Home | History | Annotate | Download | only in SystemZ
      1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the SystemZTargetLowering class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "SystemZISelLowering.h"
     15 #include "SystemZCallingConv.h"
     16 #include "SystemZConstantPoolValue.h"
     17 #include "SystemZMachineFunctionInfo.h"
     18 #include "SystemZTargetMachine.h"
     19 #include "llvm/CodeGen/CallingConvLower.h"
     20 #include "llvm/CodeGen/MachineInstrBuilder.h"
     21 #include "llvm/CodeGen/MachineRegisterInfo.h"
     22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
     23 #include "llvm/IR/Intrinsics.h"
     24 #include <cctype>
     25 
     26 using namespace llvm;
     27 
     28 #define DEBUG_TYPE "systemz-lower"
     29 
     30 namespace {
     31 // Represents a sequence for extracting a 0/1 value from an IPM result:
     32 // (((X ^ XORValue) + AddValue) >> Bit)
     33 struct IPMConversion {
     34   IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit)
     35     : XORValue(xorValue), AddValue(addValue), Bit(bit) {}
     36 
     37   int64_t XORValue;
     38   int64_t AddValue;
     39   unsigned Bit;
     40 };
     41 
     42 // Represents information about a comparison.
     43 struct Comparison {
     44   Comparison(SDValue Op0In, SDValue Op1In)
     45     : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
     46 
     47   // The operands to the comparison.
     48   SDValue Op0, Op1;
     49 
     50   // The opcode that should be used to compare Op0 and Op1.
     51   unsigned Opcode;
     52 
     53   // A SystemZICMP value.  Only used for integer comparisons.
     54   unsigned ICmpType;
     55 
     56   // The mask of CC values that Opcode can produce.
     57   unsigned CCValid;
     58 
     59   // The mask of CC values for which the original condition is true.
     60   unsigned CCMask;
     61 };
     62 } // end anonymous namespace
     63 
     64 // Classify VT as either 32 or 64 bit.
     65 static bool is32Bit(EVT VT) {
     66   switch (VT.getSimpleVT().SimpleTy) {
     67   case MVT::i32:
     68     return true;
     69   case MVT::i64:
     70     return false;
     71   default:
     72     llvm_unreachable("Unsupported type");
     73   }
     74 }
     75 
     76 // Return a version of MachineOperand that can be safely used before the
     77 // final use.
     78 static MachineOperand earlyUseOperand(MachineOperand Op) {
     79   if (Op.isReg())
     80     Op.setIsKill(false);
     81   return Op;
     82 }
     83 
     84 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &tm,
     85                                              const SystemZSubtarget &STI)
     86     : TargetLowering(tm), Subtarget(STI) {
     87   MVT PtrVT = getPointerTy();
     88 
     89   // Set up the register classes.
     90   if (Subtarget.hasHighWord())
     91     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
     92   else
     93     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
     94   addRegisterClass(MVT::i64,  &SystemZ::GR64BitRegClass);
     95   addRegisterClass(MVT::f32,  &SystemZ::FP32BitRegClass);
     96   addRegisterClass(MVT::f64,  &SystemZ::FP64BitRegClass);
     97   addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
     98 
     99   // Compute derived properties from the register classes
    100   computeRegisterProperties(Subtarget.getRegisterInfo());
    101 
    102   // Set up special registers.
    103   setExceptionPointerRegister(SystemZ::R6D);
    104   setExceptionSelectorRegister(SystemZ::R7D);
    105   setStackPointerRegisterToSaveRestore(SystemZ::R15D);
    106 
    107   // TODO: It may be better to default to latency-oriented scheduling, however
    108   // LLVM's current latency-oriented scheduler can't handle physreg definitions
    109   // such as SystemZ has with CC, so set this to the register-pressure
    110   // scheduler, because it can.
    111   setSchedulingPreference(Sched::RegPressure);
    112 
    113   setBooleanContents(ZeroOrOneBooleanContent);
    114   setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
    115 
    116   // Instructions are strings of 2-byte aligned 2-byte values.
    117   setMinFunctionAlignment(2);
    118 
    119   // Handle operations that are handled in a similar way for all types.
    120   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
    121        I <= MVT::LAST_FP_VALUETYPE;
    122        ++I) {
    123     MVT VT = MVT::SimpleValueType(I);
    124     if (isTypeLegal(VT)) {
    125       // Lower SET_CC into an IPM-based sequence.
    126       setOperationAction(ISD::SETCC, VT, Custom);
    127 
    128       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
    129       setOperationAction(ISD::SELECT, VT, Expand);
    130 
    131       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
    132       setOperationAction(ISD::SELECT_CC, VT, Custom);
    133       setOperationAction(ISD::BR_CC,     VT, Custom);
    134     }
    135   }
    136 
    137   // Expand jump table branches as address arithmetic followed by an
    138   // indirect jump.
    139   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
    140 
    141   // Expand BRCOND into a BR_CC (see above).
    142   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
    143 
    144   // Handle integer types.
    145   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
    146        I <= MVT::LAST_INTEGER_VALUETYPE;
    147        ++I) {
    148     MVT VT = MVT::SimpleValueType(I);
    149     if (isTypeLegal(VT)) {
    150       // Expand individual DIV and REMs into DIVREMs.
    151       setOperationAction(ISD::SDIV, VT, Expand);
    152       setOperationAction(ISD::UDIV, VT, Expand);
    153       setOperationAction(ISD::SREM, VT, Expand);
    154       setOperationAction(ISD::UREM, VT, Expand);
    155       setOperationAction(ISD::SDIVREM, VT, Custom);
    156       setOperationAction(ISD::UDIVREM, VT, Custom);
    157 
    158       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
    159       // stores, putting a serialization instruction after the stores.
    160       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
    161       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
    162 
    163       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
    164       // available, or if the operand is constant.
    165       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
    166 
    167       // Use POPCNT on z196 and above.
    168       if (Subtarget.hasPopulationCount())
    169         setOperationAction(ISD::CTPOP, VT, Custom);
    170       else
    171         setOperationAction(ISD::CTPOP, VT, Expand);
    172 
    173       // No special instructions for these.
    174       setOperationAction(ISD::CTTZ,            VT, Expand);
    175       setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
    176       setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
    177       setOperationAction(ISD::ROTR,            VT, Expand);
    178 
    179       // Use *MUL_LOHI where possible instead of MULH*.
    180       setOperationAction(ISD::MULHS, VT, Expand);
    181       setOperationAction(ISD::MULHU, VT, Expand);
    182       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
    183       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
    184 
    185       // Only z196 and above have native support for conversions to unsigned.
    186       if (!Subtarget.hasFPExtension())
    187         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
    188     }
    189   }
    190 
    191   // Type legalization will convert 8- and 16-bit atomic operations into
    192   // forms that operate on i32s (but still keeping the original memory VT).
    193   // Lower them into full i32 operations.
    194   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
    195   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
    196   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
    197   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
    198   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
    199   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
    200   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
    201   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
    202   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
    203   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
    204   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
    205   setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Custom);
    206 
    207   // z10 has instructions for signed but not unsigned FP conversion.
    208   // Handle unsigned 32-bit types as signed 64-bit types.
    209   if (!Subtarget.hasFPExtension()) {
    210     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
    211     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
    212   }
    213 
    214   // We have native support for a 64-bit CTLZ, via FLOGR.
    215   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
    216   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
    217 
    218   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
    219   setOperationAction(ISD::OR, MVT::i64, Custom);
    220 
    221   // FIXME: Can we support these natively?
    222   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
    223   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
    224   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
    225 
    226   // We have native instructions for i8, i16 and i32 extensions, but not i1.
    227   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
    228   for (MVT VT : MVT::integer_valuetypes()) {
    229     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
    230     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
    231     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
    232   }
    233 
    234   // Handle the various types of symbolic address.
    235   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
    236   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
    237   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
    238   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
    239   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
    240 
    241   // We need to handle dynamic allocations specially because of the
    242   // 160-byte area at the bottom of the stack.
    243   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
    244 
    245   // Use custom expanders so that we can force the function to use
    246   // a frame pointer.
    247   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
    248   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
    249 
    250   // Handle prefetches with PFD or PFDRL.
    251   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
    252 
    253   // Handle floating-point types.
    254   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
    255        I <= MVT::LAST_FP_VALUETYPE;
    256        ++I) {
    257     MVT VT = MVT::SimpleValueType(I);
    258     if (isTypeLegal(VT)) {
    259       // We can use FI for FRINT.
    260       setOperationAction(ISD::FRINT, VT, Legal);
    261 
    262       // We can use the extended form of FI for other rounding operations.
    263       if (Subtarget.hasFPExtension()) {
    264         setOperationAction(ISD::FNEARBYINT, VT, Legal);
    265         setOperationAction(ISD::FFLOOR, VT, Legal);
    266         setOperationAction(ISD::FCEIL, VT, Legal);
    267         setOperationAction(ISD::FTRUNC, VT, Legal);
    268         setOperationAction(ISD::FROUND, VT, Legal);
    269       }
    270 
    271       // No special instructions for these.
    272       setOperationAction(ISD::FSIN, VT, Expand);
    273       setOperationAction(ISD::FCOS, VT, Expand);
    274       setOperationAction(ISD::FREM, VT, Expand);
    275     }
    276   }
    277 
    278   // We have fused multiply-addition for f32 and f64 but not f128.
    279   setOperationAction(ISD::FMA, MVT::f32,  Legal);
    280   setOperationAction(ISD::FMA, MVT::f64,  Legal);
    281   setOperationAction(ISD::FMA, MVT::f128, Expand);
    282 
    283   // Needed so that we don't try to implement f128 constant loads using
    284   // a load-and-extend of a f80 constant (in cases where the constant
    285   // would fit in an f80).
    286   for (MVT VT : MVT::fp_valuetypes())
    287     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
    288 
    289   // Floating-point truncation and stores need to be done separately.
    290   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
    291   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
    292   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
    293 
    294   // We have 64-bit FPR<->GPR moves, but need special handling for
    295   // 32-bit forms.
    296   setOperationAction(ISD::BITCAST, MVT::i32, Custom);
    297   setOperationAction(ISD::BITCAST, MVT::f32, Custom);
    298 
    299   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
    300   // structure, but VAEND is a no-op.
    301   setOperationAction(ISD::VASTART, MVT::Other, Custom);
    302   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
    303   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
    304 
    305   // Codes for which we want to perform some z-specific combinations.
    306   setTargetDAGCombine(ISD::SIGN_EXTEND);
    307 
    308   // Handle intrinsics.
    309   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
    310 
    311   // We want to use MVC in preference to even a single load/store pair.
    312   MaxStoresPerMemcpy = 0;
    313   MaxStoresPerMemcpyOptSize = 0;
    314 
    315   // The main memset sequence is a byte store followed by an MVC.
    316   // Two STC or MV..I stores win over that, but the kind of fused stores
    317   // generated by target-independent code don't when the byte value is
    318   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
    319   // than "STC;MVC".  Handle the choice in target-specific code instead.
    320   MaxStoresPerMemset = 0;
    321   MaxStoresPerMemsetOptSize = 0;
    322 }
    323 
    324 EVT SystemZTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
    325   if (!VT.isVector())
    326     return MVT::i32;
    327   return VT.changeVectorElementTypeToInteger();
    328 }
    329 
    330 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
    331   VT = VT.getScalarType();
    332 
    333   if (!VT.isSimple())
    334     return false;
    335 
    336   switch (VT.getSimpleVT().SimpleTy) {
    337   case MVT::f32:
    338   case MVT::f64:
    339     return true;
    340   case MVT::f128:
    341     return false;
    342   default:
    343     break;
    344   }
    345 
    346   return false;
    347 }
    348 
    349 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
    350   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
    351   return Imm.isZero() || Imm.isNegZero();
    352 }
    353 
    354 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
    355   // We can use CGFI or CLGFI.
    356   return isInt<32>(Imm) || isUInt<32>(Imm);
    357 }
    358 
    359 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
    360   // We can use ALGFI or SLGFI.
    361   return isUInt<32>(Imm) || isUInt<32>(-Imm);
    362 }
    363 
    364 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
    365                                                            unsigned,
    366                                                            unsigned,
    367                                                            bool *Fast) const {
    368   // Unaligned accesses should never be slower than the expanded version.
    369   // We check specifically for aligned accesses in the few cases where
    370   // they are required.
    371   if (Fast)
    372     *Fast = true;
    373   return true;
    374 }
    375 
    376 bool SystemZTargetLowering::isLegalAddressingMode(const AddrMode &AM,
    377                                                   Type *Ty) const {
    378   // Punt on globals for now, although they can be used in limited
    379   // RELATIVE LONG cases.
    380   if (AM.BaseGV)
    381     return false;
    382 
    383   // Require a 20-bit signed offset.
    384   if (!isInt<20>(AM.BaseOffs))
    385     return false;
    386 
    387   // Indexing is OK but no scale factor can be applied.
    388   return AM.Scale == 0 || AM.Scale == 1;
    389 }
    390 
    391 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
    392   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
    393     return false;
    394   unsigned FromBits = FromType->getPrimitiveSizeInBits();
    395   unsigned ToBits = ToType->getPrimitiveSizeInBits();
    396   return FromBits > ToBits;
    397 }
    398 
    399 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
    400   if (!FromVT.isInteger() || !ToVT.isInteger())
    401     return false;
    402   unsigned FromBits = FromVT.getSizeInBits();
    403   unsigned ToBits = ToVT.getSizeInBits();
    404   return FromBits > ToBits;
    405 }
    406 
    407 //===----------------------------------------------------------------------===//
    408 // Inline asm support
    409 //===----------------------------------------------------------------------===//
    410 
    411 TargetLowering::ConstraintType
    412 SystemZTargetLowering::getConstraintType(const std::string &Constraint) const {
    413   if (Constraint.size() == 1) {
    414     switch (Constraint[0]) {
    415     case 'a': // Address register
    416     case 'd': // Data register (equivalent to 'r')
    417     case 'f': // Floating-point register
    418     case 'h': // High-part register
    419     case 'r': // General-purpose register
    420       return C_RegisterClass;
    421 
    422     case 'Q': // Memory with base and unsigned 12-bit displacement
    423     case 'R': // Likewise, plus an index
    424     case 'S': // Memory with base and signed 20-bit displacement
    425     case 'T': // Likewise, plus an index
    426     case 'm': // Equivalent to 'T'.
    427       return C_Memory;
    428 
    429     case 'I': // Unsigned 8-bit constant
    430     case 'J': // Unsigned 12-bit constant
    431     case 'K': // Signed 16-bit constant
    432     case 'L': // Signed 20-bit displacement (on all targets we support)
    433     case 'M': // 0x7fffffff
    434       return C_Other;
    435 
    436     default:
    437       break;
    438     }
    439   }
    440   return TargetLowering::getConstraintType(Constraint);
    441 }
    442 
    443 TargetLowering::ConstraintWeight SystemZTargetLowering::
    444 getSingleConstraintMatchWeight(AsmOperandInfo &info,
    445                                const char *constraint) const {
    446   ConstraintWeight weight = CW_Invalid;
    447   Value *CallOperandVal = info.CallOperandVal;
    448   // If we don't have a value, we can't do a match,
    449   // but allow it at the lowest weight.
    450   if (!CallOperandVal)
    451     return CW_Default;
    452   Type *type = CallOperandVal->getType();
    453   // Look at the constraint type.
    454   switch (*constraint) {
    455   default:
    456     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
    457     break;
    458 
    459   case 'a': // Address register
    460   case 'd': // Data register (equivalent to 'r')
    461   case 'h': // High-part register
    462   case 'r': // General-purpose register
    463     if (CallOperandVal->getType()->isIntegerTy())
    464       weight = CW_Register;
    465     break;
    466 
    467   case 'f': // Floating-point register
    468     if (type->isFloatingPointTy())
    469       weight = CW_Register;
    470     break;
    471 
    472   case 'I': // Unsigned 8-bit constant
    473     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
    474       if (isUInt<8>(C->getZExtValue()))
    475         weight = CW_Constant;
    476     break;
    477 
    478   case 'J': // Unsigned 12-bit constant
    479     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
    480       if (isUInt<12>(C->getZExtValue()))
    481         weight = CW_Constant;
    482     break;
    483 
    484   case 'K': // Signed 16-bit constant
    485     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
    486       if (isInt<16>(C->getSExtValue()))
    487         weight = CW_Constant;
    488     break;
    489 
    490   case 'L': // Signed 20-bit displacement (on all targets we support)
    491     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
    492       if (isInt<20>(C->getSExtValue()))
    493         weight = CW_Constant;
    494     break;
    495 
    496   case 'M': // 0x7fffffff
    497     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
    498       if (C->getZExtValue() == 0x7fffffff)
    499         weight = CW_Constant;
    500     break;
    501   }
    502   return weight;
    503 }
    504 
    505 // Parse a "{tNNN}" register constraint for which the register type "t"
    506 // has already been verified.  MC is the class associated with "t" and
    507 // Map maps 0-based register numbers to LLVM register numbers.
    508 static std::pair<unsigned, const TargetRegisterClass *>
    509 parseRegisterNumber(const std::string &Constraint,
    510                     const TargetRegisterClass *RC, const unsigned *Map) {
    511   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
    512   if (isdigit(Constraint[2])) {
    513     std::string Suffix(Constraint.data() + 2, Constraint.size() - 2);
    514     unsigned Index = atoi(Suffix.c_str());
    515     if (Index < 16 && Map[Index])
    516       return std::make_pair(Map[Index], RC);
    517   }
    518   return std::make_pair(0U, nullptr);
    519 }
    520 
    521 std::pair<unsigned, const TargetRegisterClass *>
    522 SystemZTargetLowering::getRegForInlineAsmConstraint(
    523     const TargetRegisterInfo *TRI, const std::string &Constraint,
    524     MVT VT) const {
    525   if (Constraint.size() == 1) {
    526     // GCC Constraint Letters
    527     switch (Constraint[0]) {
    528     default: break;
    529     case 'd': // Data register (equivalent to 'r')
    530     case 'r': // General-purpose register
    531       if (VT == MVT::i64)
    532         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
    533       else if (VT == MVT::i128)
    534         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
    535       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
    536 
    537     case 'a': // Address register
    538       if (VT == MVT::i64)
    539         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
    540       else if (VT == MVT::i128)
    541         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
    542       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
    543 
    544     case 'h': // High-part register (an LLVM extension)
    545       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
    546 
    547     case 'f': // Floating-point register
    548       if (VT == MVT::f64)
    549         return std::make_pair(0U, &SystemZ::FP64BitRegClass);
    550       else if (VT == MVT::f128)
    551         return std::make_pair(0U, &SystemZ::FP128BitRegClass);
    552       return std::make_pair(0U, &SystemZ::FP32BitRegClass);
    553     }
    554   }
    555   if (Constraint[0] == '{') {
    556     // We need to override the default register parsing for GPRs and FPRs
    557     // because the interpretation depends on VT.  The internal names of
    558     // the registers are also different from the external names
    559     // (F0D and F0S instead of F0, etc.).
