Home | History | Annotate | Download | only in BitReader_3_0
      1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This header defines the BitcodeReader class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Bitcode/ReaderWriter.h"
     15 #include "BitReader_3_0.h"
     16 #include "llvm/ADT/STLExtras.h"
     17 #include "llvm/ADT/SmallString.h"
     18 #include "llvm/ADT/SmallVector.h"
     19 #include "llvm/IR/AutoUpgrade.h"
     20 #include "llvm/IR/Constants.h"
     21 #include "llvm/IR/CFG.h"
     22 #include "llvm/IR/DerivedTypes.h"
     23 #include "llvm/IR/DiagnosticPrinter.h"
     24 #include "llvm/IR/GVMaterializer.h"
     25 #include "llvm/IR/InlineAsm.h"
     26 #include "llvm/IR/IntrinsicInst.h"
     27 #include "llvm/IR/IRBuilder.h"
     28 #include "llvm/IR/LLVMContext.h"
     29 #include "llvm/IR/Module.h"
     30 #include "llvm/IR/OperandTraits.h"
     31 #include "llvm/IR/Operator.h"
     32 #include "llvm/ADT/SmallPtrSet.h"
     33 #include "llvm/Support/ManagedStatic.h"
     34 #include "llvm/Support/MathExtras.h"
     35 #include "llvm/Support/MemoryBuffer.h"
     36 
     37 using namespace llvm;
     38 using namespace llvm_3_0;
     39 
     40 #define FUNC_CODE_INST_UNWIND_2_7     14
     41 #define eh_exception_2_7             145
     42 #define eh_selector_2_7              149
     43 
     44 #define TYPE_BLOCK_ID_OLD_3_0         10
     45 #define TYPE_SYMTAB_BLOCK_ID_OLD_3_0  13
     46 #define TYPE_CODE_STRUCT_OLD_3_0      10
     47 
     48 namespace {
     49   void FindExnAndSelIntrinsics(BasicBlock *BB, CallInst *&Exn,
     50                                       CallInst *&Sel,
     51                                       SmallPtrSet<BasicBlock*, 8> &Visited) {
     52     if (!Visited.insert(BB).second) return;
     53 
     54     for (BasicBlock::iterator
     55            I = BB->begin(), E = BB->end(); I != E; ++I) {
     56       if (CallInst *CI = dyn_cast<CallInst>(I)) {
     57         switch (CI->getCalledFunction()->getIntrinsicID()) {
     58         default: break;
     59         case eh_exception_2_7:
     60           assert(!Exn && "Found more than one eh.exception call!");
     61           Exn = CI;
     62           break;
     63         case eh_selector_2_7:
     64           assert(!Sel && "Found more than one eh.selector call!");
     65           Sel = CI;
     66           break;
     67         }
     68 
     69         if (Exn && Sel) return;
     70       }
     71     }
     72 
     73     if (Exn && Sel) return;
     74 
     75     for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
     76       FindExnAndSelIntrinsics(*I, Exn, Sel, Visited);
     77       if (Exn && Sel) return;
     78     }
     79   }
     80 
     81 
     82 
     83   /// TransferClausesToLandingPadInst - Transfer the exception handling clauses
     84   /// from the eh_selector call to the new landingpad instruction.
     85   void TransferClausesToLandingPadInst(LandingPadInst *LPI,
     86                                               CallInst *EHSel) {
     87     LLVMContext &Context = LPI->getContext();
     88     unsigned N = EHSel->getNumArgOperands();
     89 
     90     for (unsigned i = N - 1; i > 1; --i) {
     91       if (const ConstantInt *CI = dyn_cast<ConstantInt>(EHSel->getArgOperand(i))){
     92         unsigned FilterLength = CI->getZExtValue();
     93         unsigned FirstCatch = i + FilterLength + !FilterLength;
     94         assert(FirstCatch <= N && "Invalid filter length");
     95 
     96         if (FirstCatch < N)
     97           for (unsigned j = FirstCatch; j < N; ++j) {
     98             Value *Val = EHSel->getArgOperand(j);
     99             if (!Val->hasName() || Val->getName() != "llvm.eh.catch.all.value") {
    100               LPI->addClause(cast<Constant>(EHSel->getArgOperand(j)));
    101             } else {
    102               GlobalVariable *GV = cast<GlobalVariable>(Val);
    103               LPI->addClause(GV->getInitializer());
    104             }
    105           }
    106 
    107         if (!FilterLength) {
    108           // Cleanup.
    109           LPI->setCleanup(true);
    110         } else {
    111           // Filter.
    112           SmallVector<Constant *, 4> TyInfo;
    113           TyInfo.reserve(FilterLength - 1);
    114           for (unsigned j = i + 1; j < FirstCatch; ++j)
    115             TyInfo.push_back(cast<Constant>(EHSel->getArgOperand(j)));
    116           ArrayType *AType =
    117             ArrayType::get(!TyInfo.empty() ? TyInfo[0]->getType() :
    118                            PointerType::getUnqual(Type::getInt8Ty(Context)),
    119                            TyInfo.size());
    120           LPI->addClause(ConstantArray::get(AType, TyInfo));
    121         }
    122 
    123         N = i;
    124       }
    125     }
    126 
    127     if (N > 2)
    128       for (unsigned j = 2; j < N; ++j) {
    129         Value *Val = EHSel->getArgOperand(j);
    130         if (!Val->hasName() || Val->getName() != "llvm.eh.catch.all.value") {
    131           LPI->addClause(cast<Constant>(EHSel->getArgOperand(j)));
    132         } else {
    133           GlobalVariable *GV = cast<GlobalVariable>(Val);
    134           LPI->addClause(GV->getInitializer());
    135         }
    136       }
    137   }
    138 
    139 
    140   /// This function upgrades the old pre-3.0 exception handling system to the new
    141   /// one. N.B. This will be removed in 3.1.
    142   void UpgradeExceptionHandling(Module *M) {
    143     Function *EHException = M->getFunction("llvm.eh.exception");
    144     Function *EHSelector = M->getFunction("llvm.eh.selector");
    145     if (!EHException || !EHSelector)
    146       return;
    147 
    148     LLVMContext &Context = M->getContext();
    149     Type *ExnTy = PointerType::getUnqual(Type::getInt8Ty(Context));
    150     Type *SelTy = Type::getInt32Ty(Context);
    151     Type *LPadSlotTy = StructType::get(ExnTy, SelTy, nullptr);
    152 
    153     // This map links the invoke instruction with the eh.exception and eh.selector
    154     // calls associated with it.
    155     DenseMap<InvokeInst*, std::pair<Value*, Value*> > InvokeToIntrinsicsMap;
    156     for (Module::iterator
    157            I = M->begin(), E = M->end(); I != E; ++I) {
    158       Function &F = *I;
    159 
    160       for (Function::iterator
    161              II = F.begin(), IE = F.end(); II != IE; ++II) {
    162         BasicBlock *BB = &*II;
    163         InvokeInst *Inst = dyn_cast<InvokeInst>(BB->getTerminator());
    164         if (!Inst) continue;
    165         BasicBlock *UnwindDest = Inst->getUnwindDest();
    166         if (UnwindDest->isLandingPad()) continue; // Already converted.
    167 
    168         SmallPtrSet<BasicBlock*, 8> Visited;
    169         CallInst *Exn = 0;
    170         CallInst *Sel = 0;
    171         FindExnAndSelIntrinsics(UnwindDest, Exn, Sel, Visited);
    172         assert(Exn && Sel && "Cannot find eh.exception and eh.selector calls!");
    173         InvokeToIntrinsicsMap[Inst] = std::make_pair(Exn, Sel);
    174       }
    175     }
    176 
    177     // This map stores the slots where the exception object and selector value are
    178     // stored within a function.
