Home | History | Annotate | Download | only in MCTargetDesc
      1 //===-- X86MCCodeEmitter.cpp - Convert X86 code to machine code -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the X86MCCodeEmitter class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "MCTargetDesc/X86MCTargetDesc.h"
     15 #include "MCTargetDesc/X86BaseInfo.h"
     16 #include "MCTargetDesc/X86FixupKinds.h"
     17 #include "llvm/MC/MCCodeEmitter.h"
     18 #include "llvm/MC/MCContext.h"
     19 #include "llvm/MC/MCExpr.h"
     20 #include "llvm/MC/MCInst.h"
     21 #include "llvm/MC/MCInstrInfo.h"
     22 #include "llvm/MC/MCRegisterInfo.h"
     23 #include "llvm/MC/MCSubtargetInfo.h"
     24 #include "llvm/MC/MCSymbol.h"
     25 #include "llvm/Support/raw_ostream.h"
     26 
     27 using namespace llvm;
     28 
     29 #define DEBUG_TYPE "mccodeemitter"
     30 
     31 namespace {
     32 class X86MCCodeEmitter : public MCCodeEmitter {
     33   X86MCCodeEmitter(const X86MCCodeEmitter &) = delete;
     34   void operator=(const X86MCCodeEmitter &) = delete;
     35   const MCInstrInfo &MCII;
     36   MCContext &Ctx;
     37 public:
     38   X86MCCodeEmitter(const MCInstrInfo &mcii, MCContext &ctx)
     39     : MCII(mcii), Ctx(ctx) {
     40   }
     41 
     42   ~X86MCCodeEmitter() override {}
     43 
     44   bool is64BitMode(const MCSubtargetInfo &STI) const {
     45     return (STI.getFeatureBits() & X86::Mode64Bit) != 0;
     46   }
     47 
     48   bool is32BitMode(const MCSubtargetInfo &STI) const {
     49     return (STI.getFeatureBits() & X86::Mode32Bit) != 0;
     50   }
     51 
     52   bool is16BitMode(const MCSubtargetInfo &STI) const {
     53     return (STI.getFeatureBits() & X86::Mode16Bit) != 0;
     54   }
     55 
     56   /// Is16BitMemOperand - Return true if the specified instruction has
     57   /// a 16-bit memory operand. Op specifies the operand # of the memoperand.
     58   bool Is16BitMemOperand(const MCInst &MI, unsigned Op,
     59                          const MCSubtargetInfo &STI) const {
     60     const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
     61     const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
     62     const MCOperand &Disp     = MI.getOperand(Op+X86::AddrDisp);
     63 
     64     if (is16BitMode(STI) && BaseReg.getReg() == 0 &&
     65         Disp.isImm() && Disp.getImm() < 0x10000)
     66       return true;
     67     if ((BaseReg.getReg() != 0 &&
     68          X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) ||
     69         (IndexReg.getReg() != 0 &&
     70          X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg())))
     71       return true;
     72     return false;
     73   }
     74 
     75   unsigned GetX86RegNum(const MCOperand &MO) const {
     76     return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg()) & 0x7;
     77   }
     78 
     79   // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
     80   // 0-7 and the difference between the 2 groups is given by the REX prefix.
     81   // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
     82   // in 1's complement form, example:
     83   //
     84   //  ModRM field => XMM9 => 1
     85   //  VEX.VVVV    => XMM9 => ~9
     86   //
     87   // See table 4-35 of Intel AVX Programming Reference for details.
     88   unsigned char getVEXRegisterEncoding(const MCInst &MI,
     89                                        unsigned OpNum) const {
     90     unsigned SrcReg = MI.getOperand(OpNum).getReg();
     91     unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum));
     92     if (X86II::isX86_64ExtendedReg(SrcReg))
     93       SrcRegNum |= 8;
     94 
     95     // The registers represented through VEX_VVVV should
     96     // be encoded in 1's complement form.
     97     return (~SrcRegNum) & 0xf;
     98   }
     99 
    100   unsigned char getWriteMaskRegisterEncoding(const MCInst &MI,
    101                                              unsigned OpNum) const {
    102     assert(X86::K0 != MI.getOperand(OpNum).getReg() &&
    103            "Invalid mask register as write-mask!");
    104     unsigned MaskRegNum = GetX86RegNum(MI.getOperand(OpNum));
    105     return MaskRegNum;
    106   }
    107 
    108   void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
    109     OS << (char)C;
    110     ++CurByte;
    111   }
    112 
    113   void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
    114                     raw_ostream &OS) const {
    115     // Output the constant in little endian byte order.
    116     for (unsigned i = 0; i != Size; ++i) {
    117       EmitByte(Val & 255, CurByte, OS);
    118       Val >>= 8;
    119     }
    120   }
    121 
    122   void EmitImmediate(const MCOperand &Disp, SMLoc Loc,
    123                      unsigned ImmSize, MCFixupKind FixupKind,
    124                      unsigned &CurByte, raw_ostream &OS,
    125                      SmallVectorImpl<MCFixup> &Fixups,
    126                      int ImmOffset = 0) const;
    127 
    128   inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
    129                                         unsigned RM) {
    130     assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
    131     return RM | (RegOpcode << 3) | (Mod << 6);
    132   }
    133 
    134   void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
    135                         unsigned &CurByte, raw_ostream &OS) const {
    136     EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
    137   }
    138 
    139   void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
    140                    unsigned &CurByte, raw_ostream &OS) const {
    141     // SIB byte is in the same format as the ModRMByte.
    142     EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
    143   }
    144 
    145 
    146   void EmitMemModRMByte(const MCInst &MI, unsigned Op,
    147                         unsigned RegOpcodeField,
    148                         uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
    149                         SmallVectorImpl<MCFixup> &Fixups,
    150                         const MCSubtargetInfo &STI) const;
    151 
    152   void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
    153                          SmallVectorImpl<MCFixup> &Fixups,
    154                          const MCSubtargetInfo &STI) const override;
    155 
    156   void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
    157                            const MCInst &MI, const MCInstrDesc &Desc,
    158                            raw_ostream &OS) const;
    159 
    160   void EmitSegmentOverridePrefix(unsigned &CurByte, unsigned SegOperand,
    161                                  const MCInst &MI, raw_ostream &OS) const;
    162 
    163   void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
    164                         const MCInst &MI, const MCInstrDesc &Desc,
    165                         const MCSubtargetInfo &STI,
    166                         raw_ostream &OS) const;
    167 };
    168 
    169 } // end anonymous namespace
    170 
    171 MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII,
    172                                             const MCRegisterInfo &MRI,
    173                                             MCContext &Ctx) {
    174   return new X86MCCodeEmitter(MCII, Ctx);
    175 }
    176 
    177 /// isDisp8 - Return true if this signed displacement fits in a 8-bit
    178 /// sign-extended field.
    179 static bool isDisp8(int Value) {
    180   return Value == (signed char)Value;
    181 }
    182 
    183 /// isCDisp8 - Return true if this signed displacement fits in a 8-bit
    184 /// compressed dispacement field.
    185 static bool isCDisp8(uint64_t TSFlags, int Value, int& CValue) {
    186   assert(((TSFlags & X86II::EncodingMask) == X86II::EVEX) &&
    187          "Compressed 8-bit displacement is only valid for EVEX inst.");
    188 
    189   unsigned CD8_Scale =
    190     (TSFlags & X86II::CD8_Scale_Mask) >> X86II::CD8_Scale_Shift;
    191   if (CD8_Scale == 0) {
    192     CValue = Value;
    193     return isDisp8(Value);
    194   }
    195 
    196   unsigned Mask = CD8_Scale - 1;
    197   assert((CD8_Scale & Mask) == 0 && "Invalid memory object size.");
    198   if (Value & Mask) // Unaligned offset
    199     return false;
    200   Value /= (int)CD8_Scale;
    201   bool Ret = (Value == (signed char)Value);
    202 
    203   if (Ret)
    204     CValue = Value;
    205   return Ret;
    206 }
    207 
    208 /// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
    209 /// in an instruction with the specified TSFlags.
