Home | History | Annotate | Download | only in compiler
      1 // Copyright 2014 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/compiler/register-allocator.h"
      6 
      7 #include "src/compiler/linkage.h"
      8 #include "src/hydrogen.h"
      9 #include "src/string-stream.h"
     10 
     11 namespace v8 {
     12 namespace internal {
     13 namespace compiler {
     14 
     15 static inline LifetimePosition Min(LifetimePosition a, LifetimePosition b) {
     16   return a.Value() < b.Value() ? a : b;
     17 }
     18 
     19 
     20 static inline LifetimePosition Max(LifetimePosition a, LifetimePosition b) {
     21   return a.Value() > b.Value() ? a : b;
     22 }
     23 
     24 
     25 UsePosition::UsePosition(LifetimePosition pos, InstructionOperand* operand,
     26                          InstructionOperand* hint)
     27     : operand_(operand),
     28       hint_(hint),
     29       pos_(pos),
     30       next_(NULL),
     31       requires_reg_(false),
     32       register_beneficial_(true) {
     33   if (operand_ != NULL && operand_->IsUnallocated()) {
     34     const UnallocatedOperand* unalloc = UnallocatedOperand::cast(operand_);
     35     requires_reg_ = unalloc->HasRegisterPolicy();
     36     register_beneficial_ = !unalloc->HasAnyPolicy();
     37   }
     38   DCHECK(pos_.IsValid());
     39 }
     40 
     41 
     42 bool UsePosition::HasHint() const {
     43   return hint_ != NULL && !hint_->IsUnallocated();
     44 }
     45 
     46 
     47 bool UsePosition::RequiresRegister() const { return requires_reg_; }
     48 
     49 
     50 bool UsePosition::RegisterIsBeneficial() const { return register_beneficial_; }
     51 
     52 
     53 void UseInterval::SplitAt(LifetimePosition pos, Zone* zone) {
     54   DCHECK(Contains(pos) && pos.Value() != start().Value());
     55   UseInterval* after = new (zone) UseInterval(pos, end_);
     56   after->next_ = next_;
     57   next_ = after;
     58   end_ = pos;
     59 }
     60 
     61 
     62 #ifdef DEBUG
     63 
     64 
     65 void LiveRange::Verify() const {
     66   UsePosition* cur = first_pos_;
     67   while (cur != NULL) {
     68     DCHECK(Start().Value() <= cur->pos().Value() &&
     69            cur->pos().Value() <= End().Value());
     70     cur = cur->next();
     71   }
     72 }
     73 
     74 
     75 bool LiveRange::HasOverlap(UseInterval* target) const {
     76   UseInterval* current_interval = first_interval_;
     77   while (current_interval != NULL) {
     78     // Intervals overlap if the start of one is contained in the other.
     79     if (current_interval->Contains(target->start()) ||
     80         target->Contains(current_interval->start())) {
     81       return true;
     82     }
     83     current_interval = current_interval->next();
     84   }
     85   return false;
     86 }
     87 
     88 
     89 #endif
     90 
     91 
     92 LiveRange::LiveRange(int id, Zone* zone)
     93     : id_(id),
     94       spilled_(false),
     95       is_phi_(false),
     96       is_non_loop_phi_(false),
     97       kind_(UNALLOCATED_REGISTERS),
     98       assigned_register_(kInvalidAssignment),
     99       last_interval_(NULL),
    100       first_interval_(NULL),
    101       first_pos_(NULL),
    102       parent_(NULL),
    103       next_(NULL),
    104       current_interval_(NULL),
    105       last_processed_use_(NULL),
    106       current_hint_operand_(NULL),
    107       spill_operand_(new (zone) InstructionOperand()),
    108       spill_start_index_(kMaxInt) {}
    109 
    110 
    111 void LiveRange::set_assigned_register(int reg, Zone* zone) {
    112   DCHECK(!HasRegisterAssigned() && !IsSpilled());
    113   assigned_register_ = reg;
    114   ConvertOperands(zone);
    115 }
    116 
    117 
    118 void LiveRange::MakeSpilled(Zone* zone) {
    119   DCHECK(!IsSpilled());
    120   DCHECK(TopLevel()->HasAllocatedSpillOperand());
    121   spilled_ = true;
    122   assigned_register_ = kInvalidAssignment;
    123   ConvertOperands(zone);
    124 }
    125 
    126 
    127 bool LiveRange::HasAllocatedSpillOperand() const {
    128   DCHECK(spill_operand_ != NULL);
    129   return !spill_operand_->IsIgnored();
    130 }
    131 
    132 
    133 void LiveRange::SetSpillOperand(InstructionOperand* operand) {
    134   DCHECK(!operand->IsUnallocated());
    135   DCHECK(spill_operand_ != NULL);
    136   DCHECK(spill_operand_->IsIgnored());
    137   spill_operand_->ConvertTo(operand->kind(), operand->index());
    138 }
    139 
    140 
    141 UsePosition* LiveRange::NextUsePosition(LifetimePosition start) {
    142   UsePosition* use_pos = last_processed_use_;
    143   if (use_pos == NULL) use_pos = first_pos();
    144   while (use_pos != NULL && use_pos->pos().Value() < start.Value()) {
    145     use_pos = use_pos->next();
    146   }
    147   last_processed_use_ = use_pos;
    148   return use_pos;
    149 }
    150 
    151 
    152 UsePosition* LiveRange::NextUsePositionRegisterIsBeneficial(
    153     LifetimePosition start) {
    154   UsePosition* pos = NextUsePosition(start);
    155   while (pos != NULL && !pos->RegisterIsBeneficial()) {
    156     pos = pos->next();
    157   }
    158   return pos;
    159 }
    160 
    161 
    162 UsePosition* LiveRange::PreviousUsePositionRegisterIsBeneficial(
    163     LifetimePosition start) {
    164   UsePosition* pos = first_pos();
    165   UsePosition* prev = NULL;
    166   while (pos != NULL && pos->pos().Value() < start.Value()) {
    167     if (pos->RegisterIsBeneficial()) prev = pos;
    168     pos = pos->next();
    169   }
    170   return prev;
    171 }
    172 
    173 
    174 UsePosition* LiveRange::NextRegisterPosition(LifetimePosition start) {
    175   UsePosition* pos = NextUsePosition(start);
    176   while (pos != NULL && !pos->RequiresRegister()) {
    177     pos = pos->next();
    178   }
    179   return pos;
    180 }
    181 
    182 
    183 bool LiveRange::CanBeSpilled(LifetimePosition pos) {
    184   // We cannot spill a live range that has a use requiring a register
    185   // at the current or the immediate next position.
    186   UsePosition* use_pos = NextRegisterPosition(pos);
    187   if (use_pos == NULL) return true;
    188   return use_pos->pos().Value() >
    189          pos.NextInstruction().InstructionEnd().Value();
    190 }
    191 
    192 
    193 InstructionOperand* LiveRange::CreateAssignedOperand(Zone* zone) {
    194   InstructionOperand* op = NULL;
    195   if (HasRegisterAssigned()) {
    196     DCHECK(!IsSpilled());
    197     switch (Kind()) {
    198       case GENERAL_REGISTERS:
    199         op = RegisterOperand::Create(assigned_register(), zone);
    200         break;
    201       case DOUBLE_REGISTERS:
    202         op = DoubleRegisterOperand::Create(assigned_register(), zone);
    203         break;
    204       default:
    205         UNREACHABLE();
    206     }
    207   } else if (IsSpilled()) {
    208     DCHECK(!HasRegisterAssigned());
    209     op = TopLevel()->GetSpillOperand();
    210     DCHECK(!op->IsUnallocated());
    211   } else {
    212     UnallocatedOperand* unalloc =
    213         new (zone) UnallocatedOperand(UnallocatedOperand::NONE);
    214     unalloc->set_virtual_register(id_);
    215     op = unalloc;
    216   }
    217   return op;
    218 }
    219 
    220 
    221 UseInterval* LiveRange::FirstSearchIntervalForPosition(
    222     LifetimePosition position) const {
    223   if (current_interval_ == NULL) return first_interval_;
    224   if (current_interval_->start().Value() > position.Value()) {
    225     current_interval_ = NULL;
    226     return first_interval_;
    227   }
    228   return current_interval_;
    229 }
    230 
    231 
    232 void LiveRange::AdvanceLastProcessedMarker(
    233     UseInterval* to_start_of, LifetimePosition but_not_past) const {
    234   if (to_start_of == NULL) return;
    235   if (to_start_of->start().Value() > but_not_past.Value()) return;
    236   LifetimePosition start = current_interval_ == NULL
    237                                ? LifetimePosition::Invalid()
    238                                : current_interval_->start();
    239   if (to_start_of->start().Value() > start.Value()) {
    240     current_interval_ = to_start_of;
    241   }
    242 }
    243 
    244 
    245 void LiveRange::SplitAt(LifetimePosition position, LiveRange* result,
    246                         Zone* zone) {
    247   DCHECK(Start().Value() < position.Value());
    248   DCHECK(result->IsEmpty());
    249   // Find the last interval that ends before the position. If the
    250   // position is contained in one of the intervals in the chain, we
    251   // split that interval and use the first part.
    252   UseInterval* current = FirstSearchIntervalForPosition(position);
    253 
    254   // If the split position coincides with the beginning of a use interval
    255   // we need to split use positons in a special way.
    256   bool split_at_start = false;
    257 
    258   if (current->start().Value() == position.Value()) {
    259     // When splitting at start we need to locate the previous use interval.
    260     current = first_interval_;
    261   }
    262 
    263   while (current != NULL) {
    264     if (current->Contains(position)) {
    265       current->SplitAt(position, zone);
    266       break;
    267     }
    268     UseInterval* next = current->next();
    269     if (next->start().Value() >= position.Value()) {
    270       split_at_start = (next->start().Value() == position.Value());
    271       break;
    272     }
    273     current = next;
    274   }
    275 
    276   // Partition original use intervals to the two live ranges.
    277   UseInterval* before = current;
    278   UseInterval* after = before->next();
    279   result->last_interval_ =
    280       (last_interval_ == before)
    281           ? after            // Only interval in the range after split.
    282           : last_interval_;  // Last interval of the original range.
    283   result->first_interval_ = after;
    284   last_interval_ = before;
    285 
    286   // Find the last use position before the split and the first use
    287   // position after it.
    288   UsePosition* use_after = first_pos_;
    289   UsePosition* use_before = NULL;
    290   if (split_at_start) {
    291     // The split position coincides with the beginning of a use interval (the
    292     // end of a lifetime hole). Use at this position should be attributed to
    293     // the split child because split child owns use interval covering it.
    294     while (use_after != NULL && use_after->pos().Value() < position.Value()) {
    295       use_before = use_after;
    296       use_after = use_after->next();
    297     }
    298   } else {
    299     while (use_after != NULL && use_after->pos().Value() <= position.Value()) {
    300       use_before = use_after;
    301       use_after = use_after->next();
    302     }
    303   }
    304 
    305   // Partition original use positions to the two live ranges.
    306   if (use_before != NULL) {
    307     use_before->next_ = NULL;
    308   } else {
    309     first_pos_ = NULL;
    310   }
    311   result->first_pos_ = use_after;
    312 
    313   // Discard cached iteration state. It might be pointing
    314   // to the use that no longer belongs to this live range.
    315   last_processed_use_ = NULL;
    316   current_interval_ = NULL;
    317 
    318   // Link the new live range in the chain before any of the other
    319   // ranges linked from the range before the split.
    320   result->parent_ = (parent_ == NULL) ? this : parent_;
    321   result->kind_ = result->parent_->kind_;
    322   result->next_ = next_;
    323   next_ = result;
    324 
    325 #ifdef DEBUG
    326   Verify();
    327   result->Verify();
    328 #endif
    329 }
    330 
    331 
    332 // This implements an ordering on live ranges so that they are ordered by their
    333 // start positions.  This is needed for the correctness of the register
    334 // allocation algorithm.  If two live ranges start at the same offset then there
    335 // is a tie breaker based on where the value is first used.  This part of the
    336 // ordering is merely a heuristic.