    179     DenseMap<Function*, std::pair<Value*, Value*> > FnToLPadSlotMap;
    180     SmallPtrSet<Instruction*, 32> DeadInsts;
    181     for (DenseMap<InvokeInst*, std::pair<Value*, Value*> >::iterator
    182            I = InvokeToIntrinsicsMap.begin(), E = InvokeToIntrinsicsMap.end();
    183          I != E; ++I) {
    184       InvokeInst *Invoke = I->first;
    185       BasicBlock *UnwindDest = Invoke->getUnwindDest();
    186       Function *F = UnwindDest->getParent();
    187       std::pair<Value*, Value*> EHIntrinsics = I->second;
    188       CallInst *Exn = cast<CallInst>(EHIntrinsics.first);
    189       CallInst *Sel = cast<CallInst>(EHIntrinsics.second);
    190 
    191       // Store the exception object and selector value in the entry block.
    192       Value *ExnSlot = 0;
    193       Value *SelSlot = 0;
    194       if (!FnToLPadSlotMap[F].first) {
    195         BasicBlock *Entry = &F->front();
    196         ExnSlot = new AllocaInst(ExnTy, "exn", Entry->getTerminator());
    197         SelSlot = new AllocaInst(SelTy, "sel", Entry->getTerminator());
    198         FnToLPadSlotMap[F] = std::make_pair(ExnSlot, SelSlot);
    199       } else {
    200         ExnSlot = FnToLPadSlotMap[F].first;
    201         SelSlot = FnToLPadSlotMap[F].second;
    202       }
    203 
    204       if (!UnwindDest->getSinglePredecessor()) {
    205         // The unwind destination doesn't have a single predecessor. Create an
    206         // unwind destination which has only one predecessor.
    207         BasicBlock *NewBB = BasicBlock::Create(Context, "new.lpad",
    208                                                UnwindDest->getParent());
    209         BranchInst::Create(UnwindDest, NewBB);
    210         Invoke->setUnwindDest(NewBB);
    211 
    212         // Fix up any PHIs in the original unwind destination block.
    213         for (BasicBlock::iterator
    214                II = UnwindDest->begin(); isa<PHINode>(II); ++II) {
    215           PHINode *PN = cast<PHINode>(II);
    216           int Idx = PN->getBasicBlockIndex(Invoke->getParent());
    217           if (Idx == -1) continue;
    218           PN->setIncomingBlock(Idx, NewBB);
    219         }
    220 
    221         UnwindDest = NewBB;
    222       }
    223 
    224       IRBuilder<> Builder(Context);
    225       Builder.SetInsertPoint(UnwindDest, UnwindDest->getFirstInsertionPt());
    226 
    227       Value *PersFn = Sel->getArgOperand(1);
    228       LandingPadInst *LPI = Builder.CreateLandingPad(LPadSlotTy, PersFn, 0);
    229       Value *LPExn = Builder.CreateExtractValue(LPI, 0);
    230       Value *LPSel = Builder.CreateExtractValue(LPI, 1);
    231       Builder.CreateStore(LPExn, ExnSlot);
    232       Builder.CreateStore(LPSel, SelSlot);
    233 
    234       TransferClausesToLandingPadInst(LPI, Sel);
    235 
    236       DeadInsts.insert(Exn);
    237       DeadInsts.insert(Sel);
    238     }
    239 
    240     // Replace the old intrinsic calls with the values from the landingpad
    241     // instruction(s). These values were stored in allocas for us to use here.
    242     for (DenseMap<InvokeInst*, std::pair<Value*, Value*> >::iterator
    243            I = InvokeToIntrinsicsMap.begin(), E = InvokeToIntrinsicsMap.end();
    244          I != E; ++I) {
    245       std::pair<Value*, Value*> EHIntrinsics = I->second;
    246       CallInst *Exn = cast<CallInst>(EHIntrinsics.first);
    247       CallInst *Sel = cast<CallInst>(EHIntrinsics.second);
    248       BasicBlock *Parent = Exn->getParent();
    249 
    250       std::pair<Value*,Value*> ExnSelSlots = FnToLPadSlotMap[Parent->getParent()];
    251 
    252       IRBuilder<> Builder(Context);
    253       Builder.SetInsertPoint(Parent, Exn);
    254       LoadInst *LPExn = Builder.CreateLoad(ExnSelSlots.first, "exn.load");
    255       LoadInst *LPSel = Builder.CreateLoad(ExnSelSlots.second, "sel.load");
    256 
    257       Exn->replaceAllUsesWith(LPExn);
    258       Sel->replaceAllUsesWith(LPSel);
    259     }
    260 
    261     // Remove the dead instructions.
    262     for (SmallPtrSet<Instruction*, 32>::iterator
    263            I = DeadInsts.begin(), E = DeadInsts.end(); I != E; ++I) {
    264       Instruction *Inst = *I;
    265       Inst->eraseFromParent();
    266     }
    267 
    268     // Replace calls to "llvm.eh.resume" with the 'resume' instruction. Load the
    269     // exception and selector values from the stored place.
    270     Function *EHResume = M->getFunction("llvm.eh.resume");
    271     if (!EHResume) return;
    272 
    273     while (!EHResume->use_empty()) {
    274       CallInst *Resume = cast<CallInst>(*EHResume->use_begin());
    275       BasicBlock *BB = Resume->getParent();
    276 
    277       IRBuilder<> Builder(Context);
    278       Builder.SetInsertPoint(BB, Resume);
    279 
    280       Value *LPadVal =
    281         Builder.CreateInsertValue(UndefValue::get(LPadSlotTy),
    282                                   Resume->getArgOperand(0), 0, "lpad.val");
    283       LPadVal = Builder.CreateInsertValue(LPadVal, Resume->getArgOperand(1),
    284                                           1, "lpad.val");
    285       Builder.CreateResume(LPadVal);
    286 
    287       // Remove all instructions after the 'resume.'
    288       BasicBlock::iterator I = Resume;
    289       while (I != BB->end()) {
    290         Instruction *Inst = &*I++;
    291         Inst->eraseFromParent();
    292       }
    293     }
    294   }
    295 
    296 
    297   void StripDebugInfoOfFunction(Module* M, const char* name) {
    298     if (Function* FuncStart = M->getFunction(name)) {
    299       while (!FuncStart->use_empty()) {
    300         cast<CallInst>(*FuncStart->use_begin())->eraseFromParent();
    301       }
    302       FuncStart->eraseFromParent();
    303     }
    304   }
    305 
    306   /// This function strips all debug info intrinsics, except for llvm.dbg.declare.
    307   /// If an llvm.dbg.declare intrinsic is invalid, then this function simply
    308   /// strips that use.
    309   void CheckDebugInfoIntrinsics(Module *M) {
    310     StripDebugInfoOfFunction(M, "llvm.dbg.func.start");
    311     StripDebugInfoOfFunction(M, "llvm.dbg.stoppoint");
    312     StripDebugInfoOfFunction(M, "llvm.dbg.region.start");
    313     StripDebugInfoOfFunction(M, "llvm.dbg.region.end");
    314 
    315     if (Function *Declare = M->getFunction("llvm.dbg.declare")) {
    316       if (!Declare->use_empty()) {
    317         DbgDeclareInst *DDI = cast<DbgDeclareInst>(*Declare->use_begin());
    318         if (!isa<MDNode>(ValueAsMetadata::get(DDI->getArgOperand(0))) ||
    319             !isa<MDNode>(ValueAsMetadata::get(DDI->getArgOperand(1)))) {
    320           while (!Declare->use_empty()) {
    321             CallInst *CI = cast<CallInst>(*Declare->use_begin());
    322             CI->eraseFromParent();
    323           }
    324           Declare->eraseFromParent();
    325         }
    326       }
    327     }
    328   }
    329 
    330 
    331 //===----------------------------------------------------------------------===//
    332 //                          BitcodeReaderValueList Class
    333 //===----------------------------------------------------------------------===//
    334 
    335 class BitcodeReaderValueList {
    336   std::vector<WeakVH> ValuePtrs;
    337 
    338   /// ResolveConstants - As we resolve forward-referenced constants, we add
    339   /// information about them to this vector.  This allows us to resolve them in
    340   /// bulk instead of resolving each reference at a time.  See the code in
    341   /// ResolveConstantForwardRefs for more information about this.