    560     if (Constraint[1] == 'r') {
    561       if (VT == MVT::i32)
    562         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
    563                                    SystemZMC::GR32Regs);
    564       if (VT == MVT::i128)
    565         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
    566                                    SystemZMC::GR128Regs);
    567       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
    568                                  SystemZMC::GR64Regs);
    569     }
    570     if (Constraint[1] == 'f') {
    571       if (VT == MVT::f32)
    572         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
    573                                    SystemZMC::FP32Regs);
    574       if (VT == MVT::f128)
    575         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
    576                                    SystemZMC::FP128Regs);
    577       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
    578                                  SystemZMC::FP64Regs);
    579     }
    580   }
    581   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
    582 }
    583 
    584 void SystemZTargetLowering::
    585 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
    586                              std::vector<SDValue> &Ops,
    587                              SelectionDAG &DAG) const {
    588   // Only support length 1 constraints for now.
    589   if (Constraint.length() == 1) {
    590     switch (Constraint[0]) {
    591     case 'I': // Unsigned 8-bit constant
    592       if (auto *C = dyn_cast<ConstantSDNode>(Op))
    593         if (isUInt<8>(C->getZExtValue()))
    594           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
    595                                               Op.getValueType()));
    596       return;
    597 
    598     case 'J': // Unsigned 12-bit constant
    599       if (auto *C = dyn_cast<ConstantSDNode>(Op))
    600         if (isUInt<12>(C->getZExtValue()))
    601           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
    602                                               Op.getValueType()));
    603       return;
    604 
    605     case 'K': // Signed 16-bit constant
    606       if (auto *C = dyn_cast<ConstantSDNode>(Op))
    607         if (isInt<16>(C->getSExtValue()))
    608           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
    609                                               Op.getValueType()));
    610       return;
    611 
    612     case 'L': // Signed 20-bit displacement (on all targets we support)
    613       if (auto *C = dyn_cast<ConstantSDNode>(Op))
    614         if (isInt<20>(C->getSExtValue()))
    615           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
    616                                               Op.getValueType()));
    617       return;
    618 
    619     case 'M': // 0x7fffffff
    620       if (auto *C = dyn_cast<ConstantSDNode>(Op))
    621         if (C->getZExtValue() == 0x7fffffff)
    622           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
    623                                               Op.getValueType()));
    624       return;
    625     }
    626   }
    627   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
    628 }
    629 
    630 //===----------------------------------------------------------------------===//
    631 // Calling conventions
    632 //===----------------------------------------------------------------------===//
    633 
    634 #include "SystemZGenCallingConv.inc"
    635 
    636 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
    637                                                      Type *ToType) const {
    638   return isTruncateFree(FromType, ToType);
    639 }
    640 
    641 bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
    642   if (!CI->isTailCall())
    643     return false;
    644   return true;
    645 }
    646 
    647 // Value is a value that has been passed to us in the location described by VA
    648 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
    649 // any loads onto Chain.
    650 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL,
    651                                    CCValAssign &VA, SDValue Chain,
    652                                    SDValue Value) {
    653   // If the argument has been promoted from a smaller type, insert an
    654   // assertion to capture this.
    655   if (VA.getLocInfo() == CCValAssign::SExt)
    656     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
    657                         DAG.getValueType(VA.getValVT()));
    658   else if (VA.getLocInfo() == CCValAssign::ZExt)
    659     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
    660                         DAG.getValueType(VA.getValVT()));
    661 
    662   if (VA.isExtInLoc())
    663     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
    664   else if (VA.getLocInfo() == CCValAssign::Indirect)
    665     Value = DAG.getLoad(VA.getValVT(), DL, Chain, Value,
    666                         MachinePointerInfo(), false, false, false, 0);
    667   else
    668     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
    669   return Value;
    670 }
    671 
    672 // Value is a value of type VA.getValVT() that we need to copy into
    673 // the location described by VA.  Return a copy of Value converted to
    674 // VA.getValVT().  The caller is responsible for handling indirect values.
    675 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL,
    676                                    CCValAssign &VA, SDValue Value) {
    677   switch (VA.getLocInfo()) {
    678   case CCValAssign::SExt:
    679     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
    680   case CCValAssign::ZExt:
    681     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
    682   case CCValAssign::AExt:
    683     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
    684   case CCValAssign::Full:
    685     return Value;
    686   default:
    687     llvm_unreachable("Unhandled getLocInfo()");
    688   }
    689 }
    690 
    691 SDValue SystemZTargetLowering::
    692 LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
    693                      const SmallVectorImpl<ISD::InputArg> &Ins,
    694                      SDLoc DL, SelectionDAG &DAG,
    695                      SmallVectorImpl<SDValue> &InVals) const {
    696   MachineFunction &MF = DAG.getMachineFunction();
    697   MachineFrameInfo *MFI = MF.getFrameInfo();
    698   MachineRegisterInfo &MRI = MF.getRegInfo();
    699   SystemZMachineFunctionInfo *FuncInfo =
    700       MF.getInfo<SystemZMachineFunctionInfo>();
    701   auto *TFL =
    702       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
    703 
    704   // Assign locations to all of the incoming arguments.
    705   SmallVector<CCValAssign, 16> ArgLocs;
    706   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
    707   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
    708 
    709   unsigned NumFixedGPRs = 0;
    710   unsigned NumFixedFPRs = 0;
    711   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
    712     SDValue ArgValue;
    713     CCValAssign &VA = ArgLocs[I];
    714     EVT LocVT = VA.getLocVT();
    715     if (VA.isRegLoc()) {
    716       // Arguments passed in registers
    717       const TargetRegisterClass *RC;
    718       switch (LocVT.getSimpleVT().SimpleTy) {
    719       default:
    720         // Integers smaller than i64 should be promoted to i64.
    721         llvm_unreachable("Unexpected argument type");
    722       case MVT::i32:
    723         NumFixedGPRs += 1;
    724         RC = &SystemZ::GR32BitRegClass;
    725         break;
    726       case MVT::i64:
    727         NumFixedGPRs += 1;
    728         RC = &SystemZ::GR64BitRegClass;
    729         break;
    730       case MVT::f32:
    731         NumFixedFPRs += 1;
    732         RC = &SystemZ::FP32BitRegClass;
    733         break;
    734       case MVT::f64:
    735         NumFixedFPRs += 1;
    736         RC = &SystemZ::FP64BitRegClass;
    737         break;
    738       }
    739 
    740       unsigned VReg = MRI.createVirtualRegister(RC);
    741       MRI.addLiveIn(VA.getLocReg(), VReg);
    742       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
    743     } else {
    744       assert(VA.isMemLoc() && "Argument not register or memory");
    745 
    746       // Create the frame index object for this incoming parameter.
    747       int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8,
    748                                       VA.getLocMemOffset(), true);
    749 
    750       // Create the SelectionDAG nodes corresponding to a load
    751       // from this parameter.  Unpromoted ints and floats are
    752       // passed as right-justified 8-byte values.
    753       EVT PtrVT = getPointerTy();
    754       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
    755       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
    756         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4));
    757       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
    758                              MachinePointerInfo::getFixedStack(FI),
    759                              false, false, false, 0);
    760     }
    761 
    762     // Convert the value of the argument register into the value that's
    763     // being passed.
    764     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
    765   }
    766 
    767   if (IsVarArg) {
    768     // Save the number of non-varargs registers for later use by va_start, etc.
    769     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
    770     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
    771 
    772     // Likewise the address (in the form of a frame index) of where the
    773     // first stack vararg would be.  The 1-byte size here is arbitrary.
    774     int64_t StackSize = CCInfo.getNextStackOffset();
    775     FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true));
    776 
    777     // ...and a similar frame index for the caller-allocated save area
    778     // that will be used to store the incoming registers.
    779     int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
    780     unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true);
    781     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
    782 
    783     // Store the FPR varargs in the reserved frame slots.  (We store the
    784     // GPRs as part of the prologue.)
    785     if (NumFixedFPRs < SystemZ::NumArgFPRs) {
    786       SDValue MemOps[SystemZ::NumArgFPRs];
    787       for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
    788         unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
    789         int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true);
    790         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
    791         unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
    792                                      &SystemZ::FP64BitRegClass);
    793         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
    794         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
    795                                  MachinePointerInfo::getFixedStack(FI),
    796                                  false, false, 0);
    797 
    798       }
    799       // Join the stores, which are independent of one another.
    800       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
    801                           makeArrayRef(&MemOps[NumFixedFPRs],
    802                                        SystemZ::NumArgFPRs-NumFixedFPRs));
    803     }
    804   }
    805 
    806   return Chain;
    807 }
    808 
    809 static bool canUseSiblingCall(const CCState &ArgCCInfo,
    810                               SmallVectorImpl<CCValAssign> &ArgLocs) {
    811   // Punt if there are any indirect or stack arguments, or if the call
    812   // needs the call-saved argument register R6.
    813   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
    814     CCValAssign &VA = ArgLocs[I];
    815     if (VA.getLocInfo() == CCValAssign::Indirect)
    816       return false;
    817     if (!VA.isRegLoc())
    818       return false;
    819     unsigned Reg = VA.getLocReg();
    820     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
    821       return false;
    822   }
    823   return true;
    824 }
    825 
    826 SDValue
    827 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
    828                                  SmallVectorImpl<SDValue> &InVals) const {
    829   SelectionDAG &DAG = CLI.DAG;
    830   SDLoc &DL = CLI.DL;
    831   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
    832   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
    833   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
    834   SDValue Chain = CLI.Chain;
    835   SDValue Callee = CLI.Callee;
    836   bool &IsTailCall = CLI.IsTailCall;
    837   CallingConv::ID CallConv = CLI.CallConv;
    838   bool IsVarArg = CLI.IsVarArg;
    839   MachineFunction &MF = DAG.getMachineFunction();
    840   EVT PtrVT = getPointerTy();
    841 
    842   // Analyze the operands of the call, assigning locations to each operand.
    843   SmallVector<CCValAssign, 16> ArgLocs;
    844   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
    845   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
    846 
    847   // We don't support GuaranteedTailCallOpt, only automatically-detected
    848   // sibling calls.
    849   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs))
    850     IsTailCall = false;
    851 
    852   // Get a count of how many bytes are to be pushed on the stack.
    853   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
    854 
    855   // Mark the start of the call.
    856   if (!IsTailCall)
    857     Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes, PtrVT, true),
    858                                  DL);
    859 
    860   // Copy argument values to their designated locations.
    861   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
    862   SmallVector<SDValue, 8> MemOpChains;
    863   SDValue StackPtr;
    864   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
    865     CCValAssign &VA = ArgLocs[I];
    866     SDValue ArgValue = OutVals[I];
    867 
    868     if (VA.getLocInfo() == CCValAssign::Indirect) {
    869       // Store the argument in a stack slot and pass its address.
    870       SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
    871       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
    872       MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, SpillSlot,
    873                                          MachinePointerInfo::getFixedStack(FI),
    874                                          false, false, 0));
    875       ArgValue = SpillSlot;
    876     } else
    877       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
    878 
    879     if (VA.isRegLoc())
    880       // Queue up the argument copies and emit them at the end.
    881       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
    882     else {
    883       assert(VA.isMemLoc() && "Argument not register or memory");
    884 
    885       // Work out the address of the stack slot.  Unpromoted ints and
    886       // floats are passed as right-justified 8-byte values.
    887       if (!StackPtr.getNode())
    888         StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
    889       unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
    890       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
    891         Offset += 4;
    892       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
    893                                     DAG.getIntPtrConstant(Offset));
    894 
    895       // Emit the store.
    896       MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address,
    897                                          MachinePointerInfo(),
    898                                          false, false, 0));
    899     }
    900   }
    901 
    902   // Join the stores, which are independent of one another.
    903   if (!MemOpChains.empty())
    904     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
    905 
    906   // Accept direct calls by converting symbolic call addresses to the
    907   // associated Target* opcodes.  Force %r1 to be used for indirect
    908   // tail calls.
    909   SDValue Glue;
    910   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
    911     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
    912     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
    913   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
    914     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
    915     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
    916   } else if (IsTailCall) {
    917     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
    918     Glue = Chain.getValue(1);
    919     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
    920   }
    921 
    922   // Build a sequence of copy-to-reg nodes, chained and glued together.
    923   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
    924     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
    925                              RegsToPass[I].second, Glue);
    926     Glue = Chain.getValue(1);
    927   }
    928 
    929   // The first call operand is the chain and the second is the target address.
    930   SmallVector<SDValue, 8> Ops;
    931   Ops.push_back(Chain);
    932   Ops.push_back(Callee);
    933 
    934   // Add argument registers to the end of the list so that they are
    935   // known live into the call.
    936   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
    937     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
    938                                   RegsToPass[I].second.getValueType()));
    939 
    940   // Add a register mask operand representing the call-preserved registers.
    941   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
    942   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
    943   assert(Mask && "Missing call preserved mask for calling convention");
    944   Ops.push_back(DAG.getRegisterMask(Mask));
    945 
    946   // Glue the call to the argument copies, if any.
    947   if (Glue.getNode())
    948     Ops.push_back(Glue);
    949 
    950   // Emit the call.
    951   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
    952   if (IsTailCall)
    953     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
    954   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
    955   Glue = Chain.getValue(1);
    956 
    957   // Mark the end of the call, which is glued to the call itself.
    958   Chain = DAG.getCALLSEQ_END(Chain,
    959                              DAG.getConstant(NumBytes, PtrVT, true),
    960                              DAG.getConstant(0, PtrVT, true),
    961                              Glue, DL);
    962   Glue = Chain.getValue(1);
    963 
    964   // Assign locations to each value returned by this call.
    965   SmallVector<CCValAssign, 16> RetLocs;
    966   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
    967   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
    968 
    969   // Copy all of the result registers out of their specified physreg.
    970   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
    971     CCValAssign &VA = RetLocs[I];
    972 
    973     // Copy the value out, gluing the copy to the end of the call sequence.
    974     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
    975                                           VA.getLocVT(), Glue);
    976     Chain = RetValue.getValue(1);
    977     Glue = RetValue.getValue(2);
    978 
    979     // Convert the value of the return register into the value that's
    980     // being returned.
    981     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
    982   }
    983 
    984   return Chain;
    985 }
    986 
    987 SDValue
    988 SystemZTargetLowering::LowerReturn(SDValue Chain,
    989                                    CallingConv::ID CallConv, bool IsVarArg,
    990                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
    991                                    const SmallVectorImpl<SDValue> &OutVals,
    992                                    SDLoc DL, SelectionDAG &DAG) const {
    993   MachineFunction &MF = DAG.getMachineFunction();
    994 
    995   // Assign locations to each returned value.
    996   SmallVector<CCValAssign, 16> RetLocs;
    997   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
    998   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
    999 
   1000   // Quick exit for void returns
   1001   if (RetLocs.empty())
   1002     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
   1003 
   1004   // Copy the result values into the output registers.
   1005   SDValue Glue;
   1006   SmallVector<SDValue, 4> RetOps;
   1007   RetOps.push_back(Chain);
   1008   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
   1009     CCValAssign &VA = RetLocs[I];
   1010     SDValue RetValue = OutVals[I];
   1011 
   1012     // Make the return register live on exit.
   1013     assert(VA.isRegLoc() && "Can only return in registers!");
   1014 
   1015     // Promote the value as required.
   1016     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
   1017 
   1018     // Chain and glue the copies together.
   1019     unsigned Reg = VA.getLocReg();
   1020     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
   1021     Glue = Chain.getValue(1);
   1022     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
   1023   }
   1024 
   1025   // Update chain and glue.
   1026   RetOps[0] = Chain;
   1027   if (Glue.getNode())
   1028     RetOps.push_back(Glue);
   1029 
   1030   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
   1031 }
   1032 
   1033 SDValue SystemZTargetLowering::
   1034 prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL, SelectionDAG &DAG) const {
   1035   return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain);
   1036 }
   1037 
   1038 // Return true if Op is an intrinsic node with chain that returns the CC value
   1039 // as its only (other) argument.  Provide the associated SystemZISD opcode and
   1040 // the mask of valid CC values if so.
   1041 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
   1042                                       unsigned &CCValid) {
   1043   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
   1044   switch (Id) {
   1045   case Intrinsic::s390_tbegin:
   1046     Opcode = SystemZISD::TBEGIN;
   1047     CCValid = SystemZ::CCMASK_TBEGIN;
   1048     return true;
   1049 
   1050   case Intrinsic::s390_tbegin_nofloat:
   1051     Opcode = SystemZISD::TBEGIN_NOFLOAT;
   1052     CCValid = SystemZ::CCMASK_TBEGIN;
   1053     return true;
   1054 
   1055   case Intrinsic::s390_tend:
   1056     Opcode = SystemZISD::TEND;
   1057     CCValid = SystemZ::CCMASK_TEND;
   1058     return true;
   1059 
   1060   default:
   1061     return false;
   1062   }
   1063 }
   1064 
   1065 // Emit an intrinsic with chain with a glued value instead of its CC result.
   1066 static SDValue emitIntrinsicWithChainAndGlue(SelectionDAG &DAG, SDValue Op,
   1067                                              unsigned Opcode) {
   1068   // Copy all operands except the intrinsic ID.
   1069   unsigned NumOps = Op.getNumOperands();
   1070   SmallVector<SDValue, 6> Ops;
   1071   Ops.reserve(NumOps - 1);
   1072   Ops.push_back(Op.getOperand(0));
   1073   for (unsigned I = 2; I < NumOps; ++I)
   1074     Ops.push_back(Op.getOperand(I));
   1075 
   1076   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
   1077   SDVTList RawVTs = DAG.getVTList(MVT::Other, MVT::Glue);
   1078   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
   1079   SDValue OldChain = SDValue(Op.getNode(), 1);
   1080   SDValue NewChain = SDValue(Intr.getNode(), 0);
   1081   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
   1082   return Intr;
   1083 }
   1084 
   1085 // CC is a comparison that will be implemented using an integer or
   1086 // floating-point comparison.  Return the condition code mask for
   1087 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
   1088 // unsigned comparisons and clear for signed ones.  In the floating-point
   1089 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
   1090 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
   1091 #define CONV(X) \
   1092   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
   1093   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
   1094   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
   1095 
   1096   switch (CC) {
   1097   default:
   1098     llvm_unreachable("Invalid integer condition!");
   1099 
   1100   CONV(EQ);
   1101   CONV(NE);
   1102   CONV(GT);
   1103   CONV(GE);
   1104   CONV(LT);
   1105   CONV(LE);
   1106 
   1107   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
   1108   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
   1109   }
   1110 #undef CONV
   1111 }
   1112 
   1113 // Return a sequence for getting a 1 from an IPM result when CC has a
   1114 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask.
