Home | History | Annotate | Download | only in ia32
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/v8.h"
      6 
      7 #if V8_TARGET_ARCH_IA32
      8 
      9 #include "src/base/bits.h"
     10 #include "src/bootstrapper.h"
     11 #include "src/code-stubs.h"
     12 #include "src/codegen.h"
     13 #include "src/ic/handler-compiler.h"
     14 #include "src/ic/ic.h"
     15 #include "src/isolate.h"
     16 #include "src/jsregexp.h"
     17 #include "src/regexp-macro-assembler.h"
     18 #include "src/runtime.h"
     19 
     20 namespace v8 {
     21 namespace internal {
     22 
     23 
     24 static void InitializeArrayConstructorDescriptor(
     25     Isolate* isolate, CodeStubDescriptor* descriptor,
     26     int constant_stack_parameter_count) {
     27   // register state
     28   // eax -- number of arguments
     29   // edi -- function
     30   // ebx -- allocation site with elements kind
     31   Address deopt_handler = Runtime::FunctionForId(
     32       Runtime::kArrayConstructor)->entry;
     33 
     34   if (constant_stack_parameter_count == 0) {
     35     descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
     36                            JS_FUNCTION_STUB_MODE);
     37   } else {
     38     descriptor->Initialize(eax, deopt_handler, constant_stack_parameter_count,
     39                            JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
     40   }
     41 }
     42 
     43 
     44 static void InitializeInternalArrayConstructorDescriptor(
     45     Isolate* isolate, CodeStubDescriptor* descriptor,
     46     int constant_stack_parameter_count) {
     47   // register state
     48   // eax -- number of arguments
     49   // edi -- constructor function
     50   Address deopt_handler = Runtime::FunctionForId(
     51       Runtime::kInternalArrayConstructor)->entry;
     52 
     53   if (constant_stack_parameter_count == 0) {
     54     descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
     55                            JS_FUNCTION_STUB_MODE);
     56   } else {
     57     descriptor->Initialize(eax, deopt_handler, constant_stack_parameter_count,
     58                            JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
     59   }
     60 }
     61 
     62 
     63 void ArrayNoArgumentConstructorStub::InitializeDescriptor(
     64     CodeStubDescriptor* descriptor) {
     65   InitializeArrayConstructorDescriptor(isolate(), descriptor, 0);
     66 }
     67 
     68 
     69 void ArraySingleArgumentConstructorStub::InitializeDescriptor(
     70     CodeStubDescriptor* descriptor) {
     71   InitializeArrayConstructorDescriptor(isolate(), descriptor, 1);
     72 }
     73 
     74 
     75 void ArrayNArgumentsConstructorStub::InitializeDescriptor(
     76     CodeStubDescriptor* descriptor) {
     77   InitializeArrayConstructorDescriptor(isolate(), descriptor, -1);
     78 }
     79 
     80 
     81 void InternalArrayNoArgumentConstructorStub::InitializeDescriptor(
     82     CodeStubDescriptor* descriptor) {
     83   InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 0);
     84 }
     85 
     86 
     87 void InternalArraySingleArgumentConstructorStub::InitializeDescriptor(
     88     CodeStubDescriptor* descriptor) {
     89   InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 1);
     90 }
     91 
     92 
     93 void InternalArrayNArgumentsConstructorStub::InitializeDescriptor(
     94     CodeStubDescriptor* descriptor) {
     95   InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, -1);
     96 }
     97 
     98 
     99 #define __ ACCESS_MASM(masm)
    100 
    101 
    102 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
    103                                                ExternalReference miss) {
    104   // Update the static counter each time a new code stub is generated.
    105   isolate()->counters()->code_stubs()->Increment();
    106 
    107   CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
    108   int param_count = descriptor.GetEnvironmentParameterCount();
    109   {
    110     // Call the runtime system in a fresh internal frame.
    111     FrameScope scope(masm, StackFrame::INTERNAL);
    112     DCHECK(param_count == 0 ||
    113            eax.is(descriptor.GetEnvironmentParameterRegister(param_count - 1)));
    114     // Push arguments
    115     for (int i = 0; i < param_count; ++i) {
    116       __ push(descriptor.GetEnvironmentParameterRegister(i));
    117     }
    118     __ CallExternalReference(miss, param_count);
    119   }
    120 
    121   __ ret(0);
    122 }
    123 
    124 
    125 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
    126   // We don't allow a GC during a store buffer overflow so there is no need to
    127   // store the registers in any particular way, but we do have to store and
    128   // restore them.
    129   __ pushad();
    130   if (save_doubles()) {
    131     __ sub(esp, Immediate(kDoubleSize * XMMRegister::kMaxNumRegisters));
    132     for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
    133       XMMRegister reg = XMMRegister::from_code(i);
    134       __ movsd(Operand(esp, i * kDoubleSize), reg);
    135     }
    136   }
    137   const int argument_count = 1;
    138 
    139   AllowExternalCallThatCantCauseGC scope(masm);
    140   __ PrepareCallCFunction(argument_count, ecx);
    141   __ mov(Operand(esp, 0 * kPointerSize),
    142          Immediate(ExternalReference::isolate_address(isolate())));
    143   __ CallCFunction(
    144       ExternalReference::store_buffer_overflow_function(isolate()),
    145       argument_count);
    146   if (save_doubles()) {
    147     for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
    148       XMMRegister reg = XMMRegister::from_code(i);
    149       __ movsd(reg, Operand(esp, i * kDoubleSize));
    150     }
    151     __ add(esp, Immediate(kDoubleSize * XMMRegister::kMaxNumRegisters));
    152   }
    153   __ popad();
    154   __ ret(0);
    155 }
    156 
    157 
    158 class FloatingPointHelper : public AllStatic {
    159  public:
    160   enum ArgLocation {
    161     ARGS_ON_STACK,
    162     ARGS_IN_REGISTERS
    163   };
    164 
    165   // Code pattern for loading a floating point value. Input value must
    166   // be either a smi or a heap number object (fp value). Requirements:
    167   // operand in register number. Returns operand as floating point number
    168   // on FPU stack.
    169   static void LoadFloatOperand(MacroAssembler* masm, Register number);
    170 
    171   // Test if operands are smi or number objects (fp). Requirements:
    172   // operand_1 in eax, operand_2 in edx; falls through on float
    173   // operands, jumps to the non_float label otherwise.
    174   static void CheckFloatOperands(MacroAssembler* masm,
    175                                  Label* non_float,
    176                                  Register scratch);
    177 
    178   // Test if operands are numbers (smi or HeapNumber objects), and load
    179   // them into xmm0 and xmm1 if they are.  Jump to label not_numbers if
    180   // either operand is not a number.  Operands are in edx and eax.
    181   // Leaves operands unchanged.
    182   static void LoadSSE2Operands(MacroAssembler* masm, Label* not_numbers);
    183 };
    184 
    185 
    186 void DoubleToIStub::Generate(MacroAssembler* masm) {
    187   Register input_reg = this->source();
    188   Register final_result_reg = this->destination();
    189   DCHECK(is_truncating());
    190 
    191   Label check_negative, process_64_bits, done, done_no_stash;
    192 
    193   int double_offset = offset();
    194 
    195   // Account for return address and saved regs if input is esp.
    196   if (input_reg.is(esp)) double_offset += 3 * kPointerSize;
    197 
    198   MemOperand mantissa_operand(MemOperand(input_reg, double_offset));
    199   MemOperand exponent_operand(MemOperand(input_reg,
    200                                          double_offset + kDoubleSize / 2));
    201 
    202   Register scratch1;
    203   {
    204     Register scratch_candidates[3] = { ebx, edx, edi };
    205     for (int i = 0; i < 3; i++) {
    206       scratch1 = scratch_candidates[i];
    207       if (!final_result_reg.is(scratch1) && !input_reg.is(scratch1)) break;
    208     }
    209   }
    210   // Since we must use ecx for shifts below, use some other register (eax)
    211   // to calculate the result if ecx is the requested return register.
    212   Register result_reg = final_result_reg.is(ecx) ? eax : final_result_reg;
    213   // Save ecx if it isn't the return register and therefore volatile, or if it
    214   // is the return register, then save the temp register we use in its stead for
    215   // the result.
    216   Register save_reg = final_result_reg.is(ecx) ? eax : ecx;
    217   __ push(scratch1);
    218   __ push(save_reg);
    219 
    220   bool stash_exponent_copy = !input_reg.is(esp);
    221   __ mov(scratch1, mantissa_operand);
    222   if (CpuFeatures::IsSupported(SSE3)) {
    223     CpuFeatureScope scope(masm, SSE3);
    224     // Load x87 register with heap number.
    225     __ fld_d(mantissa_operand);
    226   }
    227   __ mov(ecx, exponent_operand);
    228   if (stash_exponent_copy) __ push(ecx);
    229 
    230   __ and_(ecx, HeapNumber::kExponentMask);
    231   __ shr(ecx, HeapNumber::kExponentShift);
    232   __ lea(result_reg, MemOperand(ecx, -HeapNumber::kExponentBias));
    233   __ cmp(result_reg, Immediate(HeapNumber::kMantissaBits));
    234   __ j(below, &process_64_bits);
    235 
    236   // Result is entirely in lower 32-bits of mantissa
    237   int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize;
    238   if (CpuFeatures::IsSupported(SSE3)) {
    239     __ fstp(0);
    240   }
    241   __ sub(ecx, Immediate(delta));
    242   __ xor_(result_reg, result_reg);
    243   __ cmp(ecx, Immediate(31));
    244   __ j(above, &done);
    245   __ shl_cl(scratch1);
    246   __ jmp(&check_negative);
    247 
    248   __ bind(&process_64_bits);
    249   if (CpuFeatures::IsSupported(SSE3)) {
    250     CpuFeatureScope scope(masm, SSE3);
    251     if (stash_exponent_copy) {
    252       // Already a copy of the exponent on the stack, overwrite it.
    253       STATIC_ASSERT(kDoubleSize == 2 * kPointerSize);
    254       __ sub(esp, Immediate(kDoubleSize / 2));
    255     } else {
    256       // Reserve space for 64 bit answer.
    257       __ sub(esp, Immediate(kDoubleSize));  // Nolint.
    258     }
    259     // Do conversion, which cannot fail because we checked the exponent.
    260     __ fisttp_d(Operand(esp, 0));
    261     __ mov(result_reg, Operand(esp, 0));  // Load low word of answer as result
    262     __ add(esp, Immediate(kDoubleSize));
    263     __ jmp(&done_no_stash);
    264   } else {
    265     // Result must be extracted from shifted 32-bit mantissa
    266     __ sub(ecx, Immediate(delta));
    267     __ neg(ecx);
    268     if (stash_exponent_copy) {
    269       __ mov(result_reg, MemOperand(esp, 0));
    270     } else {
    271       __ mov(result_reg, exponent_operand);
    272     }
    273     __ and_(result_reg,
    274             Immediate(static_cast<uint32_t>(Double::kSignificandMask >> 32)));
    275     __ add(result_reg,
    276            Immediate(static_cast<uint32_t>(Double::kHiddenBit >> 32)));
    277     __ shrd(result_reg, scratch1);
    278     __ shr_cl(result_reg);
    279     __ test(ecx, Immediate(32));
    280     __ cmov(not_equal, scratch1, result_reg);
    281   }
    282 
    283   // If the double was negative, negate the integer result.
    284   __ bind(&check_negative);
    285   __ mov(result_reg, scratch1);
    286   __ neg(result_reg);
    287   if (stash_exponent_copy) {
    288     __ cmp(MemOperand(esp, 0), Immediate(0));
    289   } else {
    290     __ cmp(exponent_operand, Immediate(0));
    291   }
    292     __ cmov(greater, result_reg, scratch1);
    293 
    294   // Restore registers
    295   __ bind(&done);
    296   if (stash_exponent_copy) {
    297     __ add(esp, Immediate(kDoubleSize / 2));
    298   }
    299   __ bind(&done_no_stash);
    300   if (!final_result_reg.is(result_reg)) {
    301     DCHECK(final_result_reg.is(ecx));
    302     __ mov(final_result_reg, result_reg);
    303   }
    304   __ pop(save_reg);
    305   __ pop(scratch1);
    306   __ ret(0);
    307 }
    308 
    309 
    310 void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm,
    311                                            Register number) {
    312   Label load_smi, done;
    313 
    314   __ JumpIfSmi(number, &load_smi, Label::kNear);
    315   __ fld_d(FieldOperand(number, HeapNumber::kValueOffset));
    316   __ jmp(&done, Label::kNear);
    317 
    318   __ bind(&load_smi);
    319   __ SmiUntag(number);
    320   __ push(number);
    321   __ fild_s(Operand(esp, 0));
    322   __ pop(number);
    323 
    324   __ bind(&done);
    325 }
    326 
    327 
    328 void FloatingPointHelper::LoadSSE2Operands(MacroAssembler* masm,
    329                                            Label* not_numbers) {
    330   Label load_smi_edx, load_eax, load_smi_eax, load_float_eax, done;
    331   // Load operand in edx into xmm0, or branch to not_numbers.
    332   __ JumpIfSmi(edx, &load_smi_edx, Label::kNear);
    333   Factory* factory = masm->isolate()->factory();
    334   __ cmp(FieldOperand(edx, HeapObject::kMapOffset), factory->heap_number_map());
    335   __ j(not_equal, not_numbers);  // Argument in edx is not a number.
    336   __ movsd(xmm0, FieldOperand(edx, HeapNumber::kValueOffset));
    337   __ bind(&load_eax);
    338   // Load operand in eax into xmm1, or branch to not_numbers.
    339   __ JumpIfSmi(eax, &load_smi_eax, Label::kNear);
    340   __ cmp(FieldOperand(eax, HeapObject::kMapOffset), factory->heap_number_map());
    341   __ j(equal, &load_float_eax, Label::kNear);
    342   __ jmp(not_numbers);  // Argument in eax is not a number.
    343   __ bind(&load_smi_edx);
    344   __ SmiUntag(edx);  // Untag smi before converting to float.
    345   __ Cvtsi2sd(xmm0, edx);
    346   __ SmiTag(edx);  // Retag smi for heap number overwriting test.
    347   __ jmp(&load_eax);
    348   __ bind(&load_smi_eax);
    349   __ SmiUntag(eax);  // Untag smi before converting to float.
    350   __ Cvtsi2sd(xmm1, eax);
    351   __ SmiTag(eax);  // Retag smi for heap number overwriting test.
    352   __ jmp(&done, Label::kNear);
    353   __ bind(&load_float_eax);
    354   __ movsd(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
    355   __ bind(&done);
    356 }
    357 
    358 
    359 void FloatingPointHelper::CheckFloatOperands(MacroAssembler* masm,
    360                                              Label* non_float,
    361                                              Register scratch) {
    362   Label test_other, done;
    363   // Test if both operands are floats or smi -> scratch=k_is_float;
    364   // Otherwise scratch = k_not_float.
    365   __ JumpIfSmi(edx, &test_other, Label::kNear);
    366   __ mov(scratch, FieldOperand(edx, HeapObject::kMapOffset));
    367   Factory* factory = masm->isolate()->factory();
    368   __ cmp(scratch, factory->heap_number_map());
    369   __ j(not_equal, non_float);  // argument in edx is not a number -> NaN
    370 
    371   __ bind(&test_other);
    372   __ JumpIfSmi(eax, &done, Label::kNear);
    373   __ mov(scratch, FieldOperand(eax, HeapObject::kMapOffset));
    374   __ cmp(scratch, factory->heap_number_map());
    375   __ j(not_equal, non_float);  // argument in eax is not a number -> NaN
    376 
    377   // Fall-through: Both operands are numbers.
    378   __ bind(&done);
    379 }
    380 
    381 
    382 void MathPowStub::Generate(MacroAssembler* masm) {
    383   Factory* factory = isolate()->factory();
    384   const Register exponent = MathPowTaggedDescriptor::exponent();
    385   DCHECK(exponent.is(eax));
    386   const Register base = edx;
    387   const Register scratch = ecx;
    388   const XMMRegister double_result = xmm3;
    389   const XMMRegister double_base = xmm2;
    390   const XMMRegister double_exponent = xmm1;
    391   const XMMRegister double_scratch = xmm4;
    392 
    393   Label call_runtime, done, exponent_not_smi, int_exponent;
    394 
    395   // Save 1 in double_result - we need this several times later on.
    396   __ mov(scratch, Immediate(1));
    397   __ Cvtsi2sd(double_result, scratch);
    398 
    399   if (exponent_type() == ON_STACK) {
    400     Label base_is_smi, unpack_exponent;
    401     // The exponent and base are supplied as arguments on the stack.
    402     // This can only happen if the stub is called from non-optimized code.
    403     // Load input parameters from stack.
    404     __ mov(base, Operand(esp, 2 * kPointerSize));
    405     __ mov(exponent, Operand(esp, 1 * kPointerSize));
    406 
    407     __ JumpIfSmi(base, &base_is_smi, Label::kNear);
    408     __ cmp(FieldOperand(base, HeapObject::kMapOffset),
    409            factory->heap_number_map());
    410     __ j(not_equal, &call_runtime);
    411 
    412     __ movsd(double_base, FieldOperand(base, HeapNumber::kValueOffset));
    413     __ jmp(&unpack_exponent, Label::kNear);
    414 
    415     __ bind(&base_is_smi);
    416     __ SmiUntag(base);
    417     __ Cvtsi2sd(double_base, base);
    418 
    419     __ bind(&unpack_exponent);
    420     __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
    421     __ SmiUntag(exponent);
    422     __ jmp(&int_exponent);
    423 
    424     __ bind(&exponent_not_smi);
    425     __ cmp(FieldOperand(exponent, HeapObject::kMapOffset),
    426            factory->heap_number_map());
    427     __ j(not_equal, &call_runtime);
    428     __ movsd(double_exponent,
    429               FieldOperand(exponent, HeapNumber::kValueOffset));
    430   } else if (exponent_type() == TAGGED) {
    431     __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
    432     __ SmiUntag(exponent);
    433     __ jmp(&int_exponent);
    434 
    435     __ bind(&exponent_not_smi);
    436     __ movsd(double_exponent,
    437               FieldOperand(exponent, HeapNumber::kValueOffset));
    438   }
    439 
    440   if (exponent_type() != INTEGER) {
    441     Label fast_power, try_arithmetic_simplification;
    442     __ DoubleToI(exponent, double_exponent, double_scratch,
    443                  TREAT_MINUS_ZERO_AS_ZERO, &try_arithmetic_simplification,
    444                  &try_arithmetic_simplification,
    445                  &try_arithmetic_simplification);
    446     __ jmp(&int_exponent);
    447 
    448     __ bind(&try_arithmetic_simplification);
    449     // Skip to runtime if possibly NaN (indicated by the indefinite integer).
    450     __ cvttsd2si(exponent, Operand(double_exponent));
    451     __ cmp(exponent, Immediate(0x1));
    452     __ j(overflow, &call_runtime);
    453 
    454     if (exponent_type() == ON_STACK) {
    455       // Detect square root case.  Crankshaft detects constant +/-0.5 at
    456       // compile time and uses DoMathPowHalf instead.  We then skip this check
    457       // for non-constant cases of +/-0.5 as these hardly occur.
    458       Label continue_sqrt, continue_rsqrt, not_plus_half;
    459       // Test for 0.5.
    460       // Load double_scratch with 0.5.
    461       __ mov(scratch, Immediate(0x3F000000u));
    462       __ movd(double_scratch, scratch);
    463       __ cvtss2sd(double_scratch, double_scratch);
    464       // Already ruled out NaNs for exponent.
    465       __ ucomisd(double_scratch, double_exponent);
    466       __ j(not_equal, &not_plus_half, Label::kNear);
    467 
    468       // Calculates square root of base.  Check for the special case of
    469       // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
    470       // According to IEEE-754, single-precision -Infinity has the highest
    471       // 9 bits set and the lowest 23 bits cleared.
    472       __ mov(scratch, 0xFF800000u);
    473       __ movd(double_scratch, scratch);
    474       __ cvtss2sd(double_scratch, double_scratch);
    475       __ ucomisd(double_base, double_scratch);
    476       // Comparing -Infinity with NaN results in "unordered", which sets the
    477       // zero flag as if both were equal.  However, it also sets the carry flag.
    478       __ j(not_equal, &continue_sqrt, Label::kNear);
    479       __ j(carry, &continue_sqrt, Label::kNear);
    480 
    481       // Set result to Infinity in the special case.
    482       __ xorps(double_result, double_result);
    483       __ subsd(double_result, double_scratch);
    484       __ jmp(&done);
    485 
    486       __ bind(&continue_sqrt);
    487       // sqrtsd returns -0 when input is -0.  ECMA spec requires +0.
    488       __ xorps(double_scratch, double_scratch);
    489       __ addsd(double_scratch, double_base);  // Convert -0 to +0.
    490       __ sqrtsd(double_result, double_scratch);
    491       __ jmp(&done);
    492 
    493       // Test for -0.5.
    494       __ bind(&not_plus_half);
    495       // Load double_exponent with -0.5 by substracting 1.
    496       __ subsd(double_scratch, double_result);
    497       // Already ruled out NaNs for exponent.
    498       __ ucomisd(double_scratch, double_exponent);
    499       __ j(not_equal, &fast_power, Label::kNear);
    500 
    501       // Calculates reciprocal of square root of base.  Check for the special
    502       // case of Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
    503       // According to IEEE-754, single-precision -Infinity has the highest
    504       // 9 bits set and the lowest 23 bits cleared.
    505       __ mov(scratch, 0xFF800000u);
    506       __ movd(double_scratch, scratch);
    507       __ cvtss2sd(double_scratch, double_scratch);
    508       __ ucomisd(double_base, double_scratch);
    509       // Comparing -Infinity with NaN results in "unordered", which sets the
    510       // zero flag as if both were equal.  However, it also sets the carry flag.
    511       __ j(not_equal, &continue_rsqrt, Label::kNear);
    512       __ j(carry, &continue_rsqrt, Label::kNear);
    513 
    514       // Set result to 0 in the special case.
    515       __ xorps(double_result, double_result);
    516       __ jmp(&done);
    517 
    518       __ bind(&continue_rsqrt);
    519       // sqrtsd returns -0 when input is -0.  ECMA spec requires +0.
    520       __ xorps(double_exponent, double_exponent);
    521       __ addsd(double_exponent, double_base);  // Convert -0 to +0.
    522       __ sqrtsd(double_exponent, double_exponent);
    523       __ divsd(double_result, double_exponent);
    524       __ jmp(&done);
    525     }
    526 
    527     // Using FPU instructions to calculate power.
    528     Label fast_power_failed;
    529     __ bind(&fast_power);
    530     __ fnclex();  // Clear flags to catch exceptions later.
    531     // Transfer (B)ase and (E)xponent onto the FPU register stack.
    532     __ sub(esp, Immediate(kDoubleSize));
    533     __ movsd(Operand(esp, 0), double_exponent);
    534     __ fld_d(Operand(esp, 0));  // E
    535     __ movsd(Operand(esp, 0), double_base);
    536     __ fld_d(Operand(esp, 0));  // B, E
    537 
    538     // Exponent is in st(1) and base is in st(0)
    539     // B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B)
    540     // FYL2X calculates st(1) * log2(st(0))
    541     __ fyl2x();    // X
    542     __ fld(0);     // X, X
    543     __ frndint();  // rnd(X), X
    544     __ fsub(1);    // rnd(X), X-rnd(X)
    545     __ fxch(1);    // X - rnd(X), rnd(X)
    546     // F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1
    547     __ f2xm1();    // 2^(X-rnd(X)) - 1, rnd(X)
    548     __ fld1();     // 1, 2^(X-rnd(X)) - 1, rnd(X)
    549     __ faddp(1);   // 2^(X-rnd(X)), rnd(X)
    550     // FSCALE calculates st(0) * 2^st(1)
    551     __ fscale();   // 2^X, rnd(X)
    552     __ fstp(1);    // 2^X
    553     // Bail out to runtime in case of exceptions in the status word.
    554     __ fnstsw_ax();
    555     __ test_b(eax, 0x5F);  // We check for all but precision exception.
    556     __ j(not_zero, &fast_power_failed, Label::kNear);
    557     __ fstp_d(Operand(esp, 0));
    558     __ movsd(double_result, Operand(esp, 0));
    559     __ add(esp, Immediate(kDoubleSize));
    560     __ jmp(&done);
    561 
    562     __ bind(&fast_power_failed);
    563     __ fninit();
    564     __ add(esp, Immediate(kDoubleSize));
    565     __ jmp(&call_runtime);
    566   }
    567 
    568   // Calculate power with integer exponent.
    569   __ bind(&int_exponent);
    570   const XMMRegister double_scratch2 = double_exponent;
    571   __ mov(scratch, exponent);  // Back up exponent.
    572   __ movsd(double_scratch, double_base);  // Back up base.
    573   __ movsd(double_scratch2, double_result);  // Load double_exponent with 1.
    574 
    575   // Get absolute value of exponent.
    576   Label no_neg, while_true, while_false;
    577   __ test(scratch, scratch);
    578   __ j(positive, &no_neg, Label::kNear);
    579   __ neg(scratch);
    580   __ bind(&no_neg);
    581 
    582   __ j(zero, &while_false, Label::kNear);
    583   __ shr(scratch, 1);
    584   // Above condition means CF==0 && ZF==0.  This means that the
    585   // bit that has been shifted out is 0 and the result is not 0.