    342   ///
    343   /// The key of this vector is the placeholder constant, the value is the slot
    344   /// number that holds the resolved value.
    345   typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy;
    346   ResolveConstantsTy ResolveConstants;
    347   LLVMContext &Context;
    348 public:
    349   BitcodeReaderValueList(LLVMContext &C) : Context(C) {}
    350   ~BitcodeReaderValueList() {
    351     assert(ResolveConstants.empty() && "Constants not resolved?");
    352   }
    353 
    354   // vector compatibility methods
    355   unsigned size() const { return ValuePtrs.size(); }
    356   void resize(unsigned N) { ValuePtrs.resize(N); }
    357   void push_back(Value *V) {
    358     ValuePtrs.push_back(V);
    359   }
    360 
    361   void clear() {
    362     assert(ResolveConstants.empty() && "Constants not resolved?");
    363     ValuePtrs.clear();
    364   }
    365 
    366   Value *operator[](unsigned i) const {
    367     assert(i < ValuePtrs.size());
    368     return ValuePtrs[i];
    369   }
    370 
    371   Value *back() const { return ValuePtrs.back(); }
    372     void pop_back() { ValuePtrs.pop_back(); }
    373   bool empty() const { return ValuePtrs.empty(); }
    374   void shrinkTo(unsigned N) {
    375     assert(N <= size() && "Invalid shrinkTo request!");
    376     ValuePtrs.resize(N);
    377   }
    378 
    379   Constant *getConstantFwdRef(unsigned Idx, Type *Ty);
    380   Value *getValueFwdRef(unsigned Idx, Type *Ty);
    381 
    382   void AssignValue(Value *V, unsigned Idx);
    383 
    384   /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
    385   /// resolves any forward references.
    386   void ResolveConstantForwardRefs();
    387 };
    388 
    389 
    390 //===----------------------------------------------------------------------===//
    391 //                          BitcodeReaderMDValueList Class
    392 //===----------------------------------------------------------------------===//
    393 
    394 class BitcodeReaderMDValueList {
    395   unsigned NumFwdRefs;
    396   bool AnyFwdRefs;
    397   std::vector<TrackingMDRef> MDValuePtrs;
    398 
    399   LLVMContext &Context;
    400 public:
    401   BitcodeReaderMDValueList(LLVMContext &C)
    402       : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {}
    403 
    404   // vector compatibility methods
    405   unsigned size() const       { return MDValuePtrs.size(); }
    406   void resize(unsigned N)     { MDValuePtrs.resize(N); }
    407   void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); }
    408   void clear()                { MDValuePtrs.clear();  }
    409   Metadata *back() const      { return MDValuePtrs.back(); }
    410   void pop_back()             { MDValuePtrs.pop_back(); }
    411   bool empty() const          { return MDValuePtrs.empty(); }
    412 
    413   Metadata *operator[](unsigned i) const {
    414     assert(i < MDValuePtrs.size());
    415     return MDValuePtrs[i];
    416   }
    417 
    418   void shrinkTo(unsigned N) {
    419     assert(N <= size() && "Invalid shrinkTo request!");
    420     MDValuePtrs.resize(N);
    421   }
    422 
    423   Metadata *getValueFwdRef(unsigned Idx);
    424   void AssignValue(Metadata *MD, unsigned Idx);
    425   void tryToResolveCycles();
    426 };
    427 
    428 class BitcodeReader : public GVMaterializer {
    429   LLVMContext &Context;
    430   DiagnosticHandlerFunction DiagnosticHandler;
    431   Module *TheModule;
    432   std::unique_ptr<MemoryBuffer> Buffer;
    433   std::unique_ptr<BitstreamReader> StreamFile;
    434   BitstreamCursor Stream;
    435   DataStreamer *LazyStreamer;
    436   uint64_t NextUnreadBit;
    437   bool SeenValueSymbolTable;
    438 
    439   std::vector<Type*> TypeList;
    440   BitcodeReaderValueList ValueList;
    441   BitcodeReaderMDValueList MDValueList;
    442   SmallVector<Instruction *, 64> InstructionList;
    443 
    444   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
    445   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits;
    446 
    447   /// MAttributes - The set of attributes by index.  Index zero in the
    448   /// file is for null, and is thus not represented here.  As such all indices
    449   /// are off by one.
    450   std::vector<AttributeSet> MAttributes;
    451 
    452   /// \brief The set of attribute groups.
    453   std::map<unsigned, AttributeSet> MAttributeGroups;
    454 
    455   /// FunctionBBs - While parsing a function body, this is a list of the basic
    456   /// blocks for the function.
    457   std::vector<BasicBlock*> FunctionBBs;
    458 
    459   // When reading the module header, this list is populated with functions that
    460   // have bodies later in the file.
    461   std::vector<Function*> FunctionsWithBodies;
    462 
    463   // When intrinsic functions are encountered which require upgrading they are
    464   // stored here with their replacement function.
    465   typedef std::vector<std::pair<Function*, Function*> > UpgradedIntrinsicMap;
    466   UpgradedIntrinsicMap UpgradedIntrinsics;
    467 
    468   // Map the bitcode's custom MDKind ID to the Module's MDKind ID.
    469   DenseMap<unsigned, unsigned> MDKindMap;
    470 
    471   // Several operations happen after the module header has been read, but
    472   // before function bodies are processed. This keeps track of whether
    473   // we've done this yet.
    474   bool SeenFirstFunctionBody;
    475 
    476   /// DeferredFunctionInfo - When function bodies are initially scanned, this
    477   /// map contains info about where to find deferred function body in the
    478   /// stream.
    479   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
    480 
    481   /// BlockAddrFwdRefs - These are blockaddr references to basic blocks.  These
    482   /// are resolved lazily when functions are loaded.
    483   typedef std::pair<unsigned, GlobalVariable*> BlockAddrRefTy;
    484   DenseMap<Function*, std::vector<BlockAddrRefTy> > BlockAddrFwdRefs;
    485 
    486   static const std::error_category &BitcodeErrorCategory();
    487 
    488 public:
    489   std::error_code Error(BitcodeError E, const Twine &Message);
    490   std::error_code Error(BitcodeError E);
    491   std::error_code Error(const Twine &Message);
    492 
    493   explicit BitcodeReader(MemoryBuffer *buffer, LLVMContext &C,
    494                          DiagnosticHandlerFunction DiagnosticHandler);
    495   ~BitcodeReader() { FreeState(); }
    496 
    497   void FreeState();
    498 
    499   void releaseBuffer();
    500 
    501   bool isDematerializable(const GlobalValue *GV) const override;
    502   std::error_code materialize(GlobalValue *GV) override;
    503   std::error_code MaterializeModule(Module *M) override;
    504   std::vector<StructType *> getIdentifiedStructTypes() const override;
    505   void Dematerialize(GlobalValue *GV) override;
    506 
    507   /// @brief Main interface to parsing a bitcode buffer.
    508   /// @returns true if an error occurred.
    509   std::error_code ParseBitcodeInto(Module *M);
    510 
    511   /// @brief Cheap mechanism to just extract module triple
    512   /// @returns true if an error occurred.
    513   llvm::ErrorOr<std::string> parseTriple();
    514 
    515   static uint64_t decodeSignRotatedValue(uint64_t V);
    516 
    517   /// Materialize any deferred Metadata block.
