1809     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1810                         Op->getOperand(2), ISD::SETULE);
   1811   case Intrinsic::mips_fcult_w:
   1812   case Intrinsic::mips_fcult_d:
   1813     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1814                         Op->getOperand(2), ISD::SETULT);
   1815   case Intrinsic::mips_fcun_w:
   1816   case Intrinsic::mips_fcun_d:
   1817     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1818                         Op->getOperand(2), ISD::SETUO);
   1819   case Intrinsic::mips_fcune_w:
   1820   case Intrinsic::mips_fcune_d:
   1821     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
   1822                         Op->getOperand(2), ISD::SETUNE);
   1823   case Intrinsic::mips_fdiv_w:
   1824   case Intrinsic::mips_fdiv_d:
   1825     return DAG.getNode(ISD::FDIV, DL, Op->getValueType(0), Op->getOperand(1),
   1826                        Op->getOperand(2));
   1827   case Intrinsic::mips_ffint_u_w:
   1828   case Intrinsic::mips_ffint_u_d:
   1829     return DAG.getNode(ISD::UINT_TO_FP, DL, Op->getValueType(0),
   1830                        Op->getOperand(1));
   1831   case Intrinsic::mips_ffint_s_w:
   1832   case Intrinsic::mips_ffint_s_d:
   1833     return DAG.getNode(ISD::SINT_TO_FP, DL, Op->getValueType(0),
   1834                        Op->getOperand(1));
   1835   case Intrinsic::mips_fill_b:
   1836   case Intrinsic::mips_fill_h:
   1837   case Intrinsic::mips_fill_w:
   1838   case Intrinsic::mips_fill_d: {
   1839     EVT ResTy = Op->getValueType(0);
   1840     SmallVector<SDValue, 16> Ops(ResTy.getVectorNumElements(),
   1841                                  Op->getOperand(1));
   1842 
   1843     // If ResTy is v2i64 then the type legalizer will break this node down into
   1844     // an equivalent v4i32.
   1845     return DAG.getNode(ISD::BUILD_VECTOR, DL, ResTy, Ops);
   1846   }
   1847   case Intrinsic::mips_fexp2_w:
   1848   case Intrinsic::mips_fexp2_d: {
   1849     EVT ResTy = Op->getValueType(0);
   1850     return DAG.getNode(
   1851         ISD::FMUL, SDLoc(Op), ResTy, Op->getOperand(1),
   1852         DAG.getNode(ISD::FEXP2, SDLoc(Op), ResTy, Op->getOperand(2)));
   1853   }
   1854   case Intrinsic::mips_flog2_w:
   1855   case Intrinsic::mips_flog2_d:
   1856     return DAG.getNode(ISD::FLOG2, DL, Op->getValueType(0), Op->getOperand(1));
   1857   case Intrinsic::mips_fmadd_w:
   1858   case Intrinsic::mips_fmadd_d:
   1859     return DAG.getNode(ISD::FMA, SDLoc(Op), Op->getValueType(0),
   1860                        Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
   1861   case Intrinsic::mips_fmul_w:
   1862   case Intrinsic::mips_fmul_d:
   1863     return DAG.getNode(ISD::FMUL, DL, Op->getValueType(0), Op->getOperand(1),
   1864                        Op->getOperand(2));
   1865   case Intrinsic::mips_fmsub_w:
   1866   case Intrinsic::mips_fmsub_d: {
   1867     EVT ResTy = Op->getValueType(0);
   1868     return DAG.getNode(ISD::FSUB, SDLoc(Op), ResTy, Op->getOperand(1),
   1869                        DAG.getNode(ISD::FMUL, SDLoc(Op), ResTy,
   1870                                    Op->getOperand(2), Op->getOperand(3)));
   1871   }
   1872   case Intrinsic::mips_frint_w:
   1873   case Intrinsic::mips_frint_d:
   1874     return DAG.getNode(ISD::FRINT, DL, Op->getValueType(0), Op->getOperand(1));
   1875   case Intrinsic::mips_fsqrt_w:
   1876   case Intrinsic::mips_fsqrt_d:
   1877     return DAG.getNode(ISD::FSQRT, DL, Op->getValueType(0), Op->getOperand(1));
   1878   case Intrinsic::mips_fsub_w:
   1879   case Intrinsic::mips_fsub_d:
   1880     return DAG.getNode(ISD::FSUB, DL, Op->getValueType(0), Op->getOperand(1),
   1881                        Op->getOperand(2));
   1882   case Intrinsic::mips_ftrunc_u_w:
   1883   case Intrinsic::mips_ftrunc_u_d:
   1884     return DAG.getNode(ISD::FP_TO_UINT, DL, Op->getValueType(0),
   1885                        Op->getOperand(1));
   1886   case Intrinsic::mips_ftrunc_s_w:
   1887   case Intrinsic::mips_ftrunc_s_d:
   1888     return DAG.getNode(ISD::FP_TO_SINT, DL, Op->getValueType(0),
   1889                        Op->getOperand(1));
   1890   case Intrinsic::mips_ilvev_b:
   1891   case Intrinsic::mips_ilvev_h:
   1892   case Intrinsic::mips_ilvev_w:
   1893   case Intrinsic::mips_ilvev_d:
   1894     return DAG.getNode(MipsISD::ILVEV, DL, Op->getValueType(0),
   1895                        Op->getOperand(1), Op->getOperand(2));
   1896   case Intrinsic::mips_ilvl_b:
   1897   case Intrinsic::mips_ilvl_h:
   1898   case Intrinsic::mips_ilvl_w:
   1899   case Intrinsic::mips_ilvl_d:
   1900     return DAG.getNode(MipsISD::ILVL, DL, Op->getValueType(0),
   1901                        Op->getOperand(1), Op->getOperand(2));
   1902   case Intrinsic::mips_ilvod_b:
   1903   case Intrinsic::mips_ilvod_h:
   1904   case Intrinsic::mips_ilvod_w:
   1905   case Intrinsic::mips_ilvod_d:
   1906     return DAG.getNode(MipsISD::ILVOD, DL, Op->getValueType(0),
   1907                        Op->getOperand(1), Op->getOperand(2));
   1908   case Intrinsic::mips_ilvr_b:
   1909   case Intrinsic::mips_ilvr_h:
   1910   case Intrinsic::mips_ilvr_w:
   1911   case Intrinsic::mips_ilvr_d:
   1912     return DAG.getNode(MipsISD::ILVR, DL, Op->getValueType(0),
   1913                        Op->getOperand(1), Op->getOperand(2));
   1914   case Intrinsic::mips_insert_b:
   1915   case Intrinsic::mips_insert_h:
   1916   case Intrinsic::mips_insert_w:
   1917   case Intrinsic::mips_insert_d:
   1918     return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Op), Op->getValueType(0),
   1919                        Op->getOperand(1), Op->getOperand(3), Op->getOperand(2));
   1920   case Intrinsic::mips_insve_b:
   1921   case Intrinsic::mips_insve_h:
   1922   case Intrinsic::mips_insve_w:
   1923   case Intrinsic::mips_insve_d:
   1924     return DAG.getNode(MipsISD::INSVE, DL, Op->getValueType(0),
   1925                        Op->getOperand(1), Op->getOperand(2), Op->getOperand(3),
   1926                        DAG.getConstant(0, MVT::i32));
   1927   case Intrinsic::mips_ldi_b:
   1928   case Intrinsic::mips_ldi_h:
   1929   case Intrinsic::mips_ldi_w:
   1930   case Intrinsic::mips_ldi_d:
   1931     return lowerMSASplatImm(Op, 1, DAG);
   1932   case Intrinsic::mips_lsa:
   1933   case Intrinsic::mips_dlsa: {
   1934     EVT ResTy = Op->getValueType(0);
   1935     return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
   1936                        DAG.getNode(ISD::SHL, SDLoc(Op), ResTy,
   1937                                    Op->getOperand(2), Op->getOperand(3)));
   1938   }
   1939   case Intrinsic::mips_maddv_b:
   1940   case Intrinsic::mips_maddv_h:
   1941   case Intrinsic::mips_maddv_w:
   1942   case Intrinsic::mips_maddv_d: {
   1943     EVT ResTy = Op->getValueType(0);
   1944     return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
   1945                        DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
   1946                                    Op->getOperand(2), Op->getOperand(3)));
   1947   }