    586   __ j(above, &while_true, Label::kNear);
    587   __ movsd(double_result, double_scratch);
    588   __ j(zero, &while_false, Label::kNear);
    589 
    590   __ bind(&while_true);
    591   __ shr(scratch, 1);
    592   __ mulsd(double_scratch, double_scratch);
    593   __ j(above, &while_true, Label::kNear);
    594   __ mulsd(double_result, double_scratch);
    595   __ j(not_zero, &while_true);
    596 
    597   __ bind(&while_false);
    598   // scratch has the original value of the exponent - if the exponent is
    599   // negative, return 1/result.
    600   __ test(exponent, exponent);
    601   __ j(positive, &done);
    602   __ divsd(double_scratch2, double_result);
    603   __ movsd(double_result, double_scratch2);
    604   // Test whether result is zero.  Bail out to check for subnormal result.
    605   // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
    606   __ xorps(double_scratch2, double_scratch2);
    607   __ ucomisd(double_scratch2, double_result);  // Result cannot be NaN.
    608   // double_exponent aliased as double_scratch2 has already been overwritten
    609   // and may not have contained the exponent value in the first place when the
    610   // exponent is a smi.  We reset it with exponent value before bailing out.
    611   __ j(not_equal, &done);
    612   __ Cvtsi2sd(double_exponent, exponent);
    613 
    614   // Returning or bailing out.
    615   Counters* counters = isolate()->counters();
    616   if (exponent_type() == ON_STACK) {
    617     // The arguments are still on the stack.
    618     __ bind(&call_runtime);
    619     __ TailCallRuntime(Runtime::kMathPowRT, 2, 1);
    620 
    621     // The stub is called from non-optimized code, which expects the result
    622     // as heap number in exponent.
    623     __ bind(&done);
    624     __ AllocateHeapNumber(eax, scratch, base, &call_runtime);
    625     __ movsd(FieldOperand(eax, HeapNumber::kValueOffset), double_result);
    626     __ IncrementCounter(counters->math_pow(), 1);
    627     __ ret(2 * kPointerSize);
    628   } else {
    629     __ bind(&call_runtime);
    630     {
    631       AllowExternalCallThatCantCauseGC scope(masm);
    632       __ PrepareCallCFunction(4, scratch);
    633       __ movsd(Operand(esp, 0 * kDoubleSize), double_base);
    634       __ movsd(Operand(esp, 1 * kDoubleSize), double_exponent);
    635       __ CallCFunction(
    636           ExternalReference::power_double_double_function(isolate()), 4);
    637     }
    638     // Return value is in st(0) on ia32.
    639     // Store it into the (fixed) result register.
    640     __ sub(esp, Immediate(kDoubleSize));
    641     __ fstp_d(Operand(esp, 0));
    642     __ movsd(double_result, Operand(esp, 0));
    643     __ add(esp, Immediate(kDoubleSize));
    644 
    645     __ bind(&done);
    646     __ IncrementCounter(counters->math_pow(), 1);
    647     __ ret(0);
    648   }
    649 }
    650 
    651 
    652 void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
    653   Label miss;
    654   Register receiver = LoadDescriptor::ReceiverRegister();
    655 
    656   NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, eax,
    657                                                           ebx, &miss);
    658   __ bind(&miss);
    659   PropertyAccessCompiler::TailCallBuiltin(
    660       masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
    661 }
    662 
    663 
    664 void LoadIndexedInterceptorStub::Generate(MacroAssembler* masm) {
    665   // Return address is on the stack.
    666   Label slow;
    667 
    668   Register receiver = LoadDescriptor::ReceiverRegister();
    669   Register key = LoadDescriptor::NameRegister();
    670   Register scratch = eax;
    671   DCHECK(!scratch.is(receiver) && !scratch.is(key));
    672 
    673   // Check that the key is an array index, that is Uint32.
    674   __ test(key, Immediate(kSmiTagMask | kSmiSignMask));
    675   __ j(not_zero, &slow);
    676 
    677   // Everything is fine, call runtime.
    678   __ pop(scratch);
    679   __ push(receiver);  // receiver
    680   __ push(key);       // key
    681   __ push(scratch);   // return address
    682 
    683   // Perform tail call to the entry.
    684   ExternalReference ref = ExternalReference(
    685       IC_Utility(IC::kLoadElementWithInterceptor), masm->isolate());
    686   __ TailCallExternalReference(ref, 2, 1);
    687 
    688   __ bind(&slow);
    689   PropertyAccessCompiler::TailCallBuiltin(
    690       masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
    691 }
    692 
    693 
    694 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
    695   // The key is in edx and the parameter count is in eax.
    696   DCHECK(edx.is(ArgumentsAccessReadDescriptor::index()));
    697   DCHECK(eax.is(ArgumentsAccessReadDescriptor::parameter_count()));
    698 
    699   // The displacement is used for skipping the frame pointer on the
    700   // stack. It is the offset of the last parameter (if any) relative
    701   // to the frame pointer.
    702   static const int kDisplacement = 1 * kPointerSize;
    703 
    704   // Check that the key is a smi.
    705   Label slow;
    706   __ JumpIfNotSmi(edx, &slow, Label::kNear);
    707 
    708   // Check if the calling frame is an arguments adaptor frame.
    709   Label adaptor;
    710   __ mov(ebx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
    711   __ mov(ecx, Operand(ebx, StandardFrameConstants::kContextOffset));
    712   __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
    713   __ j(equal, &adaptor, Label::kNear);
    714 
    715   // Check index against formal parameters count limit passed in
    716   // through register eax. Use unsigned comparison to get negative
    717   // check for free.
    718   __ cmp(edx, eax);
    719   __ j(above_equal, &slow, Label::kNear);
    720 
    721   // Read the argument from the stack and return it.
    722   STATIC_ASSERT(kSmiTagSize == 1);
    723   STATIC_ASSERT(kSmiTag == 0);  // Shifting code depends on these.
    724   __ lea(ebx, Operand(ebp, eax, times_2, 0));
    725   __ neg(edx);
    726   __ mov(eax, Operand(ebx, edx, times_2, kDisplacement));
    727   __ ret(0);
    728 
    729   // Arguments adaptor case: Check index against actual arguments
    730   // limit found in the arguments adaptor frame. Use unsigned
    731   // comparison to get negative check for free.
    732   __ bind(&adaptor);
    733   __ mov(ecx, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset));
    734   __ cmp(edx, ecx);
    735   __ j(above_equal, &slow, Label::kNear);
    736 
    737   // Read the argument from the stack and return it.
    738   STATIC_ASSERT(kSmiTagSize == 1);
    739   STATIC_ASSERT(kSmiTag == 0);  // Shifting code depends on these.
    740   __ lea(ebx, Operand(ebx, ecx, times_2, 0));
    741   __ neg(edx);
    742   __ mov(eax, Operand(ebx, edx, times_2, kDisplacement));
    743   __ ret(0);
    744 
    745   // Slow-case: Handle non-smi or out-of-bounds access to arguments
    746   // by calling the runtime system.
    747   __ bind(&slow);
    748   __ pop(ebx);  // Return address.
    749   __ push(edx);
    750   __ push(ebx);
    751   __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
    752 }
    753 
    754 
    755 void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) {
    756   // esp[0] : return address
    757   // esp[4] : number of parameters
    758   // esp[8] : receiver displacement
    759   // esp[12] : function
    760 
    761   // Check if the calling frame is an arguments adaptor frame.
    762   Label runtime;
    763   __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
    764   __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
    765   __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
    766   __ j(not_equal, &runtime, Label::kNear);
    767 
    768   // Patch the arguments.length and the parameters pointer.
    769   __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
    770   __ mov(Operand(esp, 1 * kPointerSize), ecx);
    771   __ lea(edx, Operand(edx, ecx, times_2,
    772               StandardFrameConstants::kCallerSPOffset));
    773   __ mov(Operand(esp, 2 * kPointerSize), edx);
    774 
    775   __ bind(&runtime);
    776   __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
    777 }
    778 
    779 
    780 void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) {
    781   // esp[0] : return address
    782   // esp[4] : number of parameters (tagged)
    783   // esp[8] : receiver displacement
    784   // esp[12] : function
    785 
    786   // ebx = parameter count (tagged)
    787   __ mov(ebx, Operand(esp, 1 * kPointerSize));
    788 
    789   // Check if the calling frame is an arguments adaptor frame.
    790   // TODO(rossberg): Factor out some of the bits that are shared with the other
    791   // Generate* functions.
    792   Label runtime;
    793   Label adaptor_frame, try_allocate;
    794   __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
    795   __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
    796   __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
    797   __ j(equal, &adaptor_frame, Label::kNear);
    798 
    799   // No adaptor, parameter count = argument count.
    800   __ mov(ecx, ebx);
    801   __ jmp(&try_allocate, Label::kNear);
    802 
    803   // We have an adaptor frame. Patch the parameters pointer.
    804   __ bind(&adaptor_frame);
    805   __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
    806   __ lea(edx, Operand(edx, ecx, times_2,
    807                       StandardFrameConstants::kCallerSPOffset));
    808   __ mov(Operand(esp, 2 * kPointerSize), edx);
    809 
    810   // ebx = parameter count (tagged)
    811   // ecx = argument count (smi-tagged)
    812   // esp[4] = parameter count (tagged)
    813   // esp[8] = address of receiver argument
    814   // Compute the mapped parameter count = min(ebx, ecx) in ebx.
    815   __ cmp(ebx, ecx);
    816   __ j(less_equal, &try_allocate, Label::kNear);
    817   __ mov(ebx, ecx);
    818 
    819   __ bind(&try_allocate);
    820 
    821   // Save mapped parameter count.
    822   __ push(ebx);
    823 
    824   // Compute the sizes of backing store, parameter map, and arguments object.
    825   // 1. Parameter map, has 2 extra words containing context and backing store.
    826   const int kParameterMapHeaderSize =
    827       FixedArray::kHeaderSize + 2 * kPointerSize;
    828   Label no_parameter_map;
    829   __ test(ebx, ebx);
    830   __ j(zero, &no_parameter_map, Label::kNear);
    831   __ lea(ebx, Operand(ebx, times_2, kParameterMapHeaderSize));
    832   __ bind(&no_parameter_map);
    833 
    834   // 2. Backing store.
    835   __ lea(ebx, Operand(ebx, ecx, times_2, FixedArray::kHeaderSize));
    836 
    837   // 3. Arguments object.
    838   __ add(ebx, Immediate(Heap::kSloppyArgumentsObjectSize));
    839 
    840   // Do the allocation of all three objects in one go.
    841   __ Allocate(ebx, eax, edx, edi, &runtime, TAG_OBJECT);
    842 
    843   // eax = address of new object(s) (tagged)
    844   // ecx = argument count (smi-tagged)
    845   // esp[0] = mapped parameter count (tagged)
    846   // esp[8] = parameter count (tagged)
    847   // esp[12] = address of receiver argument
    848   // Get the arguments map from the current native context into edi.
    849   Label has_mapped_parameters, instantiate;
    850   __ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
    851   __ mov(edi, FieldOperand(edi, GlobalObject::kNativeContextOffset));
    852   __ mov(ebx, Operand(esp, 0 * kPointerSize));
    853   __ test(ebx, ebx);
    854   __ j(not_zero, &has_mapped_parameters, Label::kNear);
    855   __ mov(
    856       edi,
    857       Operand(edi, Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX)));
    858   __ jmp(&instantiate, Label::kNear);
    859 
    860   __ bind(&has_mapped_parameters);
    861   __ mov(
    862       edi,
    863       Operand(edi, Context::SlotOffset(Context::ALIASED_ARGUMENTS_MAP_INDEX)));
    864   __ bind(&instantiate);
    865 
    866   // eax = address of new object (tagged)
    867   // ebx = mapped parameter count (tagged)
    868   // ecx = argument count (smi-tagged)
    869   // edi = address of arguments map (tagged)
    870   // esp[0] = mapped parameter count (tagged)
    871   // esp[8] = parameter count (tagged)
    872   // esp[12] = address of receiver argument
    873   // Copy the JS object part.
    874   __ mov(FieldOperand(eax, JSObject::kMapOffset), edi);
    875   __ mov(FieldOperand(eax, JSObject::kPropertiesOffset),
    876          masm->isolate()->factory()->empty_fixed_array());
    877   __ mov(FieldOperand(eax, JSObject::kElementsOffset),
    878          masm->isolate()->factory()->empty_fixed_array());
    879 
    880   // Set up the callee in-object property.
    881   STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
    882   __ mov(edx, Operand(esp, 4 * kPointerSize));
    883   __ AssertNotSmi(edx);
    884   __ mov(FieldOperand(eax, JSObject::kHeaderSize +
    885                       Heap::kArgumentsCalleeIndex * kPointerSize),
    886          edx);
    887 
    888   // Use the length (smi tagged) and set that as an in-object property too.
    889   __ AssertSmi(ecx);
    890   STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
    891   __ mov(FieldOperand(eax, JSObject::kHeaderSize +
    892                       Heap::kArgumentsLengthIndex * kPointerSize),
    893          ecx);
    894 
    895   // Set up the elements pointer in the allocated arguments object.
    896   // If we allocated a parameter map, edi will point there, otherwise to the
    897   // backing store.
    898   __ lea(edi, Operand(eax, Heap::kSloppyArgumentsObjectSize));
    899   __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi);
    900 
    901   // eax = address of new object (tagged)
    902   // ebx = mapped parameter count (tagged)
    903   // ecx = argument count (tagged)
    904   // edi = address of parameter map or backing store (tagged)
    905   // esp[0] = mapped parameter count (tagged)
    906   // esp[8] = parameter count (tagged)
    907   // esp[12] = address of receiver argument
    908   // Free a register.
    909   __ push(eax);
    910 
    911   // Initialize parameter map. If there are no mapped arguments, we're done.
    912   Label skip_parameter_map;
    913   __ test(ebx, ebx);
    914   __ j(zero, &skip_parameter_map);
    915 
    916   __ mov(FieldOperand(edi, FixedArray::kMapOffset),
    917          Immediate(isolate()->factory()->sloppy_arguments_elements_map()));
    918   __ lea(eax, Operand(ebx, reinterpret_cast<intptr_t>(Smi::FromInt(2))));
    919   __ mov(FieldOperand(edi, FixedArray::kLengthOffset), eax);
    920   __ mov(FieldOperand(edi, FixedArray::kHeaderSize + 0 * kPointerSize), esi);
    921   __ lea(eax, Operand(edi, ebx, times_2, kParameterMapHeaderSize));
    922   __ mov(FieldOperand(edi, FixedArray::kHeaderSize + 1 * kPointerSize), eax);
    923 
    924   // Copy the parameter slots and the holes in the arguments.
    925   // We need to fill in mapped_parameter_count slots. They index the context,
    926   // where parameters are stored in reverse order, at
    927   //   MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
    928   // The mapped parameter thus need to get indices
    929   //   MIN_CONTEXT_SLOTS+parameter_count-1 ..
    930   //       MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
    931   // We loop from right to left.
    932   Label parameters_loop, parameters_test;
    933   __ push(ecx);
    934   __ mov(eax, Operand(esp, 2 * kPointerSize));
    935   __ mov(ebx, Immediate(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
    936   __ add(ebx, Operand(esp, 4 * kPointerSize));
    937   __ sub(ebx, eax);
    938   __ mov(ecx, isolate()->factory()->the_hole_value());
    939   __ mov(edx, edi);
    940   __ lea(edi, Operand(edi, eax, times_2, kParameterMapHeaderSize));
    941   // eax = loop variable (tagged)
    942   // ebx = mapping index (tagged)
    943   // ecx = the hole value
    944   // edx = address of parameter map (tagged)
    945   // edi = address of backing store (tagged)
    946   // esp[0] = argument count (tagged)
    947   // esp[4] = address of new object (tagged)
    948   // esp[8] = mapped parameter count (tagged)
    949   // esp[16] = parameter count (tagged)
    950   // esp[20] = address of receiver argument
    951   __ jmp(&parameters_test, Label::kNear);
    952 
    953   __ bind(&parameters_loop);
    954   __ sub(eax, Immediate(Smi::FromInt(1)));
    955   __ mov(FieldOperand(edx, eax, times_2, kParameterMapHeaderSize), ebx);
    956   __ mov(FieldOperand(edi, eax, times_2, FixedArray::kHeaderSize), ecx);
    957   __ add(ebx, Immediate(Smi::FromInt(1)));
    958   __ bind(&parameters_test);
    959   __ test(eax, eax);
    960   __ j(not_zero, &parameters_loop, Label::kNear);
    961   __ pop(ecx);
    962 
    963   __ bind(&skip_parameter_map);
    964 
    965   // ecx = argument count (tagged)
    966   // edi = address of backing store (tagged)
    967   // esp[0] = address of new object (tagged)
    968   // esp[4] = mapped parameter count (tagged)
    969   // esp[12] = parameter count (tagged)
    970   // esp[16] = address of receiver argument
    971   // Copy arguments header and remaining slots (if there are any).
    972   __ mov(FieldOperand(edi, FixedArray::kMapOffset),
    973          Immediate(isolate()->factory()->fixed_array_map()));
    974   __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx);
    975 
    976   Label arguments_loop, arguments_test;
    977   __ mov(ebx, Operand(esp, 1 * kPointerSize));
    978   __ mov(edx, Operand(esp, 4 * kPointerSize));
    979   __ sub(edx, ebx);  // Is there a smarter way to do negative scaling?
    980   __ sub(edx, ebx);
    981   __ jmp(&arguments_test, Label::kNear);
    982 
    983   __ bind(&arguments_loop);
    984   __ sub(edx, Immediate(kPointerSize));
    985   __ mov(eax, Operand(edx, 0));
    986   __ mov(FieldOperand(edi, ebx, times_2, FixedArray::kHeaderSize), eax);
    987   __ add(ebx, Immediate(Smi::FromInt(1)));
    988 
    989   __ bind(&arguments_test);
    990   __ cmp(ebx, ecx);
    991   __ j(less, &arguments_loop, Label::kNear);
    992 
    993   // Restore.
    994   __ pop(eax);  // Address of arguments object.
    995   __ pop(ebx);  // Parameter count.
    996 
    997   // Return and remove the on-stack parameters.
    998   __ ret(3 * kPointerSize);
    999 
   1000   // Do the runtime call to allocate the arguments object.
   1001   __ bind(&runtime);
   1002   __ pop(eax);  // Remove saved parameter count.
   1003   __ mov(Operand(esp, 1 * kPointerSize), ecx);  // Patch argument count.
   1004   __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
   1005 }
   1006 
   1007 
   1008 void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
   1009   // esp[0] : return address
   1010   // esp[4] : number of parameters
   1011   // esp[8] : receiver displacement
   1012   // esp[12] : function
   1013 
   1014   // Check if the calling frame is an arguments adaptor frame.
   1015   Label adaptor_frame, try_allocate, runtime;
   1016   __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
   1017   __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
   1018   __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
   1019   __ j(equal, &adaptor_frame, Label::kNear);
   1020 
   1021   // Get the length from the frame.
   1022   __ mov(ecx, Operand(esp, 1 * kPointerSize));
   1023   __ jmp(&try_allocate, Label::kNear);
   1024 
   1025   // Patch the arguments.length and the parameters pointer.
   1026   __ bind(&adaptor_frame);
   1027   __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
   1028   __ mov(Operand(esp, 1 * kPointerSize), ecx);
   1029   __ lea(edx, Operand(edx, ecx, times_2,
   1030                       StandardFrameConstants::kCallerSPOffset));
   1031   __ mov(Operand(esp, 2 * kPointerSize), edx);
   1032 
   1033   // Try the new space allocation. Start out with computing the size of
   1034   // the arguments object and the elements array.
   1035   Label add_arguments_object;
   1036   __ bind(&try_allocate);
   1037   __ test(ecx, ecx);
   1038   __ j(zero, &add_arguments_object, Label::kNear);
   1039   __ lea(ecx, Operand(ecx, times_2, FixedArray::kHeaderSize));
   1040   __ bind(&add_arguments_object);
   1041   __ add(ecx, Immediate(Heap::kStrictArgumentsObjectSize));
   1042 
   1043   // Do the allocation of both objects in one go.
   1044   __ Allocate(ecx, eax, edx, ebx, &runtime, TAG_OBJECT);
   1045 
   1046   // Get the arguments map from the current native context.
   1047   __ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
   1048   __ mov(edi, FieldOperand(edi, GlobalObject::kNativeContextOffset));
   1049   const int offset = Context::SlotOffset(Context::STRICT_ARGUMENTS_MAP_INDEX);
   1050   __ mov(edi, Operand(edi, offset));
   1051 
   1052   __ mov(FieldOperand(eax, JSObject::kMapOffset), edi);
   1053   __ mov(FieldOperand(eax, JSObject::kPropertiesOffset),
   1054          masm->isolate()->factory()->empty_fixed_array());
   1055   __ mov(FieldOperand(eax, JSObject::kElementsOffset),
   1056          masm->isolate()->factory()->empty_fixed_array());
   1057 
   1058   // Get the length (smi tagged) and set that as an in-object property too.
   1059   STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
   1060   __ mov(ecx, Operand(esp, 1 * kPointerSize));
   1061   __ AssertSmi(ecx);
   1062   __ mov(FieldOperand(eax, JSObject::kHeaderSize +
   1063                       Heap::kArgumentsLengthIndex * kPointerSize),
   1064          ecx);
   1065 
   1066   // If there are no actual arguments, we're done.
   1067   Label done;
   1068   __ test(ecx, ecx);
   1069   __ j(zero, &done, Label::kNear);
   1070 
   1071   // Get the parameters pointer from the stack.
   1072   __ mov(edx, Operand(esp, 2 * kPointerSize));
   1073 
   1074   // Set up the elements pointer in the allocated arguments object and
   1075   // initialize the header in the elements fixed array.
   1076   __ lea(edi, Operand(eax, Heap::kStrictArgumentsObjectSize));
   1077   __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi);
   1078   __ mov(FieldOperand(edi, FixedArray::kMapOffset),
   1079          Immediate(isolate()->factory()->fixed_array_map()));
   1080 
   1081   __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx);
   1082   // Untag the length for the loop below.
   1083   __ SmiUntag(ecx);
   1084 
   1085   // Copy the fixed array slots.
   1086   Label loop;
   1087   __ bind(&loop);
   1088   __ mov(ebx, Operand(edx, -1 * kPointerSize));  // Skip receiver.
   1089   __ mov(FieldOperand(edi, FixedArray::kHeaderSize), ebx);
   1090   __ add(edi, Immediate(kPointerSize));
   1091   __ sub(edx, Immediate(kPointerSize));
   1092   __ dec(ecx);
   1093   __ j(not_zero, &loop);
   1094 
   1095   // Return and remove the on-stack parameters.
   1096   __ bind(&done);
   1097   __ ret(3 * kPointerSize);
   1098 
   1099   // Do the runtime call to allocate the arguments object.
   1100   __ bind(&runtime);
   1101   __ TailCallRuntime(Runtime::kNewStrictArguments, 3, 1);
   1102 }
   1103 
   1104 
   1105 void RegExpExecStub::Generate(MacroAssembler* masm) {
   1106   // Just jump directly to runtime if native RegExp is not selected at compile
   1107   // time or if regexp entry in generated code is turned off runtime switch or
   1108   // at compilation.
   1109 #ifdef V8_INTERPRETED_REGEXP
   1110   __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
   1111 #else  // V8_INTERPRETED_REGEXP
   1112 
   1113   // Stack frame on entry.
   1114   //  esp[0]: return address
   1115   //  esp[4]: last_match_info (expected JSArray)
   1116   //  esp[8]: previous index
   1117   //  esp[12]: subject string
   1118   //  esp[16]: JSRegExp object
   1119 
   1120   static const int kLastMatchInfoOffset = 1 * kPointerSize;
   1121   static const int kPreviousIndexOffset = 2 * kPointerSize;
   1122   static const int kSubjectOffset = 3 * kPointerSize;
   1123   static const int kJSRegExpOffset = 4 * kPointerSize;
   1124 
   1125   Label runtime;
   1126   Factory* factory = isolate()->factory();
   1127 
   1128   // Ensure that a RegExp stack is allocated.
   1129   ExternalReference address_of_regexp_stack_memory_address =
   1130       ExternalReference::address_of_regexp_stack_memory_address(isolate());
   1131   ExternalReference address_of_regexp_stack_memory_size =
   1132       ExternalReference::address_of_regexp_stack_memory_size(isolate());
   1133   __ mov(ebx, Operand::StaticVariable(address_of_regexp_stack_memory_size));
   1134   __ test(ebx, ebx);
   1135   __ j(zero, &runtime);
   1136 
   1137   // Check that the first argument is a JSRegExp object.
   1138   __ mov(eax, Operand(esp, kJSRegExpOffset));
   1139   STATIC_ASSERT(kSmiTag == 0);
   1140   __ JumpIfSmi(eax, &runtime);
   1141   __ CmpObjectType(eax, JS_REGEXP_TYPE, ecx);
   1142   __ j(not_equal, &runtime);
   1143 
   1144   // Check that the RegExp has been compiled (data contains a fixed array).