    518   std::error_code materializeMetadata() override;
    519 
    520   void setStripDebugInfo() override;
    521 
    522 private:
    523   std::vector<StructType *> IdentifiedStructTypes;
    524   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
    525   StructType *createIdentifiedStructType(LLVMContext &Context);
    526 
    527   Type *getTypeByID(unsigned ID);
    528   Type *getTypeByIDOrNull(unsigned ID);
    529   Value *getFnValueByID(unsigned ID, Type *Ty) {
    530     if (Ty && Ty->isMetadataTy())
    531       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
    532     return ValueList.getValueFwdRef(ID, Ty);
    533   }
    534   Metadata *getFnMetadataByID(unsigned ID) {
    535     return MDValueList.getValueFwdRef(ID);
    536   }
    537   BasicBlock *getBasicBlock(unsigned ID) const {
    538     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
    539     return FunctionBBs[ID];
    540   }
    541   AttributeSet getAttributes(unsigned i) const {
    542     if (i-1 < MAttributes.size())
    543       return MAttributes[i-1];
    544     return AttributeSet();
    545   }
    546 
    547   /// getValueTypePair - Read a value/type pair out of the specified record from
    548   /// slot 'Slot'.  Increment Slot past the number of slots used in the record.
    549   /// Return true on failure.
    550   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
    551                         unsigned InstNum, Value *&ResVal) {
    552     if (Slot == Record.size()) return true;
    553     unsigned ValNo = (unsigned)Record[Slot++];
    554     if (ValNo < InstNum) {
    555       // If this is not a forward reference, just return the value we already
    556       // have.
    557       ResVal = getFnValueByID(ValNo, nullptr);
    558       return ResVal == nullptr;
    559     } else if (Slot == Record.size()) {
    560       return true;
    561     }
    562 
    563     unsigned TypeNo = (unsigned)Record[Slot++];
    564     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
    565     return ResVal == nullptr;
    566   }
    567   bool getValue(SmallVector<uint64_t, 64> &Record, unsigned &Slot,
    568                 Type *Ty, Value *&ResVal) {
    569     if (Slot == Record.size()) return true;
    570     unsigned ValNo = (unsigned)Record[Slot++];
    571     ResVal = getFnValueByID(ValNo, Ty);
    572     return ResVal == 0;
    573   }
    574 
    575 
    576   std::error_code ParseModule(bool Resume);
    577   std::error_code ParseAttributeBlock();
    578   std::error_code ParseTypeTable();
    579   std::error_code ParseOldTypeTable();         // FIXME: Remove in LLVM 3.1
    580   std::error_code ParseTypeTableBody();
    581 
    582   std::error_code ParseOldTypeSymbolTable();   // FIXME: Remove in LLVM 3.1
    583   std::error_code ParseValueSymbolTable();
    584   std::error_code ParseConstants();
    585   std::error_code RememberAndSkipFunctionBody();
    586   std::error_code ParseFunctionBody(Function *F);
    587   std::error_code GlobalCleanup();
    588   std::error_code ResolveGlobalAndAliasInits();
    589   std::error_code ParseMetadata();
    590   std::error_code ParseMetadataAttachment();
    591   llvm::ErrorOr<std::string> parseModuleTriple();
    592   std::error_code InitStream();
    593   std::error_code InitStreamFromBuffer();
    594   std::error_code InitLazyStream();
    595 };
    596 
    597 } // end anonymous namespace
    598 
    599 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler,
    600                              std::error_code EC, const Twine &Message) {
    601   BitcodeDiagnosticInfo DI(EC, DS_Error, Message);
    602   DiagnosticHandler(DI);
    603   return EC;
    604 }
    605 
    606 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler,
    607                              std::error_code EC) {
    608   return Error(DiagnosticHandler, EC, EC.message());
    609 }
    610 
    611 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) {
    612   return ::Error(DiagnosticHandler, make_error_code(E), Message);
    613 }
    614 
    615 std::error_code BitcodeReader::Error(const Twine &Message) {
    616   return ::Error(DiagnosticHandler,
    617                  make_error_code(BitcodeError::CorruptedBitcode), Message);
    618 }
    619 
    620 std::error_code BitcodeReader::Error(BitcodeError E) {
    621   return ::Error(DiagnosticHandler, make_error_code(E));
    622 }
    623 
    624 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F,
    625                                                 LLVMContext &C) {
    626   if (F)
    627     return F;
    628   return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); };
    629 }
    630 
    631 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C,
    632                              DiagnosticHandlerFunction DiagnosticHandler)
    633     : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)),
    634       TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr),
    635       NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C),
    636       MDValueList(C), SeenFirstFunctionBody(false) {}
    637 
    638 
    639 void BitcodeReader::FreeState() {
    640   Buffer = nullptr;
    641   std::vector<Type*>().swap(TypeList);
    642   ValueList.clear();
    643   MDValueList.clear();
    644 
    645   std::vector<AttributeSet>().swap(MAttributes);
    646   std::vector<BasicBlock*>().swap(FunctionBBs);
    647   std::vector<Function*>().swap(FunctionsWithBodies);
    648   DeferredFunctionInfo.clear();
    649   MDKindMap.clear();
    650 }
    651 
    652 //===----------------------------------------------------------------------===//
    653 //  Helper functions to implement forward reference resolution, etc.
    654 //===----------------------------------------------------------------------===//
    655 
    656 /// ConvertToString - Convert a string from a record into an std::string, return
    657 /// true on failure.
    658 template<typename StrTy>
    659 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx,
    660                             StrTy &Result) {
    661   if (Idx > Record.size())
    662     return true;
    663 
    664   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
    665     Result += (char)Record[i];
    666   return false;
    667 }
    668 
    669 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
    670   switch (Val) {
    671   default: // Map unknown/new linkages to external
    672   case 0:
    673     return GlobalValue::ExternalLinkage;
    674   case 1:
    675     return GlobalValue::WeakAnyLinkage;
    676   case 2:
    677     return GlobalValue::AppendingLinkage;
    678   case 3:
    679     return GlobalValue::InternalLinkage;
    680   case 4:
    681     return GlobalValue::LinkOnceAnyLinkage;
    682   case 5:
    683     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
    684   case 6:
    685     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
    686   case 7:
    687     return GlobalValue::ExternalWeakLinkage;
    688   case 8:
    689     return GlobalValue::CommonLinkage;
    690   case 9:
    691     return GlobalValue::PrivateLinkage;
    692   case 10:
    693     return GlobalValue::WeakODRLinkage;
    694   case 11:
    695     return GlobalValue::LinkOnceODRLinkage;
    696   case 12:
    697     return GlobalValue::AvailableExternallyLinkage;
    698   case 13:
    699     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
    700   case 14:
    701     return GlobalValue::ExternalWeakLinkage; // Obsolete LinkerPrivateWeakLinkage
    702   //ANDROID: convert LinkOnceODRAutoHideLinkage -> LinkOnceODRLinkage
    703   case 15:
    704     return GlobalValue::LinkOnceODRLinkage;
    705   }
    706 }
    707 
    708 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
    709   switch (Val) {
    710   default: // Map unknown visibilities to default.
    711   case 0: return GlobalValue::DefaultVisibility;
    712   case 1: return GlobalValue::HiddenVisibility;
    713   case 2: return GlobalValue::ProtectedVisibility;
    714   }
    715 }
    716 
    717 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) {
    718   switch (Val) {
    719     case 0: return GlobalVariable::NotThreadLocal;
    720     default: // Map unknown non-zero value to general dynamic.