   1948   case Intrinsic::mips_max_s_b:
   1949   case Intrinsic::mips_max_s_h:
   1950   case Intrinsic::mips_max_s_w:
   1951   case Intrinsic::mips_max_s_d:
   1952     return DAG.getNode(MipsISD::VSMAX, DL, Op->getValueType(0),
   1953                        Op->getOperand(1), Op->getOperand(2));
   1954   case Intrinsic::mips_max_u_b:
   1955   case Intrinsic::mips_max_u_h:
   1956   case Intrinsic::mips_max_u_w:
   1957   case Intrinsic::mips_max_u_d:
   1958     return DAG.getNode(MipsISD::VUMAX, DL, Op->getValueType(0),
   1959                        Op->getOperand(1), Op->getOperand(2));
   1960   case Intrinsic::mips_maxi_s_b:
   1961   case Intrinsic::mips_maxi_s_h:
   1962   case Intrinsic::mips_maxi_s_w:
   1963   case Intrinsic::mips_maxi_s_d:
   1964     return DAG.getNode(MipsISD::VSMAX, DL, Op->getValueType(0),
   1965                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
   1966   case Intrinsic::mips_maxi_u_b:
   1967   case Intrinsic::mips_maxi_u_h:
   1968   case Intrinsic::mips_maxi_u_w:
   1969   case Intrinsic::mips_maxi_u_d:
   1970     return DAG.getNode(MipsISD::VUMAX, DL, Op->getValueType(0),
   1971                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
   1972   case Intrinsic::mips_min_s_b:
   1973   case Intrinsic::mips_min_s_h:
   1974   case Intrinsic::mips_min_s_w:
   1975   case Intrinsic::mips_min_s_d:
   1976     return DAG.getNode(MipsISD::VSMIN, DL, Op->getValueType(0),
   1977                        Op->getOperand(1), Op->getOperand(2));
   1978   case Intrinsic::mips_min_u_b:
   1979   case Intrinsic::mips_min_u_h:
   1980   case Intrinsic::mips_min_u_w:
   1981   case Intrinsic::mips_min_u_d:
   1982     return DAG.getNode(MipsISD::VUMIN, DL, Op->getValueType(0),
   1983                        Op->getOperand(1), Op->getOperand(2));
   1984   case Intrinsic::mips_mini_s_b:
   1985   case Intrinsic::mips_mini_s_h:
   1986   case Intrinsic::mips_mini_s_w:
   1987   case Intrinsic::mips_mini_s_d:
   1988     return DAG.getNode(MipsISD::VSMIN, DL, Op->getValueType(0),
   1989                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
   1990   case Intrinsic::mips_mini_u_b:
   1991   case Intrinsic::mips_mini_u_h:
   1992   case Intrinsic::mips_mini_u_w:
   1993   case Intrinsic::mips_mini_u_d:
   1994     return DAG.getNode(MipsISD::VUMIN, DL, Op->getValueType(0),
   1995                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
   1996   case Intrinsic::mips_mod_s_b:
   1997   case Intrinsic::mips_mod_s_h:
   1998   case Intrinsic::mips_mod_s_w:
   1999   case Intrinsic::mips_mod_s_d:
   2000     return DAG.getNode(ISD::SREM, DL, Op->getValueType(0), Op->getOperand(1),
   2001                        Op->getOperand(2));
   2002   case Intrinsic::mips_mod_u_b:
   2003   case Intrinsic::mips_mod_u_h:
   2004   case Intrinsic::mips_mod_u_w:
   2005   case Intrinsic::mips_mod_u_d:
   2006     return DAG.getNode(ISD::UREM, DL, Op->getValueType(0), Op->getOperand(1),
   2007                        Op->getOperand(2));
   2008   case Intrinsic::mips_mulv_b:
   2009   case Intrinsic::mips_mulv_h:
   2010   case Intrinsic::mips_mulv_w:
   2011   case Intrinsic::mips_mulv_d:
   2012     return DAG.getNode(ISD::MUL, DL, Op->getValueType(0), Op->getOperand(1),
   2013                        Op->getOperand(2));
   2014   case Intrinsic::mips_msubv_b:
   2015   case Intrinsic::mips_msubv_h:
   2016   case Intrinsic::mips_msubv_w:
   2017   case Intrinsic::mips_msubv_d: {
   2018     EVT ResTy = Op->getValueType(0);
   2019     return DAG.getNode(ISD::SUB, SDLoc(Op), ResTy, Op->getOperand(1),
   2020                        DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
   2021                                    Op->getOperand(2), Op->getOperand(3)));
   2022   }
   2023   case Intrinsic::mips_nlzc_b:
   2024   case Intrinsic::mips_nlzc_h:
   2025   case Intrinsic::mips_nlzc_w:
   2026   case Intrinsic::mips_nlzc_d:
   2027     return DAG.getNode(ISD::CTLZ, DL, Op->getValueType(0), Op->getOperand(1));
   2028   case Intrinsic::mips_nor_v: {
   2029     SDValue Res = DAG.getNode(ISD::OR, DL, Op->getValueType(0),
   2030                               Op->getOperand(1), Op->getOperand(2));
   2031     return DAG.getNOT(DL, Res, Res->getValueType(0));
   2032   }
   2033   case Intrinsic::mips_nori_b: {
   2034     SDValue Res =  DAG.getNode(ISD::OR, DL, Op->getValueType(0),
   2035                                Op->getOperand(1),
   2036                                lowerMSASplatImm(Op, 2, DAG));
   2037     return DAG.getNOT(DL, Res, Res->getValueType(0));
   2038   }
   2039   case Intrinsic::mips_or_v:
   2040     return DAG.getNode(ISD::OR, DL, Op->getValueType(0), Op->getOperand(1),
   2041                        Op->getOperand(2));
   2042   case Intrinsic::mips_ori_b:
   2043     return DAG.getNode(ISD::OR, DL, Op->getValueType(0),
   2044                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
   2045   case Intrinsic::mips_pckev_b:
   2046   case Intrinsic::mips_pckev_h:
   2047   case Intrinsic::mips_pckev_w:
   2048   case Intrinsic::mips_pckev_d:
   2049     return DAG.getNode(MipsISD::PCKEV, DL, Op->getValueType(0),
   2050                        Op->getOperand(1), Op->getOperand(2));
   2051   case Intrinsic::mips_pckod_b:
   2052   case Intrinsic::mips_pckod_h:
   2053   case Intrinsic::mips_pckod_w:
   2054   case Intrinsic::mips_pckod_d:
   2055     return DAG.getNode(MipsISD::PCKOD, DL, Op->getValueType(0),
   2056                        Op->getOperand(1), Op->getOperand(2));
   2057   case Intrinsic::mips_pcnt_b:
   2058   case Intrinsic::mips_pcnt_h:
   2059   case Intrinsic::mips_pcnt_w:
   2060   case Intrinsic::mips_pcnt_d:
   2061     return DAG.getNode(ISD::CTPOP, DL, Op->getValueType(0), Op->getOperand(1));
   2062   case Intrinsic::mips_shf_b:
   2063   case Intrinsic::mips_shf_h:
   2064   case Intrinsic::mips_shf_w:
   2065     return DAG.getNode(MipsISD::SHF, DL, Op->getValueType(0),
   2066                        Op->getOperand(2), Op->getOperand(1));
   2067   case Intrinsic::mips_sll_b:
   2068   case Intrinsic::mips_sll_h:
   2069   case Intrinsic::mips_sll_w:
   2070   case Intrinsic::mips_sll_d:
   2071     return DAG.getNode(ISD::SHL, DL, Op->getValueType(0), Op->getOperand(1),
   2072                        Op->getOperand(2));
   2073   case Intrinsic::mips_slli_b:
   2074   case Intrinsic::mips_slli_h:
   2075   case Intrinsic::mips_slli_w:
   2076   case Intrinsic::mips_slli_d:
   2077     return DAG.getNode(ISD::SHL, DL, Op->getValueType(0),
   2078                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
   2079   case Intrinsic::mips_splat_b:
   2080   case Intrinsic::mips_splat_h:
   2081   case Intrinsic::mips_splat_w:
   2082   case Intrinsic::mips_splat_d:
   2083     // We can't lower via VECTOR_SHUFFLE because it requires constant shuffle
   2084     // masks, nor can we lower via BUILD_VECTOR & EXTRACT_VECTOR_ELT because
   2085     // EXTRACT_VECTOR_ELT can't extract i64's on MIPS32.
   2086     // Instead we lower to MipsISD::VSHF and match from there.
