Home | History | Annotate | Download | only in CodeGen
      1 //===-- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ---===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements the TargetLoweringBase class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Target/TargetLowering.h"
     15 #include "llvm/ADT/BitVector.h"
     16 #include "llvm/ADT/STLExtras.h"
     17 #include "llvm/ADT/Triple.h"
     18 #include "llvm/CodeGen/Analysis.h"
     19 #include "llvm/CodeGen/MachineFrameInfo.h"
     20 #include "llvm/CodeGen/MachineFunction.h"
     21 #include "llvm/CodeGen/MachineInstrBuilder.h"
     22 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     23 #include "llvm/CodeGen/StackMaps.h"
     24 #include "llvm/IR/DataLayout.h"
     25 #include "llvm/IR/DerivedTypes.h"
     26 #include "llvm/IR/GlobalVariable.h"
     27 #include "llvm/IR/Mangler.h"
     28 #include "llvm/MC/MCAsmInfo.h"
     29 #include "llvm/MC/MCContext.h"
     30 #include "llvm/MC/MCExpr.h"
     31 #include "llvm/Support/CommandLine.h"
     32 #include "llvm/Support/ErrorHandling.h"
     33 #include "llvm/Support/MathExtras.h"
     34 #include "llvm/Target/TargetLoweringObjectFile.h"
     35 #include "llvm/Target/TargetMachine.h"
     36 #include "llvm/Target/TargetRegisterInfo.h"
     37 #include "llvm/Target/TargetSubtargetInfo.h"
     38 #include <cctype>
     39 using namespace llvm;
     40 
     41 /// InitLibcallNames - Set default libcall names.
     42 ///
     43 static void InitLibcallNames(const char **Names, const Triple &TT) {
     44   Names[RTLIB::SHL_I16] = "__ashlhi3";
     45   Names[RTLIB::SHL_I32] = "__ashlsi3";
     46   Names[RTLIB::SHL_I64] = "__ashldi3";
     47   Names[RTLIB::SHL_I128] = "__ashlti3";
     48   Names[RTLIB::SRL_I16] = "__lshrhi3";
     49   Names[RTLIB::SRL_I32] = "__lshrsi3";
     50   Names[RTLIB::SRL_I64] = "__lshrdi3";
     51   Names[RTLIB::SRL_I128] = "__lshrti3";
     52   Names[RTLIB::SRA_I16] = "__ashrhi3";
     53   Names[RTLIB::SRA_I32] = "__ashrsi3";
     54   Names[RTLIB::SRA_I64] = "__ashrdi3";
     55   Names[RTLIB::SRA_I128] = "__ashrti3";
     56   Names[RTLIB::MUL_I8] = "__mulqi3";
     57   Names[RTLIB::MUL_I16] = "__mulhi3";
     58   Names[RTLIB::MUL_I32] = "__mulsi3";
     59   Names[RTLIB::MUL_I64] = "__muldi3";
     60   Names[RTLIB::MUL_I128] = "__multi3";
     61   Names[RTLIB::MULO_I32] = "__mulosi4";
     62   Names[RTLIB::MULO_I64] = "__mulodi4";
     63   Names[RTLIB::MULO_I128] = "__muloti4";
     64   Names[RTLIB::SDIV_I8] = "__divqi3";
     65   Names[RTLIB::SDIV_I16] = "__divhi3";
     66   Names[RTLIB::SDIV_I32] = "__divsi3";
     67   Names[RTLIB::SDIV_I64] = "__divdi3";
     68   Names[RTLIB::SDIV_I128] = "__divti3";
     69   Names[RTLIB::UDIV_I8] = "__udivqi3";
     70   Names[RTLIB::UDIV_I16] = "__udivhi3";
     71   Names[RTLIB::UDIV_I32] = "__udivsi3";
     72   Names[RTLIB::UDIV_I64] = "__udivdi3";
     73   Names[RTLIB::UDIV_I128] = "__udivti3";
     74   Names[RTLIB::SREM_I8] = "__modqi3";
     75   Names[RTLIB::SREM_I16] = "__modhi3";
     76   Names[RTLIB::SREM_I32] = "__modsi3";
     77   Names[RTLIB::SREM_I64] = "__moddi3";
     78   Names[RTLIB::SREM_I128] = "__modti3";
     79   Names[RTLIB::UREM_I8] = "__umodqi3";
     80   Names[RTLIB::UREM_I16] = "__umodhi3";
     81   Names[RTLIB::UREM_I32] = "__umodsi3";
     82   Names[RTLIB::UREM_I64] = "__umoddi3";
     83   Names[RTLIB::UREM_I128] = "__umodti3";
     84 
     85   // These are generally not available.
     86   Names[RTLIB::SDIVREM_I8] = nullptr;
     87   Names[RTLIB::SDIVREM_I16] = nullptr;
     88   Names[RTLIB::SDIVREM_I32] = nullptr;
     89   Names[RTLIB::SDIVREM_I64] = nullptr;
     90   Names[RTLIB::SDIVREM_I128] = nullptr;
     91   Names[RTLIB::UDIVREM_I8] = nullptr;
     92   Names[RTLIB::UDIVREM_I16] = nullptr;
     93   Names[RTLIB::UDIVREM_I32] = nullptr;
     94   Names[RTLIB::UDIVREM_I64] = nullptr;
     95   Names[RTLIB::UDIVREM_I128] = nullptr;
     96 
     97   Names[RTLIB::NEG_I32] = "__negsi2";
     98   Names[RTLIB::NEG_I64] = "__negdi2";
     99   Names[RTLIB::ADD_F32] = "__addsf3";
    100   Names[RTLIB::ADD_F64] = "__adddf3";
    101   Names[RTLIB::ADD_F80] = "__addxf3";
    102   Names[RTLIB::ADD_F128] = "__addtf3";
    103   Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
    104   Names[RTLIB::SUB_F32] = "__subsf3";
    105   Names[RTLIB::SUB_F64] = "__subdf3";
    106   Names[RTLIB::SUB_F80] = "__subxf3";
    107   Names[RTLIB::SUB_F128] = "__subtf3";
    108   Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
    109   Names[RTLIB::MUL_F32] = "__mulsf3";
    110   Names[RTLIB::MUL_F64] = "__muldf3";
    111   Names[RTLIB::MUL_F80] = "__mulxf3";
    112   Names[RTLIB::MUL_F128] = "__multf3";
    113   Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
    114   Names[RTLIB::DIV_F32] = "__divsf3";
    115   Names[RTLIB::DIV_F64] = "__divdf3";
    116   Names[RTLIB::DIV_F80] = "__divxf3";
    117   Names[RTLIB::DIV_F128] = "__divtf3";
    118   Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
    119   Names[RTLIB::REM_F32] = "fmodf";
    120   Names[RTLIB::REM_F64] = "fmod";
    121   Names[RTLIB::REM_F80] = "fmodl";
    122   Names[RTLIB::REM_F128] = "fmodl";
    123   Names[RTLIB::REM_PPCF128] = "fmodl";
    124   Names[RTLIB::FMA_F32] = "fmaf";
    125   Names[RTLIB::FMA_F64] = "fma";
    126   Names[RTLIB::FMA_F80] = "fmal";
    127   Names[RTLIB::FMA_F128] = "fmal";
    128   Names[RTLIB::FMA_PPCF128] = "fmal";
    129   Names[RTLIB::POWI_F32] = "__powisf2";
    130   Names[RTLIB::POWI_F64] = "__powidf2";
    131   Names[RTLIB::POWI_F80] = "__powixf2";
    132   Names[RTLIB::POWI_F128] = "__powitf2";
    133   Names[RTLIB::POWI_PPCF128] = "__powitf2";
    134   Names[RTLIB::SQRT_F32] = "sqrtf";
    135   Names[RTLIB::SQRT_F64] = "sqrt";
    136   Names[RTLIB::SQRT_F80] = "sqrtl";
    137   Names[RTLIB::SQRT_F128] = "sqrtl";
    138   Names[RTLIB::SQRT_PPCF128] = "sqrtl";
    139   Names[RTLIB::LOG_F32] = "logf";
    140   Names[RTLIB::LOG_F64] = "log";
    141   Names[RTLIB::LOG_F80] = "logl";
    142   Names[RTLIB::LOG_F128] = "logl";
    143   Names[RTLIB::LOG_PPCF128] = "logl";
    144   Names[RTLIB::LOG2_F32] = "log2f";
    145   Names[RTLIB::LOG2_F64] = "log2";
    146   Names[RTLIB::LOG2_F80] = "log2l";
    147   Names[RTLIB::LOG2_F128] = "log2l";
    148   Names[RTLIB::LOG2_PPCF128] = "log2l";
    149   Names[RTLIB::LOG10_F32] = "log10f";
    150   Names[RTLIB::LOG10_F64] = "log10";
    151   Names[RTLIB::LOG10_F80] = "log10l";
    152   Names[RTLIB::LOG10_F128] = "log10l";
    153   Names[RTLIB::LOG10_PPCF128] = "log10l";
    154   Names[RTLIB::EXP_F32] = "expf";
    155   Names[RTLIB::EXP_F64] = "exp";
    156   Names[RTLIB::EXP_F80] = "expl";
    157   Names[RTLIB::EXP_F128] = "expl";
    158   Names[RTLIB::EXP_PPCF128] = "expl";
    159   Names[RTLIB::EXP2_F32] = "exp2f";
    160   Names[RTLIB::EXP2_F64] = "exp2";
    161   Names[RTLIB::EXP2_F80] = "exp2l";
    162   Names[RTLIB::EXP2_F128] = "exp2l";
    163   Names[RTLIB::EXP2_PPCF128] = "exp2l";
    164   Names[RTLIB::SIN_F32] = "sinf";
    165   Names[RTLIB::SIN_F64] = "sin";
    166   Names[RTLIB::SIN_F80] = "sinl";
    167   Names[RTLIB::SIN_F128] = "sinl";
    168   Names[RTLIB::SIN_PPCF128] = "sinl";
    169   Names[RTLIB::COS_F32] = "cosf";
    170   Names[RTLIB::COS_F64] = "cos";
    171   Names[RTLIB::COS_F80] = "cosl";
    172   Names[RTLIB::COS_F128] = "cosl";
    173   Names[RTLIB::COS_PPCF128] = "cosl";
    174   Names[RTLIB::POW_F32] = "powf";
    175   Names[RTLIB::POW_F64] = "pow";
    176   Names[RTLIB::POW_F80] = "powl";
    177   Names[RTLIB::POW_F128] = "powl";
    178   Names[RTLIB::POW_PPCF128] = "powl";
    179   Names[RTLIB::CEIL_F32] = "ceilf";
    180   Names[RTLIB::CEIL_F64] = "ceil";
    181   Names[RTLIB::CEIL_F80] = "ceill";
    182   Names[RTLIB::CEIL_F128] = "ceill";
    183   Names[RTLIB::CEIL_PPCF128] = "ceill";
    184   Names[RTLIB::TRUNC_F32] = "truncf";
    185   Names[RTLIB::TRUNC_F64] = "trunc";
    186   Names[RTLIB::TRUNC_F80] = "truncl";
    187   Names[RTLIB::TRUNC_F128] = "truncl";
    188   Names[RTLIB::TRUNC_PPCF128] = "truncl";
    189   Names[RTLIB::RINT_F32] = "rintf";
    190   Names[RTLIB::RINT_F64] = "rint";
    191   Names[RTLIB::RINT_F80] = "rintl";
    192   Names[RTLIB::RINT_F128] = "rintl";
    193   Names[RTLIB::RINT_PPCF128] = "rintl";
    194   Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
    195   Names[RTLIB::NEARBYINT_F64] = "nearbyint";
    196   Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
    197   Names[RTLIB::NEARBYINT_F128] = "nearbyintl";
