Home | History | Annotate | Download | only in Vectorize
      1 //===- BBVectorize.cpp - A Basic-Block Vectorizer -------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements a basic-block vectorization pass. The algorithm was
     11 // inspired by that used by the Vienna MAP Vectorizor by Franchetti and Kral,
     12 // et al. It works by looking for chains of pairable operations and then
     13 // pairing them.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #define BBV_NAME "bb-vectorize"
     18 #include "llvm/Transforms/Vectorize.h"
     19 #include "llvm/ADT/DenseMap.h"
     20 #include "llvm/ADT/DenseSet.h"
     21 #include "llvm/ADT/STLExtras.h"
     22 #include "llvm/ADT/SmallSet.h"
     23 #include "llvm/ADT/SmallVector.h"
     24 #include "llvm/ADT/Statistic.h"
     25 #include "llvm/ADT/StringExtras.h"
     26 #include "llvm/Analysis/AliasAnalysis.h"
     27 #include "llvm/Analysis/AliasSetTracker.h"
     28 #include "llvm/Analysis/ScalarEvolution.h"
     29 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     30 #include "llvm/Analysis/TargetTransformInfo.h"
     31 #include "llvm/Analysis/ValueTracking.h"
     32 #include "llvm/IR/Constants.h"
     33 #include "llvm/IR/DataLayout.h"
     34 #include "llvm/IR/DerivedTypes.h"
     35 #include "llvm/IR/Dominators.h"
     36 #include "llvm/IR/Function.h"
     37 #include "llvm/IR/Instructions.h"
     38 #include "llvm/IR/IntrinsicInst.h"
     39 #include "llvm/IR/Intrinsics.h"
     40 #include "llvm/IR/LLVMContext.h"
     41 #include "llvm/IR/Metadata.h"
     42 #include "llvm/IR/Module.h"
     43 #include "llvm/IR/Type.h"
     44 #include "llvm/IR/ValueHandle.h"
     45 #include "llvm/Pass.h"
     46 #include "llvm/Support/CommandLine.h"
     47 #include "llvm/Support/Debug.h"
     48 #include "llvm/Support/raw_ostream.h"
     49 #include "llvm/Transforms/Utils/Local.h"
     50 #include <algorithm>
     51 using namespace llvm;
     52 
     53 #define DEBUG_TYPE BBV_NAME
     54 
     55 static cl::opt<bool>
     56 IgnoreTargetInfo("bb-vectorize-ignore-target-info",  cl::init(false),
     57   cl::Hidden, cl::desc("Ignore target information"));
     58 
     59 static cl::opt<unsigned>
     60 ReqChainDepth("bb-vectorize-req-chain-depth", cl::init(6), cl::Hidden,
     61   cl::desc("The required chain depth for vectorization"));
     62 
     63 static cl::opt<bool>
     64 UseChainDepthWithTI("bb-vectorize-use-chain-depth",  cl::init(false),
     65   cl::Hidden, cl::desc("Use the chain depth requirement with"
     66                        " target information"));
     67 
     68 static cl::opt<unsigned>
     69 SearchLimit("bb-vectorize-search-limit", cl::init(400), cl::Hidden,
     70   cl::desc("The maximum search distance for instruction pairs"));
     71 
     72 static cl::opt<bool>
     73 SplatBreaksChain("bb-vectorize-splat-breaks-chain", cl::init(false), cl::Hidden,
     74   cl::desc("Replicating one element to a pair breaks the chain"));
     75 
     76 static cl::opt<unsigned>
     77 VectorBits("bb-vectorize-vector-bits", cl::init(128), cl::Hidden,
     78   cl::desc("The size of the native vector registers"));
     79 
     80 static cl::opt<unsigned>
     81 MaxIter("bb-vectorize-max-iter", cl::init(0), cl::Hidden,
     82   cl::desc("The maximum number of pairing iterations"));
     83 
     84 static cl::opt<bool>
     85 Pow2LenOnly("bb-vectorize-pow2-len-only", cl::init(false), cl::Hidden,
     86   cl::desc("Don't try to form non-2^n-length vectors"));
     87 
     88 static cl::opt<unsigned>
     89 MaxInsts("bb-vectorize-max-instr-per-group", cl::init(500), cl::Hidden,
     90   cl::desc("The maximum number of pairable instructions per group"));
     91 
     92 static cl::opt<unsigned>
     93 MaxPairs("bb-vectorize-max-pairs-per-group", cl::init(3000), cl::Hidden,
     94   cl::desc("The maximum number of candidate instruction pairs per group"));
     95 
     96 static cl::opt<unsigned>
     97 MaxCandPairsForCycleCheck("bb-vectorize-max-cycle-check-pairs", cl::init(200),
     98   cl::Hidden, cl::desc("The maximum number of candidate pairs with which to use"
     99                        " a full cycle check"));
    100 
    101 static cl::opt<bool>
    102 NoBools("bb-vectorize-no-bools", cl::init(false), cl::Hidden,
    103   cl::desc("Don't try to vectorize boolean (i1) values"));
    104 
    105 static cl::opt<bool>
    106 NoInts("bb-vectorize-no-ints", cl::init(false), cl::Hidden,
    107   cl::desc("Don't try to vectorize integer values"));
    108 
    109 static cl::opt<bool>
    110 NoFloats("bb-vectorize-no-floats", cl::init(false), cl::Hidden,
    111   cl::desc("Don't try to vectorize floating-point values"));
    112 
    113 // FIXME: This should default to false once pointer vector support works.
    114 static cl::opt<bool>
    115 NoPointers("bb-vectorize-no-pointers", cl::init(/*false*/ true), cl::Hidden,
    116   cl::desc("Don't try to vectorize pointer values"));
    117 
    118 static cl::opt<bool>
    119 NoCasts("bb-vectorize-no-casts", cl::init(false), cl::Hidden,
    120   cl::desc("Don't try to vectorize casting (conversion) operations"));
    121 
    122 static cl::opt<bool>
    123 NoMath("bb-vectorize-no-math", cl::init(false), cl::Hidden,
    124   cl::desc("Don't try to vectorize floating-point math intrinsics"));
    125 
    126 static cl::opt<bool>
    127   NoBitManipulation("bb-vectorize-no-bitmanip", cl::init(false), cl::Hidden,
    128   cl::desc("Don't try to vectorize BitManipulation intrinsics"));
    129 
    130 static cl::opt<bool>
    131 NoFMA("bb-vectorize-no-fma", cl::init(false), cl::Hidden,
    132   cl::desc("Don't try to vectorize the fused-multiply-add intrinsic"));
    133 
    134 static cl::opt<bool>
    135 NoSelect("bb-vectorize-no-select", cl::init(false), cl::Hidden,
    136   cl::desc("Don't try to vectorize select instructions"));
    137 
    138 static cl::opt<bool>
    139 NoCmp("bb-vectorize-no-cmp", cl::init(false), cl::Hidden,
    140   cl::desc("Don't try to vectorize comparison instructions"));
    141 
    142 static cl::opt<bool>
    143 NoGEP("bb-vectorize-no-gep", cl::init(false), cl::Hidden,
    144   cl::desc("Don't try to vectorize getelementptr instructions"));
    145 
    146 static cl::opt<bool>
    147 NoMemOps("bb-vectorize-no-mem-ops", cl::init(false), cl::Hidden,
    148   cl::desc("Don't try to vectorize loads and stores"));
    149 
    150 static cl::opt<bool>
    151 AlignedOnly("bb-vectorize-aligned-only", cl::init(false), cl::Hidden,
    152   cl::desc("Only generate aligned loads and stores"));
    153 
    154 static cl::opt<bool>
    155 NoMemOpBoost("bb-vectorize-no-mem-op-boost",
    156   cl::init(false), cl::Hidden,
    157   cl::desc("Don't boost the chain-depth contribution of loads and stores"));
    158 
    159 static cl::opt<bool>
    160 FastDep("bb-vectorize-fast-dep", cl::init(false), cl::Hidden,
    161   cl::desc("Use a fast instruction dependency analysis"));
    162 
    163 #ifndef NDEBUG
    164 static cl::opt<bool>
    165 DebugInstructionExamination("bb-vectorize-debug-instruction-examination",
    166   cl::init(false), cl::Hidden,
    167   cl::desc("When debugging is enabled, output information on the"
    168            " instruction-examination process"));
    169 static cl::opt<bool>
    170 DebugCandidateSelection("bb-vectorize-debug-candidate-selection",
    171   cl::init(false), cl::Hidden,
    172   cl::desc("When debugging is enabled, output information on the"
    173            " candidate-selection process"));
    174 static cl::opt<bool>
    175 DebugPairSelection("bb-vectorize-debug-pair-selection",
    176   cl::init(false), cl::Hidden,
    177   cl::desc("When debugging is enabled, output information on the"
    178            " pair-selection process"));
    179 static cl::opt<bool>
    180 DebugCycleCheck("bb-vectorize-debug-cycle-check",
    181   cl::init(false), cl::Hidden,
    182   cl::desc("When debugging is enabled, output information on the"
    183            " cycle-checking process"));
    184 
    185 static cl::opt<bool>
    186 PrintAfterEveryPair("bb-vectorize-debug-print-after-every-pair",
    187   cl::init(false), cl::Hidden,
    188   cl::desc("When debugging is enabled, dump the basic block after"
    189            " every pair is fused"));
    190 #endif
    191 
    192 STATISTIC(NumFusedOps, "Number of operations fused by bb-vectorize");
    193 
    194 namespace {
    195   struct BBVectorize : public BasicBlockPass {
    196     static char ID; // Pass identification, replacement for typeid
    197 
    198     const VectorizeConfig Config;
    199 
    200     BBVectorize(const VectorizeConfig &C = VectorizeConfig())
    201       : BasicBlockPass(ID), Config(C) {
    202       initializeBBVectorizePass(*PassRegistry::getPassRegistry());
    203     }
    204 
    205     BBVectorize(Pass *P, Function &F, const VectorizeConfig &C)
    206       : BasicBlockPass(ID), Config(C) {
    207       AA = &P->getAnalysis<AliasAnalysis>();
    208       DT = &P->getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    209       SE = &P->getAnalysis<ScalarEvolution>();
    210       TTI = IgnoreTargetInfo
    211                 ? nullptr
    212                 : &P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
    213     }
    214 
    215     typedef std::pair<Value *, Value *> ValuePair;
    216     typedef std::pair<ValuePair, int> ValuePairWithCost;
    217     typedef std::pair<ValuePair, size_t> ValuePairWithDepth;
    218     typedef std::pair<ValuePair, ValuePair> VPPair; // A ValuePair pair
    219     typedef std::pair<VPPair, unsigned> VPPairWithType;
    220 
    221     AliasAnalysis *AA;
    222     DominatorTree *DT;
    223     ScalarEvolution *SE;
    224     const TargetTransformInfo *TTI;
    225 
    226     // FIXME: const correct?
    227 
    228     bool vectorizePairs(BasicBlock &BB, bool NonPow2Len = false);
    229 
    230     bool getCandidatePairs(BasicBlock &BB,
    231                        BasicBlock::iterator &Start,
    232                        DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
    233                        DenseSet<ValuePair> &FixedOrderPairs,
    234                        DenseMap<ValuePair, int> &CandidatePairCostSavings,
    235                        std::vector<Value *> &PairableInsts, bool NonPow2Len);
    236 
    237     // FIXME: The current implementation does not account for pairs that
    238     // are connected in multiple ways. For example:
    239     //   C1 = A1 / A2; C2 = A2 / A1 (which may be both direct and a swap)
    240     enum PairConnectionType {
    241       PairConnectionDirect,
    242       PairConnectionSwap,
    243       PairConnectionSplat
    244     };
    245 
    246     void computeConnectedPairs(
    247              DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
    248              DenseSet<ValuePair> &CandidatePairsSet,
    249              std::vector<Value *> &PairableInsts,
    250              DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
    251              DenseMap<VPPair, unsigned> &PairConnectionTypes);
    252 
    253     void buildDepMap(BasicBlock &BB,
    254              DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
    255              std::vector<Value *> &PairableInsts,
    256              DenseSet<ValuePair> &PairableInstUsers);
    257 
    258     void choosePairs(DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
    259              DenseSet<ValuePair> &CandidatePairsSet,
    260              DenseMap<ValuePair, int> &CandidatePairCostSavings,
    261              std::vector<Value *> &PairableInsts,
    262              DenseSet<ValuePair> &FixedOrderPairs,
    263              DenseMap<VPPair, unsigned> &PairConnectionTypes,
    264              DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
    265              DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps,
    266              DenseSet<ValuePair> &PairableInstUsers,
    267              DenseMap<Value *, Value *>& ChosenPairs);
    268 
    269     void fuseChosenPairs(BasicBlock &BB,
    270              std::vector<Value *> &PairableInsts,
    271              DenseMap<Value *, Value *>& ChosenPairs,
    272              DenseSet<ValuePair> &FixedOrderPairs,
    273              DenseMap<VPPair, unsigned> &PairConnectionTypes,
    274              DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
    275              DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps);
    276 
    277 
    278     bool isInstVectorizable(Instruction *I, bool &IsSimpleLoadStore);
    279 
    280     bool areInstsCompatible(Instruction *I, Instruction *J,
    281                        bool IsSimpleLoadStore, bool NonPow2Len,
    282                        int &CostSavings, int &FixedOrder);
    283 
    284     bool trackUsesOfI(DenseSet<Value *> &Users,
    285                       AliasSetTracker &WriteSet, Instruction *I,
    286                       Instruction *J, bool UpdateUsers = true,
    287                       DenseSet<ValuePair> *LoadMoveSetPairs = nullptr);
    288 
    289   void computePairsConnectedTo(
    290              DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
    291              DenseSet<ValuePair> &CandidatePairsSet,
    292              std::vector<Value *> &PairableInsts,
    293              DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
    294              DenseMap<VPPair, unsigned> &PairConnectionTypes,
    295              ValuePair P);
    296 
    297     bool pairsConflict(ValuePair P, ValuePair Q,
    298              DenseSet<ValuePair> &PairableInstUsers,
    299              DenseMap<ValuePair, std::vector<ValuePair> >
    300                *PairableInstUserMap = nullptr,
    301              DenseSet<VPPair> *PairableInstUserPairSet = nullptr);
    302 
    303     bool pairWillFormCycle(ValuePair P,
    304              DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUsers,
    305              DenseSet<ValuePair> &CurrentPairs);
    306 
    307     void pruneDAGFor(
    308              DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
    309              std::vector<Value *> &PairableInsts,
    310              DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
    311              DenseSet<ValuePair> &PairableInstUsers,
    312              DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
    313              DenseSet<VPPair> &PairableInstUserPairSet,
    314              DenseMap<Value *, Value *> &ChosenPairs,
    315              DenseMap<ValuePair, size_t> &DAG,
    316              DenseSet<ValuePair> &PrunedDAG, ValuePair J,
    317              bool UseCycleCheck);
    318 
    319     void buildInitialDAGFor(
    320              DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
    321              DenseSet<ValuePair> &CandidatePairsSet,
    322              std::vector<Value *> &PairableInsts,
    323              DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
    324              DenseSet<ValuePair> &PairableInstUsers,
    325              DenseMap<Value *, Value *> &ChosenPairs,
    326              DenseMap<ValuePair, size_t> &DAG, ValuePair J);
    327 
    328     void findBestDAGFor(
    329              DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
    330              DenseSet<ValuePair> &CandidatePairsSet,
    331              DenseMap<ValuePair, int> &CandidatePairCostSavings,
    332              std::vector<Value *> &PairableInsts,
    333              DenseSet<ValuePair> &FixedOrderPairs,
    334              DenseMap<VPPair, unsigned> &PairConnectionTypes,
    335              DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
    336              DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps,
    337              DenseSet<ValuePair> &PairableInstUsers,
    338              DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
    339              DenseSet<VPPair> &PairableInstUserPairSet,
    340              DenseMap<Value *, Value *> &ChosenPairs,
    341              DenseSet<ValuePair> &BestDAG, size_t &BestMaxDepth,
    342              int &BestEffSize, Value *II, std::vector<Value *>&JJ,
    343              bool UseCycleCheck);
    344 
    345     Value *getReplacementPointerInput(LLVMContext& Context, Instruction *I,
    346                      Instruction *J, unsigned o);
    347 
    348     void fillNewShuffleMask(LLVMContext& Context, Instruction *J,
    349                      unsigned MaskOffset, unsigned NumInElem,
    350                      unsigned NumInElem1, unsigned IdxOffset,
    351                      std::vector<Constant*> &Mask);
    352 
    353     Value *getReplacementShuffleMask(LLVMContext& Context, Instruction *I,
    354                      Instruction *J);
    355 
    356     bool expandIEChain(LLVMContext& Context, Instruction *I, Instruction *J,
    357                        unsigned o, Value *&LOp, unsigned numElemL,
    358                        Type *ArgTypeL, Type *ArgTypeR, bool IBeforeJ,
    359                        unsigned IdxOff = 0);
    360 
    361     Value *getReplacementInput(LLVMContext& Context, Instruction *I,
    362                      Instruction *J, unsigned o, bool IBeforeJ);
    363 
    364     void getReplacementInputsForPair(LLVMContext& Context, Instruction *I,
    365                      Instruction *J, SmallVectorImpl<Value *> &ReplacedOperands,
    366                      bool IBeforeJ);
    367 
    368     void replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
    369                      Instruction *J, Instruction *K,
    370                      Instruction *&InsertionPt, Instruction *&K1,
    371                      Instruction *&K2);
    372 
    373     void collectPairLoadMoveSet(BasicBlock &BB,
    374                      DenseMap<Value *, Value *> &ChosenPairs,
    375                      DenseMap<Value *, std::vector<Value *> > &LoadMoveSet,
    376                      DenseSet<ValuePair> &LoadMoveSetPairs,
    377                      Instruction *I);
    378 
    379     void collectLoadMoveSet(BasicBlock &BB,
    380                      std::vector<Value *> &PairableInsts,
    381                      DenseMap<Value *, Value *> &ChosenPairs,
    382                      DenseMap<Value *, std::vector<Value *> > &LoadMoveSet,
    383                      DenseSet<ValuePair> &LoadMoveSetPairs);
    384 
    385     bool canMoveUsesOfIAfterJ(BasicBlock &BB,
    386                      DenseSet<ValuePair> &LoadMoveSetPairs,
    387                      Instruction *I, Instruction *J);
    388 
    389     void moveUsesOfIAfterJ(BasicBlock &BB,
    390                      DenseSet<ValuePair> &LoadMoveSetPairs,
    391                      Instruction *&InsertionPt,
    392                      Instruction *I, Instruction *J);
    393 
    394     bool vectorizeBB(BasicBlock &BB) {
    395       if (skipOptnoneFunction(BB))
    396         return false;
    397       if (!DT->isReachableFromEntry(&BB)) {
    398         DEBUG(dbgs() << "BBV: skipping unreachable " << BB.getName() <<
    399               " in " << BB.getParent()->getName() << "\n");
    400         return false;
    401       }
    402 
    403       DEBUG(if (TTI) dbgs() << "BBV: using target information\n");
    404 
    405       bool changed = false;
    406       // Iterate a sufficient number of times to merge types of size 1 bit,
    407       // then 2 bits, then 4, etc. up to half of the target vector width of the
    408       // target vector register.
