Home | History | Annotate | Download | only in X86
      1 //===-- X86Subtarget.h - Define Subtarget for the X86 ----------*- C++ -*--===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file declares the X86 specific subclass of TargetSubtargetInfo.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_LIB_TARGET_X86_X86SUBTARGET_H
     15 #define LLVM_LIB_TARGET_X86_X86SUBTARGET_H
     16 
     17 #include "X86FrameLowering.h"
     18 #include "X86ISelLowering.h"
     19 #include "X86InstrInfo.h"
     20 #include "X86SelectionDAGInfo.h"
     21 #include "llvm/ADT/Triple.h"
     22 #include "llvm/IR/CallingConv.h"
     23 #include "llvm/Target/TargetSubtargetInfo.h"
     24 #include <string>
     25 
     26 #define GET_SUBTARGETINFO_HEADER
     27 #include "X86GenSubtargetInfo.inc"
     28 
     29 namespace llvm {
     30 class GlobalValue;
     31 class StringRef;
     32 class TargetMachine;
     33 
     34 /// The X86 backend supports a number of different styles of PIC.
     35 ///
     36 namespace PICStyles {
     37 enum Style {
     38   StubPIC,          // Used on i386-darwin in -fPIC mode.
     39   StubDynamicNoPIC, // Used on i386-darwin in -mdynamic-no-pic mode.
     40   GOT,              // Used on many 32-bit unices in -fPIC mode.
     41   RIPRel,           // Used on X86-64 when not in -static mode.
     42   None              // Set when in -static mode (not PIC or DynamicNoPIC mode).
     43 };
     44 }
     45 
     46 class X86Subtarget final : public X86GenSubtargetInfo {
     47 
     48 protected:
     49   enum X86SSEEnum {
     50     NoMMXSSE, MMX, SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, AVX, AVX2, AVX512F
     51   };
     52 
     53   enum X863DNowEnum {
     54     NoThreeDNow, ThreeDNow, ThreeDNowA
     55   };
     56 
     57   enum X86ProcFamilyEnum {
     58     Others, IntelAtom, IntelSLM
     59   };
     60 
     61   /// X86 processor family: Intel Atom, and others
     62   X86ProcFamilyEnum X86ProcFamily;
     63 
     64   /// Which PIC style to use
     65   PICStyles::Style PICStyle;
     66 
     67   /// MMX, SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, or none supported.
     68   X86SSEEnum X86SSELevel;
     69 
     70   /// 3DNow, 3DNow Athlon, or none supported.
     71   X863DNowEnum X863DNowLevel;
     72 
     73   /// True if this processor has conditional move instructions
     74   /// (generally pentium pro+).
     75   bool HasCMov;
     76 
     77   /// True if the processor supports X86-64 instructions.
     78   bool HasX86_64;
     79 
     80   /// True if the processor supports POPCNT.
     81   bool HasPOPCNT;
     82 
     83   /// True if the processor supports SSE4A instructions.
     84   bool HasSSE4A;
     85 
     86   /// Target has AES instructions
     87   bool HasAES;
     88 
     89   /// Target has carry-less multiplication
     90   bool HasPCLMUL;
     91 
     92   /// Target has 3-operand fused multiply-add
     93   bool HasFMA;
     94 
     95   /// Target has 4-operand fused multiply-add
     96   bool HasFMA4;
     97 
     98   /// Target has XOP instructions
     99   bool HasXOP;
    100 
    101   /// Target has TBM instructions.
    102   bool HasTBM;
    103 
    104   /// True if the processor has the MOVBE instruction.
    105   bool HasMOVBE;
    106 
    107   /// True if the processor has the RDRAND instruction.
    108   bool HasRDRAND;
    109 
    110   /// Processor has 16-bit floating point conversion instructions.
    111   bool HasF16C;
    112 
    113   /// Processor has FS/GS base insturctions.
    114   bool HasFSGSBase;
    115 
    116   /// Processor has LZCNT instruction.
    117   bool HasLZCNT;
    118 
    119   /// Processor has BMI1 instructions.
    120   bool HasBMI;
    121 
    122   /// Processor has BMI2 instructions.
    123   bool HasBMI2;
    124 
    125   /// Processor has RTM instructions.
    126   bool HasRTM;
    127 
    128   /// Processor has HLE.