    337 bool LiveRange::ShouldBeAllocatedBefore(const LiveRange* other) const {
    338   LifetimePosition start = Start();
    339   LifetimePosition other_start = other->Start();
    340   if (start.Value() == other_start.Value()) {
    341     UsePosition* pos = first_pos();
    342     if (pos == NULL) return false;
    343     UsePosition* other_pos = other->first_pos();
    344     if (other_pos == NULL) return true;
    345     return pos->pos().Value() < other_pos->pos().Value();
    346   }
    347   return start.Value() < other_start.Value();
    348 }
    349 
    350 
    351 void LiveRange::ShortenTo(LifetimePosition start) {
    352   RegisterAllocator::TraceAlloc("Shorten live range %d to [%d\n", id_,
    353                                 start.Value());
    354   DCHECK(first_interval_ != NULL);
    355   DCHECK(first_interval_->start().Value() <= start.Value());
    356   DCHECK(start.Value() < first_interval_->end().Value());
    357   first_interval_->set_start(start);
    358 }
    359 
    360 
    361 void LiveRange::EnsureInterval(LifetimePosition start, LifetimePosition end,
    362                                Zone* zone) {
    363   RegisterAllocator::TraceAlloc("Ensure live range %d in interval [%d %d[\n",
    364                                 id_, start.Value(), end.Value());
    365   LifetimePosition new_end = end;
    366   while (first_interval_ != NULL &&
    367          first_interval_->start().Value() <= end.Value()) {
    368     if (first_interval_->end().Value() > end.Value()) {
    369       new_end = first_interval_->end();
    370     }
    371     first_interval_ = first_interval_->next();
    372   }
    373 
    374   UseInterval* new_interval = new (zone) UseInterval(start, new_end);
    375   new_interval->next_ = first_interval_;
    376   first_interval_ = new_interval;
    377   if (new_interval->next() == NULL) {
    378     last_interval_ = new_interval;
    379   }
    380 }
    381 
    382 
    383 void LiveRange::AddUseInterval(LifetimePosition start, LifetimePosition end,
    384                                Zone* zone) {
    385   RegisterAllocator::TraceAlloc("Add to live range %d interval [%d %d[\n", id_,
    386                                 start.Value(), end.Value());
    387   if (first_interval_ == NULL) {
    388     UseInterval* interval = new (zone) UseInterval(start, end);
    389     first_interval_ = interval;
    390     last_interval_ = interval;
    391   } else {
    392     if (end.Value() == first_interval_->start().Value()) {
    393       first_interval_->set_start(start);
    394     } else if (end.Value() < first_interval_->start().Value()) {
    395       UseInterval* interval = new (zone) UseInterval(start, end);
    396       interval->set_next(first_interval_);
    397       first_interval_ = interval;
    398     } else {
    399       // Order of instruction's processing (see ProcessInstructions) guarantees
    400       // that each new use interval either precedes or intersects with
    401       // last added interval.
    402       DCHECK(start.Value() < first_interval_->end().Value());
    403       first_interval_->start_ = Min(start, first_interval_->start_);
    404       first_interval_->end_ = Max(end, first_interval_->end_);
    405     }
    406   }
    407 }
    408 
    409 
    410 void LiveRange::AddUsePosition(LifetimePosition pos,
    411                                InstructionOperand* operand,
    412                                InstructionOperand* hint, Zone* zone) {
    413   RegisterAllocator::TraceAlloc("Add to live range %d use position %d\n", id_,
    414                                 pos.Value());
    415   UsePosition* use_pos = new (zone) UsePosition(pos, operand, hint);
    416   UsePosition* prev_hint = NULL;
    417   UsePosition* prev = NULL;
    418   UsePosition* current = first_pos_;
    419   while (current != NULL && current->pos().Value() < pos.Value()) {
    420     prev_hint = current->HasHint() ? current : prev_hint;
    421     prev = current;
    422     current = current->next();
    423   }
    424 
    425   if (prev == NULL) {
    426     use_pos->set_next(first_pos_);
    427     first_pos_ = use_pos;
    428   } else {
    429     use_pos->next_ = prev->next_;
    430     prev->next_ = use_pos;
    431   }
    432 
    433   if (prev_hint == NULL && use_pos->HasHint()) {
    434     current_hint_operand_ = hint;
    435   }
    436 }
    437 
    438 
    439 void LiveRange::ConvertOperands(Zone* zone) {
    440   InstructionOperand* op = CreateAssignedOperand(zone);
    441   UsePosition* use_pos = first_pos();
    442   while (use_pos != NULL) {
    443     DCHECK(Start().Value() <= use_pos->pos().Value() &&
    444            use_pos->pos().Value() <= End().Value());
    445 
    446     if (use_pos->HasOperand()) {
    447       DCHECK(op->IsRegister() || op->IsDoubleRegister() ||
    448              !use_pos->RequiresRegister());
    449       use_pos->operand()->ConvertTo(op->kind(), op->index());
    450     }
    451     use_pos = use_pos->next();
    452   }
    453 }
    454 
    455 
    456 bool LiveRange::CanCover(LifetimePosition position) const {
    457   if (IsEmpty()) return false;
    458   return Start().Value() <= position.Value() &&
    459          position.Value() < End().Value();
    460 }
    461 
    462 
    463 bool LiveRange::Covers(LifetimePosition position) {
    464   if (!CanCover(position)) return false;
    465   UseInterval* start_search = FirstSearchIntervalForPosition(position);
    466   for (UseInterval* interval = start_search; interval != NULL;
    467        interval = interval->next()) {
    468     DCHECK(interval->next() == NULL ||
    469            interval->next()->start().Value() >= interval->start().Value());
    470     AdvanceLastProcessedMarker(interval, position);
    471     if (interval->Contains(position)) return true;
    472     if (interval->start().Value() > position.Value()) return false;
    473   }
    474   return false;
    475 }
    476 
    477 
    478 LifetimePosition LiveRange::FirstIntersection(LiveRange* other) {
    479   UseInterval* b = other->first_interval();
    480   if (b == NULL) return LifetimePosition::Invalid();
    481   LifetimePosition advance_last_processed_up_to = b->start();
    482   UseInterval* a = FirstSearchIntervalForPosition(b->start());
    483   while (a != NULL && b != NULL) {
    484     if (a->start().Value() > other->End().Value()) break;
    485     if (b->start().Value() > End().Value()) break;
    486     LifetimePosition cur_intersection = a->Intersect(b);
    487     if (cur_intersection.IsValid()) {
    488       return cur_intersection;
    489     }
    490     if (a->start().Value() < b->start().Value()) {
    491       a = a->next();
    492       if (a == NULL || a->start().Value() > other->End().Value()) break;
    493       AdvanceLastProcessedMarker(a, advance_last_processed_up_to);
    494     } else {
    495       b = b->next();
    496     }
    497   }
    498   return LifetimePosition::Invalid();
    499 }
    500 
    501 
    502 RegisterAllocator::RegisterAllocator(InstructionSequence* code)
    503     : zone_(code->isolate()),
    504       code_(code),
    505       live_in_sets_(code->BasicBlockCount(), zone()),
    506       live_ranges_(code->VirtualRegisterCount() * 2, zone()),
    507       fixed_live_ranges_(NULL),
    508       fixed_double_live_ranges_(NULL),
    509       unhandled_live_ranges_(code->VirtualRegisterCount() * 2, zone()),
    510       active_live_ranges_(8, zone()),
    511       inactive_live_ranges_(8, zone()),
    512       reusable_slots_(8, zone()),
    513       mode_(UNALLOCATED_REGISTERS),
    514       num_registers_(-1),
    515       allocation_ok_(true) {}
    516 
    517 
    518 void RegisterAllocator::InitializeLivenessAnalysis() {
    519   // Initialize the live_in sets for each block to NULL.
    520   int block_count = code()->BasicBlockCount();
    521   live_in_sets_.Initialize(block_count, zone());
    522   live_in_sets_.AddBlock(NULL, block_count, zone());
    523 }
    524 
    525 
    526 BitVector* RegisterAllocator::ComputeLiveOut(BasicBlock* block) {
    527   // Compute live out for the given block, except not including backward
    528   // successor edges.
    529   BitVector* live_out =
    530       new (zone()) BitVector(code()->VirtualRegisterCount(), zone());
    531 
    532   // Process all successor blocks.
    533   BasicBlock::Successors successors = block->successors();
    534   for (BasicBlock::Successors::iterator i = successors.begin();
    535        i != successors.end(); ++i) {
    536     // Add values live on entry to the successor. Note the successor's
    537     // live_in will not be computed yet for backwards edges.
    538     BasicBlock* successor = *i;
    539     BitVector* live_in = live_in_sets_[successor->rpo_number_];
    540     if (live_in != NULL) live_out->Union(*live_in);
    541 
    542     // All phi input operands corresponding to this successor edge are live
    543     // out from this block.
    544     int index = successor->PredecessorIndexOf(block);
    545     DCHECK(index >= 0);
    546     DCHECK(index < static_cast<int>(successor->PredecessorCount()));
    547     for (BasicBlock::const_iterator j = successor->begin();
    548          j != successor->end(); ++j) {
    549       Node* phi = *j;
    550       if (phi->opcode() != IrOpcode::kPhi) continue;
    551       Node* input = phi->InputAt(index);
    552       live_out->Add(input->id());
    553     }
    554   }
    555 
    556   return live_out;
    557 }
    558 
    559 
    560 void RegisterAllocator::AddInitialIntervals(BasicBlock* block,
    561                                             BitVector* live_out) {
    562   // Add an interval that includes the entire block to the live range for
    563   // each live_out value.
    564   LifetimePosition start =
    565       LifetimePosition::FromInstructionIndex(block->first_instruction_index());
    566   LifetimePosition end = LifetimePosition::FromInstructionIndex(
    567                              block->last_instruction_index()).NextInstruction();
    568   BitVector::Iterator iterator(live_out);
    569   while (!iterator.Done()) {
    570     int operand_index = iterator.Current();
    571     LiveRange* range = LiveRangeFor(operand_index);
    572     range->AddUseInterval(start, end, zone());
    573     iterator.Advance();
    574   }
    575 }
    576 
    577 
    578 int RegisterAllocator::FixedDoubleLiveRangeID(int index) {
    579   return -index - 1 - Register::kMaxNumAllocatableRegisters;
    580 }
    581 
    582 
    583 InstructionOperand* RegisterAllocator::AllocateFixed(
    584     UnallocatedOperand* operand, int pos, bool is_tagged) {
    585   TraceAlloc("Allocating fixed reg for op %d\n", operand->virtual_register());
    586   DCHECK(operand->HasFixedPolicy());
    587   if (operand->HasFixedSlotPolicy()) {
    588     operand->ConvertTo(InstructionOperand::STACK_SLOT,
    589                        operand->fixed_slot_index());
    590   } else if (operand->HasFixedRegisterPolicy()) {
    591     int reg_index = operand->fixed_register_index();
    592     operand->ConvertTo(InstructionOperand::REGISTER, reg_index);
    593   } else if (operand->HasFixedDoubleRegisterPolicy()) {
    594     int reg_index = operand->fixed_register_index();
    595     operand->ConvertTo(InstructionOperand::DOUBLE_REGISTER, reg_index);
    596   } else {
    597     UNREACHABLE();
    598   }
    599   if (is_tagged) {
    600     TraceAlloc("Fixed reg is tagged at %d\n", pos);
    601     Instruction* instr = InstructionAt(pos);
    602     if (instr->HasPointerMap()) {
    603       instr->pointer_map()->RecordPointer(operand, code_zone());
    604     }
    605   }
    606   return operand;
    607 }
    608 
    609 
    610 LiveRange* RegisterAllocator::FixedLiveRangeFor(int index) {
    611   DCHECK(index < Register::kMaxNumAllocatableRegisters);
    612   LiveRange* result = fixed_live_ranges_[index];
    613   if (result == NULL) {
    614     // TODO(titzer): add a utility method to allocate a new LiveRange:
    615     // The LiveRange object itself can go in this zone, but the
    616     // InstructionOperand needs
    617     // to go in the code zone, since it may survive register allocation.