   2087     return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
   2088                        lowerMSASplatZExt(Op, 2, DAG), Op->getOperand(1),
   2089                        Op->getOperand(1));
   2090   case Intrinsic::mips_splati_b:
   2091   case Intrinsic::mips_splati_h:
   2092   case Intrinsic::mips_splati_w:
   2093   case Intrinsic::mips_splati_d:
   2094     return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
   2095                        lowerMSASplatImm(Op, 2, DAG), Op->getOperand(1),
   2096                        Op->getOperand(1));
   2097   case Intrinsic::mips_sra_b:
   2098   case Intrinsic::mips_sra_h:
   2099   case Intrinsic::mips_sra_w:
   2100   case Intrinsic::mips_sra_d:
   2101     return DAG.getNode(ISD::SRA, DL, Op->getValueType(0), Op->getOperand(1),
   2102                        Op->getOperand(2));
   2103   case Intrinsic::mips_srai_b:
   2104   case Intrinsic::mips_srai_h:
   2105   case Intrinsic::mips_srai_w:
   2106   case Intrinsic::mips_srai_d:
   2107     return DAG.getNode(ISD::SRA, DL, Op->getValueType(0),
   2108                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
   2109   case Intrinsic::mips_srl_b:
   2110   case Intrinsic::mips_srl_h:
   2111   case Intrinsic::mips_srl_w:
   2112   case Intrinsic::mips_srl_d:
   2113     return DAG.getNode(ISD::SRL, DL, Op->getValueType(0), Op->getOperand(1),
   2114                        Op->getOperand(2));
   2115   case Intrinsic::mips_srli_b:
   2116   case Intrinsic::mips_srli_h:
   2117   case Intrinsic::mips_srli_w:
   2118   case Intrinsic::mips_srli_d:
   2119     return DAG.getNode(ISD::SRL, DL, Op->getValueType(0),
   2120                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
   2121   case Intrinsic::mips_subv_b:
   2122   case Intrinsic::mips_subv_h:
   2123   case Intrinsic::mips_subv_w:
   2124   case Intrinsic::mips_subv_d:
   2125     return DAG.getNode(ISD::SUB, DL, Op->getValueType(0), Op->getOperand(1),
   2126                        Op->getOperand(2));
   2127   case Intrinsic::mips_subvi_b:
   2128   case Intrinsic::mips_subvi_h:
   2129   case Intrinsic::mips_subvi_w:
   2130   case Intrinsic::mips_subvi_d:
   2131     return DAG.getNode(ISD::SUB, DL, Op->getValueType(0),
   2132                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
   2133   case Intrinsic::mips_vshf_b:
   2134   case Intrinsic::mips_vshf_h:
   2135   case Intrinsic::mips_vshf_w:
   2136   case Intrinsic::mips_vshf_d:
   2137     return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
   2138                        Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
   2139   case Intrinsic::mips_xor_v:
   2140     return DAG.getNode(ISD::XOR, DL, Op->getValueType(0), Op->getOperand(1),
   2141                        Op->getOperand(2));
   2142   case Intrinsic::mips_xori_b:
   2143     return DAG.getNode(ISD::XOR, DL, Op->getValueType(0),
   2144                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
   2145   }
   2146 }
   2147 
   2148 static SDValue lowerMSALoadIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr) {
   2149   SDLoc DL(Op);
   2150   SDValue ChainIn = Op->getOperand(0);
   2151   SDValue Address = Op->getOperand(2);
   2152   SDValue Offset  = Op->getOperand(3);
   2153   EVT ResTy = Op->getValueType(0);
   2154   EVT PtrTy = Address->getValueType(0);
   2155 
   2156   Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
   2157 
   2158   return DAG.getLoad(ResTy, DL, ChainIn, Address, MachinePointerInfo(), false,
   2159                      false, false, 16);
   2160 }
   2161 
   2162 SDValue MipsSETargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
   2163                                                      SelectionDAG &DAG) const {
   2164   unsigned Intr = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
   2165   switch (Intr) {
   2166   default:
   2167     return SDValue();
   2168   case Intrinsic::mips_extp:
   2169     return lowerDSPIntr(Op, DAG, MipsISD::EXTP);
   2170   case Intrinsic::mips_extpdp:
   2171     return lowerDSPIntr(Op, DAG, MipsISD::EXTPDP);
   2172   case Intrinsic::mips_extr_w:
   2173     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_W);
   2174   case Intrinsic::mips_extr_r_w:
   2175     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_R_W);
   2176   case Intrinsic::mips_extr_rs_w:
   2177     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_RS_W);
   2178   case Intrinsic::mips_extr_s_h:
   2179     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_S_H);
   2180   case Intrinsic::mips_mthlip:
   2181     return lowerDSPIntr(Op, DAG, MipsISD::MTHLIP);
   2182   case Intrinsic::mips_mulsaq_s_w_ph:
   2183     return lowerDSPIntr(Op, DAG, MipsISD::MULSAQ_S_W_PH);
   2184   case Intrinsic::mips_maq_s_w_phl:
   2185     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHL);
   2186   case Intrinsic::mips_maq_s_w_phr:
   2187     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHR);
   2188   case Intrinsic::mips_maq_sa_w_phl:
   2189     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHL);
   2190   case Intrinsic::mips_maq_sa_w_phr:
   2191     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHR);
   2192   case Intrinsic::mips_dpaq_s_w_ph:
   2193     return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_S_W_PH);
   2194   case Intrinsic::mips_dpsq_s_w_ph:
   2195     return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_S_W_PH);
   2196   case Intrinsic::mips_dpaq_sa_l_w:
   2197     return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_SA_L_W);
   2198   case Intrinsic::mips_dpsq_sa_l_w:
   2199     return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_SA_L_W);
   2200   case Intrinsic::mips_dpaqx_s_w_ph:
   2201     return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_S_W_PH);
   2202   case Intrinsic::mips_dpaqx_sa_w_ph:
   2203     return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_SA_W_PH);
   2204   case Intrinsic::mips_dpsqx_s_w_ph:
   2205     return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_S_W_PH);
   2206   case Intrinsic::mips_dpsqx_sa_w_ph:
   2207     return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_SA_W_PH);
   2208   case Intrinsic::mips_ld_b:
   2209   case Intrinsic::mips_ld_h:
   2210   case Intrinsic::mips_ld_w:
   2211   case Intrinsic::mips_ld_d:
   2212    return lowerMSALoadIntr(Op, DAG, Intr);
   2213   }
   2214 }
   2215 
   2216 static SDValue lowerMSAStoreIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr) {
   2217   SDLoc DL(Op);
   2218   SDValue ChainIn = Op->getOperand(0);
   2219   SDValue Value   = Op->getOperand(2);
   2220   SDValue Address = Op->getOperand(3);
   2221   SDValue Offset  = Op->getOperand(4);
   2222   EVT PtrTy = Address->getValueType(0);
   2223 
   2224   Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
   2225 
   2226   return DAG.getStore(ChainIn, DL, Value, Address, MachinePointerInfo(), false,
   2227                       false, 16);
   2228 }
   2229 
   2230 SDValue MipsSETargetLowering::lowerINTRINSIC_VOID(SDValue Op,
   2231                                                   SelectionDAG &DAG) const {
   2232   unsigned Intr = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
   2233   switch (Intr) {
   2234   default:
   2235     return SDValue();
   2236   case Intrinsic::mips_st_b:
   2237   case Intrinsic::mips_st_h:
   2238   case Intrinsic::mips_st_w:
   2239   case Intrinsic::mips_st_d:
   2240     return lowerMSAStoreIntr(Op, DAG, Intr);
   2241   }
   2242 }
   2243 
   2244 /// \brief Check if the given BuildVectorSDNode is a splat.
   2245 /// This method currently relies on DAG nodes being reused when equivalent,
   2246 /// so it's possible for this to return false even when isConstantSplat returns
   2247 /// true.
   2248 static bool isSplatVector(const BuildVectorSDNode *N) {
   2249   unsigned int nOps = N->getNumOperands();
   2250   assert(nOps > 1 && "isSplatVector has 0 or 1 sized build vector");
   2251 
   2252   SDValue Operand0 = N->getOperand(0);
   2253 
   2254   for (unsigned int i = 1; i < nOps; ++i) {
   2255     if (N->getOperand(i) != Operand0)
   2256       return false;
   2257   }
   2258 
   2259   return true;
   2260 }
   2261 
   2262 // Lower ISD::EXTRACT_VECTOR_ELT into MipsISD::VEXTRACT_SEXT_ELT.
   2263 //
   2264 // The non-value bits resulting from ISD::EXTRACT_VECTOR_ELT are undefined. We
   2265 // choose to sign-extend but we could have equally chosen zero-extend. The
   2266 // DAGCombiner will fold any sign/zero extension of the ISD::EXTRACT_VECTOR_ELT
   2267 // result into this node later (possibly changing it to a zero-extend in the
   2268 // process).