    129   bool HasHLE;
    130 
    131   /// Processor has ADX instructions.
    132   bool HasADX;
    133 
    134   /// Processor has SHA instructions.
    135   bool HasSHA;
    136 
    137   /// Processor has PRFCHW instructions.
    138   bool HasPRFCHW;
    139 
    140   /// Processor has RDSEED instructions.
    141   bool HasRDSEED;
    142 
    143   /// True if BT (bit test) of memory instructions are slow.
    144   bool IsBTMemSlow;
    145 
    146   /// True if SHLD instructions are slow.
    147   bool IsSHLDSlow;
    148 
    149   /// True if unaligned memory access is fast.
    150   bool IsUAMemFast;
    151 
    152   /// True if unaligned 32-byte memory accesses are slow.
    153   bool IsUAMem32Slow;
    154 
    155   /// True if SSE operations can have unaligned memory operands.
    156   /// This may require setting a configuration bit in the processor.
    157   bool HasSSEUnalignedMem;
    158 
    159   /// True if this processor has the CMPXCHG16B instruction;
    160   /// this is true for most x86-64 chips, but not the first AMD chips.
    161   bool HasCmpxchg16b;
    162 
    163   /// True if the LEA instruction should be used for adjusting
    164   /// the stack pointer. This is an optimization for Intel Atom processors.
    165   bool UseLeaForSP;
    166 
    167   /// True if 8-bit divisions are significantly faster than
    168   /// 32-bit divisions and should be used when possible.
    169   bool HasSlowDivide32;
    170 
    171   /// True if 16-bit divides are significantly faster than
    172   /// 64-bit divisions and should be used when possible.
    173   bool HasSlowDivide64;
    174 
    175   /// True if the short functions should be padded to prevent
    176   /// a stall when returning too early.
    177   bool PadShortFunctions;
    178 
    179   /// True if the Calls with memory reference should be converted
    180   /// to a register-based indirect call.
    181   bool CallRegIndirect;
    182 
    183   /// True if the LEA instruction inputs have to be ready at address generation
    184   /// (AG) time.
    185   bool LEAUsesAG;
    186 
    187   /// True if the LEA instruction with certain arguments is slow
    188   bool SlowLEA;
    189 
    190   /// True if INC and DEC instructions are slow when writing to flags
    191   bool SlowIncDec;
    192 
    193   /// Use the RSQRT* instructions to optimize square root calculations.
    194   /// For this to be profitable, the cost of FSQRT and FDIV must be
    195   /// substantially higher than normal FP ops like FADD and FMUL.
    196   bool UseSqrtEst;
    197 
    198   /// Use the RCP* instructions to optimize FP division calculations.
    199   /// For this to be profitable, the cost of FDIV must be
    200   /// substantially higher than normal FP ops like FADD and FMUL.
    201   bool UseReciprocalEst;
    202 
    203   /// Processor has AVX-512 PreFetch Instructions
    204   bool HasPFI;
    205 
    206   /// Processor has AVX-512 Exponential and Reciprocal Instructions
    207   bool HasERI;
    208 
    209   /// Processor has AVX-512 Conflict Detection Instructions
    210   bool HasCDI;
    211 
    212   /// Processor has AVX-512 Doubleword and Quadword instructions
    213   bool HasDQI;
    214 
    215   /// Processor has AVX-512 Byte and Word instructions
    216   bool HasBWI;
    217 
    218   /// Processor has AVX-512 Vector Length eXtenstions
    219   bool HasVLX;
    220 
    221   /// The minimum alignment known to hold of the stack frame on
    222   /// entry to the function and which must be maintained by every function.
    223   unsigned stackAlignment;
    224 
    225   /// Max. memset / memcpy size that is turned into rep/movs, rep/stos ops.
    226   ///
    227   unsigned MaxInlineSizeThreshold;
    228 
    229   /// What processor and OS we're targeting.
    230   Triple TargetTriple;
    231 
    232   /// Instruction itineraries for scheduling
    233   InstrItineraryData InstrItins;
    234 
    235 private:
    236 
    237   /// Override the stack alignment.
    238   unsigned StackAlignOverride;
    239 
    240   /// True if compiling for 64-bit, false for 16-bit or 32-bit.