    618     result = new (zone()) LiveRange(FixedLiveRangeID(index), code_zone());
    619     DCHECK(result->IsFixed());
    620     result->kind_ = GENERAL_REGISTERS;
    621     SetLiveRangeAssignedRegister(result, index);
    622     fixed_live_ranges_[index] = result;
    623   }
    624   return result;
    625 }
    626 
    627 
    628 LiveRange* RegisterAllocator::FixedDoubleLiveRangeFor(int index) {
    629   DCHECK(index < DoubleRegister::NumAllocatableRegisters());
    630   LiveRange* result = fixed_double_live_ranges_[index];
    631   if (result == NULL) {
    632     result = new (zone()) LiveRange(FixedDoubleLiveRangeID(index), code_zone());
    633     DCHECK(result->IsFixed());
    634     result->kind_ = DOUBLE_REGISTERS;
    635     SetLiveRangeAssignedRegister(result, index);
    636     fixed_double_live_ranges_[index] = result;
    637   }
    638   return result;
    639 }
    640 
    641 
    642 LiveRange* RegisterAllocator::LiveRangeFor(int index) {
    643   if (index >= live_ranges_.length()) {
    644     live_ranges_.AddBlock(NULL, index - live_ranges_.length() + 1, zone());
    645   }
    646   LiveRange* result = live_ranges_[index];
    647   if (result == NULL) {
    648     result = new (zone()) LiveRange(index, code_zone());
    649     live_ranges_[index] = result;
    650   }
    651   return result;
    652 }
    653 
    654 
    655 GapInstruction* RegisterAllocator::GetLastGap(BasicBlock* block) {
    656   int last_instruction = block->last_instruction_index();
    657   return code()->GapAt(last_instruction - 1);
    658 }
    659 
    660 
    661 LiveRange* RegisterAllocator::LiveRangeFor(InstructionOperand* operand) {
    662   if (operand->IsUnallocated()) {
    663     return LiveRangeFor(UnallocatedOperand::cast(operand)->virtual_register());
    664   } else if (operand->IsRegister()) {
    665     return FixedLiveRangeFor(operand->index());
    666   } else if (operand->IsDoubleRegister()) {
    667     return FixedDoubleLiveRangeFor(operand->index());
    668   } else {
    669     return NULL;
    670   }
    671 }
    672 
    673 
    674 void RegisterAllocator::Define(LifetimePosition position,
    675                                InstructionOperand* operand,
    676                                InstructionOperand* hint) {
    677   LiveRange* range = LiveRangeFor(operand);
    678   if (range == NULL) return;
    679 
    680   if (range->IsEmpty() || range->Start().Value() > position.Value()) {
    681     // Can happen if there is a definition without use.
    682     range->AddUseInterval(position, position.NextInstruction(), zone());
    683     range->AddUsePosition(position.NextInstruction(), NULL, NULL, zone());
    684   } else {
    685     range->ShortenTo(position);
    686   }
    687 
    688   if (operand->IsUnallocated()) {
    689     UnallocatedOperand* unalloc_operand = UnallocatedOperand::cast(operand);
    690     range->AddUsePosition(position, unalloc_operand, hint, zone());
    691   }
    692 }
    693 
    694 
    695 void RegisterAllocator::Use(LifetimePosition block_start,
    696                             LifetimePosition position,
    697                             InstructionOperand* operand,
    698                             InstructionOperand* hint) {
    699   LiveRange* range = LiveRangeFor(operand);
    700   if (range == NULL) return;
    701   if (operand->IsUnallocated()) {
    702     UnallocatedOperand* unalloc_operand = UnallocatedOperand::cast(operand);
    703     range->AddUsePosition(position, unalloc_operand, hint, zone());
    704   }
    705   range->AddUseInterval(block_start, position, zone());
    706 }
    707 
    708 
    709 void RegisterAllocator::AddConstraintsGapMove(int index,
    710                                               InstructionOperand* from,
    711                                               InstructionOperand* to) {
    712   GapInstruction* gap = code()->GapAt(index);
    713   ParallelMove* move =
    714       gap->GetOrCreateParallelMove(GapInstruction::START, code_zone());
    715   if (from->IsUnallocated()) {
    716     const ZoneList<MoveOperands>* move_operands = move->move_operands();
    717     for (int i = 0; i < move_operands->length(); ++i) {
    718       MoveOperands cur = move_operands->at(i);
    719       InstructionOperand* cur_to = cur.destination();
    720       if (cur_to->IsUnallocated()) {
    721         if (UnallocatedOperand::cast(cur_to)->virtual_register() ==
    722             UnallocatedOperand::cast(from)->virtual_register()) {
    723           move->AddMove(cur.source(), to, code_zone());
    724           return;
    725         }
    726       }
    727     }
    728   }
    729   move->AddMove(from, to, code_zone());
    730 }
    731 
    732 
    733 void RegisterAllocator::MeetRegisterConstraints(BasicBlock* block) {
    734   int start = block->first_instruction_index();
    735   int end = block->last_instruction_index();
    736   DCHECK_NE(-1, start);
    737   for (int i = start; i <= end; ++i) {
    738     if (code()->IsGapAt(i)) {
    739       Instruction* instr = NULL;
    740       Instruction* prev_instr = NULL;
    741       if (i < end) instr = InstructionAt(i + 1);
    742       if (i > start) prev_instr = InstructionAt(i - 1);
    743       MeetConstraintsBetween(prev_instr, instr, i);
    744       if (!AllocationOk()) return;
    745     }
    746   }
    747 
    748   // Meet register constraints for the instruction in the end.
    749   if (!code()->IsGapAt(end)) {
    750     MeetRegisterConstraintsForLastInstructionInBlock(block);
    751   }
    752 }
    753 
    754 
    755 void RegisterAllocator::MeetRegisterConstraintsForLastInstructionInBlock(
    756     BasicBlock* block) {
    757   int end = block->last_instruction_index();
    758   Instruction* last_instruction = InstructionAt(end);
    759   for (size_t i = 0; i < last_instruction->OutputCount(); i++) {
    760     InstructionOperand* output_operand = last_instruction->OutputAt(i);
    761     DCHECK(!output_operand->IsConstant());
    762     UnallocatedOperand* output = UnallocatedOperand::cast(output_operand);
    763     int output_vreg = output->virtual_register();
    764     LiveRange* range = LiveRangeFor(output_vreg);
    765     bool assigned = false;
    766     if (output->HasFixedPolicy()) {
    767       AllocateFixed(output, -1, false);
    768       // This value is produced on the stack, we never need to spill it.
    769       if (output->IsStackSlot()) {
    770         range->SetSpillOperand(output);
    771         range->SetSpillStartIndex(end);
    772         assigned = true;
    773       }
    774 
    775       BasicBlock::Successors successors = block->successors();
    776       for (BasicBlock::Successors::iterator succ = successors.begin();
    777            succ != successors.end(); ++succ) {
    778         DCHECK((*succ)->PredecessorCount() == 1);
    779         int gap_index = (*succ)->first_instruction_index() + 1;
    780         DCHECK(code()->IsGapAt(gap_index));
    781 
    782         // Create an unconstrained operand for the same virtual register
    783         // and insert a gap move from the fixed output to the operand.
    784         UnallocatedOperand* output_copy =
    785             new (code_zone()) UnallocatedOperand(UnallocatedOperand::ANY);
    786         output_copy->set_virtual_register(output_vreg);
    787 
    788         code()->AddGapMove(gap_index, output, output_copy);
    789       }
    790     }
    791 
    792     if (!assigned) {
    793       BasicBlock::Successors successors = block->successors();
    794       for (BasicBlock::Successors::iterator succ = successors.begin();
    795            succ != successors.end(); ++succ) {
    796         DCHECK((*succ)->PredecessorCount() == 1);
    797         int gap_index = (*succ)->first_instruction_index() + 1;
    798         range->SetSpillStartIndex(gap_index);
    799 
    800         // This move to spill operand is not a real use. Liveness analysis
    801         // and splitting of live ranges do not account for it.
    802         // Thus it should be inserted to a lifetime position corresponding to
    803         // the instruction end.
    804         GapInstruction* gap = code()->GapAt(gap_index);
    805         ParallelMove* move =
    806             gap->GetOrCreateParallelMove(GapInstruction::BEFORE, code_zone());
    807         move->AddMove(output, range->GetSpillOperand(), code_zone());
    808       }
    809     }
    810   }
    811 }
    812 
    813 
    814 void RegisterAllocator::MeetConstraintsBetween(Instruction* first,
    815                                                Instruction* second,
    816                                                int gap_index) {
    817   if (first != NULL) {
    818     // Handle fixed temporaries.
    819     for (size_t i = 0; i < first->TempCount(); i++) {
    820       UnallocatedOperand* temp = UnallocatedOperand::cast(first->TempAt(i));
    821       if (temp->HasFixedPolicy()) {
    822         AllocateFixed(temp, gap_index - 1, false);
    823       }
    824     }
    825 
    826     // Handle constant/fixed output operands.
    827     for (size_t i = 0; i < first->OutputCount(); i++) {
    828       InstructionOperand* output = first->OutputAt(i);
    829       if (output->IsConstant()) {
    830         int output_vreg = output->index();
    831         LiveRange* range = LiveRangeFor(output_vreg);
    832         range->SetSpillStartIndex(gap_index - 1);
    833         range->SetSpillOperand(output);
    834       } else {
    835         UnallocatedOperand* first_output = UnallocatedOperand::cast(output);
    836         LiveRange* range = LiveRangeFor(first_output->virtual_register());
    837         bool assigned = false;
    838         if (first_output->HasFixedPolicy()) {
    839           UnallocatedOperand* output_copy =
    840               first_output->CopyUnconstrained(code_zone());
    841           bool is_tagged = HasTaggedValue(first_output->virtual_register());
    842           AllocateFixed(first_output, gap_index, is_tagged);
    843 
    844           // This value is produced on the stack, we never need to spill it.
    845           if (first_output->IsStackSlot()) {
    846             range->SetSpillOperand(first_output);
    847             range->SetSpillStartIndex(gap_index - 1);
    848             assigned = true;
    849           }
    850           code()->AddGapMove(gap_index, first_output, output_copy);
    851         }
    852 
    853         // Make sure we add a gap move for spilling (if we have not done
    854         // so already).
    855         if (!assigned) {
    856           range->SetSpillStartIndex(gap_index);
    857 
    858           // This move to spill operand is not a real use. Liveness analysis
    859           // and splitting of live ranges do not account for it.
    860           // Thus it should be inserted to a lifetime position corresponding to
    861           // the instruction end.
    862           GapInstruction* gap = code()->GapAt(gap_index);
    863           ParallelMove* move =
    864               gap->GetOrCreateParallelMove(GapInstruction::BEFORE, code_zone());
    865           move->AddMove(first_output, range->GetSpillOperand(), code_zone());
    866         }
    867       }
    868     }
    869   }
    870 
    871   if (second != NULL) {
    872     // Handle fixed input operands of second instruction.
    873     for (size_t i = 0; i < second->InputCount(); i++) {
    874       InstructionOperand* input = second->InputAt(i);
    875       if (input->IsImmediate()) continue;  // Ignore immediates.
    876       UnallocatedOperand* cur_input = UnallocatedOperand::cast(input);
    877       if (cur_input->HasFixedPolicy()) {
    878         UnallocatedOperand* input_copy =
    879             cur_input->CopyUnconstrained(code_zone());
    880         bool is_tagged = HasTaggedValue(cur_input->virtual_register());
    881         AllocateFixed(cur_input, gap_index + 1, is_tagged);
    882         AddConstraintsGapMove(gap_index, input_copy, cur_input);
    883       }
    884     }
    885 
    886     // Handle "output same as input" for second instruction.