   2269 SDValue MipsSETargetLowering::
   2270 lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
   2271   SDLoc DL(Op);
   2272   EVT ResTy = Op->getValueType(0);
   2273   SDValue Op0 = Op->getOperand(0);
   2274   EVT VecTy = Op0->getValueType(0);
   2275 
   2276   if (!VecTy.is128BitVector())
   2277     return SDValue();
   2278 
   2279   if (ResTy.isInteger()) {
   2280     SDValue Op1 = Op->getOperand(1);
   2281     EVT EltTy = VecTy.getVectorElementType();
   2282     return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, DL, ResTy, Op0, Op1,
   2283                        DAG.getValueType(EltTy));
   2284   }
   2285 
   2286   return Op;
   2287 }
   2288 
   2289 static bool isConstantOrUndef(const SDValue Op) {
   2290   if (Op->getOpcode() == ISD::UNDEF)
   2291     return true;
   2292   if (isa<ConstantSDNode>(Op))
   2293     return true;
   2294   if (isa<ConstantFPSDNode>(Op))
   2295     return true;
   2296   return false;
   2297 }
   2298 
   2299 static bool isConstantOrUndefBUILD_VECTOR(const BuildVectorSDNode *Op) {
   2300   for (unsigned i = 0; i < Op->getNumOperands(); ++i)
   2301     if (isConstantOrUndef(Op->getOperand(i)))
   2302       return true;
   2303   return false;
   2304 }
   2305 
   2306 // Lowers ISD::BUILD_VECTOR into appropriate SelectionDAG nodes for the
   2307 // backend.
   2308 //
   2309 // Lowers according to the following rules:
   2310 // - Constant splats are legal as-is as long as the SplatBitSize is a power of
   2311 //   2 less than or equal to 64 and the value fits into a signed 10-bit
   2312 //   immediate
   2313 // - Constant splats are lowered to bitconverted BUILD_VECTORs if SplatBitSize
   2314 //   is a power of 2 less than or equal to 64 and the value does not fit into a
   2315 //   signed 10-bit immediate
   2316 // - Non-constant splats are legal as-is.
   2317 // - Non-constant non-splats are lowered to sequences of INSERT_VECTOR_ELT.
   2318 // - All others are illegal and must be expanded.
   2319 SDValue MipsSETargetLowering::lowerBUILD_VECTOR(SDValue Op,
   2320                                                 SelectionDAG &DAG) const {
   2321   BuildVectorSDNode *Node = cast<BuildVectorSDNode>(Op);
   2322   EVT ResTy = Op->getValueType(0);
   2323   SDLoc DL(Op);
   2324   APInt SplatValue, SplatUndef;
   2325   unsigned SplatBitSize;
   2326   bool HasAnyUndefs;
   2327 
   2328   if (!Subtarget.hasMSA() || !ResTy.is128BitVector())
   2329     return SDValue();
   2330 
   2331   if (Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
   2332                             HasAnyUndefs, 8,
   2333                             !Subtarget.isLittle()) && SplatBitSize <= 64) {
   2334     // We can only cope with 8, 16, 32, or 64-bit elements
   2335     if (SplatBitSize != 8 && SplatBitSize != 16 && SplatBitSize != 32 &&
   2336         SplatBitSize != 64)
   2337       return SDValue();
   2338 
   2339     // If the value fits into a simm10 then we can use ldi.[bhwd]
   2340     // However, if it isn't an integer type we will have to bitcast from an
   2341     // integer type first. Also, if there are any undefs, we must lower them
   2342     // to defined values first.
   2343     if (ResTy.isInteger() && !HasAnyUndefs && SplatValue.isSignedIntN(10))
   2344       return Op;
   2345 
   2346     EVT ViaVecTy;
   2347 
   2348     switch (SplatBitSize) {
   2349     default:
   2350       return SDValue();
   2351     case 8:
   2352       ViaVecTy = MVT::v16i8;
   2353       break;
   2354     case 16:
   2355       ViaVecTy = MVT::v8i16;
   2356       break;
   2357     case 32:
   2358       ViaVecTy = MVT::v4i32;
   2359       break;
   2360     case 64:
   2361       // There's no fill.d to fall back on for 64-bit values
   2362       return SDValue();
   2363     }
   2364 
   2365     // SelectionDAG::getConstant will promote SplatValue appropriately.
   2366     SDValue Result = DAG.getConstant(SplatValue, ViaVecTy);
   2367 
   2368     // Bitcast to the type we originally wanted
   2369     if (ViaVecTy != ResTy)
   2370       Result = DAG.getNode(ISD::BITCAST, SDLoc(Node), ResTy, Result);
   2371 
   2372     return Result;
   2373   } else if (isSplatVector(Node))
   2374     return Op;
   2375   else if (!isConstantOrUndefBUILD_VECTOR(Node)) {
   2376     // Use INSERT_VECTOR_ELT operations rather than expand to stores.
   2377     // The resulting code is the same length as the expansion, but it doesn't
   2378     // use memory operations
   2379     EVT ResTy = Node->getValueType(0);
   2380 
   2381     assert(ResTy.isVector());
   2382 
   2383     unsigned NumElts = ResTy.getVectorNumElements();
   2384     SDValue Vector = DAG.getUNDEF(ResTy);
   2385     for (unsigned i = 0; i < NumElts; ++i) {
   2386       Vector = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ResTy, Vector,
   2387                            Node->getOperand(i),
   2388                            DAG.getConstant(i, MVT::i32));
   2389     }
   2390     return Vector;
   2391   }
   2392 
   2393   return SDValue();
   2394 }
   2395 
   2396 // Lower VECTOR_SHUFFLE into SHF (if possible).
   2397 //
   2398 // SHF splits the vector into blocks of four elements, then shuffles these
   2399 // elements according to a <4 x i2> constant (encoded as an integer immediate).
   2400 //
   2401 // It is therefore possible to lower into SHF when the mask takes the form:
   2402 //   <a, b, c, d, a+4, b+4, c+4, d+4, a+8, b+8, c+8, d+8, ...>
   2403 // When undef's appear they are treated as if they were whatever value is
   2404 // necessary in order to fit the above form.
   2405 //
   2406 // For example:
   2407 //   %2 = shufflevector <8 x i16> %0, <8 x i16> undef,
   2408 //                      <8 x i32> <i32 3, i32 2, i32 1, i32 0,
   2409 //                                 i32 7, i32 6, i32 5, i32 4>
   2410 // is lowered to:
   2411 //   (SHF_H $w0, $w1, 27)
   2412 // where the 27 comes from:
   2413 //   3 + (2 << 2) + (1 << 4) + (0 << 6)
   2414 static SDValue lowerVECTOR_SHUFFLE_SHF(SDValue Op, EVT ResTy,
   2415                                        SmallVector<int, 16> Indices,
   2416                                        SelectionDAG &DAG) {
   2417   int SHFIndices[4] = { -1, -1, -1, -1 };
   2418 
   2419   if (Indices.size() < 4)
   2420     return SDValue();
   2421 
   2422   for (unsigned i = 0; i < 4; ++i) {
   2423     for (unsigned j = i; j < Indices.size(); j += 4) {
   2424       int Idx = Indices[j];
   2425 
   2426       // Convert from vector index to 4-element subvector index
   2427       // If an index refers to an element outside of the subvector then give up
   2428       if (Idx != -1) {
   2429         Idx -= 4 * (j / 4);
   2430         if (Idx < 0 || Idx >= 4)
   2431           return SDValue();
   2432       }
   2433 
   2434       // If the mask has an undef, replace it with the current index.
   2435       // Note that it might still be undef if the current index is also undef
   2436       if (SHFIndices[i] == -1)
   2437         SHFIndices[i] = Idx;
   2438 
   2439       // Check that non-undef values are the same as in the mask. If they
   2440       // aren't then give up
   2441       if (!(Idx == -1 || Idx == SHFIndices[i]))
   2442         return SDValue();
   2443     }
   2444   }
   2445 
   2446   // Calculate the immediate. Replace any remaining undefs with zero
   2447   APInt Imm(32, 0);
   2448   for (int i = 3; i >= 0; --i) {
   2449     int Idx = SHFIndices[i];
   2450 
   2451     if (Idx == -1)
   2452       Idx = 0;
   2453 
   2454     Imm <<= 2;
   2455     Imm |= Idx & 0x3;
   2456   }
   2457 
   2458   return DAG.getNode(MipsISD::SHF, SDLoc(Op), ResTy,
   2459                      DAG.getConstant(Imm, MVT::i32), Op->getOperand(0));
   2460 }
   2461 
   2462 // Lower VECTOR_SHUFFLE into ILVEV (if possible).
   2463 //
   2464 // ILVEV interleaves the even elements from each vector.
   2465 //
   2466 // It is possible to lower into ILVEV when the mask takes the form:
   2467 //   <0, n, 2, n+2, 4, n+4, ...>
   2468 // where n is the number of elements in the vector.
   2469 //
   2470 // When undef's appear in the mask they are treated as if they were whatever
   2471 // value is necessary in order to fit the above form.