    210 static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
    211   unsigned Size = X86II::getSizeOfImm(TSFlags);
    212   bool isPCRel = X86II::isImmPCRel(TSFlags);
    213 
    214   if (X86II::isImmSigned(TSFlags)) {
    215     switch (Size) {
    216     default: llvm_unreachable("Unsupported signed fixup size!");
    217     case 4: return MCFixupKind(X86::reloc_signed_4byte);
    218     }
    219   }
    220   return MCFixup::getKindForSize(Size, isPCRel);
    221 }
    222 
    223 /// Is32BitMemOperand - Return true if the specified instruction has
    224 /// a 32-bit memory operand. Op specifies the operand # of the memoperand.
    225 static bool Is32BitMemOperand(const MCInst &MI, unsigned Op) {
    226   const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
    227   const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
    228 
    229   if ((BaseReg.getReg() != 0 &&
    230        X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) ||
    231       (IndexReg.getReg() != 0 &&
    232        X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
    233     return true;
    234   return false;
    235 }
    236 
    237 /// Is64BitMemOperand - Return true if the specified instruction has
    238 /// a 64-bit memory operand. Op specifies the operand # of the memoperand.
    239 #ifndef NDEBUG
    240 static bool Is64BitMemOperand(const MCInst &MI, unsigned Op) {
    241   const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
    242   const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
    243 
    244   if ((BaseReg.getReg() != 0 &&
    245        X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) ||
    246       (IndexReg.getReg() != 0 &&
    247        X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg())))
    248     return true;
    249   return false;
    250 }
    251 #endif
    252 
    253 /// StartsWithGlobalOffsetTable - Check if this expression starts with
    254 ///  _GLOBAL_OFFSET_TABLE_ and if it is of the form
    255 ///  _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on ELF
    256 /// i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that
    257 /// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start
    258 /// of a binary expression.
    259 enum GlobalOffsetTableExprKind {
    260   GOT_None,
    261   GOT_Normal,
    262   GOT_SymDiff
    263 };
    264 static GlobalOffsetTableExprKind
    265 StartsWithGlobalOffsetTable(const MCExpr *Expr) {
    266   const MCExpr *RHS = nullptr;
    267   if (Expr->getKind() == MCExpr::Binary) {
    268     const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
    269     Expr = BE->getLHS();
    270     RHS = BE->getRHS();
    271   }
    272 
    273   if (Expr->getKind() != MCExpr::SymbolRef)
    274     return GOT_None;
    275 
    276   const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
    277   const MCSymbol &S = Ref->getSymbol();
    278   if (S.getName() != "_GLOBAL_OFFSET_TABLE_")
    279     return GOT_None;
    280   if (RHS && RHS->getKind() == MCExpr::SymbolRef)
    281     return GOT_SymDiff;
    282   return GOT_Normal;
    283 }
    284 
    285 static bool HasSecRelSymbolRef(const MCExpr *Expr) {
    286   if (Expr->getKind() == MCExpr::SymbolRef) {
    287     const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
    288     return Ref->getKind() == MCSymbolRefExpr::VK_SECREL;
    289   }
    290   return false;
    291 }
    292 
    293 void X86MCCodeEmitter::
    294 EmitImmediate(const MCOperand &DispOp, SMLoc Loc, unsigned Size,
    295               MCFixupKind FixupKind, unsigned &CurByte, raw_ostream &OS,
    296               SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
    297   const MCExpr *Expr = nullptr;
    298   if (DispOp.isImm()) {
    299     // If this is a simple integer displacement that doesn't require a
    300     // relocation, emit it now.
    301     if (FixupKind != FK_PCRel_1 &&
    302         FixupKind != FK_PCRel_2 &&
    303         FixupKind != FK_PCRel_4) {
    304       EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
    305       return;
    306     }
    307     Expr = MCConstantExpr::Create(DispOp.getImm(), Ctx);
    308   } else {
    309     Expr = DispOp.getExpr();
    310   }
    311 
    312   // If we have an immoffset, add it to the expression.
    313   if ((FixupKind == FK_Data_4 ||
    314        FixupKind == FK_Data_8 ||
    315        FixupKind == MCFixupKind(X86::reloc_signed_4byte))) {
    316     GlobalOffsetTableExprKind Kind = StartsWithGlobalOffsetTable(Expr);
    317     if (Kind != GOT_None) {
    318       assert(ImmOffset == 0);
    319 
    320       if (Size == 8) {
    321         FixupKind = MCFixupKind(X86::reloc_global_offset_table8);
    322       } else {
    323         assert(Size == 4);
    324         FixupKind = MCFixupKind(X86::reloc_global_offset_table);
    325       }
    326 
    327       if (Kind == GOT_Normal)
    328         ImmOffset = CurByte;
    329     } else if (Expr->getKind() == MCExpr::SymbolRef) {
    330       if (HasSecRelSymbolRef(Expr)) {
    331         FixupKind = MCFixupKind(FK_SecRel_4);
    332       }
    333     } else if (Expr->getKind() == MCExpr::Binary) {
    334       const MCBinaryExpr *Bin = static_cast<const MCBinaryExpr*>(Expr);
    335       if (HasSecRelSymbolRef(Bin->getLHS())
    336           || HasSecRelSymbolRef(Bin->getRHS())) {
    337         FixupKind = MCFixupKind(FK_SecRel_4);
    338       }
    339     }
    340   }
    341 
    342   // If the fixup is pc-relative, we need to bias the value to be relative to
    343   // the start of the field, not the end of the field.
    344   if (FixupKind == FK_PCRel_4 ||
    345       FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
    346       FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
    347     ImmOffset -= 4;
    348   if (FixupKind == FK_PCRel_2)
    349     ImmOffset -= 2;
    350   if (FixupKind == FK_PCRel_1)
    351     ImmOffset -= 1;
    352 
    353   if (ImmOffset)
    354     Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
    355                                    Ctx);
    356 
    357   // Emit a symbolic constant as a fixup and 4 zeros.
    358   Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind, Loc));
    359   EmitConstant(0, Size, CurByte, OS);
    360 }
    361 
    362 void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
    363                                         unsigned RegOpcodeField,
    364                                         uint64_t TSFlags, unsigned &CurByte,
    365                                         raw_ostream &OS,
    366                                         SmallVectorImpl<MCFixup> &Fixups,
    367                                         const MCSubtargetInfo &STI) const{
    368   const MCOperand &Disp     = MI.getOperand(Op+X86::AddrDisp);
    369   const MCOperand &Base     = MI.getOperand(Op+X86::AddrBaseReg);
    370   const MCOperand &Scale    = MI.getOperand(Op+X86::AddrScaleAmt);
    371   const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
    372   unsigned BaseReg = Base.getReg();
    373   bool HasEVEX = (TSFlags & X86II::EncodingMask) == X86II::EVEX;
    374 
    375   // Handle %rip relative addressing.
    376   if (BaseReg == X86::RIP) {    // [disp32+RIP] in X86-64 mode
    377     assert(is64BitMode(STI) && "Rip-relative addressing requires 64-bit mode");
    378     assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
    379     EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
    380 
    381     unsigned FixupKind = X86::reloc_riprel_4byte;
    382 
    383     // movq loads are handled with a special relocation form which allows the
    384     // linker to eliminate some loads for GOT references which end up in the
    385     // same linkage unit.
    386     if (MI.getOpcode() == X86::MOV64rm)
    387       FixupKind = X86::reloc_riprel_4byte_movq_load;
    388 
    389     // rip-relative addressing is actually relative to the *next* instruction.