    198   Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
    199   Names[RTLIB::ROUND_F32] = "roundf";
    200   Names[RTLIB::ROUND_F64] = "round";
    201   Names[RTLIB::ROUND_F80] = "roundl";
    202   Names[RTLIB::ROUND_F128] = "roundl";
    203   Names[RTLIB::ROUND_PPCF128] = "roundl";
    204   Names[RTLIB::FLOOR_F32] = "floorf";
    205   Names[RTLIB::FLOOR_F64] = "floor";
    206   Names[RTLIB::FLOOR_F80] = "floorl";
    207   Names[RTLIB::FLOOR_F128] = "floorl";
    208   Names[RTLIB::FLOOR_PPCF128] = "floorl";
    209   Names[RTLIB::FMIN_F32] = "fminf";
    210   Names[RTLIB::FMIN_F64] = "fmin";
    211   Names[RTLIB::FMIN_F80] = "fminl";
    212   Names[RTLIB::FMIN_F128] = "fminl";
    213   Names[RTLIB::FMIN_PPCF128] = "fminl";
    214   Names[RTLIB::FMAX_F32] = "fmaxf";
    215   Names[RTLIB::FMAX_F64] = "fmax";
    216   Names[RTLIB::FMAX_F80] = "fmaxl";
    217   Names[RTLIB::FMAX_F128] = "fmaxl";
    218   Names[RTLIB::FMAX_PPCF128] = "fmaxl";
    219   Names[RTLIB::ROUND_F32] = "roundf";
    220   Names[RTLIB::ROUND_F64] = "round";
    221   Names[RTLIB::ROUND_F80] = "roundl";
    222   Names[RTLIB::ROUND_F128] = "roundl";
    223   Names[RTLIB::ROUND_PPCF128] = "roundl";
    224   Names[RTLIB::COPYSIGN_F32] = "copysignf";
    225   Names[RTLIB::COPYSIGN_F64] = "copysign";
    226   Names[RTLIB::COPYSIGN_F80] = "copysignl";
    227   Names[RTLIB::COPYSIGN_F128] = "copysignl";
    228   Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
    229   Names[RTLIB::FPEXT_F64_F128] = "__extenddftf2";
    230   Names[RTLIB::FPEXT_F32_F128] = "__extendsftf2";
    231   Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
    232   Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
    233   Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
    234   Names[RTLIB::FPROUND_F64_F16] = "__truncdfhf2";
    235   Names[RTLIB::FPROUND_F80_F16] = "__truncxfhf2";
    236   Names[RTLIB::FPROUND_F128_F16] = "__trunctfhf2";
    237   Names[RTLIB::FPROUND_PPCF128_F16] = "__trunctfhf2";
    238   Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
    239   Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
    240   Names[RTLIB::FPROUND_F128_F32] = "__trunctfsf2";
    241   Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
    242   Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
    243   Names[RTLIB::FPROUND_F128_F64] = "__trunctfdf2";
    244   Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
    245   Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
    246   Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
    247   Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
    248   Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
    249   Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
    250   Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
    251   Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
    252   Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
    253   Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
    254   Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
    255   Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
    256   Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
    257   Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
    258   Names[RTLIB::FPTOSINT_F128_I32] = "__fixtfsi";
    259   Names[RTLIB::FPTOSINT_F128_I64] = "__fixtfdi";
    260   Names[RTLIB::FPTOSINT_F128_I128] = "__fixtfti";
    261   Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
    262   Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
    263   Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
    264   Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
    265   Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
    266   Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
    267   Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
    268   Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
    269   Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
    270   Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
    271   Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
    272   Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
    273   Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
    274   Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
    275   Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
    276   Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
    277   Names[RTLIB::FPTOUINT_F128_I32] = "__fixunstfsi";
    278   Names[RTLIB::FPTOUINT_F128_I64] = "__fixunstfdi";
    279   Names[RTLIB::FPTOUINT_F128_I128] = "__fixunstfti";
    280   Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
    281   Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
    282   Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
    283   Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
    284   Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
    285   Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
    286   Names[RTLIB::SINTTOFP_I32_F128] = "__floatsitf";
    287   Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
    288   Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
    289   Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
    290   Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
    291   Names[RTLIB::SINTTOFP_I64_F128] = "__floatditf";
    292   Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
    293   Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
    294   Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
    295   Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
    296   Names[RTLIB::SINTTOFP_I128_F128] = "__floattitf";
    297   Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
    298   Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
    299   Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
    300   Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
    301   Names[RTLIB::UINTTOFP_I32_F128] = "__floatunsitf";
    302   Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
    303   Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
    304   Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
    305   Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
    306   Names[RTLIB::UINTTOFP_I64_F128] = "__floatunditf";
    307   Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
    308   Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
    309   Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
    310   Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
    311   Names[RTLIB::UINTTOFP_I128_F128] = "__floatuntitf";
    312   Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
    313   Names[RTLIB::OEQ_F32] = "__eqsf2";
    314   Names[RTLIB::OEQ_F64] = "__eqdf2";
    315   Names[RTLIB::OEQ_F128] = "__eqtf2";
    316   Names[RTLIB::UNE_F32] = "__nesf2";
    317   Names[RTLIB::UNE_F64] = "__nedf2";
    318   Names[RTLIB::UNE_F128] = "__netf2";
    319   Names[RTLIB::OGE_F32] = "__gesf2";
    320   Names[RTLIB::OGE_F64] = "__gedf2";
    321   Names[RTLIB::OGE_F128] = "__getf2";
    322   Names[RTLIB::OLT_F32] = "__ltsf2";
    323   Names[RTLIB::OLT_F64] = "__ltdf2";
    324   Names[RTLIB::OLT_F128] = "__lttf2";
    325   Names[RTLIB::OLE_F32] = "__lesf2";
    326   Names[RTLIB::OLE_F64] = "__ledf2";
    327   Names[RTLIB::OLE_F128] = "__letf2";
    328   Names[RTLIB::OGT_F32] = "__gtsf2";
    329   Names[RTLIB::OGT_F64] = "__gtdf2";
    330   Names[RTLIB::OGT_F128] = "__gttf2";
    331   Names[RTLIB::UO_F32] = "__unordsf2";
    332   Names[RTLIB::UO_F64] = "__unorddf2";
    333   Names[RTLIB::UO_F128] = "__unordtf2";
    334   Names[RTLIB::O_F32] = "__unordsf2";
    335   Names[RTLIB::O_F64] = "__unorddf2";
    336   Names[RTLIB::O_F128] = "__unordtf2";
    337   Names[RTLIB::MEMCPY] = "memcpy";
    338   Names[RTLIB::MEMMOVE] = "memmove";
    339   Names[RTLIB::MEMSET] = "memset";
    340   Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
    341   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
    342   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
    343   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
    344   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
    345   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_16] = "__sync_val_compare_and_swap_16";
    346   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
    347   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
    348   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
    349   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