    409       unsigned n = 1;
    410       for (unsigned v = 2;
    411            (TTI || v <= Config.VectorBits) &&
    412            (!Config.MaxIter || n <= Config.MaxIter);
    413            v *= 2, ++n) {
    414         DEBUG(dbgs() << "BBV: fusing loop #" << n <<
    415               " for " << BB.getName() << " in " <<
    416               BB.getParent()->getName() << "...\n");
    417         if (vectorizePairs(BB))
    418           changed = true;
    419         else
    420           break;
    421       }
    422 
    423       if (changed && !Pow2LenOnly) {
    424         ++n;
    425         for (; !Config.MaxIter || n <= Config.MaxIter; ++n) {
    426           DEBUG(dbgs() << "BBV: fusing for non-2^n-length vectors loop #: " <<
    427                 n << " for " << BB.getName() << " in " <<
    428                 BB.getParent()->getName() << "...\n");
    429           if (!vectorizePairs(BB, true)) break;
    430         }
    431       }
    432 
    433       DEBUG(dbgs() << "BBV: done!\n");
    434       return changed;
    435     }
    436 
    437     bool runOnBasicBlock(BasicBlock &BB) override {
    438       // OptimizeNone check deferred to vectorizeBB().
    439 
    440       AA = &getAnalysis<AliasAnalysis>();
    441       DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    442       SE = &getAnalysis<ScalarEvolution>();
    443       TTI = IgnoreTargetInfo
    444                 ? nullptr
    445                 : &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
    446                       *BB.getParent());
    447 
    448       return vectorizeBB(BB);
    449     }
    450 
    451     void getAnalysisUsage(AnalysisUsage &AU) const override {
    452       BasicBlockPass::getAnalysisUsage(AU);
    453       AU.addRequired<AliasAnalysis>();
    454       AU.addRequired<DominatorTreeWrapperPass>();
    455       AU.addRequired<ScalarEvolution>();
    456       AU.addRequired<TargetTransformInfoWrapperPass>();
    457       AU.addPreserved<AliasAnalysis>();
    458       AU.addPreserved<DominatorTreeWrapperPass>();
    459       AU.addPreserved<ScalarEvolution>();
    460       AU.setPreservesCFG();
    461     }
    462 
    463     static inline VectorType *getVecTypeForPair(Type *ElemTy, Type *Elem2Ty) {
    464       assert(ElemTy->getScalarType() == Elem2Ty->getScalarType() &&
    465              "Cannot form vector from incompatible scalar types");
    466       Type *STy = ElemTy->getScalarType();
    467 
    468       unsigned numElem;
    469       if (VectorType *VTy = dyn_cast<VectorType>(ElemTy)) {
    470         numElem = VTy->getNumElements();
    471       } else {
    472         numElem = 1;
    473       }
    474 
    475       if (VectorType *VTy = dyn_cast<VectorType>(Elem2Ty)) {
    476         numElem += VTy->getNumElements();
    477       } else {
    478         numElem += 1;
    479       }
    480 
    481       return VectorType::get(STy, numElem);
    482     }
    483 
    484     static inline void getInstructionTypes(Instruction *I,
    485                                            Type *&T1, Type *&T2) {
    486       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
    487         // For stores, it is the value type, not the pointer type that matters
    488         // because the value is what will come from a vector register.
    489 
    490         Value *IVal = SI->getValueOperand();
    491         T1 = IVal->getType();
    492       } else {
    493         T1 = I->getType();
    494       }
    495 
    496       if (CastInst *CI = dyn_cast<CastInst>(I))
    497         T2 = CI->getSrcTy();
    498       else
    499         T2 = T1;
    500 
    501       if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
    502         T2 = SI->getCondition()->getType();
    503       } else if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(I)) {
    504         T2 = SI->getOperand(0)->getType();
    505       } else if (CmpInst *CI = dyn_cast<CmpInst>(I)) {
    506         T2 = CI->getOperand(0)->getType();
    507       }
    508     }
    509 
    510     // Returns the weight associated with the provided value. A chain of
    511     // candidate pairs has a length given by the sum of the weights of its
    512     // members (one weight per pair; the weight of each member of the pair
    513     // is assumed to be the same). This length is then compared to the
    514     // chain-length threshold to determine if a given chain is significant
    515     // enough to be vectorized. The length is also used in comparing
    516     // candidate chains where longer chains are considered to be better.
    517     // Note: when this function returns 0, the resulting instructions are
    518     // not actually fused.
    519     inline size_t getDepthFactor(Value *V) {
    520       // InsertElement and ExtractElement have a depth factor of zero. This is
    521       // for two reasons: First, they cannot be usefully fused. Second, because
    522       // the pass generates a lot of these, they can confuse the simple metric
    523       // used to compare the dags in the next iteration. Thus, giving them a
    524       // weight of zero allows the pass to essentially ignore them in
    525       // subsequent iterations when looking for vectorization opportunities
    526       // while still tracking dependency chains that flow through those
    527       // instructions.
    528       if (isa<InsertElementInst>(V) || isa<ExtractElementInst>(V))
    529         return 0;
    530 
    531       // Give a load or store half of the required depth so that load/store
    532       // pairs will vectorize.
    533       if (!Config.NoMemOpBoost && (isa<LoadInst>(V) || isa<StoreInst>(V)))
    534         return Config.ReqChainDepth/2;
    535 
    536       return 1;
    537     }
    538 
    539     // Returns the cost of the provided instruction using TTI.
    540     // This does not handle loads and stores.
    541     unsigned getInstrCost(unsigned Opcode, Type *T1, Type *T2,
    542                           TargetTransformInfo::OperandValueKind Op1VK =
    543                               TargetTransformInfo::OK_AnyValue,
    544                           TargetTransformInfo::OperandValueKind Op2VK =
    545                               TargetTransformInfo::OK_AnyValue) {
    546       switch (Opcode) {
    547       default: break;
    548       case Instruction::GetElementPtr:
    549         // We mark this instruction as zero-cost because scalar GEPs are usually
    550         // lowered to the instruction addressing mode. At the moment we don't
    551         // generate vector GEPs.
    552         return 0;
    553       case Instruction::Br:
    554         return TTI->getCFInstrCost(Opcode);
    555       case Instruction::PHI:
    556         return 0;
    557       case Instruction::Add:
    558       case Instruction::FAdd:
    559       case Instruction::Sub:
    560       case Instruction::FSub:
    561       case Instruction::Mul:
    562       case Instruction::FMul:
    563       case Instruction::UDiv:
    564       case Instruction::SDiv:
    565       case Instruction::FDiv:
    566       case Instruction::URem:
    567       case Instruction::SRem:
    568       case Instruction::FRem:
    569       case Instruction::Shl:
    570       case Instruction::LShr:
    571       case Instruction::AShr:
    572       case Instruction::And:
    573       case Instruction::Or:
    574       case Instruction::Xor:
    575         return TTI->getArithmeticInstrCost(Opcode, T1, Op1VK, Op2VK);
    576       case Instruction::Select:
    577       case Instruction::ICmp:
    578       case Instruction::FCmp:
    579         return TTI->getCmpSelInstrCost(Opcode, T1, T2);
    580       case Instruction::ZExt:
    581       case Instruction::SExt:
    582       case Instruction::FPToUI:
    583       case Instruction::FPToSI:
    584       case Instruction::FPExt:
    585       case Instruction::PtrToInt:
    586       case Instruction::IntToPtr:
    587       case Instruction::SIToFP:
    588       case Instruction::UIToFP:
    589       case Instruction::Trunc:
    590       case Instruction::FPTrunc:
    591       case Instruction::BitCast:
    592       case Instruction::ShuffleVector:
    593         return TTI->getCastInstrCost(Opcode, T1, T2);
    594       }
    595 
    596       return 1;
    597     }
    598 
    599     // This determines the relative offset of two loads or stores, returning
    600     // true if the offset could be determined to be some constant value.
    601     // For example, if OffsetInElmts == 1, then J accesses the memory directly
    602     // after I; if OffsetInElmts == -1 then I accesses the memory
    603     // directly after J.
    604     bool getPairPtrInfo(Instruction *I, Instruction *J,
    605         Value *&IPtr, Value *&JPtr, unsigned &IAlignment, unsigned &JAlignment,
    606         unsigned &IAddressSpace, unsigned &JAddressSpace,
    607         int64_t &OffsetInElmts, bool ComputeOffset = true) {
    608       OffsetInElmts = 0;
    609       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
    610         LoadInst *LJ = cast<LoadInst>(J);
    611         IPtr = LI->getPointerOperand();
    612         JPtr = LJ->getPointerOperand();
    613         IAlignment = LI->getAlignment();
    614         JAlignment = LJ->getAlignment();
    615         IAddressSpace = LI->getPointerAddressSpace();
    616         JAddressSpace = LJ->getPointerAddressSpace();
    617       } else {
    618         StoreInst *SI = cast<StoreInst>(I), *SJ = cast<StoreInst>(J);
    619         IPtr = SI->getPointerOperand();
    620         JPtr = SJ->getPointerOperand();
    621         IAlignment = SI->getAlignment();
    622         JAlignment = SJ->getAlignment();
    623         IAddressSpace = SI->getPointerAddressSpace();
    624         JAddressSpace = SJ->getPointerAddressSpace();
    625       }
    626 
    627       if (!ComputeOffset)
    628         return true;
    629 
    630       const SCEV *IPtrSCEV = SE->getSCEV(IPtr);
    631       const SCEV *JPtrSCEV = SE->getSCEV(JPtr);
    632 
    633       // If this is a trivial offset, then we'll get something like
    634       // 1*sizeof(type). With target data, which we need anyway, this will get
    635       // constant folded into a number.
    636       const SCEV *OffsetSCEV = SE->getMinusSCEV(JPtrSCEV, IPtrSCEV);
    637       if (const SCEVConstant *ConstOffSCEV =
    638             dyn_cast<SCEVConstant>(OffsetSCEV)) {
    639         ConstantInt *IntOff = ConstOffSCEV->getValue();
    640         int64_t Offset = IntOff->getSExtValue();
    641         const DataLayout &DL = I->getModule()->getDataLayout();
    642         Type *VTy = IPtr->getType()->getPointerElementType();
    643         int64_t VTyTSS = (int64_t)DL.getTypeStoreSize(VTy);
    644 
    645         Type *VTy2 = JPtr->getType()->getPointerElementType();
    646         if (VTy != VTy2 && Offset < 0) {
    647           int64_t VTy2TSS = (int64_t)DL.getTypeStoreSize(VTy2);
    648           OffsetInElmts = Offset/VTy2TSS;
    649           return (std::abs(Offset) % VTy2TSS) == 0;
    650         }
    651 
    652         OffsetInElmts = Offset/VTyTSS;
    653         return (std::abs(Offset) % VTyTSS) == 0;
    654       }
    655 
    656       return false;
    657     }
    658 
    659     // Returns true if the provided CallInst represents an intrinsic that can
    660     // be vectorized.
    661     bool isVectorizableIntrinsic(CallInst* I) {
    662       Function *F = I->getCalledFunction();
    663       if (!F) return false;
    664 
    665       Intrinsic::ID IID = (Intrinsic::ID) F->getIntrinsicID();
    666       if (!IID) return false;
    667 
    668       switch(IID) {
    669       default:
    670         return false;
    671       case Intrinsic::sqrt:
    672       case Intrinsic::powi:
    673       case Intrinsic::sin:
    674       case Intrinsic::cos:
    675       case Intrinsic::log:
    676       case Intrinsic::log2:
    677       case Intrinsic::log10:
    678       case Intrinsic::exp:
    679       case Intrinsic::exp2:
    680       case Intrinsic::pow:
    681       case Intrinsic::round:
    682       case Intrinsic::copysign:
    683       case Intrinsic::ceil:
    684       case Intrinsic::nearbyint:
    685       case Intrinsic::rint:
    686       case Intrinsic::trunc:
    687       case Intrinsic::floor:
    688       case Intrinsic::fabs:
    689       case Intrinsic::minnum:
    690       case Intrinsic::maxnum:
    691         return Config.VectorizeMath;
    692       case Intrinsic::bswap:
    693       case Intrinsic::ctpop:
    694       case Intrinsic::ctlz:
    695       case Intrinsic::cttz:
    696         return Config.VectorizeBitManipulations;
    697       case Intrinsic::fma:
    698       case Intrinsic::fmuladd:
    699         return Config.VectorizeFMA;
    700       }
    701     }
    702 
    703     bool isPureIEChain(InsertElementInst *IE) {
    704       InsertElementInst *IENext = IE;
    705       do {
    706         if (!isa<UndefValue>(IENext->getOperand(0)) &&
    707             !isa<InsertElementInst>(IENext->getOperand(0))) {
    708           return false;
    709         }
    710       } while ((IENext =
    711                  dyn_cast<InsertElementInst>(IENext->getOperand(0))));
    712 
    713       return true;
    714     }
    715   };
    716 
    717   // This function implements one vectorization iteration on the provided
    718   // basic block. It returns true if the block is changed.
    719   bool BBVectorize::vectorizePairs(BasicBlock &BB, bool NonPow2Len) {
    720     bool ShouldContinue;
    721     BasicBlock::iterator Start = BB.getFirstInsertionPt();
    722 
    723     std::vector<Value *> AllPairableInsts;
    724     DenseMap<Value *, Value *> AllChosenPairs;
    725     DenseSet<ValuePair> AllFixedOrderPairs;
    726     DenseMap<VPPair, unsigned> AllPairConnectionTypes;
    727     DenseMap<ValuePair, std::vector<ValuePair> > AllConnectedPairs,
    728                                                  AllConnectedPairDeps;
    729 
    730     do {
    731       std::vector<Value *> PairableInsts;
    732       DenseMap<Value *, std::vector<Value *> > CandidatePairs;
    733       DenseSet<ValuePair> FixedOrderPairs;
    734       DenseMap<ValuePair, int> CandidatePairCostSavings;
    735       ShouldContinue = getCandidatePairs(BB, Start, CandidatePairs,
    736                                          FixedOrderPairs,
    737                                          CandidatePairCostSavings,
    738                                          PairableInsts, NonPow2Len);
    739       if (PairableInsts.empty()) continue;
    740 
    741       // Build the candidate pair set for faster lookups.
    742       DenseSet<ValuePair> CandidatePairsSet;
    743       for (DenseMap<Value *, std::vector<Value *> >::iterator I =
    744            CandidatePairs.begin(), E = CandidatePairs.end(); I != E; ++I)
    745         for (std::vector<Value *>::iterator J = I->second.begin(),
    746              JE = I->second.end(); J != JE; ++J)
    747           CandidatePairsSet.insert(ValuePair(I->first, *J));
    748 
    749       // Now we have a map of all of the pairable instructions and we need to
    750       // select the best possible pairing. A good pairing is one such that the
    751       // users of the pair are also paired. This defines a (directed) forest
    752       // over the pairs such that two pairs are connected iff the second pair
    753       // uses the first.
    754 
    755       // Note that it only matters that both members of the second pair use some
    756       // element of the first pair (to allow for splatting).
    757 
    758       DenseMap<ValuePair, std::vector<ValuePair> > ConnectedPairs,
    759                                                    ConnectedPairDeps;
    760       DenseMap<VPPair, unsigned> PairConnectionTypes;
    761       computeConnectedPairs(CandidatePairs, CandidatePairsSet,
    762                             PairableInsts, ConnectedPairs, PairConnectionTypes);
    763       if (ConnectedPairs.empty()) continue;
    764 
    765       for (DenseMap<ValuePair, std::vector<ValuePair> >::iterator
    766            I = ConnectedPairs.begin(), IE = ConnectedPairs.end();
    767            I != IE; ++I)
    768         for (std::vector<ValuePair>::iterator J = I->second.begin(),
    769              JE = I->second.end(); J != JE; ++J)
    770           ConnectedPairDeps[*J].push_back(I->first);
    771 
    772       // Build the pairable-instruction dependency map
    773       DenseSet<ValuePair> PairableInstUsers;
    774       buildDepMap(BB, CandidatePairs, PairableInsts, PairableInstUsers);
    775 
    776       // There is now a graph of the connected pairs. For each variable, pick
    777       // the pairing with the largest dag meeting the depth requirement on at
    778       // least one branch. Then select all pairings that are part of that dag
    779       // and remove them from the list of available pairings and pairable
    780       // variables.
    781 
    782       DenseMap<Value *, Value *> ChosenPairs;
    783       choosePairs(CandidatePairs, CandidatePairsSet,
    784         CandidatePairCostSavings,
    785         PairableInsts, FixedOrderPairs, PairConnectionTypes,
    786         ConnectedPairs, ConnectedPairDeps,
    787         PairableInstUsers, ChosenPairs);
    788 
    789       if (ChosenPairs.empty()) continue;
    790       AllPairableInsts.insert(AllPairableInsts.end(), PairableInsts.begin(),
    791                               PairableInsts.end());
    792       AllChosenPairs.insert(ChosenPairs.begin(), ChosenPairs.end());
    793 
    794       // Only for the chosen pairs, propagate information on fixed-order pairs,
    795       // pair connections, and their types to the data structures used by the
    796       // pair fusion procedures.
    797       for (DenseMap<Value *, Value *>::iterator I = ChosenPairs.begin(),
    798            IE = ChosenPairs.end(); I != IE; ++I) {
    799         if (FixedOrderPairs.count(*I))
    800           AllFixedOrderPairs.insert(*I);
    801         else if (FixedOrderPairs.count(ValuePair(I->second, I->first)))
    802           AllFixedOrderPairs.insert(ValuePair(I->second, I->first));
    803 
    804         for (DenseMap<Value *, Value *>::iterator J = ChosenPairs.begin();
    805              J != IE; ++J) {
    806           DenseMap<VPPair, unsigned>::iterator K =
    807             PairConnectionTypes.find(VPPair(*I, *J));
    808           if (K != PairConnectionTypes.end()) {
    809             AllPairConnectionTypes.insert(*K);
    810           } else {
    811             K = PairConnectionTypes.find(VPPair(*J, *I));
    812             if (K != PairConnectionTypes.end())
    813               AllPairConnectionTypes.insert(*K);
    814           }
    815         }
    816       }
    817 
    818       for (DenseMap<ValuePair, std::vector<ValuePair> >::iterator
    819            I = ConnectedPairs.begin(), IE = ConnectedPairs.end();
    820            I != IE; ++I)
    821         for (std::vector<ValuePair>::iterator J = I->second.begin(),
    822           JE = I->second.end(); J != JE; ++J)
    823           if (AllPairConnectionTypes.count(VPPair(I->first, *J))) {
    824             AllConnectedPairs[I->first].push_back(*J);
    825             AllConnectedPairDeps[*J].push_back(I->first);
    826           }
    827     } while (ShouldContinue);
    828 
    829     if (AllChosenPairs.empty()) return false;
    830     NumFusedOps += AllChosenPairs.size();
    831 
    832     // A set of pairs has now been selected. It is now necessary to replace the
    833     // paired instructions with vector instructions. For this procedure each
    834     // operand must be replaced with a vector operand. This vector is formed
    835     // by using build_vector on the old operands. The replaced values are then
    836     // replaced with a vector_extract on the result.  Subsequent optimization
    837     // passes should coalesce the build/extract combinations.