   1145   __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
   1146   if (FLAG_debug_code) {
   1147     __ test(ecx, Immediate(kSmiTagMask));
   1148     __ Check(not_zero, kUnexpectedTypeForRegExpDataFixedArrayExpected);
   1149     __ CmpObjectType(ecx, FIXED_ARRAY_TYPE, ebx);
   1150     __ Check(equal, kUnexpectedTypeForRegExpDataFixedArrayExpected);
   1151   }
   1152 
   1153   // ecx: RegExp data (FixedArray)
   1154   // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
   1155   __ mov(ebx, FieldOperand(ecx, JSRegExp::kDataTagOffset));
   1156   __ cmp(ebx, Immediate(Smi::FromInt(JSRegExp::IRREGEXP)));
   1157   __ j(not_equal, &runtime);
   1158 
   1159   // ecx: RegExp data (FixedArray)
   1160   // Check that the number of captures fit in the static offsets vector buffer.
   1161   __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
   1162   // Check (number_of_captures + 1) * 2 <= offsets vector size
   1163   // Or          number_of_captures * 2 <= offsets vector size - 2
   1164   // Multiplying by 2 comes for free since edx is smi-tagged.
   1165   STATIC_ASSERT(kSmiTag == 0);
   1166   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
   1167   STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
   1168   __ cmp(edx, Isolate::kJSRegexpStaticOffsetsVectorSize - 2);
   1169   __ j(above, &runtime);
   1170 
   1171   // Reset offset for possibly sliced string.
   1172   __ Move(edi, Immediate(0));
   1173   __ mov(eax, Operand(esp, kSubjectOffset));
   1174   __ JumpIfSmi(eax, &runtime);
   1175   __ mov(edx, eax);  // Make a copy of the original subject string.
   1176   __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
   1177   __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
   1178 
   1179   // eax: subject string
   1180   // edx: subject string
   1181   // ebx: subject string instance type
   1182   // ecx: RegExp data (FixedArray)
   1183   // Handle subject string according to its encoding and representation:
   1184   // (1) Sequential two byte?  If yes, go to (9).
   1185   // (2) Sequential one byte?  If yes, go to (6).
   1186   // (3) Anything but sequential or cons?  If yes, go to (7).
   1187   // (4) Cons string.  If the string is flat, replace subject with first string.
   1188   //     Otherwise bailout.
   1189   // (5a) Is subject sequential two byte?  If yes, go to (9).
   1190   // (5b) Is subject external?  If yes, go to (8).
   1191   // (6) One byte sequential.  Load regexp code for one byte.
   1192   // (E) Carry on.
   1193   /// [...]
   1194 
   1195   // Deferred code at the end of the stub:
   1196   // (7) Not a long external string?  If yes, go to (10).
   1197   // (8) External string.  Make it, offset-wise, look like a sequential string.
   1198   // (8a) Is the external string one byte?  If yes, go to (6).
   1199   // (9) Two byte sequential.  Load regexp code for one byte. Go to (E).
   1200   // (10) Short external string or not a string?  If yes, bail out to runtime.
   1201   // (11) Sliced string.  Replace subject with parent. Go to (5a).
   1202 
   1203   Label seq_one_byte_string /* 6 */, seq_two_byte_string /* 9 */,
   1204         external_string /* 8 */, check_underlying /* 5a */,
   1205         not_seq_nor_cons /* 7 */, check_code /* E */,
   1206         not_long_external /* 10 */;
   1207 
   1208   // (1) Sequential two byte?  If yes, go to (9).
   1209   __ and_(ebx, kIsNotStringMask |
   1210                kStringRepresentationMask |
   1211                kStringEncodingMask |
   1212                kShortExternalStringMask);
   1213   STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0);
   1214   __ j(zero, &seq_two_byte_string);  // Go to (9).
   1215 
   1216   // (2) Sequential one byte?  If yes, go to (6).
   1217   // Any other sequential string must be one byte.
   1218   __ and_(ebx, Immediate(kIsNotStringMask |
   1219                          kStringRepresentationMask |
   1220                          kShortExternalStringMask));
   1221   __ j(zero, &seq_one_byte_string, Label::kNear);  // Go to (6).
   1222 
   1223   // (3) Anything but sequential or cons?  If yes, go to (7).
   1224   // We check whether the subject string is a cons, since sequential strings
   1225   // have already been covered.
   1226   STATIC_ASSERT(kConsStringTag < kExternalStringTag);
   1227   STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
   1228   STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
   1229   STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
   1230   __ cmp(ebx, Immediate(kExternalStringTag));
   1231   __ j(greater_equal, &not_seq_nor_cons);  // Go to (7).
   1232 
   1233   // (4) Cons string.  Check that it's flat.
   1234   // Replace subject with first string and reload instance type.
   1235   __ cmp(FieldOperand(eax, ConsString::kSecondOffset), factory->empty_string());
   1236   __ j(not_equal, &runtime);
   1237   __ mov(eax, FieldOperand(eax, ConsString::kFirstOffset));
   1238   __ bind(&check_underlying);
   1239   __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
   1240   __ mov(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
   1241 
   1242   // (5a) Is subject sequential two byte?  If yes, go to (9).
   1243   __ test_b(ebx, kStringRepresentationMask | kStringEncodingMask);
   1244   STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0);
   1245   __ j(zero, &seq_two_byte_string);  // Go to (9).
   1246   // (5b) Is subject external?  If yes, go to (8).
   1247   __ test_b(ebx, kStringRepresentationMask);
   1248   // The underlying external string is never a short external string.
   1249   STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength);
   1250   STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength);
   1251   __ j(not_zero, &external_string);  // Go to (8).
   1252 
   1253   // eax: sequential subject string (or look-alike, external string)
   1254   // edx: original subject string
   1255   // ecx: RegExp data (FixedArray)
   1256   // (6) One byte sequential.  Load regexp code for one byte.
   1257   __ bind(&seq_one_byte_string);
   1258   // Load previous index and check range before edx is overwritten.  We have
   1259   // to use edx instead of eax here because it might have been only made to
   1260   // look like a sequential string when it actually is an external string.
   1261   __ mov(ebx, Operand(esp, kPreviousIndexOffset));
   1262   __ JumpIfNotSmi(ebx, &runtime);
   1263   __ cmp(ebx, FieldOperand(edx, String::kLengthOffset));
   1264   __ j(above_equal, &runtime);
   1265   __ mov(edx, FieldOperand(ecx, JSRegExp::kDataOneByteCodeOffset));
   1266   __ Move(ecx, Immediate(1));  // Type is one byte.
   1267 
   1268   // (E) Carry on.  String handling is done.
   1269   __ bind(&check_code);
   1270   // edx: irregexp code
   1271   // Check that the irregexp code has been generated for the actual string
   1272   // encoding. If it has, the field contains a code object otherwise it contains
   1273   // a smi (code flushing support).
   1274   __ JumpIfSmi(edx, &runtime);
   1275 
   1276   // eax: subject string
   1277   // ebx: previous index (smi)
   1278   // edx: code
   1279   // ecx: encoding of subject string (1 if one_byte, 0 if two_byte);
   1280   // All checks done. Now push arguments for native regexp code.
   1281   Counters* counters = isolate()->counters();
   1282   __ IncrementCounter(counters->regexp_entry_native(), 1);
   1283 
   1284   // Isolates: note we add an additional parameter here (isolate pointer).
   1285   static const int kRegExpExecuteArguments = 9;
   1286   __ EnterApiExitFrame(kRegExpExecuteArguments);
   1287 
   1288   // Argument 9: Pass current isolate address.
   1289   __ mov(Operand(esp, 8 * kPointerSize),
   1290       Immediate(ExternalReference::isolate_address(isolate())));
   1291 
   1292   // Argument 8: Indicate that this is a direct call from JavaScript.
   1293   __ mov(Operand(esp, 7 * kPointerSize), Immediate(1));
   1294 
   1295   // Argument 7: Start (high end) of backtracking stack memory area.
   1296   __ mov(esi, Operand::StaticVariable(address_of_regexp_stack_memory_address));
   1297   __ add(esi, Operand::StaticVariable(address_of_regexp_stack_memory_size));
   1298   __ mov(Operand(esp, 6 * kPointerSize), esi);
   1299 
   1300   // Argument 6: Set the number of capture registers to zero to force global
   1301   // regexps to behave as non-global.  This does not affect non-global regexps.
   1302   __ mov(Operand(esp, 5 * kPointerSize), Immediate(0));
   1303 
   1304   // Argument 5: static offsets vector buffer.
   1305   __ mov(Operand(esp, 4 * kPointerSize),
   1306          Immediate(ExternalReference::address_of_static_offsets_vector(
   1307              isolate())));
   1308 
   1309   // Argument 2: Previous index.
   1310   __ SmiUntag(ebx);
   1311   __ mov(Operand(esp, 1 * kPointerSize), ebx);
   1312 
   1313   // Argument 1: Original subject string.
   1314   // The original subject is in the previous stack frame. Therefore we have to
   1315   // use ebp, which points exactly to one pointer size below the previous esp.
   1316   // (Because creating a new stack frame pushes the previous ebp onto the stack
   1317   // and thereby moves up esp by one kPointerSize.)
   1318   __ mov(esi, Operand(ebp, kSubjectOffset + kPointerSize));
   1319   __ mov(Operand(esp, 0 * kPointerSize), esi);
   1320 
   1321   // esi: original subject string
   1322   // eax: underlying subject string
   1323   // ebx: previous index
   1324   // ecx: encoding of subject string (1 if one_byte 0 if two_byte);
   1325   // edx: code
   1326   // Argument 4: End of string data
   1327   // Argument 3: Start of string data
   1328   // Prepare start and end index of the input.
   1329   // Load the length from the original sliced string if that is the case.
   1330   __ mov(esi, FieldOperand(esi, String::kLengthOffset));
   1331   __ add(esi, edi);  // Calculate input end wrt offset.
   1332   __ SmiUntag(edi);
   1333   __ add(ebx, edi);  // Calculate input start wrt offset.
   1334 
   1335   // ebx: start index of the input string
   1336   // esi: end index of the input string
   1337   Label setup_two_byte, setup_rest;
   1338   __ test(ecx, ecx);
   1339   __ j(zero, &setup_two_byte, Label::kNear);
   1340   __ SmiUntag(esi);
   1341   __ lea(ecx, FieldOperand(eax, esi, times_1, SeqOneByteString::kHeaderSize));
   1342   __ mov(Operand(esp, 3 * kPointerSize), ecx);  // Argument 4.
   1343   __ lea(ecx, FieldOperand(eax, ebx, times_1, SeqOneByteString::kHeaderSize));
   1344   __ mov(Operand(esp, 2 * kPointerSize), ecx);  // Argument 3.
   1345   __ jmp(&setup_rest, Label::kNear);
   1346 
   1347   __ bind(&setup_two_byte);
   1348   STATIC_ASSERT(kSmiTag == 0);
   1349   STATIC_ASSERT(kSmiTagSize == 1);  // esi is smi (powered by 2).
   1350   __ lea(ecx, FieldOperand(eax, esi, times_1, SeqTwoByteString::kHeaderSize));
   1351   __ mov(Operand(esp, 3 * kPointerSize), ecx);  // Argument 4.
   1352   __ lea(ecx, FieldOperand(eax, ebx, times_2, SeqTwoByteString::kHeaderSize));
   1353   __ mov(Operand(esp, 2 * kPointerSize), ecx);  // Argument 3.
   1354 
   1355   __ bind(&setup_rest);
   1356 
   1357   // Locate the code entry and call it.
   1358   __ add(edx, Immediate(Code::kHeaderSize - kHeapObjectTag));
   1359   __ call(edx);
   1360 
   1361   // Drop arguments and come back to JS mode.
   1362   __ LeaveApiExitFrame(true);
   1363 
   1364   // Check the result.
   1365   Label success;
   1366   __ cmp(eax, 1);
   1367   // We expect exactly one result since we force the called regexp to behave
   1368   // as non-global.
   1369   __ j(equal, &success);
   1370   Label failure;
   1371   __ cmp(eax, NativeRegExpMacroAssembler::FAILURE);
   1372   __ j(equal, &failure);
   1373   __ cmp(eax, NativeRegExpMacroAssembler::EXCEPTION);
   1374   // If not exception it can only be retry. Handle that in the runtime system.
   1375   __ j(not_equal, &runtime);
   1376   // Result must now be exception. If there is no pending exception already a
   1377   // stack overflow (on the backtrack stack) was detected in RegExp code but
   1378   // haven't created the exception yet. Handle that in the runtime system.
   1379   // TODO(592): Rerunning the RegExp to get the stack overflow exception.
   1380   ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
   1381                                       isolate());
   1382   __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
   1383   __ mov(eax, Operand::StaticVariable(pending_exception));
   1384   __ cmp(edx, eax);
   1385   __ j(equal, &runtime);
   1386   // For exception, throw the exception again.
   1387 
   1388   // Clear the pending exception variable.
   1389   __ mov(Operand::StaticVariable(pending_exception), edx);
   1390 
   1391   // Special handling of termination exceptions which are uncatchable
   1392   // by javascript code.
   1393   __ cmp(eax, factory->termination_exception());
   1394   Label throw_termination_exception;
   1395   __ j(equal, &throw_termination_exception, Label::kNear);
   1396 
   1397   // Handle normal exception by following handler chain.
   1398   __ Throw(eax);
   1399 
   1400   __ bind(&throw_termination_exception);
   1401   __ ThrowUncatchable(eax);
   1402 
   1403   __ bind(&failure);
   1404   // For failure to match, return null.
   1405   __ mov(eax, factory->null_value());
   1406   __ ret(4 * kPointerSize);
   1407 
   1408   // Load RegExp data.
   1409   __ bind(&success);
   1410   __ mov(eax, Operand(esp, kJSRegExpOffset));
   1411   __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
   1412   __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
   1413   // Calculate number of capture registers (number_of_captures + 1) * 2.
   1414   STATIC_ASSERT(kSmiTag == 0);
   1415   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
   1416   __ add(edx, Immediate(2));  // edx was a smi.
   1417 
   1418   // edx: Number of capture registers
   1419   // Load last_match_info which is still known to be a fast case JSArray.
   1420   // Check that the fourth object is a JSArray object.
   1421   __ mov(eax, Operand(esp, kLastMatchInfoOffset));
   1422   __ JumpIfSmi(eax, &runtime);
   1423   __ CmpObjectType(eax, JS_ARRAY_TYPE, ebx);
   1424   __ j(not_equal, &runtime);
   1425   // Check that the JSArray is in fast case.
   1426   __ mov(ebx, FieldOperand(eax, JSArray::kElementsOffset));
   1427   __ mov(eax, FieldOperand(ebx, HeapObject::kMapOffset));
   1428   __ cmp(eax, factory->fixed_array_map());
   1429   __ j(not_equal, &runtime);
   1430   // Check that the last match info has space for the capture registers and the
   1431   // additional information.
   1432   __ mov(eax, FieldOperand(ebx, FixedArray::kLengthOffset));
   1433   __ SmiUntag(eax);
   1434   __ sub(eax, Immediate(RegExpImpl::kLastMatchOverhead));
   1435   __ cmp(edx, eax);
   1436   __ j(greater, &runtime);
   1437 
   1438   // ebx: last_match_info backing store (FixedArray)
   1439   // edx: number of capture registers
   1440   // Store the capture count.
   1441   __ SmiTag(edx);  // Number of capture registers to smi.
   1442   __ mov(FieldOperand(ebx, RegExpImpl::kLastCaptureCountOffset), edx);
   1443   __ SmiUntag(edx);  // Number of capture registers back from smi.
   1444   // Store last subject and last input.
   1445   __ mov(eax, Operand(esp, kSubjectOffset));
   1446   __ mov(ecx, eax);
   1447   __ mov(FieldOperand(ebx, RegExpImpl::kLastSubjectOffset), eax);
   1448   __ RecordWriteField(ebx,
   1449                       RegExpImpl::kLastSubjectOffset,
   1450                       eax,
   1451                       edi,
   1452                       kDontSaveFPRegs);
   1453   __ mov(eax, ecx);
   1454   __ mov(FieldOperand(ebx, RegExpImpl::kLastInputOffset), eax);
   1455   __ RecordWriteField(ebx,
   1456                       RegExpImpl::kLastInputOffset,
   1457                       eax,
   1458                       edi,
   1459                       kDontSaveFPRegs);
   1460 
   1461   // Get the static offsets vector filled by the native regexp code.
   1462   ExternalReference address_of_static_offsets_vector =
   1463       ExternalReference::address_of_static_offsets_vector(isolate());
   1464   __ mov(ecx, Immediate(address_of_static_offsets_vector));
   1465 
   1466   // ebx: last_match_info backing store (FixedArray)
   1467   // ecx: offsets vector
   1468   // edx: number of capture registers
   1469   Label next_capture, done;
   1470   // Capture register counter starts from number of capture registers and
   1471   // counts down until wraping after zero.
   1472   __ bind(&next_capture);
   1473   __ sub(edx, Immediate(1));
   1474   __ j(negative, &done, Label::kNear);
   1475   // Read the value from the static offsets vector buffer.
   1476   __ mov(edi, Operand(ecx, edx, times_int_size, 0));
   1477   __ SmiTag(edi);
   1478   // Store the smi value in the last match info.
   1479   __ mov(FieldOperand(ebx,
   1480                       edx,
   1481                       times_pointer_size,
   1482                       RegExpImpl::kFirstCaptureOffset),
   1483                       edi);
   1484   __ jmp(&next_capture);
   1485   __ bind(&done);
   1486 
   1487   // Return last match info.
   1488   __ mov(eax, Operand(esp, kLastMatchInfoOffset));
   1489   __ ret(4 * kPointerSize);
   1490 
   1491   // Do the runtime call to execute the regexp.
   1492   __ bind(&runtime);
   1493   __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
   1494 
   1495   // Deferred code for string handling.
   1496   // (7) Not a long external string?  If yes, go to (10).
   1497   __ bind(&not_seq_nor_cons);
   1498   // Compare flags are still set from (3).
   1499   __ j(greater, &not_long_external, Label::kNear);  // Go to (10).
   1500 
   1501   // (8) External string.  Short external strings have been ruled out.
   1502   __ bind(&external_string);
   1503   // Reload instance type.
   1504   __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
   1505   __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
   1506   if (FLAG_debug_code) {
   1507     // Assert that we do not have a cons or slice (indirect strings) here.
   1508     // Sequential strings have already been ruled out.
   1509     __ test_b(ebx, kIsIndirectStringMask);
   1510     __ Assert(zero, kExternalStringExpectedButNotFound);
   1511   }
   1512   __ mov(eax, FieldOperand(eax, ExternalString::kResourceDataOffset));
   1513   // Move the pointer so that offset-wise, it looks like a sequential string.
   1514   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
   1515   __ sub(eax, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
   1516   STATIC_ASSERT(kTwoByteStringTag == 0);
   1517   // (8a) Is the external string one byte?  If yes, go to (6).
   1518   __ test_b(ebx, kStringEncodingMask);
   1519   __ j(not_zero, &seq_one_byte_string);  // Goto (6).
   1520 
   1521   // eax: sequential subject string (or look-alike, external string)
   1522   // edx: original subject string
   1523   // ecx: RegExp data (FixedArray)
   1524   // (9) Two byte sequential.  Load regexp code for one byte. Go to (E).
   1525   __ bind(&seq_two_byte_string);
   1526   // Load previous index and check range before edx is overwritten.  We have
   1527   // to use edx instead of eax here because it might have been only made to
   1528   // look like a sequential string when it actually is an external string.
   1529   __ mov(ebx, Operand(esp, kPreviousIndexOffset));
   1530   __ JumpIfNotSmi(ebx, &runtime);
   1531   __ cmp(ebx, FieldOperand(edx, String::kLengthOffset));
   1532   __ j(above_equal, &runtime);
   1533   __ mov(edx, FieldOperand(ecx, JSRegExp::kDataUC16CodeOffset));
   1534   __ Move(ecx, Immediate(0));  // Type is two byte.
   1535   __ jmp(&check_code);  // Go to (E).
   1536 
   1537   // (10) Not a string or a short external string?  If yes, bail out to runtime.
   1538   __ bind(&not_long_external);
   1539   // Catch non-string subject or short external string.
   1540   STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
   1541   __ test(ebx, Immediate(kIsNotStringMask | kShortExternalStringTag));
   1542   __ j(not_zero, &runtime);
   1543 
   1544   // (11) Sliced string.  Replace subject with parent.  Go to (5a).
   1545   // Load offset into edi and replace subject string with parent.
   1546   __ mov(edi, FieldOperand(eax, SlicedString::kOffsetOffset));
   1547   __ mov(eax, FieldOperand(eax, SlicedString::kParentOffset));
   1548   __ jmp(&check_underlying);  // Go to (5a).
   1549 #endif  // V8_INTERPRETED_REGEXP
   1550 }
   1551 
   1552 
   1553 static int NegativeComparisonResult(Condition cc) {
   1554   DCHECK(cc != equal);
   1555   DCHECK((cc == less) || (cc == less_equal)
   1556       || (cc == greater) || (cc == greater_equal));
   1557   return (cc == greater || cc == greater_equal) ? LESS : GREATER;
   1558 }
   1559 
   1560 
   1561 static void CheckInputType(MacroAssembler* masm, Register input,
   1562                            CompareICState::State expected, Label* fail) {
   1563   Label ok;
   1564   if (expected == CompareICState::SMI) {
   1565     __ JumpIfNotSmi(input, fail);
   1566   } else if (expected == CompareICState::NUMBER) {
   1567     __ JumpIfSmi(input, &ok);
   1568     __ cmp(FieldOperand(input, HeapObject::kMapOffset),
   1569            Immediate(masm->isolate()->factory()->heap_number_map()));
   1570     __ j(not_equal, fail);
   1571   }
   1572   // We could be strict about internalized/non-internalized here, but as long as
   1573   // hydrogen doesn't care, the stub doesn't have to care either.
   1574   __ bind(&ok);
   1575 }
   1576 
   1577 
   1578 static void BranchIfNotInternalizedString(MacroAssembler* masm,
   1579                                           Label* label,
   1580                                           Register object,
   1581                                           Register scratch) {
   1582   __ JumpIfSmi(object, label);
   1583   __ mov(scratch, FieldOperand(object, HeapObject::kMapOffset));
   1584   __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
   1585   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
   1586   __ test(scratch, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
   1587   __ j(not_zero, label);
   1588 }
   1589 
   1590 
   1591 void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
   1592   Label check_unequal_objects;
   1593   Condition cc = GetCondition();
   1594 
   1595   Label miss;
   1596   CheckInputType(masm, edx, left(), &miss);
   1597   CheckInputType(masm, eax, right(), &miss);
   1598 
   1599   // Compare two smis.
   1600   Label non_smi, smi_done;
   1601   __ mov(ecx, edx);
   1602   __ or_(ecx, eax);
   1603   __ JumpIfNotSmi(ecx, &non_smi, Label::kNear);
   1604   __ sub(edx, eax);  // Return on the result of the subtraction.
   1605   __ j(no_overflow, &smi_done, Label::kNear);
   1606   __ not_(edx);  // Correct sign in case of overflow. edx is never 0 here.
   1607   __ bind(&smi_done);
   1608   __ mov(eax, edx);
   1609   __ ret(0);
   1610   __ bind(&non_smi);
   1611 
   1612   // NOTICE! This code is only reached after a smi-fast-case check, so
   1613   // it is certain that at least one operand isn't a smi.
   1614 
   1615   // Identical objects can be compared fast, but there are some tricky cases
   1616   // for NaN and undefined.
   1617   Label generic_heap_number_comparison;
   1618   {
   1619     Label not_identical;
   1620     __ cmp(eax, edx);
   1621     __ j(not_equal, &not_identical);
   1622 
   1623     if (cc != equal) {
   1624       // Check for undefined.  undefined OP undefined is false even though
   1625       // undefined == undefined.
   1626       Label check_for_nan;
   1627       __ cmp(edx, isolate()->factory()->undefined_value());
   1628       __ j(not_equal, &check_for_nan, Label::kNear);
   1629       __ Move(eax, Immediate(Smi::FromInt(NegativeComparisonResult(cc))));
   1630       __ ret(0);
   1631       __ bind(&check_for_nan);
   1632     }
   1633 
   1634     // Test for NaN. Compare heap numbers in a general way,
   1635     // to hanlde NaNs correctly.
   1636     __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
   1637            Immediate(isolate()->factory()->heap_number_map()));
   1638     __ j(equal, &generic_heap_number_comparison, Label::kNear);
   1639     if (cc != equal) {
   1640       // Call runtime on identical JSObjects.  Otherwise return equal.
   1641       __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
   1642       __ j(above_equal, &not_identical);
   1643     }
   1644     __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
   1645     __ ret(0);
   1646 
   1647 
   1648     __ bind(&not_identical);
   1649   }
   1650 
   1651   // Strict equality can quickly decide whether objects are equal.
   1652   // Non-strict object equality is slower, so it is handled later in the stub.
   1653   if (cc == equal && strict()) {
   1654     Label slow;  // Fallthrough label.
   1655     Label not_smis;
   1656     // If we're doing a strict equality comparison, we don't have to do
   1657     // type conversion, so we generate code to do fast comparison for objects
   1658     // and oddballs. Non-smi numbers and strings still go through the usual
   1659     // slow-case code.
   1660     // If either is a Smi (we know that not both are), then they can only
   1661     // be equal if the other is a HeapNumber. If so, use the slow case.