    350   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_16] = "__sync_lock_test_and_set_16";
    351   Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
    352   Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
    353   Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
    354   Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
    355   Names[RTLIB::SYNC_FETCH_AND_ADD_16] = "__sync_fetch_and_add_16";
    356   Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
    357   Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
    358   Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
    359   Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
    360   Names[RTLIB::SYNC_FETCH_AND_SUB_16] = "__sync_fetch_and_sub_16";
    361   Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
    362   Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
    363   Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
    364   Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
    365   Names[RTLIB::SYNC_FETCH_AND_AND_16] = "__sync_fetch_and_and_16";
    366   Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
    367   Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
    368   Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
    369   Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
    370   Names[RTLIB::SYNC_FETCH_AND_OR_16] = "__sync_fetch_and_or_16";
    371   Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
    372   Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
    373   Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
    374   Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
    375   Names[RTLIB::SYNC_FETCH_AND_XOR_16] = "__sync_fetch_and_xor_16";
    376   Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
    377   Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
    378   Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
    379   Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
    380   Names[RTLIB::SYNC_FETCH_AND_NAND_16] = "__sync_fetch_and_nand_16";
    381   Names[RTLIB::SYNC_FETCH_AND_MAX_1] = "__sync_fetch_and_max_1";
    382   Names[RTLIB::SYNC_FETCH_AND_MAX_2] = "__sync_fetch_and_max_2";
    383   Names[RTLIB::SYNC_FETCH_AND_MAX_4] = "__sync_fetch_and_max_4";
    384   Names[RTLIB::SYNC_FETCH_AND_MAX_8] = "__sync_fetch_and_max_8";
    385   Names[RTLIB::SYNC_FETCH_AND_MAX_16] = "__sync_fetch_and_max_16";
    386   Names[RTLIB::SYNC_FETCH_AND_UMAX_1] = "__sync_fetch_and_umax_1";
    387   Names[RTLIB::SYNC_FETCH_AND_UMAX_2] = "__sync_fetch_and_umax_2";
    388   Names[RTLIB::SYNC_FETCH_AND_UMAX_4] = "__sync_fetch_and_umax_4";
    389   Names[RTLIB::SYNC_FETCH_AND_UMAX_8] = "__sync_fetch_and_umax_8";
    390   Names[RTLIB::SYNC_FETCH_AND_UMAX_16] = "__sync_fetch_and_umax_16";
    391   Names[RTLIB::SYNC_FETCH_AND_MIN_1] = "__sync_fetch_and_min_1";
    392   Names[RTLIB::SYNC_FETCH_AND_MIN_2] = "__sync_fetch_and_min_2";
    393   Names[RTLIB::SYNC_FETCH_AND_MIN_4] = "__sync_fetch_and_min_4";
    394   Names[RTLIB::SYNC_FETCH_AND_MIN_8] = "__sync_fetch_and_min_8";
    395   Names[RTLIB::SYNC_FETCH_AND_MIN_16] = "__sync_fetch_and_min_16";
    396   Names[RTLIB::SYNC_FETCH_AND_UMIN_1] = "__sync_fetch_and_umin_1";
    397   Names[RTLIB::SYNC_FETCH_AND_UMIN_2] = "__sync_fetch_and_umin_2";
    398   Names[RTLIB::SYNC_FETCH_AND_UMIN_4] = "__sync_fetch_and_umin_4";
    399   Names[RTLIB::SYNC_FETCH_AND_UMIN_8] = "__sync_fetch_and_umin_8";
    400   Names[RTLIB::SYNC_FETCH_AND_UMIN_16] = "__sync_fetch_and_umin_16";
    401 
    402   if (TT.getEnvironment() == Triple::GNU) {
    403     Names[RTLIB::SINCOS_F32] = "sincosf";
    404     Names[RTLIB::SINCOS_F64] = "sincos";
    405     Names[RTLIB::SINCOS_F80] = "sincosl";
    406     Names[RTLIB::SINCOS_F128] = "sincosl";
    407     Names[RTLIB::SINCOS_PPCF128] = "sincosl";
    408   } else {
    409     // These are generally not available.
    410     Names[RTLIB::SINCOS_F32] = nullptr;
    411     Names[RTLIB::SINCOS_F64] = nullptr;
    412     Names[RTLIB::SINCOS_F80] = nullptr;
    413     Names[RTLIB::SINCOS_F128] = nullptr;
    414     Names[RTLIB::SINCOS_PPCF128] = nullptr;
    415   }
    416 
    417   if (!TT.isOSOpenBSD()) {
    418     Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = "__stack_chk_fail";
    419   } else {
    420     // These are generally not available.
    421     Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = nullptr;
    422   }
    423 }
    424 
    425 /// InitLibcallCallingConvs - Set default libcall CallingConvs.
    426 ///
    427 static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
    428   for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
    429     CCs[i] = CallingConv::C;
    430   }
    431 }
    432 
    433 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
    434 /// UNKNOWN_LIBCALL if there is none.
    435 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
    436   if (OpVT == MVT::f16) {
    437     if (RetVT == MVT::f32)
    438       return FPEXT_F16_F32;
    439   } else if (OpVT == MVT::f32) {
    440     if (RetVT == MVT::f64)
    441       return FPEXT_F32_F64;
    442     if (RetVT == MVT::f128)
    443       return FPEXT_F32_F128;
    444   } else if (OpVT == MVT::f64) {
    445     if (RetVT == MVT::f128)
    446       return FPEXT_F64_F128;
    447   }
    448 
    449   return UNKNOWN_LIBCALL;
    450 }
    451 
    452 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
    453 /// UNKNOWN_LIBCALL if there is none.
    454 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
    455   if (RetVT == MVT::f16) {
    456     if (OpVT == MVT::f32)
    457       return FPROUND_F32_F16;
    458     if (OpVT == MVT::f64)
    459       return FPROUND_F64_F16;
    460     if (OpVT == MVT::f80)
    461       return FPROUND_F80_F16;
    462     if (OpVT == MVT::f128)
    463       return FPROUND_F128_F16;
    464     if (OpVT == MVT::ppcf128)
    465       return FPROUND_PPCF128_F16;
    466   } else if (RetVT == MVT::f32) {
    467     if (OpVT == MVT::f64)
    468       return FPROUND_F64_F32;
    469     if (OpVT == MVT::f80)
    470       return FPROUND_F80_F32;
    471     if (OpVT == MVT::f128)
    472       return FPROUND_F128_F32;
    473     if (OpVT == MVT::ppcf128)
    474       return FPROUND_PPCF128_F32;
    475   } else if (RetVT == MVT::f64) {
    476     if (OpVT == MVT::f80)
    477       return FPROUND_F80_F64;
    478     if (OpVT == MVT::f128)
    479       return FPROUND_F128_F64;
    480     if (OpVT == MVT::ppcf128)
    481       return FPROUND_PPCF128_F64;
    482   }
    483 
    484   return UNKNOWN_LIBCALL;
    485 }
    486 
    487 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
    488 /// UNKNOWN_LIBCALL if there is none.
    489 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
    490   if (OpVT == MVT::f32) {
    491     if (RetVT == MVT::i8)
    492       return FPTOSINT_F32_I8;
    493     if (RetVT == MVT::i16)
    494       return FPTOSINT_F32_I16;
    495     if (RetVT == MVT::i32)
    496       return FPTOSINT_F32_I32;
    497     if (RetVT == MVT::i64)
    498       return FPTOSINT_F32_I64;
    499     if (RetVT == MVT::i128)
    500       return FPTOSINT_F32_I128;
    501   } else if (OpVT == MVT::f64) {
    502     if (RetVT == MVT::i8)
    503       return FPTOSINT_F64_I8;
    504     if (RetVT == MVT::i16)
    505       return FPTOSINT_F64_I16;
    506     if (RetVT == MVT::i32)
    507       return FPTOSINT_F64_I32;
    508     if (RetVT == MVT::i64)
    509       return FPTOSINT_F64_I64;
    510     if (RetVT == MVT::i128)
    511       return FPTOSINT_F64_I128;
    512   } else if (OpVT == MVT::f80) {
    513     if (RetVT == MVT::i32)
    514       return FPTOSINT_F80_I32;
    515     if (RetVT == MVT::i64)
    516       return FPTOSINT_F80_I64;
    517     if (RetVT == MVT::i128)
    518       return FPTOSINT_F80_I128;
    519   } else if (OpVT == MVT::f128) {
    520     if (RetVT == MVT::i32)
    521       return FPTOSINT_F128_I32;
    522     if (RetVT == MVT::i64)
    523       return FPTOSINT_F128_I64;
    524     if (RetVT == MVT::i128)
    525       return FPTOSINT_F128_I128;
    526   } else if (OpVT == MVT::ppcf128) {
    527     if (RetVT == MVT::i32)
    528       return FPTOSINT_PPCF128_I32;
    529     if (RetVT == MVT::i64)
    530       return FPTOSINT_PPCF128_I64;
    531     if (RetVT == MVT::i128)
    532       return FPTOSINT_PPCF128_I128;
    533   }
    534   return UNKNOWN_LIBCALL;
    535 }
    536 
    537 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
    538 /// UNKNOWN_LIBCALL if there is none.