   1115 // The handling of CC values outside CCValid doesn't matter.
   1116 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) {
   1117   // Deal with cases where the result can be taken directly from a bit
   1118   // of the IPM result.
   1119   if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3)))
   1120     return IPMConversion(0, 0, SystemZ::IPM_CC);
   1121   if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3)))
   1122     return IPMConversion(0, 0, SystemZ::IPM_CC + 1);
   1123 
   1124   // Deal with cases where we can add a value to force the sign bit
   1125   // to contain the right value.  Putting the bit in 31 means we can
   1126   // use SRL rather than RISBG(L), and also makes it easier to get a
   1127   // 0/-1 value, so it has priority over the other tests below.
   1128   //
   1129   // These sequences rely on the fact that the upper two bits of the
   1130   // IPM result are zero.
   1131   uint64_t TopBit = uint64_t(1) << 31;
   1132   if (CCMask == (CCValid & SystemZ::CCMASK_0))
   1133     return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31);
   1134   if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1)))
   1135     return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31);
   1136   if (CCMask == (CCValid & (SystemZ::CCMASK_0
   1137                             | SystemZ::CCMASK_1
   1138                             | SystemZ::CCMASK_2)))
   1139     return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31);
   1140   if (CCMask == (CCValid & SystemZ::CCMASK_3))
   1141     return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31);
   1142   if (CCMask == (CCValid & (SystemZ::CCMASK_1
   1143                             | SystemZ::CCMASK_2
   1144                             | SystemZ::CCMASK_3)))
   1145     return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31);
   1146 
   1147   // Next try inverting the value and testing a bit.  0/1 could be
   1148   // handled this way too, but we dealt with that case above.
   1149   if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2)))
   1150     return IPMConversion(-1, 0, SystemZ::IPM_CC);
   1151 
   1152   // Handle cases where adding a value forces a non-sign bit to contain
   1153   // the right value.
   1154   if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2)))
   1155     return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1);
   1156   if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3)))
   1157     return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1);
   1158 
   1159   // The remaining cases are 1, 2, 0/1/3 and 0/2/3.  All these are
   1160   // can be done by inverting the low CC bit and applying one of the
   1161   // sign-based extractions above.
   1162   if (CCMask == (CCValid & SystemZ::CCMASK_1))
   1163     return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31);
   1164   if (CCMask == (CCValid & SystemZ::CCMASK_2))
   1165     return IPMConversion(1 << SystemZ::IPM_CC,
   1166                          TopBit - (3 << SystemZ::IPM_CC), 31);
   1167   if (CCMask == (CCValid & (SystemZ::CCMASK_0
   1168                             | SystemZ::CCMASK_1
   1169                             | SystemZ::CCMASK_3)))
   1170     return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31);
   1171   if (CCMask == (CCValid & (SystemZ::CCMASK_0
   1172                             | SystemZ::CCMASK_2
   1173                             | SystemZ::CCMASK_3)))
   1174     return IPMConversion(1 << SystemZ::IPM_CC,
   1175                          TopBit - (1 << SystemZ::IPM_CC), 31);
   1176 
   1177   llvm_unreachable("Unexpected CC combination");
   1178 }
   1179 
   1180 // If C can be converted to a comparison against zero, adjust the operands
   1181 // as necessary.
   1182 static void adjustZeroCmp(SelectionDAG &DAG, Comparison &C) {
   1183   if (C.ICmpType == SystemZICMP::UnsignedOnly)
   1184     return;
   1185 
   1186   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
   1187   if (!ConstOp1)
   1188     return;
   1189 
   1190   int64_t Value = ConstOp1->getSExtValue();
   1191   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
   1192       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
   1193       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
   1194       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
   1195     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
   1196     C.Op1 = DAG.getConstant(0, C.Op1.getValueType());
   1197   }
   1198 }
   1199 
   1200 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
   1201 // adjust the operands as necessary.
   1202 static void adjustSubwordCmp(SelectionDAG &DAG, Comparison &C) {
   1203   // For us to make any changes, it must a comparison between a single-use
   1204   // load and a constant.
   1205   if (!C.Op0.hasOneUse() ||
   1206       C.Op0.getOpcode() != ISD::LOAD ||
   1207       C.Op1.getOpcode() != ISD::Constant)
   1208     return;
   1209 
   1210   // We must have an 8- or 16-bit load.
   1211   auto *Load = cast<LoadSDNode>(C.Op0);
   1212   unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
   1213   if (NumBits != 8 && NumBits != 16)
   1214     return;
   1215 
   1216   // The load must be an extending one and the constant must be within the
   1217   // range of the unextended value.
   1218   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
   1219   uint64_t Value = ConstOp1->getZExtValue();
   1220   uint64_t Mask = (1 << NumBits) - 1;
   1221   if (Load->getExtensionType() == ISD::SEXTLOAD) {
   1222     // Make sure that ConstOp1 is in range of C.Op0.
   1223     int64_t SignedValue = ConstOp1->getSExtValue();
   1224     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
   1225       return;
   1226     if (C.ICmpType != SystemZICMP::SignedOnly) {
   1227       // Unsigned comparison between two sign-extended values is equivalent
   1228       // to unsigned comparison between two zero-extended values.
   1229       Value &= Mask;
   1230     } else if (NumBits == 8) {
   1231       // Try to treat the comparison as unsigned, so that we can use CLI.
   1232       // Adjust CCMask and Value as necessary.
   1233       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
   1234         // Test whether the high bit of the byte is set.
   1235         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
   1236       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
   1237         // Test whether the high bit of the byte is clear.
   1238         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
   1239       else
   1240         // No instruction exists for this combination.
   1241         return;
   1242       C.ICmpType = SystemZICMP::UnsignedOnly;
   1243     }
   1244   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
   1245     if (Value > Mask)
   1246       return;
   1247     assert(C.ICmpType == SystemZICMP::Any &&
   1248            "Signedness shouldn't matter here.");
   1249   } else
   1250     return;
   1251 
   1252   // Make sure that the first operand is an i32 of the right extension type.
   1253   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
   1254                               ISD::SEXTLOAD :
   1255                               ISD::ZEXTLOAD);
   1256   if (C.Op0.getValueType() != MVT::i32 ||
   1257       Load->getExtensionType() != ExtType)
   1258     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32,
   1259                            Load->getChain(), Load->getBasePtr(),
   1260                            Load->getPointerInfo(), Load->getMemoryVT(),
   1261                            Load->isVolatile(), Load->isNonTemporal(),
   1262                            Load->isInvariant(), Load->getAlignment());
   1263 
   1264   // Make sure that the second operand is an i32 with the right value.
   1265   if (C.Op1.getValueType() != MVT::i32 ||
   1266       Value != ConstOp1->getZExtValue())
   1267     C.Op1 = DAG.getConstant(Value, MVT::i32);
   1268 }
   1269 
   1270 // Return true if Op is either an unextended load, or a load suitable
   1271 // for integer register-memory comparisons of type ICmpType.
   1272 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
   1273   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
   1274   if (Load) {
   1275     // There are no instructions to compare a register with a memory byte.
   1276     if (Load->getMemoryVT() == MVT::i8)
   1277       return false;
   1278     // Otherwise decide on extension type.
   1279     switch (Load->getExtensionType()) {
   1280     case ISD::NON_EXTLOAD:
   1281       return true;
   1282     case ISD::SEXTLOAD:
   1283       return ICmpType != SystemZICMP::UnsignedOnly;
   1284     case ISD::ZEXTLOAD:
   1285       return ICmpType != SystemZICMP::SignedOnly;
   1286     default:
   1287       break;
   1288     }
   1289   }
   1290   return false;
   1291 }
   1292 
   1293 // Return true if it is better to swap the operands of C.
   1294 static bool shouldSwapCmpOperands(const Comparison &C) {
   1295   // Leave f128 comparisons alone, since they have no memory forms.
   1296   if (C.Op0.getValueType() == MVT::f128)
   1297     return false;
   1298 
   1299   // Always keep a floating-point constant second, since comparisons with
   1300   // zero can use LOAD TEST and comparisons with other constants make a
   1301   // natural memory operand.
   1302   if (isa<ConstantFPSDNode>(C.Op1))
   1303     return false;
   1304 
   1305   // Never swap comparisons with zero since there are many ways to optimize
   1306   // those later.
   1307   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
   1308   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
   1309     return false;
   1310 
   1311   // Also keep natural memory operands second if the loaded value is
   1312   // only used here.  Several comparisons have memory forms.
   1313   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
   1314     return false;
   1315 
   1316   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
   1317   // In that case we generally prefer the memory to be second.
   1318   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
   1319     // The only exceptions are when the second operand is a constant and
   1320     // we can use things like CHHSI.
   1321     if (!ConstOp1)
   1322       return true;
   1323     // The unsigned memory-immediate instructions can handle 16-bit
   1324     // unsigned integers.
   1325     if (C.ICmpType != SystemZICMP::SignedOnly &&
   1326         isUInt<16>(ConstOp1->getZExtValue()))
   1327       return false;
   1328     // The signed memory-immediate instructions can handle 16-bit
   1329     // signed integers.
   1330     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
   1331         isInt<16>(ConstOp1->getSExtValue()))
   1332       return false;
   1333     return true;
   1334   }
   1335 
   1336   // Try to promote the use of CGFR and CLGFR.
   1337   unsigned Opcode0 = C.Op0.getOpcode();
   1338   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
   1339     return true;
   1340   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
   1341     return true;
   1342   if (C.ICmpType != SystemZICMP::SignedOnly &&
   1343       Opcode0 == ISD::AND &&
   1344       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
   1345       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
   1346     return true;
   1347 
   1348   return false;
   1349 }
   1350 
   1351 // Return a version of comparison CC mask CCMask in which the LT and GT
   1352 // actions are swapped.
   1353 static unsigned reverseCCMask(unsigned CCMask) {
   1354   return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
   1355           (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
   1356           (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
   1357           (CCMask & SystemZ::CCMASK_CMP_UO));
   1358 }
   1359 
   1360 // Check whether C tests for equality between X and Y and whether X - Y
   1361 // or Y - X is also computed.  In that case it's better to compare the
   1362 // result of the subtraction against zero.
   1363 static void adjustForSubtraction(SelectionDAG &DAG, Comparison &C) {
   1364   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
   1365       C.CCMask == SystemZ::CCMASK_CMP_NE) {
   1366     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
   1367       SDNode *N = *I;
   1368       if (N->getOpcode() == ISD::SUB &&
   1369           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
   1370            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
   1371         C.Op0 = SDValue(N, 0);
   1372         C.Op1 = DAG.getConstant(0, N->getValueType(0));
   1373         return;
   1374       }
   1375     }
   1376   }
   1377 }
   1378 
   1379 // Check whether C compares a floating-point value with zero and if that
   1380 // floating-point value is also negated.  In this case we can use the
   1381 // negation to set CC, so avoiding separate LOAD AND TEST and
   1382 // LOAD (NEGATIVE/COMPLEMENT) instructions.
   1383 static void adjustForFNeg(Comparison &C) {
   1384   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
   1385   if (C1 && C1->isZero()) {
   1386     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
   1387       SDNode *N = *I;
   1388       if (N->getOpcode() == ISD::FNEG) {
   1389         C.Op0 = SDValue(N, 0);
   1390         C.CCMask = reverseCCMask(C.CCMask);
   1391         return;
   1392       }
   1393     }
   1394   }
   1395 }
   1396 
   1397 // Check whether C compares (shl X, 32) with 0 and whether X is
   1398 // also sign-extended.  In that case it is better to test the result
   1399 // of the sign extension using LTGFR.
   1400 //
   1401 // This case is important because InstCombine transforms a comparison
   1402 // with (sext (trunc X)) into a comparison with (shl X, 32).
   1403 static void adjustForLTGFR(Comparison &C) {
   1404   // Check for a comparison between (shl X, 32) and 0.
   1405   if (C.Op0.getOpcode() == ISD::SHL &&
   1406       C.Op0.getValueType() == MVT::i64 &&
   1407       C.Op1.getOpcode() == ISD::Constant &&
   1408       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
   1409     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
   1410     if (C1 && C1->getZExtValue() == 32) {
   1411       SDValue ShlOp0 = C.Op0.getOperand(0);
   1412       // See whether X has any SIGN_EXTEND_INREG uses.
   1413       for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
   1414         SDNode *N = *I;
   1415         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
   1416             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
   1417           C.Op0 = SDValue(N, 0);
   1418           return;
   1419         }
   1420       }
   1421     }
   1422   }
   1423 }
   1424 
   1425 // If C compares the truncation of an extending load, try to compare
   1426 // the untruncated value instead.  This exposes more opportunities to
   1427 // reuse CC.
   1428 static void adjustICmpTruncate(SelectionDAG &DAG, Comparison &C) {
   1429   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
   1430       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
   1431       C.Op1.getOpcode() == ISD::Constant &&
   1432       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
   1433     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
   1434     if (L->getMemoryVT().getStoreSizeInBits()
   1435         <= C.Op0.getValueType().getSizeInBits()) {
   1436       unsigned Type = L->getExtensionType();
   1437       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
   1438           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
   1439         C.Op0 = C.Op0.getOperand(0);
   1440         C.Op1 = DAG.getConstant(0, C.Op0.getValueType());
   1441       }
   1442     }
   1443   }
   1444 }
   1445 
   1446 // Return true if shift operation N has an in-range constant shift value.
   1447 // Store it in ShiftVal if so.
   1448 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
   1449   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
   1450   if (!Shift)
   1451     return false;
   1452 
   1453   uint64_t Amount = Shift->getZExtValue();
   1454   if (Amount >= N.getValueType().getSizeInBits())
   1455     return false;
   1456 
   1457   ShiftVal = Amount;
   1458   return true;
   1459 }
   1460 
   1461 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
   1462 // instruction and whether the CC value is descriptive enough to handle
   1463 // a comparison of type Opcode between the AND result and CmpVal.
   1464 // CCMask says which comparison result is being tested and BitSize is
   1465 // the number of bits in the operands.  If TEST UNDER MASK can be used,
   1466 // return the corresponding CC mask, otherwise return 0.
   1467 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
   1468                                      uint64_t Mask, uint64_t CmpVal,
   1469                                      unsigned ICmpType) {
   1470   assert(Mask != 0 && "ANDs with zero should have been removed by now");
   1471 
   1472   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
   1473   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
   1474       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
   1475     return 0;
   1476 
   1477   // Work out the masks for the lowest and highest bits.
   1478   unsigned HighShift = 63 - countLeadingZeros(Mask);
   1479   uint64_t High = uint64_t(1) << HighShift;
   1480   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
   1481 
   1482   // Signed ordered comparisons are effectively unsigned if the sign
   1483   // bit is dropped.
   1484   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
   1485 
   1486   // Check for equality comparisons with 0, or the equivalent.
   1487   if (CmpVal == 0) {
   1488     if (CCMask == SystemZ::CCMASK_CMP_EQ)
   1489       return SystemZ::CCMASK_TM_ALL_0;
   1490     if (CCMask == SystemZ::CCMASK_CMP_NE)
   1491       return SystemZ::CCMASK_TM_SOME_1;
   1492   }
   1493   if (EffectivelyUnsigned && CmpVal <= Low) {
   1494     if (CCMask == SystemZ::CCMASK_CMP_LT)
   1495       return SystemZ::CCMASK_TM_ALL_0;
   1496     if (CCMask == SystemZ::CCMASK_CMP_GE)
   1497       return SystemZ::CCMASK_TM_SOME_1;
   1498   }
   1499   if (EffectivelyUnsigned && CmpVal < Low) {
   1500     if (CCMask == SystemZ::CCMASK_CMP_LE)
   1501       return SystemZ::CCMASK_TM_ALL_0;
   1502     if (CCMask == SystemZ::CCMASK_CMP_GT)
   1503       return SystemZ::CCMASK_TM_SOME_1;
   1504   }
   1505 
   1506   // Check for equality comparisons with the mask, or the equivalent.
   1507   if (CmpVal == Mask) {
   1508     if (CCMask == SystemZ::CCMASK_CMP_EQ)
   1509       return SystemZ::CCMASK_TM_ALL_1;
   1510     if (CCMask == SystemZ::CCMASK_CMP_NE)
   1511       return SystemZ::CCMASK_TM_SOME_0;
   1512   }
   1513   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
   1514     if (CCMask == SystemZ::CCMASK_CMP_GT)
   1515       return SystemZ::CCMASK_TM_ALL_1;
   1516     if (CCMask == SystemZ::CCMASK_CMP_LE)
   1517       return SystemZ::CCMASK_TM_SOME_0;
   1518   }
   1519   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
   1520     if (CCMask == SystemZ::CCMASK_CMP_GE)
   1521       return SystemZ::CCMASK_TM_ALL_1;
   1522     if (CCMask == SystemZ::CCMASK_CMP_LT)
   1523       return SystemZ::CCMASK_TM_SOME_0;
   1524   }
   1525 
   1526   // Check for ordered comparisons with the top bit.
   1527   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
   1528     if (CCMask == SystemZ::CCMASK_CMP_LE)
   1529       return SystemZ::CCMASK_TM_MSB_0;
   1530     if (CCMask == SystemZ::CCMASK_CMP_GT)
   1531       return SystemZ::CCMASK_TM_MSB_1;
   1532   }
   1533   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
   1534     if (CCMask == SystemZ::CCMASK_CMP_LT)
   1535       return SystemZ::CCMASK_TM_MSB_0;
   1536     if (CCMask == SystemZ::CCMASK_CMP_GE)
   1537       return SystemZ::CCMASK_TM_MSB_1;
   1538   }
   1539 
   1540   // If there are just two bits, we can do equality checks for Low and High
   1541   // as well.
   1542   if (Mask == Low + High) {
   1543     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
   1544       return SystemZ::CCMASK_TM_MIXED_MSB_0;
   1545     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
   1546       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
   1547     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
   1548       return SystemZ::CCMASK_TM_MIXED_MSB_1;
   1549     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
   1550       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
   1551   }
   1552 
   1553   // Looks like we've exhausted our options.