    887     for (size_t i = 0; i < second->OutputCount(); i++) {
    888       InstructionOperand* output = second->OutputAt(i);
    889       if (!output->IsUnallocated()) continue;
    890       UnallocatedOperand* second_output = UnallocatedOperand::cast(output);
    891       if (second_output->HasSameAsInputPolicy()) {
    892         DCHECK(i == 0);  // Only valid for first output.
    893         UnallocatedOperand* cur_input =
    894             UnallocatedOperand::cast(second->InputAt(0));
    895         int output_vreg = second_output->virtual_register();
    896         int input_vreg = cur_input->virtual_register();
    897 
    898         UnallocatedOperand* input_copy =
    899             cur_input->CopyUnconstrained(code_zone());
    900         cur_input->set_virtual_register(second_output->virtual_register());
    901         AddConstraintsGapMove(gap_index, input_copy, cur_input);
    902 
    903         if (HasTaggedValue(input_vreg) && !HasTaggedValue(output_vreg)) {
    904           int index = gap_index + 1;
    905           Instruction* instr = InstructionAt(index);
    906           if (instr->HasPointerMap()) {
    907             instr->pointer_map()->RecordPointer(input_copy, code_zone());
    908           }
    909         } else if (!HasTaggedValue(input_vreg) && HasTaggedValue(output_vreg)) {
    910           // The input is assumed to immediately have a tagged representation,
    911           // before the pointer map can be used. I.e. the pointer map at the
    912           // instruction will include the output operand (whose value at the
    913           // beginning of the instruction is equal to the input operand). If
    914           // this is not desired, then the pointer map at this instruction needs
    915           // to be adjusted manually.
    916         }
    917       }
    918     }
    919   }
    920 }
    921 
    922 
    923 bool RegisterAllocator::IsOutputRegisterOf(Instruction* instr, int index) {
    924   for (size_t i = 0; i < instr->OutputCount(); i++) {
    925     InstructionOperand* output = instr->OutputAt(i);
    926     if (output->IsRegister() && output->index() == index) return true;
    927   }
    928   return false;
    929 }
    930 
    931 
    932 bool RegisterAllocator::IsOutputDoubleRegisterOf(Instruction* instr,
    933                                                  int index) {
    934   for (size_t i = 0; i < instr->OutputCount(); i++) {
    935     InstructionOperand* output = instr->OutputAt(i);
    936     if (output->IsDoubleRegister() && output->index() == index) return true;
    937   }
    938   return false;
    939 }
    940 
    941 
    942 void RegisterAllocator::ProcessInstructions(BasicBlock* block,
    943                                             BitVector* live) {
    944   int block_start = block->first_instruction_index();
    945 
    946   LifetimePosition block_start_position =
    947       LifetimePosition::FromInstructionIndex(block_start);
    948 
    949   for (int index = block->last_instruction_index(); index >= block_start;
    950        index--) {
    951     LifetimePosition curr_position =
    952         LifetimePosition::FromInstructionIndex(index);
    953 
    954     Instruction* instr = InstructionAt(index);
    955     DCHECK(instr != NULL);
    956     if (instr->IsGapMoves()) {
    957       // Process the moves of the gap instruction, making their sources live.
    958       GapInstruction* gap = code()->GapAt(index);
    959 
    960       // TODO(titzer): no need to create the parallel move if it doesn't exist.
    961       ParallelMove* move =
    962           gap->GetOrCreateParallelMove(GapInstruction::START, code_zone());
    963       const ZoneList<MoveOperands>* move_operands = move->move_operands();
    964       for (int i = 0; i < move_operands->length(); ++i) {
    965         MoveOperands* cur = &move_operands->at(i);
    966         if (cur->IsIgnored()) continue;
    967         InstructionOperand* from = cur->source();
    968         InstructionOperand* to = cur->destination();
    969         InstructionOperand* hint = to;
    970         if (to->IsUnallocated()) {
    971           int to_vreg = UnallocatedOperand::cast(to)->virtual_register();
    972           LiveRange* to_range = LiveRangeFor(to_vreg);
    973           if (to_range->is_phi()) {
    974             if (to_range->is_non_loop_phi()) {
    975               hint = to_range->current_hint_operand();
    976             }
    977           } else {
    978             if (live->Contains(to_vreg)) {
    979               Define(curr_position, to, from);
    980               live->Remove(to_vreg);
    981             } else {
    982               cur->Eliminate();
    983               continue;
    984             }
    985           }
    986         } else {
    987           Define(curr_position, to, from);
    988         }
    989         Use(block_start_position, curr_position, from, hint);
    990         if (from->IsUnallocated()) {
    991           live->Add(UnallocatedOperand::cast(from)->virtual_register());
    992         }
    993       }
    994     } else {
    995       // Process output, inputs, and temps of this non-gap instruction.
    996       for (size_t i = 0; i < instr->OutputCount(); i++) {
    997         InstructionOperand* output = instr->OutputAt(i);
    998         if (output->IsUnallocated()) {
    999           int out_vreg = UnallocatedOperand::cast(output)->virtual_register();
   1000           live->Remove(out_vreg);
   1001         } else if (output->IsConstant()) {
   1002           int out_vreg = output->index();
   1003           live->Remove(out_vreg);
   1004         }
   1005         Define(curr_position, output, NULL);
   1006       }
   1007 
   1008       if (instr->ClobbersRegisters()) {
   1009         for (int i = 0; i < Register::kMaxNumAllocatableRegisters; ++i) {
   1010           if (!IsOutputRegisterOf(instr, i)) {
   1011             LiveRange* range = FixedLiveRangeFor(i);
   1012             range->AddUseInterval(curr_position, curr_position.InstructionEnd(),
   1013                                   zone());
   1014           }
   1015         }
   1016       }
   1017 
   1018       if (instr->ClobbersDoubleRegisters()) {
   1019         for (int i = 0; i < DoubleRegister::NumAllocatableRegisters(); ++i) {
   1020           if (!IsOutputDoubleRegisterOf(instr, i)) {
   1021             LiveRange* range = FixedDoubleLiveRangeFor(i);
   1022             range->AddUseInterval(curr_position, curr_position.InstructionEnd(),
   1023                                   zone());
   1024           }
   1025         }
   1026       }
   1027 
   1028       for (size_t i = 0; i < instr->InputCount(); i++) {
   1029         InstructionOperand* input = instr->InputAt(i);
   1030         if (input->IsImmediate()) continue;  // Ignore immediates.
   1031         LifetimePosition use_pos;
   1032         if (input->IsUnallocated() &&
   1033             UnallocatedOperand::cast(input)->IsUsedAtStart()) {
   1034           use_pos = curr_position;
   1035         } else {
   1036           use_pos = curr_position.InstructionEnd();
   1037         }
   1038 
   1039         Use(block_start_position, use_pos, input, NULL);
   1040         if (input->IsUnallocated()) {
   1041           live->Add(UnallocatedOperand::cast(input)->virtual_register());
   1042         }
   1043       }
   1044 
   1045       for (size_t i = 0; i < instr->TempCount(); i++) {
   1046         InstructionOperand* temp = instr->TempAt(i);
   1047         if (instr->ClobbersTemps()) {
   1048           if (temp->IsRegister()) continue;
   1049           if (temp->IsUnallocated()) {
   1050             UnallocatedOperand* temp_unalloc = UnallocatedOperand::cast(temp);
   1051             if (temp_unalloc->HasFixedPolicy()) {
   1052               continue;
   1053             }
   1054           }
   1055         }
   1056         Use(block_start_position, curr_position.InstructionEnd(), temp, NULL);
   1057         Define(curr_position, temp, NULL);
   1058       }
   1059     }
   1060   }
   1061 }
   1062 
   1063 
   1064 void RegisterAllocator::ResolvePhis(BasicBlock* block) {
   1065   for (BasicBlock::const_iterator i = block->begin(); i != block->end(); ++i) {
   1066     Node* phi = *i;
   1067     if (phi->opcode() != IrOpcode::kPhi) continue;
   1068 
   1069     UnallocatedOperand* phi_operand =
   1070         new (code_zone()) UnallocatedOperand(UnallocatedOperand::NONE);
   1071     phi_operand->set_virtual_register(phi->id());
   1072 
   1073     int j = 0;
   1074     Node::Inputs inputs = phi->inputs();
   1075     for (Node::Inputs::iterator iter(inputs.begin()); iter != inputs.end();
   1076          ++iter, ++j) {
   1077       Node* op = *iter;
   1078       // TODO(mstarzinger): Use a ValueInputIterator instead.
   1079       if (j >= block->PredecessorCount()) continue;
   1080       UnallocatedOperand* operand =
   1081           new (code_zone()) UnallocatedOperand(UnallocatedOperand::ANY);
   1082       operand->set_virtual_register(op->id());
   1083       BasicBlock* cur_block = block->PredecessorAt(j);
   1084       // The gap move must be added without any special processing as in
   1085       // the AddConstraintsGapMove.
   1086       code()->AddGapMove(cur_block->last_instruction_index() - 1, operand,
   1087                          phi_operand);
   1088 
   1089       Instruction* branch = InstructionAt(cur_block->last_instruction_index());
   1090       DCHECK(!branch->HasPointerMap());
   1091       USE(branch);
   1092     }
   1093 
   1094     LiveRange* live_range = LiveRangeFor(phi->id());
   1095     BlockStartInstruction* block_start = code()->GetBlockStart(block);
   1096     block_start->GetOrCreateParallelMove(GapInstruction::START, code_zone())
   1097         ->AddMove(phi_operand, live_range->GetSpillOperand(), code_zone());
   1098     live_range->SetSpillStartIndex(block->first_instruction_index());
   1099 
   1100     // We use the phi-ness of some nodes in some later heuristics.
   1101     live_range->set_is_phi(true);
   1102     if (!block->IsLoopHeader()) {
   1103       live_range->set_is_non_loop_phi(true);
   1104     }
   1105   }
   1106 }
   1107 
   1108 
   1109 bool RegisterAllocator::Allocate() {
   1110   assigned_registers_ = new (code_zone())
   1111       BitVector(Register::NumAllocatableRegisters(), code_zone());
   1112   assigned_double_registers_ = new (code_zone())
   1113       BitVector(DoubleRegister::NumAllocatableRegisters(), code_zone());
   1114   MeetRegisterConstraints();
   1115   if (!AllocationOk()) return false;
   1116   ResolvePhis();
   1117   BuildLiveRanges();
   1118   AllocateGeneralRegisters();
   1119   if (!AllocationOk()) return false;
   1120   AllocateDoubleRegisters();
   1121   if (!AllocationOk()) return false;
   1122   PopulatePointerMaps();
   1123   ConnectRanges();
   1124   ResolveControlFlow();
   1125   code()->frame()->SetAllocatedRegisters(assigned_registers_);
   1126   code()->frame()->SetAllocatedDoubleRegisters(assigned_double_registers_);
   1127   return true;
   1128 }
   1129 
   1130 
   1131 void RegisterAllocator::MeetRegisterConstraints() {
   1132   RegisterAllocatorPhase phase("L_Register constraints", this);
   1133   for (int i = 0; i < code()->BasicBlockCount(); ++i) {
   1134     MeetRegisterConstraints(code()->BlockAt(i));
   1135     if (!AllocationOk()) return;
   1136   }
   1137 }
   1138 
   1139 
   1140 void RegisterAllocator::ResolvePhis() {
   1141   RegisterAllocatorPhase phase("L_Resolve phis", this);
   1142 
   1143   // Process the blocks in reverse order.