    721     case 1: return GlobalVariable::GeneralDynamicTLSModel;
    722     case 2: return GlobalVariable::LocalDynamicTLSModel;
    723     case 3: return GlobalVariable::InitialExecTLSModel;
    724     case 4: return GlobalVariable::LocalExecTLSModel;
    725   }
    726 }
    727 
    728 static int GetDecodedCastOpcode(unsigned Val) {
    729   switch (Val) {
    730   default: return -1;
    731   case bitc::CAST_TRUNC   : return Instruction::Trunc;
    732   case bitc::CAST_ZEXT    : return Instruction::ZExt;
    733   case bitc::CAST_SEXT    : return Instruction::SExt;
    734   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
    735   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
    736   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
    737   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
    738   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
    739   case bitc::CAST_FPEXT   : return Instruction::FPExt;
    740   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
    741   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
    742   case bitc::CAST_BITCAST : return Instruction::BitCast;
    743   }
    744 }
    745 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
    746   switch (Val) {
    747   default: return -1;
    748   case bitc::BINOP_ADD:
    749     return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
    750   case bitc::BINOP_SUB:
    751     return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
    752   case bitc::BINOP_MUL:
    753     return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
    754   case bitc::BINOP_UDIV: return Instruction::UDiv;
    755   case bitc::BINOP_SDIV:
    756     return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
    757   case bitc::BINOP_UREM: return Instruction::URem;
    758   case bitc::BINOP_SREM:
    759     return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
    760   case bitc::BINOP_SHL:  return Instruction::Shl;
    761   case bitc::BINOP_LSHR: return Instruction::LShr;
    762   case bitc::BINOP_ASHR: return Instruction::AShr;
    763   case bitc::BINOP_AND:  return Instruction::And;
    764   case bitc::BINOP_OR:   return Instruction::Or;
    765   case bitc::BINOP_XOR:  return Instruction::Xor;
    766   }
    767 }
    768 
    769 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) {
    770   switch (Val) {
    771   default: return AtomicRMWInst::BAD_BINOP;
    772   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
    773   case bitc::RMW_ADD: return AtomicRMWInst::Add;
    774   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
    775   case bitc::RMW_AND: return AtomicRMWInst::And;
    776   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
    777   case bitc::RMW_OR: return AtomicRMWInst::Or;
    778   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
    779   case bitc::RMW_MAX: return AtomicRMWInst::Max;
    780   case bitc::RMW_MIN: return AtomicRMWInst::Min;
    781   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
    782   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
    783   }
    784 }
    785 
    786 static AtomicOrdering GetDecodedOrdering(unsigned Val) {
    787   switch (Val) {
    788   case bitc::ORDERING_NOTATOMIC: return NotAtomic;
    789   case bitc::ORDERING_UNORDERED: return Unordered;
    790   case bitc::ORDERING_MONOTONIC: return Monotonic;
    791   case bitc::ORDERING_ACQUIRE: return Acquire;
    792   case bitc::ORDERING_RELEASE: return Release;
    793   case bitc::ORDERING_ACQREL: return AcquireRelease;
    794   default: // Map unknown orderings to sequentially-consistent.
    795   case bitc::ORDERING_SEQCST: return SequentiallyConsistent;
    796   }
    797 }
    798 
    799 static SynchronizationScope GetDecodedSynchScope(unsigned Val) {
    800   switch (Val) {
    801   case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
    802   default: // Map unknown scopes to cross-thread.
    803   case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
    804   }
    805 }
    806 
    807 namespace llvm {
    808 namespace {
    809   /// @brief A class for maintaining the slot number definition
    810   /// as a placeholder for the actual definition for forward constants defs.
    811   class ConstantPlaceHolder : public ConstantExpr {
    812     void operator=(const ConstantPlaceHolder &) = delete;
    813   public:
    814     // allocate space for exactly one operand
    815     void *operator new(size_t s) {
    816       return User::operator new(s, 1);
    817     }
    818     explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
    819       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
    820       Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
    821     }
    822 
    823     /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
    824     static bool classof(const Value *V) {
    825       return isa<ConstantExpr>(V) &&
    826              cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
    827     }
    828 
    829 
    830     /// Provide fast operand accessors
    831     DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
    832   };
    833 }
    834 
    835 // FIXME: can we inherit this from ConstantExpr?
    836 template <>
    837 struct OperandTraits<ConstantPlaceHolder> :
    838   public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
    839 };
    840 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
    841 }
    842 
    843 
    844 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
    845   if (Idx == size()) {
    846     push_back(V);
    847     return;
    848   }
    849 
    850   if (Idx >= size())
    851     resize(Idx+1);
    852 
    853   WeakVH &OldV = ValuePtrs[Idx];
    854   if (!OldV) {
    855     OldV = V;
    856     return;
    857   }
    858 
    859   // Handle constants and non-constants (e.g. instrs) differently for
    860   // efficiency.
    861   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
    862     ResolveConstants.push_back(std::make_pair(PHC, Idx));
    863     OldV = V;
    864   } else {
    865     // If there was a forward reference to this value, replace it.
    866     Value *PrevVal = OldV;
    867     OldV->replaceAllUsesWith(V);
    868     delete PrevVal;
    869   }
    870 }
    871 
    872 
    873 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
    874                                                     Type *Ty) {
    875   if (Idx >= size())
    876     resize(Idx + 1);
    877 
    878   if (Value *V = ValuePtrs[Idx]) {
    879     assert(Ty == V->getType() && "Type mismatch in constant table!");
    880     return cast<Constant>(V);
    881   }
    882 
    883   // Create and return a placeholder, which will later be RAUW'd.
    884   Constant *C = new ConstantPlaceHolder(Ty, Context);
    885   ValuePtrs[Idx] = C;
    886   return C;
    887 }
    888 
    889 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
    890   if (Idx >= size())
    891     resize(Idx + 1);
    892 
    893   if (Value *V = ValuePtrs[Idx]) {
    894     assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!");
    895     return V;
    896   }
    897 
    898   // No type specified, must be invalid reference.
    899   if (!Ty) return nullptr;
    900 
    901   // Create and return a placeholder, which will later be RAUW'd.
    902   Value *V = new Argument(Ty);
    903   ValuePtrs[Idx] = V;
    904   return V;
    905 }
    906 
    907 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
    908 /// resolves any forward references.  The idea behind this is that we sometimes
    909 /// get constants (such as large arrays) which reference *many* forward ref
    910 /// constants.  Replacing each of these causes a lot of thrashing when
    911 /// building/reuniquing the constant.  Instead of doing this, we look at all the
    912 /// uses and rewrite all the place holders at once for any constant that uses
    913 /// a placeholder.
    914 void BitcodeReaderValueList::ResolveConstantForwardRefs() {
    915   // Sort the values by-pointer so that they are efficient to look up with a
    916   // binary search.
    917   std::sort(ResolveConstants.begin(), ResolveConstants.end());
    918 
    919   SmallVector<Constant*, 64> NewOps;
    920 
    921   while (!ResolveConstants.empty()) {
    922     Value *RealVal = operator[](ResolveConstants.back().second);
    923     Constant *Placeholder = ResolveConstants.back().first;
    924     ResolveConstants.pop_back();
    925 
    926     // Loop over all users of the placeholder, updating them to reference the
    927     // new value.  If they reference more than one placeholder, update them all
    928     // at once.
    929     while (!Placeholder->use_empty()) {
    930       auto UI = Placeholder->user_begin();
    931       User *U = *UI;
    932 
    933       // If the using object isn't uniqued, just update the operands.  This
    934       // handles instructions and initializers for global variables.
    935       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
    936         UI.getUse().set(RealVal);
    937         continue;
    938       }
    939 
    940       // Otherwise, we have a constant that uses the placeholder.  Replace that
    941       // constant with a new constant that has *all* placeholder uses updated.
    942       Constant *UserC = cast<Constant>(U);
    943       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
    944            I != E; ++I) {
    945         Value *NewOp;
    946         if (!isa<ConstantPlaceHolder>(*I)) {
    947           // Not a placeholder reference.
    948           NewOp = *I;
    949         } else if (*I == Placeholder) {
    950           // Common case is that it just references this one placeholder.
    951           NewOp = RealVal;
    952         } else {
    953           // Otherwise, look up the placeholder in ResolveConstants.
    954           ResolveConstantsTy::iterator It =
    955             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
    956                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
    957                                                             0));
    958           assert(It != ResolveConstants.end() && It->first == *I);
    959           NewOp = operator[](It->second);
    960         }
    961 
    962         NewOps.push_back(cast<Constant>(NewOp));
    963       }
    964 
    965       // Make the new constant.
    966       Constant *NewC;
    967       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
    968         NewC = ConstantArray::get(UserCA->getType(), NewOps);
    969       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
    970         NewC = ConstantStruct::get(UserCS->getType(), NewOps);
    971       } else if (isa<ConstantVector>(UserC)) {
    972         NewC = ConstantVector::get(NewOps);
    973       } else {
    974         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
    975         NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
    976       }
    977 
    978       UserC->replaceAllUsesWith(NewC);
    979       UserC->destroyConstant();
    980       NewOps.clear();
    981     }
    982 
    983     // Update all ValueHandles, they should be the only users at this point.