    838 
    839     fuseChosenPairs(BB, AllPairableInsts, AllChosenPairs, AllFixedOrderPairs,
    840                     AllPairConnectionTypes,
    841                     AllConnectedPairs, AllConnectedPairDeps);
    842 
    843     // It is important to cleanup here so that future iterations of this
    844     // function have less work to do.
    845     (void)SimplifyInstructionsInBlock(&BB, AA->getTargetLibraryInfo());
    846     return true;
    847   }
    848 
    849   // This function returns true if the provided instruction is capable of being
    850   // fused into a vector instruction. This determination is based only on the
    851   // type and other attributes of the instruction.
    852   bool BBVectorize::isInstVectorizable(Instruction *I,
    853                                          bool &IsSimpleLoadStore) {
    854     IsSimpleLoadStore = false;
    855 
    856     if (CallInst *C = dyn_cast<CallInst>(I)) {
    857       if (!isVectorizableIntrinsic(C))
    858         return false;
    859     } else if (LoadInst *L = dyn_cast<LoadInst>(I)) {
    860       // Vectorize simple loads if possbile:
    861       IsSimpleLoadStore = L->isSimple();
    862       if (!IsSimpleLoadStore || !Config.VectorizeMemOps)
    863         return false;
    864     } else if (StoreInst *S = dyn_cast<StoreInst>(I)) {
    865       // Vectorize simple stores if possbile:
    866       IsSimpleLoadStore = S->isSimple();
    867       if (!IsSimpleLoadStore || !Config.VectorizeMemOps)
    868         return false;
    869     } else if (CastInst *C = dyn_cast<CastInst>(I)) {
    870       // We can vectorize casts, but not casts of pointer types, etc.
    871       if (!Config.VectorizeCasts)
    872         return false;
    873 
    874       Type *SrcTy = C->getSrcTy();
    875       if (!SrcTy->isSingleValueType())
    876         return false;
    877 
    878       Type *DestTy = C->getDestTy();
    879       if (!DestTy->isSingleValueType())
    880         return false;
    881     } else if (isa<SelectInst>(I)) {
    882       if (!Config.VectorizeSelect)
    883         return false;
    884     } else if (isa<CmpInst>(I)) {
    885       if (!Config.VectorizeCmp)
    886         return false;
    887     } else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(I)) {
    888       if (!Config.VectorizeGEP)
    889         return false;
    890 
    891       // Currently, vector GEPs exist only with one index.
    892       if (G->getNumIndices() != 1)
    893         return false;
    894     } else if (!(I->isBinaryOp() || isa<ShuffleVectorInst>(I) ||
    895         isa<ExtractElementInst>(I) || isa<InsertElementInst>(I))) {
    896       return false;
    897     }
    898 
    899     Type *T1, *T2;
    900     getInstructionTypes(I, T1, T2);
    901 
    902     // Not every type can be vectorized...
    903     if (!(VectorType::isValidElementType(T1) || T1->isVectorTy()) ||
    904         !(VectorType::isValidElementType(T2) || T2->isVectorTy()))
    905       return false;
    906 
    907     if (T1->getScalarSizeInBits() == 1) {
    908       if (!Config.VectorizeBools)
    909         return false;
    910     } else {
    911       if (!Config.VectorizeInts && T1->isIntOrIntVectorTy())
    912         return false;
    913     }
    914 
    915     if (T2->getScalarSizeInBits() == 1) {
    916       if (!Config.VectorizeBools)
    917         return false;
    918     } else {
    919       if (!Config.VectorizeInts && T2->isIntOrIntVectorTy())
    920         return false;
    921     }
    922 
    923     if (!Config.VectorizeFloats
    924         && (T1->isFPOrFPVectorTy() || T2->isFPOrFPVectorTy()))
    925       return false;
    926 
    927     // Don't vectorize target-specific types.
    928     if (T1->isX86_FP80Ty() || T1->isPPC_FP128Ty() || T1->isX86_MMXTy())
    929       return false;
    930     if (T2->isX86_FP80Ty() || T2->isPPC_FP128Ty() || T2->isX86_MMXTy())
    931       return false;
    932 
    933     if (!Config.VectorizePointers && (T1->getScalarType()->isPointerTy() ||
    934                                       T2->getScalarType()->isPointerTy()))
    935       return false;
    936 
    937     if (!TTI && (T1->getPrimitiveSizeInBits() >= Config.VectorBits ||
    938                  T2->getPrimitiveSizeInBits() >= Config.VectorBits))
    939       return false;
    940 
    941     return true;
    942   }
    943 
    944   // This function returns true if the two provided instructions are compatible
    945   // (meaning that they can be fused into a vector instruction). This assumes
    946   // that I has already been determined to be vectorizable and that J is not
    947   // in the use dag of I.
    948   bool BBVectorize::areInstsCompatible(Instruction *I, Instruction *J,
    949                        bool IsSimpleLoadStore, bool NonPow2Len,
    950                        int &CostSavings, int &FixedOrder) {
    951     DEBUG(if (DebugInstructionExamination) dbgs() << "BBV: looking at " << *I <<
    952                      " <-> " << *J << "\n");
    953 
    954     CostSavings = 0;
    955     FixedOrder = 0;
    956 
    957     // Loads and stores can be merged if they have different alignments,
    958     // but are otherwise the same.
    959     if (!J->isSameOperationAs(I, Instruction::CompareIgnoringAlignment |
    960                       (NonPow2Len ? Instruction::CompareUsingScalarTypes : 0)))
    961       return false;
    962 
    963     Type *IT1, *IT2, *JT1, *JT2;
    964     getInstructionTypes(I, IT1, IT2);
    965     getInstructionTypes(J, JT1, JT2);
    966     unsigned MaxTypeBits = std::max(
    967       IT1->getPrimitiveSizeInBits() + JT1->getPrimitiveSizeInBits(),
    968       IT2->getPrimitiveSizeInBits() + JT2->getPrimitiveSizeInBits());
    969     if (!TTI && MaxTypeBits > Config.VectorBits)
    970       return false;
    971 
    972     // FIXME: handle addsub-type operations!
    973 
    974     if (IsSimpleLoadStore) {
    975       Value *IPtr, *JPtr;
    976       unsigned IAlignment, JAlignment, IAddressSpace, JAddressSpace;
    977       int64_t OffsetInElmts = 0;
    978       if (getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
    979                          IAddressSpace, JAddressSpace, OffsetInElmts) &&
    980           std::abs(OffsetInElmts) == 1) {
    981         FixedOrder = (int) OffsetInElmts;
    982         unsigned BottomAlignment = IAlignment;
    983         if (OffsetInElmts < 0) BottomAlignment = JAlignment;
    984 
    985         Type *aTypeI = isa<StoreInst>(I) ?
    986           cast<StoreInst>(I)->getValueOperand()->getType() : I->getType();
    987         Type *aTypeJ = isa<StoreInst>(J) ?
    988           cast<StoreInst>(J)->getValueOperand()->getType() : J->getType();
    989         Type *VType = getVecTypeForPair(aTypeI, aTypeJ);
    990 
    991         if (Config.AlignedOnly) {
    992           // An aligned load or store is possible only if the instruction
    993           // with the lower offset has an alignment suitable for the
    994           // vector type.
    995           const DataLayout &DL = I->getModule()->getDataLayout();
    996           unsigned VecAlignment = DL.getPrefTypeAlignment(VType);
    997           if (BottomAlignment < VecAlignment)
    998             return false;
    999         }
   1000 
   1001         if (TTI) {
   1002           unsigned ICost = TTI->getMemoryOpCost(I->getOpcode(), aTypeI,
   1003                                                 IAlignment, IAddressSpace);
   1004           unsigned JCost = TTI->getMemoryOpCost(J->getOpcode(), aTypeJ,
   1005                                                 JAlignment, JAddressSpace);
   1006           unsigned VCost = TTI->getMemoryOpCost(I->getOpcode(), VType,
   1007                                                 BottomAlignment,
   1008                                                 IAddressSpace);
   1009 
   1010           ICost += TTI->getAddressComputationCost(aTypeI);
   1011           JCost += TTI->getAddressComputationCost(aTypeJ);
   1012           VCost += TTI->getAddressComputationCost(VType);
   1013 
   1014           if (VCost > ICost + JCost)
   1015             return false;
   1016 
   1017           // We don't want to fuse to a type that will be split, even
   1018           // if the two input types will also be split and there is no other
   1019           // associated cost.
   1020           unsigned VParts = TTI->getNumberOfParts(VType);
   1021           if (VParts > 1)
   1022             return false;
   1023           else if (!VParts && VCost == ICost + JCost)
   1024             return false;
   1025 
   1026           CostSavings = ICost + JCost - VCost;
   1027         }
   1028       } else {
   1029         return false;
   1030       }
   1031     } else if (TTI) {
   1032       unsigned ICost = getInstrCost(I->getOpcode(), IT1, IT2);
   1033       unsigned JCost = getInstrCost(J->getOpcode(), JT1, JT2);
   1034       Type *VT1 = getVecTypeForPair(IT1, JT1),
   1035            *VT2 = getVecTypeForPair(IT2, JT2);
   1036       TargetTransformInfo::OperandValueKind Op1VK =
   1037           TargetTransformInfo::OK_AnyValue;
   1038       TargetTransformInfo::OperandValueKind Op2VK =
   1039           TargetTransformInfo::OK_AnyValue;
   1040 
   1041       // On some targets (example X86) the cost of a vector shift may vary
   1042       // depending on whether the second operand is a Uniform or
   1043       // NonUniform Constant.
   1044       switch (I->getOpcode()) {
   1045       default : break;
   1046       case Instruction::Shl:
   1047       case Instruction::LShr:
   1048       case Instruction::AShr:
   1049 
   1050         // If both I and J are scalar shifts by constant, then the
   1051         // merged vector shift count would be either a constant splat value
   1052         // or a non-uniform vector of constants.
   1053         if (ConstantInt *CII = dyn_cast<ConstantInt>(I->getOperand(1))) {
   1054           if (ConstantInt *CIJ = dyn_cast<ConstantInt>(J->getOperand(1)))
   1055             Op2VK = CII == CIJ ? TargetTransformInfo::OK_UniformConstantValue :
   1056                                TargetTransformInfo::OK_NonUniformConstantValue;
   1057         } else {
   1058           // Check for a splat of a constant or for a non uniform vector
   1059           // of constants.
   1060           Value *IOp = I->getOperand(1);
   1061           Value *JOp = J->getOperand(1);
   1062           if ((isa<ConstantVector>(IOp) || isa<ConstantDataVector>(IOp)) &&
   1063               (isa<ConstantVector>(JOp) || isa<ConstantDataVector>(JOp))) {
   1064             Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
   1065             Constant *SplatValue = cast<Constant>(IOp)->getSplatValue();
   1066             if (SplatValue != nullptr &&
   1067                 SplatValue == cast<Constant>(JOp)->getSplatValue())
   1068               Op2VK = TargetTransformInfo::OK_UniformConstantValue;
   1069           }
   1070         }
   1071       }
   1072 
   1073       // Note that this procedure is incorrect for insert and extract element
   1074       // instructions (because combining these often results in a shuffle),
   1075       // but this cost is ignored (because insert and extract element
   1076       // instructions are assigned a zero depth factor and are not really
   1077       // fused in general).
   1078       unsigned VCost = getInstrCost(I->getOpcode(), VT1, VT2, Op1VK, Op2VK);
   1079 
   1080       if (VCost > ICost + JCost)
   1081         return false;
   1082 
   1083       // We don't want to fuse to a type that will be split, even
   1084       // if the two input types will also be split and there is no other
   1085       // associated cost.
   1086       unsigned VParts1 = TTI->getNumberOfParts(VT1),
   1087                VParts2 = TTI->getNumberOfParts(VT2);
   1088       if (VParts1 > 1 || VParts2 > 1)
   1089         return false;
   1090       else if ((!VParts1 || !VParts2) && VCost == ICost + JCost)
   1091         return false;
   1092 
   1093       CostSavings = ICost + JCost - VCost;
   1094     }
   1095 
   1096     // The powi,ctlz,cttz intrinsics are special because only the first
   1097     // argument is vectorized, the second arguments must be equal.
   1098     CallInst *CI = dyn_cast<CallInst>(I);
   1099     Function *FI;
   1100     if (CI && (FI = CI->getCalledFunction())) {
   1101       Intrinsic::ID IID = (Intrinsic::ID) FI->getIntrinsicID();
   1102       if (IID == Intrinsic::powi || IID == Intrinsic::ctlz ||
   1103           IID == Intrinsic::cttz) {
   1104         Value *A1I = CI->getArgOperand(1),
   1105               *A1J = cast<CallInst>(J)->getArgOperand(1);
   1106         const SCEV *A1ISCEV = SE->getSCEV(A1I),
   1107                    *A1JSCEV = SE->getSCEV(A1J);
   1108         return (A1ISCEV == A1JSCEV);
   1109       }
   1110 
   1111       if (IID && TTI) {
   1112         SmallVector<Type*, 4> Tys;
   1113         for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
   1114           Tys.push_back(CI->getArgOperand(i)->getType());
   1115         unsigned ICost = TTI->getIntrinsicInstrCost(IID, IT1, Tys);
   1116 
   1117         Tys.clear();
   1118         CallInst *CJ = cast<CallInst>(J);
   1119         for (unsigned i = 0, ie = CJ->getNumArgOperands(); i != ie; ++i)
   1120           Tys.push_back(CJ->getArgOperand(i)->getType());
   1121         unsigned JCost = TTI->getIntrinsicInstrCost(IID, JT1, Tys);
   1122 
   1123         Tys.clear();
   1124         assert(CI->getNumArgOperands() == CJ->getNumArgOperands() &&
   1125                "Intrinsic argument counts differ");
   1126         for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
   1127           if ((IID == Intrinsic::powi || IID == Intrinsic::ctlz ||
   1128                IID == Intrinsic::cttz) && i == 1)
   1129             Tys.push_back(CI->getArgOperand(i)->getType());
   1130           else
   1131             Tys.push_back(getVecTypeForPair(CI->getArgOperand(i)->getType(),
   1132                                             CJ->getArgOperand(i)->getType()));
   1133         }
   1134 
   1135         Type *RetTy = getVecTypeForPair(IT1, JT1);
   1136         unsigned VCost = TTI->getIntrinsicInstrCost(IID, RetTy, Tys);
   1137 
   1138         if (VCost > ICost + JCost)
   1139           return false;
   1140 
   1141         // We don't want to fuse to a type that will be split, even
   1142         // if the two input types will also be split and there is no other
   1143         // associated cost.
   1144         unsigned RetParts = TTI->getNumberOfParts(RetTy);
   1145         if (RetParts > 1)
   1146           return false;
   1147         else if (!RetParts && VCost == ICost + JCost)
   1148           return false;
   1149 
   1150         for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
   1151           if (!Tys[i]->isVectorTy())
   1152             continue;
   1153 
   1154           unsigned NumParts = TTI->getNumberOfParts(Tys[i]);
   1155           if (NumParts > 1)
   1156             return false;
   1157           else if (!NumParts && VCost == ICost + JCost)
   1158             return false;
   1159         }
   1160 
   1161         CostSavings = ICost + JCost - VCost;
   1162       }
   1163     }
   1164 
   1165     return true;
   1166   }
   1167 
   1168   // Figure out whether or not J uses I and update the users and write-set
   1169   // structures associated with I. Specifically, Users represents the set of
   1170   // instructions that depend on I. WriteSet represents the set
   1171   // of memory locations that are dependent on I. If UpdateUsers is true,
   1172   // and J uses I, then Users is updated to contain J and WriteSet is updated
   1173   // to contain any memory locations to which J writes. The function returns
   1174   // true if J uses I. By default, alias analysis is used to determine
   1175   // whether J reads from memory that overlaps with a location in WriteSet.
   1176   // If LoadMoveSet is not null, then it is a previously-computed map
   1177   // where the key is the memory-based user instruction and the value is
   1178   // the instruction to be compared with I. So, if LoadMoveSet is provided,
   1179   // then the alias analysis is not used. This is necessary because this
   1180   // function is called during the process of moving instructions during
   1181   // vectorization and the results of the alias analysis are not stable during
   1182   // that process.
   1183   bool BBVectorize::trackUsesOfI(DenseSet<Value *> &Users,
   1184                        AliasSetTracker &WriteSet, Instruction *I,
   1185                        Instruction *J, bool UpdateUsers,
   1186                        DenseSet<ValuePair> *LoadMoveSetPairs) {
   1187     bool UsesI = false;
   1188 
   1189     // This instruction may already be marked as a user due, for example, to
   1190     // being a member of a selected pair.
   1191     if (Users.count(J))
   1192       UsesI = true;
   1193 
   1194     if (!UsesI)
   1195       for (User::op_iterator JU = J->op_begin(), JE = J->op_end();
   1196            JU != JE; ++JU) {
   1197         Value *V = *JU;
   1198         if (I == V || Users.count(V)) {
   1199           UsesI = true;
   1200           break;
   1201         }
   1202       }
   1203     if (!UsesI && J->mayReadFromMemory()) {
   1204       if (LoadMoveSetPairs) {
   1205         UsesI = LoadMoveSetPairs->count(ValuePair(J, I));
   1206       } else {
   1207         for (AliasSetTracker::iterator W = WriteSet.begin(),
   1208              WE = WriteSet.end(); W != WE; ++W) {
   1209           if (W->aliasesUnknownInst(J, *AA)) {
   1210             UsesI = true;
   1211             break;
   1212           }
   1213         }
   1214       }
   1215     }
   1216 
   1217     if (UsesI && UpdateUsers) {
   1218       if (J->mayWriteToMemory()) WriteSet.add(J);
   1219       Users.insert(J);
   1220     }
   1221 
   1222     return UsesI;
   1223   }
   1224 
   1225   // This function iterates over all instruction pairs in the provided
   1226   // basic block and collects all candidate pairs for vectorization.