    241   bool In64BitMode;
    242 
    243   /// True if compiling for 32-bit, false for 16-bit or 64-bit.
    244   bool In32BitMode;
    245 
    246   /// True if compiling for 16-bit, false for 32-bit or 64-bit.
    247   bool In16BitMode;
    248 
    249   X86SelectionDAGInfo TSInfo;
    250   // Ordering here is important. X86InstrInfo initializes X86RegisterInfo which
    251   // X86TargetLowering needs.
    252   X86InstrInfo InstrInfo;
    253   X86TargetLowering TLInfo;
    254   X86FrameLowering FrameLowering;
    255 
    256 public:
    257   /// This constructor initializes the data members to match that
    258   /// of the specified triple.
    259   ///
    260   X86Subtarget(const std::string &TT, const std::string &CPU,
    261                const std::string &FS, const X86TargetMachine &TM,
    262                unsigned StackAlignOverride);
    263 
    264   const X86TargetLowering *getTargetLowering() const override {
    265     return &TLInfo;
    266   }
    267   const X86InstrInfo *getInstrInfo() const override { return &InstrInfo; }
    268   const X86FrameLowering *getFrameLowering() const override {
    269     return &FrameLowering;
    270   }
    271   const X86SelectionDAGInfo *getSelectionDAGInfo() const override {
    272     return &TSInfo;
    273   }
    274   const X86RegisterInfo *getRegisterInfo() const override {
    275     return &getInstrInfo()->getRegisterInfo();
    276   }
    277 
    278   /// Returns the minimum alignment known to hold of the
    279   /// stack frame on entry to the function and which must be maintained by every
    280   /// function for this subtarget.
    281   unsigned getStackAlignment() const { return stackAlignment; }
    282 
    283   /// Returns the maximum memset / memcpy size
    284   /// that still makes it profitable to inline the call.
    285   unsigned getMaxInlineSizeThreshold() const { return MaxInlineSizeThreshold; }
    286 
    287   /// ParseSubtargetFeatures - Parses features string setting specified
    288   /// subtarget options.  Definition of function is auto generated by tblgen.
    289   void ParseSubtargetFeatures(StringRef CPU, StringRef FS);
    290 
    291 private:
    292   /// Initialize the full set of dependencies so we can use an initializer
    293   /// list for X86Subtarget.
    294   X86Subtarget &initializeSubtargetDependencies(StringRef CPU, StringRef FS);
    295   void initializeEnvironment();
    296   void initSubtargetFeatures(StringRef CPU, StringRef FS);
    297 public:
    298   /// Is this x86_64? (disregarding specific ABI / programming model)
    299   bool is64Bit() const {
    300     return In64BitMode;
    301   }
    302 
    303   bool is32Bit() const {
    304     return In32BitMode;
    305   }
    306 
    307   bool is16Bit() const {
    308     return In16BitMode;
    309   }
    310 
    311   /// Is this x86_64 with the ILP32 programming model (x32 ABI)?
    312   bool isTarget64BitILP32() const {
    313     return In64BitMode && (TargetTriple.getEnvironment() == Triple::GNUX32 ||
    314                            TargetTriple.isOSNaCl());
    315   }
    316 
    317   /// Is this x86_64 with the LP64 programming model (standard AMD64, no x32)?
    318   bool isTarget64BitLP64() const {
    319     return In64BitMode && (TargetTriple.getEnvironment() != Triple::GNUX32 &&
    320                            !TargetTriple.isOSNaCl());
    321   }
    322 
    323   PICStyles::Style getPICStyle() const { return PICStyle; }
    324   void setPICStyle(PICStyles::Style Style)  { PICStyle = Style; }
    325 
    326   bool hasCMov() const { return HasCMov; }
    327   bool hasMMX() const { return X86SSELevel >= MMX; }
    328   bool hasSSE1() const { return X86SSELevel >= SSE1; }
    329   bool hasSSE2() const { return X86SSELevel >= SSE2; }
    330   bool hasSSE3() const { return X86SSELevel >= SSE3; }
    331   bool hasSSSE3() const { return X86SSELevel >= SSSE3; }
    332   bool hasSSE41() const { return X86SSELevel >= SSE41; }
    333   bool hasSSE42() const { return X86SSELevel >= SSE42; }
    334   bool hasAVX() const { return X86SSELevel >= AVX; }
    335   bool hasAVX2() const { return X86SSELevel >= AVX2; }
    336   bool hasAVX512() const { return X86SSELevel >= AVX512F; }
    337   bool hasFp256() const { return hasAVX(); }
    338   bool hasInt256() const { return hasAVX2(); }
    339   bool hasSSE4A() const { return HasSSE4A; }
    340   bool has3DNow() const { return X863DNowLevel >= ThreeDNow; }
    341   bool has3DNowA() const { return X863DNowLevel >= ThreeDNowA; }
    342   bool hasPOPCNT() const { return HasPOPCNT; }
    343   bool hasAES() const { return HasAES; }
    344   bool hasPCLMUL() const { return HasPCLMUL; }
    345   bool hasFMA() const { return HasFMA; }
    346   // FIXME: Favor FMA when both are enabled. Is this the right thing to do?