   1554   return 0;
   1555 }
   1556 
   1557 // See whether C can be implemented as a TEST UNDER MASK instruction.
   1558 // Update the arguments with the TM version if so.
   1559 static void adjustForTestUnderMask(SelectionDAG &DAG, Comparison &C) {
   1560   // Check that we have a comparison with a constant.
   1561   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
   1562   if (!ConstOp1)
   1563     return;
   1564   uint64_t CmpVal = ConstOp1->getZExtValue();
   1565 
   1566   // Check whether the nonconstant input is an AND with a constant mask.
   1567   Comparison NewC(C);
   1568   uint64_t MaskVal;
   1569   ConstantSDNode *Mask = nullptr;
   1570   if (C.Op0.getOpcode() == ISD::AND) {
   1571     NewC.Op0 = C.Op0.getOperand(0);
   1572     NewC.Op1 = C.Op0.getOperand(1);
   1573     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
   1574     if (!Mask)
   1575       return;
   1576     MaskVal = Mask->getZExtValue();
   1577   } else {
   1578     // There is no instruction to compare with a 64-bit immediate
   1579     // so use TMHH instead if possible.  We need an unsigned ordered
   1580     // comparison with an i64 immediate.
   1581     if (NewC.Op0.getValueType() != MVT::i64 ||
   1582         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
   1583         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
   1584         NewC.ICmpType == SystemZICMP::SignedOnly)
   1585       return;
   1586     // Convert LE and GT comparisons into LT and GE.
   1587     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
   1588         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
   1589       if (CmpVal == uint64_t(-1))
   1590         return;
   1591       CmpVal += 1;
   1592       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
   1593     }
   1594     // If the low N bits of Op1 are zero than the low N bits of Op0 can
   1595     // be masked off without changing the result.
   1596     MaskVal = -(CmpVal & -CmpVal);
   1597     NewC.ICmpType = SystemZICMP::UnsignedOnly;
   1598   }
   1599   if (!MaskVal)
   1600     return;
   1601 
   1602   // Check whether the combination of mask, comparison value and comparison
   1603   // type are suitable.
   1604   unsigned BitSize = NewC.Op0.getValueType().getSizeInBits();
   1605   unsigned NewCCMask, ShiftVal;
   1606   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
   1607       NewC.Op0.getOpcode() == ISD::SHL &&
   1608       isSimpleShift(NewC.Op0, ShiftVal) &&
   1609       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
   1610                                         MaskVal >> ShiftVal,
   1611                                         CmpVal >> ShiftVal,
   1612                                         SystemZICMP::Any))) {
   1613     NewC.Op0 = NewC.Op0.getOperand(0);
   1614     MaskVal >>= ShiftVal;
   1615   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
   1616              NewC.Op0.getOpcode() == ISD::SRL &&
   1617              isSimpleShift(NewC.Op0, ShiftVal) &&
   1618              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
   1619                                                MaskVal << ShiftVal,
   1620                                                CmpVal << ShiftVal,
   1621                                                SystemZICMP::UnsignedOnly))) {
   1622     NewC.Op0 = NewC.Op0.getOperand(0);
   1623     MaskVal <<= ShiftVal;
   1624   } else {
   1625     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
   1626                                      NewC.ICmpType);
   1627     if (!NewCCMask)
   1628       return;
   1629   }
   1630 
   1631   // Go ahead and make the change.
   1632   C.Opcode = SystemZISD::TM;
   1633   C.Op0 = NewC.Op0;
   1634   if (Mask && Mask->getZExtValue() == MaskVal)
   1635     C.Op1 = SDValue(Mask, 0);
   1636   else
   1637     C.Op1 = DAG.getConstant(MaskVal, C.Op0.getValueType());
   1638   C.CCValid = SystemZ::CCMASK_TM;
   1639   C.CCMask = NewCCMask;
   1640 }
   1641 
   1642 // Return a Comparison that tests the condition-code result of intrinsic
   1643 // node Call against constant integer CC using comparison code Cond.
   1644 // Opcode is the opcode of the SystemZISD operation for the intrinsic
   1645 // and CCValid is the set of possible condition-code results.
   1646 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
   1647                                   SDValue Call, unsigned CCValid, uint64_t CC,
   1648                                   ISD::CondCode Cond) {
   1649   Comparison C(Call, SDValue());
   1650   C.Opcode = Opcode;
   1651   C.CCValid = CCValid;
   1652   if (Cond == ISD::SETEQ)
   1653     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
   1654     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
   1655   else if (Cond == ISD::SETNE)
   1656     // ...and the inverse of that.
   1657     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
   1658   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
   1659     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
   1660     // always true for CC>3.
   1661     C.CCMask = CC < 4 ? -1 << (4 - CC) : -1;
   1662   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
   1663     // ...and the inverse of that.
   1664     C.CCMask = CC < 4 ? ~(-1 << (4 - CC)) : 0;
   1665   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
   1666     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
   1667     // always true for CC>3.
   1668     C.CCMask = CC < 4 ? -1 << (3 - CC) : -1;
   1669   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
   1670     // ...and the inverse of that.
   1671     C.CCMask = CC < 4 ? ~(-1 << (3 - CC)) : 0;
   1672   else
   1673     llvm_unreachable("Unexpected integer comparison type");
   1674   C.CCMask &= CCValid;
   1675   return C;
   1676 }
   1677 
   1678 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
   1679 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
   1680                          ISD::CondCode Cond) {
   1681   if (CmpOp1.getOpcode() == ISD::Constant) {
   1682     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
   1683     unsigned Opcode, CCValid;
   1684     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
   1685         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
   1686         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
   1687       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
   1688   }
   1689   Comparison C(CmpOp0, CmpOp1);
   1690   C.CCMask = CCMaskForCondCode(Cond);
   1691   if (C.Op0.getValueType().isFloatingPoint()) {
   1692     C.CCValid = SystemZ::CCMASK_FCMP;
   1693     C.Opcode = SystemZISD::FCMP;
   1694     adjustForFNeg(C);
   1695   } else {
   1696     C.CCValid = SystemZ::CCMASK_ICMP;
   1697     C.Opcode = SystemZISD::ICMP;
   1698     // Choose the type of comparison.  Equality and inequality tests can
   1699     // use either signed or unsigned comparisons.  The choice also doesn't
   1700     // matter if both sign bits are known to be clear.  In those cases we
   1701     // want to give the main isel code the freedom to choose whichever
   1702     // form fits best.
   1703     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
   1704         C.CCMask == SystemZ::CCMASK_CMP_NE ||
   1705         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
   1706       C.ICmpType = SystemZICMP::Any;
   1707     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
   1708       C.ICmpType = SystemZICMP::UnsignedOnly;
   1709     else
   1710       C.ICmpType = SystemZICMP::SignedOnly;
   1711     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
   1712     adjustZeroCmp(DAG, C);
   1713     adjustSubwordCmp(DAG, C);
   1714     adjustForSubtraction(DAG, C);
   1715     adjustForLTGFR(C);
   1716     adjustICmpTruncate(DAG, C);
   1717   }
   1718 
   1719   if (shouldSwapCmpOperands(C)) {
   1720     std::swap(C.Op0, C.Op1);
   1721     C.CCMask = reverseCCMask(C.CCMask);
   1722   }
   1723 
   1724   adjustForTestUnderMask(DAG, C);
   1725   return C;
   1726 }
   1727 
   1728 // Emit the comparison instruction described by C.
   1729 static SDValue emitCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) {
   1730   if (!C.Op1.getNode()) {
   1731     SDValue Op;
   1732     switch (C.Op0.getOpcode()) {
   1733     case ISD::INTRINSIC_W_CHAIN:
   1734       Op = emitIntrinsicWithChainAndGlue(DAG, C.Op0, C.Opcode);
   1735       break;
   1736     default:
   1737       llvm_unreachable("Invalid comparison operands");
   1738     }
   1739     return SDValue(Op.getNode(), Op->getNumValues() - 1);
   1740   }
   1741   if (C.Opcode == SystemZISD::ICMP)
   1742     return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1,
   1743                        DAG.getConstant(C.ICmpType, MVT::i32));
   1744   if (C.Opcode == SystemZISD::TM) {
   1745     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
   1746                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
   1747     return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1,
   1748                        DAG.getConstant(RegisterOnly, MVT::i32));
   1749   }
   1750   return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1);
   1751 }
   1752 
   1753 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
   1754 // 64 bits.  Extend is the extension type to use.  Store the high part
   1755 // in Hi and the low part in Lo.
   1756 static void lowerMUL_LOHI32(SelectionDAG &DAG, SDLoc DL,
   1757                             unsigned Extend, SDValue Op0, SDValue Op1,
   1758                             SDValue &Hi, SDValue &Lo) {
   1759   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
   1760   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
   1761   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
   1762   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, DAG.getConstant(32, MVT::i64));
   1763   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
   1764   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
   1765 }
   1766 
   1767 // Lower a binary operation that produces two VT results, one in each
   1768 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
   1769 // Extend extends Op0 to a GR128, and Opcode performs the GR128 operation
   1770 // on the extended Op0 and (unextended) Op1.  Store the even register result
   1771 // in Even and the odd register result in Odd.
   1772 static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT,
   1773                              unsigned Extend, unsigned Opcode,
   1774                              SDValue Op0, SDValue Op1,
   1775                              SDValue &Even, SDValue &Odd) {
   1776   SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0);
   1777   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped,
   1778                                SDValue(In128, 0), Op1);
   1779   bool Is32Bit = is32Bit(VT);
   1780   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
   1781   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
   1782 }
   1783 
   1784 // Return an i32 value that is 1 if the CC value produced by Glue is
   1785 // in the mask CCMask and 0 otherwise.  CC is known to have a value
   1786 // in CCValid, so other values can be ignored.
   1787 static SDValue emitSETCC(SelectionDAG &DAG, SDLoc DL, SDValue Glue,
   1788                          unsigned CCValid, unsigned CCMask) {
   1789   IPMConversion Conversion = getIPMConversion(CCValid, CCMask);
   1790   SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
   1791 
   1792   if (Conversion.XORValue)
   1793     Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result,
   1794                          DAG.getConstant(Conversion.XORValue, MVT::i32));
   1795 
   1796   if (Conversion.AddValue)
   1797     Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result,
   1798                          DAG.getConstant(Conversion.AddValue, MVT::i32));
   1799 
   1800   // The SHR/AND sequence should get optimized to an RISBG.
   1801   Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result,
   1802                        DAG.getConstant(Conversion.Bit, MVT::i32));
   1803   if (Conversion.Bit != 31)
   1804     Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result,
   1805                          DAG.getConstant(1, MVT::i32));
   1806   return Result;
   1807 }
   1808 
   1809 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
   1810                                           SelectionDAG &DAG) const {
   1811   SDValue CmpOp0   = Op.getOperand(0);
   1812   SDValue CmpOp1   = Op.getOperand(1);
   1813   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
   1814   SDLoc DL(Op);
   1815 
   1816   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC));
   1817   SDValue Glue = emitCmp(DAG, DL, C);
   1818   return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
   1819 }
   1820 
   1821 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
   1822   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
   1823   SDValue CmpOp0   = Op.getOperand(2);
   1824   SDValue CmpOp1   = Op.getOperand(3);
   1825   SDValue Dest     = Op.getOperand(4);
   1826   SDLoc DL(Op);
   1827 
   1828   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC));
   1829   SDValue Glue = emitCmp(DAG, DL, C);
   1830   return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
   1831                      Op.getOperand(0), DAG.getConstant(C.CCValid, MVT::i32),
   1832                      DAG.getConstant(C.CCMask, MVT::i32), Dest, Glue);
   1833 }
   1834 
   1835 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
   1836 // allowing Pos and Neg to be wider than CmpOp.
   1837 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
   1838   return (Neg.getOpcode() == ISD::SUB &&
   1839           Neg.getOperand(0).getOpcode() == ISD::Constant &&
   1840           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
   1841           Neg.getOperand(1) == Pos &&
   1842           (Pos == CmpOp ||
   1843            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
   1844             Pos.getOperand(0) == CmpOp)));
   1845 }
   1846 
   1847 // Return the absolute or negative absolute of Op; IsNegative decides which.
   1848 static SDValue getAbsolute(SelectionDAG &DAG, SDLoc DL, SDValue Op,
   1849                            bool IsNegative) {
   1850   Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
   1851   if (IsNegative)
   1852     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
   1853                      DAG.getConstant(0, Op.getValueType()), Op);
   1854   return Op;
   1855 }
   1856 
   1857 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
   1858                                               SelectionDAG &DAG) const {
   1859   SDValue CmpOp0   = Op.getOperand(0);
   1860   SDValue CmpOp1   = Op.getOperand(1);
   1861   SDValue TrueOp   = Op.getOperand(2);
   1862   SDValue FalseOp  = Op.getOperand(3);
   1863   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
   1864   SDLoc DL(Op);
   1865 
   1866   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC));
   1867 
   1868   // Check for absolute and negative-absolute selections, including those
   1869   // where the comparison value is sign-extended (for LPGFR and LNGFR).
   1870   // This check supplements the one in DAGCombiner.
   1871   if (C.Opcode == SystemZISD::ICMP &&
   1872       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
   1873       C.CCMask != SystemZ::CCMASK_CMP_NE &&
   1874       C.Op1.getOpcode() == ISD::Constant &&
   1875       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
   1876     if (isAbsolute(C.Op0, TrueOp, FalseOp))
   1877       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
   1878     if (isAbsolute(C.Op0, FalseOp, TrueOp))
   1879       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
   1880   }
   1881 
   1882   SDValue Glue = emitCmp(DAG, DL, C);
   1883 
   1884   // Special case for handling -1/0 results.  The shifts we use here
   1885   // should get optimized with the IPM conversion sequence.
   1886   auto *TrueC = dyn_cast<ConstantSDNode>(TrueOp);
   1887   auto *FalseC = dyn_cast<ConstantSDNode>(FalseOp);
   1888   if (TrueC && FalseC) {
   1889     int64_t TrueVal = TrueC->getSExtValue();
   1890     int64_t FalseVal = FalseC->getSExtValue();
   1891     if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) {
   1892       // Invert the condition if we want -1 on false.
   1893       if (TrueVal == 0)
   1894         C.CCMask ^= C.CCValid;
   1895       SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
   1896       EVT VT = Op.getValueType();
   1897       // Extend the result to VT.  Upper bits are ignored.
   1898       if (!is32Bit(VT))
   1899         Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result);
   1900       // Sign-extend from the low bit.
   1901       SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, MVT::i32);
   1902       SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt);
   1903       return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt);
   1904     }
   1905   }
   1906 
   1907   SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, MVT::i32),
   1908                    DAG.getConstant(C.CCMask, MVT::i32), Glue};
   1909 
   1910   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
   1911   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops);
   1912 }
   1913 
   1914 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
   1915                                                   SelectionDAG &DAG) const {
   1916   SDLoc DL(Node);
   1917   const GlobalValue *GV = Node->getGlobal();
   1918   int64_t Offset = Node->getOffset();
   1919   EVT PtrVT = getPointerTy();
   1920   Reloc::Model RM = DAG.getTarget().getRelocationModel();
   1921   CodeModel::Model CM = DAG.getTarget().getCodeModel();
   1922 
   1923   SDValue Result;
   1924   if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) {
   1925     // Assign anchors at 1<<12 byte boundaries.
   1926     uint64_t Anchor = Offset & ~uint64_t(0xfff);
   1927     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
   1928     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
   1929 
   1930     // The offset can be folded into the address if it is aligned to a halfword.
   1931     Offset -= Anchor;
   1932     if (Offset != 0 && (Offset & 1) == 0) {
   1933       SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
   1934       Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
   1935       Offset = 0;
   1936     }
   1937   } else {
   1938     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
   1939     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
   1940     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
   1941                          MachinePointerInfo::getGOT(), false, false, false, 0);
   1942   }
   1943 
   1944   // If there was a non-zero offset that we didn't fold, create an explicit
   1945   // addition for it.
   1946   if (Offset != 0)
   1947     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
   1948                          DAG.getConstant(Offset, PtrVT));
   1949 
   1950   return Result;
   1951 }
   1952 
   1953 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
   1954                                                  SelectionDAG &DAG,
   1955                                                  unsigned Opcode,
   1956                                                  SDValue GOTOffset) const {
   1957   SDLoc DL(Node);
   1958   EVT PtrVT = getPointerTy();
   1959   SDValue Chain = DAG.getEntryNode();
   1960   SDValue Glue;
   1961 
   1962   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
   1963   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
   1964   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
   1965   Glue = Chain.getValue(1);
   1966   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
   1967   Glue = Chain.getValue(1);
   1968 
   1969   // The first call operand is the chain and the second is the TLS symbol.
   1970   SmallVector<SDValue, 8> Ops;
   1971   Ops.push_back(Chain);
   1972   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
   1973                                            Node->getValueType(0),
   1974                                            0, 0));
   1975 
   1976   // Add argument registers to the end of the list so that they are
   1977   // known live into the call.
   1978   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
   1979   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
   1980 
   1981   // Add a register mask operand representing the call-preserved registers.
   1982   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
   1983   const uint32_t *Mask =
   1984       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
   1985   assert(Mask && "Missing call preserved mask for calling convention");
   1986   Ops.push_back(DAG.getRegisterMask(Mask));
   1987 
   1988   // Glue the call to the argument copies.
   1989   Ops.push_back(Glue);
   1990 
   1991   // Emit the call.
   1992   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   1993   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
   1994   Glue = Chain.getValue(1);
   1995 
   1996   // Copy the return value from %r2.
   1997   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
   1998 }
   1999 
   2000 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
   2001 						     SelectionDAG &DAG) const {
   2002   SDLoc DL(Node);
   2003   const GlobalValue *GV = Node->getGlobal();
   2004   EVT PtrVT = getPointerTy();
   2005   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
   2006 
   2007   // The high part of the thread pointer is in access register 0.
   2008   SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
   2009                              DAG.getConstant(0, MVT::i32));
   2010   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
   2011 
   2012   // The low part of the thread pointer is in access register 1.
   2013   SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
   2014                              DAG.getConstant(1, MVT::i32));
   2015   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
   2016 
   2017   // Merge them into a single 64-bit address.
   2018   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
   2019 				    DAG.getConstant(32, PtrVT));
   2020   SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
   2021 
   2022   // Get the offset of GA from the thread pointer, based on the TLS model.