   2472 static SDValue lowerVECTOR_SHUFFLE_ILVEV(SDValue Op, EVT ResTy,
   2473                                          SmallVector<int, 16> Indices,
   2474                                          SelectionDAG &DAG) {
   2475   assert ((Indices.size() % 2) == 0);
   2476   int WsIdx = 0;
   2477   int WtIdx = ResTy.getVectorNumElements();
   2478 
   2479   for (unsigned i = 0; i < Indices.size(); i += 2) {
   2480     if (Indices[i] != -1 && Indices[i] != WsIdx)
   2481       return SDValue();
   2482     if (Indices[i+1] != -1 && Indices[i+1] != WtIdx)
   2483       return SDValue();
   2484     WsIdx += 2;
   2485     WtIdx += 2;
   2486   }
   2487 
   2488   return DAG.getNode(MipsISD::ILVEV, SDLoc(Op), ResTy, Op->getOperand(0),
   2489                      Op->getOperand(1));
   2490 }
   2491 
   2492 // Lower VECTOR_SHUFFLE into ILVOD (if possible).
   2493 //
   2494 // ILVOD interleaves the odd elements from each vector.
   2495 //
   2496 // It is possible to lower into ILVOD when the mask takes the form:
   2497 //   <1, n+1, 3, n+3, 5, n+5, ...>
   2498 // where n is the number of elements in the vector.
   2499 //
   2500 // When undef's appear in the mask they are treated as if they were whatever
   2501 // value is necessary in order to fit the above form.
   2502 static SDValue lowerVECTOR_SHUFFLE_ILVOD(SDValue Op, EVT ResTy,
   2503                                          SmallVector<int, 16> Indices,
   2504                                          SelectionDAG &DAG) {
   2505   assert ((Indices.size() % 2) == 0);
   2506   int WsIdx = 1;
   2507   int WtIdx = ResTy.getVectorNumElements() + 1;
   2508 
   2509   for (unsigned i = 0; i < Indices.size(); i += 2) {
   2510     if (Indices[i] != -1 && Indices[i] != WsIdx)
   2511       return SDValue();
   2512     if (Indices[i+1] != -1 && Indices[i+1] != WtIdx)
   2513       return SDValue();
   2514     WsIdx += 2;
   2515     WtIdx += 2;
   2516   }
   2517 
   2518   return DAG.getNode(MipsISD::ILVOD, SDLoc(Op), ResTy, Op->getOperand(0),
   2519                      Op->getOperand(1));
   2520 }
   2521 
   2522 // Lower VECTOR_SHUFFLE into ILVL (if possible).
   2523 //
   2524 // ILVL interleaves consecutive elements from the left half of each vector.
   2525 //
   2526 // It is possible to lower into ILVL when the mask takes the form:
   2527 //   <0, n, 1, n+1, 2, n+2, ...>
   2528 // where n is the number of elements in the vector.
   2529 //
   2530 // When undef's appear in the mask they are treated as if they were whatever
   2531 // value is necessary in order to fit the above form.
   2532 static SDValue lowerVECTOR_SHUFFLE_ILVL(SDValue Op, EVT ResTy,
   2533                                         SmallVector<int, 16> Indices,
   2534                                         SelectionDAG &DAG) {
   2535   assert ((Indices.size() % 2) == 0);
   2536   int WsIdx = 0;
   2537   int WtIdx = ResTy.getVectorNumElements();
   2538 
   2539   for (unsigned i = 0; i < Indices.size(); i += 2) {
   2540     if (Indices[i] != -1 && Indices[i] != WsIdx)
   2541       return SDValue();
   2542     if (Indices[i+1] != -1 && Indices[i+1] != WtIdx)
   2543       return SDValue();
   2544     WsIdx ++;
   2545     WtIdx ++;
   2546   }
   2547 
   2548   return DAG.getNode(MipsISD::ILVL, SDLoc(Op), ResTy, Op->getOperand(0),
   2549                      Op->getOperand(1));
   2550 }
   2551 
   2552 // Lower VECTOR_SHUFFLE into ILVR (if possible).
   2553 //
   2554 // ILVR interleaves consecutive elements from the right half of each vector.
   2555 //
   2556 // It is possible to lower into ILVR when the mask takes the form:
   2557 //   <x, n+x, x+1, n+x+1, x+2, n+x+2, ...>
   2558 // where n is the number of elements in the vector and x is half n.
   2559 //
   2560 // When undef's appear in the mask they are treated as if they were whatever
   2561 // value is necessary in order to fit the above form.
   2562 static SDValue lowerVECTOR_SHUFFLE_ILVR(SDValue Op, EVT ResTy,
   2563                                         SmallVector<int, 16> Indices,
   2564                                         SelectionDAG &DAG) {
   2565   assert ((Indices.size() % 2) == 0);
   2566   unsigned NumElts = ResTy.getVectorNumElements();
   2567   int WsIdx = NumElts / 2;
   2568   int WtIdx = NumElts + NumElts / 2;
   2569 
   2570   for (unsigned i = 0; i < Indices.size(); i += 2) {
   2571     if (Indices[i] != -1 && Indices[i] != WsIdx)
   2572       return SDValue();
   2573     if (Indices[i+1] != -1 && Indices[i+1] != WtIdx)
   2574       return SDValue();
   2575     WsIdx ++;
   2576     WtIdx ++;
   2577   }
   2578 
   2579   return DAG.getNode(MipsISD::ILVR, SDLoc(Op), ResTy, Op->getOperand(0),
   2580                      Op->getOperand(1));
   2581 }
   2582 
   2583 // Lower VECTOR_SHUFFLE into PCKEV (if possible).
   2584 //
   2585 // PCKEV copies the even elements of each vector into the result vector.
   2586 //
   2587 // It is possible to lower into PCKEV when the mask takes the form:
   2588 //   <0, 2, 4, ..., n, n+2, n+4, ...>
   2589 // where n is the number of elements in the vector.
   2590 //
   2591 // When undef's appear in the mask they are treated as if they were whatever
   2592 // value is necessary in order to fit the above form.
   2593 static SDValue lowerVECTOR_SHUFFLE_PCKEV(SDValue Op, EVT ResTy,
   2594                                          SmallVector<int, 16> Indices,
   2595                                          SelectionDAG &DAG) {
   2596   assert ((Indices.size() % 2) == 0);
   2597   int Idx = 0;
   2598 
   2599   for (unsigned i = 0; i < Indices.size(); ++i) {
   2600     if (Indices[i] != -1 && Indices[i] != Idx)
   2601       return SDValue();
   2602     Idx += 2;
   2603   }
   2604 
   2605   return DAG.getNode(MipsISD::PCKEV, SDLoc(Op), ResTy, Op->getOperand(0),
   2606                      Op->getOperand(1));
   2607 }
   2608 
   2609 // Lower VECTOR_SHUFFLE into PCKOD (if possible).
   2610 //
   2611 // PCKOD copies the odd elements of each vector into the result vector.
   2612 //
   2613 // It is possible to lower into PCKOD when the mask takes the form:
   2614 //   <1, 3, 5, ..., n+1, n+3, n+5, ...>
   2615 // where n is the number of elements in the vector.
   2616 //
   2617 // When undef's appear in the mask they are treated as if they were whatever
   2618 // value is necessary in order to fit the above form.
   2619 static SDValue lowerVECTOR_SHUFFLE_PCKOD(SDValue Op, EVT ResTy,
   2620                                          SmallVector<int, 16> Indices,
   2621                                          SelectionDAG &DAG) {
   2622   assert ((Indices.size() % 2) == 0);
   2623   int Idx = 1;
   2624 
   2625   for (unsigned i = 0; i < Indices.size(); ++i) {
   2626     if (Indices[i] != -1 && Indices[i] != Idx)
   2627       return SDValue();
   2628     Idx += 2;
   2629   }
   2630 
   2631   return DAG.getNode(MipsISD::PCKOD, SDLoc(Op), ResTy, Op->getOperand(0),
   2632                      Op->getOperand(1));
   2633 }
   2634 
   2635 // Lower VECTOR_SHUFFLE into VSHF.
   2636 //
   2637 // This mostly consists of converting the shuffle indices in Indices into a
   2638 // BUILD_VECTOR and adding it as an operand to the resulting VSHF. There is
   2639 // also code to eliminate unused operands of the VECTOR_SHUFFLE. For example,
   2640 // if the type is v8i16 and all the indices are less than 8 then the second
   2641 // operand is unused and can be replaced with anything. We choose to replace it
   2642 // with the used operand since this reduces the number of instructions overall.