    539 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
    540   if (OpVT == MVT::f32) {
    541     if (RetVT == MVT::i8)
    542       return FPTOUINT_F32_I8;
    543     if (RetVT == MVT::i16)
    544       return FPTOUINT_F32_I16;
    545     if (RetVT == MVT::i32)
    546       return FPTOUINT_F32_I32;
    547     if (RetVT == MVT::i64)
    548       return FPTOUINT_F32_I64;
    549     if (RetVT == MVT::i128)
    550       return FPTOUINT_F32_I128;
    551   } else if (OpVT == MVT::f64) {
    552     if (RetVT == MVT::i8)
    553       return FPTOUINT_F64_I8;
    554     if (RetVT == MVT::i16)
    555       return FPTOUINT_F64_I16;
    556     if (RetVT == MVT::i32)
    557       return FPTOUINT_F64_I32;
    558     if (RetVT == MVT::i64)
    559       return FPTOUINT_F64_I64;
    560     if (RetVT == MVT::i128)
    561       return FPTOUINT_F64_I128;
    562   } else if (OpVT == MVT::f80) {
    563     if (RetVT == MVT::i32)
    564       return FPTOUINT_F80_I32;
    565     if (RetVT == MVT::i64)
    566       return FPTOUINT_F80_I64;
    567     if (RetVT == MVT::i128)
    568       return FPTOUINT_F80_I128;
    569   } else if (OpVT == MVT::f128) {
    570     if (RetVT == MVT::i32)
    571       return FPTOUINT_F128_I32;
    572     if (RetVT == MVT::i64)
    573       return FPTOUINT_F128_I64;
    574     if (RetVT == MVT::i128)
    575       return FPTOUINT_F128_I128;
    576   } else if (OpVT == MVT::ppcf128) {
    577     if (RetVT == MVT::i32)
    578       return FPTOUINT_PPCF128_I32;
    579     if (RetVT == MVT::i64)
    580       return FPTOUINT_PPCF128_I64;
    581     if (RetVT == MVT::i128)
    582       return FPTOUINT_PPCF128_I128;
    583   }
    584   return UNKNOWN_LIBCALL;
    585 }
    586 
    587 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
    588 /// UNKNOWN_LIBCALL if there is none.
    589 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
    590   if (OpVT == MVT::i32) {
    591     if (RetVT == MVT::f32)
    592       return SINTTOFP_I32_F32;
    593     if (RetVT == MVT::f64)
    594       return SINTTOFP_I32_F64;
    595     if (RetVT == MVT::f80)
    596       return SINTTOFP_I32_F80;
    597     if (RetVT == MVT::f128)
    598       return SINTTOFP_I32_F128;
    599     if (RetVT == MVT::ppcf128)
    600       return SINTTOFP_I32_PPCF128;
    601   } else if (OpVT == MVT::i64) {
    602     if (RetVT == MVT::f32)
    603       return SINTTOFP_I64_F32;
    604     if (RetVT == MVT::f64)
    605       return SINTTOFP_I64_F64;
    606     if (RetVT == MVT::f80)
    607       return SINTTOFP_I64_F80;
    608     if (RetVT == MVT::f128)
    609       return SINTTOFP_I64_F128;
    610     if (RetVT == MVT::ppcf128)
    611       return SINTTOFP_I64_PPCF128;
    612   } else if (OpVT == MVT::i128) {
    613     if (RetVT == MVT::f32)
    614       return SINTTOFP_I128_F32;
    615     if (RetVT == MVT::f64)
    616       return SINTTOFP_I128_F64;
    617     if (RetVT == MVT::f80)
    618       return SINTTOFP_I128_F80;
    619     if (RetVT == MVT::f128)
    620       return SINTTOFP_I128_F128;
    621     if (RetVT == MVT::ppcf128)
    622       return SINTTOFP_I128_PPCF128;
    623   }
    624   return UNKNOWN_LIBCALL;
    625 }
    626 
    627 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
    628 /// UNKNOWN_LIBCALL if there is none.
    629 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
    630   if (OpVT == MVT::i32) {
    631     if (RetVT == MVT::f32)
    632       return UINTTOFP_I32_F32;
    633     if (RetVT == MVT::f64)
    634       return UINTTOFP_I32_F64;
    635     if (RetVT == MVT::f80)
    636       return UINTTOFP_I32_F80;
    637     if (RetVT == MVT::f128)
    638       return UINTTOFP_I32_F128;
    639     if (RetVT == MVT::ppcf128)
    640       return UINTTOFP_I32_PPCF128;
    641   } else if (OpVT == MVT::i64) {
    642     if (RetVT == MVT::f32)
    643       return UINTTOFP_I64_F32;
    644     if (RetVT == MVT::f64)
    645       return UINTTOFP_I64_F64;
    646     if (RetVT == MVT::f80)
    647       return UINTTOFP_I64_F80;
    648     if (RetVT == MVT::f128)
    649       return UINTTOFP_I64_F128;
    650     if (RetVT == MVT::ppcf128)
    651       return UINTTOFP_I64_PPCF128;
    652   } else if (OpVT == MVT::i128) {
    653     if (RetVT == MVT::f32)
    654       return UINTTOFP_I128_F32;
    655     if (RetVT == MVT::f64)
    656       return UINTTOFP_I128_F64;
    657     if (RetVT == MVT::f80)
    658       return UINTTOFP_I128_F80;
    659     if (RetVT == MVT::f128)
    660       return UINTTOFP_I128_F128;
    661     if (RetVT == MVT::ppcf128)
    662       return UINTTOFP_I128_PPCF128;
    663   }
    664   return UNKNOWN_LIBCALL;
    665 }
    666 
    667 RTLIB::Libcall RTLIB::getATOMIC(unsigned Opc, MVT VT) {
    668 #define OP_TO_LIBCALL(Name, Enum)                                              \
    669   case Name:                                                                   \
    670     switch (VT.SimpleTy) {                                                     \
    671     default:                                                                   \
    672       return UNKNOWN_LIBCALL;                                                  \
    673     case MVT::i8:                                                              \
    674       return Enum##_1;                                                         \
    675     case MVT::i16:                                                             \
    676       return Enum##_2;                                                         \
    677     case MVT::i32:                                                             \
    678       return Enum##_4;                                                         \
    679     case MVT::i64:                                                             \
    680       return Enum##_8;                                                         \
    681     case MVT::i128:                                                            \
    682       return Enum##_16;                                                        \
    683     }
    684 
    685   switch (Opc) {
    686     OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
    687     OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
    688     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
    689     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
    690     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
    691     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
    692     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
    693     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
    694     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
    695     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
    696     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
    697     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
    698   }
    699 
    700 #undef OP_TO_LIBCALL
    701 
    702   return UNKNOWN_LIBCALL;
    703 }
    704 
    705 /// InitCmpLibcallCCs - Set default comparison libcall CC.
    706 ///
    707 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
    708   memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
    709   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
    710   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
    711   CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
    712   CCs[RTLIB::UNE_F32] = ISD::SETNE;
    713   CCs[RTLIB::UNE_F64] = ISD::SETNE;
    714   CCs[RTLIB::UNE_F128] = ISD::SETNE;
    715   CCs[RTLIB::OGE_F32] = ISD::SETGE;
    716   CCs[RTLIB::OGE_F64] = ISD::SETGE;
    717   CCs[RTLIB::OGE_F128] = ISD::SETGE;
    718   CCs[RTLIB::OLT_F32] = ISD::SETLT;
    719   CCs[RTLIB::OLT_F64] = ISD::SETLT;
    720   CCs[RTLIB::OLT_F128] = ISD::SETLT;
    721   CCs[RTLIB::OLE_F32] = ISD::SETLE;
    722   CCs[RTLIB::OLE_F64] = ISD::SETLE;
    723   CCs[RTLIB::OLE_F128] = ISD::SETLE;
    724   CCs[RTLIB::OGT_F32] = ISD::SETGT;
    725   CCs[RTLIB::OGT_F64] = ISD::SETGT;
    726   CCs[RTLIB::OGT_F128] = ISD::SETGT;
    727   CCs[RTLIB::UO_F32] = ISD::SETNE;
    728   CCs[RTLIB::UO_F64] = ISD::SETNE;
    729   CCs[RTLIB::UO_F128] = ISD::SETNE;
    730   CCs[RTLIB::O_F32] = ISD::SETEQ;
    731   CCs[RTLIB::O_F64] = ISD::SETEQ;
    732   CCs[RTLIB::O_F128] = ISD::SETEQ;
    733 }
    734 
    735 /// NOTE: The TargetMachine owns TLOF.
    736 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
    737   initActions();
    738 
    739   // Perform these initializations only once.