   1662     STATIC_ASSERT(kSmiTag == 0);
   1663     DCHECK_EQ(0, Smi::FromInt(0));
   1664     __ mov(ecx, Immediate(kSmiTagMask));
   1665     __ and_(ecx, eax);
   1666     __ test(ecx, edx);
   1667     __ j(not_zero, &not_smis, Label::kNear);
   1668     // One operand is a smi.
   1669 
   1670     // Check whether the non-smi is a heap number.
   1671     STATIC_ASSERT(kSmiTagMask == 1);
   1672     // ecx still holds eax & kSmiTag, which is either zero or one.
   1673     __ sub(ecx, Immediate(0x01));
   1674     __ mov(ebx, edx);
   1675     __ xor_(ebx, eax);
   1676     __ and_(ebx, ecx);  // ebx holds either 0 or eax ^ edx.
   1677     __ xor_(ebx, eax);
   1678     // if eax was smi, ebx is now edx, else eax.
   1679 
   1680     // Check if the non-smi operand is a heap number.
   1681     __ cmp(FieldOperand(ebx, HeapObject::kMapOffset),
   1682            Immediate(isolate()->factory()->heap_number_map()));
   1683     // If heap number, handle it in the slow case.
   1684     __ j(equal, &slow, Label::kNear);
   1685     // Return non-equal (ebx is not zero)
   1686     __ mov(eax, ebx);
   1687     __ ret(0);
   1688 
   1689     __ bind(&not_smis);
   1690     // If either operand is a JSObject or an oddball value, then they are not
   1691     // equal since their pointers are different
   1692     // There is no test for undetectability in strict equality.
   1693 
   1694     // Get the type of the first operand.
   1695     // If the first object is a JS object, we have done pointer comparison.
   1696     Label first_non_object;
   1697     STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
   1698     __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
   1699     __ j(below, &first_non_object, Label::kNear);
   1700 
   1701     // Return non-zero (eax is not zero)
   1702     Label return_not_equal;
   1703     STATIC_ASSERT(kHeapObjectTag != 0);
   1704     __ bind(&return_not_equal);
   1705     __ ret(0);
   1706 
   1707     __ bind(&first_non_object);
   1708     // Check for oddballs: true, false, null, undefined.
   1709     __ CmpInstanceType(ecx, ODDBALL_TYPE);
   1710     __ j(equal, &return_not_equal);
   1711 
   1712     __ CmpObjectType(edx, FIRST_SPEC_OBJECT_TYPE, ecx);
   1713     __ j(above_equal, &return_not_equal);
   1714 
   1715     // Check for oddballs: true, false, null, undefined.
   1716     __ CmpInstanceType(ecx, ODDBALL_TYPE);
   1717     __ j(equal, &return_not_equal);
   1718 
   1719     // Fall through to the general case.
   1720     __ bind(&slow);
   1721   }
   1722 
   1723   // Generate the number comparison code.
   1724   Label non_number_comparison;
   1725   Label unordered;
   1726   __ bind(&generic_heap_number_comparison);
   1727 
   1728   FloatingPointHelper::LoadSSE2Operands(masm, &non_number_comparison);
   1729   __ ucomisd(xmm0, xmm1);
   1730   // Don't base result on EFLAGS when a NaN is involved.
   1731   __ j(parity_even, &unordered, Label::kNear);
   1732 
   1733   __ mov(eax, 0);  // equal
   1734   __ mov(ecx, Immediate(Smi::FromInt(1)));
   1735   __ cmov(above, eax, ecx);
   1736   __ mov(ecx, Immediate(Smi::FromInt(-1)));
   1737   __ cmov(below, eax, ecx);
   1738   __ ret(0);
   1739 
   1740   // If one of the numbers was NaN, then the result is always false.
   1741   // The cc is never not-equal.
   1742   __ bind(&unordered);
   1743   DCHECK(cc != not_equal);
   1744   if (cc == less || cc == less_equal) {
   1745     __ mov(eax, Immediate(Smi::FromInt(1)));
   1746   } else {
   1747     __ mov(eax, Immediate(Smi::FromInt(-1)));
   1748   }
   1749   __ ret(0);
   1750 
   1751   // The number comparison code did not provide a valid result.
   1752   __ bind(&non_number_comparison);
   1753 
   1754   // Fast negative check for internalized-to-internalized equality.
   1755   Label check_for_strings;
   1756   if (cc == equal) {
   1757     BranchIfNotInternalizedString(masm, &check_for_strings, eax, ecx);
   1758     BranchIfNotInternalizedString(masm, &check_for_strings, edx, ecx);
   1759 
   1760     // We've already checked for object identity, so if both operands
   1761     // are internalized they aren't equal. Register eax already holds a
   1762     // non-zero value, which indicates not equal, so just return.
   1763     __ ret(0);
   1764   }
   1765 
   1766   __ bind(&check_for_strings);
   1767 
   1768   __ JumpIfNotBothSequentialOneByteStrings(edx, eax, ecx, ebx,
   1769                                            &check_unequal_objects);
   1770 
   1771   // Inline comparison of one-byte strings.
   1772   if (cc == equal) {
   1773     StringHelper::GenerateFlatOneByteStringEquals(masm, edx, eax, ecx, ebx);
   1774   } else {
   1775     StringHelper::GenerateCompareFlatOneByteStrings(masm, edx, eax, ecx, ebx,
   1776                                                     edi);
   1777   }
   1778 #ifdef DEBUG
   1779   __ Abort(kUnexpectedFallThroughFromStringComparison);
   1780 #endif
   1781 
   1782   __ bind(&check_unequal_objects);
   1783   if (cc == equal && !strict()) {
   1784     // Non-strict equality.  Objects are unequal if
   1785     // they are both JSObjects and not undetectable,
   1786     // and their pointers are different.
   1787     Label not_both_objects;
   1788     Label return_unequal;
   1789     // At most one is a smi, so we can test for smi by adding the two.
   1790     // A smi plus a heap object has the low bit set, a heap object plus
   1791     // a heap object has the low bit clear.
   1792     STATIC_ASSERT(kSmiTag == 0);
   1793     STATIC_ASSERT(kSmiTagMask == 1);
   1794     __ lea(ecx, Operand(eax, edx, times_1, 0));
   1795     __ test(ecx, Immediate(kSmiTagMask));
   1796     __ j(not_zero, &not_both_objects, Label::kNear);
   1797     __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
   1798     __ j(below, &not_both_objects, Label::kNear);
   1799     __ CmpObjectType(edx, FIRST_SPEC_OBJECT_TYPE, ebx);
   1800     __ j(below, &not_both_objects, Label::kNear);
   1801     // We do not bail out after this point.  Both are JSObjects, and
   1802     // they are equal if and only if both are undetectable.
   1803     // The and of the undetectable flags is 1 if and only if they are equal.
   1804     __ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
   1805               1 << Map::kIsUndetectable);
   1806     __ j(zero, &return_unequal, Label::kNear);
   1807     __ test_b(FieldOperand(ebx, Map::kBitFieldOffset),
   1808               1 << Map::kIsUndetectable);
   1809     __ j(zero, &return_unequal, Label::kNear);
   1810     // The objects are both undetectable, so they both compare as the value
   1811     // undefined, and are equal.
   1812     __ Move(eax, Immediate(EQUAL));
   1813     __ bind(&return_unequal);
   1814     // Return non-equal by returning the non-zero object pointer in eax,
   1815     // or return equal if we fell through to here.
   1816     __ ret(0);  // rax, rdx were pushed
   1817     __ bind(&not_both_objects);
   1818   }
   1819 
   1820   // Push arguments below the return address.
   1821   __ pop(ecx);
   1822   __ push(edx);
   1823   __ push(eax);
   1824 
   1825   // Figure out which native to call and setup the arguments.
   1826   Builtins::JavaScript builtin;
   1827   if (cc == equal) {
   1828     builtin = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
   1829   } else {
   1830     builtin = Builtins::COMPARE;
   1831     __ push(Immediate(Smi::FromInt(NegativeComparisonResult(cc))));
   1832   }
   1833 
   1834   // Restore return address on the stack.
   1835   __ push(ecx);
   1836 
   1837   // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
   1838   // tagged as a small integer.
   1839   __ InvokeBuiltin(builtin, JUMP_FUNCTION);
   1840 
   1841   __ bind(&miss);
   1842   GenerateMiss(masm);
   1843 }
   1844 
   1845 
   1846 static void GenerateRecordCallTarget(MacroAssembler* masm) {
   1847   // Cache the called function in a feedback vector slot.  Cache states
   1848   // are uninitialized, monomorphic (indicated by a JSFunction), and
   1849   // megamorphic.
   1850   // eax : number of arguments to the construct function
   1851   // ebx : Feedback vector
   1852   // edx : slot in feedback vector (Smi)
   1853   // edi : the function to call
   1854   Isolate* isolate = masm->isolate();
   1855   Label initialize, done, miss, megamorphic, not_array_function;
   1856 
   1857   // Load the cache state into ecx.
   1858   __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
   1859                            FixedArray::kHeaderSize));
   1860 
   1861   // A monomorphic cache hit or an already megamorphic state: invoke the
   1862   // function without changing the state.
   1863   __ cmp(ecx, edi);
   1864   __ j(equal, &done, Label::kFar);
   1865   __ cmp(ecx, Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
   1866   __ j(equal, &done, Label::kFar);
   1867 
   1868   if (!FLAG_pretenuring_call_new) {
   1869     // If we came here, we need to see if we are the array function.
   1870     // If we didn't have a matching function, and we didn't find the megamorph
   1871     // sentinel, then we have in the slot either some other function or an
   1872     // AllocationSite. Do a map check on the object in ecx.
   1873     Handle<Map> allocation_site_map = isolate->factory()->allocation_site_map();
   1874     __ cmp(FieldOperand(ecx, 0), Immediate(allocation_site_map));
   1875     __ j(not_equal, &miss);
   1876 
   1877     // Make sure the function is the Array() function
   1878     __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
   1879     __ cmp(edi, ecx);
   1880     __ j(not_equal, &megamorphic);
   1881     __ jmp(&done, Label::kFar);
   1882   }
   1883 
   1884   __ bind(&miss);
   1885 
   1886   // A monomorphic miss (i.e, here the cache is not uninitialized) goes
   1887   // megamorphic.
   1888   __ cmp(ecx, Immediate(TypeFeedbackVector::UninitializedSentinel(isolate)));
   1889   __ j(equal, &initialize);
   1890   // MegamorphicSentinel is an immortal immovable object (undefined) so no
   1891   // write-barrier is needed.
   1892   __ bind(&megamorphic);
   1893   __ mov(
   1894       FieldOperand(ebx, edx, times_half_pointer_size, FixedArray::kHeaderSize),
   1895       Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
   1896   __ jmp(&done, Label::kFar);
   1897 
   1898   // An uninitialized cache is patched with the function or sentinel to
   1899   // indicate the ElementsKind if function is the Array constructor.
   1900   __ bind(&initialize);
   1901   if (!FLAG_pretenuring_call_new) {
   1902     // Make sure the function is the Array() function
   1903     __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
   1904     __ cmp(edi, ecx);
   1905     __ j(not_equal, &not_array_function);
   1906 
   1907     // The target function is the Array constructor,
   1908     // Create an AllocationSite if we don't already have it, store it in the
   1909     // slot.
   1910     {
   1911       FrameScope scope(masm, StackFrame::INTERNAL);
   1912 
   1913       // Arguments register must be smi-tagged to call out.
   1914       __ SmiTag(eax);
   1915       __ push(eax);
   1916       __ push(edi);
   1917       __ push(edx);
   1918       __ push(ebx);
   1919 
   1920       CreateAllocationSiteStub create_stub(isolate);
   1921       __ CallStub(&create_stub);
   1922 
   1923       __ pop(ebx);
   1924       __ pop(edx);
   1925       __ pop(edi);
   1926       __ pop(eax);
   1927       __ SmiUntag(eax);
   1928     }
   1929     __ jmp(&done);
   1930 
   1931     __ bind(&not_array_function);
   1932   }
   1933 
   1934   __ mov(FieldOperand(ebx, edx, times_half_pointer_size,
   1935                       FixedArray::kHeaderSize),
   1936          edi);
   1937   // We won't need edx or ebx anymore, just save edi
   1938   __ push(edi);
   1939   __ push(ebx);
   1940   __ push(edx);
   1941   __ RecordWriteArray(ebx, edi, edx, kDontSaveFPRegs,
   1942                       EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
   1943   __ pop(edx);
   1944   __ pop(ebx);
   1945   __ pop(edi);
   1946 
   1947   __ bind(&done);
   1948 }
   1949 
   1950 
   1951 static void EmitContinueIfStrictOrNative(MacroAssembler* masm, Label* cont) {
   1952   // Do not transform the receiver for strict mode functions.
   1953   __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
   1954   __ test_b(FieldOperand(ecx, SharedFunctionInfo::kStrictModeByteOffset),
   1955             1 << SharedFunctionInfo::kStrictModeBitWithinByte);
   1956   __ j(not_equal, cont);
   1957 
   1958   // Do not transform the receiver for natives (shared already in ecx).
   1959   __ test_b(FieldOperand(ecx, SharedFunctionInfo::kNativeByteOffset),
   1960             1 << SharedFunctionInfo::kNativeBitWithinByte);
   1961   __ j(not_equal, cont);
   1962 }
   1963 
   1964 
   1965 static void EmitSlowCase(Isolate* isolate,
   1966                          MacroAssembler* masm,
   1967                          int argc,
   1968                          Label* non_function) {
   1969   // Check for function proxy.
   1970   __ CmpInstanceType(ecx, JS_FUNCTION_PROXY_TYPE);
   1971   __ j(not_equal, non_function);
   1972   __ pop(ecx);
   1973   __ push(edi);  // put proxy as additional argument under return address
   1974   __ push(ecx);
   1975   __ Move(eax, Immediate(argc + 1));
   1976   __ Move(ebx, Immediate(0));
   1977   __ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY);
   1978   {
   1979     Handle<Code> adaptor = isolate->builtins()->ArgumentsAdaptorTrampoline();
   1980     __ jmp(adaptor, RelocInfo::CODE_TARGET);
   1981   }
   1982 
   1983   // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
   1984   // of the original receiver from the call site).
   1985   __ bind(non_function);
   1986   __ mov(Operand(esp, (argc + 1) * kPointerSize), edi);
   1987   __ Move(eax, Immediate(argc));
   1988   __ Move(ebx, Immediate(0));
   1989   __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION);
   1990   Handle<Code> adaptor = isolate->builtins()->ArgumentsAdaptorTrampoline();
   1991   __ jmp(adaptor, RelocInfo::CODE_TARGET);
   1992 }
   1993 
   1994 
   1995 static void EmitWrapCase(MacroAssembler* masm, int argc, Label* cont) {
   1996   // Wrap the receiver and patch it back onto the stack.
   1997   { FrameScope frame_scope(masm, StackFrame::INTERNAL);
   1998     __ push(edi);
   1999     __ push(eax);
   2000     __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
   2001     __ pop(edi);
   2002   }
   2003   __ mov(Operand(esp, (argc + 1) * kPointerSize), eax);
   2004   __ jmp(cont);
   2005 }
   2006 
   2007 
   2008 static void CallFunctionNoFeedback(MacroAssembler* masm,
   2009                                    int argc, bool needs_checks,
   2010                                    bool call_as_method) {
   2011   // edi : the function to call
   2012   Label slow, non_function, wrap, cont;
   2013 
   2014   if (needs_checks) {
   2015     // Check that the function really is a JavaScript function.
   2016     __ JumpIfSmi(edi, &non_function);
   2017 
   2018     // Goto slow case if we do not have a function.
   2019     __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
   2020     __ j(not_equal, &slow);
   2021   }
   2022 
   2023   // Fast-case: Just invoke the function.
   2024   ParameterCount actual(argc);
   2025 
   2026   if (call_as_method) {
   2027     if (needs_checks) {
   2028       EmitContinueIfStrictOrNative(masm, &cont);
   2029     }
   2030 
   2031     // Load the receiver from the stack.
   2032     __ mov(eax, Operand(esp, (argc + 1) * kPointerSize));
   2033 
   2034     if (needs_checks) {
   2035       __ JumpIfSmi(eax, &wrap);
   2036 
   2037       __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
   2038       __ j(below, &wrap);
   2039     } else {
   2040       __ jmp(&wrap);
   2041     }
   2042 
   2043     __ bind(&cont);
   2044   }
   2045 
   2046   __ InvokeFunction(edi, actual, JUMP_FUNCTION, NullCallWrapper());
   2047 
   2048   if (needs_checks) {
   2049     // Slow-case: Non-function called.
   2050     __ bind(&slow);
   2051     // (non_function is bound in EmitSlowCase)
   2052     EmitSlowCase(masm->isolate(), masm, argc, &non_function);
   2053   }
   2054 
   2055   if (call_as_method) {
   2056     __ bind(&wrap);
   2057     EmitWrapCase(masm, argc, &cont);
   2058   }
   2059 }
   2060 
   2061 
   2062 void CallFunctionStub::Generate(MacroAssembler* masm) {
   2063   CallFunctionNoFeedback(masm, argc(), NeedsChecks(), CallAsMethod());
   2064 }
   2065 
   2066 
   2067 void CallConstructStub::Generate(MacroAssembler* masm) {
   2068   // eax : number of arguments
   2069   // ebx : feedback vector
   2070   // edx : (only if ebx is not the megamorphic symbol) slot in feedback
   2071   //       vector (Smi)
   2072   // edi : constructor function
   2073   Label slow, non_function_call;
   2074 
   2075   // Check that function is not a smi.
   2076   __ JumpIfSmi(edi, &non_function_call);
   2077   // Check that function is a JSFunction.
   2078   __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
   2079   __ j(not_equal, &slow);
   2080 
   2081   if (RecordCallTarget()) {
   2082     GenerateRecordCallTarget(masm);
   2083 
   2084     if (FLAG_pretenuring_call_new) {
   2085       // Put the AllocationSite from the feedback vector into ebx.
   2086       // By adding kPointerSize we encode that we know the AllocationSite
   2087       // entry is at the feedback vector slot given by edx + 1.
   2088       __ mov(ebx, FieldOperand(ebx, edx, times_half_pointer_size,
   2089                                FixedArray::kHeaderSize + kPointerSize));
   2090     } else {
   2091       Label feedback_register_initialized;
   2092       // Put the AllocationSite from the feedback vector into ebx, or undefined.
   2093       __ mov(ebx, FieldOperand(ebx, edx, times_half_pointer_size,
   2094                                FixedArray::kHeaderSize));
   2095       Handle<Map> allocation_site_map =
   2096           isolate()->factory()->allocation_site_map();
   2097       __ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map));
   2098       __ j(equal, &feedback_register_initialized);
   2099       __ mov(ebx, isolate()->factory()->undefined_value());
   2100       __ bind(&feedback_register_initialized);
   2101     }
   2102 
   2103     __ AssertUndefinedOrAllocationSite(ebx);
   2104   }
   2105 
   2106   // Jump to the function-specific construct stub.
   2107   Register jmp_reg = ecx;
   2108   __ mov(jmp_reg, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
   2109   __ mov(jmp_reg, FieldOperand(jmp_reg,
   2110                                SharedFunctionInfo::kConstructStubOffset));
   2111   __ lea(jmp_reg, FieldOperand(jmp_reg, Code::kHeaderSize));
   2112   __ jmp(jmp_reg);
   2113 
   2114   // edi: called object
   2115   // eax: number of arguments
   2116   // ecx: object map
   2117   Label do_call;
   2118   __ bind(&slow);
   2119   __ CmpInstanceType(ecx, JS_FUNCTION_PROXY_TYPE);
   2120   __ j(not_equal, &non_function_call);
   2121   __ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
   2122   __ jmp(&do_call);
   2123 
   2124   __ bind(&non_function_call);
   2125   __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
   2126   __ bind(&do_call);
   2127   // Set expected number of arguments to zero (not changing eax).
   2128   __ Move(ebx, Immediate(0));
   2129   Handle<Code> arguments_adaptor =
   2130       isolate()->builtins()->ArgumentsAdaptorTrampoline();
   2131   __ jmp(arguments_adaptor, RelocInfo::CODE_TARGET);
   2132 }
   2133 
   2134 
   2135 static void EmitLoadTypeFeedbackVector(MacroAssembler* masm, Register vector) {
   2136   __ mov(vector, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
   2137   __ mov(vector, FieldOperand(vector, JSFunction::kSharedFunctionInfoOffset));
   2138   __ mov(vector, FieldOperand(vector,
   2139                               SharedFunctionInfo::kFeedbackVectorOffset));
   2140 }
   2141 
   2142 
   2143 void CallIC_ArrayStub::Generate(MacroAssembler* masm) {
   2144   // edi - function
   2145   // edx - slot id
   2146   Label miss;
   2147   int argc = arg_count();
   2148   ParameterCount actual(argc);
   2149 
   2150   EmitLoadTypeFeedbackVector(masm, ebx);
   2151 
   2152   __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
   2153   __ cmp(edi, ecx);
   2154   __ j(not_equal, &miss);
   2155 
   2156   __ mov(eax, arg_count());
   2157   __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
   2158                            FixedArray::kHeaderSize));
   2159 
   2160   // Verify that ecx contains an AllocationSite
   2161   Factory* factory = masm->isolate()->factory();
   2162   __ cmp(FieldOperand(ecx, HeapObject::kMapOffset),
   2163          factory->allocation_site_map());
   2164   __ j(not_equal, &miss);
   2165 
   2166   __ mov(ebx, ecx);
   2167   ArrayConstructorStub stub(masm->isolate(), arg_count());
   2168   __ TailCallStub(&stub);
   2169 
   2170   __ bind(&miss);
   2171   GenerateMiss(masm);
   2172 
   2173   // The slow case, we need this no matter what to complete a call after a miss.
   2174   CallFunctionNoFeedback(masm,
   2175                          arg_count(),
   2176                          true,
   2177                          CallAsMethod());
   2178 
   2179   // Unreachable.
   2180   __ int3();
   2181 }
   2182 
   2183 
   2184 void CallICStub::Generate(MacroAssembler* masm) {
   2185   // edi - function
   2186   // edx - slot id
   2187   Isolate* isolate = masm->isolate();
   2188   Label extra_checks_or_miss, slow_start;
   2189   Label slow, non_function, wrap, cont;
   2190   Label have_js_function;
   2191   int argc = arg_count();
   2192   ParameterCount actual(argc);
   2193 
   2194   EmitLoadTypeFeedbackVector(masm, ebx);
   2195 
   2196   // The checks. First, does edi match the recorded monomorphic target?
   2197   __ cmp(edi, FieldOperand(ebx, edx, times_half_pointer_size,
   2198                            FixedArray::kHeaderSize));
   2199   __ j(not_equal, &extra_checks_or_miss);
   2200 
   2201   __ bind(&have_js_function);
   2202   if (CallAsMethod()) {
   2203     EmitContinueIfStrictOrNative(masm, &cont);
   2204 
   2205     // Load the receiver from the stack.
   2206     __ mov(eax, Operand(esp, (argc + 1) * kPointerSize));
   2207 
   2208     __ JumpIfSmi(eax, &wrap);
   2209 
   2210     __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
   2211     __ j(below, &wrap);
   2212 
   2213     __ bind(&cont);
   2214   }
   2215 
   2216   __ InvokeFunction(edi, actual, JUMP_FUNCTION, NullCallWrapper());
   2217 
   2218   __ bind(&slow);
   2219   EmitSlowCase(isolate, masm, argc, &non_function);
   2220 
   2221   if (CallAsMethod()) {
   2222     __ bind(&wrap);
   2223     EmitWrapCase(masm, argc, &cont);
   2224   }
   2225 
   2226   __ bind(&extra_checks_or_miss);
   2227   Label miss;
   2228 
   2229   __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
   2230                            FixedArray::kHeaderSize));
   2231   __ cmp(ecx, Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
   2232   __ j(equal, &slow_start);
   2233   __ cmp(ecx, Immediate(TypeFeedbackVector::UninitializedSentinel(isolate)));
   2234   __ j(equal, &miss);
   2235 
   2236   if (!FLAG_trace_ic) {
   2237     // We are going megamorphic. If the feedback is a JSFunction, it is fine
   2238     // to handle it here. More complex cases are dealt with in the runtime.
   2239     __ AssertNotSmi(ecx);
   2240     __ CmpObjectType(ecx, JS_FUNCTION_TYPE, ecx);
   2241     __ j(not_equal, &miss);
   2242     __ mov(FieldOperand(ebx, edx, times_half_pointer_size,
   2243                         FixedArray::kHeaderSize),
   2244            Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
   2245     __ jmp(&slow_start);
   2246   }
   2247 
   2248   // We are here because tracing is on or we are going monomorphic.
   2249   __ bind(&miss);
   2250   GenerateMiss(masm);
   2251 
   2252   // the slow case
   2253   __ bind(&slow_start);
   2254 
   2255   // Check that the function really is a JavaScript function.
   2256   __ JumpIfSmi(edi, &non_function);
   2257 
   2258   // Goto slow case if we do not have a function.
   2259   __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
   2260   __ j(not_equal, &slow);
   2261   __ jmp(&have_js_function);
   2262 
   2263   // Unreachable
   2264   __ int3();
   2265 }
   2266 
   2267 
   2268 void CallICStub::GenerateMiss(MacroAssembler* masm) {
   2269   // Get the receiver of the function from the stack; 1 ~ return address.