   2023   SDValue Offset;
   2024   switch (model) {
   2025     case TLSModel::GeneralDynamic: {
   2026       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
   2027       SystemZConstantPoolValue *CPV =
   2028         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
   2029 
   2030       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
   2031       Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(),
   2032                            Offset, MachinePointerInfo::getConstantPool(),
   2033                            false, false, false, 0);
   2034 
   2035       // Call __tls_get_offset to retrieve the offset.
   2036       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
   2037       break;
   2038     }
   2039 
   2040     case TLSModel::LocalDynamic: {
   2041       // Load the GOT offset of the module ID.
   2042       SystemZConstantPoolValue *CPV =
   2043         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
   2044 
   2045       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
   2046       Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(),
   2047                            Offset, MachinePointerInfo::getConstantPool(),
   2048                            false, false, false, 0);
   2049 
   2050       // Call __tls_get_offset to retrieve the module base offset.
   2051       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
   2052 
   2053       // Note: The SystemZLDCleanupPass will remove redundant computations
   2054       // of the module base offset.  Count total number of local-dynamic
   2055       // accesses to trigger execution of that pass.
   2056       SystemZMachineFunctionInfo* MFI =
   2057         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
   2058       MFI->incNumLocalDynamicTLSAccesses();
   2059 
   2060       // Add the per-symbol offset.
   2061       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
   2062 
   2063       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8);
   2064       DTPOffset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(),
   2065                               DTPOffset, MachinePointerInfo::getConstantPool(),
   2066                               false, false, false, 0);
   2067 
   2068       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
   2069       break;
   2070     }
   2071 
   2072     case TLSModel::InitialExec: {
   2073       // Load the offset from the GOT.
   2074       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
   2075                                           SystemZII::MO_INDNTPOFF);
   2076       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
   2077       Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(),
   2078                            Offset, MachinePointerInfo::getGOT(),
   2079                            false, false, false, 0);
   2080       break;
   2081     }
   2082 
   2083     case TLSModel::LocalExec: {
   2084       // Force the offset into the constant pool and load it from there.
   2085       SystemZConstantPoolValue *CPV =
   2086         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
   2087 
   2088       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
   2089       Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(),
   2090                            Offset, MachinePointerInfo::getConstantPool(),
   2091                            false, false, false, 0);
   2092       break;
   2093     }
   2094   }
   2095 
   2096   // Add the base and offset together.
   2097   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
   2098 }
   2099 
   2100 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
   2101                                                  SelectionDAG &DAG) const {
   2102   SDLoc DL(Node);
   2103   const BlockAddress *BA = Node->getBlockAddress();
   2104   int64_t Offset = Node->getOffset();
   2105   EVT PtrVT = getPointerTy();
   2106 
   2107   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
   2108   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
   2109   return Result;
   2110 }
   2111 
   2112 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
   2113                                               SelectionDAG &DAG) const {
   2114   SDLoc DL(JT);
   2115   EVT PtrVT = getPointerTy();
   2116   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
   2117 
   2118   // Use LARL to load the address of the table.
   2119   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
   2120 }
   2121 
   2122 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
   2123                                                  SelectionDAG &DAG) const {
   2124   SDLoc DL(CP);
   2125   EVT PtrVT = getPointerTy();
   2126 
   2127   SDValue Result;
   2128   if (CP->isMachineConstantPoolEntry())
   2129     Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
   2130 				       CP->getAlignment());
   2131   else
   2132     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
   2133 				       CP->getAlignment(), CP->getOffset());
   2134 
   2135   // Use LARL to load the address of the constant pool entry.
   2136   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
   2137 }
   2138 
   2139 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
   2140                                             SelectionDAG &DAG) const {
   2141   SDLoc DL(Op);
   2142   SDValue In = Op.getOperand(0);
   2143   EVT InVT = In.getValueType();
   2144   EVT ResVT = Op.getValueType();
   2145 
   2146   if (InVT == MVT::i32 && ResVT == MVT::f32) {
   2147     SDValue In64;
   2148     if (Subtarget.hasHighWord()) {
   2149       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
   2150                                        MVT::i64);
   2151       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
   2152                                        MVT::i64, SDValue(U64, 0), In);
   2153     } else {
   2154       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
   2155       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
   2156                          DAG.getConstant(32, MVT::i64));
   2157     }
   2158     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
   2159     return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
   2160                                       DL, MVT::f32, Out64);
   2161   }
   2162   if (InVT == MVT::f32 && ResVT == MVT::i32) {
   2163     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
   2164     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
   2165                                              MVT::f64, SDValue(U64, 0), In);
   2166     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
   2167     if (Subtarget.hasHighWord())
   2168       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
   2169                                         MVT::i32, Out64);
   2170     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
   2171                                 DAG.getConstant(32, MVT::i64));
   2172     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
   2173   }
   2174   llvm_unreachable("Unexpected bitcast combination");
   2175 }
   2176 
   2177 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
   2178                                             SelectionDAG &DAG) const {
   2179   MachineFunction &MF = DAG.getMachineFunction();
   2180   SystemZMachineFunctionInfo *FuncInfo =
   2181     MF.getInfo<SystemZMachineFunctionInfo>();
   2182   EVT PtrVT = getPointerTy();
   2183 
   2184   SDValue Chain   = Op.getOperand(0);
   2185   SDValue Addr    = Op.getOperand(1);
   2186   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   2187   SDLoc DL(Op);
   2188 
   2189   // The initial values of each field.
   2190   const unsigned NumFields = 4;
   2191   SDValue Fields[NumFields] = {
   2192     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), PtrVT),
   2193     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), PtrVT),
   2194     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
   2195     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
   2196   };
   2197 
   2198   // Store each field into its respective slot.
   2199   SDValue MemOps[NumFields];
   2200   unsigned Offset = 0;
   2201   for (unsigned I = 0; I < NumFields; ++I) {
   2202     SDValue FieldAddr = Addr;
   2203     if (Offset != 0)
   2204       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
   2205                               DAG.getIntPtrConstant(Offset));
   2206     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
   2207                              MachinePointerInfo(SV, Offset),
   2208                              false, false, 0);
   2209     Offset += 8;
   2210   }
   2211   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
   2212 }
   2213 
   2214 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
   2215                                            SelectionDAG &DAG) const {
   2216   SDValue Chain      = Op.getOperand(0);
   2217   SDValue DstPtr     = Op.getOperand(1);
   2218   SDValue SrcPtr     = Op.getOperand(2);
   2219   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
   2220   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
   2221   SDLoc DL(Op);
   2222 
   2223   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32),
   2224                        /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
   2225                        /*isTailCall*/false,
   2226                        MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
   2227 }
   2228 
   2229 SDValue SystemZTargetLowering::
   2230 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
   2231   SDValue Chain = Op.getOperand(0);
   2232   SDValue Size  = Op.getOperand(1);
   2233   SDLoc DL(Op);
   2234 
   2235   unsigned SPReg = getStackPointerRegisterToSaveRestore();
   2236 
   2237   // Get a reference to the stack pointer.
   2238   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
   2239 
   2240   // Get the new stack pointer value.
   2241   SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, Size);
   2242 
   2243   // Copy the new stack pointer back.
   2244   Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
   2245 
   2246   // The allocated data lives above the 160 bytes allocated for the standard
   2247   // frame, plus any outgoing stack arguments.  We don't know how much that
   2248   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
   2249   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
   2250   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
   2251 
   2252   SDValue Ops[2] = { Result, Chain };
   2253   return DAG.getMergeValues(Ops, DL);
   2254 }
   2255 
   2256 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
   2257                                               SelectionDAG &DAG) const {
   2258   EVT VT = Op.getValueType();
   2259   SDLoc DL(Op);
   2260   SDValue Ops[2];
   2261   if (is32Bit(VT))
   2262     // Just do a normal 64-bit multiplication and extract the results.
   2263     // We define this so that it can be used for constant division.
   2264     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
   2265                     Op.getOperand(1), Ops[1], Ops[0]);
   2266   else {
   2267     // Do a full 128-bit multiplication based on UMUL_LOHI64:
   2268     //
   2269     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
   2270     //
   2271     // but using the fact that the upper halves are either all zeros
   2272     // or all ones:
   2273     //
   2274     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
   2275     //
   2276     // and grouping the right terms together since they are quicker than the
   2277     // multiplication:
   2278     //
   2279     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
   2280     SDValue C63 = DAG.getConstant(63, MVT::i64);
   2281     SDValue LL = Op.getOperand(0);
   2282     SDValue RL = Op.getOperand(1);
   2283     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
   2284     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
   2285     // UMUL_LOHI64 returns the low result in the odd register and the high
   2286     // result in the even register.  SMUL_LOHI is defined to return the
   2287     // low half first, so the results are in reverse order.
   2288     lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
   2289                      LL, RL, Ops[1], Ops[0]);
   2290     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
   2291     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
   2292     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
   2293     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
   2294   }
   2295   return DAG.getMergeValues(Ops, DL);
   2296 }
   2297 
   2298 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
   2299                                               SelectionDAG &DAG) const {
   2300   EVT VT = Op.getValueType();
   2301   SDLoc DL(Op);
   2302   SDValue Ops[2];
   2303   if (is32Bit(VT))
   2304     // Just do a normal 64-bit multiplication and extract the results.
   2305     // We define this so that it can be used for constant division.
   2306     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
   2307                     Op.getOperand(1), Ops[1], Ops[0]);
   2308   else
   2309     // UMUL_LOHI64 returns the low result in the odd register and the high
   2310     // result in the even register.  UMUL_LOHI is defined to return the
   2311     // low half first, so the results are in reverse order.
   2312     lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
   2313                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
   2314   return DAG.getMergeValues(Ops, DL);
   2315 }
   2316 
   2317 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
   2318                                             SelectionDAG &DAG) const {
   2319   SDValue Op0 = Op.getOperand(0);
   2320   SDValue Op1 = Op.getOperand(1);
   2321   EVT VT = Op.getValueType();
   2322   SDLoc DL(Op);
   2323   unsigned Opcode;
   2324 
   2325   // We use DSGF for 32-bit division.
   2326   if (is32Bit(VT)) {
   2327     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
   2328     Opcode = SystemZISD::SDIVREM32;
   2329   } else if (DAG.ComputeNumSignBits(Op1) > 32) {
   2330     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
   2331     Opcode = SystemZISD::SDIVREM32;
   2332   } else
   2333     Opcode = SystemZISD::SDIVREM64;
   2334 
   2335   // DSG(F) takes a 64-bit dividend, so the even register in the GR128
   2336   // input is "don't care".  The instruction returns the remainder in
   2337   // the even register and the quotient in the odd register.
   2338   SDValue Ops[2];
   2339   lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode,
   2340                    Op0, Op1, Ops[1], Ops[0]);
   2341   return DAG.getMergeValues(Ops, DL);
   2342 }
   2343 
   2344 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
   2345                                             SelectionDAG &DAG) const {
   2346   EVT VT = Op.getValueType();
   2347   SDLoc DL(Op);
   2348 
   2349   // DL(G) uses a double-width dividend, so we need to clear the even
   2350   // register in the GR128 input.  The instruction returns the remainder
   2351   // in the even register and the quotient in the odd register.
   2352   SDValue Ops[2];
   2353   if (is32Bit(VT))
   2354     lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32,
   2355                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
   2356   else
   2357     lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64,
   2358                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
   2359   return DAG.getMergeValues(Ops, DL);
   2360 }
   2361 
   2362 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
   2363   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
   2364 
   2365   // Get the known-zero masks for each operand.
   2366   SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
   2367   APInt KnownZero[2], KnownOne[2];
   2368   DAG.computeKnownBits(Ops[0], KnownZero[0], KnownOne[0]);
   2369   DAG.computeKnownBits(Ops[1], KnownZero[1], KnownOne[1]);
   2370 
   2371   // See if the upper 32 bits of one operand and the lower 32 bits of the
   2372   // other are known zero.  They are the low and high operands respectively.
   2373   uint64_t Masks[] = { KnownZero[0].getZExtValue(),
   2374                        KnownZero[1].getZExtValue() };
   2375   unsigned High, Low;
   2376   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
   2377     High = 1, Low = 0;
   2378   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
   2379     High = 0, Low = 1;
   2380   else
   2381     return Op;
   2382 
   2383   SDValue LowOp = Ops[Low];
   2384   SDValue HighOp = Ops[High];
   2385 
   2386   // If the high part is a constant, we're better off using IILH.
   2387   if (HighOp.getOpcode() == ISD::Constant)
   2388     return Op;
   2389 
   2390   // If the low part is a constant that is outside the range of LHI,
   2391   // then we're better off using IILF.
   2392   if (LowOp.getOpcode() == ISD::Constant) {
   2393     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
   2394     if (!isInt<16>(Value))
   2395       return Op;
   2396   }
   2397 
   2398   // Check whether the high part is an AND that doesn't change the
   2399   // high 32 bits and just masks out low bits.  We can skip it if so.
   2400   if (HighOp.getOpcode() == ISD::AND &&
   2401       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
   2402     SDValue HighOp0 = HighOp.getOperand(0);
   2403     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
   2404     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
   2405       HighOp = HighOp0;
   2406   }
   2407 
   2408   // Take advantage of the fact that all GR32 operations only change the
   2409   // low 32 bits by truncating Low to an i32 and inserting it directly
   2410   // using a subreg.  The interesting cases are those where the truncation
   2411   // can be folded.
   2412   SDLoc DL(Op);
   2413   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
   2414   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
   2415                                    MVT::i64, HighOp, Low32);
   2416 }
   2417 
   2418 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
   2419                                           SelectionDAG &DAG) const {
   2420   EVT VT = Op.getValueType();
   2421   int64_t OrigBitSize = VT.getSizeInBits();
   2422   SDLoc DL(Op);
   2423 
   2424   // Get the known-zero mask for the operand.
   2425   Op = Op.getOperand(0);
   2426   APInt KnownZero, KnownOne;
   2427   DAG.computeKnownBits(Op, KnownZero, KnownOne);
   2428   unsigned NumSignificantBits = (~KnownZero).getActiveBits();
   2429   if (NumSignificantBits == 0)
   2430     return DAG.getConstant(0, VT);
   2431 
   2432   // Skip known-zero high parts of the operand.
   2433   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
   2434   BitSize = std::min(BitSize, OrigBitSize);
   2435 
   2436   // The POPCNT instruction counts the number of bits in each byte.
   2437   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
   2438   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
   2439   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
   2440 
   2441   // Add up per-byte counts in a binary tree.  All bits of Op at
   2442   // position larger than BitSize remain zero throughout.
   2443   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
   2444     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, VT));
   2445     if (BitSize != OrigBitSize)
   2446       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
   2447                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, VT));
   2448     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
   2449   }
   2450 
   2451   // Extract overall result from high byte.
   2452   if (BitSize > 8)
   2453     Op = DAG.getNode(ISD::SRL, DL, VT, Op, DAG.getConstant(BitSize - 8, VT));
   2454 
   2455   return Op;
   2456 }
   2457 
   2458 // Op is an atomic load.  Lower it into a normal volatile load.
   2459 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
   2460                                                 SelectionDAG &DAG) const {
   2461   auto *Node = cast<AtomicSDNode>(Op.getNode());
   2462   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
   2463                         Node->getChain(), Node->getBasePtr(),
   2464                         Node->getMemoryVT(), Node->getMemOperand());
   2465 }
   2466 
   2467 // Op is an atomic store.  Lower it into a normal volatile store followed
   2468 // by a serialization.
   2469 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
   2470                                                  SelectionDAG &DAG) const {
   2471   auto *Node = cast<AtomicSDNode>(Op.getNode());
   2472   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
   2473                                     Node->getBasePtr(), Node->getMemoryVT(),
   2474                                     Node->getMemOperand());
   2475   return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other,
   2476                                     Chain), 0);
   2477 }
   2478 
   2479 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
   2480 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
   2481 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
   2482                                                    SelectionDAG &DAG,
   2483                                                    unsigned Opcode) const {
   2484   auto *Node = cast<AtomicSDNode>(Op.getNode());
   2485 
   2486   // 32-bit operations need no code outside the main loop.
   2487   EVT NarrowVT = Node->getMemoryVT();
   2488   EVT WideVT = MVT::i32;
   2489   if (NarrowVT == WideVT)
   2490     return Op;
   2491 
   2492   int64_t BitSize = NarrowVT.getSizeInBits();
   2493   SDValue ChainIn = Node->getChain();
   2494   SDValue Addr = Node->getBasePtr();
   2495   SDValue Src2 = Node->getVal();
   2496   MachineMemOperand *MMO = Node->getMemOperand();
   2497   SDLoc DL(Node);
   2498   EVT PtrVT = Addr.getValueType();
   2499 
   2500   // Convert atomic subtracts of constants into additions.
   2501   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
   2502     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
   2503       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
   2504       Src2 = DAG.getConstant(-Const->getSExtValue(), Src2.getValueType());
   2505     }
   2506 
   2507   // Get the address of the containing word.
   2508   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
   2509                                     DAG.getConstant(-4, PtrVT));
   2510 
   2511   // Get the number of bits that the word must be rotated left in order
   2512   // to bring the field to the top bits of a GR32.
   2513   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
   2514                                  DAG.getConstant(3, PtrVT));
   2515   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
   2516 
   2517   // Get the complementing shift amount, for rotating a field in the top
   2518   // bits back to its proper position.
   2519   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
   2520                                     DAG.getConstant(0, WideVT), BitShift);
   2521 
   2522   // Extend the source operand to 32 bits and prepare it for the inner loop.
   2523   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
   2524   // operations require the source to be shifted in advance.  (This shift
   2525   // can be folded if the source is constant.)  For AND and NAND, the lower
   2526   // bits must be set, while for other opcodes they should be left clear.
   2527   if (Opcode != SystemZISD::ATOMIC_SWAPW)
   2528     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
   2529                        DAG.getConstant(32 - BitSize, WideVT));
   2530   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
   2531       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
   2532     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
   2533                        DAG.getConstant(uint32_t(-1) >> BitSize, WideVT));
   2534 
   2535   // Construct the ATOMIC_LOADW_* node.
   2536   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
   2537   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
   2538                     DAG.getConstant(BitSize, WideVT) };
   2539   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
   2540                                              NarrowVT, MMO);
   2541 
   2542   // Rotate the result of the final CS so that the field is in the lower
   2543   // bits of a GR32, then truncate it.
   2544   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
   2545                                     DAG.getConstant(BitSize, WideVT));
   2546   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
   2547 
   2548   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
   2549   return DAG.getMergeValues(RetOps, DL);
   2550 }
   2551 
   2552 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
   2553 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
   2554 // operations into additions.
   2555 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
   2556                                                     SelectionDAG &DAG) const {
   2557   auto *Node = cast<AtomicSDNode>(Op.getNode());
   2558   EVT MemVT = Node->getMemoryVT();
   2559   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
   2560     // A full-width operation.