    390     // Since an immediate can follow the mod/rm byte for an instruction, this
    391     // means that we need to bias the immediate field of the instruction with
    392     // the size of the immediate field.  If we have this case, add it into the
    393     // expression to emit.
    394     int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
    395 
    396     EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind),
    397                   CurByte, OS, Fixups, -ImmSize);
    398     return;
    399   }
    400 
    401   unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
    402 
    403   // 16-bit addressing forms of the ModR/M byte have a different encoding for
    404   // the R/M field and are far more limited in which registers can be used.
    405   if (Is16BitMemOperand(MI, Op, STI)) {
    406     if (BaseReg) {
    407       // For 32-bit addressing, the row and column values in Table 2-2 are
    408       // basically the same. It's AX/CX/DX/BX/SP/BP/SI/DI in that order, with
    409       // some special cases. And GetX86RegNum reflects that numbering.
    410       // For 16-bit addressing it's more fun, as shown in the SDM Vol 2A,
    411       // Table 2-1 "16-Bit Addressing Forms with the ModR/M byte". We can only
    412       // use SI/DI/BP/BX, which have "row" values 4-7 in no particular order,
    413       // while values 0-3 indicate the allowed combinations (base+index) of
    414       // those: 0 for BX+SI, 1 for BX+DI, 2 for BP+SI, 3 for BP+DI.
    415       //
    416       // R16Table[] is a lookup from the normal RegNo, to the row values from
    417       // Table 2-1 for 16-bit addressing modes. Where zero means disallowed.
    418       static const unsigned R16Table[] = { 0, 0, 0, 7, 0, 6, 4, 5 };
    419       unsigned RMfield = R16Table[BaseRegNo];
    420 
    421       assert(RMfield && "invalid 16-bit base register");
    422 
    423       if (IndexReg.getReg()) {
    424         unsigned IndexReg16 = R16Table[GetX86RegNum(IndexReg)];
    425 
    426         assert(IndexReg16 && "invalid 16-bit index register");
    427         // We must have one of SI/DI (4,5), and one of BP/BX (6,7).
    428         assert(((IndexReg16 ^ RMfield) & 2) &&
    429                "invalid 16-bit base/index register combination");
    430         assert(Scale.getImm() == 1 &&
    431                "invalid scale for 16-bit memory reference");
    432 
    433         // Allow base/index to appear in either order (although GAS doesn't).
    434         if (IndexReg16 & 2)
    435           RMfield = (RMfield & 1) | ((7 - IndexReg16) << 1);
    436         else
    437           RMfield = (IndexReg16 & 1) | ((7 - RMfield) << 1);
    438       }
    439 
    440       if (Disp.isImm() && isDisp8(Disp.getImm())) {
    441         if (Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
    442           // There is no displacement; just the register.
    443           EmitByte(ModRMByte(0, RegOpcodeField, RMfield), CurByte, OS);
    444           return;
    445         }
    446         // Use the [REG]+disp8 form, including for [BP] which cannot be encoded.
    447         EmitByte(ModRMByte(1, RegOpcodeField, RMfield), CurByte, OS);
    448         EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
    449         return;
    450       }
    451       // This is the [REG]+disp16 case.
    452       EmitByte(ModRMByte(2, RegOpcodeField, RMfield), CurByte, OS);
    453     } else {
    454       // There is no BaseReg; this is the plain [disp16] case.
    455       EmitByte(ModRMByte(0, RegOpcodeField, 6), CurByte, OS);
    456     }
    457 
    458     // Emit 16-bit displacement for plain disp16 or [REG]+disp16 cases.
    459     EmitImmediate(Disp, MI.getLoc(), 2, FK_Data_2, CurByte, OS, Fixups);
    460     return;
    461   }
    462 
    463   // Determine whether a SIB byte is needed.
    464   // If no BaseReg, issue a RIP relative instruction only if the MCE can
    465   // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
    466   // 2-7) and absolute references.
    467 
    468   if (// The SIB byte must be used if there is an index register.
    469       IndexReg.getReg() == 0 &&
    470       // The SIB byte must be used if the base is ESP/RSP/R12, all of which
    471       // encode to an R/M value of 4, which indicates that a SIB byte is
    472       // present.
    473       BaseRegNo != N86::ESP &&
    474       // If there is no base register and we're in 64-bit mode, we need a SIB
    475       // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
    476       (!is64BitMode(STI) || BaseReg != 0)) {
    477 
    478     if (BaseReg == 0) {          // [disp32]     in X86-32 mode
    479       EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
    480       EmitImmediate(Disp, MI.getLoc(), 4, FK_Data_4, CurByte, OS, Fixups);
    481       return;
    482     }
    483 
    484     // If the base is not EBP/ESP and there is no displacement, use simple
    485     // indirect register encoding, this handles addresses like [EAX].  The
    486     // encoding for [EBP] with no displacement means [disp32] so we handle it
    487     // by emitting a displacement of 0 below.
    488     if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
    489       EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
    490       return;
    491     }
    492 
    493     // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
    494     if (Disp.isImm()) {
    495       if (!HasEVEX && isDisp8(Disp.getImm())) {
    496         EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
    497         EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
    498         return;
    499       }
    500       // Try EVEX compressed 8-bit displacement first; if failed, fall back to
    501       // 32-bit displacement.
    502       int CDisp8 = 0;
    503       if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
    504         EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
    505         EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups,
    506                       CDisp8 - Disp.getImm());
    507         return;
    508       }
    509     }
    510 
    511     // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
    512     EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
    513     EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS,
    514                   Fixups);
    515     return;
    516   }
    517 
    518   // We need a SIB byte, so start by outputting the ModR/M byte first
    519   assert(IndexReg.getReg() != X86::ESP &&
    520          IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
    521 
    522   bool ForceDisp32 = false;
    523   bool ForceDisp8  = false;
    524   int CDisp8 = 0;
    525   int ImmOffset = 0;
    526   if (BaseReg == 0) {
    527     // If there is no base register, we emit the special case SIB byte with
    528     // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
    529     EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
    530     ForceDisp32 = true;
    531   } else if (!Disp.isImm()) {
    532     // Emit the normal disp32 encoding.
    533     EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
    534     ForceDisp32 = true;
    535   } else if (Disp.getImm() == 0 &&
    536              // Base reg can't be anything that ends up with '5' as the base
    537              // reg, it is the magic [*] nomenclature that indicates no base.
    538              BaseRegNo != N86::EBP) {
    539     // Emit no displacement ModR/M byte
    540     EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
    541   } else if (!HasEVEX && isDisp8(Disp.getImm())) {
    542     // Emit the disp8 encoding.
    543     EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
    544     ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
    545   } else if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
    546     // Emit the disp8 encoding.
    547     EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
    548     ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
    549     ImmOffset = CDisp8 - Disp.getImm();
    550   } else {
    551     // Emit the normal disp32 encoding.
    552     EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
    553   }
    554 
    555   // Calculate what the SS field value should be...
    556   static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 };
    557   unsigned SS = SSTable[Scale.getImm()];
    558 
    559   if (BaseReg == 0) {
    560     // Handle the SIB byte for the case where there is no base, see Intel
    561     // Manual 2A, table 2-7. The displacement has already been output.
    562     unsigned IndexRegNo;
    563     if (IndexReg.getReg())
    564       IndexRegNo = GetX86RegNum(IndexReg);
    565     else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
    566       IndexRegNo = 4;
    567     EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
    568   } else {
    569     unsigned IndexRegNo;
    570     if (IndexReg.getReg())
    571       IndexRegNo = GetX86RegNum(IndexReg);
    572     else
    573       IndexRegNo = 4;   // For example [ESP+1*<noreg>+4]
    574     EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
    575   }
    576 
    577   // Do we need to output a displacement?