   1227   bool BBVectorize::getCandidatePairs(BasicBlock &BB,
   1228                        BasicBlock::iterator &Start,
   1229                        DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
   1230                        DenseSet<ValuePair> &FixedOrderPairs,
   1231                        DenseMap<ValuePair, int> &CandidatePairCostSavings,
   1232                        std::vector<Value *> &PairableInsts, bool NonPow2Len) {
   1233     size_t TotalPairs = 0;
   1234     BasicBlock::iterator E = BB.end();
   1235     if (Start == E) return false;
   1236 
   1237     bool ShouldContinue = false, IAfterStart = false;
   1238     for (BasicBlock::iterator I = Start++; I != E; ++I) {
   1239       if (I == Start) IAfterStart = true;
   1240 
   1241       bool IsSimpleLoadStore;
   1242       if (!isInstVectorizable(I, IsSimpleLoadStore)) continue;
   1243 
   1244       // Look for an instruction with which to pair instruction *I...
   1245       DenseSet<Value *> Users;
   1246       AliasSetTracker WriteSet(*AA);
   1247       if (I->mayWriteToMemory()) WriteSet.add(I);
   1248 
   1249       bool JAfterStart = IAfterStart;
   1250       BasicBlock::iterator J = std::next(I);
   1251       for (unsigned ss = 0; J != E && ss <= Config.SearchLimit; ++J, ++ss) {
   1252         if (J == Start) JAfterStart = true;
   1253 
   1254         // Determine if J uses I, if so, exit the loop.
   1255         bool UsesI = trackUsesOfI(Users, WriteSet, I, J, !Config.FastDep);
   1256         if (Config.FastDep) {
   1257           // Note: For this heuristic to be effective, independent operations
   1258           // must tend to be intermixed. This is likely to be true from some
   1259           // kinds of grouped loop unrolling (but not the generic LLVM pass),
   1260           // but otherwise may require some kind of reordering pass.
   1261 
   1262           // When using fast dependency analysis,
   1263           // stop searching after first use:
   1264           if (UsesI) break;
   1265         } else {
   1266           if (UsesI) continue;
   1267         }
   1268 
   1269         // J does not use I, and comes before the first use of I, so it can be
   1270         // merged with I if the instructions are compatible.
   1271         int CostSavings, FixedOrder;
   1272         if (!areInstsCompatible(I, J, IsSimpleLoadStore, NonPow2Len,
   1273             CostSavings, FixedOrder)) continue;
   1274 
   1275         // J is a candidate for merging with I.
   1276         if (PairableInsts.empty() ||
   1277              PairableInsts[PairableInsts.size()-1] != I) {
   1278           PairableInsts.push_back(I);
   1279         }
   1280 
   1281         CandidatePairs[I].push_back(J);
   1282         ++TotalPairs;
   1283         if (TTI)
   1284           CandidatePairCostSavings.insert(ValuePairWithCost(ValuePair(I, J),
   1285                                                             CostSavings));
   1286 
   1287         if (FixedOrder == 1)
   1288           FixedOrderPairs.insert(ValuePair(I, J));
   1289         else if (FixedOrder == -1)
   1290           FixedOrderPairs.insert(ValuePair(J, I));
   1291 
   1292         // The next call to this function must start after the last instruction
   1293         // selected during this invocation.
   1294         if (JAfterStart) {
   1295           Start = std::next(J);
   1296           IAfterStart = JAfterStart = false;
   1297         }
   1298 
   1299         DEBUG(if (DebugCandidateSelection) dbgs() << "BBV: candidate pair "
   1300                      << *I << " <-> " << *J << " (cost savings: " <<
   1301                      CostSavings << ")\n");
   1302 
   1303         // If we have already found too many pairs, break here and this function
   1304         // will be called again starting after the last instruction selected
   1305         // during this invocation.
   1306         if (PairableInsts.size() >= Config.MaxInsts ||
   1307             TotalPairs >= Config.MaxPairs) {
   1308           ShouldContinue = true;
   1309           break;
   1310         }
   1311       }
   1312 
   1313       if (ShouldContinue)
   1314         break;
   1315     }
   1316 
   1317     DEBUG(dbgs() << "BBV: found " << PairableInsts.size()
   1318            << " instructions with candidate pairs\n");
   1319 
   1320     return ShouldContinue;
   1321   }
   1322 
   1323   // Finds candidate pairs connected to the pair P = <PI, PJ>. This means that
   1324   // it looks for pairs such that both members have an input which is an
   1325   // output of PI or PJ.
   1326   void BBVectorize::computePairsConnectedTo(
   1327                   DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
   1328                   DenseSet<ValuePair> &CandidatePairsSet,
   1329                   std::vector<Value *> &PairableInsts,
   1330                   DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
   1331                   DenseMap<VPPair, unsigned> &PairConnectionTypes,
   1332                   ValuePair P) {
   1333     StoreInst *SI, *SJ;
   1334 
   1335     // For each possible pairing for this variable, look at the uses of
   1336     // the first value...
   1337     for (Value::user_iterator I = P.first->user_begin(),
   1338                               E = P.first->user_end();
   1339          I != E; ++I) {
   1340       User *UI = *I;
   1341       if (isa<LoadInst>(UI)) {
   1342         // A pair cannot be connected to a load because the load only takes one
   1343         // operand (the address) and it is a scalar even after vectorization.
   1344         continue;
   1345       } else if ((SI = dyn_cast<StoreInst>(UI)) &&
   1346                  P.first == SI->getPointerOperand()) {
   1347         // Similarly, a pair cannot be connected to a store through its
   1348         // pointer operand.
   1349         continue;
   1350       }
   1351 
   1352       // For each use of the first variable, look for uses of the second
   1353       // variable...
   1354       for (User *UJ : P.second->users()) {
   1355         if ((SJ = dyn_cast<StoreInst>(UJ)) &&
   1356             P.second == SJ->getPointerOperand())
   1357           continue;
   1358 
   1359         // Look for <I, J>:
   1360         if (CandidatePairsSet.count(ValuePair(UI, UJ))) {
   1361           VPPair VP(P, ValuePair(UI, UJ));
   1362           ConnectedPairs[VP.first].push_back(VP.second);
   1363           PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionDirect));
   1364         }
   1365 
   1366         // Look for <J, I>:
   1367         if (CandidatePairsSet.count(ValuePair(UJ, UI))) {
   1368           VPPair VP(P, ValuePair(UJ, UI));
   1369           ConnectedPairs[VP.first].push_back(VP.second);
   1370           PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSwap));
   1371         }
   1372       }
   1373 
   1374       if (Config.SplatBreaksChain) continue;
   1375       // Look for cases where just the first value in the pair is used by
   1376       // both members of another pair (splatting).
   1377       for (Value::user_iterator J = P.first->user_begin(); J != E; ++J) {
   1378         User *UJ = *J;
   1379         if ((SJ = dyn_cast<StoreInst>(UJ)) &&
   1380             P.first == SJ->getPointerOperand())
   1381           continue;
   1382 
   1383         if (CandidatePairsSet.count(ValuePair(UI, UJ))) {
   1384           VPPair VP(P, ValuePair(UI, UJ));
   1385           ConnectedPairs[VP.first].push_back(VP.second);
   1386           PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSplat));
   1387         }
   1388       }
   1389     }
   1390 
   1391     if (Config.SplatBreaksChain) return;
   1392     // Look for cases where just the second value in the pair is used by
   1393     // both members of another pair (splatting).
   1394     for (Value::user_iterator I = P.second->user_begin(),
   1395                               E = P.second->user_end();
   1396          I != E; ++I) {
   1397       User *UI = *I;
   1398       if (isa<LoadInst>(UI))
   1399         continue;
   1400       else if ((SI = dyn_cast<StoreInst>(UI)) &&
   1401                P.second == SI->getPointerOperand())
   1402         continue;
   1403 
   1404       for (Value::user_iterator J = P.second->user_begin(); J != E; ++J) {
   1405         User *UJ = *J;
   1406         if ((SJ = dyn_cast<StoreInst>(UJ)) &&
   1407             P.second == SJ->getPointerOperand())
   1408           continue;
   1409 
   1410         if (CandidatePairsSet.count(ValuePair(UI, UJ))) {
   1411           VPPair VP(P, ValuePair(UI, UJ));
   1412           ConnectedPairs[VP.first].push_back(VP.second);
   1413           PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSplat));
   1414         }
   1415       }
   1416     }
   1417   }
   1418 
   1419   // This function figures out which pairs are connected.  Two pairs are
   1420   // connected if some output of the first pair forms an input to both members
   1421   // of the second pair.
   1422   void BBVectorize::computeConnectedPairs(
   1423                   DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
   1424                   DenseSet<ValuePair> &CandidatePairsSet,
   1425                   std::vector<Value *> &PairableInsts,
   1426                   DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
   1427                   DenseMap<VPPair, unsigned> &PairConnectionTypes) {
   1428     for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
   1429          PE = PairableInsts.end(); PI != PE; ++PI) {
   1430       DenseMap<Value *, std::vector<Value *> >::iterator PP =
   1431         CandidatePairs.find(*PI);
   1432       if (PP == CandidatePairs.end())
   1433         continue;
   1434 
   1435       for (std::vector<Value *>::iterator P = PP->second.begin(),
   1436            E = PP->second.end(); P != E; ++P)
   1437         computePairsConnectedTo(CandidatePairs, CandidatePairsSet,
   1438                                 PairableInsts, ConnectedPairs,
   1439                                 PairConnectionTypes, ValuePair(*PI, *P));
   1440     }
   1441 
   1442     DEBUG(size_t TotalPairs = 0;
   1443           for (DenseMap<ValuePair, std::vector<ValuePair> >::iterator I =
   1444                ConnectedPairs.begin(), IE = ConnectedPairs.end(); I != IE; ++I)
   1445             TotalPairs += I->second.size();
   1446           dbgs() << "BBV: found " << TotalPairs
   1447                  << " pair connections.\n");
   1448   }
   1449 
   1450   // This function builds a set of use tuples such that <A, B> is in the set
   1451   // if B is in the use dag of A. If B is in the use dag of A, then B
   1452   // depends on the output of A.
   1453   void BBVectorize::buildDepMap(
   1454                       BasicBlock &BB,
   1455                       DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
   1456                       std::vector<Value *> &PairableInsts,
   1457                       DenseSet<ValuePair> &PairableInstUsers) {
   1458     DenseSet<Value *> IsInPair;
   1459     for (DenseMap<Value *, std::vector<Value *> >::iterator C =
   1460          CandidatePairs.begin(), E = CandidatePairs.end(); C != E; ++C) {
   1461       IsInPair.insert(C->first);
   1462       IsInPair.insert(C->second.begin(), C->second.end());
   1463     }
   1464 
   1465     // Iterate through the basic block, recording all users of each
   1466     // pairable instruction.
   1467 
   1468     BasicBlock::iterator E = BB.end(), EL =
   1469       BasicBlock::iterator(cast<Instruction>(PairableInsts.back()));
   1470     for (BasicBlock::iterator I = BB.getFirstInsertionPt(); I != E; ++I) {
   1471       if (IsInPair.find(I) == IsInPair.end()) continue;
   1472 
   1473       DenseSet<Value *> Users;
   1474       AliasSetTracker WriteSet(*AA);
   1475       if (I->mayWriteToMemory()) WriteSet.add(I);
   1476 
   1477       for (BasicBlock::iterator J = std::next(I); J != E; ++J) {
   1478         (void) trackUsesOfI(Users, WriteSet, I, J);
   1479 
   1480         if (J == EL)
   1481           break;
   1482       }
   1483 
   1484       for (DenseSet<Value *>::iterator U = Users.begin(), E = Users.end();
   1485            U != E; ++U) {
   1486         if (IsInPair.find(*U) == IsInPair.end()) continue;
   1487         PairableInstUsers.insert(ValuePair(I, *U));
   1488       }
   1489 
   1490       if (I == EL)
   1491         break;
   1492     }
   1493   }
   1494 
   1495   // Returns true if an input to pair P is an output of pair Q and also an
   1496   // input of pair Q is an output of pair P. If this is the case, then these
   1497   // two pairs cannot be simultaneously fused.
   1498   bool BBVectorize::pairsConflict(ValuePair P, ValuePair Q,
   1499              DenseSet<ValuePair> &PairableInstUsers,
   1500              DenseMap<ValuePair, std::vector<ValuePair> > *PairableInstUserMap,
   1501              DenseSet<VPPair> *PairableInstUserPairSet) {
   1502     // Two pairs are in conflict if they are mutual Users of eachother.
   1503     bool QUsesP = PairableInstUsers.count(ValuePair(P.first,  Q.first))  ||
   1504                   PairableInstUsers.count(ValuePair(P.first,  Q.second)) ||
   1505                   PairableInstUsers.count(ValuePair(P.second, Q.first))  ||
   1506                   PairableInstUsers.count(ValuePair(P.second, Q.second));
   1507     bool PUsesQ = PairableInstUsers.count(ValuePair(Q.first,  P.first))  ||
   1508                   PairableInstUsers.count(ValuePair(Q.first,  P.second)) ||
   1509                   PairableInstUsers.count(ValuePair(Q.second, P.first))  ||
   1510                   PairableInstUsers.count(ValuePair(Q.second, P.second));
   1511     if (PairableInstUserMap) {
   1512       // FIXME: The expensive part of the cycle check is not so much the cycle
   1513       // check itself but this edge insertion procedure. This needs some
   1514       // profiling and probably a different data structure.
   1515       if (PUsesQ) {
   1516         if (PairableInstUserPairSet->insert(VPPair(Q, P)).second)
   1517           (*PairableInstUserMap)[Q].push_back(P);
   1518       }
   1519       if (QUsesP) {
   1520         if (PairableInstUserPairSet->insert(VPPair(P, Q)).second)
   1521           (*PairableInstUserMap)[P].push_back(Q);
   1522       }
   1523     }
   1524 
   1525     return (QUsesP && PUsesQ);
   1526   }
   1527 
   1528   // This function walks the use graph of current pairs to see if, starting
   1529   // from P, the walk returns to P.
   1530   bool BBVectorize::pairWillFormCycle(ValuePair P,
   1531              DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
   1532              DenseSet<ValuePair> &CurrentPairs) {
   1533     DEBUG(if (DebugCycleCheck)
   1534             dbgs() << "BBV: starting cycle check for : " << *P.first << " <-> "
   1535                    << *P.second << "\n");
   1536     // A lookup table of visisted pairs is kept because the PairableInstUserMap
   1537     // contains non-direct associations.
   1538     DenseSet<ValuePair> Visited;
   1539     SmallVector<ValuePair, 32> Q;
   1540     // General depth-first post-order traversal:
   1541     Q.push_back(P);
   1542     do {
   1543       ValuePair QTop = Q.pop_back_val();
   1544       Visited.insert(QTop);
   1545 
   1546       DEBUG(if (DebugCycleCheck)
   1547               dbgs() << "BBV: cycle check visiting: " << *QTop.first << " <-> "
   1548                      << *QTop.second << "\n");
   1549       DenseMap<ValuePair, std::vector<ValuePair> >::iterator QQ =
   1550         PairableInstUserMap.find(QTop);
   1551       if (QQ == PairableInstUserMap.end())
   1552         continue;
   1553 
   1554       for (std::vector<ValuePair>::iterator C = QQ->second.begin(),
   1555            CE = QQ->second.end(); C != CE; ++C) {
   1556         if (*C == P) {
   1557           DEBUG(dbgs()
   1558                  << "BBV: rejected to prevent non-trivial cycle formation: "
   1559                  << QTop.first << " <-> " << C->second << "\n");
   1560           return true;
   1561         }
   1562 
   1563         if (CurrentPairs.count(*C) && !Visited.count(*C))
   1564           Q.push_back(*C);
   1565       }
   1566     } while (!Q.empty());
   1567 
   1568     return false;
   1569   }
   1570 
   1571   // This function builds the initial dag of connected pairs with the
   1572   // pair J at the root.
   1573   void BBVectorize::buildInitialDAGFor(
   1574                   DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
   1575                   DenseSet<ValuePair> &CandidatePairsSet,
   1576                   std::vector<Value *> &PairableInsts,
   1577                   DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
   1578                   DenseSet<ValuePair> &PairableInstUsers,
   1579                   DenseMap<Value *, Value *> &ChosenPairs,
   1580                   DenseMap<ValuePair, size_t> &DAG, ValuePair J) {
   1581     // Each of these pairs is viewed as the root node of a DAG. The DAG
   1582     // is then walked (depth-first). As this happens, we keep track of
   1583     // the pairs that compose the DAG and the maximum depth of the DAG.
   1584     SmallVector<ValuePairWithDepth, 32> Q;
   1585     // General depth-first post-order traversal:
   1586     Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
   1587     do {
   1588       ValuePairWithDepth QTop = Q.back();
   1589 
   1590       // Push each child onto the queue:
   1591       bool MoreChildren = false;
   1592       size_t MaxChildDepth = QTop.second;
   1593       DenseMap<ValuePair, std::vector<ValuePair> >::iterator QQ =
   1594         ConnectedPairs.find(QTop.first);
   1595       if (QQ != ConnectedPairs.end())
   1596         for (std::vector<ValuePair>::iterator k = QQ->second.begin(),
   1597              ke = QQ->second.end(); k != ke; ++k) {
   1598           // Make sure that this child pair is still a candidate:
   1599           if (CandidatePairsSet.count(*k)) {
   1600             DenseMap<ValuePair, size_t>::iterator C = DAG.find(*k);
   1601             if (C == DAG.end()) {
   1602               size_t d = getDepthFactor(k->first);
   1603               Q.push_back(ValuePairWithDepth(*k, QTop.second+d));
   1604               MoreChildren = true;
   1605             } else {
   1606               MaxChildDepth = std::max(MaxChildDepth, C->second);
   1607             }
   1608           }
   1609         }
   1610 
   1611       if (!MoreChildren) {
   1612         // Record the current pair as part of the DAG:
   1613         DAG.insert(ValuePairWithDepth(QTop.first, MaxChildDepth));
   1614         Q.pop_back();
   1615       }
   1616     } while (!Q.empty());
   1617   }
   1618 
   1619   // Given some initial dag, prune it by removing conflicting pairs (pairs
   1620   // that cannot be simultaneously chosen for vectorization).
   1621   void BBVectorize::pruneDAGFor(
   1622               DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
   1623               std::vector<Value *> &PairableInsts,
   1624               DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
   1625               DenseSet<ValuePair> &PairableInstUsers,
   1626               DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
   1627               DenseSet<VPPair> &PairableInstUserPairSet,
   1628               DenseMap<Value *, Value *> &ChosenPairs,
   1629               DenseMap<ValuePair, size_t> &DAG,
   1630               DenseSet<ValuePair> &PrunedDAG, ValuePair J,
   1631               bool UseCycleCheck) {
   1632     SmallVector<ValuePairWithDepth, 32> Q;
   1633     // General depth-first post-order traversal:
   1634     Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
   1635     do {
   1636       ValuePairWithDepth QTop = Q.pop_back_val();
   1637       PrunedDAG.insert(QTop.first);
   1638 
   1639       // Visit each child, pruning as necessary...