   1144   for (int i = code()->BasicBlockCount() - 1; i >= 0; --i) {
   1145     ResolvePhis(code()->BlockAt(i));
   1146   }
   1147 }
   1148 
   1149 
   1150 void RegisterAllocator::ResolveControlFlow(LiveRange* range, BasicBlock* block,
   1151                                            BasicBlock* pred) {
   1152   LifetimePosition pred_end =
   1153       LifetimePosition::FromInstructionIndex(pred->last_instruction_index());
   1154   LifetimePosition cur_start =
   1155       LifetimePosition::FromInstructionIndex(block->first_instruction_index());
   1156   LiveRange* pred_cover = NULL;
   1157   LiveRange* cur_cover = NULL;
   1158   LiveRange* cur_range = range;
   1159   while (cur_range != NULL && (cur_cover == NULL || pred_cover == NULL)) {
   1160     if (cur_range->CanCover(cur_start)) {
   1161       DCHECK(cur_cover == NULL);
   1162       cur_cover = cur_range;
   1163     }
   1164     if (cur_range->CanCover(pred_end)) {
   1165       DCHECK(pred_cover == NULL);
   1166       pred_cover = cur_range;
   1167     }
   1168     cur_range = cur_range->next();
   1169   }
   1170 
   1171   if (cur_cover->IsSpilled()) return;
   1172   DCHECK(pred_cover != NULL && cur_cover != NULL);
   1173   if (pred_cover != cur_cover) {
   1174     InstructionOperand* pred_op =
   1175         pred_cover->CreateAssignedOperand(code_zone());
   1176     InstructionOperand* cur_op = cur_cover->CreateAssignedOperand(code_zone());
   1177     if (!pred_op->Equals(cur_op)) {
   1178       GapInstruction* gap = NULL;
   1179       if (block->PredecessorCount() == 1) {
   1180         gap = code()->GapAt(block->first_instruction_index());
   1181       } else {
   1182         DCHECK(pred->SuccessorCount() == 1);
   1183         gap = GetLastGap(pred);
   1184 
   1185         Instruction* branch = InstructionAt(pred->last_instruction_index());
   1186         DCHECK(!branch->HasPointerMap());
   1187         USE(branch);
   1188       }
   1189       gap->GetOrCreateParallelMove(GapInstruction::START, code_zone())
   1190           ->AddMove(pred_op, cur_op, code_zone());
   1191     }
   1192   }
   1193 }
   1194 
   1195 
   1196 ParallelMove* RegisterAllocator::GetConnectingParallelMove(
   1197     LifetimePosition pos) {
   1198   int index = pos.InstructionIndex();
   1199   if (code()->IsGapAt(index)) {
   1200     GapInstruction* gap = code()->GapAt(index);
   1201     return gap->GetOrCreateParallelMove(
   1202         pos.IsInstructionStart() ? GapInstruction::START : GapInstruction::END,
   1203         code_zone());
   1204   }
   1205   int gap_pos = pos.IsInstructionStart() ? (index - 1) : (index + 1);
   1206   return code()->GapAt(gap_pos)->GetOrCreateParallelMove(
   1207       (gap_pos < index) ? GapInstruction::AFTER : GapInstruction::BEFORE,
   1208       code_zone());
   1209 }
   1210 
   1211 
   1212 BasicBlock* RegisterAllocator::GetBlock(LifetimePosition pos) {
   1213   return code()->GetBasicBlock(pos.InstructionIndex());
   1214 }
   1215 
   1216 
   1217 void RegisterAllocator::ConnectRanges() {
   1218   RegisterAllocatorPhase phase("L_Connect ranges", this);
   1219   for (int i = 0; i < live_ranges()->length(); ++i) {
   1220     LiveRange* first_range = live_ranges()->at(i);
   1221     if (first_range == NULL || first_range->parent() != NULL) continue;
   1222 
   1223     LiveRange* second_range = first_range->next();
   1224     while (second_range != NULL) {
   1225       LifetimePosition pos = second_range->Start();
   1226 
   1227       if (!second_range->IsSpilled()) {
   1228         // Add gap move if the two live ranges touch and there is no block
   1229         // boundary.
   1230         if (first_range->End().Value() == pos.Value()) {
   1231           bool should_insert = true;
   1232           if (IsBlockBoundary(pos)) {
   1233             should_insert = CanEagerlyResolveControlFlow(GetBlock(pos));
   1234           }
   1235           if (should_insert) {
   1236             ParallelMove* move = GetConnectingParallelMove(pos);
   1237             InstructionOperand* prev_operand =
   1238                 first_range->CreateAssignedOperand(code_zone());
   1239             InstructionOperand* cur_operand =
   1240                 second_range->CreateAssignedOperand(code_zone());
   1241             move->AddMove(prev_operand, cur_operand, code_zone());
   1242           }
   1243         }
   1244       }
   1245 
   1246       first_range = second_range;
   1247       second_range = second_range->next();
   1248     }
   1249   }
   1250 }
   1251 
   1252 
   1253 bool RegisterAllocator::CanEagerlyResolveControlFlow(BasicBlock* block) const {
   1254   if (block->PredecessorCount() != 1) return false;
   1255   return block->PredecessorAt(0)->rpo_number_ == block->rpo_number_ - 1;
   1256 }
   1257 
   1258 
   1259 void RegisterAllocator::ResolveControlFlow() {
   1260   RegisterAllocatorPhase phase("L_Resolve control flow", this);
   1261   for (int block_id = 1; block_id < code()->BasicBlockCount(); ++block_id) {
   1262     BasicBlock* block = code()->BlockAt(block_id);
   1263     if (CanEagerlyResolveControlFlow(block)) continue;
   1264     BitVector* live = live_in_sets_[block->rpo_number_];
   1265     BitVector::Iterator iterator(live);
   1266     while (!iterator.Done()) {
   1267       int operand_index = iterator.Current();
   1268       BasicBlock::Predecessors predecessors = block->predecessors();
   1269       for (BasicBlock::Predecessors::iterator i = predecessors.begin();
   1270            i != predecessors.end(); ++i) {
   1271         BasicBlock* cur = *i;
   1272         LiveRange* cur_range = LiveRangeFor(operand_index);
   1273         ResolveControlFlow(cur_range, block, cur);
   1274       }
   1275       iterator.Advance();
   1276     }
   1277   }
   1278 }
   1279 
   1280 
   1281 void RegisterAllocator::BuildLiveRanges() {
   1282   RegisterAllocatorPhase phase("L_Build live ranges", this);
   1283   InitializeLivenessAnalysis();
   1284   // Process the blocks in reverse order.
   1285   for (int block_id = code()->BasicBlockCount() - 1; block_id >= 0;
   1286        --block_id) {
   1287     BasicBlock* block = code()->BlockAt(block_id);
   1288     BitVector* live = ComputeLiveOut(block);
   1289     // Initially consider all live_out values live for the entire block. We
   1290     // will shorten these intervals if necessary.
   1291     AddInitialIntervals(block, live);
   1292 
   1293     // Process the instructions in reverse order, generating and killing
   1294     // live values.
   1295     ProcessInstructions(block, live);
   1296     // All phi output operands are killed by this block.
   1297     for (BasicBlock::const_iterator i = block->begin(); i != block->end();
   1298          ++i) {
   1299       Node* phi = *i;
   1300       if (phi->opcode() != IrOpcode::kPhi) continue;
   1301 
   1302       // The live range interval already ends at the first instruction of the
   1303       // block.
   1304       live->Remove(phi->id());
   1305 
   1306       InstructionOperand* hint = NULL;
   1307       InstructionOperand* phi_operand = NULL;
   1308       GapInstruction* gap = GetLastGap(block->PredecessorAt(0));
   1309 
   1310       // TODO(titzer): no need to create the parallel move if it doesn't exit.
   1311       ParallelMove* move =
   1312           gap->GetOrCreateParallelMove(GapInstruction::START, code_zone());
   1313       for (int j = 0; j < move->move_operands()->length(); ++j) {
   1314         InstructionOperand* to = move->move_operands()->at(j).destination();
   1315         if (to->IsUnallocated() &&
   1316             UnallocatedOperand::cast(to)->virtual_register() == phi->id()) {
   1317           hint = move->move_operands()->at(j).source();
   1318           phi_operand = to;
   1319           break;
   1320         }
   1321       }
   1322       DCHECK(hint != NULL);
   1323 
   1324       LifetimePosition block_start = LifetimePosition::FromInstructionIndex(
   1325           block->first_instruction_index());
   1326       Define(block_start, phi_operand, hint);
   1327     }
   1328 
   1329     // Now live is live_in for this block except not including values live
   1330     // out on backward successor edges.
   1331     live_in_sets_[block_id] = live;
   1332 
   1333     if (block->IsLoopHeader()) {
   1334       // Add a live range stretching from the first loop instruction to the last
   1335       // for each value live on entry to the header.
   1336       BitVector::Iterator iterator(live);
   1337       LifetimePosition start = LifetimePosition::FromInstructionIndex(
   1338           block->first_instruction_index());
   1339       int end_index =
   1340           code()->BlockAt(block->loop_end_)->last_instruction_index();
   1341       LifetimePosition end =
   1342           LifetimePosition::FromInstructionIndex(end_index).NextInstruction();
   1343       while (!iterator.Done()) {
   1344         int operand_index = iterator.Current();
   1345         LiveRange* range = LiveRangeFor(operand_index);
   1346         range->EnsureInterval(start, end, zone());
   1347         iterator.Advance();
   1348       }
   1349 
   1350       // Insert all values into the live in sets of all blocks in the loop.
   1351       for (int i = block->rpo_number_ + 1; i < block->loop_end_; ++i) {
   1352         live_in_sets_[i]->Union(*live);
   1353       }
   1354     }
   1355 
   1356 #ifdef DEBUG
   1357     if (block_id == 0) {
   1358       BitVector::Iterator iterator(live);
   1359       bool found = false;
   1360       while (!iterator.Done()) {
   1361         found = true;
   1362         int operand_index = iterator.Current();
   1363         PrintF("Register allocator error: live v%d reached first block.\n",
   1364                operand_index);
   1365         LiveRange* range = LiveRangeFor(operand_index);
   1366         PrintF("  (first use is at %d)\n", range->first_pos()->pos().Value());
   1367         CompilationInfo* info = code()->linkage()->info();
   1368         if (info->IsStub()) {
   1369           if (info->code_stub() == NULL) {
   1370             PrintF("\n");
   1371           } else {
   1372             CodeStub::Major major_key = info->code_stub()->MajorKey();
   1373             PrintF("  (function: %s)\n", CodeStub::MajorName(major_key, false));
   1374           }
   1375         } else {
   1376           DCHECK(info->IsOptimizing());
   1377           AllowHandleDereference allow_deref;
   1378           PrintF("  (function: %s)\n",
   1379                  info->function()->debug_name()->ToCString().get());
   1380         }
   1381         iterator.Advance();
   1382       }
   1383       DCHECK(!found);
   1384     }
   1385 #endif
   1386   }
   1387 
   1388   for (int i = 0; i < live_ranges_.length(); ++i) {
   1389     if (live_ranges_[i] != NULL) {
   1390       live_ranges_[i]->kind_ = RequiredRegisterKind(live_ranges_[i]->id());
   1391 
   1392       // TODO(bmeurer): This is a horrible hack to make sure that for constant
   1393       // live ranges, every use requires the constant to be in a register.
   1394       // Without this hack, all uses with "any" policy would get the constant
   1395       // operand assigned.
   1396       LiveRange* range = live_ranges_[i];
   1397       if (range->HasAllocatedSpillOperand() &&
   1398           range->GetSpillOperand()->IsConstant()) {
   1399         for (UsePosition* pos = range->first_pos(); pos != NULL;
   1400              pos = pos->next_) {
   1401           pos->register_beneficial_ = true;
   1402           pos->requires_reg_ = true;
   1403         }
   1404       }
   1405     }
   1406   }
   1407 }
   1408 
   1409 
   1410 bool RegisterAllocator::SafePointsAreInOrder() const {
   1411   int safe_point = 0;
   1412   const PointerMapDeque* pointer_maps = code()->pointer_maps();
   1413   for (PointerMapDeque::const_iterator it = pointer_maps->begin();
   1414        it != pointer_maps->end(); ++it) {
   1415     PointerMap* map = *it;
   1416     if (safe_point > map->instruction_position()) return false;
   1417     safe_point = map->instruction_position();
   1418   }
   1419   return true;
   1420 }
   1421 
   1422 
   1423 void RegisterAllocator::PopulatePointerMaps() {
   1424   RegisterAllocatorPhase phase("L_Populate pointer maps", this);
   1425 
   1426   DCHECK(SafePointsAreInOrder());
   1427 
   1428   // Iterate over all safe point positions and record a pointer
   1429   // for all spilled live ranges at this point.