   2270   __ mov(ecx, Operand(esp, (arg_count() + 1) * kPointerSize));
   2271 
   2272   {
   2273     FrameScope scope(masm, StackFrame::INTERNAL);
   2274 
   2275     // Push the receiver and the function and feedback info.
   2276     __ push(ecx);
   2277     __ push(edi);
   2278     __ push(ebx);
   2279     __ push(edx);
   2280 
   2281     // Call the entry.
   2282     IC::UtilityId id = GetICState() == DEFAULT ? IC::kCallIC_Miss
   2283                                                : IC::kCallIC_Customization_Miss;
   2284 
   2285     ExternalReference miss = ExternalReference(IC_Utility(id),
   2286                                                masm->isolate());
   2287     __ CallExternalReference(miss, 4);
   2288 
   2289     // Move result to edi and exit the internal frame.
   2290     __ mov(edi, eax);
   2291   }
   2292 }
   2293 
   2294 
   2295 bool CEntryStub::NeedsImmovableCode() {
   2296   return false;
   2297 }
   2298 
   2299 
   2300 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
   2301   CEntryStub::GenerateAheadOfTime(isolate);
   2302   StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
   2303   StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
   2304   // It is important that the store buffer overflow stubs are generated first.
   2305   ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
   2306   CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
   2307   BinaryOpICStub::GenerateAheadOfTime(isolate);
   2308   BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
   2309 }
   2310 
   2311 
   2312 void CodeStub::GenerateFPStubs(Isolate* isolate) {
   2313   // Generate if not already in cache.
   2314   CEntryStub(isolate, 1, kSaveFPRegs).GetCode();
   2315   isolate->set_fp_stubs_generated(true);
   2316 }
   2317 
   2318 
   2319 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
   2320   CEntryStub stub(isolate, 1, kDontSaveFPRegs);
   2321   stub.GetCode();
   2322 }
   2323 
   2324 
   2325 void CEntryStub::Generate(MacroAssembler* masm) {
   2326   // eax: number of arguments including receiver
   2327   // ebx: pointer to C function  (C callee-saved)
   2328   // ebp: frame pointer  (restored after C call)
   2329   // esp: stack pointer  (restored after C call)
   2330   // esi: current context (C callee-saved)
   2331   // edi: JS function of the caller (C callee-saved)
   2332 
   2333   ProfileEntryHookStub::MaybeCallEntryHook(masm);
   2334 
   2335   // Enter the exit frame that transitions from JavaScript to C++.
   2336   __ EnterExitFrame(save_doubles());
   2337 
   2338   // ebx: pointer to C function  (C callee-saved)
   2339   // ebp: frame pointer  (restored after C call)
   2340   // esp: stack pointer  (restored after C call)
   2341   // edi: number of arguments including receiver  (C callee-saved)
   2342   // esi: pointer to the first argument (C callee-saved)
   2343 
   2344   // Result returned in eax, or eax+edx if result size is 2.
   2345 
   2346   // Check stack alignment.
   2347   if (FLAG_debug_code) {
   2348     __ CheckStackAlignment();
   2349   }
   2350 
   2351   // Call C function.
   2352   __ mov(Operand(esp, 0 * kPointerSize), edi);  // argc.
   2353   __ mov(Operand(esp, 1 * kPointerSize), esi);  // argv.
   2354   __ mov(Operand(esp, 2 * kPointerSize),
   2355          Immediate(ExternalReference::isolate_address(isolate())));
   2356   __ call(ebx);
   2357   // Result is in eax or edx:eax - do not destroy these registers!
   2358 
   2359   // Runtime functions should not return 'the hole'.  Allowing it to escape may
   2360   // lead to crashes in the IC code later.
   2361   if (FLAG_debug_code) {
   2362     Label okay;
   2363     __ cmp(eax, isolate()->factory()->the_hole_value());
   2364     __ j(not_equal, &okay, Label::kNear);
   2365     __ int3();
   2366     __ bind(&okay);
   2367   }
   2368 
   2369   // Check result for exception sentinel.
   2370   Label exception_returned;
   2371   __ cmp(eax, isolate()->factory()->exception());
   2372   __ j(equal, &exception_returned);
   2373 
   2374   ExternalReference pending_exception_address(
   2375       Isolate::kPendingExceptionAddress, isolate());
   2376 
   2377   // Check that there is no pending exception, otherwise we
   2378   // should have returned the exception sentinel.
   2379   if (FLAG_debug_code) {
   2380     __ push(edx);
   2381     __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
   2382     Label okay;
   2383     __ cmp(edx, Operand::StaticVariable(pending_exception_address));
   2384     // Cannot use check here as it attempts to generate call into runtime.
   2385     __ j(equal, &okay, Label::kNear);
   2386     __ int3();
   2387     __ bind(&okay);
   2388     __ pop(edx);
   2389   }
   2390 
   2391   // Exit the JavaScript to C++ exit frame.
   2392   __ LeaveExitFrame(save_doubles());
   2393   __ ret(0);
   2394 
   2395   // Handling of exception.
   2396   __ bind(&exception_returned);
   2397 
   2398   // Retrieve the pending exception.
   2399   __ mov(eax, Operand::StaticVariable(pending_exception_address));
   2400 
   2401   // Clear the pending exception.
   2402   __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
   2403   __ mov(Operand::StaticVariable(pending_exception_address), edx);
   2404 
   2405   // Special handling of termination exceptions which are uncatchable
   2406   // by javascript code.
   2407   Label throw_termination_exception;
   2408   __ cmp(eax, isolate()->factory()->termination_exception());
   2409   __ j(equal, &throw_termination_exception);
   2410 
   2411   // Handle normal exception.
   2412   __ Throw(eax);
   2413 
   2414   __ bind(&throw_termination_exception);
   2415   __ ThrowUncatchable(eax);
   2416 }
   2417 
   2418 
   2419 void JSEntryStub::Generate(MacroAssembler* masm) {
   2420   Label invoke, handler_entry, exit;
   2421   Label not_outermost_js, not_outermost_js_2;
   2422 
   2423   ProfileEntryHookStub::MaybeCallEntryHook(masm);
   2424 
   2425   // Set up frame.
   2426   __ push(ebp);
   2427   __ mov(ebp, esp);
   2428 
   2429   // Push marker in two places.
   2430   int marker = type();
   2431   __ push(Immediate(Smi::FromInt(marker)));  // context slot
   2432   __ push(Immediate(Smi::FromInt(marker)));  // function slot
   2433   // Save callee-saved registers (C calling conventions).
   2434   __ push(edi);
   2435   __ push(esi);
   2436   __ push(ebx);
   2437 
   2438   // Save copies of the top frame descriptor on the stack.
   2439   ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate());
   2440   __ push(Operand::StaticVariable(c_entry_fp));
   2441 
   2442   // If this is the outermost JS call, set js_entry_sp value.
   2443   ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
   2444   __ cmp(Operand::StaticVariable(js_entry_sp), Immediate(0));
   2445   __ j(not_equal, &not_outermost_js, Label::kNear);
   2446   __ mov(Operand::StaticVariable(js_entry_sp), ebp);
   2447   __ push(Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
   2448   __ jmp(&invoke, Label::kNear);
   2449   __ bind(&not_outermost_js);
   2450   __ push(Immediate(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
   2451 
   2452   // Jump to a faked try block that does the invoke, with a faked catch
   2453   // block that sets the pending exception.
   2454   __ jmp(&invoke);
   2455   __ bind(&handler_entry);
   2456   handler_offset_ = handler_entry.pos();
   2457   // Caught exception: Store result (exception) in the pending exception
   2458   // field in the JSEnv and return a failure sentinel.
   2459   ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
   2460                                       isolate());
   2461   __ mov(Operand::StaticVariable(pending_exception), eax);
   2462   __ mov(eax, Immediate(isolate()->factory()->exception()));
   2463   __ jmp(&exit);
   2464 
   2465   // Invoke: Link this frame into the handler chain.  There's only one
   2466   // handler block in this code object, so its index is 0.
   2467   __ bind(&invoke);
   2468   __ PushTryHandler(StackHandler::JS_ENTRY, 0);
   2469 
   2470   // Clear any pending exceptions.
   2471   __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
   2472   __ mov(Operand::StaticVariable(pending_exception), edx);
   2473 
   2474   // Fake a receiver (NULL).
   2475   __ push(Immediate(0));  // receiver
   2476 
   2477   // Invoke the function by calling through JS entry trampoline builtin and
   2478   // pop the faked function when we return. Notice that we cannot store a
   2479   // reference to the trampoline code directly in this stub, because the
   2480   // builtin stubs may not have been generated yet.
   2481   if (type() == StackFrame::ENTRY_CONSTRUCT) {
   2482     ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
   2483                                       isolate());
   2484     __ mov(edx, Immediate(construct_entry));
   2485   } else {
   2486     ExternalReference entry(Builtins::kJSEntryTrampoline, isolate());
   2487     __ mov(edx, Immediate(entry));
   2488   }
   2489   __ mov(edx, Operand(edx, 0));  // deref address
   2490   __ lea(edx, FieldOperand(edx, Code::kHeaderSize));
   2491   __ call(edx);
   2492 
   2493   // Unlink this frame from the handler chain.
   2494   __ PopTryHandler();
   2495 
   2496   __ bind(&exit);
   2497   // Check if the current stack frame is marked as the outermost JS frame.
   2498   __ pop(ebx);
   2499   __ cmp(ebx, Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
   2500   __ j(not_equal, &not_outermost_js_2);
   2501   __ mov(Operand::StaticVariable(js_entry_sp), Immediate(0));
   2502   __ bind(&not_outermost_js_2);
   2503 
   2504   // Restore the top frame descriptor from the stack.
   2505   __ pop(Operand::StaticVariable(ExternalReference(
   2506       Isolate::kCEntryFPAddress, isolate())));
   2507 
   2508   // Restore callee-saved registers (C calling conventions).
   2509   __ pop(ebx);
   2510   __ pop(esi);
   2511   __ pop(edi);
   2512   __ add(esp, Immediate(2 * kPointerSize));  // remove markers
   2513 
   2514   // Restore frame pointer and return.
   2515   __ pop(ebp);
   2516   __ ret(0);
   2517 }
   2518 
   2519 
   2520 // Generate stub code for instanceof.
   2521 // This code can patch a call site inlined cache of the instance of check,
   2522 // which looks like this.
   2523 //
   2524 //   81 ff XX XX XX XX   cmp    edi, <the hole, patched to a map>
   2525 //   75 0a               jne    <some near label>
   2526 //   b8 XX XX XX XX      mov    eax, <the hole, patched to either true or false>
   2527 //
   2528 // If call site patching is requested the stack will have the delta from the
   2529 // return address to the cmp instruction just below the return address. This
   2530 // also means that call site patching can only take place with arguments in
   2531 // registers. TOS looks like this when call site patching is requested
   2532 //
   2533 //   esp[0] : return address
   2534 //   esp[4] : delta from return address to cmp instruction
   2535 //
   2536 void InstanceofStub::Generate(MacroAssembler* masm) {
   2537   // Call site inlining and patching implies arguments in registers.
   2538   DCHECK(HasArgsInRegisters() || !HasCallSiteInlineCheck());
   2539 
   2540   // Fixed register usage throughout the stub.
   2541   Register object = eax;  // Object (lhs).
   2542   Register map = ebx;  // Map of the object.
   2543   Register function = edx;  // Function (rhs).
   2544   Register prototype = edi;  // Prototype of the function.
   2545   Register scratch = ecx;
   2546 
   2547   // Constants describing the call site code to patch.
   2548   static const int kDeltaToCmpImmediate = 2;
   2549   static const int kDeltaToMov = 8;
   2550   static const int kDeltaToMovImmediate = 9;
   2551   static const int8_t kCmpEdiOperandByte1 = bit_cast<int8_t, uint8_t>(0x3b);
   2552   static const int8_t kCmpEdiOperandByte2 = bit_cast<int8_t, uint8_t>(0x3d);
   2553   static const int8_t kMovEaxImmediateByte = bit_cast<int8_t, uint8_t>(0xb8);
   2554 
   2555   DCHECK_EQ(object.code(), InstanceofStub::left().code());
   2556   DCHECK_EQ(function.code(), InstanceofStub::right().code());
   2557 
   2558   // Get the object and function - they are always both needed.
   2559   Label slow, not_js_object;
   2560   if (!HasArgsInRegisters()) {
   2561     __ mov(object, Operand(esp, 2 * kPointerSize));
   2562     __ mov(function, Operand(esp, 1 * kPointerSize));
   2563   }
   2564 
   2565   // Check that the left hand is a JS object.
   2566   __ JumpIfSmi(object, &not_js_object);
   2567   __ IsObjectJSObjectType(object, map, scratch, &not_js_object);
   2568 
   2569   // If there is a call site cache don't look in the global cache, but do the
   2570   // real lookup and update the call site cache.
   2571   if (!HasCallSiteInlineCheck() && !ReturnTrueFalseObject()) {
   2572     // Look up the function and the map in the instanceof cache.
   2573     Label miss;
   2574     __ CompareRoot(function, scratch, Heap::kInstanceofCacheFunctionRootIndex);
   2575     __ j(not_equal, &miss, Label::kNear);
   2576     __ CompareRoot(map, scratch, Heap::kInstanceofCacheMapRootIndex);
   2577     __ j(not_equal, &miss, Label::kNear);
   2578     __ LoadRoot(eax, Heap::kInstanceofCacheAnswerRootIndex);
   2579     __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
   2580     __ bind(&miss);
   2581   }
   2582 
   2583   // Get the prototype of the function.
   2584   __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true);
   2585 
   2586   // Check that the function prototype is a JS object.
   2587   __ JumpIfSmi(prototype, &slow);
   2588   __ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
   2589 
   2590   // Update the global instanceof or call site inlined cache with the current
   2591   // map and function. The cached answer will be set when it is known below.
   2592   if (!HasCallSiteInlineCheck()) {
   2593     __ StoreRoot(map, scratch, Heap::kInstanceofCacheMapRootIndex);
   2594     __ StoreRoot(function, scratch, Heap::kInstanceofCacheFunctionRootIndex);
   2595   } else {
   2596     // The constants for the code patching are based on no push instructions
   2597     // at the call site.
   2598     DCHECK(HasArgsInRegisters());
   2599     // Get return address and delta to inlined map check.
   2600     __ mov(scratch, Operand(esp, 0 * kPointerSize));
   2601     __ sub(scratch, Operand(esp, 1 * kPointerSize));
   2602     if (FLAG_debug_code) {
   2603       __ cmpb(Operand(scratch, 0), kCmpEdiOperandByte1);
   2604       __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheCmp1);
   2605       __ cmpb(Operand(scratch, 1), kCmpEdiOperandByte2);
   2606       __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheCmp2);
   2607     }
   2608     __ mov(scratch, Operand(scratch, kDeltaToCmpImmediate));
   2609     __ mov(Operand(scratch, 0), map);
   2610   }
   2611 
   2612   // Loop through the prototype chain of the object looking for the function
   2613   // prototype.
   2614   __ mov(scratch, FieldOperand(map, Map::kPrototypeOffset));
   2615   Label loop, is_instance, is_not_instance;
   2616   __ bind(&loop);
   2617   __ cmp(scratch, prototype);
   2618   __ j(equal, &is_instance, Label::kNear);
   2619   Factory* factory = isolate()->factory();
   2620   __ cmp(scratch, Immediate(factory->null_value()));
   2621   __ j(equal, &is_not_instance, Label::kNear);
   2622   __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
   2623   __ mov(scratch, FieldOperand(scratch, Map::kPrototypeOffset));
   2624   __ jmp(&loop);
   2625 
   2626   __ bind(&is_instance);
   2627   if (!HasCallSiteInlineCheck()) {
   2628     __ mov(eax, Immediate(0));
   2629     __ StoreRoot(eax, scratch, Heap::kInstanceofCacheAnswerRootIndex);
   2630     if (ReturnTrueFalseObject()) {
   2631       __ mov(eax, factory->true_value());
   2632     }
   2633   } else {
   2634     // Get return address and delta to inlined map check.
   2635     __ mov(eax, factory->true_value());
   2636     __ mov(scratch, Operand(esp, 0 * kPointerSize));
   2637     __ sub(scratch, Operand(esp, 1 * kPointerSize));
   2638     if (FLAG_debug_code) {
   2639       __ cmpb(Operand(scratch, kDeltaToMov), kMovEaxImmediateByte);
   2640       __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheMov);
   2641     }
   2642     __ mov(Operand(scratch, kDeltaToMovImmediate), eax);
   2643     if (!ReturnTrueFalseObject()) {
   2644       __ Move(eax, Immediate(0));
   2645     }
   2646   }
   2647   __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
   2648 
   2649   __ bind(&is_not_instance);
   2650   if (!HasCallSiteInlineCheck()) {
   2651     __ mov(eax, Immediate(Smi::FromInt(1)));
   2652     __ StoreRoot(eax, scratch, Heap::kInstanceofCacheAnswerRootIndex);
   2653     if (ReturnTrueFalseObject()) {
   2654       __ mov(eax, factory->false_value());
   2655     }
   2656   } else {
   2657     // Get return address and delta to inlined map check.
   2658     __ mov(eax, factory->false_value());
   2659     __ mov(scratch, Operand(esp, 0 * kPointerSize));
   2660     __ sub(scratch, Operand(esp, 1 * kPointerSize));
   2661     if (FLAG_debug_code) {
   2662       __ cmpb(Operand(scratch, kDeltaToMov), kMovEaxImmediateByte);
   2663       __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheMov);
   2664     }
   2665     __ mov(Operand(scratch, kDeltaToMovImmediate), eax);
   2666     if (!ReturnTrueFalseObject()) {
   2667       __ Move(eax, Immediate(Smi::FromInt(1)));
   2668     }
   2669   }
   2670   __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
   2671 
   2672   Label object_not_null, object_not_null_or_smi;
   2673   __ bind(&not_js_object);
   2674   // Before null, smi and string value checks, check that the rhs is a function
   2675   // as for a non-function rhs an exception needs to be thrown.
   2676   __ JumpIfSmi(function, &slow, Label::kNear);
   2677   __ CmpObjectType(function, JS_FUNCTION_TYPE, scratch);
   2678   __ j(not_equal, &slow, Label::kNear);
   2679 
   2680   // Null is not instance of anything.
   2681   __ cmp(object, factory->null_value());
   2682   __ j(not_equal, &object_not_null, Label::kNear);
   2683   if (ReturnTrueFalseObject()) {
   2684     __ mov(eax, factory->false_value());
   2685   } else {
   2686     __ Move(eax, Immediate(Smi::FromInt(1)));
   2687   }
   2688   __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
   2689 
   2690   __ bind(&object_not_null);
   2691   // Smi values is not instance of anything.
   2692   __ JumpIfNotSmi(object, &object_not_null_or_smi, Label::kNear);
   2693   if (ReturnTrueFalseObject()) {
   2694     __ mov(eax, factory->false_value());
   2695   } else {
   2696     __ Move(eax, Immediate(Smi::FromInt(1)));
   2697   }
   2698   __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
   2699 
   2700   __ bind(&object_not_null_or_smi);
   2701   // String values is not instance of anything.
   2702   Condition is_string = masm->IsObjectStringType(object, scratch, scratch);
   2703   __ j(NegateCondition(is_string), &slow, Label::kNear);
   2704   if (ReturnTrueFalseObject()) {
   2705     __ mov(eax, factory->false_value());
   2706   } else {
   2707     __ Move(eax, Immediate(Smi::FromInt(1)));
   2708   }
   2709   __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
   2710 
   2711   // Slow-case: Go through the JavaScript implementation.
   2712   __ bind(&slow);
   2713   if (!ReturnTrueFalseObject()) {
   2714     // Tail call the builtin which returns 0 or 1.
   2715     if (HasArgsInRegisters()) {
   2716       // Push arguments below return address.
   2717       __ pop(scratch);
   2718       __ push(object);
   2719       __ push(function);
   2720       __ push(scratch);
   2721     }
   2722     __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
   2723   } else {
   2724     // Call the builtin and convert 0/1 to true/false.
   2725     {
   2726       FrameScope scope(masm, StackFrame::INTERNAL);
   2727       __ push(object);
   2728       __ push(function);
   2729       __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
   2730     }
   2731     Label true_value, done;
   2732     __ test(eax, eax);
   2733     __ j(zero, &true_value, Label::kNear);
   2734     __ mov(eax, factory->false_value());
   2735     __ jmp(&done, Label::kNear);
   2736     __ bind(&true_value);
   2737     __ mov(eax, factory->true_value());
   2738     __ bind(&done);
   2739     __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
   2740   }
   2741 }
   2742 
   2743 
   2744 // -------------------------------------------------------------------------
   2745 // StringCharCodeAtGenerator
   2746 
   2747 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
   2748   // If the receiver is a smi trigger the non-string case.
   2749   STATIC_ASSERT(kSmiTag == 0);
   2750   __ JumpIfSmi(object_, receiver_not_string_);
   2751 
   2752   // Fetch the instance type of the receiver into result register.
   2753   __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
   2754   __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
   2755   // If the receiver is not a string trigger the non-string case.
   2756   __ test(result_, Immediate(kIsNotStringMask));
   2757   __ j(not_zero, receiver_not_string_);
   2758 
   2759   // If the index is non-smi trigger the non-smi case.
   2760   STATIC_ASSERT(kSmiTag == 0);
   2761   __ JumpIfNotSmi(index_, &index_not_smi_);
   2762   __ bind(&got_smi_index_);
   2763 
   2764   // Check for index out of range.
   2765   __ cmp(index_, FieldOperand(object_, String::kLengthOffset));
   2766   __ j(above_equal, index_out_of_range_);
   2767 
   2768   __ SmiUntag(index_);
   2769 
   2770   Factory* factory = masm->isolate()->factory();
   2771   StringCharLoadGenerator::Generate(
   2772       masm, factory, object_, index_, result_, &call_runtime_);
   2773 
   2774   __ SmiTag(result_);
   2775   __ bind(&exit_);
   2776 }
   2777 
   2778 
   2779 void StringCharCodeAtGenerator::GenerateSlow(
   2780     MacroAssembler* masm,
   2781     const RuntimeCallHelper& call_helper) {
   2782   __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
   2783 
   2784   // Index is not a smi.
   2785   __ bind(&index_not_smi_);
   2786   // If index is a heap number, try converting it to an integer.
   2787   __ CheckMap(index_,
   2788               masm->isolate()->factory()->heap_number_map(),
   2789               index_not_number_,
   2790               DONT_DO_SMI_CHECK);
   2791   call_helper.BeforeCall(masm);
   2792   __ push(object_);
   2793   __ push(index_);  // Consumed by runtime conversion function.
   2794   if (index_flags_ == STRING_INDEX_IS_NUMBER) {
   2795     __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
   2796   } else {
   2797     DCHECK(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
   2798     // NumberToSmi discards numbers that are not exact integers.
   2799     __ CallRuntime(Runtime::kNumberToSmi, 1);
   2800   }
   2801   if (!index_.is(eax)) {
   2802     // Save the conversion result before the pop instructions below
   2803     // have a chance to overwrite it.
   2804     __ mov(index_, eax);
   2805   }
   2806   __ pop(object_);
   2807   // Reload the instance type.
   2808   __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
   2809   __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
   2810   call_helper.AfterCall(masm);
   2811   // If index is still not a smi, it must be out of range.
   2812   STATIC_ASSERT(kSmiTag == 0);
   2813   __ JumpIfNotSmi(index_, index_out_of_range_);
   2814   // Otherwise, return to the fast path.
   2815   __ jmp(&got_smi_index_);
   2816 
   2817   // Call runtime. We get here when the receiver is a string and the
   2818   // index is a number, but the code of getting the actual character
   2819   // is too complex (e.g., when the string needs to be flattened).
   2820   __ bind(&call_runtime_);
   2821   call_helper.BeforeCall(masm);
   2822   __ push(object_);
   2823   __ SmiTag(index_);
   2824   __ push(index_);
   2825   __ CallRuntime(Runtime::kStringCharCodeAtRT, 2);
   2826   if (!result_.is(eax)) {
   2827     __ mov(result_, eax);
   2828   }
   2829   call_helper.AfterCall(masm);
   2830   __ jmp(&exit_);
   2831 
   2832   __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
   2833 }
   2834 
   2835 
   2836 // -------------------------------------------------------------------------
   2837 // StringCharFromCodeGenerator
   2838 
   2839 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
   2840   // Fast case of Heap::LookupSingleCharacterStringFromCode.
   2841   STATIC_ASSERT(kSmiTag == 0);
   2842   STATIC_ASSERT(kSmiShiftSize == 0);
   2843   DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCode + 1));
   2844   __ test(code_,
   2845           Immediate(kSmiTagMask |
   2846                     ((~String::kMaxOneByteCharCode) << kSmiTagSize)));
   2847   __ j(not_zero, &slow_case_);
   2848 
   2849   Factory* factory = masm->isolate()->factory();
   2850   __ Move(result_, Immediate(factory->single_character_string_cache()));
   2851   STATIC_ASSERT(kSmiTag == 0);
   2852   STATIC_ASSERT(kSmiTagSize == 1);
   2853   STATIC_ASSERT(kSmiShiftSize == 0);
   2854   // At this point code register contains smi tagged one byte char code.