   1640       SmallVector<ValuePairWithDepth, 8> BestChildren;
   1641       DenseMap<ValuePair, std::vector<ValuePair> >::iterator QQ =
   1642         ConnectedPairs.find(QTop.first);
   1643       if (QQ == ConnectedPairs.end())
   1644         continue;
   1645 
   1646       for (std::vector<ValuePair>::iterator K = QQ->second.begin(),
   1647            KE = QQ->second.end(); K != KE; ++K) {
   1648         DenseMap<ValuePair, size_t>::iterator C = DAG.find(*K);
   1649         if (C == DAG.end()) continue;
   1650 
   1651         // This child is in the DAG, now we need to make sure it is the
   1652         // best of any conflicting children. There could be multiple
   1653         // conflicting children, so first, determine if we're keeping
   1654         // this child, then delete conflicting children as necessary.
   1655 
   1656         // It is also necessary to guard against pairing-induced
   1657         // dependencies. Consider instructions a .. x .. y .. b
   1658         // such that (a,b) are to be fused and (x,y) are to be fused
   1659         // but a is an input to x and b is an output from y. This
   1660         // means that y cannot be moved after b but x must be moved
   1661         // after b for (a,b) to be fused. In other words, after
   1662         // fusing (a,b) we have y .. a/b .. x where y is an input
   1663         // to a/b and x is an output to a/b: x and y can no longer
   1664         // be legally fused. To prevent this condition, we must
   1665         // make sure that a child pair added to the DAG is not
   1666         // both an input and output of an already-selected pair.
   1667 
   1668         // Pairing-induced dependencies can also form from more complicated
   1669         // cycles. The pair vs. pair conflicts are easy to check, and so
   1670         // that is done explicitly for "fast rejection", and because for
   1671         // child vs. child conflicts, we may prefer to keep the current
   1672         // pair in preference to the already-selected child.
   1673         DenseSet<ValuePair> CurrentPairs;
   1674 
   1675         bool CanAdd = true;
   1676         for (SmallVectorImpl<ValuePairWithDepth>::iterator C2
   1677               = BestChildren.begin(), E2 = BestChildren.end();
   1678              C2 != E2; ++C2) {
   1679           if (C2->first.first == C->first.first ||
   1680               C2->first.first == C->first.second ||
   1681               C2->first.second == C->first.first ||
   1682               C2->first.second == C->first.second ||
   1683               pairsConflict(C2->first, C->first, PairableInstUsers,
   1684                             UseCycleCheck ? &PairableInstUserMap : nullptr,
   1685                             UseCycleCheck ? &PairableInstUserPairSet
   1686                                           : nullptr)) {
   1687             if (C2->second >= C->second) {
   1688               CanAdd = false;
   1689               break;
   1690             }
   1691 
   1692             CurrentPairs.insert(C2->first);
   1693           }
   1694         }
   1695         if (!CanAdd) continue;
   1696 
   1697         // Even worse, this child could conflict with another node already
   1698         // selected for the DAG. If that is the case, ignore this child.
   1699         for (DenseSet<ValuePair>::iterator T = PrunedDAG.begin(),
   1700              E2 = PrunedDAG.end(); T != E2; ++T) {
   1701           if (T->first == C->first.first ||
   1702               T->first == C->first.second ||
   1703               T->second == C->first.first ||
   1704               T->second == C->first.second ||
   1705               pairsConflict(*T, C->first, PairableInstUsers,
   1706                             UseCycleCheck ? &PairableInstUserMap : nullptr,
   1707                             UseCycleCheck ? &PairableInstUserPairSet
   1708                                           : nullptr)) {
   1709             CanAdd = false;
   1710             break;
   1711           }
   1712 
   1713           CurrentPairs.insert(*T);
   1714         }
   1715         if (!CanAdd) continue;
   1716 
   1717         // And check the queue too...
   1718         for (SmallVectorImpl<ValuePairWithDepth>::iterator C2 = Q.begin(),
   1719              E2 = Q.end(); C2 != E2; ++C2) {
   1720           if (C2->first.first == C->first.first ||
   1721               C2->first.first == C->first.second ||
   1722               C2->first.second == C->first.first ||
   1723               C2->first.second == C->first.second ||
   1724               pairsConflict(C2->first, C->first, PairableInstUsers,
   1725                             UseCycleCheck ? &PairableInstUserMap : nullptr,
   1726                             UseCycleCheck ? &PairableInstUserPairSet
   1727                                           : nullptr)) {
   1728             CanAdd = false;
   1729             break;
   1730           }
   1731 
   1732           CurrentPairs.insert(C2->first);
   1733         }
   1734         if (!CanAdd) continue;
   1735 
   1736         // Last but not least, check for a conflict with any of the
   1737         // already-chosen pairs.
   1738         for (DenseMap<Value *, Value *>::iterator C2 =
   1739               ChosenPairs.begin(), E2 = ChosenPairs.end();
   1740              C2 != E2; ++C2) {
   1741           if (pairsConflict(*C2, C->first, PairableInstUsers,
   1742                             UseCycleCheck ? &PairableInstUserMap : nullptr,
   1743                             UseCycleCheck ? &PairableInstUserPairSet
   1744                                           : nullptr)) {
   1745             CanAdd = false;
   1746             break;
   1747           }
   1748 
   1749           CurrentPairs.insert(*C2);
   1750         }
   1751         if (!CanAdd) continue;
   1752 
   1753         // To check for non-trivial cycles formed by the addition of the
   1754         // current pair we've formed a list of all relevant pairs, now use a
   1755         // graph walk to check for a cycle. We start from the current pair and
   1756         // walk the use dag to see if we again reach the current pair. If we
   1757         // do, then the current pair is rejected.
   1758 
   1759         // FIXME: It may be more efficient to use a topological-ordering
   1760         // algorithm to improve the cycle check. This should be investigated.
   1761         if (UseCycleCheck &&
   1762             pairWillFormCycle(C->first, PairableInstUserMap, CurrentPairs))
   1763           continue;
   1764 
   1765         // This child can be added, but we may have chosen it in preference
   1766         // to an already-selected child. Check for this here, and if a
   1767         // conflict is found, then remove the previously-selected child
   1768         // before adding this one in its place.
   1769         for (SmallVectorImpl<ValuePairWithDepth>::iterator C2
   1770               = BestChildren.begin(); C2 != BestChildren.end();) {
   1771           if (C2->first.first == C->first.first ||
   1772               C2->first.first == C->first.second ||
   1773               C2->first.second == C->first.first ||
   1774               C2->first.second == C->first.second ||
   1775               pairsConflict(C2->first, C->first, PairableInstUsers))
   1776             C2 = BestChildren.erase(C2);
   1777           else
   1778             ++C2;
   1779         }
   1780 
   1781         BestChildren.push_back(ValuePairWithDepth(C->first, C->second));
   1782       }
   1783 
   1784       for (SmallVectorImpl<ValuePairWithDepth>::iterator C
   1785             = BestChildren.begin(), E2 = BestChildren.end();
   1786            C != E2; ++C) {
   1787         size_t DepthF = getDepthFactor(C->first.first);
   1788         Q.push_back(ValuePairWithDepth(C->first, QTop.second+DepthF));
   1789       }
   1790     } while (!Q.empty());
   1791   }
   1792 
   1793   // This function finds the best dag of mututally-compatible connected
   1794   // pairs, given the choice of root pairs as an iterator range.
   1795   void BBVectorize::findBestDAGFor(
   1796               DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
   1797               DenseSet<ValuePair> &CandidatePairsSet,
   1798               DenseMap<ValuePair, int> &CandidatePairCostSavings,
   1799               std::vector<Value *> &PairableInsts,
   1800               DenseSet<ValuePair> &FixedOrderPairs,
   1801               DenseMap<VPPair, unsigned> &PairConnectionTypes,
   1802               DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
   1803               DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps,
   1804               DenseSet<ValuePair> &PairableInstUsers,
   1805               DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
   1806               DenseSet<VPPair> &PairableInstUserPairSet,
   1807               DenseMap<Value *, Value *> &ChosenPairs,
   1808               DenseSet<ValuePair> &BestDAG, size_t &BestMaxDepth,
   1809               int &BestEffSize, Value *II, std::vector<Value *>&JJ,
   1810               bool UseCycleCheck) {
   1811     for (std::vector<Value *>::iterator J = JJ.begin(), JE = JJ.end();
   1812          J != JE; ++J) {
   1813       ValuePair IJ(II, *J);
   1814       if (!CandidatePairsSet.count(IJ))
   1815         continue;
   1816 
   1817       // Before going any further, make sure that this pair does not
   1818       // conflict with any already-selected pairs (see comment below
   1819       // near the DAG pruning for more details).
   1820       DenseSet<ValuePair> ChosenPairSet;
   1821       bool DoesConflict = false;
   1822       for (DenseMap<Value *, Value *>::iterator C = ChosenPairs.begin(),
   1823            E = ChosenPairs.end(); C != E; ++C) {
   1824         if (pairsConflict(*C, IJ, PairableInstUsers,
   1825                           UseCycleCheck ? &PairableInstUserMap : nullptr,
   1826                           UseCycleCheck ? &PairableInstUserPairSet : nullptr)) {
   1827           DoesConflict = true;
   1828           break;
   1829         }
   1830 
   1831         ChosenPairSet.insert(*C);
   1832       }
   1833       if (DoesConflict) continue;
   1834 
   1835       if (UseCycleCheck &&
   1836           pairWillFormCycle(IJ, PairableInstUserMap, ChosenPairSet))
   1837         continue;
   1838 
   1839       DenseMap<ValuePair, size_t> DAG;
   1840       buildInitialDAGFor(CandidatePairs, CandidatePairsSet,
   1841                           PairableInsts, ConnectedPairs,
   1842                           PairableInstUsers, ChosenPairs, DAG, IJ);
   1843 
   1844       // Because we'll keep the child with the largest depth, the largest
   1845       // depth is still the same in the unpruned DAG.
   1846       size_t MaxDepth = DAG.lookup(IJ);
   1847 
   1848       DEBUG(if (DebugPairSelection) dbgs() << "BBV: found DAG for pair {"
   1849                    << *IJ.first << " <-> " << *IJ.second << "} of depth " <<
   1850                    MaxDepth << " and size " << DAG.size() << "\n");
   1851 
   1852       // At this point the DAG has been constructed, but, may contain
   1853       // contradictory children (meaning that different children of
   1854       // some dag node may be attempting to fuse the same instruction).
   1855       // So now we walk the dag again, in the case of a conflict,
   1856       // keep only the child with the largest depth. To break a tie,
   1857       // favor the first child.
   1858 
   1859       DenseSet<ValuePair> PrunedDAG;
   1860       pruneDAGFor(CandidatePairs, PairableInsts, ConnectedPairs,
   1861                    PairableInstUsers, PairableInstUserMap,
   1862                    PairableInstUserPairSet,
   1863                    ChosenPairs, DAG, PrunedDAG, IJ, UseCycleCheck);
   1864 
   1865       int EffSize = 0;
   1866       if (TTI) {
   1867         DenseSet<Value *> PrunedDAGInstrs;
   1868         for (DenseSet<ValuePair>::iterator S = PrunedDAG.begin(),
   1869              E = PrunedDAG.end(); S != E; ++S) {
   1870           PrunedDAGInstrs.insert(S->first);
   1871           PrunedDAGInstrs.insert(S->second);
   1872         }
   1873 
   1874         // The set of pairs that have already contributed to the total cost.
   1875         DenseSet<ValuePair> IncomingPairs;
   1876 
   1877         // If the cost model were perfect, this might not be necessary; but we
   1878         // need to make sure that we don't get stuck vectorizing our own
   1879         // shuffle chains.
   1880         bool HasNontrivialInsts = false;
   1881 
   1882         // The node weights represent the cost savings associated with
   1883         // fusing the pair of instructions.
   1884         for (DenseSet<ValuePair>::iterator S = PrunedDAG.begin(),
   1885              E = PrunedDAG.end(); S != E; ++S) {
   1886           if (!isa<ShuffleVectorInst>(S->first) &&
   1887               !isa<InsertElementInst>(S->first) &&
   1888               !isa<ExtractElementInst>(S->first))
   1889             HasNontrivialInsts = true;
   1890 
   1891           bool FlipOrder = false;
   1892 
   1893           if (getDepthFactor(S->first)) {
   1894             int ESContrib = CandidatePairCostSavings.find(*S)->second;
   1895             DEBUG(if (DebugPairSelection) dbgs() << "\tweight {"
   1896                    << *S->first << " <-> " << *S->second << "} = " <<
   1897                    ESContrib << "\n");
   1898             EffSize += ESContrib;
   1899           }
   1900 
   1901           // The edge weights contribute in a negative sense: they represent
   1902           // the cost of shuffles.
   1903           DenseMap<ValuePair, std::vector<ValuePair> >::iterator SS =
   1904             ConnectedPairDeps.find(*S);
   1905           if (SS != ConnectedPairDeps.end()) {
   1906             unsigned NumDepsDirect = 0, NumDepsSwap = 0;
   1907             for (std::vector<ValuePair>::iterator T = SS->second.begin(),
   1908                  TE = SS->second.end(); T != TE; ++T) {
   1909               VPPair Q(*S, *T);
   1910               if (!PrunedDAG.count(Q.second))
   1911                 continue;
   1912               DenseMap<VPPair, unsigned>::iterator R =
   1913                 PairConnectionTypes.find(VPPair(Q.second, Q.first));
   1914               assert(R != PairConnectionTypes.end() &&
   1915                      "Cannot find pair connection type");
   1916               if (R->second == PairConnectionDirect)
   1917                 ++NumDepsDirect;
   1918               else if (R->second == PairConnectionSwap)
   1919                 ++NumDepsSwap;
   1920             }
   1921 
   1922             // If there are more swaps than direct connections, then
   1923             // the pair order will be flipped during fusion. So the real
   1924             // number of swaps is the minimum number.
   1925             FlipOrder = !FixedOrderPairs.count(*S) &&
   1926               ((NumDepsSwap > NumDepsDirect) ||
   1927                 FixedOrderPairs.count(ValuePair(S->second, S->first)));
   1928 
   1929             for (std::vector<ValuePair>::iterator T = SS->second.begin(),
   1930                  TE = SS->second.end(); T != TE; ++T) {
   1931               VPPair Q(*S, *T);
   1932               if (!PrunedDAG.count(Q.second))
   1933                 continue;
   1934               DenseMap<VPPair, unsigned>::iterator R =
   1935                 PairConnectionTypes.find(VPPair(Q.second, Q.first));
   1936               assert(R != PairConnectionTypes.end() &&
   1937                      "Cannot find pair connection type");
   1938               Type *Ty1 = Q.second.first->getType(),
   1939                    *Ty2 = Q.second.second->getType();
   1940               Type *VTy = getVecTypeForPair(Ty1, Ty2);
   1941               if ((R->second == PairConnectionDirect && FlipOrder) ||
   1942                   (R->second == PairConnectionSwap && !FlipOrder)  ||
   1943                   R->second == PairConnectionSplat) {
   1944                 int ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
   1945                                                    VTy, VTy);
   1946 
   1947                 if (VTy->getVectorNumElements() == 2) {
   1948                   if (R->second == PairConnectionSplat)
   1949                     ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
   1950                       TargetTransformInfo::SK_Broadcast, VTy));
   1951                   else
   1952                     ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
   1953                       TargetTransformInfo::SK_Reverse, VTy));
   1954                 }
   1955 
   1956                 DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" <<
   1957                   *Q.second.first << " <-> " << *Q.second.second <<
   1958                     "} -> {" <<
   1959                   *S->first << " <-> " << *S->second << "} = " <<
   1960                    ESContrib << "\n");
   1961                 EffSize -= ESContrib;
   1962               }
   1963             }
   1964           }
   1965 
   1966           // Compute the cost of outgoing edges. We assume that edges outgoing
   1967           // to shuffles, inserts or extracts can be merged, and so contribute
   1968           // no additional cost.
   1969           if (!S->first->getType()->isVoidTy()) {
   1970             Type *Ty1 = S->first->getType(),
   1971                  *Ty2 = S->second->getType();
   1972             Type *VTy = getVecTypeForPair(Ty1, Ty2);
   1973 
   1974             bool NeedsExtraction = false;
   1975             for (User *U : S->first->users()) {
   1976               if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(U)) {
   1977                 // Shuffle can be folded if it has no other input
   1978                 if (isa<UndefValue>(SI->getOperand(1)))
   1979                   continue;
   1980               }
   1981               if (isa<ExtractElementInst>(U))
   1982                 continue;
   1983               if (PrunedDAGInstrs.count(U))
   1984                 continue;
   1985               NeedsExtraction = true;
   1986               break;
   1987             }
   1988 
   1989             if (NeedsExtraction) {
   1990               int ESContrib;
   1991               if (Ty1->isVectorTy()) {
   1992                 ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
   1993                                                Ty1, VTy);
   1994                 ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
   1995                   TargetTransformInfo::SK_ExtractSubvector, VTy, 0, Ty1));
   1996               } else
   1997                 ESContrib = (int) TTI->getVectorInstrCost(
   1998                                     Instruction::ExtractElement, VTy, 0);
   1999 
   2000               DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" <<
   2001                 *S->first << "} = " << ESContrib << "\n");
   2002               EffSize -= ESContrib;
   2003             }
   2004 
   2005             NeedsExtraction = false;
   2006             for (User *U : S->second->users()) {
   2007               if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(U)) {
   2008                 // Shuffle can be folded if it has no other input
   2009                 if (isa<UndefValue>(SI->getOperand(1)))
   2010                   continue;
   2011               }
   2012               if (isa<ExtractElementInst>(U))
   2013                 continue;
   2014               if (PrunedDAGInstrs.count(U))
   2015                 continue;
   2016               NeedsExtraction = true;
   2017               break;
   2018             }
   2019 
   2020             if (NeedsExtraction) {
   2021               int ESContrib;
   2022               if (Ty2->isVectorTy()) {
   2023                 ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
   2024                                                Ty2, VTy);
   2025                 ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
   2026                   TargetTransformInfo::SK_ExtractSubvector, VTy,
   2027                   Ty1->isVectorTy() ? Ty1->getVectorNumElements() : 1, Ty2));
   2028               } else
   2029                 ESContrib = (int) TTI->getVectorInstrCost(
   2030                                     Instruction::ExtractElement, VTy, 1);
   2031               DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" <<
   2032                 *S->second << "} = " << ESContrib << "\n");
   2033               EffSize -= ESContrib;
   2034             }
   2035           }
   2036 
   2037           // Compute the cost of incoming edges.
   2038           if (!isa<LoadInst>(S->first) && !isa<StoreInst>(S->first)) {
   2039             Instruction *S1 = cast<Instruction>(S->first),
   2040                         *S2 = cast<Instruction>(S->second);
   2041             for (unsigned o = 0; o < S1->getNumOperands(); ++o) {
   2042               Value *O1 = S1->getOperand(o), *O2 = S2->getOperand(o);
   2043 
   2044               // Combining constants into vector constants (or small vector
   2045               // constants into larger ones are assumed free).