   1430   int last_range_start = 0;
   1431   const PointerMapDeque* pointer_maps = code()->pointer_maps();
   1432   PointerMapDeque::const_iterator first_it = pointer_maps->begin();
   1433   for (int range_idx = 0; range_idx < live_ranges()->length(); ++range_idx) {
   1434     LiveRange* range = live_ranges()->at(range_idx);
   1435     if (range == NULL) continue;
   1436     // Iterate over the first parts of multi-part live ranges.
   1437     if (range->parent() != NULL) continue;
   1438     // Skip non-reference values.
   1439     if (!HasTaggedValue(range->id())) continue;
   1440     // Skip empty live ranges.
   1441     if (range->IsEmpty()) continue;
   1442 
   1443     // Find the extent of the range and its children.
   1444     int start = range->Start().InstructionIndex();
   1445     int end = 0;
   1446     for (LiveRange* cur = range; cur != NULL; cur = cur->next()) {
   1447       LifetimePosition this_end = cur->End();
   1448       if (this_end.InstructionIndex() > end) end = this_end.InstructionIndex();
   1449       DCHECK(cur->Start().InstructionIndex() >= start);
   1450     }
   1451 
   1452     // Most of the ranges are in order, but not all.  Keep an eye on when they
   1453     // step backwards and reset the first_it so we don't miss any safe points.
   1454     if (start < last_range_start) first_it = pointer_maps->begin();
   1455     last_range_start = start;
   1456 
   1457     // Step across all the safe points that are before the start of this range,
   1458     // recording how far we step in order to save doing this for the next range.
   1459     for (; first_it != pointer_maps->end(); ++first_it) {
   1460       PointerMap* map = *first_it;
   1461       if (map->instruction_position() >= start) break;
   1462     }
   1463 
   1464     // Step through the safe points to see whether they are in the range.
   1465     for (PointerMapDeque::const_iterator it = first_it;
   1466          it != pointer_maps->end(); ++it) {
   1467       PointerMap* map = *it;
   1468       int safe_point = map->instruction_position();
   1469 
   1470       // The safe points are sorted so we can stop searching here.
   1471       if (safe_point - 1 > end) break;
   1472 
   1473       // Advance to the next active range that covers the current
   1474       // safe point position.
   1475       LifetimePosition safe_point_pos =
   1476           LifetimePosition::FromInstructionIndex(safe_point);
   1477       LiveRange* cur = range;
   1478       while (cur != NULL && !cur->Covers(safe_point_pos)) {
   1479         cur = cur->next();
   1480       }
   1481       if (cur == NULL) continue;
   1482 
   1483       // Check if the live range is spilled and the safe point is after
   1484       // the spill position.
   1485       if (range->HasAllocatedSpillOperand() &&
   1486           safe_point >= range->spill_start_index() &&
   1487           !range->GetSpillOperand()->IsConstant()) {
   1488         TraceAlloc("Pointer for range %d (spilled at %d) at safe point %d\n",
   1489                    range->id(), range->spill_start_index(), safe_point);
   1490         map->RecordPointer(range->GetSpillOperand(), code_zone());
   1491       }
   1492 
   1493       if (!cur->IsSpilled()) {
   1494         TraceAlloc(
   1495             "Pointer in register for range %d (start at %d) "
   1496             "at safe point %d\n",
   1497             cur->id(), cur->Start().Value(), safe_point);
   1498         InstructionOperand* operand = cur->CreateAssignedOperand(code_zone());
   1499         DCHECK(!operand->IsStackSlot());
   1500         map->RecordPointer(operand, code_zone());
   1501       }
   1502     }
   1503   }
   1504 }
   1505 
   1506 
   1507 void RegisterAllocator::AllocateGeneralRegisters() {
   1508   RegisterAllocatorPhase phase("L_Allocate general registers", this);
   1509   num_registers_ = Register::NumAllocatableRegisters();
   1510   mode_ = GENERAL_REGISTERS;
   1511   AllocateRegisters();
   1512 }
   1513 
   1514 
   1515 void RegisterAllocator::AllocateDoubleRegisters() {
   1516   RegisterAllocatorPhase phase("L_Allocate double registers", this);
   1517   num_registers_ = DoubleRegister::NumAllocatableRegisters();
   1518   mode_ = DOUBLE_REGISTERS;
   1519   AllocateRegisters();
   1520 }
   1521 
   1522 
   1523 void RegisterAllocator::AllocateRegisters() {
   1524   DCHECK(unhandled_live_ranges_.is_empty());
   1525 
   1526   for (int i = 0; i < live_ranges_.length(); ++i) {
   1527     if (live_ranges_[i] != NULL) {
   1528       if (live_ranges_[i]->Kind() == mode_) {
   1529         AddToUnhandledUnsorted(live_ranges_[i]);
   1530       }
   1531     }
   1532   }
   1533   SortUnhandled();
   1534   DCHECK(UnhandledIsSorted());
   1535 
   1536   DCHECK(reusable_slots_.is_empty());
   1537   DCHECK(active_live_ranges_.is_empty());
   1538   DCHECK(inactive_live_ranges_.is_empty());
   1539 
   1540   if (mode_ == DOUBLE_REGISTERS) {
   1541     for (int i = 0; i < DoubleRegister::NumAllocatableRegisters(); ++i) {
   1542       LiveRange* current = fixed_double_live_ranges_.at(i);
   1543       if (current != NULL) {
   1544         AddToInactive(current);
   1545       }
   1546     }
   1547   } else {
   1548     DCHECK(mode_ == GENERAL_REGISTERS);
   1549     for (int i = 0; i < fixed_live_ranges_.length(); ++i) {
   1550       LiveRange* current = fixed_live_ranges_.at(i);
   1551       if (current != NULL) {
   1552         AddToInactive(current);
   1553       }
   1554     }
   1555   }
   1556 
   1557   while (!unhandled_live_ranges_.is_empty()) {
   1558     DCHECK(UnhandledIsSorted());
   1559     LiveRange* current = unhandled_live_ranges_.RemoveLast();
   1560     DCHECK(UnhandledIsSorted());
   1561     LifetimePosition position = current->Start();
   1562 #ifdef DEBUG
   1563     allocation_finger_ = position;
   1564 #endif
   1565     TraceAlloc("Processing interval %d start=%d\n", current->id(),
   1566                position.Value());
   1567 
   1568     if (current->HasAllocatedSpillOperand()) {
   1569       TraceAlloc("Live range %d already has a spill operand\n", current->id());
   1570       LifetimePosition next_pos = position;
   1571       if (code()->IsGapAt(next_pos.InstructionIndex())) {
   1572         next_pos = next_pos.NextInstruction();
   1573       }
   1574       UsePosition* pos = current->NextUsePositionRegisterIsBeneficial(next_pos);
   1575       // If the range already has a spill operand and it doesn't need a
   1576       // register immediately, split it and spill the first part of the range.
   1577       if (pos == NULL) {
   1578         Spill(current);
   1579         continue;
   1580       } else if (pos->pos().Value() >
   1581                  current->Start().NextInstruction().Value()) {
   1582         // Do not spill live range eagerly if use position that can benefit from
   1583         // the register is too close to the start of live range.
   1584         SpillBetween(current, current->Start(), pos->pos());
   1585         if (!AllocationOk()) return;
   1586         DCHECK(UnhandledIsSorted());
   1587         continue;
   1588       }
   1589     }
   1590 
   1591     for (int i = 0; i < active_live_ranges_.length(); ++i) {
   1592       LiveRange* cur_active = active_live_ranges_.at(i);
   1593       if (cur_active->End().Value() <= position.Value()) {
   1594         ActiveToHandled(cur_active);
   1595         --i;  // The live range was removed from the list of active live ranges.
   1596       } else if (!cur_active->Covers(position)) {
   1597         ActiveToInactive(cur_active);
   1598         --i;  // The live range was removed from the list of active live ranges.
   1599       }
   1600     }
   1601 
   1602     for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
   1603       LiveRange* cur_inactive = inactive_live_ranges_.at(i);
   1604       if (cur_inactive->End().Value() <= position.Value()) {
   1605         InactiveToHandled(cur_inactive);
   1606         --i;  // Live range was removed from the list of inactive live ranges.
   1607       } else if (cur_inactive->Covers(position)) {
   1608         InactiveToActive(cur_inactive);
   1609         --i;  // Live range was removed from the list of inactive live ranges.
   1610       }
   1611     }
   1612 
   1613     DCHECK(!current->HasRegisterAssigned() && !current->IsSpilled());
   1614 
   1615     bool result = TryAllocateFreeReg(current);
   1616     if (!AllocationOk()) return;
   1617 
   1618     if (!result) AllocateBlockedReg(current);
   1619     if (!AllocationOk()) return;
   1620 
   1621     if (current->HasRegisterAssigned()) {
   1622       AddToActive(current);
   1623     }
   1624   }
   1625 
   1626   reusable_slots_.Rewind(0);
   1627   active_live_ranges_.Rewind(0);
   1628   inactive_live_ranges_.Rewind(0);
   1629 }
   1630 
   1631 
   1632 const char* RegisterAllocator::RegisterName(int allocation_index) {
   1633   if (mode_ == GENERAL_REGISTERS) {
   1634     return Register::AllocationIndexToString(allocation_index);
   1635   } else {
   1636     return DoubleRegister::AllocationIndexToString(allocation_index);
   1637   }
   1638 }
   1639 
   1640 
   1641 void RegisterAllocator::TraceAlloc(const char* msg, ...) {
   1642   if (FLAG_trace_alloc) {
   1643     va_list arguments;
   1644     va_start(arguments, msg);
   1645     base::OS::VPrint(msg, arguments);
   1646     va_end(arguments);
   1647   }
   1648 }
   1649 
   1650 
   1651 bool RegisterAllocator::HasTaggedValue(int virtual_register) const {
   1652   return code()->IsReference(virtual_register);
   1653 }
   1654 
   1655 
   1656 RegisterKind RegisterAllocator::RequiredRegisterKind(
   1657     int virtual_register) const {
   1658   return (code()->IsDouble(virtual_register)) ? DOUBLE_REGISTERS
   1659                                               : GENERAL_REGISTERS;
   1660 }
   1661 
   1662 
   1663 void RegisterAllocator::AddToActive(LiveRange* range) {
   1664   TraceAlloc("Add live range %d to active\n", range->id());
   1665   active_live_ranges_.Add(range, zone());
   1666 }
   1667 
   1668 
   1669 void RegisterAllocator::AddToInactive(LiveRange* range) {
   1670   TraceAlloc("Add live range %d to inactive\n", range->id());
   1671   inactive_live_ranges_.Add(range, zone());
   1672 }
   1673 
   1674 
   1675 void RegisterAllocator::AddToUnhandledSorted(LiveRange* range) {
   1676   if (range == NULL || range->IsEmpty()) return;
   1677   DCHECK(!range->HasRegisterAssigned() && !range->IsSpilled());
   1678   DCHECK(allocation_finger_.Value() <= range->Start().Value());
   1679   for (int i = unhandled_live_ranges_.length() - 1; i >= 0; --i) {
   1680     LiveRange* cur_range = unhandled_live_ranges_.at(i);
   1681     if (range->ShouldBeAllocatedBefore(cur_range)) {
   1682       TraceAlloc("Add live range %d to unhandled at %d\n", range->id(), i + 1);
   1683       unhandled_live_ranges_.InsertAt(i + 1, range, zone());
   1684       DCHECK(UnhandledIsSorted());
   1685       return;
   1686     }
   1687   }
   1688   TraceAlloc("Add live range %d to unhandled at start\n", range->id());
   1689   unhandled_live_ranges_.InsertAt(0, range, zone());
   1690   DCHECK(UnhandledIsSorted());
   1691 }
   1692 
   1693 
   1694 void RegisterAllocator::AddToUnhandledUnsorted(LiveRange* range) {
   1695   if (range == NULL || range->IsEmpty()) return;
   1696   DCHECK(!range->HasRegisterAssigned() && !range->IsSpilled());
   1697   TraceAlloc("Add live range %d to unhandled unsorted at end\n", range->id());
   1698   unhandled_live_ranges_.Add(range, zone());
   1699 }
   1700 
   1701 
   1702 static int UnhandledSortHelper(LiveRange* const* a, LiveRange* const* b) {
   1703   DCHECK(!(*a)->ShouldBeAllocatedBefore(*b) ||
   1704          !(*b)->ShouldBeAllocatedBefore(*a));
   1705   if ((*a)->ShouldBeAllocatedBefore(*b)) return 1;
   1706   if ((*b)->ShouldBeAllocatedBefore(*a)) return -1;
   1707   return (*a)->id() - (*b)->id();
   1708 }
   1709 
   1710 
   1711 // Sort the unhandled live ranges so that the ranges to be processed first are
   1712 // at the end of the array list.  This is convenient for the register allocation
   1713 // algorithm because it is efficient to remove elements from the end.