    578   if (ForceDisp8)
    579     EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups, ImmOffset);
    580   else if (ForceDisp32 || Disp.getImm() != 0)
    581     EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte),
    582                   CurByte, OS, Fixups);
    583 }
    584 
    585 /// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
    586 /// called VEX.
    587 void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
    588                                            int MemOperand, const MCInst &MI,
    589                                            const MCInstrDesc &Desc,
    590                                            raw_ostream &OS) const {
    591   assert(!(TSFlags & X86II::LOCK) && "Can't have LOCK VEX.");
    592 
    593   uint64_t Encoding = TSFlags & X86II::EncodingMask;
    594   bool HasEVEX_K = TSFlags & X86II::EVEX_K;
    595   bool HasVEX_4V = TSFlags & X86II::VEX_4V;
    596   bool HasVEX_4VOp3 = TSFlags & X86II::VEX_4VOp3;
    597   bool HasMemOp4 = TSFlags & X86II::MemOp4;
    598   bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;
    599 
    600   // VEX_R: opcode externsion equivalent to REX.R in
    601   // 1's complement (inverted) form
    602   //
    603   //  1: Same as REX_R=0 (must be 1 in 32-bit mode)
    604   //  0: Same as REX_R=1 (64 bit mode only)
    605   //
    606   unsigned char VEX_R = 0x1;
    607   unsigned char EVEX_R2 = 0x1;
    608 
    609   // VEX_X: equivalent to REX.X, only used when a
    610   // register is used for index in SIB Byte.
    611   //
    612   //  1: Same as REX.X=0 (must be 1 in 32-bit mode)
    613   //  0: Same as REX.X=1 (64-bit mode only)
    614   unsigned char VEX_X = 0x1;
    615 
    616   // VEX_B:
    617   //
    618   //  1: Same as REX_B=0 (ignored in 32-bit mode)
    619   //  0: Same as REX_B=1 (64 bit mode only)
    620   //
    621   unsigned char VEX_B = 0x1;
    622 
    623   // VEX_W: opcode specific (use like REX.W, or used for
    624   // opcode extension, or ignored, depending on the opcode byte)
    625   unsigned char VEX_W = 0;
    626 
    627   // VEX_5M (VEX m-mmmmm field):
    628   //
    629   //  0b00000: Reserved for future use
    630   //  0b00001: implied 0F leading opcode
    631   //  0b00010: implied 0F 38 leading opcode bytes
    632   //  0b00011: implied 0F 3A leading opcode bytes
    633   //  0b00100-0b11111: Reserved for future use
    634   //  0b01000: XOP map select - 08h instructions with imm byte
    635   //  0b01001: XOP map select - 09h instructions with no imm byte
    636   //  0b01010: XOP map select - 0Ah instructions with imm dword
    637   unsigned char VEX_5M = 0;
    638 
    639   // VEX_4V (VEX vvvv field): a register specifier
    640   // (in 1's complement form) or 1111 if unused.
    641   unsigned char VEX_4V = 0xf;
    642   unsigned char EVEX_V2 = 0x1;
    643 
    644   // VEX_L (Vector Length):
    645   //
    646   //  0: scalar or 128-bit vector
    647   //  1: 256-bit vector
    648   //
    649   unsigned char VEX_L = 0;
    650   unsigned char EVEX_L2 = 0;
    651 
    652   // VEX_PP: opcode extension providing equivalent
    653   // functionality of a SIMD prefix
    654   //
    655   //  0b00: None
    656   //  0b01: 66
    657   //  0b10: F3
    658   //  0b11: F2
    659   //
    660   unsigned char VEX_PP = 0;
    661 
    662   // EVEX_U
    663   unsigned char EVEX_U = 1; // Always '1' so far
    664 
    665   // EVEX_z
    666   unsigned char EVEX_z = 0;
    667 
    668   // EVEX_b
    669   unsigned char EVEX_b = 0;
    670 
    671   // EVEX_rc
    672   unsigned char EVEX_rc = 0;
    673 
    674   // EVEX_aaa
    675   unsigned char EVEX_aaa = 0;
    676 
    677   bool EncodeRC = false;
    678 
    679   if (TSFlags & X86II::VEX_W)
    680     VEX_W = 1;
    681 
    682   if (TSFlags & X86II::VEX_L)
    683     VEX_L = 1;
    684   if (TSFlags & X86II::EVEX_L2)
    685     EVEX_L2 = 1;
    686 
    687   if (HasEVEX_K && (TSFlags & X86II::EVEX_Z))
    688     EVEX_z = 1;
    689 
    690   if ((TSFlags & X86II::EVEX_B))
    691     EVEX_b = 1;
    692 
    693   switch (TSFlags & X86II::OpPrefixMask) {
    694   default: break; // VEX_PP already correct
    695   case X86II::PD: VEX_PP = 0x1; break; // 66
    696   case X86II::XS: VEX_PP = 0x2; break; // F3
    697   case X86II::XD: VEX_PP = 0x3; break; // F2
    698   }
    699 
    700   switch (TSFlags & X86II::OpMapMask) {
    701   default: llvm_unreachable("Invalid prefix!");
    702   case X86II::TB:   VEX_5M = 0x1; break; // 0F
    703   case X86II::T8:   VEX_5M = 0x2; break; // 0F 38
    704   case X86II::TA:   VEX_5M = 0x3; break; // 0F 3A
    705   case X86II::XOP8: VEX_5M = 0x8; break;
    706   case X86II::XOP9: VEX_5M = 0x9; break;
    707   case X86II::XOPA: VEX_5M = 0xA; break;
    708   }
    709 
    710   // Classify VEX_B, VEX_4V, VEX_R, VEX_X
    711   unsigned NumOps = Desc.getNumOperands();
    712   unsigned CurOp = X86II::getOperandBias(Desc);
    713 
    714   switch (TSFlags & X86II::FormMask) {
    715   default: llvm_unreachable("Unexpected form in EmitVEXOpcodePrefix!");
    716   case X86II::RawFrm:
    717     break;
    718   case X86II::MRMDestMem: {
    719     // MRMDestMem instructions forms:
    720     //  MemAddr, src1(ModR/M)
    721     //  MemAddr, src1(VEX_4V), src2(ModR/M)
    722     //  MemAddr, src1(ModR/M), imm8
    723     //
    724     if (X86II::isX86_64ExtendedReg(MI.getOperand(MemOperand +
    725                                                  X86::AddrBaseReg).getReg()))
    726       VEX_B = 0x0;
    727     if (X86II::isX86_64ExtendedReg(MI.getOperand(MemOperand +
    728                                                  X86::AddrIndexReg).getReg()))
    729       VEX_X = 0x0;
    730     if (X86II::is32ExtendedReg(MI.getOperand(MemOperand +
    731                                           X86::AddrIndexReg).getReg()))
    732       EVEX_V2 = 0x0;
    733 
    734     CurOp += X86::AddrNumOperands;
    735 
    736     if (HasEVEX_K)
    737       EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
    738 
    739     if (HasVEX_4V) {
    740       VEX_4V = getVEXRegisterEncoding(MI, CurOp);
    741       if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
    742         EVEX_V2 = 0x0;
    743       CurOp++;
    744     }
    745 
    746     const MCOperand &MO = MI.getOperand(CurOp);
    747     if (MO.isReg()) {
    748       if (X86II::isX86_64ExtendedReg(MO.getReg()))
    749         VEX_R = 0x0;
    750       if (X86II::is32ExtendedReg(MO.getReg()))
    751         EVEX_R2 = 0x0;
    752     }
    753     break;
    754   }
    755   case X86II::MRMSrcMem:
    756     // MRMSrcMem instructions forms:
    757     //  src1(ModR/M), MemAddr
    758     //  src1(ModR/M), src2(VEX_4V), MemAddr
    759     //  src1(ModR/M), MemAddr, imm8
    760     //  src1(ModR/M), MemAddr, src2(VEX_I8IMM)
    761     //
    762     //  FMA4:
    763     //  dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
    764     //  dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
    765     if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
    766       VEX_R = 0x0;
    767     if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
    768       EVEX_R2 = 0x0;
    769     CurOp++;
    770 
    771     if (HasEVEX_K)
    772       EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
    773 
    774     if (HasVEX_4V) {
    775       VEX_4V = getVEXRegisterEncoding(MI, CurOp);
    776       if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
    777         EVEX_V2 = 0x0;
    778       CurOp++;
    779     }
    780 
    781     if (X86II::isX86_64ExtendedReg(
    782                MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
    783       VEX_B = 0x0;
    784     if (X86II::isX86_64ExtendedReg(
    785                MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
    786       VEX_X = 0x0;
    787     if (X86II::is32ExtendedReg(MI.getOperand(MemOperand +
    788                                X86::AddrIndexReg).getReg()))
    789       EVEX_V2 = 0x0;
    790 
    791     if (HasVEX_4VOp3)
    792       // Instruction format for 4VOp3:
    793       //   src1(ModR/M), MemAddr, src3(VEX_4V)
    794       // CurOp points to start of the MemoryOperand,
    795       //   it skips TIED_TO operands if exist, then increments past src1.