   2855   __ mov(result_, FieldOperand(result_,
   2856                                code_, times_half_pointer_size,
   2857                                FixedArray::kHeaderSize));
   2858   __ cmp(result_, factory->undefined_value());
   2859   __ j(equal, &slow_case_);
   2860   __ bind(&exit_);
   2861 }
   2862 
   2863 
   2864 void StringCharFromCodeGenerator::GenerateSlow(
   2865     MacroAssembler* masm,
   2866     const RuntimeCallHelper& call_helper) {
   2867   __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
   2868 
   2869   __ bind(&slow_case_);
   2870   call_helper.BeforeCall(masm);
   2871   __ push(code_);
   2872   __ CallRuntime(Runtime::kCharFromCode, 1);
   2873   if (!result_.is(eax)) {
   2874     __ mov(result_, eax);
   2875   }
   2876   call_helper.AfterCall(masm);
   2877   __ jmp(&exit_);
   2878 
   2879   __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
   2880 }
   2881 
   2882 
   2883 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
   2884                                           Register dest,
   2885                                           Register src,
   2886                                           Register count,
   2887                                           Register scratch,
   2888                                           String::Encoding encoding) {
   2889   DCHECK(!scratch.is(dest));
   2890   DCHECK(!scratch.is(src));
   2891   DCHECK(!scratch.is(count));
   2892 
   2893   // Nothing to do for zero characters.
   2894   Label done;
   2895   __ test(count, count);
   2896   __ j(zero, &done);
   2897 
   2898   // Make count the number of bytes to copy.
   2899   if (encoding == String::TWO_BYTE_ENCODING) {
   2900     __ shl(count, 1);
   2901   }
   2902 
   2903   Label loop;
   2904   __ bind(&loop);
   2905   __ mov_b(scratch, Operand(src, 0));
   2906   __ mov_b(Operand(dest, 0), scratch);
   2907   __ inc(src);
   2908   __ inc(dest);
   2909   __ dec(count);
   2910   __ j(not_zero, &loop);
   2911 
   2912   __ bind(&done);
   2913 }
   2914 
   2915 
   2916 void SubStringStub::Generate(MacroAssembler* masm) {
   2917   Label runtime;
   2918 
   2919   // Stack frame on entry.
   2920   //  esp[0]: return address
   2921   //  esp[4]: to
   2922   //  esp[8]: from
   2923   //  esp[12]: string
   2924 
   2925   // Make sure first argument is a string.
   2926   __ mov(eax, Operand(esp, 3 * kPointerSize));
   2927   STATIC_ASSERT(kSmiTag == 0);
   2928   __ JumpIfSmi(eax, &runtime);
   2929   Condition is_string = masm->IsObjectStringType(eax, ebx, ebx);
   2930   __ j(NegateCondition(is_string), &runtime);
   2931 
   2932   // eax: string
   2933   // ebx: instance type
   2934 
   2935   // Calculate length of sub string using the smi values.
   2936   __ mov(ecx, Operand(esp, 1 * kPointerSize));  // To index.
   2937   __ JumpIfNotSmi(ecx, &runtime);
   2938   __ mov(edx, Operand(esp, 2 * kPointerSize));  // From index.
   2939   __ JumpIfNotSmi(edx, &runtime);
   2940   __ sub(ecx, edx);
   2941   __ cmp(ecx, FieldOperand(eax, String::kLengthOffset));
   2942   Label not_original_string;
   2943   // Shorter than original string's length: an actual substring.
   2944   __ j(below, &not_original_string, Label::kNear);
   2945   // Longer than original string's length or negative: unsafe arguments.
   2946   __ j(above, &runtime);
   2947   // Return original string.
   2948   Counters* counters = isolate()->counters();
   2949   __ IncrementCounter(counters->sub_string_native(), 1);
   2950   __ ret(3 * kPointerSize);
   2951   __ bind(&not_original_string);
   2952 
   2953   Label single_char;
   2954   __ cmp(ecx, Immediate(Smi::FromInt(1)));
   2955   __ j(equal, &single_char);
   2956 
   2957   // eax: string
   2958   // ebx: instance type
   2959   // ecx: sub string length (smi)
   2960   // edx: from index (smi)
   2961   // Deal with different string types: update the index if necessary
   2962   // and put the underlying string into edi.
   2963   Label underlying_unpacked, sliced_string, seq_or_external_string;
   2964   // If the string is not indirect, it can only be sequential or external.
   2965   STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
   2966   STATIC_ASSERT(kIsIndirectStringMask != 0);
   2967   __ test(ebx, Immediate(kIsIndirectStringMask));
   2968   __ j(zero, &seq_or_external_string, Label::kNear);
   2969 
   2970   Factory* factory = isolate()->factory();
   2971   __ test(ebx, Immediate(kSlicedNotConsMask));
   2972   __ j(not_zero, &sliced_string, Label::kNear);
   2973   // Cons string.  Check whether it is flat, then fetch first part.
   2974   // Flat cons strings have an empty second part.
   2975   __ cmp(FieldOperand(eax, ConsString::kSecondOffset),
   2976          factory->empty_string());
   2977   __ j(not_equal, &runtime);
   2978   __ mov(edi, FieldOperand(eax, ConsString::kFirstOffset));
   2979   // Update instance type.
   2980   __ mov(ebx, FieldOperand(edi, HeapObject::kMapOffset));
   2981   __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
   2982   __ jmp(&underlying_unpacked, Label::kNear);
   2983 
   2984   __ bind(&sliced_string);
   2985   // Sliced string.  Fetch parent and adjust start index by offset.
   2986   __ add(edx, FieldOperand(eax, SlicedString::kOffsetOffset));
   2987   __ mov(edi, FieldOperand(eax, SlicedString::kParentOffset));
   2988   // Update instance type.
   2989   __ mov(ebx, FieldOperand(edi, HeapObject::kMapOffset));
   2990   __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
   2991   __ jmp(&underlying_unpacked, Label::kNear);
   2992 
   2993   __ bind(&seq_or_external_string);
   2994   // Sequential or external string.  Just move string to the expected register.
   2995   __ mov(edi, eax);
   2996 
   2997   __ bind(&underlying_unpacked);
   2998 
   2999   if (FLAG_string_slices) {
   3000     Label copy_routine;
   3001     // edi: underlying subject string
   3002     // ebx: instance type of underlying subject string
   3003     // edx: adjusted start index (smi)
   3004     // ecx: length (smi)
   3005     __ cmp(ecx, Immediate(Smi::FromInt(SlicedString::kMinLength)));
   3006     // Short slice.  Copy instead of slicing.
   3007     __ j(less, &copy_routine);
   3008     // Allocate new sliced string.  At this point we do not reload the instance
   3009     // type including the string encoding because we simply rely on the info
   3010     // provided by the original string.  It does not matter if the original
   3011     // string's encoding is wrong because we always have to recheck encoding of
   3012     // the newly created string's parent anyways due to externalized strings.
   3013     Label two_byte_slice, set_slice_header;
   3014     STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
   3015     STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
   3016     __ test(ebx, Immediate(kStringEncodingMask));
   3017     __ j(zero, &two_byte_slice, Label::kNear);
   3018     __ AllocateOneByteSlicedString(eax, ebx, no_reg, &runtime);
   3019     __ jmp(&set_slice_header, Label::kNear);
   3020     __ bind(&two_byte_slice);
   3021     __ AllocateTwoByteSlicedString(eax, ebx, no_reg, &runtime);
   3022     __ bind(&set_slice_header);
   3023     __ mov(FieldOperand(eax, SlicedString::kLengthOffset), ecx);
   3024     __ mov(FieldOperand(eax, SlicedString::kHashFieldOffset),
   3025            Immediate(String::kEmptyHashField));
   3026     __ mov(FieldOperand(eax, SlicedString::kParentOffset), edi);
   3027     __ mov(FieldOperand(eax, SlicedString::kOffsetOffset), edx);
   3028     __ IncrementCounter(counters->sub_string_native(), 1);
   3029     __ ret(3 * kPointerSize);
   3030 
   3031     __ bind(&copy_routine);
   3032   }
   3033 
   3034   // edi: underlying subject string
   3035   // ebx: instance type of underlying subject string
   3036   // edx: adjusted start index (smi)
   3037   // ecx: length (smi)
   3038   // The subject string can only be external or sequential string of either
   3039   // encoding at this point.
   3040   Label two_byte_sequential, runtime_drop_two, sequential_string;
   3041   STATIC_ASSERT(kExternalStringTag != 0);
   3042   STATIC_ASSERT(kSeqStringTag == 0);
   3043   __ test_b(ebx, kExternalStringTag);
   3044   __ j(zero, &sequential_string);
   3045 
   3046   // Handle external string.
   3047   // Rule out short external strings.
   3048   STATIC_ASSERT(kShortExternalStringTag != 0);
   3049   __ test_b(ebx, kShortExternalStringMask);
   3050   __ j(not_zero, &runtime);
   3051   __ mov(edi, FieldOperand(edi, ExternalString::kResourceDataOffset));
   3052   // Move the pointer so that offset-wise, it looks like a sequential string.
   3053   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
   3054   __ sub(edi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
   3055 
   3056   __ bind(&sequential_string);
   3057   // Stash away (adjusted) index and (underlying) string.
   3058   __ push(edx);
   3059   __ push(edi);
   3060   __ SmiUntag(ecx);
   3061   STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
   3062   __ test_b(ebx, kStringEncodingMask);
   3063   __ j(zero, &two_byte_sequential);
   3064 
   3065   // Sequential one byte string.  Allocate the result.
   3066   __ AllocateOneByteString(eax, ecx, ebx, edx, edi, &runtime_drop_two);
   3067 
   3068   // eax: result string
   3069   // ecx: result string length
   3070   // Locate first character of result.
   3071   __ mov(edi, eax);
   3072   __ add(edi, Immediate(SeqOneByteString::kHeaderSize - kHeapObjectTag));
   3073   // Load string argument and locate character of sub string start.
   3074   __ pop(edx);
   3075   __ pop(ebx);
   3076   __ SmiUntag(ebx);
   3077   __ lea(edx, FieldOperand(edx, ebx, times_1, SeqOneByteString::kHeaderSize));
   3078 
   3079   // eax: result string
   3080   // ecx: result length
   3081   // edi: first character of result
   3082   // edx: character of sub string start
   3083   StringHelper::GenerateCopyCharacters(
   3084       masm, edi, edx, ecx, ebx, String::ONE_BYTE_ENCODING);
   3085   __ IncrementCounter(counters->sub_string_native(), 1);
   3086   __ ret(3 * kPointerSize);
   3087 
   3088   __ bind(&two_byte_sequential);
   3089   // Sequential two-byte string.  Allocate the result.
   3090   __ AllocateTwoByteString(eax, ecx, ebx, edx, edi, &runtime_drop_two);
   3091 
   3092   // eax: result string
   3093   // ecx: result string length
   3094   // Locate first character of result.
   3095   __ mov(edi, eax);
   3096   __ add(edi,
   3097          Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
   3098   // Load string argument and locate character of sub string start.
   3099   __ pop(edx);
   3100   __ pop(ebx);
   3101   // As from is a smi it is 2 times the value which matches the size of a two
   3102   // byte character.
   3103   STATIC_ASSERT(kSmiTag == 0);
   3104   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
   3105   __ lea(edx, FieldOperand(edx, ebx, times_1, SeqTwoByteString::kHeaderSize));
   3106 
   3107   // eax: result string
   3108   // ecx: result length
   3109   // edi: first character of result
   3110   // edx: character of sub string start
   3111   StringHelper::GenerateCopyCharacters(
   3112       masm, edi, edx, ecx, ebx, String::TWO_BYTE_ENCODING);
   3113   __ IncrementCounter(counters->sub_string_native(), 1);
   3114   __ ret(3 * kPointerSize);
   3115 
   3116   // Drop pushed values on the stack before tail call.
   3117   __ bind(&runtime_drop_two);
   3118   __ Drop(2);
   3119 
   3120   // Just jump to runtime to create the sub string.
   3121   __ bind(&runtime);
   3122   __ TailCallRuntime(Runtime::kSubString, 3, 1);
   3123 
   3124   __ bind(&single_char);
   3125   // eax: string
   3126   // ebx: instance type
   3127   // ecx: sub string length (smi)
   3128   // edx: from index (smi)
   3129   StringCharAtGenerator generator(
   3130       eax, edx, ecx, eax, &runtime, &runtime, &runtime, STRING_INDEX_IS_NUMBER);
   3131   generator.GenerateFast(masm);
   3132   __ ret(3 * kPointerSize);
   3133   generator.SkipSlow(masm, &runtime);
   3134 }
   3135 
   3136 
   3137 void StringHelper::GenerateFlatOneByteStringEquals(MacroAssembler* masm,
   3138                                                    Register left,
   3139                                                    Register right,
   3140                                                    Register scratch1,
   3141                                                    Register scratch2) {
   3142   Register length = scratch1;
   3143 
   3144   // Compare lengths.
   3145   Label strings_not_equal, check_zero_length;
   3146   __ mov(length, FieldOperand(left, String::kLengthOffset));
   3147   __ cmp(length, FieldOperand(right, String::kLengthOffset));
   3148   __ j(equal, &check_zero_length, Label::kNear);
   3149   __ bind(&strings_not_equal);
   3150   __ Move(eax, Immediate(Smi::FromInt(NOT_EQUAL)));
   3151   __ ret(0);
   3152 
   3153   // Check if the length is zero.
   3154   Label compare_chars;
   3155   __ bind(&check_zero_length);
   3156   STATIC_ASSERT(kSmiTag == 0);
   3157   __ test(length, length);
   3158   __ j(not_zero, &compare_chars, Label::kNear);
   3159   __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
   3160   __ ret(0);
   3161 
   3162   // Compare characters.
   3163   __ bind(&compare_chars);
   3164   GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2,
   3165                                   &strings_not_equal, Label::kNear);
   3166 
   3167   // Characters are equal.
   3168   __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
   3169   __ ret(0);
   3170 }
   3171 
   3172 
   3173 void StringHelper::GenerateCompareFlatOneByteStrings(
   3174     MacroAssembler* masm, Register left, Register right, Register scratch1,
   3175     Register scratch2, Register scratch3) {
   3176   Counters* counters = masm->isolate()->counters();
   3177   __ IncrementCounter(counters->string_compare_native(), 1);
   3178 
   3179   // Find minimum length.
   3180   Label left_shorter;
   3181   __ mov(scratch1, FieldOperand(left, String::kLengthOffset));
   3182   __ mov(scratch3, scratch1);
   3183   __ sub(scratch3, FieldOperand(right, String::kLengthOffset));
   3184 
   3185   Register length_delta = scratch3;
   3186 
   3187   __ j(less_equal, &left_shorter, Label::kNear);
   3188   // Right string is shorter. Change scratch1 to be length of right string.
   3189   __ sub(scratch1, length_delta);
   3190   __ bind(&left_shorter);
   3191 
   3192   Register min_length = scratch1;
   3193 
   3194   // If either length is zero, just compare lengths.
   3195   Label compare_lengths;
   3196   __ test(min_length, min_length);
   3197   __ j(zero, &compare_lengths, Label::kNear);
   3198 
   3199   // Compare characters.
   3200   Label result_not_equal;
   3201   GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
   3202                                   &result_not_equal, Label::kNear);
   3203 
   3204   // Compare lengths -  strings up to min-length are equal.
   3205   __ bind(&compare_lengths);
   3206   __ test(length_delta, length_delta);
   3207   Label length_not_equal;
   3208   __ j(not_zero, &length_not_equal, Label::kNear);
   3209 
   3210   // Result is EQUAL.
   3211   STATIC_ASSERT(EQUAL == 0);
   3212   STATIC_ASSERT(kSmiTag == 0);
   3213   __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
   3214   __ ret(0);
   3215 
   3216   Label result_greater;
   3217   Label result_less;
   3218   __ bind(&length_not_equal);
   3219   __ j(greater, &result_greater, Label::kNear);
   3220   __ jmp(&result_less, Label::kNear);
   3221   __ bind(&result_not_equal);
   3222   __ j(above, &result_greater, Label::kNear);
   3223   __ bind(&result_less);
   3224 
   3225   // Result is LESS.
   3226   __ Move(eax, Immediate(Smi::FromInt(LESS)));
   3227   __ ret(0);
   3228 
   3229   // Result is GREATER.
   3230   __ bind(&result_greater);
   3231   __ Move(eax, Immediate(Smi::FromInt(GREATER)));
   3232   __ ret(0);
   3233 }
   3234 
   3235 
   3236 void StringHelper::GenerateOneByteCharsCompareLoop(
   3237     MacroAssembler* masm, Register left, Register right, Register length,
   3238     Register scratch, Label* chars_not_equal,
   3239     Label::Distance chars_not_equal_near) {
   3240   // Change index to run from -length to -1 by adding length to string
   3241   // start. This means that loop ends when index reaches zero, which
   3242   // doesn't need an additional compare.
   3243   __ SmiUntag(length);
   3244   __ lea(left,
   3245          FieldOperand(left, length, times_1, SeqOneByteString::kHeaderSize));
   3246   __ lea(right,
   3247          FieldOperand(right, length, times_1, SeqOneByteString::kHeaderSize));
   3248   __ neg(length);
   3249   Register index = length;  // index = -length;
   3250 
   3251   // Compare loop.
   3252   Label loop;
   3253   __ bind(&loop);
   3254   __ mov_b(scratch, Operand(left, index, times_1, 0));
   3255   __ cmpb(scratch, Operand(right, index, times_1, 0));
   3256   __ j(not_equal, chars_not_equal, chars_not_equal_near);
   3257   __ inc(index);
   3258   __ j(not_zero, &loop);
   3259 }
   3260 
   3261 
   3262 void StringCompareStub::Generate(MacroAssembler* masm) {
   3263   Label runtime;
   3264 
   3265   // Stack frame on entry.
   3266   //  esp[0]: return address
   3267   //  esp[4]: right string
   3268   //  esp[8]: left string
   3269 
   3270   __ mov(edx, Operand(esp, 2 * kPointerSize));  // left
   3271   __ mov(eax, Operand(esp, 1 * kPointerSize));  // right
   3272 
   3273   Label not_same;
   3274   __ cmp(edx, eax);
   3275   __ j(not_equal, &not_same, Label::kNear);
   3276   STATIC_ASSERT(EQUAL == 0);
   3277   STATIC_ASSERT(kSmiTag == 0);
   3278   __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
   3279   __ IncrementCounter(isolate()->counters()->string_compare_native(), 1);
   3280   __ ret(2 * kPointerSize);
   3281 
   3282   __ bind(&not_same);
   3283 
   3284   // Check that both objects are sequential one-byte strings.
   3285   __ JumpIfNotBothSequentialOneByteStrings(edx, eax, ecx, ebx, &runtime);
   3286 
   3287   // Compare flat one-byte strings.
   3288   // Drop arguments from the stack.
   3289   __ pop(ecx);
   3290   __ add(esp, Immediate(2 * kPointerSize));
   3291   __ push(ecx);
   3292   StringHelper::GenerateCompareFlatOneByteStrings(masm, edx, eax, ecx, ebx,
   3293                                                   edi);
   3294 
   3295   // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
   3296   // tagged as a small integer.
   3297   __ bind(&runtime);
   3298   __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
   3299 }
   3300 
   3301 
   3302 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
   3303   // ----------- S t a t e -------------
   3304   //  -- edx    : left
   3305   //  -- eax    : right
   3306   //  -- esp[0] : return address
   3307   // -----------------------------------
   3308 
   3309   // Load ecx with the allocation site.  We stick an undefined dummy value here
   3310   // and replace it with the real allocation site later when we instantiate this
   3311   // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
   3312   __ mov(ecx, handle(isolate()->heap()->undefined_value()));
   3313 
   3314   // Make sure that we actually patched the allocation site.
   3315   if (FLAG_debug_code) {
   3316     __ test(ecx, Immediate(kSmiTagMask));
   3317     __ Assert(not_equal, kExpectedAllocationSite);
   3318     __ cmp(FieldOperand(ecx, HeapObject::kMapOffset),
   3319            isolate()->factory()->allocation_site_map());
   3320     __ Assert(equal, kExpectedAllocationSite);
   3321   }
   3322 
   3323   // Tail call into the stub that handles binary operations with allocation
   3324   // sites.
   3325   BinaryOpWithAllocationSiteStub stub(isolate(), state());
   3326   __ TailCallStub(&stub);
   3327 }
   3328 
   3329 
   3330 void CompareICStub::GenerateSmis(MacroAssembler* masm) {
   3331   DCHECK(state() == CompareICState::SMI);
   3332   Label miss;
   3333   __ mov(ecx, edx);
   3334   __ or_(ecx, eax);
   3335   __ JumpIfNotSmi(ecx, &miss, Label::kNear);
   3336 
   3337   if (GetCondition() == equal) {
   3338     // For equality we do not care about the sign of the result.
   3339     __ sub(eax, edx);
   3340   } else {
   3341     Label done;
   3342     __ sub(edx, eax);
   3343     __ j(no_overflow, &done, Label::kNear);
   3344     // Correct sign of result in case of overflow.
   3345     __ not_(edx);
   3346     __ bind(&done);
   3347     __ mov(eax, edx);
   3348   }
   3349   __ ret(0);
   3350 
   3351   __ bind(&miss);
   3352   GenerateMiss(masm);
   3353 }
   3354 
   3355 
   3356 void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
   3357   DCHECK(state() == CompareICState::NUMBER);
   3358 
   3359   Label generic_stub;
   3360   Label unordered, maybe_undefined1, maybe_undefined2;
   3361   Label miss;
   3362 
   3363   if (left() == CompareICState::SMI) {
   3364     __ JumpIfNotSmi(edx, &miss);
   3365   }
   3366   if (right() == CompareICState::SMI) {
   3367     __ JumpIfNotSmi(eax, &miss);
   3368   }
   3369 
   3370   // Load left and right operand.
   3371   Label done, left, left_smi, right_smi;
   3372   __ JumpIfSmi(eax, &right_smi, Label::kNear);
   3373   __ cmp(FieldOperand(eax, HeapObject::kMapOffset),
   3374          isolate()->factory()->heap_number_map());
   3375   __ j(not_equal, &maybe_undefined1, Label::kNear);
   3376   __ movsd(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
   3377   __ jmp(&left, Label::kNear);
   3378   __ bind(&right_smi);
   3379   __ mov(ecx, eax);  // Can't clobber eax because we can still jump away.
   3380   __ SmiUntag(ecx);
   3381   __ Cvtsi2sd(xmm1, ecx);
   3382 
   3383   __ bind(&left);
   3384   __ JumpIfSmi(edx, &left_smi, Label::kNear);
   3385   __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
   3386          isolate()->factory()->heap_number_map());
   3387   __ j(not_equal, &maybe_undefined2, Label::kNear);
   3388   __ movsd(xmm0, FieldOperand(edx, HeapNumber::kValueOffset));
   3389   __ jmp(&done);
   3390   __ bind(&left_smi);
   3391   __ mov(ecx, edx);  // Can't clobber edx because we can still jump away.
   3392   __ SmiUntag(ecx);
   3393   __ Cvtsi2sd(xmm0, ecx);
   3394 
   3395   __ bind(&done);
   3396   // Compare operands.
   3397   __ ucomisd(xmm0, xmm1);
   3398 
   3399   // Don't base result on EFLAGS when a NaN is involved.
   3400   __ j(parity_even, &unordered, Label::kNear);
   3401 
   3402   // Return a result of -1, 0, or 1, based on EFLAGS.
   3403   // Performing mov, because xor would destroy the flag register.
   3404   __ mov(eax, 0);  // equal
   3405   __ mov(ecx, Immediate(Smi::FromInt(1)));
   3406   __ cmov(above, eax, ecx);
   3407   __ mov(ecx, Immediate(Smi::FromInt(-1)));
   3408   __ cmov(below, eax, ecx);
   3409   __ ret(0);
   3410 
   3411   __ bind(&unordered);
   3412   __ bind(&generic_stub);
   3413   CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
   3414                      CompareICState::GENERIC, CompareICState::GENERIC);
   3415   __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
   3416 
   3417   __ bind(&maybe_undefined1);
   3418   if (Token::IsOrderedRelationalCompareOp(op())) {
   3419     __ cmp(eax, Immediate(isolate()->factory()->undefined_value()));
   3420     __ j(not_equal, &miss);
   3421     __ JumpIfSmi(edx, &unordered);
   3422     __ CmpObjectType(edx, HEAP_NUMBER_TYPE, ecx);
   3423     __ j(not_equal, &maybe_undefined2, Label::kNear);
   3424     __ jmp(&unordered);
   3425   }
   3426 
   3427   __ bind(&maybe_undefined2);
   3428   if (Token::IsOrderedRelationalCompareOp(op())) {
   3429     __ cmp(edx, Immediate(isolate()->factory()->undefined_value()));
   3430     __ j(equal, &unordered);
   3431   }
   3432 
   3433   __ bind(&miss);
   3434   GenerateMiss(masm);
   3435 }
   3436 
   3437 
   3438 void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
   3439   DCHECK(state() == CompareICState::INTERNALIZED_STRING);
   3440   DCHECK(GetCondition() == equal);
   3441 
   3442   // Registers containing left and right operands respectively.