    347   bool hasFMA4() const { return HasFMA4 && !HasFMA; }
    348   bool hasXOP() const { return HasXOP; }
    349   bool hasTBM() const { return HasTBM; }
    350   bool hasMOVBE() const { return HasMOVBE; }
    351   bool hasRDRAND() const { return HasRDRAND; }
    352   bool hasF16C() const { return HasF16C; }
    353   bool hasFSGSBase() const { return HasFSGSBase; }
    354   bool hasLZCNT() const { return HasLZCNT; }
    355   bool hasBMI() const { return HasBMI; }
    356   bool hasBMI2() const { return HasBMI2; }
    357   bool hasRTM() const { return HasRTM; }
    358   bool hasHLE() const { return HasHLE; }
    359   bool hasADX() const { return HasADX; }
    360   bool hasSHA() const { return HasSHA; }
    361   bool hasPRFCHW() const { return HasPRFCHW; }
    362   bool hasRDSEED() const { return HasRDSEED; }
    363   bool isBTMemSlow() const { return IsBTMemSlow; }
    364   bool isSHLDSlow() const { return IsSHLDSlow; }
    365   bool isUnalignedMemAccessFast() const { return IsUAMemFast; }
    366   bool isUnalignedMem32Slow() const { return IsUAMem32Slow; }
    367   bool hasSSEUnalignedMem() const { return HasSSEUnalignedMem; }
    368   bool hasCmpxchg16b() const { return HasCmpxchg16b; }
    369   bool useLeaForSP() const { return UseLeaForSP; }
    370   bool hasSlowDivide32() const { return HasSlowDivide32; }
    371   bool hasSlowDivide64() const { return HasSlowDivide64; }
    372   bool padShortFunctions() const { return PadShortFunctions; }
    373   bool callRegIndirect() const { return CallRegIndirect; }
    374   bool LEAusesAG() const { return LEAUsesAG; }
    375   bool slowLEA() const { return SlowLEA; }
    376   bool slowIncDec() const { return SlowIncDec; }
    377   bool useSqrtEst() const { return UseSqrtEst; }
    378   bool useReciprocalEst() const { return UseReciprocalEst; }
    379   bool hasCDI() const { return HasCDI; }
    380   bool hasPFI() const { return HasPFI; }
    381   bool hasERI() const { return HasERI; }
    382   bool hasDQI() const { return HasDQI; }
    383   bool hasBWI() const { return HasBWI; }
    384   bool hasVLX() const { return HasVLX; }
    385 
    386   bool isAtom() const { return X86ProcFamily == IntelAtom; }
    387   bool isSLM() const { return X86ProcFamily == IntelSLM; }
    388 
    389   const Triple &getTargetTriple() const { return TargetTriple; }
    390 
    391   bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); }
    392   bool isTargetFreeBSD() const { return TargetTriple.isOSFreeBSD(); }
    393   bool isTargetDragonFly() const { return TargetTriple.isOSDragonFly(); }
    394   bool isTargetSolaris() const { return TargetTriple.isOSSolaris(); }
    395   bool isTargetPS4() const { return TargetTriple.isPS4(); }
    396 
    397   bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); }
    398   bool isTargetCOFF() const { return TargetTriple.isOSBinFormatCOFF(); }
    399   bool isTargetMachO() const { return TargetTriple.isOSBinFormatMachO(); }
    400 
    401   bool isTargetLinux() const { return TargetTriple.isOSLinux(); }
    402   bool isTargetNaCl() const { return TargetTriple.isOSNaCl(); }
    403   bool isTargetNaCl32() const { return isTargetNaCl() && !is64Bit(); }
    404   bool isTargetNaCl64() const { return isTargetNaCl() && is64Bit(); }
    405 
    406   bool isTargetWindowsMSVC() const {
    407     return TargetTriple.isWindowsMSVCEnvironment();
    408   }
    409 
    410   bool isTargetKnownWindowsMSVC() const {
    411     return TargetTriple.isKnownWindowsMSVCEnvironment();
    412   }
    413 
    414   bool isTargetWindowsCygwin() const {