   2643 static SDValue lowerVECTOR_SHUFFLE_VSHF(SDValue Op, EVT ResTy,
   2644                                         SmallVector<int, 16> Indices,
   2645                                         SelectionDAG &DAG) {
   2646   SmallVector<SDValue, 16> Ops;
   2647   SDValue Op0;
   2648   SDValue Op1;
   2649   EVT MaskVecTy = ResTy.changeVectorElementTypeToInteger();
   2650   EVT MaskEltTy = MaskVecTy.getVectorElementType();
   2651   bool Using1stVec = false;
   2652   bool Using2ndVec = false;
   2653   SDLoc DL(Op);
   2654   int ResTyNumElts = ResTy.getVectorNumElements();
   2655 
   2656   for (int i = 0; i < ResTyNumElts; ++i) {
   2657     // Idx == -1 means UNDEF
   2658     int Idx = Indices[i];
   2659 
   2660     if (0 <= Idx && Idx < ResTyNumElts)
   2661       Using1stVec = true;
   2662     if (ResTyNumElts <= Idx && Idx < ResTyNumElts * 2)
   2663       Using2ndVec = true;
   2664   }
   2665 
   2666   for (SmallVector<int, 16>::iterator I = Indices.begin(); I != Indices.end();
   2667        ++I)
   2668     Ops.push_back(DAG.getTargetConstant(*I, MaskEltTy));
   2669 
   2670   SDValue MaskVec = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskVecTy, Ops);
   2671 
   2672   if (Using1stVec && Using2ndVec) {
   2673     Op0 = Op->getOperand(0);
   2674     Op1 = Op->getOperand(1);
   2675   } else if (Using1stVec)
   2676     Op0 = Op1 = Op->getOperand(0);
   2677   else if (Using2ndVec)
   2678     Op0 = Op1 = Op->getOperand(1);
   2679   else
   2680     llvm_unreachable("shuffle vector mask references neither vector operand?");
   2681 
   2682   // VECTOR_SHUFFLE concatenates the vectors in an vectorwise fashion.
   2683   // <0b00, 0b01> + <0b10, 0b11> -> <0b00, 0b01, 0b10, 0b11>
   2684   // VSHF concatenates the vectors in a bitwise fashion:
   2685   // <0b00, 0b01> + <0b10, 0b11> ->
   2686   // 0b0100       + 0b1110       -> 0b01001110
   2687   //                                <0b10, 0b11, 0b00, 0b01>
   2688   // We must therefore swap the operands to get the correct result.
   2689   return DAG.getNode(MipsISD::VSHF, DL, ResTy, MaskVec, Op1, Op0);
   2690 }
   2691 
   2692 // Lower VECTOR_SHUFFLE into one of a number of instructions depending on the
   2693 // indices in the shuffle.
   2694 SDValue MipsSETargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
   2695                                                   SelectionDAG &DAG) const {
   2696   ShuffleVectorSDNode *Node = cast<ShuffleVectorSDNode>(Op);
   2697   EVT ResTy = Op->getValueType(0);
   2698 
   2699   if (!ResTy.is128BitVector())
   2700     return SDValue();
   2701 
   2702   int ResTyNumElts = ResTy.getVectorNumElements();
   2703   SmallVector<int, 16> Indices;
   2704 
   2705   for (int i = 0; i < ResTyNumElts; ++i)
   2706     Indices.push_back(Node->getMaskElt(i));
   2707 
   2708   SDValue Result = lowerVECTOR_SHUFFLE_SHF(Op, ResTy, Indices, DAG);
   2709   if (Result.getNode())
   2710     return Result;
   2711   Result = lowerVECTOR_SHUFFLE_ILVEV(Op, ResTy, Indices, DAG);
   2712   if (Result.getNode())
   2713     return Result;
   2714   Result = lowerVECTOR_SHUFFLE_ILVOD(Op, ResTy, Indices, DAG);
   2715   if (Result.getNode())
   2716     return Result;
   2717   Result = lowerVECTOR_SHUFFLE_ILVL(Op, ResTy, Indices, DAG);
   2718   if (Result.getNode())
   2719     return Result;
   2720   Result = lowerVECTOR_SHUFFLE_ILVR(Op, ResTy, Indices, DAG);
   2721   if (Result.getNode())
   2722     return Result;
   2723   Result = lowerVECTOR_SHUFFLE_PCKEV(Op, ResTy, Indices, DAG);
   2724   if (Result.getNode())
   2725     return Result;
   2726   Result = lowerVECTOR_SHUFFLE_PCKOD(Op, ResTy, Indices, DAG);
   2727   if (Result.getNode())
   2728     return Result;
   2729   return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, DAG);
   2730 }
   2731 
   2732 MachineBasicBlock * MipsSETargetLowering::
   2733 emitBPOSGE32(MachineInstr *MI, MachineBasicBlock *BB) const{
   2734   // $bb:
   2735   //  bposge32_pseudo $vr0
   2736   //  =>
   2737   // $bb:
   2738   //  bposge32 $tbb
   2739   // $fbb:
   2740   //  li $vr2, 0
   2741   //  b $sink
   2742   // $tbb:
   2743   //  li $vr1, 1
   2744   // $sink:
   2745   //  $vr0 = phi($vr2, $fbb, $vr1, $tbb)
   2746 
   2747   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
   2748   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   2749   const TargetRegisterClass *RC = &Mips::GPR32RegClass;
   2750   DebugLoc DL = MI->getDebugLoc();
   2751   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   2752   MachineFunction::iterator It = std::next(MachineFunction::iterator(BB));
   2753   MachineFunction *F = BB->getParent();
   2754   MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
   2755   MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
   2756   MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
   2757   F->insert(It, FBB);
   2758   F->insert(It, TBB);
   2759   F->insert(It, Sink);
   2760 
   2761   // Transfer the remainder of BB and its successor edges to Sink.
   2762   Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
   2763                BB->end());
   2764   Sink->transferSuccessorsAndUpdatePHIs(BB);
   2765 
   2766   // Add successors.
   2767   BB->addSuccessor(FBB);
   2768   BB->addSuccessor(TBB);
   2769   FBB->addSuccessor(Sink);
   2770   TBB->addSuccessor(Sink);
   2771 
   2772   // Insert the real bposge32 instruction to $BB.
   2773   BuildMI(BB, DL, TII->get(Mips::BPOSGE32)).addMBB(TBB);
   2774 
   2775   // Fill $FBB.
   2776   unsigned VR2 = RegInfo.createVirtualRegister(RC);
   2777   BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), VR2)
   2778     .addReg(Mips::ZERO).addImm(0);
   2779   BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
   2780 
   2781   // Fill $TBB.
   2782   unsigned VR1 = RegInfo.createVirtualRegister(RC);
   2783   BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), VR1)
   2784     .addReg(Mips::ZERO).addImm(1);
   2785 
   2786   // Insert phi function to $Sink.
   2787   BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
   2788           MI->getOperand(0).getReg())
   2789     .addReg(VR2).addMBB(FBB).addReg(VR1).addMBB(TBB);
   2790 
   2791   MI->eraseFromParent();   // The pseudo instruction is gone now.
   2792   return Sink;
   2793 }
   2794 
   2795 MachineBasicBlock * MipsSETargetLowering::
   2796 emitMSACBranchPseudo(MachineInstr *MI, MachineBasicBlock *BB,
   2797                      unsigned BranchOp) const{
   2798   // $bb:
   2799   //  vany_nonzero $rd, $ws
   2800   //  =>
   2801   // $bb:
   2802   //  bnz.b $ws, $tbb
   2803   //  b $fbb
   2804   // $fbb:
   2805   //  li $rd1, 0
   2806   //  b $sink
   2807   // $tbb:
   2808   //  li $rd2, 1
   2809   // $sink:
   2810   //  $rd = phi($rd1, $fbb, $rd2, $tbb)
   2811 
   2812   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
   2813   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   2814   const TargetRegisterClass *RC = &Mips::GPR32RegClass;
   2815   DebugLoc DL = MI->getDebugLoc();
   2816   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   2817   MachineFunction::iterator It = std::next(MachineFunction::iterator(BB));
   2818   MachineFunction *F = BB->getParent();
   2819   MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
   2820   MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
   2821   MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
   2822   F->insert(It, FBB);
   2823   F->insert(It, TBB);
   2824   F->insert(It, Sink);
   2825 
   2826   // Transfer the remainder of BB and its successor edges to Sink.
   2827   Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
   2828                BB->end());
   2829   Sink->transferSuccessorsAndUpdatePHIs(BB);
   2830 
   2831   // Add successors.
   2832   BB->addSuccessor(FBB);
   2833   BB->addSuccessor(TBB);
   2834   FBB->addSuccessor(Sink);
   2835   TBB->addSuccessor(Sink);
   2836 
   2837   // Insert the real bnz.b instruction to $BB.
   2838   BuildMI(BB, DL, TII->get(BranchOp))
   2839     .addReg(MI->getOperand(1).getReg())
   2840     .addMBB(TBB);
   2841 
   2842   // Fill $FBB.
   2843   unsigned RD1 = RegInfo.createVirtualRegister(RC);
   2844   BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), RD1)
   2845     .addReg(Mips::ZERO).addImm(0);
   2846   BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
   2847 
   2848   // Fill $TBB.