   2046               if (isa<Constant>(O1) && isa<Constant>(O2))
   2047                 continue;
   2048 
   2049               if (FlipOrder)
   2050                 std::swap(O1, O2);
   2051 
   2052               ValuePair VP  = ValuePair(O1, O2);
   2053               ValuePair VPR = ValuePair(O2, O1);
   2054 
   2055               // Internal edges are not handled here.
   2056               if (PrunedDAG.count(VP) || PrunedDAG.count(VPR))
   2057                 continue;
   2058 
   2059               Type *Ty1 = O1->getType(),
   2060                    *Ty2 = O2->getType();
   2061               Type *VTy = getVecTypeForPair(Ty1, Ty2);
   2062 
   2063               // Combining vector operations of the same type is also assumed
   2064               // folded with other operations.
   2065               if (Ty1 == Ty2) {
   2066                 // If both are insert elements, then both can be widened.
   2067                 InsertElementInst *IEO1 = dyn_cast<InsertElementInst>(O1),
   2068                                   *IEO2 = dyn_cast<InsertElementInst>(O2);
   2069                 if (IEO1 && IEO2 && isPureIEChain(IEO1) && isPureIEChain(IEO2))
   2070                   continue;
   2071                 // If both are extract elements, and both have the same input
   2072                 // type, then they can be replaced with a shuffle
   2073                 ExtractElementInst *EIO1 = dyn_cast<ExtractElementInst>(O1),
   2074                                    *EIO2 = dyn_cast<ExtractElementInst>(O2);
   2075                 if (EIO1 && EIO2 &&
   2076                     EIO1->getOperand(0)->getType() ==
   2077                       EIO2->getOperand(0)->getType())
   2078                   continue;
   2079                 // If both are a shuffle with equal operand types and only two
   2080                 // unqiue operands, then they can be replaced with a single
   2081                 // shuffle
   2082                 ShuffleVectorInst *SIO1 = dyn_cast<ShuffleVectorInst>(O1),
   2083                                   *SIO2 = dyn_cast<ShuffleVectorInst>(O2);
   2084                 if (SIO1 && SIO2 &&
   2085                     SIO1->getOperand(0)->getType() ==
   2086                       SIO2->getOperand(0)->getType()) {
   2087                   SmallSet<Value *, 4> SIOps;
   2088                   SIOps.insert(SIO1->getOperand(0));
   2089                   SIOps.insert(SIO1->getOperand(1));
   2090                   SIOps.insert(SIO2->getOperand(0));
   2091                   SIOps.insert(SIO2->getOperand(1));
   2092                   if (SIOps.size() <= 2)
   2093                     continue;
   2094                 }
   2095               }
   2096 
   2097               int ESContrib;
   2098               // This pair has already been formed.
   2099               if (IncomingPairs.count(VP)) {
   2100                 continue;
   2101               } else if (IncomingPairs.count(VPR)) {
   2102                 ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
   2103                                                VTy, VTy);
   2104 
   2105                 if (VTy->getVectorNumElements() == 2)
   2106                   ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
   2107                     TargetTransformInfo::SK_Reverse, VTy));
   2108               } else if (!Ty1->isVectorTy() && !Ty2->isVectorTy()) {
   2109                 ESContrib = (int) TTI->getVectorInstrCost(
   2110                                     Instruction::InsertElement, VTy, 0);
   2111                 ESContrib += (int) TTI->getVectorInstrCost(
   2112                                      Instruction::InsertElement, VTy, 1);
   2113               } else if (!Ty1->isVectorTy()) {
   2114                 // O1 needs to be inserted into a vector of size O2, and then
   2115                 // both need to be shuffled together.
   2116                 ESContrib = (int) TTI->getVectorInstrCost(
   2117                                     Instruction::InsertElement, Ty2, 0);
   2118                 ESContrib += (int) getInstrCost(Instruction::ShuffleVector,
   2119                                                 VTy, Ty2);
   2120               } else if (!Ty2->isVectorTy()) {
   2121                 // O2 needs to be inserted into a vector of size O1, and then
   2122                 // both need to be shuffled together.
   2123                 ESContrib = (int) TTI->getVectorInstrCost(
   2124                                     Instruction::InsertElement, Ty1, 0);
   2125                 ESContrib += (int) getInstrCost(Instruction::ShuffleVector,
   2126                                                 VTy, Ty1);
   2127               } else {
   2128                 Type *TyBig = Ty1, *TySmall = Ty2;
   2129                 if (Ty2->getVectorNumElements() > Ty1->getVectorNumElements())
   2130                   std::swap(TyBig, TySmall);
   2131 
   2132                 ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
   2133                                                VTy, TyBig);
   2134                 if (TyBig != TySmall)
   2135                   ESContrib += (int) getInstrCost(Instruction::ShuffleVector,
   2136                                                   TyBig, TySmall);
   2137               }
   2138 
   2139               DEBUG(if (DebugPairSelection) dbgs() << "\tcost {"
   2140                      << *O1 << " <-> " << *O2 << "} = " <<
   2141                      ESContrib << "\n");
   2142               EffSize -= ESContrib;
   2143               IncomingPairs.insert(VP);
   2144             }
   2145           }
   2146         }
   2147 
   2148         if (!HasNontrivialInsts) {
   2149           DEBUG(if (DebugPairSelection) dbgs() <<
   2150                 "\tNo non-trivial instructions in DAG;"
   2151                 " override to zero effective size\n");
   2152           EffSize = 0;
   2153         }
   2154       } else {
   2155         for (DenseSet<ValuePair>::iterator S = PrunedDAG.begin(),
   2156              E = PrunedDAG.end(); S != E; ++S)
   2157           EffSize += (int) getDepthFactor(S->first);
   2158       }
   2159 
   2160       DEBUG(if (DebugPairSelection)
   2161              dbgs() << "BBV: found pruned DAG for pair {"
   2162              << *IJ.first << " <-> " << *IJ.second << "} of depth " <<
   2163              MaxDepth << " and size " << PrunedDAG.size() <<
   2164             " (effective size: " << EffSize << ")\n");
   2165       if (((TTI && !UseChainDepthWithTI) ||
   2166             MaxDepth >= Config.ReqChainDepth) &&
   2167           EffSize > 0 && EffSize > BestEffSize) {
   2168         BestMaxDepth = MaxDepth;
   2169         BestEffSize = EffSize;
   2170         BestDAG = PrunedDAG;
   2171       }
   2172     }
   2173   }
   2174 
   2175   // Given the list of candidate pairs, this function selects those
   2176   // that will be fused into vector instructions.
   2177   void BBVectorize::choosePairs(
   2178                 DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
   2179                 DenseSet<ValuePair> &CandidatePairsSet,
   2180                 DenseMap<ValuePair, int> &CandidatePairCostSavings,
   2181                 std::vector<Value *> &PairableInsts,
   2182                 DenseSet<ValuePair> &FixedOrderPairs,
   2183                 DenseMap<VPPair, unsigned> &PairConnectionTypes,
   2184                 DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
   2185                 DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps,
   2186                 DenseSet<ValuePair> &PairableInstUsers,
   2187                 DenseMap<Value *, Value *>& ChosenPairs) {
   2188     bool UseCycleCheck =
   2189      CandidatePairsSet.size() <= Config.MaxCandPairsForCycleCheck;
   2190 
   2191     DenseMap<Value *, std::vector<Value *> > CandidatePairs2;
   2192     for (DenseSet<ValuePair>::iterator I = CandidatePairsSet.begin(),
   2193          E = CandidatePairsSet.end(); I != E; ++I) {
   2194       std::vector<Value *> &JJ = CandidatePairs2[I->second];
   2195       if (JJ.empty()) JJ.reserve(32);
   2196       JJ.push_back(I->first);
   2197     }
   2198 
   2199     DenseMap<ValuePair, std::vector<ValuePair> > PairableInstUserMap;
   2200     DenseSet<VPPair> PairableInstUserPairSet;
   2201     for (std::vector<Value *>::iterator I = PairableInsts.begin(),
   2202          E = PairableInsts.end(); I != E; ++I) {
   2203       // The number of possible pairings for this variable:
   2204       size_t NumChoices = CandidatePairs.lookup(*I).size();
   2205       if (!NumChoices) continue;
   2206 
   2207       std::vector<Value *> &JJ = CandidatePairs[*I];
   2208 
   2209       // The best pair to choose and its dag:
   2210       size_t BestMaxDepth = 0;
   2211       int BestEffSize = 0;
   2212       DenseSet<ValuePair> BestDAG;
   2213       findBestDAGFor(CandidatePairs, CandidatePairsSet,
   2214                       CandidatePairCostSavings,
   2215                       PairableInsts, FixedOrderPairs, PairConnectionTypes,
   2216                       ConnectedPairs, ConnectedPairDeps,
   2217                       PairableInstUsers, PairableInstUserMap,
   2218                       PairableInstUserPairSet, ChosenPairs,
   2219                       BestDAG, BestMaxDepth, BestEffSize, *I, JJ,
   2220                       UseCycleCheck);
   2221 
   2222       if (BestDAG.empty())
   2223         continue;
   2224 
   2225       // A dag has been chosen (or not) at this point. If no dag was
   2226       // chosen, then this instruction, I, cannot be paired (and is no longer
   2227       // considered).
   2228 
   2229       DEBUG(dbgs() << "BBV: selected pairs in the best DAG for: "
   2230                    << *cast<Instruction>(*I) << "\n");
   2231 
   2232       for (DenseSet<ValuePair>::iterator S = BestDAG.begin(),
   2233            SE2 = BestDAG.end(); S != SE2; ++S) {
   2234         // Insert the members of this dag into the list of chosen pairs.
   2235         ChosenPairs.insert(ValuePair(S->first, S->second));
   2236         DEBUG(dbgs() << "BBV: selected pair: " << *S->first << " <-> " <<
   2237                *S->second << "\n");
   2238 
   2239         // Remove all candidate pairs that have values in the chosen dag.
   2240         std::vector<Value *> &KK = CandidatePairs[S->first];
   2241         for (std::vector<Value *>::iterator K = KK.begin(), KE = KK.end();
   2242              K != KE; ++K) {
   2243           if (*K == S->second)
   2244             continue;
   2245 
   2246           CandidatePairsSet.erase(ValuePair(S->first, *K));
   2247         }
   2248 
   2249         std::vector<Value *> &LL = CandidatePairs2[S->second];
   2250         for (std::vector<Value *>::iterator L = LL.begin(), LE = LL.end();
   2251              L != LE; ++L) {
   2252           if (*L == S->first)
   2253             continue;
   2254 
   2255           CandidatePairsSet.erase(ValuePair(*L, S->second));
   2256         }
   2257 
   2258         std::vector<Value *> &MM = CandidatePairs[S->second];
   2259         for (std::vector<Value *>::iterator M = MM.begin(), ME = MM.end();
   2260              M != ME; ++M) {
   2261           assert(*M != S->first && "Flipped pair in candidate list?");
   2262           CandidatePairsSet.erase(ValuePair(S->second, *M));
   2263         }
   2264 
   2265         std::vector<Value *> &NN = CandidatePairs2[S->first];
   2266         for (std::vector<Value *>::iterator N = NN.begin(), NE = NN.end();
   2267              N != NE; ++N) {
   2268           assert(*N != S->second && "Flipped pair in candidate list?");
   2269           CandidatePairsSet.erase(ValuePair(*N, S->first));
   2270         }
   2271       }
   2272     }
   2273 
   2274     DEBUG(dbgs() << "BBV: selected " << ChosenPairs.size() << " pairs.\n");
   2275   }
   2276 
   2277   std::string getReplacementName(Instruction *I, bool IsInput, unsigned o,
   2278                      unsigned n = 0) {
   2279     if (!I->hasName())
   2280       return "";
   2281 
   2282     return (I->getName() + (IsInput ? ".v.i" : ".v.r") + utostr(o) +
   2283              (n > 0 ? "." + utostr(n) : "")).str();
   2284   }
   2285 
   2286   // Returns the value that is to be used as the pointer input to the vector
   2287   // instruction that fuses I with J.
   2288   Value *BBVectorize::getReplacementPointerInput(LLVMContext& Context,
   2289                      Instruction *I, Instruction *J, unsigned o) {
   2290     Value *IPtr, *JPtr;
   2291     unsigned IAlignment, JAlignment, IAddressSpace, JAddressSpace;
   2292     int64_t OffsetInElmts;
   2293 
   2294     // Note: the analysis might fail here, that is why the pair order has
   2295     // been precomputed (OffsetInElmts must be unused here).
   2296     (void) getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
   2297                           IAddressSpace, JAddressSpace,
   2298                           OffsetInElmts, false);
   2299 
   2300     // The pointer value is taken to be the one with the lowest offset.
   2301     Value *VPtr = IPtr;
   2302 
   2303     Type *ArgTypeI = IPtr->getType()->getPointerElementType();
   2304     Type *ArgTypeJ = JPtr->getType()->getPointerElementType();
   2305     Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
   2306     Type *VArgPtrType
   2307       = PointerType::get(VArgType,
   2308                          IPtr->getType()->getPointerAddressSpace());
   2309     return new BitCastInst(VPtr, VArgPtrType, getReplacementName(I, true, o),
   2310                         /* insert before */ I);
   2311   }
   2312 
   2313   void BBVectorize::fillNewShuffleMask(LLVMContext& Context, Instruction *J,
   2314                      unsigned MaskOffset, unsigned NumInElem,
   2315                      unsigned NumInElem1, unsigned IdxOffset,
   2316                      std::vector<Constant*> &Mask) {
   2317     unsigned NumElem1 = J->getType()->getVectorNumElements();
   2318     for (unsigned v = 0; v < NumElem1; ++v) {
   2319       int m = cast<ShuffleVectorInst>(J)->getMaskValue(v);
   2320       if (m < 0) {
   2321         Mask[v+MaskOffset] = UndefValue::get(Type::getInt32Ty(Context));
   2322       } else {
   2323         unsigned mm = m + (int) IdxOffset;
   2324         if (m >= (int) NumInElem1)
   2325           mm += (int) NumInElem;
   2326 
   2327         Mask[v+MaskOffset] =
   2328           ConstantInt::get(Type::getInt32Ty(Context), mm);
   2329       }
   2330     }
   2331   }
   2332 
   2333   // Returns the value that is to be used as the vector-shuffle mask to the
   2334   // vector instruction that fuses I with J.
   2335   Value *BBVectorize::getReplacementShuffleMask(LLVMContext& Context,
   2336                      Instruction *I, Instruction *J) {
   2337     // This is the shuffle mask. We need to append the second
   2338     // mask to the first, and the numbers need to be adjusted.
   2339 
   2340     Type *ArgTypeI = I->getType();
   2341     Type *ArgTypeJ = J->getType();
   2342     Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
   2343 
   2344     unsigned NumElemI = ArgTypeI->getVectorNumElements();
   2345 
   2346     // Get the total number of elements in the fused vector type.
   2347     // By definition, this must equal the number of elements in
   2348     // the final mask.
   2349     unsigned NumElem = VArgType->getVectorNumElements();
   2350     std::vector<Constant*> Mask(NumElem);
   2351 
   2352     Type *OpTypeI = I->getOperand(0)->getType();
   2353     unsigned NumInElemI = OpTypeI->getVectorNumElements();
   2354     Type *OpTypeJ = J->getOperand(0)->getType();
   2355     unsigned NumInElemJ = OpTypeJ->getVectorNumElements();
   2356 
   2357     // The fused vector will be:
   2358     // -----------------------------------------------------
   2359     // | NumInElemI | NumInElemJ | NumInElemI | NumInElemJ |
   2360     // -----------------------------------------------------
   2361     // from which we'll extract NumElem total elements (where the first NumElemI
   2362     // of them come from the mask in I and the remainder come from the mask
   2363     // in J.
   2364 
   2365     // For the mask from the first pair...
   2366     fillNewShuffleMask(Context, I, 0,        NumInElemJ, NumInElemI,
   2367                        0,          Mask);
   2368 
   2369     // For the mask from the second pair...
   2370     fillNewShuffleMask(Context, J, NumElemI, NumInElemI, NumInElemJ,
   2371                        NumInElemI, Mask);
   2372 
   2373     return ConstantVector::get(Mask);
   2374   }
   2375 
   2376   bool BBVectorize::expandIEChain(LLVMContext& Context, Instruction *I,
   2377                                   Instruction *J, unsigned o, Value *&LOp,
   2378                                   unsigned numElemL,
   2379                                   Type *ArgTypeL, Type *ArgTypeH,
   2380                                   bool IBeforeJ, unsigned IdxOff) {
   2381     bool ExpandedIEChain = false;
   2382     if (InsertElementInst *LIE = dyn_cast<InsertElementInst>(LOp)) {
   2383       // If we have a pure insertelement chain, then this can be rewritten
   2384       // into a chain that directly builds the larger type.
   2385       if (isPureIEChain(LIE)) {
   2386         SmallVector<Value *, 8> VectElemts(numElemL,
   2387           UndefValue::get(ArgTypeL->getScalarType()));
   2388         InsertElementInst *LIENext = LIE;
   2389         do {
   2390           unsigned Idx =
   2391             cast<ConstantInt>(LIENext->getOperand(2))->getSExtValue();
   2392           VectElemts[Idx] = LIENext->getOperand(1);
   2393         } while ((LIENext =
   2394                    dyn_cast<InsertElementInst>(LIENext->getOperand(0))));
   2395 
   2396         LIENext = nullptr;
   2397         Value *LIEPrev = UndefValue::get(ArgTypeH);
   2398         for (unsigned i = 0; i < numElemL; ++i) {
   2399           if (isa<UndefValue>(VectElemts[i])) continue;
   2400           LIENext = InsertElementInst::Create(LIEPrev, VectElemts[i],
   2401                              ConstantInt::get(Type::getInt32Ty(Context),
   2402                                               i + IdxOff),
   2403                              getReplacementName(IBeforeJ ? I : J,
   2404                                                 true, o, i+1));
   2405           LIENext->insertBefore(IBeforeJ ? J : I);
   2406           LIEPrev = LIENext;
   2407         }
   2408 
   2409         LOp = LIENext ? (Value*) LIENext : UndefValue::get(ArgTypeH);
   2410         ExpandedIEChain = true;
   2411       }
   2412     }
   2413 
   2414     return ExpandedIEChain;
   2415   }
   2416 
   2417   static unsigned getNumScalarElements(Type *Ty) {
   2418     if (VectorType *VecTy = dyn_cast<VectorType>(Ty))
   2419       return VecTy->getNumElements();
   2420     return 1;
   2421   }
   2422 
   2423   // Returns the value to be used as the specified operand of the vector
   2424   // instruction that fuses I with J.