    415     return TargetTriple.isWindowsCygwinEnvironment();
    416   }
    417 
    418   bool isTargetWindowsGNU() const {
    419     return TargetTriple.isWindowsGNUEnvironment();
    420   }
    421 
    422   bool isTargetWindowsItanium() const {
    423     return TargetTriple.isWindowsItaniumEnvironment();
    424   }
    425 
    426   bool isTargetCygMing() const { return TargetTriple.isOSCygMing(); }
    427 
    428   bool isOSWindows() const { return TargetTriple.isOSWindows(); }
    429 
    430   bool isTargetWin64() const {
    431     return In64BitMode && TargetTriple.isOSWindows();
    432   }
    433 
    434   bool isTargetWin32() const {
    435     return !In64BitMode && (isTargetCygMing() || isTargetKnownWindowsMSVC());
    436   }
    437 
    438   bool isPICStyleSet() const { return PICStyle != PICStyles::None; }
    439   bool isPICStyleGOT() const { return PICStyle == PICStyles::GOT; }
    440   bool isPICStyleRIPRel() const { return PICStyle == PICStyles::RIPRel; }
    441 
    442   bool isPICStyleStubPIC() const {
    443     return PICStyle == PICStyles::StubPIC;
    444   }
    445 
    446   bool isPICStyleStubNoDynamic() const {
    447     return PICStyle == PICStyles::StubDynamicNoPIC;
    448   }
    449   bool isPICStyleStubAny() const {
    450     return PICStyle == PICStyles::StubDynamicNoPIC ||
    451            PICStyle == PICStyles::StubPIC;
    452   }
    453 
    454   bool isCallingConvWin64(CallingConv::ID CC) const {
    455     return (isTargetWin64() && CC != CallingConv::X86_64_SysV) ||
    456            CC == CallingConv::X86_64_Win64;
    457   }
    458 
    459   /// ClassifyGlobalReference - Classify a global variable reference for the
    460   /// current subtarget according to how we should reference it in a non-pcrel
    461   /// context.
    462   unsigned char ClassifyGlobalReference(const GlobalValue *GV,
    463                                         const TargetMachine &TM)const;
    464 
    465   /// Classify a blockaddress reference for the current subtarget according to
    466   /// how we should reference it in a non-pcrel context.
    467   unsigned char ClassifyBlockAddressReference() const;
    468 
    469   /// Return true if the subtarget allows calls to immediate address.
    470   bool IsLegalToCallImmediateAddr(const TargetMachine &TM) const;
    471 
    472   /// This function returns the name of a function which has an interface
    473   /// like the non-standard bzero function, if such a function exists on
    474   /// the current subtarget and it is considered prefereable over
    475   /// memset with zero passed as the second argument. Otherwise it
    476   /// returns null.
    477   const char *getBZeroEntry() const;
    478 
    479   /// This function returns true if the target has sincos() routine in its
    480   /// compiler runtime or math libraries.
    481   bool hasSinCos() const;
    482 
    483   /// Enable the MachineScheduler pass for all X86 subtargets.
    484   bool enableMachineScheduler() const override { return true; }
    485 
    486   bool enableEarlyIfConversion() const override;
    487 
    488   /// Return the instruction itineraries based on the subtarget selection.
    489   const InstrItineraryData *getInstrItineraryData() const override {
    490     return &InstrItins;
    491   }
    492 
    493   AntiDepBreakMode getAntiDepBreakMode() const override {
    494     return TargetSubtargetInfo::ANTIDEP_CRITICAL;
    495   }
    496 };
    497 
    498 } // End llvm namespace
    499 
    500 #endif
    501