   2849   unsigned RD2 = RegInfo.createVirtualRegister(RC);
   2850   BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), RD2)
   2851     .addReg(Mips::ZERO).addImm(1);
   2852 
   2853   // Insert phi function to $Sink.
   2854   BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
   2855           MI->getOperand(0).getReg())
   2856     .addReg(RD1).addMBB(FBB).addReg(RD2).addMBB(TBB);
   2857 
   2858   MI->eraseFromParent();   // The pseudo instruction is gone now.
   2859   return Sink;
   2860 }
   2861 
   2862 // Emit the COPY_FW pseudo instruction.
   2863 //
   2864 // copy_fw_pseudo $fd, $ws, n
   2865 // =>
   2866 // copy_u_w $rt, $ws, $n
   2867 // mtc1     $rt, $fd
   2868 //
   2869 // When n is zero, the equivalent operation can be performed with (potentially)
   2870 // zero instructions due to register overlaps. This optimization is never valid
   2871 // for lane 1 because it would require FR=0 mode which isn't supported by MSA.
   2872 MachineBasicBlock * MipsSETargetLowering::
   2873 emitCOPY_FW(MachineInstr *MI, MachineBasicBlock *BB) const{
   2874   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   2875   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
   2876   DebugLoc DL = MI->getDebugLoc();
   2877   unsigned Fd = MI->getOperand(0).getReg();
   2878   unsigned Ws = MI->getOperand(1).getReg();
   2879   unsigned Lane = MI->getOperand(2).getImm();
   2880 
   2881   if (Lane == 0) {
   2882     unsigned Wt = Ws;
   2883     if (!Subtarget.useOddSPReg()) {
   2884       // We must copy to an even-numbered MSA register so that the
   2885       // single-precision sub-register is also guaranteed to be even-numbered.
   2886       Wt = RegInfo.createVirtualRegister(&Mips::MSA128WEvensRegClass);
   2887 
   2888       BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Wt).addReg(Ws);
   2889     }
   2890 
   2891     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo);
   2892   } else {
   2893     unsigned Wt = RegInfo.createVirtualRegister(
   2894         Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass :
   2895                                   &Mips::MSA128WEvensRegClass);
   2896 
   2897     BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wt).addReg(Ws).addImm(Lane);
   2898     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo);
   2899   }
   2900 
   2901   MI->eraseFromParent();   // The pseudo instruction is gone now.
   2902   return BB;
   2903 }
   2904 
   2905 // Emit the COPY_FD pseudo instruction.
   2906 //
   2907 // copy_fd_pseudo $fd, $ws, n
   2908 // =>
   2909 // splati.d $wt, $ws, $n
   2910 // copy $fd, $wt:sub_64
   2911 //
   2912 // When n is zero, the equivalent operation can be performed with (potentially)
   2913 // zero instructions due to register overlaps. This optimization is always
   2914 // valid because FR=1 mode which is the only supported mode in MSA.
   2915 MachineBasicBlock * MipsSETargetLowering::
   2916 emitCOPY_FD(MachineInstr *MI, MachineBasicBlock *BB) const{
   2917   assert(Subtarget.isFP64bit());
   2918 
   2919   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   2920   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
   2921   unsigned Fd  = MI->getOperand(0).getReg();
   2922   unsigned Ws  = MI->getOperand(1).getReg();
   2923   unsigned Lane = MI->getOperand(2).getImm() * 2;
   2924   DebugLoc DL = MI->getDebugLoc();
   2925 
   2926   if (Lane == 0)
   2927     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Ws, 0, Mips::sub_64);
   2928   else {
   2929     unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
   2930 
   2931     BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wt).addReg(Ws).addImm(1);
   2932     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_64);
   2933   }
   2934 
   2935   MI->eraseFromParent();   // The pseudo instruction is gone now.
   2936   return BB;
   2937 }
   2938 
   2939 // Emit the INSERT_FW pseudo instruction.
   2940 //
   2941 // insert_fw_pseudo $wd, $wd_in, $n, $fs
   2942 // =>
   2943 // subreg_to_reg $wt:sub_lo, $fs
   2944 // insve_w $wd[$n], $wd_in, $wt[0]
   2945 MachineBasicBlock *
   2946 MipsSETargetLowering::emitINSERT_FW(MachineInstr *MI,
   2947                                     MachineBasicBlock *BB) const {
   2948   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   2949   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
   2950   DebugLoc DL = MI->getDebugLoc();
   2951   unsigned Wd = MI->getOperand(0).getReg();
   2952   unsigned Wd_in = MI->getOperand(1).getReg();
   2953   unsigned Lane = MI->getOperand(2).getImm();
   2954   unsigned Fs = MI->getOperand(3).getReg();
   2955   unsigned Wt = RegInfo.createVirtualRegister(
   2956       Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass :
   2957                                 &Mips::MSA128WEvensRegClass);
   2958 
   2959   BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
   2960       .addImm(0)
   2961       .addReg(Fs)
   2962       .addImm(Mips::sub_lo);
   2963   BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_W), Wd)
   2964       .addReg(Wd_in)
   2965       .addImm(Lane)
   2966       .addReg(Wt)
   2967       .addImm(0);
   2968 
   2969   MI->eraseFromParent(); // The pseudo instruction is gone now.
   2970   return BB;
   2971 }
   2972 
   2973 // Emit the INSERT_FD pseudo instruction.
   2974 //
   2975 // insert_fd_pseudo $wd, $fs, n
   2976 // =>
   2977 // subreg_to_reg $wt:sub_64, $fs
   2978 // insve_d $wd[$n], $wd_in, $wt[0]
   2979 MachineBasicBlock *
   2980 MipsSETargetLowering::emitINSERT_FD(MachineInstr *MI,
   2981                                     MachineBasicBlock *BB) const {
   2982   assert(Subtarget.isFP64bit());
   2983 
   2984   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   2985   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
   2986   DebugLoc DL = MI->getDebugLoc();
   2987   unsigned Wd = MI->getOperand(0).getReg();
   2988   unsigned Wd_in = MI->getOperand(1).getReg();
   2989   unsigned Lane = MI->getOperand(2).getImm();
   2990   unsigned Fs = MI->getOperand(3).getReg();
   2991   unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
   2992 
   2993   BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
   2994       .addImm(0)
   2995       .addReg(Fs)
   2996       .addImm(Mips::sub_64);
   2997   BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_D), Wd)
   2998       .addReg(Wd_in)
   2999       .addImm(Lane)
   3000       .addReg(Wt)
   3001       .addImm(0);
   3002 
   3003   MI->eraseFromParent(); // The pseudo instruction is gone now.
   3004   return BB;
   3005 }
   3006 
   3007 // Emit the INSERT_([BHWD]|F[WD])_VIDX pseudo instruction.