    796       // CurOp + X86::AddrNumOperands will point to src3.
    797       VEX_4V = getVEXRegisterEncoding(MI, CurOp+X86::AddrNumOperands);
    798     break;
    799   case X86II::MRM0m: case X86II::MRM1m:
    800   case X86II::MRM2m: case X86II::MRM3m:
    801   case X86II::MRM4m: case X86II::MRM5m:
    802   case X86II::MRM6m: case X86II::MRM7m: {
    803     // MRM[0-9]m instructions forms:
    804     //  MemAddr
    805     //  src1(VEX_4V), MemAddr
    806     if (HasVEX_4V) {
    807       VEX_4V = getVEXRegisterEncoding(MI, CurOp);
    808       if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
    809         EVEX_V2 = 0x0;
    810       CurOp++;
    811     }
    812 
    813     if (HasEVEX_K)
    814       EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
    815 
    816     if (X86II::isX86_64ExtendedReg(
    817                MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
    818       VEX_B = 0x0;
    819     if (X86II::isX86_64ExtendedReg(
    820                MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
    821       VEX_X = 0x0;
    822     break;
    823   }
    824   case X86II::MRMSrcReg:
    825     // MRMSrcReg instructions forms:
    826     //  dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
    827     //  dst(ModR/M), src1(ModR/M)
    828     //  dst(ModR/M), src1(ModR/M), imm8
    829     //
    830     //  FMA4:
    831     //  dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
    832     //  dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
    833     if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
    834       VEX_R = 0x0;
    835     if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
    836       EVEX_R2 = 0x0;
    837     CurOp++;
    838 
    839     if (HasEVEX_K)
    840       EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
    841 
    842     if (HasVEX_4V) {
    843       VEX_4V = getVEXRegisterEncoding(MI, CurOp);
    844       if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
    845         EVEX_V2 = 0x0;
    846       CurOp++;
    847     }
    848 
    849     if (HasMemOp4) // Skip second register source (encoded in I8IMM)
    850       CurOp++;
    851 
    852     if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
    853       VEX_B = 0x0;
    854     if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
    855       VEX_X = 0x0;
    856     CurOp++;
    857     if (HasVEX_4VOp3)
    858       VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
    859     if (EVEX_b) {
    860       if (HasEVEX_RC) {
    861         unsigned RcOperand = NumOps-1;
    862         assert(RcOperand >= CurOp);
    863         EVEX_rc = MI.getOperand(RcOperand).getImm() & 0x3;
    864       }
    865       EncodeRC = true;
    866     }
    867     break;
    868   case X86II::MRMDestReg:
    869     // MRMDestReg instructions forms:
    870     //  dst(ModR/M), src(ModR/M)
    871     //  dst(ModR/M), src(ModR/M), imm8
    872     //  dst(ModR/M), src1(VEX_4V), src2(ModR/M)
    873     if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
    874       VEX_B = 0x0;
    875     if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
    876       VEX_X = 0x0;
    877     CurOp++;
    878 
    879     if (HasEVEX_K)
    880       EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
    881 
    882     if (HasVEX_4V) {
    883       VEX_4V = getVEXRegisterEncoding(MI, CurOp);
    884       if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
    885         EVEX_V2 = 0x0;
    886       CurOp++;
    887     }
    888 
    889     if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
    890       VEX_R = 0x0;
    891     if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
    892       EVEX_R2 = 0x0;
    893     if (EVEX_b)
    894       EncodeRC = true;
    895     break;
    896   case X86II::MRM0r: case X86II::MRM1r:
    897   case X86II::MRM2r: case X86II::MRM3r:
    898   case X86II::MRM4r: case X86II::MRM5r:
    899   case X86II::MRM6r: case X86II::MRM7r:
    900     // MRM0r-MRM7r instructions forms:
    901     //  dst(VEX_4V), src(ModR/M), imm8
    902     if (HasVEX_4V) {
    903       VEX_4V = getVEXRegisterEncoding(MI, CurOp);
    904       if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
    905           EVEX_V2 = 0x0;
    906       CurOp++;
    907     }
    908     if (HasEVEX_K)
    909       EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
    910 
    911     if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
    912       VEX_B = 0x0;
    913     if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
    914       VEX_X = 0x0;
    915     break;
    916   }
    917 
    918   if (Encoding == X86II::VEX || Encoding == X86II::XOP) {
    919     // VEX opcode prefix can have 2 or 3 bytes
    920     //
    921     //  3 bytes:
    922     //    +-----+ +--------------+ +-------------------+
    923     //    | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
    924     //    +-----+ +--------------+ +-------------------+
    925     //  2 bytes:
    926     //    +-----+ +-------------------+
    927     //    | C5h | | R | vvvv | L | pp |
    928     //    +-----+ +-------------------+
    929     //
    930     //  XOP uses a similar prefix:
    931     //    +-----+ +--------------+ +-------------------+
    932     //    | 8Fh | | RXB | m-mmmm | | W | vvvv | L | pp |
    933     //    +-----+ +--------------+ +-------------------+
    934     unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
    935 
    936     // Can we use the 2 byte VEX prefix?
    937     if (Encoding == X86II::VEX && VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) {
    938       EmitByte(0xC5, CurByte, OS);
    939       EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
    940       return;
    941     }
    942 
    943     // 3 byte VEX prefix
    944     EmitByte(Encoding == X86II::XOP ? 0x8F : 0xC4, CurByte, OS);
    945     EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
    946     EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
    947   } else {
    948     assert(Encoding == X86II::EVEX && "unknown encoding!");
    949     // EVEX opcode prefix can have 4 bytes
    950     //
    951     // +-----+ +--------------+ +-------------------+ +------------------------+
    952     // | 62h | | RXBR' | 00mm | | W | vvvv | U | pp | | z | L'L | b | v' | aaa |
    953     // +-----+ +--------------+ +-------------------+ +------------------------+
    954     assert((VEX_5M & 0x3) == VEX_5M
    955            && "More than 2 significant bits in VEX.m-mmmm fields for EVEX!");
    956 
    957     VEX_5M &= 0x3;
    958 
    959     EmitByte(0x62, CurByte, OS);
    960     EmitByte((VEX_R   << 7) |
    961              (VEX_X   << 6) |
    962              (VEX_B   << 5) |
    963              (EVEX_R2 << 4) |
    964              VEX_5M, CurByte, OS);
    965     EmitByte((VEX_W   << 7) |
    966              (VEX_4V  << 3) |
    967              (EVEX_U  << 2) |
    968              VEX_PP, CurByte, OS);
    969     if (EncodeRC)
    970       EmitByte((EVEX_z  << 7) |
    971               (EVEX_rc << 5) |
    972               (EVEX_b  << 4) |
    973               (EVEX_V2 << 3) |
    974               EVEX_aaa, CurByte, OS);
    975     else
    976       EmitByte((EVEX_z  << 7) |
    977               (EVEX_L2 << 6) |
    978               (VEX_L   << 5) |
    979               (EVEX_b  << 4) |
    980               (EVEX_V2 << 3) |
    981               EVEX_aaa, CurByte, OS);
    982   }
    983 }
    984 
    985 /// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
    986 /// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
    987 /// size, and 3) use of X86-64 extended registers.