    740   IsLittleEndian = getDataLayout()->isLittleEndian();
    741   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 8;
    742   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize
    743     = MaxStoresPerMemmoveOptSize = 4;
    744   UseUnderscoreSetJmp = false;
    745   UseUnderscoreLongJmp = false;
    746   SelectIsExpensive = false;
    747   HasMultipleConditionRegisters = false;
    748   HasExtractBitsInsn = false;
    749   IntDivIsCheap = false;
    750   FsqrtIsCheap = false;
    751   Pow2SDivIsCheap = false;
    752   JumpIsExpensive = false;
    753   PredictableSelectIsExpensive = false;
    754   MaskAndBranchFoldingIsLegal = false;
    755   EnableExtLdPromotion = false;
    756   HasFloatingPointExceptions = true;
    757   StackPointerRegisterToSaveRestore = 0;
    758   ExceptionPointerRegister = 0;
    759   ExceptionSelectorRegister = 0;
    760   BooleanContents = UndefinedBooleanContent;
    761   BooleanFloatContents = UndefinedBooleanContent;
    762   BooleanVectorContents = UndefinedBooleanContent;
    763   SchedPreferenceInfo = Sched::ILP;
    764   JumpBufSize = 0;
    765   JumpBufAlignment = 0;
    766   MinFunctionAlignment = 0;
    767   PrefFunctionAlignment = 0;
    768   PrefLoopAlignment = 0;
    769   MinStackArgumentAlignment = 1;
    770   InsertFencesForAtomic = false;
    771   MinimumJumpTableEntries = 4;
    772 
    773   InitLibcallNames(LibcallRoutineNames, Triple(TM.getTargetTriple()));
    774   InitCmpLibcallCCs(CmpLibcallCCs);
    775   InitLibcallCallingConvs(LibcallCallingConvs);
    776 }
    777 
    778 void TargetLoweringBase::initActions() {
    779   // All operations default to being supported.
    780   memset(OpActions, 0, sizeof(OpActions));
    781   memset(LoadExtActions, 0, sizeof(LoadExtActions));
    782   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
    783   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
    784   memset(CondCodeActions, 0, sizeof(CondCodeActions));
    785   memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
    786   memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
    787 
    788   // Set default actions for various operations.
    789   for (MVT VT : MVT::all_valuetypes()) {
    790     // Default all indexed load / store to expand.
    791     for (unsigned IM = (unsigned)ISD::PRE_INC;
    792          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
    793       setIndexedLoadAction(IM, VT, Expand);
    794       setIndexedStoreAction(IM, VT, Expand);
    795     }
    796 
    797     // Most backends expect to see the node which just returns the value loaded.
    798     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
    799 
    800     // These operations default to expand.
    801     setOperationAction(ISD::FGETSIGN, VT, Expand);
    802     setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
    803     setOperationAction(ISD::FMINNUM, VT, Expand);
    804     setOperationAction(ISD::FMAXNUM, VT, Expand);
    805     setOperationAction(ISD::FMAD, VT, Expand);
    806 
    807     // These library functions default to expand.
    808     setOperationAction(ISD::FROUND, VT, Expand);
    809 
    810     // These operations default to expand for vector types.
    811     if (VT.isVector()) {
    812       setOperationAction(ISD::FCOPYSIGN, VT, Expand);
    813       setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
    814       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
    815       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
    816     }
    817   }
    818 
    819   // Most targets ignore the @llvm.prefetch intrinsic.
    820   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
    821 
    822   // ConstantFP nodes default to expand.  Targets can either change this to
    823   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
    824   // to optimize expansions for certain constants.
    825   setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
    826   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
    827   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
    828   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
    829   setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
    830 
    831   // These library functions default to expand.
    832   for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) {
    833     setOperationAction(ISD::FLOG ,      VT, Expand);
    834     setOperationAction(ISD::FLOG2,      VT, Expand);
    835     setOperationAction(ISD::FLOG10,     VT, Expand);
    836     setOperationAction(ISD::FEXP ,      VT, Expand);
    837     setOperationAction(ISD::FEXP2,      VT, Expand);
    838     setOperationAction(ISD::FFLOOR,     VT, Expand);
    839     setOperationAction(ISD::FMINNUM,    VT, Expand);
    840     setOperationAction(ISD::FMAXNUM,    VT, Expand);
    841     setOperationAction(ISD::FNEARBYINT, VT, Expand);
    842     setOperationAction(ISD::FCEIL,      VT, Expand);
    843     setOperationAction(ISD::FRINT,      VT, Expand);
    844     setOperationAction(ISD::FTRUNC,     VT, Expand);
    845     setOperationAction(ISD::FROUND,     VT, Expand);
    846   }
    847 
    848   // Default ISD::TRAP to expand (which turns it into abort).
    849   setOperationAction(ISD::TRAP, MVT::Other, Expand);
    850 
    851   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
    852   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
    853   //
    854   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
    855 }
    856 
    857 MVT TargetLoweringBase::getPointerTy(uint32_t AS) const {
    858   return MVT::getIntegerVT(getPointerSizeInBits(AS));
    859 }
    860 
    861 unsigned TargetLoweringBase::getPointerSizeInBits(uint32_t AS) const {
    862   return getDataLayout()->getPointerSizeInBits(AS);
    863 }
    864 
    865 unsigned TargetLoweringBase::getPointerTypeSizeInBits(Type *Ty) const {
    866   assert(Ty->isPointerTy());
    867   return getPointerSizeInBits(Ty->getPointerAddressSpace());
    868 }
    869 
    870 MVT TargetLoweringBase::getScalarShiftAmountTy(EVT LHSTy) const {
    871   return MVT::getIntegerVT(8 * getDataLayout()->getPointerSize(0));
    872 }
    873 
    874 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy) const {
    875   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
    876   if (LHSTy.isVector())
    877     return LHSTy;
    878   return getScalarShiftAmountTy(LHSTy);
    879 }
    880 
    881 /// canOpTrap - Returns true if the operation can trap for the value type.
    882 /// VT must be a legal type.
    883 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
    884   assert(isTypeLegal(VT));
    885   switch (Op) {
    886   default:
    887     return false;
    888   case ISD::FDIV:
    889   case ISD::FREM:
    890   case ISD::SDIV:
    891   case ISD::UDIV:
    892   case ISD::SREM:
    893   case ISD::UREM:
    894     return true;
    895   }
    896 }
    897 
    898 TargetLoweringBase::LegalizeKind
    899 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
    900   // If this is a simple type, use the ComputeRegisterProp mechanism.
    901   if (VT.isSimple()) {
    902     MVT SVT = VT.getSimpleVT();
    903     assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
    904     MVT NVT = TransformToType[SVT.SimpleTy];
    905     LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
    906 
    907     assert((LA == TypeLegal || LA == TypeSoftenFloat ||
    908             ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger) &&
    909            "Promote may not follow Expand or Promote");
    910 
    911     if (LA == TypeSplitVector)
    912       return LegalizeKind(LA,
    913                           EVT::getVectorVT(Context, SVT.getVectorElementType(),
    914                                            SVT.getVectorNumElements() / 2));
    915     if (LA == TypeScalarizeVector)
    916       return LegalizeKind(LA, SVT.getVectorElementType());
    917     return LegalizeKind(LA, NVT);
    918   }
    919 
    920   // Handle Extended Scalar Types.
    921   if (!VT.isVector()) {
    922     assert(VT.isInteger() && "Float types must be simple");
    923     unsigned BitSize = VT.getSizeInBits();
    924     // First promote to a power-of-two size, then expand if necessary.
    925     if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
    926       EVT NVT = VT.getRoundIntegerType(Context);
    927       assert(NVT != VT && "Unable to round integer VT");
    928       LegalizeKind NextStep = getTypeConversion(Context, NVT);
    929       // Avoid multi-step promotion.
    930       if (NextStep.first == TypePromoteInteger)
    931         return NextStep;
    932       // Return rounded integer type.
    933       return LegalizeKind(TypePromoteInteger, NVT);
    934     }
    935 
    936     return LegalizeKind(TypeExpandInteger,
    937                         EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
    938   }
    939 
    940   // Handle vector types.
    941   unsigned NumElts = VT.getVectorNumElements();
    942   EVT EltVT = VT.getVectorElementType();
    943 
    944   // Vectors with only one element are always scalarized.
    945   if (NumElts == 1)
    946     return LegalizeKind(TypeScalarizeVector, EltVT);
    947 
    948   // Try to widen vector elements until the element type is a power of two and
    949   // promote it to a legal type later on, for example:
    950   // <3 x i8> -> <4 x i8> -> <4 x i32>
    951   if (EltVT.isInteger()) {
    952     // Vectors with a number of elements that is not a power of two are always
    953     // widened, for example <3 x i8> -> <4 x i8>.
    954     if (!VT.isPow2VectorType()) {
    955       NumElts = (unsigned)NextPowerOf2(NumElts);
    956       EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
    957       return LegalizeKind(TypeWidenVector, NVT);
    958     }
    959 
    960     // Examine the element type.
    961     LegalizeKind LK = getTypeConversion(Context, EltVT);
    962 
    963     // If type is to be expanded, split the vector.