   1714 void RegisterAllocator::SortUnhandled() {
   1715   TraceAlloc("Sort unhandled\n");
   1716   unhandled_live_ranges_.Sort(&UnhandledSortHelper);
   1717 }
   1718 
   1719 
   1720 bool RegisterAllocator::UnhandledIsSorted() {
   1721   int len = unhandled_live_ranges_.length();
   1722   for (int i = 1; i < len; i++) {
   1723     LiveRange* a = unhandled_live_ranges_.at(i - 1);
   1724     LiveRange* b = unhandled_live_ranges_.at(i);
   1725     if (a->Start().Value() < b->Start().Value()) return false;
   1726   }
   1727   return true;
   1728 }
   1729 
   1730 
   1731 void RegisterAllocator::FreeSpillSlot(LiveRange* range) {
   1732   // Check that we are the last range.
   1733   if (range->next() != NULL) return;
   1734 
   1735   if (!range->TopLevel()->HasAllocatedSpillOperand()) return;
   1736 
   1737   InstructionOperand* spill_operand = range->TopLevel()->GetSpillOperand();
   1738   if (spill_operand->IsConstant()) return;
   1739   if (spill_operand->index() >= 0) {
   1740     reusable_slots_.Add(range, zone());
   1741   }
   1742 }
   1743 
   1744 
   1745 InstructionOperand* RegisterAllocator::TryReuseSpillSlot(LiveRange* range) {
   1746   if (reusable_slots_.is_empty()) return NULL;
   1747   if (reusable_slots_.first()->End().Value() >
   1748       range->TopLevel()->Start().Value()) {
   1749     return NULL;
   1750   }
   1751   InstructionOperand* result =
   1752       reusable_slots_.first()->TopLevel()->GetSpillOperand();
   1753   reusable_slots_.Remove(0);
   1754   return result;
   1755 }
   1756 
   1757 
   1758 void RegisterAllocator::ActiveToHandled(LiveRange* range) {
   1759   DCHECK(active_live_ranges_.Contains(range));
   1760   active_live_ranges_.RemoveElement(range);
   1761   TraceAlloc("Moving live range %d from active to handled\n", range->id());
   1762   FreeSpillSlot(range);
   1763 }
   1764 
   1765 
   1766 void RegisterAllocator::ActiveToInactive(LiveRange* range) {
   1767   DCHECK(active_live_ranges_.Contains(range));
   1768   active_live_ranges_.RemoveElement(range);
   1769   inactive_live_ranges_.Add(range, zone());
   1770   TraceAlloc("Moving live range %d from active to inactive\n", range->id());
   1771 }
   1772 
   1773 
   1774 void RegisterAllocator::InactiveToHandled(LiveRange* range) {
   1775   DCHECK(inactive_live_ranges_.Contains(range));
   1776   inactive_live_ranges_.RemoveElement(range);
   1777   TraceAlloc("Moving live range %d from inactive to handled\n", range->id());
   1778   FreeSpillSlot(range);
   1779 }
   1780 
   1781 
   1782 void RegisterAllocator::InactiveToActive(LiveRange* range) {
   1783   DCHECK(inactive_live_ranges_.Contains(range));
   1784   inactive_live_ranges_.RemoveElement(range);
   1785   active_live_ranges_.Add(range, zone());
   1786   TraceAlloc("Moving live range %d from inactive to active\n", range->id());
   1787 }
   1788 
   1789 
   1790 // TryAllocateFreeReg and AllocateBlockedReg assume this
   1791 // when allocating local arrays.
   1792 STATIC_ASSERT(DoubleRegister::kMaxNumAllocatableRegisters >=
   1793               Register::kMaxNumAllocatableRegisters);
   1794 
   1795 
   1796 bool RegisterAllocator::TryAllocateFreeReg(LiveRange* current) {
   1797   LifetimePosition free_until_pos[DoubleRegister::kMaxNumAllocatableRegisters];
   1798 
   1799   for (int i = 0; i < num_registers_; i++) {
   1800     free_until_pos[i] = LifetimePosition::MaxPosition();
   1801   }
   1802 
   1803   for (int i = 0; i < active_live_ranges_.length(); ++i) {
   1804     LiveRange* cur_active = active_live_ranges_.at(i);
   1805     free_until_pos[cur_active->assigned_register()] =
   1806         LifetimePosition::FromInstructionIndex(0);
   1807   }
   1808 
   1809   for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
   1810     LiveRange* cur_inactive = inactive_live_ranges_.at(i);
   1811     DCHECK(cur_inactive->End().Value() > current->Start().Value());
   1812     LifetimePosition next_intersection =
   1813         cur_inactive->FirstIntersection(current);
   1814     if (!next_intersection.IsValid()) continue;
   1815     int cur_reg = cur_inactive->assigned_register();
   1816     free_until_pos[cur_reg] = Min(free_until_pos[cur_reg], next_intersection);
   1817   }
   1818 
   1819   InstructionOperand* hint = current->FirstHint();
   1820   if (hint != NULL && (hint->IsRegister() || hint->IsDoubleRegister())) {
   1821     int register_index = hint->index();
   1822     TraceAlloc(
   1823         "Found reg hint %s (free until [%d) for live range %d (end %d[).\n",
   1824         RegisterName(register_index), free_until_pos[register_index].Value(),
   1825         current->id(), current->End().Value());
   1826 
   1827     // The desired register is free until the end of the current live range.
   1828     if (free_until_pos[register_index].Value() >= current->End().Value()) {
   1829       TraceAlloc("Assigning preferred reg %s to live range %d\n",
   1830                  RegisterName(register_index), current->id());
   1831       SetLiveRangeAssignedRegister(current, register_index);
   1832       return true;
   1833     }
   1834   }
   1835 
   1836   // Find the register which stays free for the longest time.
   1837   int reg = 0;
   1838   for (int i = 1; i < RegisterCount(); ++i) {
   1839     if (free_until_pos[i].Value() > free_until_pos[reg].Value()) {
   1840       reg = i;
   1841     }
   1842   }
   1843 
   1844   LifetimePosition pos = free_until_pos[reg];
   1845 
   1846   if (pos.Value() <= current->Start().Value()) {
   1847     // All registers are blocked.
   1848     return false;
   1849   }
   1850 
   1851   if (pos.Value() < current->End().Value()) {
   1852     // Register reg is available at the range start but becomes blocked before
   1853     // the range end. Split current at position where it becomes blocked.
   1854     LiveRange* tail = SplitRangeAt(current, pos);
   1855     if (!AllocationOk()) return false;
   1856     AddToUnhandledSorted(tail);
   1857   }
   1858 
   1859 
   1860   // Register reg is available at the range start and is free until
   1861   // the range end.
   1862   DCHECK(pos.Value() >= current->End().Value());
   1863   TraceAlloc("Assigning free reg %s to live range %d\n", RegisterName(reg),
   1864              current->id());
   1865   SetLiveRangeAssignedRegister(current, reg);
   1866 
   1867   return true;
   1868 }
   1869 
   1870 
   1871 void RegisterAllocator::AllocateBlockedReg(LiveRange* current) {
   1872   UsePosition* register_use = current->NextRegisterPosition(current->Start());
   1873   if (register_use == NULL) {
   1874     // There is no use in the current live range that requires a register.
   1875     // We can just spill it.
   1876     Spill(current);
   1877     return;
   1878   }
   1879 
   1880 
   1881   LifetimePosition use_pos[DoubleRegister::kMaxNumAllocatableRegisters];
   1882   LifetimePosition block_pos[DoubleRegister::kMaxNumAllocatableRegisters];
   1883 
   1884   for (int i = 0; i < num_registers_; i++) {
   1885     use_pos[i] = block_pos[i] = LifetimePosition::MaxPosition();
   1886   }
   1887 
   1888   for (int i = 0; i < active_live_ranges_.length(); ++i) {
   1889     LiveRange* range = active_live_ranges_[i];
   1890     int cur_reg = range->assigned_register();
   1891     if (range->IsFixed() || !range->CanBeSpilled(current->Start())) {
   1892       block_pos[cur_reg] = use_pos[cur_reg] =
   1893           LifetimePosition::FromInstructionIndex(0);
   1894     } else {
   1895       UsePosition* next_use =
   1896           range->NextUsePositionRegisterIsBeneficial(current->Start());
   1897       if (next_use == NULL) {
   1898         use_pos[cur_reg] = range->End();
   1899       } else {
   1900         use_pos[cur_reg] = next_use->pos();
   1901       }
   1902     }
   1903   }
   1904 
   1905   for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
   1906     LiveRange* range = inactive_live_ranges_.at(i);
   1907     DCHECK(range->End().Value() > current->Start().Value());
   1908     LifetimePosition next_intersection = range->FirstIntersection(current);
   1909     if (!next_intersection.IsValid()) continue;
   1910     int cur_reg = range->assigned_register();
   1911     if (range->IsFixed()) {
   1912       block_pos[cur_reg] = Min(block_pos[cur_reg], next_intersection);
   1913       use_pos[cur_reg] = Min(block_pos[cur_reg], use_pos[cur_reg]);
   1914     } else {
   1915       use_pos[cur_reg] = Min(use_pos[cur_reg], next_intersection);
   1916     }
   1917   }
   1918 
   1919   int reg = 0;
   1920   for (int i = 1; i < RegisterCount(); ++i) {
   1921     if (use_pos[i].Value() > use_pos[reg].Value()) {
   1922       reg = i;
   1923     }
   1924   }
   1925 
   1926   LifetimePosition pos = use_pos[reg];
   1927 
   1928   if (pos.Value() < register_use->pos().Value()) {
   1929     // All registers are blocked before the first use that requires a register.
   1930     // Spill starting part of live range up to that use.
   1931     SpillBetween(current, current->Start(), register_use->pos());
   1932     return;
   1933   }
   1934 
   1935   if (block_pos[reg].Value() < current->End().Value()) {
   1936     // Register becomes blocked before the current range end. Split before that
   1937     // position.
   1938     LiveRange* tail = SplitBetween(current, current->Start(),
   1939                                    block_pos[reg].InstructionStart());
   1940     if (!AllocationOk()) return;
   1941     AddToUnhandledSorted(tail);
   1942   }
   1943 
   1944   // Register reg is not blocked for the whole range.
   1945   DCHECK(block_pos[reg].Value() >= current->End().Value());
   1946   TraceAlloc("Assigning blocked reg %s to live range %d\n", RegisterName(reg),
   1947              current->id());
   1948   SetLiveRangeAssignedRegister(current, reg);
   1949 
   1950   // This register was not free. Thus we need to find and spill
   1951   // parts of active and inactive live regions that use the same register
   1952   // at the same lifetime positions as current.