   2425   Value *BBVectorize::getReplacementInput(LLVMContext& Context, Instruction *I,
   2426                      Instruction *J, unsigned o, bool IBeforeJ) {
   2427     Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
   2428     Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), 1);
   2429 
   2430     // Compute the fused vector type for this operand
   2431     Type *ArgTypeI = I->getOperand(o)->getType();
   2432     Type *ArgTypeJ = J->getOperand(o)->getType();
   2433     VectorType *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
   2434 
   2435     Instruction *L = I, *H = J;
   2436     Type *ArgTypeL = ArgTypeI, *ArgTypeH = ArgTypeJ;
   2437 
   2438     unsigned numElemL = getNumScalarElements(ArgTypeL);
   2439     unsigned numElemH = getNumScalarElements(ArgTypeH);
   2440 
   2441     Value *LOp = L->getOperand(o);
   2442     Value *HOp = H->getOperand(o);
   2443     unsigned numElem = VArgType->getNumElements();
   2444 
   2445     // First, we check if we can reuse the "original" vector outputs (if these
   2446     // exist). We might need a shuffle.
   2447     ExtractElementInst *LEE = dyn_cast<ExtractElementInst>(LOp);
   2448     ExtractElementInst *HEE = dyn_cast<ExtractElementInst>(HOp);
   2449     ShuffleVectorInst *LSV = dyn_cast<ShuffleVectorInst>(LOp);
   2450     ShuffleVectorInst *HSV = dyn_cast<ShuffleVectorInst>(HOp);
   2451 
   2452     // FIXME: If we're fusing shuffle instructions, then we can't apply this
   2453     // optimization. The input vectors to the shuffle might be a different
   2454     // length from the shuffle outputs. Unfortunately, the replacement
   2455     // shuffle mask has already been formed, and the mask entries are sensitive
   2456     // to the sizes of the inputs.
   2457     bool IsSizeChangeShuffle =
   2458       isa<ShuffleVectorInst>(L) &&
   2459         (LOp->getType() != L->getType() || HOp->getType() != H->getType());
   2460 
   2461     if ((LEE || LSV) && (HEE || HSV) && !IsSizeChangeShuffle) {
   2462       // We can have at most two unique vector inputs.
   2463       bool CanUseInputs = true;
   2464       Value *I1, *I2 = nullptr;
   2465       if (LEE) {
   2466         I1 = LEE->getOperand(0);
   2467       } else {
   2468         I1 = LSV->getOperand(0);
   2469         I2 = LSV->getOperand(1);
   2470         if (I2 == I1 || isa<UndefValue>(I2))
   2471           I2 = nullptr;
   2472       }
   2473 
   2474       if (HEE) {
   2475         Value *I3 = HEE->getOperand(0);
   2476         if (!I2 && I3 != I1)
   2477           I2 = I3;
   2478         else if (I3 != I1 && I3 != I2)
   2479           CanUseInputs = false;
   2480       } else {
   2481         Value *I3 = HSV->getOperand(0);
   2482         if (!I2 && I3 != I1)
   2483           I2 = I3;
   2484         else if (I3 != I1 && I3 != I2)
   2485           CanUseInputs = false;
   2486 
   2487         if (CanUseInputs) {
   2488           Value *I4 = HSV->getOperand(1);
   2489           if (!isa<UndefValue>(I4)) {
   2490             if (!I2 && I4 != I1)
   2491               I2 = I4;
   2492             else if (I4 != I1 && I4 != I2)
   2493               CanUseInputs = false;
   2494           }
   2495         }
   2496       }
   2497 
   2498       if (CanUseInputs) {
   2499         unsigned LOpElem =
   2500           cast<Instruction>(LOp)->getOperand(0)->getType()
   2501             ->getVectorNumElements();
   2502 
   2503         unsigned HOpElem =
   2504           cast<Instruction>(HOp)->getOperand(0)->getType()
   2505             ->getVectorNumElements();
   2506 
   2507         // We have one or two input vectors. We need to map each index of the
   2508         // operands to the index of the original vector.
   2509         SmallVector<std::pair<int, int>, 8>  II(numElem);
   2510         for (unsigned i = 0; i < numElemL; ++i) {
   2511           int Idx, INum;
   2512           if (LEE) {
   2513             Idx =
   2514               cast<ConstantInt>(LEE->getOperand(1))->getSExtValue();
   2515             INum = LEE->getOperand(0) == I1 ? 0 : 1;
   2516           } else {
   2517             Idx = LSV->getMaskValue(i);
   2518             if (Idx < (int) LOpElem) {
   2519               INum = LSV->getOperand(0) == I1 ? 0 : 1;
   2520             } else {
   2521               Idx -= LOpElem;
   2522               INum = LSV->getOperand(1) == I1 ? 0 : 1;
   2523             }
   2524           }
   2525 
   2526           II[i] = std::pair<int, int>(Idx, INum);
   2527         }
   2528         for (unsigned i = 0; i < numElemH; ++i) {
   2529           int Idx, INum;
   2530           if (HEE) {
   2531             Idx =
   2532               cast<ConstantInt>(HEE->getOperand(1))->getSExtValue();
   2533             INum = HEE->getOperand(0) == I1 ? 0 : 1;
   2534           } else {
   2535             Idx = HSV->getMaskValue(i);
   2536             if (Idx < (int) HOpElem) {
   2537               INum = HSV->getOperand(0) == I1 ? 0 : 1;
   2538             } else {
   2539               Idx -= HOpElem;
   2540               INum = HSV->getOperand(1) == I1 ? 0 : 1;
   2541             }
   2542           }
   2543 
   2544           II[i + numElemL] = std::pair<int, int>(Idx, INum);
   2545         }
   2546 
   2547         // We now have an array which tells us from which index of which
   2548         // input vector each element of the operand comes.
   2549         VectorType *I1T = cast<VectorType>(I1->getType());
   2550         unsigned I1Elem = I1T->getNumElements();
   2551 
   2552         if (!I2) {
   2553           // In this case there is only one underlying vector input. Check for
   2554           // the trivial case where we can use the input directly.
   2555           if (I1Elem == numElem) {
   2556             bool ElemInOrder = true;
   2557             for (unsigned i = 0; i < numElem; ++i) {
   2558               if (II[i].first != (int) i && II[i].first != -1) {
   2559                 ElemInOrder = false;
   2560                 break;
   2561               }
   2562             }
   2563 
   2564             if (ElemInOrder)
   2565               return I1;
   2566           }
   2567 
   2568           // A shuffle is needed.
   2569           std::vector<Constant *> Mask(numElem);
   2570           for (unsigned i = 0; i < numElem; ++i) {
   2571             int Idx = II[i].first;
   2572             if (Idx == -1)
   2573               Mask[i] = UndefValue::get(Type::getInt32Ty(Context));
   2574             else
   2575               Mask[i] = ConstantInt::get(Type::getInt32Ty(Context), Idx);
   2576           }
   2577 
   2578           Instruction *S =
   2579             new ShuffleVectorInst(I1, UndefValue::get(I1T),
   2580                                   ConstantVector::get(Mask),
   2581                                   getReplacementName(IBeforeJ ? I : J,
   2582                                                      true, o));
   2583           S->insertBefore(IBeforeJ ? J : I);
   2584           return S;
   2585         }
   2586 
   2587         VectorType *I2T = cast<VectorType>(I2->getType());
   2588         unsigned I2Elem = I2T->getNumElements();
   2589 
   2590         // This input comes from two distinct vectors. The first step is to
   2591         // make sure that both vectors are the same length. If not, the
   2592         // smaller one will need to grow before they can be shuffled together.
   2593         if (I1Elem < I2Elem) {
   2594           std::vector<Constant *> Mask(I2Elem);
   2595           unsigned v = 0;
   2596           for (; v < I1Elem; ++v)
   2597             Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
   2598           for (; v < I2Elem; ++v)
   2599             Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
   2600 
   2601           Instruction *NewI1 =
   2602             new ShuffleVectorInst(I1, UndefValue::get(I1T),
   2603                                   ConstantVector::get(Mask),
   2604                                   getReplacementName(IBeforeJ ? I : J,
   2605                                                      true, o, 1));
   2606           NewI1->insertBefore(IBeforeJ ? J : I);
   2607           I1 = NewI1;
   2608           I1Elem = I2Elem;
   2609         } else if (I1Elem > I2Elem) {
   2610           std::vector<Constant *> Mask(I1Elem);
   2611           unsigned v = 0;
   2612           for (; v < I2Elem; ++v)
   2613             Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
   2614           for (; v < I1Elem; ++v)
   2615             Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
   2616 
   2617           Instruction *NewI2 =
   2618             new ShuffleVectorInst(I2, UndefValue::get(I2T),
   2619                                   ConstantVector::get(Mask),
   2620                                   getReplacementName(IBeforeJ ? I : J,
   2621                                                      true, o, 1));
   2622           NewI2->insertBefore(IBeforeJ ? J : I);
   2623           I2 = NewI2;
   2624         }
   2625 
   2626         // Now that both I1 and I2 are the same length we can shuffle them
   2627         // together (and use the result).
   2628         std::vector<Constant *> Mask(numElem);
   2629         for (unsigned v = 0; v < numElem; ++v) {
   2630           if (II[v].first == -1) {
   2631             Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
   2632           } else {
   2633             int Idx = II[v].first + II[v].second * I1Elem;
   2634             Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), Idx);
   2635           }
   2636         }
   2637 
   2638         Instruction *NewOp =
   2639           new ShuffleVectorInst(I1, I2, ConstantVector::get(Mask),
   2640                                 getReplacementName(IBeforeJ ? I : J, true, o));
   2641         NewOp->insertBefore(IBeforeJ ? J : I);
   2642         return NewOp;
   2643       }
   2644     }
   2645 
   2646     Type *ArgType = ArgTypeL;
   2647     if (numElemL < numElemH) {
   2648       if (numElemL == 1 && expandIEChain(Context, I, J, o, HOp, numElemH,
   2649                                          ArgTypeL, VArgType, IBeforeJ, 1)) {
   2650         // This is another short-circuit case: we're combining a scalar into
   2651         // a vector that is formed by an IE chain. We've just expanded the IE
   2652         // chain, now insert the scalar and we're done.
   2653 
   2654         Instruction *S = InsertElementInst::Create(HOp, LOp, CV0,
   2655                            getReplacementName(IBeforeJ ? I : J, true, o));
   2656         S->insertBefore(IBeforeJ ? J : I);
   2657         return S;
   2658       } else if (!expandIEChain(Context, I, J, o, LOp, numElemL, ArgTypeL,
   2659                                 ArgTypeH, IBeforeJ)) {
   2660         // The two vector inputs to the shuffle must be the same length,
   2661         // so extend the smaller vector to be the same length as the larger one.
   2662         Instruction *NLOp;
   2663         if (numElemL > 1) {
   2664 
   2665           std::vector<Constant *> Mask(numElemH);
   2666           unsigned v = 0;
   2667           for (; v < numElemL; ++v)
   2668             Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
   2669           for (; v < numElemH; ++v)
   2670             Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
   2671 
   2672           NLOp = new ShuffleVectorInst(LOp, UndefValue::get(ArgTypeL),
   2673                                        ConstantVector::get(Mask),
   2674                                        getReplacementName(IBeforeJ ? I : J,
   2675                                                           true, o, 1));
   2676         } else {
   2677           NLOp = InsertElementInst::Create(UndefValue::get(ArgTypeH), LOp, CV0,
   2678                                            getReplacementName(IBeforeJ ? I : J,
   2679                                                               true, o, 1));
   2680         }
   2681 
   2682         NLOp->insertBefore(IBeforeJ ? J : I);
   2683         LOp = NLOp;
   2684       }
   2685 
   2686       ArgType = ArgTypeH;
   2687     } else if (numElemL > numElemH) {
   2688       if (numElemH == 1 && expandIEChain(Context, I, J, o, LOp, numElemL,
   2689                                          ArgTypeH, VArgType, IBeforeJ)) {
   2690         Instruction *S =
   2691           InsertElementInst::Create(LOp, HOp,
   2692                                     ConstantInt::get(Type::getInt32Ty(Context),
   2693                                                      numElemL),
   2694                                     getReplacementName(IBeforeJ ? I : J,
   2695                                                        true, o));
   2696         S->insertBefore(IBeforeJ ? J : I);
   2697         return S;
   2698       } else if (!expandIEChain(Context, I, J, o, HOp, numElemH, ArgTypeH,
   2699                                 ArgTypeL, IBeforeJ)) {
   2700         Instruction *NHOp;
   2701         if (numElemH > 1) {
   2702           std::vector<Constant *> Mask(numElemL);
   2703           unsigned v = 0;
   2704           for (; v < numElemH; ++v)
   2705             Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
   2706           for (; v < numElemL; ++v)
   2707             Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
   2708 
   2709           NHOp = new ShuffleVectorInst(HOp, UndefValue::get(ArgTypeH),
   2710                                        ConstantVector::get(Mask),
   2711                                        getReplacementName(IBeforeJ ? I : J,
   2712                                                           true, o, 1));
   2713         } else {
   2714           NHOp = InsertElementInst::Create(UndefValue::get(ArgTypeL), HOp, CV0,
   2715                                            getReplacementName(IBeforeJ ? I : J,
   2716                                                               true, o, 1));
   2717         }
   2718 
   2719         NHOp->insertBefore(IBeforeJ ? J : I);
   2720         HOp = NHOp;
   2721       }
   2722     }
   2723 
   2724     if (ArgType->isVectorTy()) {
   2725       unsigned numElem = VArgType->getVectorNumElements();
   2726       std::vector<Constant*> Mask(numElem);
   2727       for (unsigned v = 0; v < numElem; ++v) {
   2728         unsigned Idx = v;
   2729         // If the low vector was expanded, we need to skip the extra
   2730         // undefined entries.
   2731         if (v >= numElemL && numElemH > numElemL)
   2732           Idx += (numElemH - numElemL);
   2733         Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), Idx);
   2734       }
   2735 
   2736       Instruction *BV = new ShuffleVectorInst(LOp, HOp,
   2737                           ConstantVector::get(Mask),
   2738                           getReplacementName(IBeforeJ ? I : J, true, o));
   2739       BV->insertBefore(IBeforeJ ? J : I);
   2740       return BV;
   2741     }
   2742 
   2743     Instruction *BV1 = InsertElementInst::Create(
   2744                                           UndefValue::get(VArgType), LOp, CV0,
   2745                                           getReplacementName(IBeforeJ ? I : J,
   2746                                                              true, o, 1));
   2747     BV1->insertBefore(IBeforeJ ? J : I);
   2748     Instruction *BV2 = InsertElementInst::Create(BV1, HOp, CV1,
   2749                                           getReplacementName(IBeforeJ ? I : J,
   2750                                                              true, o, 2));
   2751     BV2->insertBefore(IBeforeJ ? J : I);
   2752     return BV2;
   2753   }
   2754 
   2755   // This function creates an array of values that will be used as the inputs
   2756   // to the vector instruction that fuses I with J.
   2757   void BBVectorize::getReplacementInputsForPair(LLVMContext& Context,
   2758                      Instruction *I, Instruction *J,
   2759                      SmallVectorImpl<Value *> &ReplacedOperands,
   2760                      bool IBeforeJ) {
   2761     unsigned NumOperands = I->getNumOperands();
   2762 
   2763     for (unsigned p = 0, o = NumOperands-1; p < NumOperands; ++p, --o) {
   2764       // Iterate backward so that we look at the store pointer
   2765       // first and know whether or not we need to flip the inputs.
   2766 
   2767       if (isa<LoadInst>(I) || (o == 1 && isa<StoreInst>(I))) {
   2768         // This is the pointer for a load/store instruction.
   2769         ReplacedOperands[o] = getReplacementPointerInput(Context, I, J, o);
   2770         continue;
   2771       } else if (isa<CallInst>(I)) {
   2772         Function *F = cast<CallInst>(I)->getCalledFunction();
   2773         Intrinsic::ID IID = (Intrinsic::ID) F->getIntrinsicID();
   2774         if (o == NumOperands-1) {
   2775           BasicBlock &BB = *I->getParent();
   2776 
   2777           Module *M = BB.getParent()->getParent();
   2778           Type *ArgTypeI = I->getType();
   2779           Type *ArgTypeJ = J->getType();
   2780           Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
   2781 
   2782           ReplacedOperands[o] = Intrinsic::getDeclaration(M, IID, VArgType);
   2783           continue;
   2784         } else if ((IID == Intrinsic::powi || IID == Intrinsic::ctlz ||
   2785                     IID == Intrinsic::cttz) && o == 1) {
   2786           // The second argument of powi/ctlz/cttz is a single integer/constant
   2787           // and we've already checked that both arguments are equal.
   2788           // As a result, we just keep I's second argument.
   2789           ReplacedOperands[o] = I->getOperand(o);
   2790           continue;
   2791         }
   2792       } else if (isa<ShuffleVectorInst>(I) && o == NumOperands-1) {
   2793         ReplacedOperands[o] = getReplacementShuffleMask(Context, I, J);
   2794         continue;
   2795       }
   2796 
   2797       ReplacedOperands[o] = getReplacementInput(Context, I, J, o, IBeforeJ);
   2798     }
   2799   }
   2800 
   2801   // This function creates two values that represent the outputs of the
   2802   // original I and J instructions. These are generally vector shuffles
   2803   // or extracts. In many cases, these will end up being unused and, thus,
   2804   // eliminated by later passes.
   2805   void BBVectorize::replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
   2806                      Instruction *J, Instruction *K,
   2807                      Instruction *&InsertionPt,
   2808                      Instruction *&K1, Instruction *&K2) {
   2809     if (isa<StoreInst>(I)) {
   2810       AA->replaceWithNewValue(I, K);
   2811       AA->replaceWithNewValue(J, K);
   2812     } else {
   2813       Type *IType = I->getType();
   2814       Type *JType = J->getType();
   2815 
   2816       VectorType *VType = getVecTypeForPair(IType, JType);
   2817       unsigned numElem = VType->getNumElements();
   2818 
   2819       unsigned numElemI = getNumScalarElements(IType);
   2820       unsigned numElemJ = getNumScalarElements(JType);
   2821 
   2822       if (IType->isVectorTy()) {
   2823         std::vector<Constant*> Mask1(numElemI), Mask2(numElemI);
   2824         for (unsigned v = 0; v < numElemI; ++v) {
   2825           Mask1[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
   2826           Mask2[v] = ConstantInt::get(Type::getInt32Ty(Context), numElemJ+v);
   2827         }
   2828 
   2829         K1 = new ShuffleVectorInst(K, UndefValue::get(VType),
   2830                                    ConstantVector::get( Mask1),
   2831                                    getReplacementName(K, false, 1));
   2832       } else {
   2833         Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
   2834         K1 = ExtractElementInst::Create(K, CV0,
   2835                                           getReplacementName(K, false, 1));
   2836       }
   2837 
   2838       if (JType->isVectorTy()) {
   2839         std::vector<Constant*> Mask1(numElemJ), Mask2(numElemJ);
   2840         for (unsigned v = 0; v < numElemJ; ++v) {
   2841           Mask1[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
   2842           Mask2[v] = ConstantInt::get(Type::getInt32Ty(Context), numElemI+v);
   2843         }
   2844 
   2845         K2 = new ShuffleVectorInst(K, UndefValue::get(VType),
   2846                                    ConstantVector::get( Mask2),
   2847                                    getReplacementName(K, false, 2));
   2848       } else {
   2849         Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), numElem-1);
   2850         K2 = ExtractElementInst::Create(K, CV1,
   2851                                           getReplacementName(K, false, 2));
   2852       }
   2853 
   2854       K1->insertAfter(K);
   2855       K2->insertAfter(K1);
   2856       InsertionPt = K2;
   2857     }
   2858   }
   2859 
   2860   // Move all uses of the function I (including pairing-induced uses) after J.