   3443   Register left = edx;
   3444   Register right = eax;
   3445   Register tmp1 = ecx;
   3446   Register tmp2 = ebx;
   3447 
   3448   // Check that both operands are heap objects.
   3449   Label miss;
   3450   __ mov(tmp1, left);
   3451   STATIC_ASSERT(kSmiTag == 0);
   3452   __ and_(tmp1, right);
   3453   __ JumpIfSmi(tmp1, &miss, Label::kNear);
   3454 
   3455   // Check that both operands are internalized strings.
   3456   __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
   3457   __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
   3458   __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
   3459   __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
   3460   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
   3461   __ or_(tmp1, tmp2);
   3462   __ test(tmp1, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
   3463   __ j(not_zero, &miss, Label::kNear);
   3464 
   3465   // Internalized strings are compared by identity.
   3466   Label done;
   3467   __ cmp(left, right);
   3468   // Make sure eax is non-zero. At this point input operands are
   3469   // guaranteed to be non-zero.
   3470   DCHECK(right.is(eax));
   3471   __ j(not_equal, &done, Label::kNear);
   3472   STATIC_ASSERT(EQUAL == 0);
   3473   STATIC_ASSERT(kSmiTag == 0);
   3474   __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
   3475   __ bind(&done);
   3476   __ ret(0);
   3477 
   3478   __ bind(&miss);
   3479   GenerateMiss(masm);
   3480 }
   3481 
   3482 
   3483 void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
   3484   DCHECK(state() == CompareICState::UNIQUE_NAME);
   3485   DCHECK(GetCondition() == equal);
   3486 
   3487   // Registers containing left and right operands respectively.
   3488   Register left = edx;
   3489   Register right = eax;
   3490   Register tmp1 = ecx;
   3491   Register tmp2 = ebx;
   3492 
   3493   // Check that both operands are heap objects.
   3494   Label miss;
   3495   __ mov(tmp1, left);
   3496   STATIC_ASSERT(kSmiTag == 0);
   3497   __ and_(tmp1, right);
   3498   __ JumpIfSmi(tmp1, &miss, Label::kNear);
   3499 
   3500   // Check that both operands are unique names. This leaves the instance
   3501   // types loaded in tmp1 and tmp2.
   3502   __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
   3503   __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
   3504   __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
   3505   __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
   3506 
   3507   __ JumpIfNotUniqueNameInstanceType(tmp1, &miss, Label::kNear);
   3508   __ JumpIfNotUniqueNameInstanceType(tmp2, &miss, Label::kNear);
   3509 
   3510   // Unique names are compared by identity.
   3511   Label done;
   3512   __ cmp(left, right);
   3513   // Make sure eax is non-zero. At this point input operands are
   3514   // guaranteed to be non-zero.
   3515   DCHECK(right.is(eax));
   3516   __ j(not_equal, &done, Label::kNear);
   3517   STATIC_ASSERT(EQUAL == 0);
   3518   STATIC_ASSERT(kSmiTag == 0);
   3519   __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
   3520   __ bind(&done);
   3521   __ ret(0);
   3522 
   3523   __ bind(&miss);
   3524   GenerateMiss(masm);
   3525 }
   3526 
   3527 
   3528 void CompareICStub::GenerateStrings(MacroAssembler* masm) {
   3529   DCHECK(state() == CompareICState::STRING);
   3530   Label miss;
   3531 
   3532   bool equality = Token::IsEqualityOp(op());
   3533 
   3534   // Registers containing left and right operands respectively.
   3535   Register left = edx;
   3536   Register right = eax;
   3537   Register tmp1 = ecx;
   3538   Register tmp2 = ebx;
   3539   Register tmp3 = edi;
   3540 
   3541   // Check that both operands are heap objects.
   3542   __ mov(tmp1, left);
   3543   STATIC_ASSERT(kSmiTag == 0);
   3544   __ and_(tmp1, right);
   3545   __ JumpIfSmi(tmp1, &miss);
   3546 
   3547   // Check that both operands are strings. This leaves the instance
   3548   // types loaded in tmp1 and tmp2.
   3549   __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
   3550   __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
   3551   __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
   3552   __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
   3553   __ mov(tmp3, tmp1);
   3554   STATIC_ASSERT(kNotStringTag != 0);
   3555   __ or_(tmp3, tmp2);
   3556   __ test(tmp3, Immediate(kIsNotStringMask));
   3557   __ j(not_zero, &miss);
   3558 
   3559   // Fast check for identical strings.
   3560   Label not_same;
   3561   __ cmp(left, right);
   3562   __ j(not_equal, &not_same, Label::kNear);
   3563   STATIC_ASSERT(EQUAL == 0);
   3564   STATIC_ASSERT(kSmiTag == 0);
   3565   __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
   3566   __ ret(0);
   3567 
   3568   // Handle not identical strings.
   3569   __ bind(&not_same);
   3570 
   3571   // Check that both strings are internalized. If they are, we're done
   3572   // because we already know they are not identical.  But in the case of
   3573   // non-equality compare, we still need to determine the order. We
   3574   // also know they are both strings.
   3575   if (equality) {
   3576     Label do_compare;
   3577     STATIC_ASSERT(kInternalizedTag == 0);
   3578     __ or_(tmp1, tmp2);
   3579     __ test(tmp1, Immediate(kIsNotInternalizedMask));
   3580     __ j(not_zero, &do_compare, Label::kNear);
   3581     // Make sure eax is non-zero. At this point input operands are
   3582     // guaranteed to be non-zero.
   3583     DCHECK(right.is(eax));
   3584     __ ret(0);
   3585     __ bind(&do_compare);
   3586   }
   3587 
   3588   // Check that both strings are sequential one-byte.
   3589   Label runtime;
   3590   __ JumpIfNotBothSequentialOneByteStrings(left, right, tmp1, tmp2, &runtime);
   3591 
   3592   // Compare flat one byte strings. Returns when done.
   3593   if (equality) {
   3594     StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1,
   3595                                                   tmp2);
   3596   } else {
   3597     StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
   3598                                                     tmp2, tmp3);
   3599   }
   3600 
   3601   // Handle more complex cases in runtime.
   3602   __ bind(&runtime);
   3603   __ pop(tmp1);  // Return address.
   3604   __ push(left);
   3605   __ push(right);
   3606   __ push(tmp1);
   3607   if (equality) {
   3608     __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
   3609   } else {
   3610     __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
   3611   }
   3612 
   3613   __ bind(&miss);
   3614   GenerateMiss(masm);
   3615 }
   3616 
   3617 
   3618 void CompareICStub::GenerateObjects(MacroAssembler* masm) {
   3619   DCHECK(state() == CompareICState::OBJECT);
   3620   Label miss;
   3621   __ mov(ecx, edx);
   3622   __ and_(ecx, eax);
   3623   __ JumpIfSmi(ecx, &miss, Label::kNear);
   3624 
   3625   __ CmpObjectType(eax, JS_OBJECT_TYPE, ecx);
   3626   __ j(not_equal, &miss, Label::kNear);
   3627   __ CmpObjectType(edx, JS_OBJECT_TYPE, ecx);
   3628   __ j(not_equal, &miss, Label::kNear);
   3629 
   3630   DCHECK(GetCondition() == equal);
   3631   __ sub(eax, edx);
   3632   __ ret(0);
   3633 
   3634   __ bind(&miss);
   3635   GenerateMiss(masm);
   3636 }
   3637 
   3638 
   3639 void CompareICStub::GenerateKnownObjects(MacroAssembler* masm) {
   3640   Label miss;
   3641   __ mov(ecx, edx);
   3642   __ and_(ecx, eax);
   3643   __ JumpIfSmi(ecx, &miss, Label::kNear);
   3644 
   3645   __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
   3646   __ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset));
   3647   __ cmp(ecx, known_map_);
   3648   __ j(not_equal, &miss, Label::kNear);
   3649   __ cmp(ebx, known_map_);
   3650   __ j(not_equal, &miss, Label::kNear);
   3651 
   3652   __ sub(eax, edx);
   3653   __ ret(0);
   3654 
   3655   __ bind(&miss);
   3656   GenerateMiss(masm);
   3657 }
   3658 
   3659 
   3660 void CompareICStub::GenerateMiss(MacroAssembler* masm) {
   3661   {
   3662     // Call the runtime system in a fresh internal frame.
   3663     ExternalReference miss = ExternalReference(IC_Utility(IC::kCompareIC_Miss),
   3664                                                isolate());
   3665     FrameScope scope(masm, StackFrame::INTERNAL);
   3666     __ push(edx);  // Preserve edx and eax.
   3667     __ push(eax);
   3668     __ push(edx);  // And also use them as the arguments.
   3669     __ push(eax);
   3670     __ push(Immediate(Smi::FromInt(op())));
   3671     __ CallExternalReference(miss, 3);
   3672     // Compute the entry point of the rewritten stub.
   3673     __ lea(edi, FieldOperand(eax, Code::kHeaderSize));
   3674     __ pop(eax);
   3675     __ pop(edx);
   3676   }
   3677 
   3678   // Do a tail call to the rewritten stub.
   3679   __ jmp(edi);
   3680 }
   3681 
   3682 
   3683 // Helper function used to check that the dictionary doesn't contain
   3684 // the property. This function may return false negatives, so miss_label
   3685 // must always call a backup property check that is complete.
   3686 // This function is safe to call if the receiver has fast properties.
   3687 // Name must be a unique name and receiver must be a heap object.
   3688 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
   3689                                                       Label* miss,
   3690                                                       Label* done,
   3691                                                       Register properties,
   3692                                                       Handle<Name> name,
   3693                                                       Register r0) {
   3694   DCHECK(name->IsUniqueName());
   3695 
   3696   // If names of slots in range from 1 to kProbes - 1 for the hash value are
   3697   // not equal to the name and kProbes-th slot is not used (its name is the
   3698   // undefined value), it guarantees the hash table doesn't contain the
   3699   // property. It's true even if some slots represent deleted properties
   3700   // (their names are the hole value).
   3701   for (int i = 0; i < kInlinedProbes; i++) {
   3702     // Compute the masked index: (hash + i + i * i) & mask.
   3703     Register index = r0;
   3704     // Capacity is smi 2^n.
   3705     __ mov(index, FieldOperand(properties, kCapacityOffset));
   3706     __ dec(index);
   3707     __ and_(index,
   3708             Immediate(Smi::FromInt(name->Hash() +
   3709                                    NameDictionary::GetProbeOffset(i))));
   3710 
   3711     // Scale the index by multiplying by the entry size.
   3712     DCHECK(NameDictionary::kEntrySize == 3);
   3713     __ lea(index, Operand(index, index, times_2, 0));  // index *= 3.
   3714     Register entity_name = r0;
   3715     // Having undefined at this place means the name is not contained.
   3716     DCHECK_EQ(kSmiTagSize, 1);
   3717     __ mov(entity_name, Operand(properties, index, times_half_pointer_size,
   3718                                 kElementsStartOffset - kHeapObjectTag));
   3719     __ cmp(entity_name, masm->isolate()->factory()->undefined_value());
   3720     __ j(equal, done);
   3721 
   3722     // Stop if found the property.
   3723     __ cmp(entity_name, Handle<Name>(name));
   3724     __ j(equal, miss);
   3725 
   3726     Label good;
   3727     // Check for the hole and skip.
   3728     __ cmp(entity_name, masm->isolate()->factory()->the_hole_value());
   3729     __ j(equal, &good, Label::kNear);
   3730 
   3731     // Check if the entry name is not a unique name.
   3732     __ mov(entity_name, FieldOperand(entity_name, HeapObject::kMapOffset));
   3733     __ JumpIfNotUniqueNameInstanceType(
   3734         FieldOperand(entity_name, Map::kInstanceTypeOffset), miss);
   3735     __ bind(&good);
   3736   }
   3737 
   3738   NameDictionaryLookupStub stub(masm->isolate(), properties, r0, r0,
   3739                                 NEGATIVE_LOOKUP);
   3740   __ push(Immediate(Handle<Object>(name)));
   3741   __ push(Immediate(name->Hash()));
   3742   __ CallStub(&stub);
   3743   __ test(r0, r0);
   3744   __ j(not_zero, miss);
   3745   __ jmp(done);
   3746 }
   3747 
   3748 
   3749 // Probe the name dictionary in the |elements| register. Jump to the
   3750 // |done| label if a property with the given name is found leaving the
   3751 // index into the dictionary in |r0|. Jump to the |miss| label
   3752 // otherwise.
   3753 void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
   3754                                                       Label* miss,
   3755                                                       Label* done,
   3756                                                       Register elements,
   3757                                                       Register name,
   3758                                                       Register r0,
   3759                                                       Register r1) {
   3760   DCHECK(!elements.is(r0));
   3761   DCHECK(!elements.is(r1));
   3762   DCHECK(!name.is(r0));
   3763   DCHECK(!name.is(r1));
   3764 
   3765   __ AssertName(name);
   3766 
   3767   __ mov(r1, FieldOperand(elements, kCapacityOffset));
   3768   __ shr(r1, kSmiTagSize);  // convert smi to int
   3769   __ dec(r1);
   3770 
   3771   // Generate an unrolled loop that performs a few probes before
   3772   // giving up. Measurements done on Gmail indicate that 2 probes
   3773   // cover ~93% of loads from dictionaries.
   3774   for (int i = 0; i < kInlinedProbes; i++) {
   3775     // Compute the masked index: (hash + i + i * i) & mask.
   3776     __ mov(r0, FieldOperand(name, Name::kHashFieldOffset));
   3777     __ shr(r0, Name::kHashShift);
   3778     if (i > 0) {
   3779       __ add(r0, Immediate(NameDictionary::GetProbeOffset(i)));
   3780     }
   3781     __ and_(r0, r1);
   3782 
   3783     // Scale the index by multiplying by the entry size.
   3784     DCHECK(NameDictionary::kEntrySize == 3);
   3785     __ lea(r0, Operand(r0, r0, times_2, 0));  // r0 = r0 * 3
   3786 
   3787     // Check if the key is identical to the name.
   3788     __ cmp(name, Operand(elements,
   3789                          r0,
   3790                          times_4,
   3791                          kElementsStartOffset - kHeapObjectTag));
   3792     __ j(equal, done);
   3793   }
   3794 
   3795   NameDictionaryLookupStub stub(masm->isolate(), elements, r1, r0,
   3796                                 POSITIVE_LOOKUP);
   3797   __ push(name);
   3798   __ mov(r0, FieldOperand(name, Name::kHashFieldOffset));
   3799   __ shr(r0, Name::kHashShift);
   3800   __ push(r0);
   3801   __ CallStub(&stub);
   3802 
   3803   __ test(r1, r1);
   3804   __ j(zero, miss);
   3805   __ jmp(done);
   3806 }
   3807 
   3808 
   3809 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
   3810   // This stub overrides SometimesSetsUpAFrame() to return false.  That means
   3811   // we cannot call anything that could cause a GC from this stub.
   3812   // Stack frame on entry:
   3813   //  esp[0 * kPointerSize]: return address.
   3814   //  esp[1 * kPointerSize]: key's hash.
   3815   //  esp[2 * kPointerSize]: key.
   3816   // Registers:
   3817   //  dictionary_: NameDictionary to probe.
   3818   //  result_: used as scratch.
   3819   //  index_: will hold an index of entry if lookup is successful.
   3820   //          might alias with result_.
   3821   // Returns:
   3822   //  result_ is zero if lookup failed, non zero otherwise.
   3823 
   3824   Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
   3825 
   3826   Register scratch = result();
   3827 
   3828   __ mov(scratch, FieldOperand(dictionary(), kCapacityOffset));
   3829   __ dec(scratch);
   3830   __ SmiUntag(scratch);
   3831   __ push(scratch);
   3832 
   3833   // If names of slots in range from 1 to kProbes - 1 for the hash value are
   3834   // not equal to the name and kProbes-th slot is not used (its name is the
   3835   // undefined value), it guarantees the hash table doesn't contain the
   3836   // property. It's true even if some slots represent deleted properties
   3837   // (their names are the null value).
   3838   for (int i = kInlinedProbes; i < kTotalProbes; i++) {
   3839     // Compute the masked index: (hash + i + i * i) & mask.
   3840     __ mov(scratch, Operand(esp, 2 * kPointerSize));
   3841     if (i > 0) {
   3842       __ add(scratch, Immediate(NameDictionary::GetProbeOffset(i)));
   3843     }
   3844     __ and_(scratch, Operand(esp, 0));
   3845 
   3846     // Scale the index by multiplying by the entry size.
   3847     DCHECK(NameDictionary::kEntrySize == 3);
   3848     __ lea(index(), Operand(scratch, scratch, times_2, 0));  // index *= 3.
   3849 
   3850     // Having undefined at this place means the name is not contained.
   3851     DCHECK_EQ(kSmiTagSize, 1);
   3852     __ mov(scratch, Operand(dictionary(), index(), times_pointer_size,
   3853                             kElementsStartOffset - kHeapObjectTag));
   3854     __ cmp(scratch, isolate()->factory()->undefined_value());
   3855     __ j(equal, &not_in_dictionary);
   3856 
   3857     // Stop if found the property.
   3858     __ cmp(scratch, Operand(esp, 3 * kPointerSize));
   3859     __ j(equal, &in_dictionary);
   3860 
   3861     if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
   3862       // If we hit a key that is not a unique name during negative
   3863       // lookup we have to bailout as this key might be equal to the
   3864       // key we are looking for.
   3865 
   3866       // Check if the entry name is not a unique name.
   3867       __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
   3868       __ JumpIfNotUniqueNameInstanceType(
   3869           FieldOperand(scratch, Map::kInstanceTypeOffset),
   3870           &maybe_in_dictionary);
   3871     }
   3872   }
   3873 
   3874   __ bind(&maybe_in_dictionary);
   3875   // If we are doing negative lookup then probing failure should be
   3876   // treated as a lookup success. For positive lookup probing failure
   3877   // should be treated as lookup failure.
   3878   if (mode() == POSITIVE_LOOKUP) {
   3879     __ mov(result(), Immediate(0));
   3880     __ Drop(1);
   3881     __ ret(2 * kPointerSize);
   3882   }
   3883 
   3884   __ bind(&in_dictionary);
   3885   __ mov(result(), Immediate(1));
   3886   __ Drop(1);
   3887   __ ret(2 * kPointerSize);
   3888 
   3889   __ bind(&not_in_dictionary);
   3890   __ mov(result(), Immediate(0));
   3891   __ Drop(1);
   3892   __ ret(2 * kPointerSize);
   3893 }
   3894 
   3895 
   3896 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
   3897     Isolate* isolate) {
   3898   StoreBufferOverflowStub stub(isolate, kDontSaveFPRegs);
   3899   stub.GetCode();
   3900   StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
   3901   stub2.GetCode();
   3902 }
   3903 
   3904 
   3905 // Takes the input in 3 registers: address_ value_ and object_.  A pointer to
   3906 // the value has just been written into the object, now this stub makes sure
   3907 // we keep the GC informed.  The word in the object where the value has been
   3908 // written is in the address register.
   3909 void RecordWriteStub::Generate(MacroAssembler* masm) {
   3910   Label skip_to_incremental_noncompacting;
   3911   Label skip_to_incremental_compacting;
   3912 
   3913   // The first two instructions are generated with labels so as to get the
   3914   // offset fixed up correctly by the bind(Label*) call.  We patch it back and
   3915   // forth between a compare instructions (a nop in this position) and the
   3916   // real branch when we start and stop incremental heap marking.
   3917   __ jmp(&skip_to_incremental_noncompacting, Label::kNear);
   3918   __ jmp(&skip_to_incremental_compacting, Label::kFar);
   3919 
   3920   if (remembered_set_action() == EMIT_REMEMBERED_SET) {
   3921     __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
   3922                            MacroAssembler::kReturnAtEnd);
   3923   } else {
   3924     __ ret(0);
   3925   }
   3926 
   3927   __ bind(&skip_to_incremental_noncompacting);
   3928   GenerateIncremental(masm, INCREMENTAL);
   3929 
   3930   __ bind(&skip_to_incremental_compacting);
   3931   GenerateIncremental(masm, INCREMENTAL_COMPACTION);
   3932 
   3933   // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
   3934   // Will be checked in IncrementalMarking::ActivateGeneratedStub.
   3935   masm->set_byte_at(0, kTwoByteNopInstruction);
   3936   masm->set_byte_at(2, kFiveByteNopInstruction);
   3937 }
   3938 
   3939 
   3940 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
   3941   regs_.Save(masm);
   3942 
   3943   if (remembered_set_action() == EMIT_REMEMBERED_SET) {
   3944     Label dont_need_remembered_set;
   3945 
   3946     __ mov(regs_.scratch0(), Operand(regs_.address(), 0));
   3947     __ JumpIfNotInNewSpace(regs_.scratch0(),  // Value.
   3948                            regs_.scratch0(),
   3949                            &dont_need_remembered_set);
   3950 
   3951     __ CheckPageFlag(regs_.object(),
   3952                      regs_.scratch0(),
   3953                      1 << MemoryChunk::SCAN_ON_SCAVENGE,
   3954                      not_zero,
   3955                      &dont_need_remembered_set);
   3956 
   3957     // First notify the incremental marker if necessary, then update the
   3958     // remembered set.
   3959     CheckNeedsToInformIncrementalMarker(
   3960         masm,
   3961         kUpdateRememberedSetOnNoNeedToInformIncrementalMarker,
   3962         mode);
   3963     InformIncrementalMarker(masm);
   3964     regs_.Restore(masm);
   3965     __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
   3966                            MacroAssembler::kReturnAtEnd);
   3967 
   3968     __ bind(&dont_need_remembered_set);
   3969   }
   3970 
   3971   CheckNeedsToInformIncrementalMarker(
   3972       masm,
   3973       kReturnOnNoNeedToInformIncrementalMarker,
   3974       mode);
   3975   InformIncrementalMarker(masm);
   3976   regs_.Restore(masm);
   3977   __ ret(0);
   3978 }
   3979 
   3980 
   3981 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
   3982   regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
   3983   int argument_count = 3;
   3984   __ PrepareCallCFunction(argument_count, regs_.scratch0());
   3985   __ mov(Operand(esp, 0 * kPointerSize), regs_.object());
   3986   __ mov(Operand(esp, 1 * kPointerSize), regs_.address());  // Slot.
   3987   __ mov(Operand(esp, 2 * kPointerSize),
   3988          Immediate(ExternalReference::isolate_address(isolate())));
   3989 
   3990   AllowExternalCallThatCantCauseGC scope(masm);
   3991   __ CallCFunction(
   3992       ExternalReference::incremental_marking_record_write_function(isolate()),
   3993       argument_count);
   3994 
   3995   regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
   3996 }
   3997 
   3998 
   3999 void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
   4000     MacroAssembler* masm,
   4001     OnNoNeedToInformIncrementalMarker on_no_need,
   4002     Mode mode) {
   4003   Label object_is_black, need_incremental, need_incremental_pop_object;
   4004 
   4005   __ mov(regs_.scratch0(), Immediate(~Page::kPageAlignmentMask));
   4006   __ and_(regs_.scratch0(), regs_.object());
   4007   __ mov(regs_.scratch1(),
   4008          Operand(regs_.scratch0(),
   4009                  MemoryChunk::kWriteBarrierCounterOffset));
   4010   __ sub(regs_.scratch1(), Immediate(1));
   4011   __ mov(Operand(regs_.scratch0(),
   4012                  MemoryChunk::kWriteBarrierCounterOffset),
   4013          regs_.scratch1());
   4014   __ j(negative, &need_incremental);
   4015 
   4016   // Let's look at the color of the object:  If it is not black we don't have
   4017   // to inform the incremental marker.
   4018   __ JumpIfBlack(regs_.object(),
   4019                  regs_.scratch0(),
   4020                  regs_.scratch1(),
   4021                  &object_is_black,
   4022                  Label::kNear);
   4023 
   4024   regs_.Restore(masm);
   4025   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
   4026     __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
   4027                            MacroAssembler::kReturnAtEnd);
   4028   } else {
   4029     __ ret(0);
   4030   }
   4031 
   4032   __ bind(&object_is_black);
   4033 
   4034   // Get the value from the slot.
   4035   __ mov(regs_.scratch0(), Operand(regs_.address(), 0));
   4036 
   4037   if (mode == INCREMENTAL_COMPACTION) {
   4038     Label ensure_not_white;
   4039 
   4040     __ CheckPageFlag(regs_.scratch0(),  // Contains value.
   4041                      regs_.scratch1(),  // Scratch.
   4042                      MemoryChunk::kEvacuationCandidateMask,
   4043                      zero,
   4044                      &ensure_not_white,
   4045                      Label::kNear);
   4046 
   4047     __ CheckPageFlag(regs_.object(),
   4048                      regs_.scratch1(),  // Scratch.
   4049                      MemoryChunk::kSkipEvacuationSlotsRecordingMask,
   4050                      not_zero,
   4051                      &ensure_not_white,
   4052                      Label::kNear);
   4053 
   4054     __ jmp(&need_incremental);
   4055 
   4056     __ bind(&ensure_not_white);
   4057   }
   4058 
   4059   // We need an extra register for this, so we push the object register
   4060   // temporarily.
   4061   __ push(regs_.object());
   4062   __ EnsureNotWhite(regs_.scratch0(),  // The value.