    984     Placeholder->replaceAllUsesWith(RealVal);
    985     delete Placeholder;
    986   }
    987 }
    988 
    989 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) {
    990   if (Idx == size()) {
    991     push_back(MD);
    992     return;
    993   }
    994 
    995   if (Idx >= size())
    996     resize(Idx+1);
    997 
    998   TrackingMDRef &OldMD = MDValuePtrs[Idx];
    999   if (!OldMD) {
   1000     OldMD.reset(MD);
   1001     return;
   1002   }
   1003 
   1004   // If there was a forward reference to this value, replace it.
   1005   TempMDTuple PrevMD(cast<MDTuple>(OldMD.get()));
   1006   PrevMD->replaceAllUsesWith(MD);
   1007   --NumFwdRefs;
   1008 }
   1009 
   1010 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
   1011   if (Idx >= size())
   1012     resize(Idx + 1);
   1013 
   1014   if (Metadata *MD = MDValuePtrs[Idx])
   1015     return MD;
   1016 
   1017   // Create and return a placeholder, which will later be RAUW'd.
   1018   AnyFwdRefs = true;
   1019   ++NumFwdRefs;
   1020   Metadata *MD = MDNode::getTemporary(Context, None).release();
   1021   MDValuePtrs[Idx].reset(MD);
   1022   return MD;
   1023 }
   1024 
   1025 void BitcodeReaderMDValueList::tryToResolveCycles() {
   1026   if (!AnyFwdRefs)
   1027     // Nothing to do.
   1028     return;
   1029 
   1030   if (NumFwdRefs)
   1031     // Still forward references... can't resolve cycles.
   1032     return;
   1033 
   1034   // Resolve any cycles.
   1035   for (auto &MD : MDValuePtrs) {
   1036     auto *N = dyn_cast_or_null<MDNode>(MD);
   1037     if (!N)
   1038       continue;
   1039 
   1040     assert(!N->isTemporary() && "Unexpected forward reference");
   1041     N->resolveCycles();
   1042   }
   1043 }
   1044 
   1045 Type *BitcodeReader::getTypeByID(unsigned ID) {
   1046   // The type table size is always specified correctly.
   1047   if (ID >= TypeList.size())
   1048     return nullptr;
   1049 
   1050   if (Type *Ty = TypeList[ID])
   1051     return Ty;
   1052 
   1053   // If we have a forward reference, the only possible case is when it is to a
   1054   // named struct.  Just create a placeholder for now.
   1055   return TypeList[ID] = createIdentifiedStructType(Context);
   1056 }
   1057 
   1058 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
   1059                                                       StringRef Name) {
   1060   auto *Ret = StructType::create(Context, Name);
   1061   IdentifiedStructTypes.push_back(Ret);
   1062   return Ret;
   1063 }
   1064 
   1065 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
   1066   auto *Ret = StructType::create(Context);
   1067   IdentifiedStructTypes.push_back(Ret);
   1068   return Ret;
   1069 }
   1070 
   1071 
   1072 /// FIXME: Remove in LLVM 3.1, only used by ParseOldTypeTable.
   1073 Type *BitcodeReader::getTypeByIDOrNull(unsigned ID) {
   1074   if (ID >= TypeList.size())
   1075     TypeList.resize(ID+1);
   1076 
   1077   return TypeList[ID];
   1078 }
   1079 
   1080 //===----------------------------------------------------------------------===//
   1081 //  Functions for parsing blocks from the bitcode file
   1082 //===----------------------------------------------------------------------===//
   1083 
   1084 
   1085 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
   1086 /// been decoded from the given integer. This function must stay in sync with
   1087 /// 'encodeLLVMAttributesForBitcode'.
   1088 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
   1089                                            uint64_t EncodedAttrs) {
   1090   // FIXME: Remove in 4.0.
   1091 
   1092   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
   1093   // the bits above 31 down by 11 bits.
   1094   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
   1095   assert((!Alignment || isPowerOf2_32(Alignment)) &&
   1096          "Alignment must be a power of two.");
   1097 
   1098   if (Alignment)
   1099     B.addAlignmentAttr(Alignment);
   1100   B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
   1101                 (EncodedAttrs & 0xffff));
   1102 }
   1103 
   1104 std::error_code BitcodeReader::ParseAttributeBlock() {
   1105   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
   1106     return Error("Invalid record");
   1107 
   1108   if (!MAttributes.empty())
   1109     return Error("Invalid multiple blocks");
   1110 
   1111   SmallVector<uint64_t, 64> Record;
   1112 
   1113   SmallVector<AttributeSet, 8> Attrs;
   1114 
   1115   // Read all the records.
   1116   while (1) {
   1117     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   1118 
   1119     switch (Entry.Kind) {
   1120     case BitstreamEntry::SubBlock: // Handled for us already.
   1121     case BitstreamEntry::Error:
   1122       return Error("Malformed block");
   1123     case BitstreamEntry::EndBlock:
   1124       return std::error_code();
   1125     case BitstreamEntry::Record:
   1126       // The interesting case.
   1127       break;
   1128     }
   1129 
   1130     // Read a record.
   1131     Record.clear();
   1132     switch (Stream.readRecord(Entry.ID, Record)) {
   1133     default:  // Default behavior: ignore.
   1134       break;
   1135     case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
   1136       // FIXME: Remove in 4.0.
   1137       if (Record.size() & 1)
   1138         return Error("Invalid record");
   1139 
   1140       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
   1141         AttrBuilder B;
   1142         decodeLLVMAttributesForBitcode(B, Record[i+1]);
   1143         Attrs.push_back(AttributeSet::get(Context, Record[i], B));
   1144       }
   1145 
   1146       MAttributes.push_back(AttributeSet::get(Context, Attrs));
   1147       Attrs.clear();
   1148       break;
   1149     }
   1150     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
   1151       for (unsigned i = 0, e = Record.size(); i != e; ++i)
   1152         Attrs.push_back(MAttributeGroups[Record[i]]);
   1153 
   1154       MAttributes.push_back(AttributeSet::get(Context, Attrs));
   1155       Attrs.clear();
   1156       break;
   1157     }
   1158     }
   1159   }
   1160 }
   1161 
   1162 
   1163 std::error_code BitcodeReader::ParseTypeTable() {
   1164   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
   1165     return Error("Invalid record");
   1166 
   1167   return ParseTypeTableBody();
   1168 }
   1169 
   1170 std::error_code BitcodeReader::ParseTypeTableBody() {
   1171   if (!TypeList.empty())
   1172     return Error("Invalid multiple blocks");
   1173 
   1174   SmallVector<uint64_t, 64> Record;
   1175   unsigned NumRecords = 0;
   1176 
   1177   SmallString<64> TypeName;
   1178 
   1179   // Read all the records for this type table.
   1180   while (1) {
   1181     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   1182 
   1183     switch (Entry.Kind) {
   1184     case BitstreamEntry::SubBlock: // Handled for us already.
   1185     case BitstreamEntry::Error:
   1186       return Error("Malformed block");
   1187     case BitstreamEntry::EndBlock:
   1188       if (NumRecords != TypeList.size())
   1189         return Error("Malformed block");
   1190       return std::error_code();
   1191     case BitstreamEntry::Record:
   1192       // The interesting case.
   1193       break;
   1194     }
   1195 
   1196     // Read a record.
   1197     Record.clear();
   1198     Type *ResultTy = nullptr;
   1199     switch (Stream.readRecord(Entry.ID, Record)) {
   1200     default:
   1201       return Error("Invalid value");
   1202     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
   1203       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
   1204       // type list.  This allows us to reserve space.