    988 static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
    989                                    const MCInstrDesc &Desc) {
    990   unsigned REX = 0;
    991   if (TSFlags & X86II::REX_W)
    992     REX |= 1 << 3; // set REX.W
    993 
    994   if (MI.getNumOperands() == 0) return REX;
    995 
    996   unsigned NumOps = MI.getNumOperands();
    997   // FIXME: MCInst should explicitize the two-addrness.
    998   bool isTwoAddr = NumOps > 1 &&
    999                       Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1;
   1000 
   1001   // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
   1002   unsigned i = isTwoAddr ? 1 : 0;
   1003   for (; i != NumOps; ++i) {
   1004     const MCOperand &MO = MI.getOperand(i);
   1005     if (!MO.isReg()) continue;
   1006     unsigned Reg = MO.getReg();
   1007     if (!X86II::isX86_64NonExtLowByteReg(Reg)) continue;
   1008     // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
   1009     // that returns non-zero.
   1010     REX |= 0x40; // REX fixed encoding prefix
   1011     break;
   1012   }
   1013 
   1014   switch (TSFlags & X86II::FormMask) {
   1015   case X86II::MRMSrcReg:
   1016     if (MI.getOperand(0).isReg() &&
   1017         X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
   1018       REX |= 1 << 2; // set REX.R
   1019     i = isTwoAddr ? 2 : 1;
   1020     for (; i != NumOps; ++i) {
   1021       const MCOperand &MO = MI.getOperand(i);
   1022       if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
   1023         REX |= 1 << 0; // set REX.B
   1024     }
   1025     break;
   1026   case X86II::MRMSrcMem: {
   1027     if (MI.getOperand(0).isReg() &&
   1028         X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
   1029       REX |= 1 << 2; // set REX.R
   1030     unsigned Bit = 0;
   1031     i = isTwoAddr ? 2 : 1;
   1032     for (; i != NumOps; ++i) {
   1033       const MCOperand &MO = MI.getOperand(i);
   1034       if (MO.isReg()) {
   1035         if (X86II::isX86_64ExtendedReg(MO.getReg()))
   1036           REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
   1037         Bit++;
   1038       }
   1039     }
   1040     break;
   1041   }
   1042   case X86II::MRMXm:
   1043   case X86II::MRM0m: case X86II::MRM1m:
   1044   case X86II::MRM2m: case X86II::MRM3m:
   1045   case X86II::MRM4m: case X86II::MRM5m:
   1046   case X86II::MRM6m: case X86II::MRM7m:
   1047   case X86II::MRMDestMem: {
   1048     unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
   1049     i = isTwoAddr ? 1 : 0;
   1050     if (NumOps > e && MI.getOperand(e).isReg() &&
   1051         X86II::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
   1052       REX |= 1 << 2; // set REX.R
   1053     unsigned Bit = 0;
   1054     for (; i != e; ++i) {
   1055       const MCOperand &MO = MI.getOperand(i);
   1056       if (MO.isReg()) {
   1057         if (X86II::isX86_64ExtendedReg(MO.getReg()))
   1058           REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
   1059         Bit++;
   1060       }
   1061     }
   1062     break;
   1063   }
   1064   default:
   1065     if (MI.getOperand(0).isReg() &&
   1066         X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
   1067       REX |= 1 << 0; // set REX.B
   1068     i = isTwoAddr ? 2 : 1;
   1069     for (unsigned e = NumOps; i != e; ++i) {
   1070       const MCOperand &MO = MI.getOperand(i);
   1071       if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
   1072         REX |= 1 << 2; // set REX.R
   1073     }
   1074     break;
   1075   }
   1076   return REX;
   1077 }
   1078 
   1079 /// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
   1080 void X86MCCodeEmitter::EmitSegmentOverridePrefix(unsigned &CurByte,
   1081                                                  unsigned SegOperand,
   1082                                                  const MCInst &MI,
   1083                                                  raw_ostream &OS) const {
   1084   // Check for explicit segment override on memory operand.
   1085   switch (MI.getOperand(SegOperand).getReg()) {
   1086   default: llvm_unreachable("Unknown segment register!");
   1087   case 0: break;
   1088   case X86::CS: EmitByte(0x2E, CurByte, OS); break;
   1089   case X86::SS: EmitByte(0x36, CurByte, OS); break;
   1090   case X86::DS: EmitByte(0x3E, CurByte, OS); break;
   1091   case X86::ES: EmitByte(0x26, CurByte, OS); break;
   1092   case X86::FS: EmitByte(0x64, CurByte, OS); break;
   1093   case X86::GS: EmitByte(0x65, CurByte, OS); break;
   1094   }
   1095 }
   1096 
   1097 /// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
   1098 ///
   1099 /// MemOperand is the operand # of the start of a memory operand if present.  If
   1100 /// Not present, it is -1.
   1101 void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
   1102                                         int MemOperand, const MCInst &MI,
   1103                                         const MCInstrDesc &Desc,
   1104                                         const MCSubtargetInfo &STI,
   1105                                         raw_ostream &OS) const {
   1106 
   1107   // Emit the operand size opcode prefix as needed.
   1108   if ((TSFlags & X86II::OpSizeMask) == (is16BitMode(STI) ? X86II::OpSize32
   1109                                                          : X86II::OpSize16))
   1110     EmitByte(0x66, CurByte, OS);
   1111 
   1112   // Emit the LOCK opcode prefix.
   1113   if (TSFlags & X86II::LOCK)
   1114     EmitByte(0xF0, CurByte, OS);
   1115 
   1116   switch (TSFlags & X86II::OpPrefixMask) {
   1117   case X86II::PD:   // 66
   1118     EmitByte(0x66, CurByte, OS);
   1119     break;
   1120   case X86II::XS:   // F3
   1121     EmitByte(0xF3, CurByte, OS);
   1122     break;
   1123   case X86II::XD:   // F2
   1124     EmitByte(0xF2, CurByte, OS);
   1125     break;
   1126   }
   1127 
   1128   // Handle REX prefix.
   1129   // FIXME: Can this come before F2 etc to simplify emission?
   1130   if (is64BitMode(STI)) {
   1131     if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
   1132       EmitByte(0x40 | REX, CurByte, OS);
   1133   }
   1134 
   1135   // 0x0F escape code must be emitted just before the opcode.
   1136   switch (TSFlags & X86II::OpMapMask) {
   1137   case X86II::TB:  // Two-byte opcode map
   1138   case X86II::T8:  // 0F 38
   1139   case X86II::TA:  // 0F 3A
   1140     EmitByte(0x0F, CurByte, OS);
   1141     break;
   1142   }
   1143 
   1144   switch (TSFlags & X86II::OpMapMask) {
   1145   case X86II::T8:    // 0F 38
   1146     EmitByte(0x38, CurByte, OS);
   1147     break;
   1148   case X86II::TA:    // 0F 3A
   1149     EmitByte(0x3A, CurByte, OS);
   1150     break;
   1151   }
   1152 }
   1153 
   1154 void X86MCCodeEmitter::
   1155 EncodeInstruction(const MCInst &MI, raw_ostream &OS,
   1156                   SmallVectorImpl<MCFixup> &Fixups,
   1157                   const MCSubtargetInfo &STI) const {
   1158   unsigned Opcode = MI.getOpcode();
   1159   const MCInstrDesc &Desc = MCII.get(Opcode);
   1160   uint64_t TSFlags = Desc.TSFlags;
   1161 
   1162   // Pseudo instructions don't get encoded.