   2561     assert(Op.getValueType() == MemVT && "Mismatched VTs");
   2562     SDValue Src2 = Node->getVal();
   2563     SDValue NegSrc2;
   2564     SDLoc DL(Src2);
   2565 
   2566     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
   2567       // Use an addition if the operand is constant and either LAA(G) is
   2568       // available or the negative value is in the range of A(G)FHI.
   2569       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
   2570       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
   2571         NegSrc2 = DAG.getConstant(Value, MemVT);
   2572     } else if (Subtarget.hasInterlockedAccess1())
   2573       // Use LAA(G) if available.
   2574       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, MemVT),
   2575                             Src2);
   2576 
   2577     if (NegSrc2.getNode())
   2578       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
   2579                            Node->getChain(), Node->getBasePtr(), NegSrc2,
   2580                            Node->getMemOperand(), Node->getOrdering(),
   2581                            Node->getSynchScope());
   2582 
   2583     // Use the node as-is.
   2584     return Op;
   2585   }
   2586 
   2587   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
   2588 }
   2589 
   2590 // Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation.  Lower the first two
   2591 // into a fullword ATOMIC_CMP_SWAPW operation.
   2592 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
   2593                                                     SelectionDAG &DAG) const {
   2594   auto *Node = cast<AtomicSDNode>(Op.getNode());
   2595 
   2596   // We have native support for 32-bit compare and swap.
   2597   EVT NarrowVT = Node->getMemoryVT();
   2598   EVT WideVT = MVT::i32;
   2599   if (NarrowVT == WideVT)
   2600     return Op;
   2601 
   2602   int64_t BitSize = NarrowVT.getSizeInBits();
   2603   SDValue ChainIn = Node->getOperand(0);
   2604   SDValue Addr = Node->getOperand(1);
   2605   SDValue CmpVal = Node->getOperand(2);
   2606   SDValue SwapVal = Node->getOperand(3);
   2607   MachineMemOperand *MMO = Node->getMemOperand();
   2608   SDLoc DL(Node);
   2609   EVT PtrVT = Addr.getValueType();
   2610 
   2611   // Get the address of the containing word.
   2612   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
   2613                                     DAG.getConstant(-4, PtrVT));
   2614 
   2615   // Get the number of bits that the word must be rotated left in order
   2616   // to bring the field to the top bits of a GR32.
   2617   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
   2618                                  DAG.getConstant(3, PtrVT));
   2619   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
   2620 
   2621   // Get the complementing shift amount, for rotating a field in the top
   2622   // bits back to its proper position.
   2623   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
   2624                                     DAG.getConstant(0, WideVT), BitShift);
   2625 
   2626   // Construct the ATOMIC_CMP_SWAPW node.
   2627   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
   2628   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
   2629                     NegBitShift, DAG.getConstant(BitSize, WideVT) };
   2630   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
   2631                                              VTList, Ops, NarrowVT, MMO);
   2632   return AtomicOp;
   2633 }
   2634 
   2635 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
   2636                                               SelectionDAG &DAG) const {
   2637   MachineFunction &MF = DAG.getMachineFunction();
   2638   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
   2639   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
   2640                             SystemZ::R15D, Op.getValueType());
   2641 }
   2642 
   2643 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
   2644                                                  SelectionDAG &DAG) const {
   2645   MachineFunction &MF = DAG.getMachineFunction();
   2646   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
   2647   return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op),
   2648                           SystemZ::R15D, Op.getOperand(1));
   2649 }
   2650 
   2651 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
   2652                                              SelectionDAG &DAG) const {
   2653   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
   2654   if (!IsData)
   2655     // Just preserve the chain.
   2656     return Op.getOperand(0);
   2657 
   2658   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
   2659   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
   2660   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
   2661   SDValue Ops[] = {
   2662     Op.getOperand(0),
   2663     DAG.getConstant(Code, MVT::i32),
   2664     Op.getOperand(1)
   2665   };
   2666   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, SDLoc(Op),
   2667                                  Node->getVTList(), Ops,
   2668                                  Node->getMemoryVT(), Node->getMemOperand());
   2669 }
   2670 
   2671 // Return an i32 that contains the value of CC immediately after After,
   2672 // whose final operand must be MVT::Glue.
   2673 static SDValue getCCResult(SelectionDAG &DAG, SDNode *After) {
   2674   SDValue Glue = SDValue(After, After->getNumValues() - 1);
   2675   SDValue IPM = DAG.getNode(SystemZISD::IPM, SDLoc(After), MVT::i32, Glue);
   2676   return DAG.getNode(ISD::SRL, SDLoc(After), MVT::i32, IPM,
   2677                      DAG.getConstant(SystemZ::IPM_CC, MVT::i32));
   2678 }
   2679 
   2680 SDValue
   2681 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
   2682                                               SelectionDAG &DAG) const {
   2683   unsigned Opcode, CCValid;
   2684   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
   2685     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
   2686     SDValue Glued = emitIntrinsicWithChainAndGlue(DAG, Op, Opcode);
   2687     SDValue CC = getCCResult(DAG, Glued.getNode());
   2688     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
   2689     return SDValue();
   2690   }
   2691 
   2692   return SDValue();
   2693 }
   2694 
   2695 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
   2696                                               SelectionDAG &DAG) const {
   2697   switch (Op.getOpcode()) {
   2698   case ISD::BR_CC:
   2699     return lowerBR_CC(Op, DAG);
   2700   case ISD::SELECT_CC:
   2701     return lowerSELECT_CC(Op, DAG);
   2702   case ISD::SETCC:
   2703     return lowerSETCC(Op, DAG);
   2704   case ISD::GlobalAddress:
   2705     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
   2706   case ISD::GlobalTLSAddress:
   2707     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
   2708   case ISD::BlockAddress:
   2709     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
   2710   case ISD::JumpTable:
   2711     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
   2712   case ISD::ConstantPool:
   2713     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
   2714   case ISD::BITCAST:
   2715     return lowerBITCAST(Op, DAG);
   2716   case ISD::VASTART:
   2717     return lowerVASTART(Op, DAG);
   2718   case ISD::VACOPY:
   2719     return lowerVACOPY(Op, DAG);
   2720   case ISD::DYNAMIC_STACKALLOC:
   2721     return lowerDYNAMIC_STACKALLOC(Op, DAG);
   2722   case ISD::SMUL_LOHI:
   2723     return lowerSMUL_LOHI(Op, DAG);
   2724   case ISD::UMUL_LOHI:
   2725     return lowerUMUL_LOHI(Op, DAG);
   2726   case ISD::SDIVREM:
   2727     return lowerSDIVREM(Op, DAG);
   2728   case ISD::UDIVREM:
   2729     return lowerUDIVREM(Op, DAG);
   2730   case ISD::OR:
   2731     return lowerOR(Op, DAG);
   2732   case ISD::CTPOP:
   2733     return lowerCTPOP(Op, DAG);
   2734   case ISD::ATOMIC_SWAP:
   2735     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
   2736   case ISD::ATOMIC_STORE:
   2737     return lowerATOMIC_STORE(Op, DAG);
   2738   case ISD::ATOMIC_LOAD:
   2739     return lowerATOMIC_LOAD(Op, DAG);
   2740   case ISD::ATOMIC_LOAD_ADD:
   2741     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
   2742   case ISD::ATOMIC_LOAD_SUB:
   2743     return lowerATOMIC_LOAD_SUB(Op, DAG);
   2744   case ISD::ATOMIC_LOAD_AND:
   2745     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
   2746   case ISD::ATOMIC_LOAD_OR:
   2747     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
   2748   case ISD::ATOMIC_LOAD_XOR:
   2749     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
   2750   case ISD::ATOMIC_LOAD_NAND:
   2751     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
   2752   case ISD::ATOMIC_LOAD_MIN:
   2753     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
   2754   case ISD::ATOMIC_LOAD_MAX:
   2755     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
   2756   case ISD::ATOMIC_LOAD_UMIN:
   2757     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
   2758   case ISD::ATOMIC_LOAD_UMAX:
   2759     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
   2760   case ISD::ATOMIC_CMP_SWAP:
   2761     return lowerATOMIC_CMP_SWAP(Op, DAG);
   2762   case ISD::STACKSAVE:
   2763     return lowerSTACKSAVE(Op, DAG);
   2764   case ISD::STACKRESTORE:
   2765     return lowerSTACKRESTORE(Op, DAG);
   2766   case ISD::PREFETCH:
   2767     return lowerPREFETCH(Op, DAG);
   2768   case ISD::INTRINSIC_W_CHAIN:
   2769     return lowerINTRINSIC_W_CHAIN(Op, DAG);
   2770   default:
   2771     llvm_unreachable("Unexpected node to lower");
   2772   }
   2773 }
   2774 
   2775 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
   2776 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
   2777   switch (Opcode) {
   2778     OPCODE(RET_FLAG);
   2779     OPCODE(CALL);
   2780     OPCODE(SIBCALL);
   2781     OPCODE(PCREL_WRAPPER);
   2782     OPCODE(PCREL_OFFSET);
   2783     OPCODE(IABS);
   2784     OPCODE(ICMP);
   2785     OPCODE(FCMP);
   2786     OPCODE(TM);
   2787     OPCODE(BR_CCMASK);
   2788     OPCODE(SELECT_CCMASK);
   2789     OPCODE(ADJDYNALLOC);
   2790     OPCODE(EXTRACT_ACCESS);
   2791     OPCODE(UMUL_LOHI64);
   2792     OPCODE(SDIVREM64);
   2793     OPCODE(UDIVREM32);
   2794     OPCODE(UDIVREM64);
   2795     OPCODE(MVC);
   2796     OPCODE(MVC_LOOP);
   2797     OPCODE(NC);
   2798     OPCODE(NC_LOOP);
   2799     OPCODE(OC);
   2800     OPCODE(OC_LOOP);
   2801     OPCODE(XC);
   2802     OPCODE(XC_LOOP);
   2803     OPCODE(CLC);
   2804     OPCODE(CLC_LOOP);
   2805     OPCODE(STRCMP);
   2806     OPCODE(STPCPY);
   2807     OPCODE(SEARCH_STRING);
   2808     OPCODE(IPM);
   2809     OPCODE(SERIALIZE);
   2810     OPCODE(TBEGIN);
   2811     OPCODE(TBEGIN_NOFLOAT);
   2812     OPCODE(TEND);
   2813     OPCODE(ATOMIC_SWAPW);
   2814     OPCODE(ATOMIC_LOADW_ADD);
   2815     OPCODE(ATOMIC_LOADW_SUB);
   2816     OPCODE(ATOMIC_LOADW_AND);
   2817     OPCODE(ATOMIC_LOADW_OR);
   2818     OPCODE(ATOMIC_LOADW_XOR);
   2819     OPCODE(ATOMIC_LOADW_NAND);
   2820     OPCODE(ATOMIC_LOADW_MIN);
   2821     OPCODE(ATOMIC_LOADW_MAX);
   2822     OPCODE(ATOMIC_LOADW_UMIN);
   2823     OPCODE(ATOMIC_LOADW_UMAX);
   2824     OPCODE(ATOMIC_CMP_SWAPW);
   2825     OPCODE(PREFETCH);
   2826   }
   2827   return nullptr;
   2828 #undef OPCODE
   2829 }
   2830 
   2831 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
   2832                                                  DAGCombinerInfo &DCI) const {
   2833   SelectionDAG &DAG = DCI.DAG;
   2834   unsigned Opcode = N->getOpcode();
   2835   if (Opcode == ISD::SIGN_EXTEND) {
   2836     // Convert (sext (ashr (shl X, C1), C2)) to
   2837     // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
   2838     // cheap as narrower ones.
   2839     SDValue N0 = N->getOperand(0);
   2840     EVT VT = N->getValueType(0);
   2841     if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
   2842       auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
   2843       SDValue Inner = N0.getOperand(0);
   2844       if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
   2845         if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
   2846           unsigned Extra = (VT.getSizeInBits() -
   2847                             N0.getValueType().getSizeInBits());
   2848           unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
   2849           unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
   2850           EVT ShiftVT = N0.getOperand(1).getValueType();
   2851           SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
   2852                                     Inner.getOperand(0));
   2853           SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
   2854                                     DAG.getConstant(NewShlAmt, ShiftVT));
   2855           return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
   2856                              DAG.getConstant(NewSraAmt, ShiftVT));
   2857         }
   2858       }
   2859     }
   2860   }
   2861   return SDValue();
   2862 }
   2863 
   2864 //===----------------------------------------------------------------------===//
   2865 // Custom insertion
   2866 //===----------------------------------------------------------------------===//
   2867 
   2868 // Create a new basic block after MBB.
   2869 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
   2870   MachineFunction &MF = *MBB->getParent();
   2871   MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
   2872   MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
   2873   return NewMBB;
   2874 }
   2875 
   2876 // Split MBB after MI and return the new block (the one that contains
   2877 // instructions after MI).
   2878 static MachineBasicBlock *splitBlockAfter(MachineInstr *MI,
   2879                                           MachineBasicBlock *MBB) {
   2880   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
   2881   NewMBB->splice(NewMBB->begin(), MBB,
   2882                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
   2883   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
   2884   return NewMBB;
   2885 }
   2886 
   2887 // Split MBB before MI and return the new block (the one that contains MI).
   2888 static MachineBasicBlock *splitBlockBefore(MachineInstr *MI,
   2889                                            MachineBasicBlock *MBB) {
   2890   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
   2891   NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
   2892   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
   2893   return NewMBB;
   2894 }
   2895 
   2896 // Force base value Base into a register before MI.  Return the register.
   2897 static unsigned forceReg(MachineInstr *MI, MachineOperand &Base,
   2898                          const SystemZInstrInfo *TII) {
   2899   if (Base.isReg())
   2900     return Base.getReg();
   2901 
   2902   MachineBasicBlock *MBB = MI->getParent();
   2903   MachineFunction &MF = *MBB->getParent();
   2904   MachineRegisterInfo &MRI = MF.getRegInfo();
   2905 
   2906   unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
   2907   BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LA), Reg)
   2908     .addOperand(Base).addImm(0).addReg(0);
   2909   return Reg;
   2910 }
   2911 
   2912 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
   2913 MachineBasicBlock *
   2914 SystemZTargetLowering::emitSelect(MachineInstr *MI,
   2915                                   MachineBasicBlock *MBB) const {
   2916   const SystemZInstrInfo *TII =
   2917       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
   2918 
   2919   unsigned DestReg  = MI->getOperand(0).getReg();
   2920   unsigned TrueReg  = MI->getOperand(1).getReg();
   2921   unsigned FalseReg = MI->getOperand(2).getReg();
   2922   unsigned CCValid  = MI->getOperand(3).getImm();
   2923   unsigned CCMask   = MI->getOperand(4).getImm();
   2924   DebugLoc DL       = MI->getDebugLoc();
   2925 
   2926   MachineBasicBlock *StartMBB = MBB;
   2927   MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
   2928   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
   2929 
   2930   //  StartMBB:
   2931   //   BRC CCMask, JoinMBB
   2932   //   # fallthrough to FalseMBB
   2933   MBB = StartMBB;
   2934   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
   2935     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
   2936   MBB->addSuccessor(JoinMBB);
   2937   MBB->addSuccessor(FalseMBB);
   2938 
   2939   //  FalseMBB:
   2940   //   # fallthrough to JoinMBB
   2941   MBB = FalseMBB;
   2942   MBB->addSuccessor(JoinMBB);
   2943 
   2944   //  JoinMBB:
   2945   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
   2946   //  ...
   2947   MBB = JoinMBB;
   2948   BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg)
   2949     .addReg(TrueReg).addMBB(StartMBB)
   2950     .addReg(FalseReg).addMBB(FalseMBB);
   2951 
   2952   MI->eraseFromParent();
   2953   return JoinMBB;
   2954 }
   2955 
   2956 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
   2957 // StoreOpcode is the store to use and Invert says whether the store should
   2958 // happen when the condition is false rather than true.  If a STORE ON
   2959 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
   2960 MachineBasicBlock *
   2961 SystemZTargetLowering::emitCondStore(MachineInstr *MI,
   2962                                      MachineBasicBlock *MBB,
   2963                                      unsigned StoreOpcode, unsigned STOCOpcode,
   2964                                      bool Invert) const {
   2965   const SystemZInstrInfo *TII =
   2966       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
   2967 
   2968   unsigned SrcReg     = MI->getOperand(0).getReg();
   2969   MachineOperand Base = MI->getOperand(1);
   2970   int64_t Disp        = MI->getOperand(2).getImm();
   2971   unsigned IndexReg   = MI->getOperand(3).getReg();
   2972   unsigned CCValid    = MI->getOperand(4).getImm();
   2973   unsigned CCMask     = MI->getOperand(5).getImm();
   2974   DebugLoc DL         = MI->getDebugLoc();
   2975 
   2976   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
   2977 
   2978   // Use STOCOpcode if possible.  We could use different store patterns in
   2979   // order to avoid matching the index register, but the performance trade-offs
   2980   // might be more complicated in that case.
   2981   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
   2982     if (Invert)
   2983       CCMask ^= CCValid;
   2984     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
   2985       .addReg(SrcReg).addOperand(Base).addImm(Disp)
   2986       .addImm(CCValid).addImm(CCMask);
   2987     MI->eraseFromParent();
   2988     return MBB;
   2989   }
   2990 
   2991   // Get the condition needed to branch around the store.
   2992   if (!Invert)
   2993     CCMask ^= CCValid;
   2994 
   2995   MachineBasicBlock *StartMBB = MBB;
   2996   MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
   2997   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
   2998 
   2999   //  StartMBB:
   3000   //   BRC CCMask, JoinMBB
   3001   //   # fallthrough to FalseMBB
   3002   MBB = StartMBB;
   3003   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
   3004     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
   3005   MBB->addSuccessor(JoinMBB);
   3006   MBB->addSuccessor(FalseMBB);
   3007 
   3008   //  FalseMBB:
   3009   //   store %SrcReg, %Disp(%Index,%Base)
   3010   //   # fallthrough to JoinMBB
   3011   MBB = FalseMBB;
   3012   BuildMI(MBB, DL, TII->get(StoreOpcode))
   3013     .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg);
   3014   MBB->addSuccessor(JoinMBB);
   3015 
   3016   MI->eraseFromParent();
   3017   return JoinMBB;
   3018 }
   3019 
   3020 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
   3021 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
   3022 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
   3023 // BitSize is the width of the field in bits, or 0 if this is a partword
   3024 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
   3025 // is one of the operands.  Invert says whether the field should be
   3026 // inverted after performing BinOpcode (e.g. for NAND).