   1205       if (Record.size() < 1)
   1206         return Error("Invalid record");
   1207       TypeList.resize(Record[0]);
   1208       continue;
   1209     case bitc::TYPE_CODE_VOID:      // VOID
   1210       ResultTy = Type::getVoidTy(Context);
   1211       break;
   1212     case bitc::TYPE_CODE_HALF:     // HALF
   1213       ResultTy = Type::getHalfTy(Context);
   1214       break;
   1215     case bitc::TYPE_CODE_FLOAT:     // FLOAT
   1216       ResultTy = Type::getFloatTy(Context);
   1217       break;
   1218     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
   1219       ResultTy = Type::getDoubleTy(Context);
   1220       break;
   1221     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
   1222       ResultTy = Type::getX86_FP80Ty(Context);
   1223       break;
   1224     case bitc::TYPE_CODE_FP128:     // FP128
   1225       ResultTy = Type::getFP128Ty(Context);
   1226       break;
   1227     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
   1228       ResultTy = Type::getPPC_FP128Ty(Context);
   1229       break;
   1230     case bitc::TYPE_CODE_LABEL:     // LABEL
   1231       ResultTy = Type::getLabelTy(Context);
   1232       break;
   1233     case bitc::TYPE_CODE_METADATA:  // METADATA
   1234       ResultTy = Type::getMetadataTy(Context);
   1235       break;
   1236     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
   1237       ResultTy = Type::getX86_MMXTy(Context);
   1238       break;
   1239     case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
   1240       if (Record.size() < 1)
   1241         return Error("Invalid record");
   1242 
   1243       ResultTy = IntegerType::get(Context, Record[0]);
   1244       break;
   1245     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
   1246                                     //          [pointee type, address space]
   1247       if (Record.size() < 1)
   1248         return Error("Invalid record");
   1249       unsigned AddressSpace = 0;
   1250       if (Record.size() == 2)
   1251         AddressSpace = Record[1];
   1252       ResultTy = getTypeByID(Record[0]);
   1253       if (!ResultTy)
   1254         return Error("Invalid type");
   1255       ResultTy = PointerType::get(ResultTy, AddressSpace);
   1256       break;
   1257     }
   1258     case bitc::TYPE_CODE_FUNCTION_OLD: {
   1259       // FIXME: attrid is dead, remove it in LLVM 4.0
   1260       // FUNCTION: [vararg, attrid, retty, paramty x N]
   1261       if (Record.size() < 3)
   1262         return Error("Invalid record");
   1263       SmallVector<Type*, 8> ArgTys;
   1264       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
   1265         if (Type *T = getTypeByID(Record[i]))
   1266           ArgTys.push_back(T);
   1267         else
   1268           break;
   1269       }
   1270 
   1271       ResultTy = getTypeByID(Record[2]);
   1272       if (!ResultTy || ArgTys.size() < Record.size()-3)
   1273         return Error("Invalid type");
   1274 
   1275       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
   1276       break;
   1277     }
   1278     case bitc::TYPE_CODE_FUNCTION: {
   1279       // FUNCTION: [vararg, retty, paramty x N]
   1280       if (Record.size() < 2)
   1281         return Error("Invalid record");
   1282       SmallVector<Type*, 8> ArgTys;
   1283       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
   1284         if (Type *T = getTypeByID(Record[i]))
   1285           ArgTys.push_back(T);
   1286         else
   1287           break;
   1288       }
   1289 
   1290       ResultTy = getTypeByID(Record[1]);
   1291       if (!ResultTy || ArgTys.size() < Record.size()-2)
   1292         return Error("Invalid type");
   1293 
   1294       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
   1295       break;
   1296     }
   1297     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
   1298       if (Record.size() < 1)
   1299         return Error("Invalid record");
   1300       SmallVector<Type*, 8> EltTys;
   1301       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
   1302         if (Type *T = getTypeByID(Record[i]))
   1303           EltTys.push_back(T);
   1304         else
   1305           break;
   1306       }
   1307       if (EltTys.size() != Record.size()-1)
   1308         return Error("Invalid type");
   1309       ResultTy = StructType::get(Context, EltTys, Record[0]);
   1310       break;
   1311     }
   1312     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
   1313       if (ConvertToString(Record, 0, TypeName))
   1314         return Error("Invalid record");
   1315       continue;
   1316 
   1317     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
   1318       if (Record.size() < 1)
   1319         return Error("Invalid record");
   1320 
   1321       if (NumRecords >= TypeList.size())
   1322         return Error("Invalid TYPE table");
   1323 
   1324       // Check to see if this was forward referenced, if so fill in the temp.
   1325       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
   1326       if (Res) {
   1327         Res->setName(TypeName);
   1328         TypeList[NumRecords] = nullptr;
   1329       } else  // Otherwise, create a new struct.
   1330         Res = createIdentifiedStructType(Context, TypeName);
   1331       TypeName.clear();
   1332 
   1333       SmallVector<Type*, 8> EltTys;
   1334       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
   1335         if (Type *T = getTypeByID(Record[i]))
   1336           EltTys.push_back(T);
   1337         else
   1338           break;
   1339       }
   1340       if (EltTys.size() != Record.size()-1)
   1341         return Error("Invalid record");
   1342       Res->setBody(EltTys, Record[0]);
   1343       ResultTy = Res;
   1344       break;
   1345     }
   1346     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
   1347       if (Record.size() != 1)
   1348         return Error("Invalid record");
   1349 
   1350       if (NumRecords >= TypeList.size())
   1351         return Error("Invalid TYPE table");
   1352 
   1353       // Check to see if this was forward referenced, if so fill in the temp.
   1354       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
   1355       if (Res) {
   1356         Res->setName(TypeName);
   1357         TypeList[NumRecords] = nullptr;
   1358       } else  // Otherwise, create a new struct with no body.
   1359         Res = createIdentifiedStructType(Context, TypeName);
   1360       TypeName.clear();
   1361       ResultTy = Res;
   1362       break;
   1363     }
   1364     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
   1365       if (Record.size() < 2)
   1366         return Error("Invalid record");
   1367       if ((ResultTy = getTypeByID(Record[1])))
   1368         ResultTy = ArrayType::get(ResultTy, Record[0]);
   1369       else
   1370         return Error("Invalid type");
   1371       break;
   1372     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
   1373       if (Record.size() < 2)
   1374         return Error("Invalid record");
   1375       if ((ResultTy = getTypeByID(Record[1])))
   1376         ResultTy = VectorType::get(ResultTy, Record[0]);
   1377       else
   1378         return Error("Invalid type");
   1379       break;
   1380     }
   1381 
   1382     if (NumRecords >= TypeList.size())
   1383       return Error("Invalid TYPE table");
   1384     assert(ResultTy && "Didn't read a type?");
   1385     assert(!TypeList[NumRecords] && "Already read type?");
   1386     TypeList[NumRecords++] = ResultTy;
   1387   }
   1388 }
   1389 
   1390 // FIXME: Remove in LLVM 3.1
   1391 std::error_code BitcodeReader::ParseOldTypeTable() {
   1392   if (Stream.EnterSubBlock(TYPE_BLOCK_ID_OLD_3_0))
   1393     return Error("Malformed block");
   1394 
   1395   if (!TypeList.empty())
   1396     return Error("Invalid TYPE table");
   1397 
   1398 
   1399   // While horrible, we have no good ordering of types in the bc file.  Just
   1400   // iteratively parse types out of the bc file in multiple passes until we get
   1401   // them all.  Do this by saving a cursor for the start of the type block.
   1402   BitstreamCursor StartOfTypeBlockCursor(Stream);
   1403 
   1404   unsigned NumTypesRead = 0;
   1405 
   1406   SmallVector<uint64_t, 64> Record;
   1407 RestartScan:
   1408   unsigned NextTypeID = 0;
   1409   bool ReadAnyTypes = false;
   1410 
   1411   // Read all the records for this type table.
   1412   while (1) {
   1413     unsigned Code = Stream.ReadCode();
   1414     if (Code == bitc::END_BLOCK) {
   1415       if (NextTypeID != TypeList.size())
   1416         return Error("Invalid TYPE table");
   1417 
   1418       // If we haven't read all of the types yet, iterate again.