   2861   bool BBVectorize::canMoveUsesOfIAfterJ(BasicBlock &BB,
   2862                      DenseSet<ValuePair> &LoadMoveSetPairs,
   2863                      Instruction *I, Instruction *J) {
   2864     // Skip to the first instruction past I.
   2865     BasicBlock::iterator L = std::next(BasicBlock::iterator(I));
   2866 
   2867     DenseSet<Value *> Users;
   2868     AliasSetTracker WriteSet(*AA);
   2869     if (I->mayWriteToMemory()) WriteSet.add(I);
   2870 
   2871     for (; cast<Instruction>(L) != J; ++L)
   2872       (void) trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSetPairs);
   2873 
   2874     assert(cast<Instruction>(L) == J &&
   2875       "Tracking has not proceeded far enough to check for dependencies");
   2876     // If J is now in the use set of I, then trackUsesOfI will return true
   2877     // and we have a dependency cycle (and the fusing operation must abort).
   2878     return !trackUsesOfI(Users, WriteSet, I, J, true, &LoadMoveSetPairs);
   2879   }
   2880 
   2881   // Move all uses of the function I (including pairing-induced uses) after J.
   2882   void BBVectorize::moveUsesOfIAfterJ(BasicBlock &BB,
   2883                      DenseSet<ValuePair> &LoadMoveSetPairs,
   2884                      Instruction *&InsertionPt,
   2885                      Instruction *I, Instruction *J) {
   2886     // Skip to the first instruction past I.
   2887     BasicBlock::iterator L = std::next(BasicBlock::iterator(I));
   2888 
   2889     DenseSet<Value *> Users;
   2890     AliasSetTracker WriteSet(*AA);
   2891     if (I->mayWriteToMemory()) WriteSet.add(I);
   2892 
   2893     for (; cast<Instruction>(L) != J;) {
   2894       if (trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSetPairs)) {
   2895         // Move this instruction
   2896         Instruction *InstToMove = L; ++L;
   2897 
   2898         DEBUG(dbgs() << "BBV: moving: " << *InstToMove <<
   2899                         " to after " << *InsertionPt << "\n");
   2900         InstToMove->removeFromParent();
   2901         InstToMove->insertAfter(InsertionPt);
   2902         InsertionPt = InstToMove;
   2903       } else {
   2904         ++L;
   2905       }
   2906     }
   2907   }
   2908 
   2909   // Collect all load instruction that are in the move set of a given first
   2910   // pair member.  These loads depend on the first instruction, I, and so need
   2911   // to be moved after J (the second instruction) when the pair is fused.
   2912   void BBVectorize::collectPairLoadMoveSet(BasicBlock &BB,
   2913                      DenseMap<Value *, Value *> &ChosenPairs,
   2914                      DenseMap<Value *, std::vector<Value *> > &LoadMoveSet,
   2915                      DenseSet<ValuePair> &LoadMoveSetPairs,
   2916                      Instruction *I) {
   2917     // Skip to the first instruction past I.
   2918     BasicBlock::iterator L = std::next(BasicBlock::iterator(I));
   2919 
   2920     DenseSet<Value *> Users;
   2921     AliasSetTracker WriteSet(*AA);
   2922     if (I->mayWriteToMemory()) WriteSet.add(I);
   2923 
   2924     // Note: We cannot end the loop when we reach J because J could be moved
   2925     // farther down the use chain by another instruction pairing. Also, J
   2926     // could be before I if this is an inverted input.
   2927     for (BasicBlock::iterator E = BB.end(); cast<Instruction>(L) != E; ++L) {
   2928       if (trackUsesOfI(Users, WriteSet, I, L)) {
   2929         if (L->mayReadFromMemory()) {
   2930           LoadMoveSet[L].push_back(I);
   2931           LoadMoveSetPairs.insert(ValuePair(L, I));
   2932         }
   2933       }
   2934     }
   2935   }
   2936 
   2937   // In cases where both load/stores and the computation of their pointers
   2938   // are chosen for vectorization, we can end up in a situation where the
   2939   // aliasing analysis starts returning different query results as the
   2940   // process of fusing instruction pairs continues. Because the algorithm
   2941   // relies on finding the same use dags here as were found earlier, we'll
   2942   // need to precompute the necessary aliasing information here and then
   2943   // manually update it during the fusion process.
   2944   void BBVectorize::collectLoadMoveSet(BasicBlock &BB,
   2945                      std::vector<Value *> &PairableInsts,
   2946                      DenseMap<Value *, Value *> &ChosenPairs,
   2947                      DenseMap<Value *, std::vector<Value *> > &LoadMoveSet,
   2948                      DenseSet<ValuePair> &LoadMoveSetPairs) {
   2949     for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
   2950          PIE = PairableInsts.end(); PI != PIE; ++PI) {
   2951       DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(*PI);
   2952       if (P == ChosenPairs.end()) continue;
   2953 
   2954       Instruction *I = cast<Instruction>(P->first);
   2955       collectPairLoadMoveSet(BB, ChosenPairs, LoadMoveSet,
   2956                              LoadMoveSetPairs, I);
   2957     }
   2958   }
   2959 
   2960   // This function fuses the chosen instruction pairs into vector instructions,
   2961   // taking care preserve any needed scalar outputs and, then, it reorders the
   2962   // remaining instructions as needed (users of the first member of the pair
   2963   // need to be moved to after the location of the second member of the pair
   2964   // because the vector instruction is inserted in the location of the pair's
   2965   // second member).
   2966   void BBVectorize::fuseChosenPairs(BasicBlock &BB,
   2967              std::vector<Value *> &PairableInsts,
   2968              DenseMap<Value *, Value *> &ChosenPairs,
   2969              DenseSet<ValuePair> &FixedOrderPairs,
   2970              DenseMap<VPPair, unsigned> &PairConnectionTypes,
   2971              DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
   2972              DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps) {
   2973     LLVMContext& Context = BB.getContext();
   2974 
   2975     // During the vectorization process, the order of the pairs to be fused
   2976     // could be flipped. So we'll add each pair, flipped, into the ChosenPairs
   2977     // list. After a pair is fused, the flipped pair is removed from the list.
   2978     DenseSet<ValuePair> FlippedPairs;
   2979     for (DenseMap<Value *, Value *>::iterator P = ChosenPairs.begin(),
   2980          E = ChosenPairs.end(); P != E; ++P)
   2981       FlippedPairs.insert(ValuePair(P->second, P->first));
   2982     for (DenseSet<ValuePair>::iterator P = FlippedPairs.begin(),
   2983          E = FlippedPairs.end(); P != E; ++P)
   2984       ChosenPairs.insert(*P);
   2985 
   2986     DenseMap<Value *, std::vector<Value *> > LoadMoveSet;
   2987     DenseSet<ValuePair> LoadMoveSetPairs;
   2988     collectLoadMoveSet(BB, PairableInsts, ChosenPairs,
   2989                        LoadMoveSet, LoadMoveSetPairs);
   2990 
   2991     DEBUG(dbgs() << "BBV: initial: \n" << BB << "\n");
   2992 
   2993     for (BasicBlock::iterator PI = BB.getFirstInsertionPt(); PI != BB.end();) {
   2994       DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(PI);
   2995       if (P == ChosenPairs.end()) {
   2996         ++PI;
   2997         continue;
   2998       }
   2999 
   3000       if (getDepthFactor(P->first) == 0) {
   3001         // These instructions are not really fused, but are tracked as though
   3002         // they are. Any case in which it would be interesting to fuse them
   3003         // will be taken care of by InstCombine.
   3004         --NumFusedOps;
   3005         ++PI;
   3006         continue;
   3007       }
   3008 
   3009       Instruction *I = cast<Instruction>(P->first),
   3010         *J = cast<Instruction>(P->second);
   3011 
   3012       DEBUG(dbgs() << "BBV: fusing: " << *I <<
   3013              " <-> " << *J << "\n");
   3014 
   3015       // Remove the pair and flipped pair from the list.
   3016       DenseMap<Value *, Value *>::iterator FP = ChosenPairs.find(P->second);
   3017       assert(FP != ChosenPairs.end() && "Flipped pair not found in list");
   3018       ChosenPairs.erase(FP);
   3019       ChosenPairs.erase(P);
   3020 
   3021       if (!canMoveUsesOfIAfterJ(BB, LoadMoveSetPairs, I, J)) {
   3022         DEBUG(dbgs() << "BBV: fusion of: " << *I <<
   3023                " <-> " << *J <<
   3024                " aborted because of non-trivial dependency cycle\n");
   3025         --NumFusedOps;
   3026         ++PI;
   3027         continue;
   3028       }
   3029 
   3030       // If the pair must have the other order, then flip it.
   3031       bool FlipPairOrder = FixedOrderPairs.count(ValuePair(J, I));
   3032       if (!FlipPairOrder && !FixedOrderPairs.count(ValuePair(I, J))) {
   3033         // This pair does not have a fixed order, and so we might want to
   3034         // flip it if that will yield fewer shuffles. We count the number
   3035         // of dependencies connected via swaps, and those directly connected,
   3036         // and flip the order if the number of swaps is greater.
   3037         bool OrigOrder = true;
   3038         DenseMap<ValuePair, std::vector<ValuePair> >::iterator IJ =
   3039           ConnectedPairDeps.find(ValuePair(I, J));
   3040         if (IJ == ConnectedPairDeps.end()) {
   3041           IJ = ConnectedPairDeps.find(ValuePair(J, I));
   3042           OrigOrder = false;
   3043         }
   3044 
   3045         if (IJ != ConnectedPairDeps.end()) {
   3046           unsigned NumDepsDirect = 0, NumDepsSwap = 0;
   3047           for (std::vector<ValuePair>::iterator T = IJ->second.begin(),
   3048                TE = IJ->second.end(); T != TE; ++T) {
   3049             VPPair Q(IJ->first, *T);
   3050             DenseMap<VPPair, unsigned>::iterator R =
   3051               PairConnectionTypes.find(VPPair(Q.second, Q.first));
   3052             assert(R != PairConnectionTypes.end() &&
   3053                    "Cannot find pair connection type");
   3054             if (R->second == PairConnectionDirect)
   3055               ++NumDepsDirect;
   3056             else if (R->second == PairConnectionSwap)
   3057               ++NumDepsSwap;
   3058           }
   3059 
   3060           if (!OrigOrder)
   3061             std::swap(NumDepsDirect, NumDepsSwap);
   3062 
   3063           if (NumDepsSwap > NumDepsDirect) {
   3064             FlipPairOrder = true;
   3065             DEBUG(dbgs() << "BBV: reordering pair: " << *I <<
   3066                             " <-> " << *J << "\n");
   3067           }
   3068         }
   3069       }
   3070 
   3071       Instruction *L = I, *H = J;
   3072       if (FlipPairOrder)
   3073         std::swap(H, L);
   3074 
   3075       // If the pair being fused uses the opposite order from that in the pair
   3076       // connection map, then we need to flip the types.
   3077       DenseMap<ValuePair, std::vector<ValuePair> >::iterator HL =
   3078         ConnectedPairs.find(ValuePair(H, L));
   3079       if (HL != ConnectedPairs.end())
   3080         for (std::vector<ValuePair>::iterator T = HL->second.begin(),
   3081              TE = HL->second.end(); T != TE; ++T) {
   3082           VPPair Q(HL->first, *T);
   3083           DenseMap<VPPair, unsigned>::iterator R = PairConnectionTypes.find(Q);
   3084           assert(R != PairConnectionTypes.end() &&
   3085                  "Cannot find pair connection type");
   3086           if (R->second == PairConnectionDirect)
   3087             R->second = PairConnectionSwap;
   3088           else if (R->second == PairConnectionSwap)
   3089             R->second = PairConnectionDirect;
   3090         }
   3091 
   3092       bool LBeforeH = !FlipPairOrder;
   3093       unsigned NumOperands = I->getNumOperands();
   3094       SmallVector<Value *, 3> ReplacedOperands(NumOperands);
   3095       getReplacementInputsForPair(Context, L, H, ReplacedOperands,
   3096                                   LBeforeH);
   3097 
   3098       // Make a copy of the original operation, change its type to the vector
   3099       // type and replace its operands with the vector operands.
   3100       Instruction *K = L->clone();
   3101       if (L->hasName())
   3102         K->takeName(L);
   3103       else if (H->hasName())
   3104         K->takeName(H);
   3105 
   3106       if (!isa<StoreInst>(K))
   3107         K->mutateType(getVecTypeForPair(L->getType(), H->getType()));
   3108 
   3109       unsigned KnownIDs[] = {
   3110         LLVMContext::MD_tbaa,
   3111         LLVMContext::MD_alias_scope,
   3112         LLVMContext::MD_noalias,
   3113         LLVMContext::MD_fpmath
   3114       };
   3115       combineMetadata(K, H, KnownIDs);
   3116       K->intersectOptionalDataWith(H);
   3117 
   3118       for (unsigned o = 0; o < NumOperands; ++o)
   3119         K->setOperand(o, ReplacedOperands[o]);
   3120 
   3121       K->insertAfter(J);
   3122 
   3123       // Instruction insertion point:
   3124       Instruction *InsertionPt = K;
   3125       Instruction *K1 = nullptr, *K2 = nullptr;
   3126       replaceOutputsOfPair(Context, L, H, K, InsertionPt, K1, K2);
   3127 
   3128       // The use dag of the first original instruction must be moved to after
   3129       // the location of the second instruction. The entire use dag of the
   3130       // first instruction is disjoint from the input dag of the second
   3131       // (by definition), and so commutes with it.
   3132 
   3133       moveUsesOfIAfterJ(BB, LoadMoveSetPairs, InsertionPt, I, J);
   3134 
   3135       if (!isa<StoreInst>(I)) {
   3136         L->replaceAllUsesWith(K1);
   3137         H->replaceAllUsesWith(K2);
   3138         AA->replaceWithNewValue(L, K1);
   3139         AA->replaceWithNewValue(H, K2);
   3140       }
   3141 
   3142       // Instructions that may read from memory may be in the load move set.
   3143       // Once an instruction is fused, we no longer need its move set, and so
   3144       // the values of the map never need to be updated. However, when a load
   3145       // is fused, we need to merge the entries from both instructions in the
   3146       // pair in case those instructions were in the move set of some other
   3147       // yet-to-be-fused pair. The loads in question are the keys of the map.
   3148       if (I->mayReadFromMemory()) {
   3149         std::vector<ValuePair> NewSetMembers;
   3150         DenseMap<Value *, std::vector<Value *> >::iterator II =
   3151           LoadMoveSet.find(I);
   3152         if (II != LoadMoveSet.end())
   3153           for (std::vector<Value *>::iterator N = II->second.begin(),
   3154                NE = II->second.end(); N != NE; ++N)
   3155             NewSetMembers.push_back(ValuePair(K, *N));
   3156         DenseMap<Value *, std::vector<Value *> >::iterator JJ =
   3157           LoadMoveSet.find(J);
   3158         if (JJ != LoadMoveSet.end())
   3159           for (std::vector<Value *>::iterator N = JJ->second.begin(),
   3160                NE = JJ->second.end(); N != NE; ++N)
   3161             NewSetMembers.push_back(ValuePair(K, *N));
   3162         for (std::vector<ValuePair>::iterator A = NewSetMembers.begin(),
   3163              AE = NewSetMembers.end(); A != AE; ++A) {
   3164           LoadMoveSet[A->first].push_back(A->second);
   3165           LoadMoveSetPairs.insert(*A);
   3166         }
   3167       }
   3168 
   3169       // Before removing I, set the iterator to the next instruction.
   3170       PI = std::next(BasicBlock::iterator(I));
   3171       if (cast<Instruction>(PI) == J)
   3172         ++PI;
   3173 
   3174       SE->forgetValue(I);
   3175       SE->forgetValue(J);
   3176       I->eraseFromParent();
   3177       J->eraseFromParent();
   3178 
   3179       DEBUG(if (PrintAfterEveryPair) dbgs() << "BBV: block is now: \n" <<
   3180                                                BB << "\n");
   3181     }
   3182 
   3183     DEBUG(dbgs() << "BBV: final: \n" << BB << "\n");
   3184   }
   3185 }
   3186 
   3187 char BBVectorize::ID = 0;
   3188 static const char bb_vectorize_name[] = "Basic-Block Vectorization";
   3189 INITIALIZE_PASS_BEGIN(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
   3190 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
   3191 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
   3192 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
   3193 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
   3194 INITIALIZE_PASS_END(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
   3195 
   3196 BasicBlockPass *llvm::createBBVectorizePass(const VectorizeConfig &C) {
   3197   return new BBVectorize(C);
   3198 }
   3199 
   3200 bool
   3201 llvm::vectorizeBasicBlock(Pass *P, BasicBlock &BB, const VectorizeConfig &C) {
   3202   BBVectorize BBVectorizer(P, *BB.getParent(), C);
   3203   return BBVectorizer.vectorizeBB(BB);
   3204 }
   3205 
   3206 //===----------------------------------------------------------------------===//
   3207 VectorizeConfig::VectorizeConfig() {
   3208   VectorBits = ::VectorBits;
   3209   VectorizeBools = !::NoBools;
   3210   VectorizeInts = !::NoInts;
   3211   VectorizeFloats = !::NoFloats;
   3212   VectorizePointers = !::NoPointers;
   3213   VectorizeCasts = !::NoCasts;
   3214   VectorizeMath = !::NoMath;
   3215   VectorizeBitManipulations = !::NoBitManipulation;
   3216   VectorizeFMA = !::NoFMA;
   3217   VectorizeSelect = !::NoSelect;
   3218   VectorizeCmp = !::NoCmp;
   3219   VectorizeGEP = !::NoGEP;
   3220   VectorizeMemOps = !::NoMemOps;
   3221   AlignedOnly = ::AlignedOnly;
   3222   ReqChainDepth= ::ReqChainDepth;
   3223   SearchLimit = ::SearchLimit;
   3224   MaxCandPairsForCycleCheck = ::MaxCandPairsForCycleCheck;
   3225   SplatBreaksChain = ::SplatBreaksChain;
   3226   MaxInsts = ::MaxInsts;
   3227   MaxPairs = ::MaxPairs;
   3228   MaxIter = ::MaxIter;
   3229   Pow2LenOnly = ::Pow2LenOnly;
   3230   NoMemOpBoost = ::NoMemOpBoost;
   3231   FastDep = ::FastDep;
   3232 }
   3233