   3027 MachineBasicBlock *
   3028 SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI,
   3029                                             MachineBasicBlock *MBB,
   3030                                             unsigned BinOpcode,
   3031                                             unsigned BitSize,
   3032                                             bool Invert) const {
   3033   MachineFunction &MF = *MBB->getParent();
   3034   const SystemZInstrInfo *TII =
   3035       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
   3036   MachineRegisterInfo &MRI = MF.getRegInfo();
   3037   bool IsSubWord = (BitSize < 32);
   3038 
   3039   // Extract the operands.  Base can be a register or a frame index.
   3040   // Src2 can be a register or immediate.
   3041   unsigned Dest        = MI->getOperand(0).getReg();
   3042   MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
   3043   int64_t Disp         = MI->getOperand(2).getImm();
   3044   MachineOperand Src2  = earlyUseOperand(MI->getOperand(3));
   3045   unsigned BitShift    = (IsSubWord ? MI->getOperand(4).getReg() : 0);
   3046   unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
   3047   DebugLoc DL          = MI->getDebugLoc();
   3048   if (IsSubWord)
   3049     BitSize = MI->getOperand(6).getImm();
   3050 
   3051   // Subword operations use 32-bit registers.
   3052   const TargetRegisterClass *RC = (BitSize <= 32 ?
   3053                                    &SystemZ::GR32BitRegClass :
   3054                                    &SystemZ::GR64BitRegClass);
   3055   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
   3056   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
   3057 
   3058   // Get the right opcodes for the displacement.
   3059   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
   3060   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
   3061   assert(LOpcode && CSOpcode && "Displacement out of range");
   3062 
   3063   // Create virtual registers for temporary results.
   3064   unsigned OrigVal       = MRI.createVirtualRegister(RC);
   3065   unsigned OldVal        = MRI.createVirtualRegister(RC);
   3066   unsigned NewVal        = (BinOpcode || IsSubWord ?
   3067                             MRI.createVirtualRegister(RC) : Src2.getReg());
   3068   unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
   3069   unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
   3070 
   3071   // Insert a basic block for the main loop.
   3072   MachineBasicBlock *StartMBB = MBB;
   3073   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
   3074   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
   3075 
   3076   //  StartMBB:
   3077   //   ...
   3078   //   %OrigVal = L Disp(%Base)
   3079   //   # fall through to LoopMMB
   3080   MBB = StartMBB;
   3081   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
   3082     .addOperand(Base).addImm(Disp).addReg(0);
   3083   MBB->addSuccessor(LoopMBB);
   3084 
   3085   //  LoopMBB:
   3086   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
   3087   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
   3088   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
   3089   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
   3090   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
   3091   //   JNE LoopMBB
   3092   //   # fall through to DoneMMB
   3093   MBB = LoopMBB;
   3094   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
   3095     .addReg(OrigVal).addMBB(StartMBB)
   3096     .addReg(Dest).addMBB(LoopMBB);
   3097   if (IsSubWord)
   3098     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
   3099       .addReg(OldVal).addReg(BitShift).addImm(0);
   3100   if (Invert) {
   3101     // Perform the operation normally and then invert every bit of the field.
   3102     unsigned Tmp = MRI.createVirtualRegister(RC);
   3103     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp)
   3104       .addReg(RotatedOldVal).addOperand(Src2);
   3105     if (BitSize <= 32)
   3106       // XILF with the upper BitSize bits set.
   3107       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
   3108         .addReg(Tmp).addImm(-1U << (32 - BitSize));
   3109     else {
   3110       // Use LCGR and add -1 to the result, which is more compact than
   3111       // an XILF, XILH pair.
   3112       unsigned Tmp2 = MRI.createVirtualRegister(RC);
   3113       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
   3114       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
   3115         .addReg(Tmp2).addImm(-1);
   3116     }
   3117   } else if (BinOpcode)
   3118     // A simply binary operation.
   3119     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
   3120       .addReg(RotatedOldVal).addOperand(Src2);
   3121   else if (IsSubWord)
   3122     // Use RISBG to rotate Src2 into position and use it to replace the
   3123     // field in RotatedOldVal.
   3124     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
   3125       .addReg(RotatedOldVal).addReg(Src2.getReg())
   3126       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
   3127   if (IsSubWord)
   3128     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
   3129       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
   3130   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
   3131     .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
   3132   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
   3133     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
   3134   MBB->addSuccessor(LoopMBB);
   3135   MBB->addSuccessor(DoneMBB);
   3136 
   3137   MI->eraseFromParent();
   3138   return DoneMBB;
   3139 }
   3140 
   3141 // Implement EmitInstrWithCustomInserter for pseudo
   3142 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
   3143 // instruction that should be used to compare the current field with the
   3144 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
   3145 // for when the current field should be kept.  BitSize is the width of
   3146 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
   3147 MachineBasicBlock *
   3148 SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI,
   3149                                             MachineBasicBlock *MBB,
   3150                                             unsigned CompareOpcode,
   3151                                             unsigned KeepOldMask,
   3152                                             unsigned BitSize) const {
   3153   MachineFunction &MF = *MBB->getParent();
   3154   const SystemZInstrInfo *TII =
   3155       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
   3156   MachineRegisterInfo &MRI = MF.getRegInfo();
   3157   bool IsSubWord = (BitSize < 32);
   3158 
   3159   // Extract the operands.  Base can be a register or a frame index.
   3160   unsigned Dest        = MI->getOperand(0).getReg();
   3161   MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
   3162   int64_t  Disp        = MI->getOperand(2).getImm();
   3163   unsigned Src2        = MI->getOperand(3).getReg();
   3164   unsigned BitShift    = (IsSubWord ? MI->getOperand(4).getReg() : 0);
   3165   unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
   3166   DebugLoc DL          = MI->getDebugLoc();
   3167   if (IsSubWord)
   3168     BitSize = MI->getOperand(6).getImm();
   3169 
   3170   // Subword operations use 32-bit registers.
   3171   const TargetRegisterClass *RC = (BitSize <= 32 ?
   3172                                    &SystemZ::GR32BitRegClass :
   3173                                    &SystemZ::GR64BitRegClass);
   3174   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
   3175   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
   3176 
   3177   // Get the right opcodes for the displacement.
   3178   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
   3179   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
   3180   assert(LOpcode && CSOpcode && "Displacement out of range");
   3181 
   3182   // Create virtual registers for temporary results.
   3183   unsigned OrigVal       = MRI.createVirtualRegister(RC);
   3184   unsigned OldVal        = MRI.createVirtualRegister(RC);
   3185   unsigned NewVal        = MRI.createVirtualRegister(RC);
   3186   unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
   3187   unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
   3188   unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
   3189 
   3190   // Insert 3 basic blocks for the loop.
   3191   MachineBasicBlock *StartMBB  = MBB;
   3192   MachineBasicBlock *DoneMBB   = splitBlockBefore(MI, MBB);
   3193   MachineBasicBlock *LoopMBB   = emitBlockAfter(StartMBB);
   3194   MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
   3195   MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
   3196 
   3197   //  StartMBB:
   3198   //   ...
   3199   //   %OrigVal     = L Disp(%Base)
   3200   //   # fall through to LoopMMB
   3201   MBB = StartMBB;
   3202   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
   3203     .addOperand(Base).addImm(Disp).addReg(0);
   3204   MBB->addSuccessor(LoopMBB);
   3205 
   3206   //  LoopMBB:
   3207   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
   3208   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
   3209   //   CompareOpcode %RotatedOldVal, %Src2
   3210   //   BRC KeepOldMask, UpdateMBB
   3211   MBB = LoopMBB;
   3212   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
   3213     .addReg(OrigVal).addMBB(StartMBB)
   3214     .addReg(Dest).addMBB(UpdateMBB);
   3215   if (IsSubWord)
   3216     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
   3217       .addReg(OldVal).addReg(BitShift).addImm(0);
   3218   BuildMI(MBB, DL, TII->get(CompareOpcode))
   3219     .addReg(RotatedOldVal).addReg(Src2);
   3220   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
   3221     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
   3222   MBB->addSuccessor(UpdateMBB);
   3223   MBB->addSuccessor(UseAltMBB);
   3224 
   3225   //  UseAltMBB:
   3226   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
   3227   //   # fall through to UpdateMMB
   3228   MBB = UseAltMBB;
   3229   if (IsSubWord)
   3230     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
   3231       .addReg(RotatedOldVal).addReg(Src2)
   3232       .addImm(32).addImm(31 + BitSize).addImm(0);
   3233   MBB->addSuccessor(UpdateMBB);
   3234 
   3235   //  UpdateMBB:
   3236   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
   3237   //                        [ %RotatedAltVal, UseAltMBB ]
   3238   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
   3239   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
   3240   //   JNE LoopMBB
   3241   //   # fall through to DoneMMB
   3242   MBB = UpdateMBB;
   3243   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
   3244     .addReg(RotatedOldVal).addMBB(LoopMBB)
   3245     .addReg(RotatedAltVal).addMBB(UseAltMBB);
   3246   if (IsSubWord)
   3247     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
   3248       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
   3249   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
   3250     .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
   3251   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
   3252     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
   3253   MBB->addSuccessor(LoopMBB);
   3254   MBB->addSuccessor(DoneMBB);
   3255 
   3256   MI->eraseFromParent();
   3257   return DoneMBB;
   3258 }
   3259 
   3260 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
   3261 // instruction MI.
   3262 MachineBasicBlock *
   3263 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI,
   3264                                           MachineBasicBlock *MBB) const {
   3265   MachineFunction &MF = *MBB->getParent();
   3266   const SystemZInstrInfo *TII =
   3267       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
   3268   MachineRegisterInfo &MRI = MF.getRegInfo();
   3269 
   3270   // Extract the operands.  Base can be a register or a frame index.
   3271   unsigned Dest        = MI->getOperand(0).getReg();
   3272   MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
   3273   int64_t  Disp        = MI->getOperand(2).getImm();
   3274   unsigned OrigCmpVal  = MI->getOperand(3).getReg();
   3275   unsigned OrigSwapVal = MI->getOperand(4).getReg();
   3276   unsigned BitShift    = MI->getOperand(5).getReg();
   3277   unsigned NegBitShift = MI->getOperand(6).getReg();
   3278   int64_t  BitSize     = MI->getOperand(7).getImm();
   3279   DebugLoc DL          = MI->getDebugLoc();
   3280 
   3281   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
   3282 
   3283   // Get the right opcodes for the displacement.
   3284   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
   3285   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
   3286   assert(LOpcode && CSOpcode && "Displacement out of range");
   3287 
   3288   // Create virtual registers for temporary results.
   3289   unsigned OrigOldVal   = MRI.createVirtualRegister(RC);
   3290   unsigned OldVal       = MRI.createVirtualRegister(RC);
   3291   unsigned CmpVal       = MRI.createVirtualRegister(RC);
   3292   unsigned SwapVal      = MRI.createVirtualRegister(RC);
   3293   unsigned StoreVal     = MRI.createVirtualRegister(RC);
   3294   unsigned RetryOldVal  = MRI.createVirtualRegister(RC);
   3295   unsigned RetryCmpVal  = MRI.createVirtualRegister(RC);
   3296   unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
   3297 
   3298   // Insert 2 basic blocks for the loop.
   3299   MachineBasicBlock *StartMBB = MBB;
   3300   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
   3301   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
   3302   MachineBasicBlock *SetMBB   = emitBlockAfter(LoopMBB);
   3303 
   3304   //  StartMBB:
   3305   //   ...
   3306   //   %OrigOldVal     = L Disp(%Base)
   3307   //   # fall through to LoopMMB
   3308   MBB = StartMBB;
   3309   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
   3310     .addOperand(Base).addImm(Disp).addReg(0);
   3311   MBB->addSuccessor(LoopMBB);
   3312 
   3313   //  LoopMBB:
   3314   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
   3315   //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
   3316   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
   3317   //   %Dest          = RLL %OldVal, BitSize(%BitShift)
   3318   //                      ^^ The low BitSize bits contain the field
   3319   //                         of interest.
   3320   //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
   3321   //                      ^^ Replace the upper 32-BitSize bits of the
   3322   //                         comparison value with those that we loaded,
   3323   //                         so that we can use a full word comparison.
   3324   //   CR %Dest, %RetryCmpVal
   3325   //   JNE DoneMBB
   3326   //   # Fall through to SetMBB
   3327   MBB = LoopMBB;
   3328   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
   3329     .addReg(OrigOldVal).addMBB(StartMBB)
   3330     .addReg(RetryOldVal).addMBB(SetMBB);
   3331   BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
   3332     .addReg(OrigCmpVal).addMBB(StartMBB)
   3333     .addReg(RetryCmpVal).addMBB(SetMBB);
   3334   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
   3335     .addReg(OrigSwapVal).addMBB(StartMBB)
   3336     .addReg(RetrySwapVal).addMBB(SetMBB);
   3337   BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
   3338     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
   3339   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
   3340     .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
   3341   BuildMI(MBB, DL, TII->get(SystemZ::CR))
   3342     .addReg(Dest).addReg(RetryCmpVal);
   3343   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
   3344     .addImm(SystemZ::CCMASK_ICMP)
   3345     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
   3346   MBB->addSuccessor(DoneMBB);
   3347   MBB->addSuccessor(SetMBB);
   3348 
   3349   //  SetMBB:
   3350   //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
   3351   //                      ^^ Replace the upper 32-BitSize bits of the new
   3352   //                         value with those that we loaded.
   3353   //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
   3354   //                      ^^ Rotate the new field to its proper position.
   3355   //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
   3356   //   JNE LoopMBB
   3357   //   # fall through to ExitMMB
   3358   MBB = SetMBB;
   3359   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
   3360     .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
   3361   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
   3362     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
   3363   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
   3364     .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp);
   3365   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
   3366     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
   3367   MBB->addSuccessor(LoopMBB);
   3368   MBB->addSuccessor(DoneMBB);
   3369 
   3370   MI->eraseFromParent();
   3371   return DoneMBB;
   3372 }
   3373 
   3374 // Emit an extension from a GR32 or GR64 to a GR128.  ClearEven is true
   3375 // if the high register of the GR128 value must be cleared or false if
   3376 // it's "don't care".  SubReg is subreg_l32 when extending a GR32
   3377 // and subreg_l64 when extending a GR64.
   3378 MachineBasicBlock *
   3379 SystemZTargetLowering::emitExt128(MachineInstr *MI,
   3380                                   MachineBasicBlock *MBB,
   3381                                   bool ClearEven, unsigned SubReg) const {
   3382   MachineFunction &MF = *MBB->getParent();
   3383   const SystemZInstrInfo *TII =
   3384       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
   3385   MachineRegisterInfo &MRI = MF.getRegInfo();
   3386   DebugLoc DL = MI->getDebugLoc();
   3387 
   3388   unsigned Dest  = MI->getOperand(0).getReg();
   3389   unsigned Src   = MI->getOperand(1).getReg();
   3390   unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
   3391 
   3392   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
   3393   if (ClearEven) {
   3394     unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
   3395     unsigned Zero64   = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
   3396 
   3397     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
   3398       .addImm(0);
   3399     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
   3400       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
   3401     In128 = NewIn128;
   3402   }
   3403   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
   3404     .addReg(In128).addReg(Src).addImm(SubReg);
   3405 
   3406   MI->eraseFromParent();
   3407   return MBB;
   3408 }
   3409 
   3410 MachineBasicBlock *
   3411 SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI,
   3412                                          MachineBasicBlock *MBB,
   3413                                          unsigned Opcode) const {
   3414   MachineFunction &MF = *MBB->getParent();
   3415   const SystemZInstrInfo *TII =
   3416       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
   3417   MachineRegisterInfo &MRI = MF.getRegInfo();
   3418   DebugLoc DL = MI->getDebugLoc();
   3419 
   3420   MachineOperand DestBase = earlyUseOperand(MI->getOperand(0));
   3421   uint64_t       DestDisp = MI->getOperand(1).getImm();
   3422   MachineOperand SrcBase  = earlyUseOperand(MI->getOperand(2));
   3423   uint64_t       SrcDisp  = MI->getOperand(3).getImm();
   3424   uint64_t       Length   = MI->getOperand(4).getImm();
   3425 
   3426   // When generating more than one CLC, all but the last will need to
   3427   // branch to the end when a difference is found.
   3428   MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
   3429                                splitBlockAfter(MI, MBB) : nullptr);
   3430 
   3431   // Check for the loop form, in which operand 5 is the trip count.
   3432   if (MI->getNumExplicitOperands() > 5) {
   3433     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
   3434 
   3435     uint64_t StartCountReg = MI->getOperand(5).getReg();
   3436     uint64_t StartSrcReg   = forceReg(MI, SrcBase, TII);
   3437     uint64_t StartDestReg  = (HaveSingleBase ? StartSrcReg :
   3438                               forceReg(MI, DestBase, TII));
   3439 
   3440     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
   3441     uint64_t ThisSrcReg  = MRI.createVirtualRegister(RC);
   3442     uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg :
   3443                             MRI.createVirtualRegister(RC));
   3444     uint64_t NextSrcReg  = MRI.createVirtualRegister(RC);
   3445     uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg :
   3446                             MRI.createVirtualRegister(RC));
   3447 
   3448     RC = &SystemZ::GR64BitRegClass;
   3449     uint64_t ThisCountReg = MRI.createVirtualRegister(RC);
   3450     uint64_t NextCountReg = MRI.createVirtualRegister(RC);
   3451 
   3452     MachineBasicBlock *StartMBB = MBB;
   3453     MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
   3454     MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
   3455     MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
   3456 
   3457     //  StartMBB:
   3458     //   # fall through to LoopMMB
   3459     MBB->addSuccessor(LoopMBB);
   3460 
   3461     //  LoopMBB:
   3462     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
   3463     //                      [ %NextDestReg, NextMBB ]
   3464     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
   3465     //                     [ %NextSrcReg, NextMBB ]
   3466     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
   3467     //                       [ %NextCountReg, NextMBB ]
   3468     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
   3469     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
   3470     //   ( JLH EndMBB )
   3471     //
   3472     // The prefetch is used only for MVC.  The JLH is used only for CLC.