   1163   if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
   1164     return;
   1165 
   1166   unsigned NumOps = Desc.getNumOperands();
   1167   unsigned CurOp = X86II::getOperandBias(Desc);
   1168 
   1169   // Keep track of the current byte being emitted.
   1170   unsigned CurByte = 0;
   1171 
   1172   // Encoding type for this instruction.
   1173   uint64_t Encoding = TSFlags & X86II::EncodingMask;
   1174 
   1175   // It uses the VEX.VVVV field?
   1176   bool HasVEX_4V = TSFlags & X86II::VEX_4V;
   1177   bool HasVEX_4VOp3 = TSFlags & X86II::VEX_4VOp3;
   1178   bool HasMemOp4 = TSFlags & X86II::MemOp4;
   1179   const unsigned MemOp4_I8IMMOperand = 2;
   1180 
   1181   // It uses the EVEX.aaa field?
   1182   bool HasEVEX_K = TSFlags & X86II::EVEX_K;
   1183   bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;
   1184 
   1185   // Determine where the memory operand starts, if present.
   1186   int MemoryOperand = X86II::getMemoryOperandNo(TSFlags, Opcode);
   1187   if (MemoryOperand != -1) MemoryOperand += CurOp;
   1188 
   1189   // Emit segment override opcode prefix as needed.
   1190   if (MemoryOperand >= 0)
   1191     EmitSegmentOverridePrefix(CurByte, MemoryOperand+X86::AddrSegmentReg,
   1192                               MI, OS);
   1193 
   1194   // Emit the repeat opcode prefix as needed.
   1195   if (TSFlags & X86II::REP)
   1196     EmitByte(0xF3, CurByte, OS);
   1197 
   1198   // Emit the address size opcode prefix as needed.
   1199   bool need_address_override;
   1200   uint64_t AdSize = TSFlags & X86II::AdSizeMask;
   1201   if ((is16BitMode(STI) && AdSize == X86II::AdSize32) ||
   1202       (is32BitMode(STI) && AdSize == X86II::AdSize16) ||
   1203       (is64BitMode(STI) && AdSize == X86II::AdSize32)) {
   1204     need_address_override = true;
   1205   } else if (MemoryOperand < 0) {
   1206     need_address_override = false;
   1207   } else if (is64BitMode(STI)) {
   1208     assert(!Is16BitMemOperand(MI, MemoryOperand, STI));
   1209     need_address_override = Is32BitMemOperand(MI, MemoryOperand);
   1210   } else if (is32BitMode(STI)) {
   1211     assert(!Is64BitMemOperand(MI, MemoryOperand));
   1212     need_address_override = Is16BitMemOperand(MI, MemoryOperand, STI);
   1213   } else {
   1214     assert(is16BitMode(STI));
   1215     assert(!Is64BitMemOperand(MI, MemoryOperand));
   1216     need_address_override = !Is16BitMemOperand(MI, MemoryOperand, STI);
   1217   }
   1218 
   1219   if (need_address_override)
   1220     EmitByte(0x67, CurByte, OS);
   1221 
   1222   if (Encoding == 0)
   1223     EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, STI, OS);
   1224   else
   1225     EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
   1226 
   1227   unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
   1228 
   1229   if (TSFlags & X86II::Has3DNow0F0FOpcode)
   1230     BaseOpcode = 0x0F;   // Weird 3DNow! encoding.
   1231 
   1232   unsigned SrcRegNum = 0;
   1233   switch (TSFlags & X86II::FormMask) {
   1234   default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
   1235     llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!");
   1236   case X86II::Pseudo:
   1237     llvm_unreachable("Pseudo instruction shouldn't be emitted");
   1238   case X86II::RawFrmDstSrc: {
   1239     unsigned siReg = MI.getOperand(1).getReg();
   1240     assert(((siReg == X86::SI && MI.getOperand(0).getReg() == X86::DI) ||
   1241             (siReg == X86::ESI && MI.getOperand(0).getReg() == X86::EDI) ||
   1242             (siReg == X86::RSI && MI.getOperand(0).getReg() == X86::RDI)) &&
   1243            "SI and DI register sizes do not match");
   1244     // Emit segment override opcode prefix as needed (not for %ds).
   1245     if (MI.getOperand(2).getReg() != X86::DS)
   1246       EmitSegmentOverridePrefix(CurByte, 2, MI, OS);
   1247     // Emit AdSize prefix as needed.
   1248     if ((!is32BitMode(STI) && siReg == X86::ESI) ||
   1249         (is32BitMode(STI) && siReg == X86::SI))
   1250       EmitByte(0x67, CurByte, OS);
   1251     CurOp += 3; // Consume operands.
   1252     EmitByte(BaseOpcode, CurByte, OS);
   1253     break;
   1254   }
   1255   case X86II::RawFrmSrc: {
   1256     unsigned siReg = MI.getOperand(0).getReg();
   1257     // Emit segment override opcode prefix as needed (not for %ds).
   1258     if (MI.getOperand(1).getReg() != X86::DS)
   1259       EmitSegmentOverridePrefix(CurByte, 1, MI, OS);
   1260     // Emit AdSize prefix as needed.
   1261     if ((!is32BitMode(STI) && siReg == X86::ESI) ||
   1262         (is32BitMode(STI) && siReg == X86::SI))
   1263       EmitByte(0x67, CurByte, OS);
   1264     CurOp += 2; // Consume operands.
   1265     EmitByte(BaseOpcode, CurByte, OS);
   1266     break;
   1267   }
   1268   case X86II::RawFrmDst: {
   1269     unsigned siReg = MI.getOperand(0).getReg();
   1270     // Emit AdSize prefix as needed.
   1271     if ((!is32BitMode(STI) && siReg == X86::EDI) ||
   1272         (is32BitMode(STI) && siReg == X86::DI))
   1273       EmitByte(0x67, CurByte, OS);
   1274     ++CurOp; // Consume operand.
   1275     EmitByte(BaseOpcode, CurByte, OS);
   1276     break;
   1277   }
   1278   case X86II::RawFrm:
   1279     EmitByte(BaseOpcode, CurByte, OS);
   1280     break;
   1281   case X86II::RawFrmMemOffs:
   1282     // Emit segment override opcode prefix as needed.