    964     //  <4 x i140> -> <2 x i140>
    965     if (LK.first == TypeExpandInteger)
    966       return LegalizeKind(TypeSplitVector,
    967                           EVT::getVectorVT(Context, EltVT, NumElts / 2));
    968 
    969     // Promote the integer element types until a legal vector type is found
    970     // or until the element integer type is too big. If a legal type was not
    971     // found, fallback to the usual mechanism of widening/splitting the
    972     // vector.
    973     EVT OldEltVT = EltVT;
    974     while (1) {
    975       // Increase the bitwidth of the element to the next pow-of-two
    976       // (which is greater than 8 bits).
    977       EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
    978                   .getRoundIntegerType(Context);
    979 
    980       // Stop trying when getting a non-simple element type.
    981       // Note that vector elements may be greater than legal vector element
    982       // types. Example: X86 XMM registers hold 64bit element on 32bit
    983       // systems.
    984       if (!EltVT.isSimple())
    985         break;
    986 
    987       // Build a new vector type and check if it is legal.
    988       MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
    989       // Found a legal promoted vector type.
    990       if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
    991         return LegalizeKind(TypePromoteInteger,
    992                             EVT::getVectorVT(Context, EltVT, NumElts));
    993     }
    994 
    995     // Reset the type to the unexpanded type if we did not find a legal vector
    996     // type with a promoted vector element type.
    997     EltVT = OldEltVT;
    998   }
    999 
   1000   // Try to widen the vector until a legal type is found.
   1001   // If there is no wider legal type, split the vector.
   1002   while (1) {
   1003     // Round up to the next power of 2.
   1004     NumElts = (unsigned)NextPowerOf2(NumElts);
   1005 
   1006     // If there is no simple vector type with this many elements then there
   1007     // cannot be a larger legal vector type.  Note that this assumes that
   1008     // there are no skipped intermediate vector types in the simple types.
   1009     if (!EltVT.isSimple())
   1010       break;
   1011     MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
   1012     if (LargerVector == MVT())
   1013       break;
   1014 
   1015     // If this type is legal then widen the vector.
   1016     if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
   1017       return LegalizeKind(TypeWidenVector, LargerVector);
   1018   }
   1019 
   1020   // Widen odd vectors to next power of two.
   1021   if (!VT.isPow2VectorType()) {
   1022     EVT NVT = VT.getPow2VectorType(Context);
   1023     return LegalizeKind(TypeWidenVector, NVT);
   1024   }
   1025 
   1026   // Vectors with illegal element types are expanded.
   1027   EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
   1028   return LegalizeKind(TypeSplitVector, NVT);
   1029 }
   1030 
   1031 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
   1032                                           unsigned &NumIntermediates,
   1033                                           MVT &RegisterVT,
   1034                                           TargetLoweringBase *TLI) {
   1035   // Figure out the right, legal destination reg to copy into.
   1036   unsigned NumElts = VT.getVectorNumElements();
   1037   MVT EltTy = VT.getVectorElementType();
   1038 
   1039   unsigned NumVectorRegs = 1;
   1040 
   1041   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
   1042   // could break down into LHS/RHS like LegalizeDAG does.
   1043   if (!isPowerOf2_32(NumElts)) {
   1044     NumVectorRegs = NumElts;
   1045     NumElts = 1;
   1046   }
   1047 
   1048   // Divide the input until we get to a supported size.  This will always
   1049   // end with a scalar if the target doesn't support vectors.
   1050   while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
   1051     NumElts >>= 1;
   1052     NumVectorRegs <<= 1;
   1053   }
   1054 
   1055   NumIntermediates = NumVectorRegs;
   1056 
   1057   MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
   1058   if (!TLI->isTypeLegal(NewVT))
   1059     NewVT = EltTy;
   1060   IntermediateVT = NewVT;
   1061 
   1062   unsigned NewVTSize = NewVT.getSizeInBits();
   1063 
   1064   // Convert sizes such as i33 to i64.
   1065   if (!isPowerOf2_32(NewVTSize))
   1066     NewVTSize = NextPowerOf2(NewVTSize);
   1067 
   1068   MVT DestVT = TLI->getRegisterType(NewVT);
   1069   RegisterVT = DestVT;
   1070   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
   1071     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
   1072 
   1073   // Otherwise, promotion or legal types use the same number of registers as
   1074   // the vector decimated to the appropriate level.
   1075   return NumVectorRegs;
   1076 }
   1077 
   1078 /// isLegalRC - Return true if the value types that can be represented by the
   1079 /// specified register class are all legal.
   1080 bool TargetLoweringBase::isLegalRC(const TargetRegisterClass *RC) const {
   1081   for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
   1082        I != E; ++I) {
   1083     if (isTypeLegal(*I))
   1084       return true;
   1085   }
   1086   return false;
   1087 }
   1088 
   1089 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
   1090 /// sequence of memory operands that is recognized by PrologEpilogInserter.
   1091 MachineBasicBlock*
   1092 TargetLoweringBase::emitPatchPoint(MachineInstr *MI,
   1093                                    MachineBasicBlock *MBB) const {
   1094   MachineFunction &MF = *MI->getParent()->getParent();
   1095 
   1096   // MI changes inside this loop as we grow operands.
   1097   for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) {
   1098     MachineOperand &MO = MI->getOperand(OperIdx);
   1099     if (!MO.isFI())
   1100       continue;
   1101 
   1102     // foldMemoryOperand builds a new MI after replacing a single FI operand
   1103     // with the canonical set of five x86 addressing-mode operands.
   1104     int FI = MO.getIndex();
   1105     MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
   1106 
   1107     // Copy operands before the frame-index.
   1108     for (unsigned i = 0; i < OperIdx; ++i)
   1109       MIB.addOperand(MI->getOperand(i));
   1110     // Add frame index operands: direct-mem-ref tag, #FI, offset.
   1111     MIB.addImm(StackMaps::DirectMemRefOp);
   1112     MIB.addOperand(MI->getOperand(OperIdx));
   1113     MIB.addImm(0);
   1114     // Copy the operands after the frame index.
   1115     for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i)
   1116       MIB.addOperand(MI->getOperand(i));
   1117 
   1118     // Inherit previous memory operands.
   1119     MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
   1120     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
   1121 
   1122     // Add a new memory operand for this FI.
   1123     const MachineFrameInfo &MFI = *MF.getFrameInfo();
   1124     assert(MFI.getObjectOffset(FI) != -1);
   1125 
   1126     unsigned Flags = MachineMemOperand::MOLoad;
   1127     if (MI->getOpcode() == TargetOpcode::STATEPOINT) {
   1128       Flags |= MachineMemOperand::MOStore;
   1129       Flags |= MachineMemOperand::MOVolatile;
   1130     }
   1131     MachineMemOperand *MMO = MF.getMachineMemOperand(
   1132         MachinePointerInfo::getFixedStack(FI), Flags,
   1133         TM.getDataLayout()->getPointerSize(), MFI.getObjectAlignment(FI));
   1134     MIB->addMemOperand(MF, MMO);
   1135 
   1136     // Replace the instruction and update the operand index.
   1137     MBB->insert(MachineBasicBlock::iterator(MI), MIB);
   1138     OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1;
   1139     MI->eraseFromParent();
   1140     MI = MIB;
   1141   }
   1142   return MBB;
   1143 }
   1144 
   1145 /// findRepresentativeClass - Return the largest legal super-reg register class
   1146 /// of the register class for the specified type and its associated "cost".
   1147 // This function is in TargetLowering because it uses RegClassForVT which would
   1148 // need to be moved to TargetRegisterInfo and would necessitate moving
   1149 // isTypeLegal over as well - a massive change that would just require
   1150 // TargetLowering having a TargetRegisterInfo class member that it would use.
   1151 std::pair<const TargetRegisterClass *, uint8_t>
   1152 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
   1153                                             MVT VT) const {
   1154   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
   1155   if (!RC)
   1156     return std::make_pair(RC, 0);
   1157 
   1158   // Compute the set of all super-register classes.
   1159   BitVector SuperRegRC(TRI->getNumRegClasses());
   1160   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
   1161     SuperRegRC.setBitsInMask(RCI.getMask());
   1162 
   1163   // Find the first legal register class with the largest spill size.
   1164   const TargetRegisterClass *BestRC = RC;
   1165   for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) {
   1166     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
   1167     // We want the largest possible spill size.
   1168     if (SuperRC->getSize() <= BestRC->getSize())
   1169       continue;
   1170     if (!isLegalRC(SuperRC))
   1171       continue;
   1172     BestRC = SuperRC;
   1173   }
   1174   return std::make_pair(BestRC, 1);
   1175 }
   1176 
   1177 /// computeRegisterProperties - Once all of the register classes are added,
   1178 /// this allows us to compute derived properties we expose.
   1179 void TargetLoweringBase::computeRegisterProperties(
   1180     const TargetRegisterInfo *TRI) {
   1181   static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
   1182                 "Too many value types for ValueTypeActions to hold!");
   1183 
   1184   // Everything defaults to needing one register.