   3473     MBB = LoopMBB;
   3474 
   3475     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
   3476       .addReg(StartDestReg).addMBB(StartMBB)
   3477       .addReg(NextDestReg).addMBB(NextMBB);
   3478     if (!HaveSingleBase)
   3479       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
   3480         .addReg(StartSrcReg).addMBB(StartMBB)
   3481         .addReg(NextSrcReg).addMBB(NextMBB);
   3482     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
   3483       .addReg(StartCountReg).addMBB(StartMBB)
   3484       .addReg(NextCountReg).addMBB(NextMBB);
   3485     if (Opcode == SystemZ::MVC)
   3486       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
   3487         .addImm(SystemZ::PFD_WRITE)
   3488         .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
   3489     BuildMI(MBB, DL, TII->get(Opcode))
   3490       .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
   3491       .addReg(ThisSrcReg).addImm(SrcDisp);
   3492     if (EndMBB) {
   3493       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
   3494         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
   3495         .addMBB(EndMBB);
   3496       MBB->addSuccessor(EndMBB);
   3497       MBB->addSuccessor(NextMBB);
   3498     }
   3499 
   3500     // NextMBB:
   3501     //   %NextDestReg = LA 256(%ThisDestReg)
   3502     //   %NextSrcReg = LA 256(%ThisSrcReg)
   3503     //   %NextCountReg = AGHI %ThisCountReg, -1
   3504     //   CGHI %NextCountReg, 0
   3505     //   JLH LoopMBB
   3506     //   # fall through to DoneMMB
   3507     //
   3508     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
   3509     MBB = NextMBB;
   3510 
   3511     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
   3512       .addReg(ThisDestReg).addImm(256).addReg(0);
   3513     if (!HaveSingleBase)
   3514       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
   3515         .addReg(ThisSrcReg).addImm(256).addReg(0);
   3516     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
   3517       .addReg(ThisCountReg).addImm(-1);
   3518     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
   3519       .addReg(NextCountReg).addImm(0);
   3520     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
   3521       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
   3522       .addMBB(LoopMBB);
   3523     MBB->addSuccessor(LoopMBB);
   3524     MBB->addSuccessor(DoneMBB);
   3525 
   3526     DestBase = MachineOperand::CreateReg(NextDestReg, false);
   3527     SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
   3528     Length &= 255;
   3529     MBB = DoneMBB;
   3530   }
   3531   // Handle any remaining bytes with straight-line code.
   3532   while (Length > 0) {
   3533     uint64_t ThisLength = std::min(Length, uint64_t(256));
   3534     // The previous iteration might have created out-of-range displacements.
   3535     // Apply them using LAY if so.
   3536     if (!isUInt<12>(DestDisp)) {
   3537       unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
   3538       BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
   3539         .addOperand(DestBase).addImm(DestDisp).addReg(0);
   3540       DestBase = MachineOperand::CreateReg(Reg, false);
   3541       DestDisp = 0;
   3542     }
   3543     if (!isUInt<12>(SrcDisp)) {
   3544       unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
   3545       BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
   3546         .addOperand(SrcBase).addImm(SrcDisp).addReg(0);
   3547       SrcBase = MachineOperand::CreateReg(Reg, false);
   3548       SrcDisp = 0;
   3549     }
   3550     BuildMI(*MBB, MI, DL, TII->get(Opcode))
   3551       .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength)
   3552       .addOperand(SrcBase).addImm(SrcDisp);
   3553     DestDisp += ThisLength;
   3554     SrcDisp += ThisLength;
   3555     Length -= ThisLength;
   3556     // If there's another CLC to go, branch to the end if a difference
   3557     // was found.
   3558     if (EndMBB && Length > 0) {
   3559       MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
   3560       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
   3561         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
   3562         .addMBB(EndMBB);
   3563       MBB->addSuccessor(EndMBB);
   3564       MBB->addSuccessor(NextMBB);
   3565       MBB = NextMBB;
   3566     }
   3567   }
   3568   if (EndMBB) {
   3569     MBB->addSuccessor(EndMBB);
   3570     MBB = EndMBB;
   3571     MBB->addLiveIn(SystemZ::CC);
   3572   }
   3573 
   3574   MI->eraseFromParent();
   3575   return MBB;
   3576 }
   3577 
   3578 // Decompose string pseudo-instruction MI into a loop that continually performs
   3579 // Opcode until CC != 3.
   3580 MachineBasicBlock *
   3581 SystemZTargetLowering::emitStringWrapper(MachineInstr *MI,
   3582                                          MachineBasicBlock *MBB,
   3583                                          unsigned Opcode) const {
   3584   MachineFunction &MF = *MBB->getParent();
   3585   const SystemZInstrInfo *TII =
   3586       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
   3587   MachineRegisterInfo &MRI = MF.getRegInfo();
   3588   DebugLoc DL = MI->getDebugLoc();
   3589 
   3590   uint64_t End1Reg   = MI->getOperand(0).getReg();
   3591   uint64_t Start1Reg = MI->getOperand(1).getReg();
   3592   uint64_t Start2Reg = MI->getOperand(2).getReg();
   3593   uint64_t CharReg   = MI->getOperand(3).getReg();
   3594 
   3595   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
   3596   uint64_t This1Reg = MRI.createVirtualRegister(RC);
   3597   uint64_t This2Reg = MRI.createVirtualRegister(RC);
   3598   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
   3599 
   3600   MachineBasicBlock *StartMBB = MBB;
   3601   MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
   3602   MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
   3603 
   3604   //  StartMBB:
   3605   //   # fall through to LoopMMB
   3606   MBB->addSuccessor(LoopMBB);
   3607 
   3608   //  LoopMBB:
   3609   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
   3610   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
   3611   //   R0L = %CharReg
   3612   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
   3613   //   JO LoopMBB
   3614   //   # fall through to DoneMMB
   3615   //
   3616   // The load of R0L can be hoisted by post-RA LICM.
   3617   MBB = LoopMBB;
   3618 
   3619   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
   3620     .addReg(Start1Reg).addMBB(StartMBB)
   3621     .addReg(End1Reg).addMBB(LoopMBB);
   3622   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
   3623     .addReg(Start2Reg).addMBB(StartMBB)
   3624     .addReg(End2Reg).addMBB(LoopMBB);
   3625   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
   3626   BuildMI(MBB, DL, TII->get(Opcode))
   3627     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
   3628     .addReg(This1Reg).addReg(This2Reg);
   3629   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
   3630     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
   3631   MBB->addSuccessor(LoopMBB);
   3632   MBB->addSuccessor(DoneMBB);
   3633 
   3634   DoneMBB->addLiveIn(SystemZ::CC);
   3635 
   3636   MI->eraseFromParent();
   3637   return DoneMBB;
   3638 }
   3639 
   3640 // Update TBEGIN instruction with final opcode and register clobbers.
   3641 MachineBasicBlock *
   3642 SystemZTargetLowering::emitTransactionBegin(MachineInstr *MI,
   3643                                             MachineBasicBlock *MBB,
   3644                                             unsigned Opcode,
   3645                                             bool NoFloat) const {
   3646   MachineFunction &MF = *MBB->getParent();
   3647   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
   3648   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
   3649 
   3650   // Update opcode.
   3651   MI->setDesc(TII->get(Opcode));
   3652 
   3653   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
   3654   // Make sure to add the corresponding GRSM bits if they are missing.
   3655   uint64_t Control = MI->getOperand(2).getImm();
   3656   static const unsigned GPRControlBit[16] = {
   3657     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
   3658     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
   3659   };
   3660   Control |= GPRControlBit[15];
   3661   if (TFI->hasFP(MF))
   3662     Control |= GPRControlBit[11];
   3663   MI->getOperand(2).setImm(Control);
   3664 
   3665   // Add GPR clobbers.
   3666   for (int I = 0; I < 16; I++) {
   3667     if ((Control & GPRControlBit[I]) == 0) {
   3668       unsigned Reg = SystemZMC::GR64Regs[I];
   3669       MI->addOperand(MachineOperand::CreateReg(Reg, true, true));
   3670     }
   3671   }
   3672 
   3673   // Add FPR clobbers.
   3674   if (!NoFloat && (Control & 4) != 0) {
   3675     for (int I = 0; I < 16; I++) {
   3676       unsigned Reg = SystemZMC::FP64Regs[I];
   3677       MI->addOperand(MachineOperand::CreateReg(Reg, true, true));
   3678     }
   3679   }
   3680 
   3681   return MBB;
   3682 }
   3683 
   3684 MachineBasicBlock *SystemZTargetLowering::
   3685 EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const {
   3686   switch (MI->getOpcode()) {
   3687   case SystemZ::Select32Mux:
   3688   case SystemZ::Select32:
   3689   case SystemZ::SelectF32:
   3690   case SystemZ::Select64:
   3691   case SystemZ::SelectF64:
   3692   case SystemZ::SelectF128:
   3693     return emitSelect(MI, MBB);
   3694 
   3695   case SystemZ::CondStore8Mux:
   3696     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
   3697   case SystemZ::CondStore8MuxInv:
   3698     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
   3699   case SystemZ::CondStore16Mux:
   3700     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
   3701   case SystemZ::CondStore16MuxInv:
   3702     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
   3703   case SystemZ::CondStore8:
   3704     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
   3705   case SystemZ::CondStore8Inv:
   3706     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
   3707   case SystemZ::CondStore16:
   3708     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
   3709   case SystemZ::CondStore16Inv:
   3710     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
   3711   case SystemZ::CondStore32:
   3712     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
   3713   case SystemZ::CondStore32Inv:
   3714     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
   3715   case SystemZ::CondStore64:
   3716     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
   3717   case SystemZ::CondStore64Inv:
   3718     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
   3719   case SystemZ::CondStoreF32:
   3720     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
   3721   case SystemZ::CondStoreF32Inv:
   3722     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
   3723   case SystemZ::CondStoreF64:
   3724     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
   3725   case SystemZ::CondStoreF64Inv:
   3726     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
   3727 
   3728   case SystemZ::AEXT128_64:
   3729     return emitExt128(MI, MBB, false, SystemZ::subreg_l64);
   3730   case SystemZ::ZEXT128_32:
   3731     return emitExt128(MI, MBB, true, SystemZ::subreg_l32);
   3732   case SystemZ::ZEXT128_64:
   3733     return emitExt128(MI, MBB, true, SystemZ::subreg_l64);
   3734 
   3735   case SystemZ::ATOMIC_SWAPW:
   3736     return emitAtomicLoadBinary(MI, MBB, 0, 0);
   3737   case SystemZ::ATOMIC_SWAP_32:
   3738     return emitAtomicLoadBinary(MI, MBB, 0, 32);
   3739   case SystemZ::ATOMIC_SWAP_64:
   3740     return emitAtomicLoadBinary(MI, MBB, 0, 64);
   3741 
   3742   case SystemZ::ATOMIC_LOADW_AR:
   3743     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
   3744   case SystemZ::ATOMIC_LOADW_AFI:
   3745     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
   3746   case SystemZ::ATOMIC_LOAD_AR:
   3747     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
   3748   case SystemZ::ATOMIC_LOAD_AHI:
   3749     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
   3750   case SystemZ::ATOMIC_LOAD_AFI:
   3751     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
   3752   case SystemZ::ATOMIC_LOAD_AGR:
   3753     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
   3754   case SystemZ::ATOMIC_LOAD_AGHI:
   3755     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
   3756   case SystemZ::ATOMIC_LOAD_AGFI:
   3757     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
   3758 
   3759   case SystemZ::ATOMIC_LOADW_SR:
   3760     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
   3761   case SystemZ::ATOMIC_LOAD_SR:
   3762     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
   3763   case SystemZ::ATOMIC_LOAD_SGR:
   3764     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
   3765 
   3766   case SystemZ::ATOMIC_LOADW_NR:
   3767     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
   3768   case SystemZ::ATOMIC_LOADW_NILH:
   3769     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
   3770   case SystemZ::ATOMIC_LOAD_NR:
   3771     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
   3772   case SystemZ::ATOMIC_LOAD_NILL:
   3773     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
   3774   case SystemZ::ATOMIC_LOAD_NILH:
   3775     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
   3776   case SystemZ::ATOMIC_LOAD_NILF:
   3777     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
   3778   case SystemZ::ATOMIC_LOAD_NGR:
   3779     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
   3780   case SystemZ::ATOMIC_LOAD_NILL64:
   3781     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
   3782   case SystemZ::ATOMIC_LOAD_NILH64:
   3783     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
   3784   case SystemZ::ATOMIC_LOAD_NIHL64:
   3785     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
   3786   case SystemZ::ATOMIC_LOAD_NIHH64:
   3787     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
   3788   case SystemZ::ATOMIC_LOAD_NILF64:
   3789     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
   3790   case SystemZ::ATOMIC_LOAD_NIHF64:
   3791     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
   3792 
   3793   case SystemZ::ATOMIC_LOADW_OR:
   3794     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
   3795   case SystemZ::ATOMIC_LOADW_OILH:
   3796     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
   3797   case SystemZ::ATOMIC_LOAD_OR:
   3798     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
   3799   case SystemZ::ATOMIC_LOAD_OILL:
   3800     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
   3801   case SystemZ::ATOMIC_LOAD_OILH:
   3802     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
   3803   case SystemZ::ATOMIC_LOAD_OILF:
   3804     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
   3805   case SystemZ::ATOMIC_LOAD_OGR:
   3806     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
   3807   case SystemZ::ATOMIC_LOAD_OILL64:
   3808     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
   3809   case SystemZ::ATOMIC_LOAD_OILH64:
   3810     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
   3811   case SystemZ::ATOMIC_LOAD_OIHL64:
   3812     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
   3813   case SystemZ::ATOMIC_LOAD_OIHH64:
   3814     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
   3815   case SystemZ::ATOMIC_LOAD_OILF64:
   3816     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
   3817   case SystemZ::ATOMIC_LOAD_OIHF64:
   3818     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
   3819 
   3820   case SystemZ::ATOMIC_LOADW_XR:
   3821     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
   3822   case SystemZ::ATOMIC_LOADW_XILF:
   3823     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
   3824   case SystemZ::ATOMIC_LOAD_XR:
   3825     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
   3826   case SystemZ::ATOMIC_LOAD_XILF:
   3827     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
   3828   case SystemZ::ATOMIC_LOAD_XGR:
   3829     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
   3830   case SystemZ::ATOMIC_LOAD_XILF64:
   3831     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
   3832   case SystemZ::ATOMIC_LOAD_XIHF64:
   3833     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
   3834 
   3835   case SystemZ::ATOMIC_LOADW_NRi:
   3836     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
   3837   case SystemZ::ATOMIC_LOADW_NILHi:
   3838     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
   3839   case SystemZ::ATOMIC_LOAD_NRi:
   3840     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
   3841   case SystemZ::ATOMIC_LOAD_NILLi:
   3842     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
   3843   case SystemZ::ATOMIC_LOAD_NILHi:
   3844     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
   3845   case SystemZ::ATOMIC_LOAD_NILFi:
   3846     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
   3847   case SystemZ::ATOMIC_LOAD_NGRi:
   3848     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
   3849   case SystemZ::ATOMIC_LOAD_NILL64i:
   3850     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
   3851   case SystemZ::ATOMIC_LOAD_NILH64i:
   3852     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
   3853   case SystemZ::ATOMIC_LOAD_NIHL64i:
   3854     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
   3855   case SystemZ::ATOMIC_LOAD_NIHH64i:
   3856     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
   3857   case SystemZ::ATOMIC_LOAD_NILF64i:
   3858     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
   3859   case SystemZ::ATOMIC_LOAD_NIHF64i:
   3860     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
   3861 
   3862   case SystemZ::ATOMIC_LOADW_MIN:
   3863     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
   3864                                 SystemZ::CCMASK_CMP_LE, 0);
   3865   case SystemZ::ATOMIC_LOAD_MIN_32:
   3866     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
   3867                                 SystemZ::CCMASK_CMP_LE, 32);
   3868   case SystemZ::ATOMIC_LOAD_MIN_64:
   3869     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
   3870                                 SystemZ::CCMASK_CMP_LE, 64);
   3871 
   3872   case SystemZ::ATOMIC_LOADW_MAX:
   3873     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
   3874                                 SystemZ::CCMASK_CMP_GE, 0);
   3875   case SystemZ::ATOMIC_LOAD_MAX_32:
   3876     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
   3877                                 SystemZ::CCMASK_CMP_GE, 32);
   3878   case SystemZ::ATOMIC_LOAD_MAX_64:
   3879     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
   3880                                 SystemZ::CCMASK_CMP_GE, 64);
   3881 
   3882   case SystemZ::ATOMIC_LOADW_UMIN:
   3883     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
   3884                                 SystemZ::CCMASK_CMP_LE, 0);
   3885   case SystemZ::ATOMIC_LOAD_UMIN_32:
   3886     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
   3887                                 SystemZ::CCMASK_CMP_LE, 32);
   3888   case SystemZ::ATOMIC_LOAD_UMIN_64:
   3889     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
   3890                                 SystemZ::CCMASK_CMP_LE, 64);
   3891 
   3892   case SystemZ::ATOMIC_LOADW_UMAX:
   3893     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
   3894                                 SystemZ::CCMASK_CMP_GE, 0);
   3895   case SystemZ::ATOMIC_LOAD_UMAX_32:
   3896     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
   3897                                 SystemZ::CCMASK_CMP_GE, 32);
   3898   case SystemZ::ATOMIC_LOAD_UMAX_64:
   3899     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
   3900                                 SystemZ::CCMASK_CMP_GE, 64);
   3901 
   3902   case SystemZ::ATOMIC_CMP_SWAPW:
   3903     return emitAtomicCmpSwapW(MI, MBB);
   3904   case SystemZ::MVCSequence:
   3905   case SystemZ::MVCLoop:
   3906     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
   3907   case SystemZ::NCSequence:
   3908   case SystemZ::NCLoop:
   3909     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
   3910   case SystemZ::OCSequence:
   3911   case SystemZ::OCLoop:
   3912     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
   3913   case SystemZ::XCSequence:
   3914   case SystemZ::XCLoop:
   3915     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
   3916   case SystemZ::CLCSequence:
   3917   case SystemZ::CLCLoop:
   3918     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
   3919   case SystemZ::CLSTLoop:
   3920     return emitStringWrapper(MI, MBB, SystemZ::CLST);
   3921   case SystemZ::MVSTLoop:
   3922     return emitStringWrapper(MI, MBB, SystemZ::MVST);
   3923   case SystemZ::SRSTLoop:
   3924     return emitStringWrapper(MI, MBB, SystemZ::SRST);
   3925   case SystemZ::TBEGIN:
   3926     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
   3927   case SystemZ::TBEGIN_nofloat:
   3928     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
   3929   case SystemZ::TBEGINC:
   3930     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
   3931   default:
   3932     llvm_unreachable("Unexpected instr type to insert");
   3933   }
   3934 }
   3935