   4063                     regs_.scratch1(),  // Scratch.
   4064                     regs_.object(),  // Scratch.
   4065                     &need_incremental_pop_object,
   4066                     Label::kNear);
   4067   __ pop(regs_.object());
   4068 
   4069   regs_.Restore(masm);
   4070   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
   4071     __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
   4072                            MacroAssembler::kReturnAtEnd);
   4073   } else {
   4074     __ ret(0);
   4075   }
   4076 
   4077   __ bind(&need_incremental_pop_object);
   4078   __ pop(regs_.object());
   4079 
   4080   __ bind(&need_incremental);
   4081 
   4082   // Fall through when we need to inform the incremental marker.
   4083 }
   4084 
   4085 
   4086 void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
   4087   // ----------- S t a t e -------------
   4088   //  -- eax    : element value to store
   4089   //  -- ecx    : element index as smi
   4090   //  -- esp[0] : return address
   4091   //  -- esp[4] : array literal index in function
   4092   //  -- esp[8] : array literal
   4093   // clobbers ebx, edx, edi
   4094   // -----------------------------------
   4095 
   4096   Label element_done;
   4097   Label double_elements;
   4098   Label smi_element;
   4099   Label slow_elements;
   4100   Label slow_elements_from_double;
   4101   Label fast_elements;
   4102 
   4103   // Get array literal index, array literal and its map.
   4104   __ mov(edx, Operand(esp, 1 * kPointerSize));
   4105   __ mov(ebx, Operand(esp, 2 * kPointerSize));
   4106   __ mov(edi, FieldOperand(ebx, JSObject::kMapOffset));
   4107 
   4108   __ CheckFastElements(edi, &double_elements);
   4109 
   4110   // Check for FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS elements
   4111   __ JumpIfSmi(eax, &smi_element);
   4112   __ CheckFastSmiElements(edi, &fast_elements, Label::kNear);
   4113 
   4114   // Store into the array literal requires a elements transition. Call into
   4115   // the runtime.
   4116 
   4117   __ bind(&slow_elements);
   4118   __ pop(edi);  // Pop return address and remember to put back later for tail
   4119                 // call.
   4120   __ push(ebx);
   4121   __ push(ecx);
   4122   __ push(eax);
   4123   __ mov(ebx, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
   4124   __ push(FieldOperand(ebx, JSFunction::kLiteralsOffset));
   4125   __ push(edx);
   4126   __ push(edi);  // Return return address so that tail call returns to right
   4127                  // place.
   4128   __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
   4129 
   4130   __ bind(&slow_elements_from_double);
   4131   __ pop(edx);
   4132   __ jmp(&slow_elements);
   4133 
   4134   // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object.
   4135   __ bind(&fast_elements);
   4136   __ mov(ebx, FieldOperand(ebx, JSObject::kElementsOffset));
   4137   __ lea(ecx, FieldOperand(ebx, ecx, times_half_pointer_size,
   4138                            FixedArrayBase::kHeaderSize));
   4139   __ mov(Operand(ecx, 0), eax);
   4140   // Update the write barrier for the array store.
   4141   __ RecordWrite(ebx, ecx, eax,
   4142                  kDontSaveFPRegs,
   4143                  EMIT_REMEMBERED_SET,
   4144                  OMIT_SMI_CHECK);
   4145   __ ret(0);
   4146 
   4147   // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS,
   4148   // and value is Smi.
   4149   __ bind(&smi_element);
   4150   __ mov(ebx, FieldOperand(ebx, JSObject::kElementsOffset));
   4151   __ mov(FieldOperand(ebx, ecx, times_half_pointer_size,
   4152                       FixedArrayBase::kHeaderSize), eax);
   4153   __ ret(0);
   4154 
   4155   // Array literal has ElementsKind of FAST_*_DOUBLE_ELEMENTS.
   4156   __ bind(&double_elements);
   4157 
   4158   __ push(edx);
   4159   __ mov(edx, FieldOperand(ebx, JSObject::kElementsOffset));
   4160   __ StoreNumberToDoubleElements(eax,
   4161                                  edx,
   4162                                  ecx,
   4163                                  edi,
   4164                                  xmm0,
   4165                                  &slow_elements_from_double);
   4166   __ pop(edx);
   4167   __ ret(0);
   4168 }
   4169 
   4170 
   4171 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
   4172   CEntryStub ces(isolate(), 1, kSaveFPRegs);
   4173   __ call(ces.GetCode(), RelocInfo::CODE_TARGET);
   4174   int parameter_count_offset =
   4175       StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
   4176   __ mov(ebx, MemOperand(ebp, parameter_count_offset));
   4177   masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
   4178   __ pop(ecx);
   4179   int additional_offset =
   4180       function_mode() == JS_FUNCTION_STUB_MODE ? kPointerSize : 0;
   4181   __ lea(esp, MemOperand(esp, ebx, times_pointer_size, additional_offset));
   4182   __ jmp(ecx);  // Return to IC Miss stub, continuation still on stack.
   4183 }
   4184 
   4185 
   4186 void LoadICTrampolineStub::Generate(MacroAssembler* masm) {
   4187   EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister());
   4188   VectorLoadStub stub(isolate(), state());
   4189   __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
   4190 }
   4191 
   4192 
   4193 void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) {
   4194   EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister());
   4195   VectorKeyedLoadStub stub(isolate());
   4196   __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
   4197 }
   4198 
   4199 
   4200 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
   4201   if (masm->isolate()->function_entry_hook() != NULL) {
   4202     ProfileEntryHookStub stub(masm->isolate());
   4203     masm->CallStub(&stub);
   4204   }
   4205 }
   4206 
   4207 
   4208 void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
   4209   // Save volatile registers.
   4210   const int kNumSavedRegisters = 3;
   4211   __ push(eax);
   4212   __ push(ecx);
   4213   __ push(edx);
   4214 
   4215   // Calculate and push the original stack pointer.
   4216   __ lea(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize));
   4217   __ push(eax);
   4218 
   4219   // Retrieve our return address and use it to calculate the calling
   4220   // function's address.
   4221   __ mov(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize));
   4222   __ sub(eax, Immediate(Assembler::kCallInstructionLength));
   4223   __ push(eax);
   4224 
   4225   // Call the entry hook.
   4226   DCHECK(isolate()->function_entry_hook() != NULL);
   4227   __ call(FUNCTION_ADDR(isolate()->function_entry_hook()),
   4228           RelocInfo::RUNTIME_ENTRY);
   4229   __ add(esp, Immediate(2 * kPointerSize));
   4230 
   4231   // Restore ecx.
   4232   __ pop(edx);
   4233   __ pop(ecx);
   4234   __ pop(eax);
   4235 
   4236   __ ret(0);
   4237 }
   4238 
   4239 
   4240 template<class T>
   4241 static void CreateArrayDispatch(MacroAssembler* masm,
   4242                                 AllocationSiteOverrideMode mode) {
   4243   if (mode == DISABLE_ALLOCATION_SITES) {
   4244     T stub(masm->isolate(),
   4245            GetInitialFastElementsKind(),
   4246            mode);
   4247     __ TailCallStub(&stub);
   4248   } else if (mode == DONT_OVERRIDE) {
   4249     int last_index = GetSequenceIndexFromFastElementsKind(
   4250         TERMINAL_FAST_ELEMENTS_KIND);
   4251     for (int i = 0; i <= last_index; ++i) {
   4252       Label next;
   4253       ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
   4254       __ cmp(edx, kind);
   4255       __ j(not_equal, &next);
   4256       T stub(masm->isolate(), kind);
   4257       __ TailCallStub(&stub);
   4258       __ bind(&next);
   4259     }
   4260 
   4261     // If we reached this point there is a problem.
   4262     __ Abort(kUnexpectedElementsKindInArrayConstructor);
   4263   } else {
   4264     UNREACHABLE();
   4265   }
   4266 }
   4267 
   4268 
   4269 static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
   4270                                            AllocationSiteOverrideMode mode) {
   4271   // ebx - allocation site (if mode != DISABLE_ALLOCATION_SITES)
   4272   // edx - kind (if mode != DISABLE_ALLOCATION_SITES)
   4273   // eax - number of arguments
   4274   // edi - constructor?
   4275   // esp[0] - return address
   4276   // esp[4] - last argument
   4277   Label normal_sequence;
   4278   if (mode == DONT_OVERRIDE) {
   4279     DCHECK(FAST_SMI_ELEMENTS == 0);
   4280     DCHECK(FAST_HOLEY_SMI_ELEMENTS == 1);
   4281     DCHECK(FAST_ELEMENTS == 2);
   4282     DCHECK(FAST_HOLEY_ELEMENTS == 3);
   4283     DCHECK(FAST_DOUBLE_ELEMENTS == 4);
   4284     DCHECK(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
   4285 
   4286     // is the low bit set? If so, we are holey and that is good.
   4287     __ test_b(edx, 1);
   4288     __ j(not_zero, &normal_sequence);
   4289   }
   4290 
   4291   // look at the first argument
   4292   __ mov(ecx, Operand(esp, kPointerSize));
   4293   __ test(ecx, ecx);
   4294   __ j(zero, &normal_sequence);
   4295 
   4296   if (mode == DISABLE_ALLOCATION_SITES) {
   4297     ElementsKind initial = GetInitialFastElementsKind();
   4298     ElementsKind holey_initial = GetHoleyElementsKind(initial);
   4299 
   4300     ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
   4301                                                   holey_initial,
   4302                                                   DISABLE_ALLOCATION_SITES);
   4303     __ TailCallStub(&stub_holey);
   4304 
   4305     __ bind(&normal_sequence);
   4306     ArraySingleArgumentConstructorStub stub(masm->isolate(),
   4307                                             initial,
   4308                                             DISABLE_ALLOCATION_SITES);
   4309     __ TailCallStub(&stub);
   4310   } else if (mode == DONT_OVERRIDE) {
   4311     // We are going to create a holey array, but our kind is non-holey.
   4312     // Fix kind and retry.
   4313     __ inc(edx);
   4314 
   4315     if (FLAG_debug_code) {
   4316       Handle<Map> allocation_site_map =
   4317           masm->isolate()->factory()->allocation_site_map();
   4318       __ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map));
   4319       __ Assert(equal, kExpectedAllocationSite);
   4320     }
   4321 
   4322     // Save the resulting elements kind in type info. We can't just store r3
   4323     // in the AllocationSite::transition_info field because elements kind is
   4324     // restricted to a portion of the field...upper bits need to be left alone.
   4325     STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
   4326     __ add(FieldOperand(ebx, AllocationSite::kTransitionInfoOffset),
   4327            Immediate(Smi::FromInt(kFastElementsKindPackedToHoley)));
   4328 
   4329     __ bind(&normal_sequence);
   4330     int last_index = GetSequenceIndexFromFastElementsKind(
   4331         TERMINAL_FAST_ELEMENTS_KIND);
   4332     for (int i = 0; i <= last_index; ++i) {
   4333       Label next;
   4334       ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
   4335       __ cmp(edx, kind);
   4336       __ j(not_equal, &next);
   4337       ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
   4338       __ TailCallStub(&stub);
   4339       __ bind(&next);
   4340     }
   4341 
   4342     // If we reached this point there is a problem.
   4343     __ Abort(kUnexpectedElementsKindInArrayConstructor);
   4344   } else {
   4345     UNREACHABLE();
   4346   }
   4347 }
   4348 
   4349 
   4350 template<class T>
   4351 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
   4352   int to_index = GetSequenceIndexFromFastElementsKind(
   4353       TERMINAL_FAST_ELEMENTS_KIND);
   4354   for (int i = 0; i <= to_index; ++i) {
   4355     ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
   4356     T stub(isolate, kind);
   4357     stub.GetCode();
   4358     if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
   4359       T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
   4360       stub1.GetCode();
   4361     }
   4362   }
   4363 }
   4364 
   4365 
   4366 void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
   4367   ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
   4368       isolate);
   4369   ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
   4370       isolate);
   4371   ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
   4372       isolate);
   4373 }
   4374 
   4375 
   4376 void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
   4377     Isolate* isolate) {
   4378   ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
   4379   for (int i = 0; i < 2; i++) {
   4380     // For internal arrays we only need a few things
   4381     InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
   4382     stubh1.GetCode();
   4383     InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
   4384     stubh2.GetCode();
   4385     InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]);
   4386     stubh3.GetCode();
   4387   }
   4388 }
   4389 
   4390 
   4391 void ArrayConstructorStub::GenerateDispatchToArrayStub(
   4392     MacroAssembler* masm,
   4393     AllocationSiteOverrideMode mode) {
   4394   if (argument_count() == ANY) {
   4395     Label not_zero_case, not_one_case;
   4396     __ test(eax, eax);
   4397     __ j(not_zero, &not_zero_case);
   4398     CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
   4399 
   4400     __ bind(&not_zero_case);
   4401     __ cmp(eax, 1);
   4402     __ j(greater, &not_one_case);
   4403     CreateArrayDispatchOneArgument(masm, mode);
   4404 
   4405     __ bind(&not_one_case);
   4406     CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
   4407   } else if (argument_count() == NONE) {
   4408     CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
   4409   } else if (argument_count() == ONE) {
   4410     CreateArrayDispatchOneArgument(masm, mode);
   4411   } else if (argument_count() == MORE_THAN_ONE) {
   4412     CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
   4413   } else {
   4414     UNREACHABLE();
   4415   }
   4416 }
   4417 
   4418 
   4419 void ArrayConstructorStub::Generate(MacroAssembler* masm) {
   4420   // ----------- S t a t e -------------
   4421   //  -- eax : argc (only if argument_count() == ANY)
   4422   //  -- ebx : AllocationSite or undefined
   4423   //  -- edi : constructor
   4424   //  -- esp[0] : return address
   4425   //  -- esp[4] : last argument
   4426   // -----------------------------------
   4427   if (FLAG_debug_code) {
   4428     // The array construct code is only set for the global and natives
   4429     // builtin Array functions which always have maps.
   4430 
   4431     // Initial map for the builtin Array function should be a map.
   4432     __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
   4433     // Will both indicate a NULL and a Smi.
   4434     __ test(ecx, Immediate(kSmiTagMask));
   4435     __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
   4436     __ CmpObjectType(ecx, MAP_TYPE, ecx);
   4437     __ Assert(equal, kUnexpectedInitialMapForArrayFunction);
   4438 
   4439     // We should either have undefined in ebx or a valid AllocationSite
   4440     __ AssertUndefinedOrAllocationSite(ebx);
   4441   }
   4442 
   4443   Label no_info;
   4444   // If the feedback vector is the undefined value call an array constructor
   4445   // that doesn't use AllocationSites.
   4446   __ cmp(ebx, isolate()->factory()->undefined_value());
   4447   __ j(equal, &no_info);
   4448 
   4449   // Only look at the lower 16 bits of the transition info.
   4450   __ mov(edx, FieldOperand(ebx, AllocationSite::kTransitionInfoOffset));
   4451   __ SmiUntag(edx);
   4452   STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
   4453   __ and_(edx, Immediate(AllocationSite::ElementsKindBits::kMask));
   4454   GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
   4455 
   4456   __ bind(&no_info);
   4457   GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
   4458 }
   4459 
   4460 
   4461 void InternalArrayConstructorStub::GenerateCase(
   4462     MacroAssembler* masm, ElementsKind kind) {
   4463   Label not_zero_case, not_one_case;
   4464   Label normal_sequence;
   4465 
   4466   __ test(eax, eax);
   4467   __ j(not_zero, &not_zero_case);
   4468   InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
   4469   __ TailCallStub(&stub0);
   4470 
   4471   __ bind(&not_zero_case);
   4472   __ cmp(eax, 1);
   4473   __ j(greater, &not_one_case);
   4474 
   4475   if (IsFastPackedElementsKind(kind)) {
   4476     // We might need to create a holey array
   4477     // look at the first argument
   4478     __ mov(ecx, Operand(esp, kPointerSize));
   4479     __ test(ecx, ecx);
   4480     __ j(zero, &normal_sequence);
   4481 
   4482     InternalArraySingleArgumentConstructorStub
   4483         stub1_holey(isolate(), GetHoleyElementsKind(kind));
   4484     __ TailCallStub(&stub1_holey);
   4485   }
   4486 
   4487   __ bind(&normal_sequence);
   4488   InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
   4489   __ TailCallStub(&stub1);
   4490 
   4491   __ bind(&not_one_case);
   4492   InternalArrayNArgumentsConstructorStub stubN(isolate(), kind);
   4493   __ TailCallStub(&stubN);
   4494 }
   4495 
   4496 
   4497 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
   4498   // ----------- S t a t e -------------
   4499   //  -- eax : argc
   4500   //  -- edi : constructor
   4501   //  -- esp[0] : return address
   4502   //  -- esp[4] : last argument
   4503   // -----------------------------------
   4504 
   4505   if (FLAG_debug_code) {
   4506     // The array construct code is only set for the global and natives
   4507     // builtin Array functions which always have maps.
   4508 
   4509     // Initial map for the builtin Array function should be a map.
   4510     __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
   4511     // Will both indicate a NULL and a Smi.
   4512     __ test(ecx, Immediate(kSmiTagMask));
   4513     __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
   4514     __ CmpObjectType(ecx, MAP_TYPE, ecx);
   4515     __ Assert(equal, kUnexpectedInitialMapForArrayFunction);
   4516   }
   4517 
   4518   // Figure out the right elements kind
   4519   __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
   4520 
   4521   // Load the map's "bit field 2" into |result|. We only need the first byte,
   4522   // but the following masking takes care of that anyway.
   4523   __ mov(ecx, FieldOperand(ecx, Map::kBitField2Offset));
   4524   // Retrieve elements_kind from bit field 2.
   4525   __ DecodeField<Map::ElementsKindBits>(ecx);
   4526 
   4527   if (FLAG_debug_code) {
   4528     Label done;
   4529     __ cmp(ecx, Immediate(FAST_ELEMENTS));
   4530     __ j(equal, &done);
   4531     __ cmp(ecx, Immediate(FAST_HOLEY_ELEMENTS));
   4532     __ Assert(equal,
   4533               kInvalidElementsKindForInternalArrayOrInternalPackedArray);
   4534     __ bind(&done);
   4535   }
   4536 
   4537   Label fast_elements_case;
   4538   __ cmp(ecx, Immediate(FAST_ELEMENTS));
   4539   __ j(equal, &fast_elements_case);
   4540   GenerateCase(masm, FAST_HOLEY_ELEMENTS);
   4541 
   4542   __ bind(&fast_elements_case);
   4543   GenerateCase(masm, FAST_ELEMENTS);
   4544 }
   4545 
   4546 
   4547 void CallApiFunctionStub::Generate(MacroAssembler* masm) {
   4548   // ----------- S t a t e -------------
   4549   //  -- eax                 : callee
   4550   //  -- ebx                 : call_data
   4551   //  -- ecx                 : holder
   4552   //  -- edx                 : api_function_address
   4553   //  -- esi                 : context
   4554   //  --
   4555   //  -- esp[0]              : return address
   4556   //  -- esp[4]              : last argument
   4557   //  -- ...
   4558   //  -- esp[argc * 4]       : first argument
   4559   //  -- esp[(argc + 1) * 4] : receiver
   4560   // -----------------------------------
   4561 
   4562   Register callee = eax;
   4563   Register call_data = ebx;
   4564   Register holder = ecx;
   4565   Register api_function_address = edx;
   4566   Register return_address = edi;
   4567   Register context = esi;
   4568 
   4569   int argc = this->argc();
   4570   bool is_store = this->is_store();
   4571   bool call_data_undefined = this->call_data_undefined();
   4572 
   4573   typedef FunctionCallbackArguments FCA;
   4574 
   4575   STATIC_ASSERT(FCA::kContextSaveIndex == 6);
   4576   STATIC_ASSERT(FCA::kCalleeIndex == 5);
   4577   STATIC_ASSERT(FCA::kDataIndex == 4);
   4578   STATIC_ASSERT(FCA::kReturnValueOffset == 3);
   4579   STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
   4580   STATIC_ASSERT(FCA::kIsolateIndex == 1);
   4581   STATIC_ASSERT(FCA::kHolderIndex == 0);
   4582   STATIC_ASSERT(FCA::kArgsLength == 7);
   4583 
   4584   __ pop(return_address);
   4585 
   4586   // context save
   4587   __ push(context);
   4588   // load context from callee
   4589   __ mov(context, FieldOperand(callee, JSFunction::kContextOffset));
   4590 
   4591   // callee
   4592   __ push(callee);
   4593 
   4594   // call data
   4595   __ push(call_data);
   4596 
   4597   Register scratch = call_data;
   4598   if (!call_data_undefined) {
   4599     // return value
   4600     __ push(Immediate(isolate()->factory()->undefined_value()));
   4601     // return value default
   4602     __ push(Immediate(isolate()->factory()->undefined_value()));
   4603   } else {
   4604     // return value
   4605     __ push(scratch);
   4606     // return value default
   4607     __ push(scratch);
   4608   }
   4609   // isolate
   4610   __ push(Immediate(reinterpret_cast<int>(isolate())));
   4611   // holder
   4612   __ push(holder);
   4613 
   4614   __ mov(scratch, esp);
   4615 
   4616   // return address
   4617   __ push(return_address);
   4618 
   4619   // API function gets reference to the v8::Arguments. If CPU profiler
   4620   // is enabled wrapper function will be called and we need to pass
   4621   // address of the callback as additional parameter, always allocate
   4622   // space for it.
   4623   const int kApiArgc = 1 + 1;
   4624 
   4625   // Allocate the v8::Arguments structure in the arguments' space since
   4626   // it's not controlled by GC.
   4627   const int kApiStackSpace = 4;
   4628 
   4629   __ PrepareCallApiFunction(kApiArgc + kApiStackSpace);
   4630 
   4631   // FunctionCallbackInfo::implicit_args_.
   4632   __ mov(ApiParameterOperand(2), scratch);
   4633   __ add(scratch, Immediate((argc + FCA::kArgsLength - 1) * kPointerSize));
   4634   // FunctionCallbackInfo::values_.
   4635   __ mov(ApiParameterOperand(3), scratch);
   4636   // FunctionCallbackInfo::length_.
   4637   __ Move(ApiParameterOperand(4), Immediate(argc));
   4638   // FunctionCallbackInfo::is_construct_call_.
   4639   __ Move(ApiParameterOperand(5), Immediate(0));
   4640 
   4641   // v8::InvocationCallback's argument.
   4642   __ lea(scratch, ApiParameterOperand(2));
   4643   __ mov(ApiParameterOperand(0), scratch);
   4644 
   4645   ExternalReference thunk_ref =
   4646       ExternalReference::invoke_function_callback(isolate());
   4647 
   4648   Operand context_restore_operand(ebp,
   4649                                   (2 + FCA::kContextSaveIndex) * kPointerSize);
   4650   // Stores return the first js argument
   4651   int return_value_offset = 0;
   4652   if (is_store) {
   4653     return_value_offset = 2 + FCA::kArgsLength;
   4654   } else {
   4655     return_value_offset = 2 + FCA::kReturnValueOffset;
   4656   }
   4657   Operand return_value_operand(ebp, return_value_offset * kPointerSize);
   4658   __ CallApiFunctionAndReturn(api_function_address,
   4659                               thunk_ref,
   4660                               ApiParameterOperand(1),
   4661                               argc + FCA::kArgsLength + 1,
   4662                               return_value_operand,
   4663                               &context_restore_operand);
   4664 }
   4665 
   4666 
   4667 void CallApiGetterStub::Generate(MacroAssembler* masm) {
   4668   // ----------- S t a t e -------------
   4669   //  -- esp[0]                  : return address
   4670   //  -- esp[4]                  : name
   4671   //  -- esp[8 - kArgsLength*4]  : PropertyCallbackArguments object
   4672   //  -- ...
   4673   //  -- edx                    : api_function_address
   4674   // -----------------------------------
   4675   DCHECK(edx.is(ApiGetterDescriptor::function_address()));
   4676 
   4677   // array for v8::Arguments::values_, handler for name and pointer
   4678   // to the values (it considered as smi in GC).
   4679   const int kStackSpace = PropertyCallbackArguments::kArgsLength + 2;
   4680   // Allocate space for opional callback address parameter in case
   4681   // CPU profiler is active.
   4682   const int kApiArgc = 2 + 1;
   4683 
   4684   Register api_function_address = edx;
   4685   Register scratch = ebx;
   4686 
   4687   // load address of name
   4688   __ lea(scratch, Operand(esp, 1 * kPointerSize));
   4689 
   4690   __ PrepareCallApiFunction(kApiArgc);
   4691   __ mov(ApiParameterOperand(0), scratch);  // name.
   4692   __ add(scratch, Immediate(kPointerSize));
   4693   __ mov(ApiParameterOperand(1), scratch);  // arguments pointer.
   4694 
   4695   ExternalReference thunk_ref =
   4696       ExternalReference::invoke_accessor_getter_callback(isolate());
   4697 
   4698   __ CallApiFunctionAndReturn(api_function_address,
   4699                               thunk_ref,
   4700                               ApiParameterOperand(2),
   4701                               kStackSpace,
   4702                               Operand(ebp, 7 * kPointerSize),
   4703                               NULL);
   4704 }
   4705 
   4706 
   4707 #undef __
   4708 
   4709 } }  // namespace v8::internal
   4710 
   4711 #endif  // V8_TARGET_ARCH_IA32
   4712