   1185   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
   1186     NumRegistersForVT[i] = 1;
   1187     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
   1188   }
   1189   // ...except isVoid, which doesn't need any registers.
   1190   NumRegistersForVT[MVT::isVoid] = 0;
   1191 
   1192   // Find the largest integer register class.
   1193   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
   1194   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
   1195     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
   1196 
   1197   // Every integer value type larger than this largest register takes twice as
   1198   // many registers to represent as the previous ValueType.
   1199   for (unsigned ExpandedReg = LargestIntReg + 1;
   1200        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
   1201     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
   1202     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
   1203     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
   1204     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
   1205                                    TypeExpandInteger);
   1206   }
   1207 
   1208   // Inspect all of the ValueType's smaller than the largest integer
   1209   // register to see which ones need promotion.
   1210   unsigned LegalIntReg = LargestIntReg;
   1211   for (unsigned IntReg = LargestIntReg - 1;
   1212        IntReg >= (unsigned)MVT::i1; --IntReg) {
   1213     MVT IVT = (MVT::SimpleValueType)IntReg;
   1214     if (isTypeLegal(IVT)) {
   1215       LegalIntReg = IntReg;
   1216     } else {
   1217       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
   1218         (const MVT::SimpleValueType)LegalIntReg;
   1219       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
   1220     }
   1221   }
   1222 
   1223   // ppcf128 type is really two f64's.
   1224   if (!isTypeLegal(MVT::ppcf128)) {
   1225     NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
   1226     RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
   1227     TransformToType[MVT::ppcf128] = MVT::f64;
   1228     ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
   1229   }
   1230 
   1231   // Decide how to handle f128. If the target does not have native f128 support,
   1232   // expand it to i128 and we will be generating soft float library calls.
   1233   if (!isTypeLegal(MVT::f128)) {
   1234     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
   1235     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
   1236     TransformToType[MVT::f128] = MVT::i128;
   1237     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
   1238   }
   1239 
   1240   // Decide how to handle f64. If the target does not have native f64 support,
   1241   // expand it to i64 and we will be generating soft float library calls.
   1242   if (!isTypeLegal(MVT::f64)) {
   1243     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
   1244     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
   1245     TransformToType[MVT::f64] = MVT::i64;
   1246     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
   1247   }
   1248 
   1249   // Decide how to handle f32. If the target does not have native f32 support,
   1250   // expand it to i32 and we will be generating soft float library calls.
   1251   if (!isTypeLegal(MVT::f32)) {
   1252     NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
   1253     RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
   1254     TransformToType[MVT::f32] = MVT::i32;
   1255     ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
   1256   }
   1257 
   1258   if (!isTypeLegal(MVT::f16)) {
   1259     // If the target has native f32 support, promote f16 operations to f32.  If
   1260     // f32 is not supported, generate soft float library calls.
   1261     if (isTypeLegal(MVT::f32)) {
   1262       NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
   1263       RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
   1264       TransformToType[MVT::f16] = MVT::f32;
   1265       ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
   1266     } else {
   1267       NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
   1268       RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
   1269       TransformToType[MVT::f16] = MVT::i16;
   1270       ValueTypeActions.setTypeAction(MVT::f16, TypeSoftenFloat);
   1271     }
   1272   }
   1273 
   1274   // Loop over all of the vector value types to see which need transformations.
   1275   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
   1276        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
   1277     MVT VT = (MVT::SimpleValueType) i;
   1278     if (isTypeLegal(VT))
   1279       continue;
   1280 
   1281     MVT EltVT = VT.getVectorElementType();
   1282     unsigned NElts = VT.getVectorNumElements();
   1283     bool IsLegalWiderType = false;
   1284     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
   1285     switch (PreferredAction) {
   1286     case TypePromoteInteger: {
   1287       // Try to promote the elements of integer vectors. If no legal
   1288       // promotion was found, fall through to the widen-vector method.
   1289       for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
   1290         MVT SVT = (MVT::SimpleValueType) nVT;
   1291         // Promote vectors of integers to vectors with the same number
   1292         // of elements, with a wider element type.
   1293         if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits()
   1294             && SVT.getVectorNumElements() == NElts && isTypeLegal(SVT)
   1295             && SVT.getScalarType().isInteger()) {
   1296           TransformToType[i] = SVT;
   1297           RegisterTypeForVT[i] = SVT;
   1298           NumRegistersForVT[i] = 1;
   1299           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
   1300           IsLegalWiderType = true;
   1301           break;
   1302         }
   1303       }
   1304       if (IsLegalWiderType)
   1305         break;
   1306     }
   1307     case TypeWidenVector: {
   1308       // Try to widen the vector.
   1309       for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
   1310         MVT SVT = (MVT::SimpleValueType) nVT;
   1311         if (SVT.getVectorElementType() == EltVT
   1312             && SVT.getVectorNumElements() > NElts && isTypeLegal(SVT)) {
   1313           TransformToType[i] = SVT;
   1314           RegisterTypeForVT[i] = SVT;
   1315           NumRegistersForVT[i] = 1;
   1316           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
   1317           IsLegalWiderType = true;
   1318           break;
   1319         }
   1320       }
   1321       if (IsLegalWiderType)
   1322         break;
   1323     }
   1324     case TypeSplitVector:
   1325     case TypeScalarizeVector: {
   1326       MVT IntermediateVT;
   1327       MVT RegisterVT;
   1328       unsigned NumIntermediates;
   1329       NumRegistersForVT[i] = getVectorTypeBreakdownMVT(VT, IntermediateVT,
   1330           NumIntermediates, RegisterVT, this);
   1331       RegisterTypeForVT[i] = RegisterVT;
   1332 
   1333       MVT NVT = VT.getPow2VectorType();
   1334       if (NVT == VT) {
   1335         // Type is already a power of 2.  The default action is to split.
   1336         TransformToType[i] = MVT::Other;
   1337         if (PreferredAction == TypeScalarizeVector)
   1338           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
   1339         else if (PreferredAction == TypeSplitVector)
   1340           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
   1341         else
   1342           // Set type action according to the number of elements.
   1343           ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector
   1344                                                         : TypeSplitVector);
   1345       } else {
   1346         TransformToType[i] = NVT;
   1347         ValueTypeActions.setTypeAction(VT, TypeWidenVector);
   1348       }
   1349       break;
   1350     }
   1351     default:
   1352       llvm_unreachable("Unknown vector legalization action!");
   1353     }
   1354   }
   1355 
   1356   // Determine the 'representative' register class for each value type.
   1357   // An representative register class is the largest (meaning one which is
   1358   // not a sub-register class / subreg register class) legal register class for
   1359   // a group of value types. For example, on i386, i8, i16, and i32
   1360   // representative would be GR32; while on x86_64 it's GR64.
   1361   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
   1362     const TargetRegisterClass* RRC;
   1363     uint8_t Cost;
   1364     std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
   1365     RepRegClassForVT[i] = RRC;
   1366     RepRegClassCostForVT[i] = Cost;
   1367   }
   1368 }
   1369 
   1370 EVT TargetLoweringBase::getSetCCResultType(LLVMContext &, EVT VT) const {
   1371   assert(!VT.isVector() && "No default SetCC type for vectors!");
   1372   return getPointerTy(0).SimpleTy;
   1373 }
   1374 
   1375 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
   1376   return MVT::i32; // return the default value
   1377 }
   1378 
   1379 /// getVectorTypeBreakdown - Vector types are broken down into some number of
   1380 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
   1381 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
   1382 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
   1383 ///
   1384 /// This method returns the number of registers needed, and the VT for each
   1385 /// register.  It also returns the VT and quantity of the intermediate values
   1386 /// before they are promoted/expanded.
   1387 ///
   1388 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
   1389                                                 EVT &IntermediateVT,
   1390                                                 unsigned &NumIntermediates,
   1391                                                 MVT &RegisterVT) const {
   1392   unsigned NumElts = VT.getVectorNumElements();
   1393 
   1394   // If there is a wider vector type with the same element type as this one,
   1395   // or a promoted vector type that has the same number of elements which
   1396   // are wider, then we should convert to that legal vector type.
   1397   // This handles things like <2 x float> -> <4 x float> and
   1398   // <4 x i1> -> <4 x i32>.
   1399   LegalizeTypeAction TA = getTypeAction(Context, VT);
   1400   if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
   1401     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
   1402     if (isTypeLegal(RegisterEVT)) {
   1403       IntermediateVT = RegisterEVT;
   1404       RegisterVT = RegisterEVT.getSimpleVT();
   1405       NumIntermediates = 1;
   1406       return 1;
   1407     }
   1408   }
   1409 
   1410   // Figure out the right, legal destination reg to copy into.
   1411   EVT EltTy = VT.getVectorElementType();
   1412 
   1413   unsigned NumVectorRegs = 1;
   1414 
   1415   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
   1416   // could break down into LHS/RHS like LegalizeDAG does.
   1417   if (!isPowerOf2_32(NumElts)) {
   1418     NumVectorRegs = NumElts;
   1419     NumElts = 1;
   1420   }
   1421 
   1422   // Divide the input until we get to a supported size.  This will always
   1423   // end with a scalar if the target doesn't support vectors.