   1283     EmitSegmentOverridePrefix(CurByte, 1, MI, OS);
   1284     EmitByte(BaseOpcode, CurByte, OS);
   1285     EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
   1286                   X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
   1287                   CurByte, OS, Fixups);
   1288     ++CurOp; // skip segment operand
   1289     break;
   1290   case X86II::RawFrmImm8:
   1291     EmitByte(BaseOpcode, CurByte, OS);
   1292     EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
   1293                   X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
   1294                   CurByte, OS, Fixups);
   1295     EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1, FK_Data_1, CurByte,
   1296                   OS, Fixups);
   1297     break;
   1298   case X86II::RawFrmImm16:
   1299     EmitByte(BaseOpcode, CurByte, OS);
   1300     EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
   1301                   X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
   1302                   CurByte, OS, Fixups);
   1303     EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 2, FK_Data_2, CurByte,
   1304                   OS, Fixups);
   1305     break;
   1306 
   1307   case X86II::AddRegFrm:
   1308     EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
   1309     break;
   1310 
   1311   case X86II::MRMDestReg:
   1312     EmitByte(BaseOpcode, CurByte, OS);
   1313     SrcRegNum = CurOp + 1;
   1314 
   1315     if (HasEVEX_K) // Skip writemask
   1316       SrcRegNum++;
   1317 
   1318     if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
   1319       ++SrcRegNum;
   1320 
   1321     EmitRegModRMByte(MI.getOperand(CurOp),
   1322                      GetX86RegNum(MI.getOperand(SrcRegNum)), CurByte, OS);
   1323     CurOp = SrcRegNum + 1;
   1324     break;
   1325 
   1326   case X86II::MRMDestMem:
   1327     EmitByte(BaseOpcode, CurByte, OS);
   1328     SrcRegNum = CurOp + X86::AddrNumOperands;
   1329 
   1330     if (HasEVEX_K) // Skip writemask
   1331       SrcRegNum++;
   1332 
   1333     if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
   1334       ++SrcRegNum;
   1335 
   1336     EmitMemModRMByte(MI, CurOp,
   1337                      GetX86RegNum(MI.getOperand(SrcRegNum)),
   1338                      TSFlags, CurByte, OS, Fixups, STI);
   1339     CurOp = SrcRegNum + 1;
   1340     break;
   1341 
   1342   case X86II::MRMSrcReg:
   1343     EmitByte(BaseOpcode, CurByte, OS);
   1344     SrcRegNum = CurOp + 1;
   1345 
   1346     if (HasEVEX_K) // Skip writemask
   1347       SrcRegNum++;
   1348 
   1349     if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
   1350       ++SrcRegNum;
   1351 
   1352     if (HasMemOp4) // Skip 2nd src (which is encoded in I8IMM)
   1353       ++SrcRegNum;
   1354 
   1355     EmitRegModRMByte(MI.getOperand(SrcRegNum),
   1356                      GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
   1357 
   1358     // 2 operands skipped with HasMemOp4, compensate accordingly
   1359     CurOp = HasMemOp4 ? SrcRegNum : SrcRegNum + 1;
   1360     if (HasVEX_4VOp3)
   1361       ++CurOp;
   1362     // do not count the rounding control operand
   1363     if (HasEVEX_RC)
   1364       NumOps--;
   1365     break;
   1366 
   1367   case X86II::MRMSrcMem: {
   1368     int AddrOperands = X86::AddrNumOperands;
   1369     unsigned FirstMemOp = CurOp+1;
   1370 
   1371     if (HasEVEX_K) { // Skip writemask
   1372       ++AddrOperands;
   1373       ++FirstMemOp;
   1374     }
   1375 
   1376     if (HasVEX_4V) {
   1377       ++AddrOperands;
   1378       ++FirstMemOp;  // Skip the register source (which is encoded in VEX_VVVV).
   1379     }
   1380     if (HasMemOp4) // Skip second register source (encoded in I8IMM)
   1381       ++FirstMemOp;
   1382 
   1383     EmitByte(BaseOpcode, CurByte, OS);
   1384 
   1385     EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
   1386                      TSFlags, CurByte, OS, Fixups, STI);
   1387     CurOp += AddrOperands + 1;
   1388     if (HasVEX_4VOp3)
   1389       ++CurOp;
   1390     break;
   1391   }
   1392 
   1393   case X86II::MRMXr:
   1394   case X86II::MRM0r: case X86II::MRM1r:
   1395   case X86II::MRM2r: case X86II::MRM3r:
   1396   case X86II::MRM4r: case X86II::MRM5r:
   1397   case X86II::MRM6r: case X86II::MRM7r: {
   1398     if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
   1399       ++CurOp;
   1400     if (HasEVEX_K) // Skip writemask
   1401       ++CurOp;
   1402     EmitByte(BaseOpcode, CurByte, OS);
   1403     uint64_t Form = TSFlags & X86II::FormMask;
   1404     EmitRegModRMByte(MI.getOperand(CurOp++),
   1405                      (Form == X86II::MRMXr) ? 0 : Form-X86II::MRM0r,
   1406                      CurByte, OS);
   1407     break;
   1408   }
   1409 
   1410   case X86II::MRMXm:
   1411   case X86II::MRM0m: case X86II::MRM1m:
   1412   case X86II::MRM2m: case X86II::MRM3m:
   1413   case X86II::MRM4m: case X86II::MRM5m:
   1414   case X86II::MRM6m: case X86II::MRM7m: {
   1415     if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
   1416       ++CurOp;
   1417     if (HasEVEX_K) // Skip writemask
   1418       ++CurOp;
   1419     EmitByte(BaseOpcode, CurByte, OS);
   1420     uint64_t Form = TSFlags & X86II::FormMask;
   1421     EmitMemModRMByte(MI, CurOp, (Form == X86II::MRMXm) ? 0 : Form-X86II::MRM0m,
   1422                      TSFlags, CurByte, OS, Fixups, STI);
   1423     CurOp += X86::AddrNumOperands;
   1424     break;
   1425   }
   1426   case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
   1427   case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5:
   1428   case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8:
   1429   case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
   1430   case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE:
   1431   case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
   1432   case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4:
   1433   case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7:
   1434   case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA:
   1435   case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD:
   1436   case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0:
   1437   case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3:
   1438   case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6:
   1439   case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9:
   1440   case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
   1441   case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF:
   1442   case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2:
   1443   case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5:
   1444   case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8:
   1445   case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB:
   1446   case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE:
   1447   case X86II::MRM_FF:
   1448     EmitByte(BaseOpcode, CurByte, OS);
   1449 
   1450     uint64_t Form = TSFlags & X86II::FormMask;
   1451     EmitByte(0xC0 + Form - X86II::MRM_C0, CurByte, OS);
   1452     break;
   1453   }
   1454 
   1455   // If there is a remaining operand, it must be a trailing immediate.  Emit it
   1456   // according to the right size for the instruction. Some instructions
   1457   // (SSE4a extrq and insertq) have two trailing immediates.
   1458   while (CurOp != NumOps && NumOps - CurOp <= 2) {
   1459     // The last source register of a 4 operand instruction in AVX is encoded
   1460     // in bits[7:4] of a immediate byte.
   1461     if (TSFlags & X86II::VEX_I8IMM) {
   1462       const MCOperand &MO = MI.getOperand(HasMemOp4 ? MemOp4_I8IMMOperand
   1463                                                     : CurOp);
   1464       ++CurOp;
   1465       unsigned RegNum = GetX86RegNum(MO) << 4;
   1466       if (X86II::isX86_64ExtendedReg(MO.getReg()))
   1467         RegNum |= 1 << 7;
   1468       // If there is an additional 5th operand it must be an immediate, which
   1469       // is encoded in bits[3:0]
   1470       if (CurOp != NumOps) {
   1471         const MCOperand &MIMM = MI.getOperand(CurOp++);
   1472         if (MIMM.isImm()) {
   1473           unsigned Val = MIMM.getImm();
   1474           assert(Val < 16 && "Immediate operand value out of range");
   1475           RegNum |= Val;
   1476         }
   1477       }
   1478       EmitImmediate(MCOperand::CreateImm(RegNum), MI.getLoc(), 1, FK_Data_1,
   1479                     CurByte, OS, Fixups);
   1480     } else {
   1481       EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
   1482                     X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
   1483                     CurByte, OS, Fixups);
   1484     }
   1485   }
   1486 
   1487   if (TSFlags & X86II::Has3DNow0F0FOpcode)
   1488     EmitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS);
   1489 
   1490 #ifndef NDEBUG
   1491   // FIXME: Verify.
   1492   if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
   1493     errs() << "Cannot encode all operands of: ";
   1494     MI.dump();
   1495     errs() << '\n';
   1496     abort();
   1497   }
   1498 #endif
   1499 }
   1500