   1953   SplitAndSpillIntersecting(current);
   1954 }
   1955 
   1956 
   1957 LifetimePosition RegisterAllocator::FindOptimalSpillingPos(
   1958     LiveRange* range, LifetimePosition pos) {
   1959   BasicBlock* block = GetBlock(pos.InstructionStart());
   1960   BasicBlock* loop_header =
   1961       block->IsLoopHeader() ? block : code()->GetContainingLoop(block);
   1962 
   1963   if (loop_header == NULL) return pos;
   1964 
   1965   UsePosition* prev_use = range->PreviousUsePositionRegisterIsBeneficial(pos);
   1966 
   1967   while (loop_header != NULL) {
   1968     // We are going to spill live range inside the loop.
   1969     // If possible try to move spilling position backwards to loop header.
   1970     // This will reduce number of memory moves on the back edge.
   1971     LifetimePosition loop_start = LifetimePosition::FromInstructionIndex(
   1972         loop_header->first_instruction_index());
   1973 
   1974     if (range->Covers(loop_start)) {
   1975       if (prev_use == NULL || prev_use->pos().Value() < loop_start.Value()) {
   1976         // No register beneficial use inside the loop before the pos.
   1977         pos = loop_start;
   1978       }
   1979     }
   1980 
   1981     // Try hoisting out to an outer loop.
   1982     loop_header = code()->GetContainingLoop(loop_header);
   1983   }
   1984 
   1985   return pos;
   1986 }
   1987 
   1988 
   1989 void RegisterAllocator::SplitAndSpillIntersecting(LiveRange* current) {
   1990   DCHECK(current->HasRegisterAssigned());
   1991   int reg = current->assigned_register();
   1992   LifetimePosition split_pos = current->Start();
   1993   for (int i = 0; i < active_live_ranges_.length(); ++i) {
   1994     LiveRange* range = active_live_ranges_[i];
   1995     if (range->assigned_register() == reg) {
   1996       UsePosition* next_pos = range->NextRegisterPosition(current->Start());
   1997       LifetimePosition spill_pos = FindOptimalSpillingPos(range, split_pos);
   1998       if (next_pos == NULL) {
   1999         SpillAfter(range, spill_pos);
   2000       } else {
   2001         // When spilling between spill_pos and next_pos ensure that the range
   2002         // remains spilled at least until the start of the current live range.
   2003         // This guarantees that we will not introduce new unhandled ranges that
   2004         // start before the current range as this violates allocation invariant
   2005         // and will lead to an inconsistent state of active and inactive
   2006         // live-ranges: ranges are allocated in order of their start positions,
   2007         // ranges are retired from active/inactive when the start of the
   2008         // current live-range is larger than their end.
   2009         SpillBetweenUntil(range, spill_pos, current->Start(), next_pos->pos());
   2010       }
   2011       if (!AllocationOk()) return;
   2012       ActiveToHandled(range);
   2013       --i;
   2014     }
   2015   }
   2016 
   2017   for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
   2018     LiveRange* range = inactive_live_ranges_[i];
   2019     DCHECK(range->End().Value() > current->Start().Value());
   2020     if (range->assigned_register() == reg && !range->IsFixed()) {
   2021       LifetimePosition next_intersection = range->FirstIntersection(current);
   2022       if (next_intersection.IsValid()) {
   2023         UsePosition* next_pos = range->NextRegisterPosition(current->Start());
   2024         if (next_pos == NULL) {
   2025           SpillAfter(range, split_pos);
   2026         } else {
   2027           next_intersection = Min(next_intersection, next_pos->pos());
   2028           SpillBetween(range, split_pos, next_intersection);
   2029         }
   2030         if (!AllocationOk()) return;
   2031         InactiveToHandled(range);
   2032         --i;
   2033       }
   2034     }
   2035   }
   2036 }
   2037 
   2038 
   2039 bool RegisterAllocator::IsBlockBoundary(LifetimePosition pos) {
   2040   return pos.IsInstructionStart() &&
   2041          InstructionAt(pos.InstructionIndex())->IsBlockStart();
   2042 }
   2043 
   2044 
   2045 LiveRange* RegisterAllocator::SplitRangeAt(LiveRange* range,
   2046                                            LifetimePosition pos) {
   2047   DCHECK(!range->IsFixed());
   2048   TraceAlloc("Splitting live range %d at %d\n", range->id(), pos.Value());
   2049 
   2050   if (pos.Value() <= range->Start().Value()) return range;
   2051 
   2052   // We can't properly connect liveranges if split occured at the end
   2053   // of control instruction.
   2054   DCHECK(pos.IsInstructionStart() ||
   2055          !InstructionAt(pos.InstructionIndex())->IsControl());
   2056 
   2057   int vreg = GetVirtualRegister();
   2058   if (!AllocationOk()) return NULL;
   2059   LiveRange* result = LiveRangeFor(vreg);
   2060   range->SplitAt(pos, result, zone());
   2061   return result;
   2062 }
   2063 
   2064 
   2065 LiveRange* RegisterAllocator::SplitBetween(LiveRange* range,
   2066                                            LifetimePosition start,
   2067                                            LifetimePosition end) {
   2068   DCHECK(!range->IsFixed());
   2069   TraceAlloc("Splitting live range %d in position between [%d, %d]\n",
   2070              range->id(), start.Value(), end.Value());
   2071 
   2072   LifetimePosition split_pos = FindOptimalSplitPos(start, end);
   2073   DCHECK(split_pos.Value() >= start.Value());
   2074   return SplitRangeAt(range, split_pos);
   2075 }
   2076 
   2077 
   2078 LifetimePosition RegisterAllocator::FindOptimalSplitPos(LifetimePosition start,
   2079                                                         LifetimePosition end) {
   2080   int start_instr = start.InstructionIndex();
   2081   int end_instr = end.InstructionIndex();
   2082   DCHECK(start_instr <= end_instr);
   2083 
   2084   // We have no choice
   2085   if (start_instr == end_instr) return end;
   2086 
   2087   BasicBlock* start_block = GetBlock(start);
   2088   BasicBlock* end_block = GetBlock(end);
   2089 
   2090   if (end_block == start_block) {
   2091     // The interval is split in the same basic block. Split at the latest
   2092     // possible position.
   2093     return end;
   2094   }
   2095 
   2096   BasicBlock* block = end_block;
   2097   // Find header of outermost loop.
   2098   // TODO(titzer): fix redundancy below.
   2099   while (code()->GetContainingLoop(block) != NULL &&
   2100          code()->GetContainingLoop(block)->rpo_number_ >
   2101              start_block->rpo_number_) {
   2102     block = code()->GetContainingLoop(block);
   2103   }
   2104 
   2105   // We did not find any suitable outer loop. Split at the latest possible
   2106   // position unless end_block is a loop header itself.
   2107   if (block == end_block && !end_block->IsLoopHeader()) return end;
   2108 
   2109   return LifetimePosition::FromInstructionIndex(
   2110       block->first_instruction_index());
   2111 }
   2112 
   2113 
   2114 void RegisterAllocator::SpillAfter(LiveRange* range, LifetimePosition pos) {
   2115   LiveRange* second_part = SplitRangeAt(range, pos);
   2116   if (!AllocationOk()) return;
   2117   Spill(second_part);
   2118 }
   2119 
   2120 
   2121 void RegisterAllocator::SpillBetween(LiveRange* range, LifetimePosition start,
   2122                                      LifetimePosition end) {
   2123   SpillBetweenUntil(range, start, start, end);
   2124 }
   2125 
   2126 
   2127 void RegisterAllocator::SpillBetweenUntil(LiveRange* range,
   2128                                           LifetimePosition start,
   2129                                           LifetimePosition until,
   2130                                           LifetimePosition end) {
   2131   CHECK(start.Value() < end.Value());
   2132   LiveRange* second_part = SplitRangeAt(range, start);
   2133   if (!AllocationOk()) return;
   2134 
   2135   if (second_part->Start().Value() < end.Value()) {
   2136     // The split result intersects with [start, end[.
   2137     // Split it at position between ]start+1, end[, spill the middle part
   2138     // and put the rest to unhandled.
   2139     LiveRange* third_part = SplitBetween(
   2140         second_part, Max(second_part->Start().InstructionEnd(), until),
   2141         end.PrevInstruction().InstructionEnd());
   2142     if (!AllocationOk()) return;
   2143 
   2144     DCHECK(third_part != second_part);
   2145 
   2146     Spill(second_part);
   2147     AddToUnhandledSorted(third_part);
   2148   } else {
   2149     // The split result does not intersect with [start, end[.
   2150     // Nothing to spill. Just put it to unhandled as whole.
   2151     AddToUnhandledSorted(second_part);
   2152   }
   2153 }
   2154 
   2155 
   2156 void RegisterAllocator::Spill(LiveRange* range) {
   2157   DCHECK(!range->IsSpilled());
   2158   TraceAlloc("Spilling live range %d\n", range->id());
   2159   LiveRange* first = range->TopLevel();
   2160 
   2161   if (!first->HasAllocatedSpillOperand()) {
   2162     InstructionOperand* op = TryReuseSpillSlot(range);
   2163     if (op == NULL) {
   2164       // Allocate a new operand referring to the spill slot.
   2165       RegisterKind kind = range->Kind();
   2166       int index = code()->frame()->AllocateSpillSlot(kind == DOUBLE_REGISTERS);
   2167       if (kind == DOUBLE_REGISTERS) {
   2168         op = DoubleStackSlotOperand::Create(index, zone());
   2169       } else {
   2170         DCHECK(kind == GENERAL_REGISTERS);
   2171         op = StackSlotOperand::Create(index, zone());
   2172       }
   2173     }
   2174     first->SetSpillOperand(op);
   2175   }
   2176   range->MakeSpilled(code_zone());
   2177 }
   2178 
   2179 
   2180 int RegisterAllocator::RegisterCount() const { return num_registers_; }
   2181 
   2182 
   2183 #ifdef DEBUG
   2184 
   2185 
   2186 void RegisterAllocator::Verify() const {
   2187   for (int i = 0; i < live_ranges()->length(); ++i) {
   2188     LiveRange* current = live_ranges()->at(i);
   2189     if (current != NULL) current->Verify();
   2190   }
   2191 }
   2192 
   2193 
   2194 #endif
   2195 
   2196 
   2197 void RegisterAllocator::SetLiveRangeAssignedRegister(LiveRange* range,
   2198                                                      int reg) {
   2199   if (range->Kind() == DOUBLE_REGISTERS) {
   2200     assigned_double_registers_->Add(reg);
   2201   } else {
   2202     DCHECK(range->Kind() == GENERAL_REGISTERS);
   2203     assigned_registers_->Add(reg);
   2204   }
   2205   range->set_assigned_register(reg, code_zone());
   2206 }
   2207 
   2208 
   2209 RegisterAllocatorPhase::RegisterAllocatorPhase(const char* name,
   2210                                                RegisterAllocator* allocator)
   2211     : CompilationPhase(name, allocator->code()->linkage()->info()),
   2212       allocator_(allocator) {
   2213   if (FLAG_turbo_stats) {
   2214     allocator_zone_start_allocation_size_ =
   2215         allocator->zone()->allocation_size();
   2216   }
   2217 }
   2218 
   2219 
   2220 RegisterAllocatorPhase::~RegisterAllocatorPhase() {
   2221   if (FLAG_turbo_stats) {
   2222     unsigned size = allocator_->zone()->allocation_size() -
   2223                     allocator_zone_start_allocation_size_;
   2224     isolate()->GetTStatistics()->SaveTiming(name(), base::TimeDelta(), size);
   2225   }
   2226 #ifdef DEBUG
   2227   if (allocator_ != NULL) allocator_->Verify();
   2228 #endif
   2229 }
   2230 }
   2231 }
   2232 }  // namespace v8::internal::compiler
   2233