   1424   while (NumElts > 1 && !isTypeLegal(
   1425                                    EVT::getVectorVT(Context, EltTy, NumElts))) {
   1426     NumElts >>= 1;
   1427     NumVectorRegs <<= 1;
   1428   }
   1429 
   1430   NumIntermediates = NumVectorRegs;
   1431 
   1432   EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
   1433   if (!isTypeLegal(NewVT))
   1434     NewVT = EltTy;
   1435   IntermediateVT = NewVT;
   1436 
   1437   MVT DestVT = getRegisterType(Context, NewVT);
   1438   RegisterVT = DestVT;
   1439   unsigned NewVTSize = NewVT.getSizeInBits();
   1440 
   1441   // Convert sizes such as i33 to i64.
   1442   if (!isPowerOf2_32(NewVTSize))
   1443     NewVTSize = NextPowerOf2(NewVTSize);
   1444 
   1445   if (EVT(DestVT).bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
   1446     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
   1447 
   1448   // Otherwise, promotion or legal types use the same number of registers as
   1449   // the vector decimated to the appropriate level.
   1450   return NumVectorRegs;
   1451 }
   1452 
   1453 /// Get the EVTs and ArgFlags collections that represent the legalized return
   1454 /// type of the given function.  This does not require a DAG or a return value,
   1455 /// and is suitable for use before any DAGs for the function are constructed.
   1456 /// TODO: Move this out of TargetLowering.cpp.
   1457 void llvm::GetReturnInfo(Type* ReturnType, AttributeSet attr,
   1458                          SmallVectorImpl<ISD::OutputArg> &Outs,
   1459                          const TargetLowering &TLI) {
   1460   SmallVector<EVT, 4> ValueVTs;
   1461   ComputeValueVTs(TLI, ReturnType, ValueVTs);
   1462   unsigned NumValues = ValueVTs.size();
   1463   if (NumValues == 0) return;
   1464 
   1465   for (unsigned j = 0, f = NumValues; j != f; ++j) {
   1466     EVT VT = ValueVTs[j];
   1467     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
   1468 
   1469     if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
   1470       ExtendKind = ISD::SIGN_EXTEND;
   1471     else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
   1472       ExtendKind = ISD::ZERO_EXTEND;
   1473 
   1474     // FIXME: C calling convention requires the return type to be promoted to
   1475     // at least 32-bit. But this is not necessary for non-C calling
   1476     // conventions. The frontend should mark functions whose return values
   1477     // require promoting with signext or zeroext attributes.
   1478     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
   1479       MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
   1480       if (VT.bitsLT(MinVT))
   1481         VT = MinVT;
   1482     }
   1483 
   1484     unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
   1485     MVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
   1486 
   1487     // 'inreg' on function refers to return value
   1488     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
   1489     if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::InReg))
   1490       Flags.setInReg();
   1491 
   1492     // Propagate extension type if any
   1493     if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
   1494       Flags.setSExt();
   1495     else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
   1496       Flags.setZExt();
   1497 
   1498     for (unsigned i = 0; i < NumParts; ++i)
   1499       Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isFixed=*/true, 0, 0));
   1500   }
   1501 }
   1502 
   1503 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
   1504 /// function arguments in the caller parameter area.  This is the actual
   1505 /// alignment, not its logarithm.
   1506 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty) const {
   1507   return getDataLayout()->getABITypeAlignment(Ty);
   1508 }
   1509 
   1510 //===----------------------------------------------------------------------===//
   1511 //  TargetTransformInfo Helpers
   1512 //===----------------------------------------------------------------------===//
   1513 
   1514 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
   1515   enum InstructionOpcodes {
   1516 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
   1517 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
   1518 #include "llvm/IR/Instruction.def"
   1519   };
   1520   switch (static_cast<InstructionOpcodes>(Opcode)) {
   1521   case Ret:            return 0;
   1522   case Br:             return 0;
   1523   case Switch:         return 0;
   1524   case IndirectBr:     return 0;
   1525   case Invoke:         return 0;
   1526   case Resume:         return 0;
   1527   case Unreachable:    return 0;
   1528   case Add:            return ISD::ADD;
   1529   case FAdd:           return ISD::FADD;
   1530   case Sub:            return ISD::SUB;
   1531   case FSub:           return ISD::FSUB;
   1532   case Mul:            return ISD::MUL;
   1533   case FMul:           return ISD::FMUL;
   1534   case UDiv:           return ISD::UDIV;
   1535   case SDiv:           return ISD::SDIV;
   1536   case FDiv:           return ISD::FDIV;
   1537   case URem:           return ISD::UREM;
   1538   case SRem:           return ISD::SREM;
   1539   case FRem:           return ISD::FREM;
   1540   case Shl:            return ISD::SHL;
   1541   case LShr:           return ISD::SRL;
   1542   case AShr:           return ISD::SRA;
   1543   case And:            return ISD::AND;
   1544   case Or:             return ISD::OR;
   1545   case Xor:            return ISD::XOR;
   1546   case Alloca:         return 0;
   1547   case Load:           return ISD::LOAD;
   1548   case Store:          return ISD::STORE;
   1549   case GetElementPtr:  return 0;
   1550   case Fence:          return 0;
   1551   case AtomicCmpXchg:  return 0;
   1552   case AtomicRMW:      return 0;
   1553   case Trunc:          return ISD::TRUNCATE;
   1554   case ZExt:           return ISD::ZERO_EXTEND;
   1555   case SExt:           return ISD::SIGN_EXTEND;
   1556   case FPToUI:         return ISD::FP_TO_UINT;
   1557   case FPToSI:         return ISD::FP_TO_SINT;
   1558   case UIToFP:         return ISD::UINT_TO_FP;
   1559   case SIToFP:         return ISD::SINT_TO_FP;
   1560   case FPTrunc:        return ISD::FP_ROUND;
   1561   case FPExt:          return ISD::FP_EXTEND;
   1562   case PtrToInt:       return ISD::BITCAST;
   1563   case IntToPtr:       return ISD::BITCAST;
   1564   case BitCast:        return ISD::BITCAST;
   1565   case AddrSpaceCast:  return ISD::ADDRSPACECAST;
   1566   case ICmp:           return ISD::SETCC;
   1567   case FCmp:           return ISD::SETCC;
   1568   case PHI:            return 0;
   1569   case Call:           return 0;
   1570   case Select:         return ISD::SELECT;
   1571   case UserOp1:        return 0;
   1572   case UserOp2:        return 0;
   1573   case VAArg:          return 0;
   1574   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
   1575   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
   1576   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
   1577   case ExtractValue:   return ISD::MERGE_VALUES;
   1578   case InsertValue:    return ISD::MERGE_VALUES;
   1579   case LandingPad:     return 0;
   1580   }
   1581 
   1582   llvm_unreachable("Unknown instruction type encountered!");
   1583 }
   1584 
   1585 std::pair<unsigned, MVT>
   1586 TargetLoweringBase::getTypeLegalizationCost(Type *Ty) const {
   1587   LLVMContext &C = Ty->getContext();
   1588   EVT MTy = getValueType(Ty);
   1589 
   1590   unsigned Cost = 1;
   1591   // We keep legalizing the type until we find a legal kind. We assume that
   1592   // the only operation that costs anything is the split. After splitting
   1593   // we need to handle two types.
   1594   while (true) {
   1595     LegalizeKind LK = getTypeConversion(C, MTy);
   1596 
   1597     if (LK.first == TypeLegal)
   1598       return std::make_pair(Cost, MTy.getSimpleVT());
   1599 
   1600     if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
   1601       Cost *= 2;
   1602 
   1603     // Keep legalizing the type.
   1604     MTy = LK.second;
   1605   }
   1606 }
   1607 
   1608 //===----------------------------------------------------------------------===//
   1609 //  Loop Strength Reduction hooks
   1610 //===----------------------------------------------------------------------===//
   1611 
   1612 /// isLegalAddressingMode - Return true if the addressing mode represented
   1613 /// by AM is legal for this target, for a load/store of the specified type.
   1614 bool TargetLoweringBase::isLegalAddressingMode(const AddrMode &AM,
   1615                                            Type *Ty) const {
   1616   // The default implementation of this implements a conservative RISCy, r+r and
   1617   // r+i addr mode.
   1618 
   1619   // Allows a sign-extended 16-bit immediate field.
   1620   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
   1621     return false;
   1622 
   1623   // No global is ever allowed as a base.
   1624   if (AM.BaseGV)
   1625     return false;
   1626 
   1627   // Only support r+r,
   1628   switch (AM.Scale) {
   1629   case 0:  // "r+i" or just "i", depending on HasBaseReg.
   1630     break;
   1631   case 1:
   1632     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
   1633       return false;
   1634     // Otherwise we have r+r or r+i.
   1635     break;
   1636   case 2:
   1637     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
   1638       return false;
   1639     // Allow 2*r as r+r.
   1640     break;
   1641   default: // Don't allow n * r
   1642     return false;
   1643   }
   1644 
   1645   return true;
   1646 }
   1647