   3008 //
   3009 // For integer:
   3010 // (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $rs)
   3011 // =>
   3012 // (SLL $lanetmp1, $lane, <log2size)
   3013 // (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1)
   3014 // (INSERT_[BHWD], $wdtmp2, $wdtmp1, 0, $rs)
   3015 // (NEG $lanetmp2, $lanetmp1)
   3016 // (SLD_B $wd, $wdtmp2, $wdtmp2,  $lanetmp2)
   3017 //
   3018 // For floating point:
   3019 // (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $fs)
   3020 // =>
   3021 // (SUBREG_TO_REG $wt, $fs, <subreg>)
   3022 // (SLL $lanetmp1, $lane, <log2size)
   3023 // (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1)
   3024 // (INSVE_[WD], $wdtmp2, 0, $wdtmp1, 0)
   3025 // (NEG $lanetmp2, $lanetmp1)
   3026 // (SLD_B $wd, $wdtmp2, $wdtmp2,  $lanetmp2)
   3027 MachineBasicBlock *
   3028 MipsSETargetLowering::emitINSERT_DF_VIDX(MachineInstr *MI,
   3029                                          MachineBasicBlock *BB,
   3030                                          unsigned EltSizeInBytes,
   3031                                          bool IsFP) const {
   3032   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   3033   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
   3034   DebugLoc DL = MI->getDebugLoc();
   3035   unsigned Wd = MI->getOperand(0).getReg();
   3036   unsigned SrcVecReg = MI->getOperand(1).getReg();
   3037   unsigned LaneReg = MI->getOperand(2).getReg();
   3038   unsigned SrcValReg = MI->getOperand(3).getReg();
   3039 
   3040   const TargetRegisterClass *VecRC = nullptr;
   3041   const TargetRegisterClass *GPRRC =
   3042       Subtarget.isGP64bit() ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
   3043   unsigned EltLog2Size;
   3044   unsigned InsertOp = 0;
   3045   unsigned InsveOp = 0;
   3046   switch (EltSizeInBytes) {
   3047   default:
   3048     llvm_unreachable("Unexpected size");
   3049   case 1:
   3050     EltLog2Size = 0;
   3051     InsertOp = Mips::INSERT_B;
   3052     InsveOp = Mips::INSVE_B;
   3053     VecRC = &Mips::MSA128BRegClass;
   3054     break;
   3055   case 2:
   3056     EltLog2Size = 1;
   3057     InsertOp = Mips::INSERT_H;
   3058     InsveOp = Mips::INSVE_H;
   3059     VecRC = &Mips::MSA128HRegClass;
   3060     break;
   3061   case 4:
   3062     EltLog2Size = 2;
   3063     InsertOp = Mips::INSERT_W;
   3064     InsveOp = Mips::INSVE_W;
   3065     VecRC = &Mips::MSA128WRegClass;
   3066     break;
   3067   case 8:
   3068     EltLog2Size = 3;
   3069     InsertOp = Mips::INSERT_D;
   3070     InsveOp = Mips::INSVE_D;
   3071     VecRC = &Mips::MSA128DRegClass;
   3072     break;
   3073   }
   3074 
   3075   if (IsFP) {
   3076     unsigned Wt = RegInfo.createVirtualRegister(VecRC);
   3077     BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
   3078         .addImm(0)
   3079         .addReg(SrcValReg)
   3080         .addImm(EltSizeInBytes == 8 ? Mips::sub_64 : Mips::sub_lo);
   3081     SrcValReg = Wt;
   3082   }
   3083 
   3084   // Convert the lane index into a byte index
   3085   if (EltSizeInBytes != 1) {
   3086     unsigned LaneTmp1 = RegInfo.createVirtualRegister(GPRRC);
   3087     BuildMI(*BB, MI, DL, TII->get(Mips::SLL), LaneTmp1)
   3088         .addReg(LaneReg)
   3089         .addImm(EltLog2Size);
   3090     LaneReg = LaneTmp1;
   3091   }
   3092 
   3093   // Rotate bytes around so that the desired lane is element zero
   3094   unsigned WdTmp1 = RegInfo.createVirtualRegister(VecRC);
   3095   BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), WdTmp1)
   3096       .addReg(SrcVecReg)
   3097       .addReg(SrcVecReg)
   3098       .addReg(LaneReg);
   3099 
   3100   unsigned WdTmp2 = RegInfo.createVirtualRegister(VecRC);
   3101   if (IsFP) {
   3102     // Use insve.df to insert to element zero
   3103     BuildMI(*BB, MI, DL, TII->get(InsveOp), WdTmp2)
   3104         .addReg(WdTmp1)
   3105         .addImm(0)
   3106         .addReg(SrcValReg)
   3107         .addImm(0);
   3108   } else {
   3109     // Use insert.df to insert to element zero
   3110     BuildMI(*BB, MI, DL, TII->get(InsertOp), WdTmp2)
   3111         .addReg(WdTmp1)
   3112         .addReg(SrcValReg)
   3113         .addImm(0);
   3114   }
   3115 
   3116   // Rotate elements the rest of the way for a full rotation.
   3117   // sld.df inteprets $rt modulo the number of columns so we only need to negate
   3118   // the lane index to do this.
   3119   unsigned LaneTmp2 = RegInfo.createVirtualRegister(GPRRC);
   3120   BuildMI(*BB, MI, DL, TII->get(Mips::SUB), LaneTmp2)
   3121       .addReg(Mips::ZERO)
   3122       .addReg(LaneReg);
   3123   BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), Wd)
   3124       .addReg(WdTmp2)
   3125       .addReg(WdTmp2)
   3126       .addReg(LaneTmp2);
   3127 
   3128   MI->eraseFromParent(); // The pseudo instruction is gone now.
   3129   return BB;
   3130 }
   3131 
   3132 // Emit the FILL_FW pseudo instruction.
   3133 //
   3134 // fill_fw_pseudo $wd, $fs
   3135 // =>
   3136 // implicit_def $wt1
   3137 // insert_subreg $wt2:subreg_lo, $wt1, $fs
   3138 // splati.w $wd, $wt2[0]
   3139 MachineBasicBlock *
   3140 MipsSETargetLowering::emitFILL_FW(MachineInstr *MI,
   3141                                   MachineBasicBlock *BB) const {
   3142   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   3143   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
   3144   DebugLoc DL = MI->getDebugLoc();
   3145   unsigned Wd = MI->getOperand(0).getReg();
   3146   unsigned Fs = MI->getOperand(1).getReg();
   3147   unsigned Wt1 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
   3148   unsigned Wt2 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
   3149 
   3150   BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
   3151   BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
   3152       .addReg(Wt1)
   3153       .addReg(Fs)
   3154       .addImm(Mips::sub_lo);
   3155   BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wd).addReg(Wt2).addImm(0);
   3156 
   3157   MI->eraseFromParent(); // The pseudo instruction is gone now.
   3158   return BB;
   3159 }
   3160 
   3161 // Emit the FILL_FD pseudo instruction.
   3162 //
   3163 // fill_fd_pseudo $wd, $fs
   3164 // =>
   3165 // implicit_def $wt1
   3166 // insert_subreg $wt2:subreg_64, $wt1, $fs
   3167 // splati.d $wd, $wt2[0]
   3168 MachineBasicBlock *
   3169 MipsSETargetLowering::emitFILL_FD(MachineInstr *MI,
   3170                                   MachineBasicBlock *BB) const {
   3171   assert(Subtarget.isFP64bit());
   3172 
   3173   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   3174   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
   3175   DebugLoc DL = MI->getDebugLoc();
   3176   unsigned Wd = MI->getOperand(0).getReg();
   3177   unsigned Fs = MI->getOperand(1).getReg();
   3178   unsigned Wt1 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
   3179   unsigned Wt2 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
   3180 
   3181   BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
   3182   BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
   3183       .addReg(Wt1)
   3184       .addReg(Fs)
   3185       .addImm(Mips::sub_64);
   3186   BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wd).addReg(Wt2).addImm(0);
   3187 
   3188   MI->eraseFromParent();   // The pseudo instruction is gone now.
   3189   return BB;
   3190 }
   3191 
   3192 // Emit the FEXP2_W_1 pseudo instructions.
   3193 //
   3194 // fexp2_w_1_pseudo $wd, $wt
   3195 // =>
   3196 // ldi.w $ws, 1
   3197 // fexp2.w $wd, $ws, $wt
   3198 MachineBasicBlock *
   3199 MipsSETargetLowering::emitFEXP2_W_1(MachineInstr *MI,
   3200                                     MachineBasicBlock *BB) const {
   3201   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   3202   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
   3203   const TargetRegisterClass *RC = &Mips::MSA128WRegClass;
   3204   unsigned Ws1 = RegInfo.createVirtualRegister(RC);
   3205   unsigned Ws2 = RegInfo.createVirtualRegister(RC);
   3206   DebugLoc DL = MI->getDebugLoc();
   3207 
   3208   // Splat 1.0 into a vector
   3209   BuildMI(*BB, MI, DL, TII->get(Mips::LDI_W), Ws1).addImm(1);
   3210   BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_W), Ws2).addReg(Ws1);
   3211 
   3212   // Emit 1.0 * fexp2(Wt)
   3213   BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_W), MI->getOperand(0).getReg())
   3214       .addReg(Ws2)
   3215       .addReg(MI->getOperand(1).getReg());
   3216 
   3217   MI->eraseFromParent(); // The pseudo instruction is gone now.
   3218   return BB;
   3219 }
   3220 
   3221 // Emit the FEXP2_D_1 pseudo instructions.
   3222 //
   3223 // fexp2_d_1_pseudo $wd, $wt
   3224 // =>
   3225 // ldi.d $ws, 1
   3226 // fexp2.d $wd, $ws, $wt
   3227 MachineBasicBlock *
   3228 MipsSETargetLowering::emitFEXP2_D_1(MachineInstr *MI,
   3229                                     MachineBasicBlock *BB) const {
   3230   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
   3231   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
   3232   const TargetRegisterClass *RC = &Mips::MSA128DRegClass;
   3233   unsigned Ws1 = RegInfo.createVirtualRegister(RC);
   3234   unsigned Ws2 = RegInfo.createVirtualRegister(RC);
   3235   DebugLoc DL = MI->getDebugLoc();
   3236 
   3237   // Splat 1.0 into a vector
   3238   BuildMI(*BB, MI, DL, TII->get(Mips::LDI_D), Ws1).addImm(1);
   3239   BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_D), Ws2).addReg(Ws1);
   3240 
   3241   // Emit 1.0 * fexp2(Wt)
   3242   BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_D), MI->getOperand(0).getReg())
   3243       .addReg(Ws2)
   3244       .addReg(MI->getOperand(1).getReg());
   3245 
   3246   MI->eraseFromParent(); // The pseudo instruction is gone now.
   3247   return BB;
   3248 }
   3249