   1419       if (NumTypesRead != TypeList.size()) {
   1420         // If we didn't successfully read any types in this pass, then we must
   1421         // have an unhandled forward reference.
   1422         if (!ReadAnyTypes)
   1423           return Error("Invalid TYPE table");
   1424 
   1425         Stream = StartOfTypeBlockCursor;
   1426         goto RestartScan;
   1427       }
   1428 
   1429       if (Stream.ReadBlockEnd())
   1430         return Error("Invalid TYPE table");
   1431       return std::error_code();
   1432     }
   1433 
   1434     if (Code == bitc::ENTER_SUBBLOCK) {
   1435       // No known subblocks, always skip them.
   1436       Stream.ReadSubBlockID();
   1437       if (Stream.SkipBlock())
   1438         return Error("Malformed block");
   1439       continue;
   1440     }
   1441 
   1442     if (Code == bitc::DEFINE_ABBREV) {
   1443       Stream.ReadAbbrevRecord();
   1444       continue;
   1445     }
   1446 
   1447     // Read a record.
   1448     Record.clear();
   1449     Type *ResultTy = nullptr;
   1450     switch (Stream.readRecord(Code, Record)) {
   1451     default: return Error("Invalid TYPE table");
   1452     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
   1453       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
   1454       // type list.  This allows us to reserve space.
   1455       if (Record.size() < 1)
   1456         return Error("Invalid TYPE table");
   1457       TypeList.resize(Record[0]);
   1458       continue;
   1459     case bitc::TYPE_CODE_VOID:      // VOID
   1460       ResultTy = Type::getVoidTy(Context);
   1461       break;
   1462     case bitc::TYPE_CODE_FLOAT:     // FLOAT
   1463       ResultTy = Type::getFloatTy(Context);
   1464       break;
   1465     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
   1466       ResultTy = Type::getDoubleTy(Context);
   1467       break;
   1468     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
   1469       ResultTy = Type::getX86_FP80Ty(Context);
   1470       break;
   1471     case bitc::TYPE_CODE_FP128:     // FP128
   1472       ResultTy = Type::getFP128Ty(Context);
   1473       break;
   1474     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
   1475       ResultTy = Type::getPPC_FP128Ty(Context);
   1476       break;
   1477     case bitc::TYPE_CODE_LABEL:     // LABEL
   1478       ResultTy = Type::getLabelTy(Context);
   1479       break;
   1480     case bitc::TYPE_CODE_METADATA:  // METADATA
   1481       ResultTy = Type::getMetadataTy(Context);
   1482       break;
   1483     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
   1484       ResultTy = Type::getX86_MMXTy(Context);
   1485       break;
   1486     case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
   1487       if (Record.size() < 1)
   1488         return Error("Invalid TYPE table");
   1489       ResultTy = IntegerType::get(Context, Record[0]);
   1490       break;
   1491     case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
   1492       if (NextTypeID < TypeList.size() && TypeList[NextTypeID] == 0)
   1493         ResultTy = StructType::create(Context, "");
   1494       break;
   1495     case TYPE_CODE_STRUCT_OLD_3_0: {// STRUCT_OLD
   1496       if (NextTypeID >= TypeList.size()) break;
   1497       // If we already read it, don't reprocess.
   1498       if (TypeList[NextTypeID] &&
   1499           !cast<StructType>(TypeList[NextTypeID])->isOpaque())
   1500         break;
   1501 
   1502       // Set a type.
   1503       if (TypeList[NextTypeID] == 0)
   1504         TypeList[NextTypeID] = StructType::create(Context, "");
   1505 
   1506       std::vector<Type*> EltTys;
   1507       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
   1508         if (Type *Elt = getTypeByIDOrNull(Record[i]))
   1509           EltTys.push_back(Elt);
   1510         else
   1511           break;
   1512       }
   1513 
   1514       if (EltTys.size() != Record.size()-1)
   1515         break;      // Not all elements are ready.
   1516 
   1517       cast<StructType>(TypeList[NextTypeID])->setBody(EltTys, Record[0]);
   1518       ResultTy = TypeList[NextTypeID];
   1519       TypeList[NextTypeID] = 0;
   1520       break;
   1521     }
   1522     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
   1523       //          [pointee type, address space]
   1524       if (Record.size() < 1)
   1525         return Error("Invalid TYPE table");
   1526       unsigned AddressSpace = 0;
   1527       if (Record.size() == 2)
   1528         AddressSpace = Record[1];
   1529       if ((ResultTy = getTypeByIDOrNull(Record[0])))
   1530         ResultTy = PointerType::get(ResultTy, AddressSpace);
   1531       break;
   1532     }
   1533     case bitc::TYPE_CODE_FUNCTION_OLD: {
   1534       // FIXME: attrid is dead, remove it in LLVM 3.0
   1535       // FUNCTION: [vararg, attrid, retty, paramty x N]
   1536       if (Record.size() < 3)
   1537         return Error("Invalid TYPE table");
   1538       std::vector<Type*> ArgTys;
   1539       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
   1540         if (Type *Elt = getTypeByIDOrNull(Record[i]))
   1541           ArgTys.push_back(Elt);
   1542         else
   1543           break;
   1544       }
   1545       if (ArgTys.size()+3 != Record.size())
   1546         break;  // Something was null.
   1547       if ((ResultTy = getTypeByIDOrNull(Record[2])))
   1548         ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
   1549       break;
   1550     }
   1551     case bitc::TYPE_CODE_FUNCTION: {
   1552       // FUNCTION: [vararg, retty, paramty x N]
   1553       if (Record.size() < 2)
   1554         return Error("Invalid TYPE table");
   1555       std::vector<Type*> ArgTys;
   1556       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
   1557         if (Type *Elt = getTypeByIDOrNull(Record[i]))
   1558           ArgTys.push_back(Elt);
   1559         else
   1560           break;
   1561       }
   1562       if (ArgTys.size()+2 != Record.size())
   1563         break;  // Something was null.
   1564       if ((ResultTy = getTypeByIDOrNull(Record[1])))
   1565         ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
   1566       break;
   1567     }
   1568     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
   1569       if (Record.size() < 2)
   1570         return Error("Invalid TYPE table");
   1571       if ((ResultTy = getTypeByIDOrNull(Record[1])))
   1572         ResultTy = ArrayType::get(ResultTy, Record[0]);
   1573       break;
   1574     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
   1575       if (Record.size() < 2)
   1576         return Error("Invalid TYPE table");
   1577       if ((ResultTy = getTypeByIDOrNull(Record[1])))
   1578         ResultTy = VectorType::get(ResultTy, Record[0]);
   1579       break;
   1580     }
   1581 
   1582     if (NextTypeID >= TypeList.size())
   1583       return Error("Invalid TYPE table");
   1584 
   1585     if (ResultTy && TypeList[NextTypeID] == 0) {
   1586       ++NumTypesRead;
   1587       ReadAnyTypes = true;
   1588 
   1589       TypeList[NextTypeID] = ResultTy;
   1590     }
   1591 
   1592     ++NextTypeID;
   1593   }
   1594 }
   1595 
   1596 
   1597 std::error_code BitcodeReader::ParseOldTypeSymbolTable() {
   1598   if (Stream.EnterSubBlock(TYPE_SYMTAB_BLOCK_ID_OLD_3_0))
   1599     return Error("Malformed block");
   1600 
   1601   SmallVector<uint64_t, 64> Record;
   1602 
   1603   // Read all the records for this type table.
   1604   std::string TypeName;
   1605   while (1) {
   1606     unsigned Code = Stream.ReadCode();
   1607     if (Code == bitc::END_BLOCK) {
   1608       if (Stream.ReadBlockEnd())
   1609         return Error("Malformed block");
   1610       return std::error_code();
   1611     }
   1612 
   1613     if (Code == bitc::ENTER_SUBBLOCK) {
   1614       // No known subblocks, always skip them.
   1615       Stream.ReadSubBlockID();
   1616       if (Stream.SkipBlock())
   1617         return Error("Malformed block");
   1618       continue;
   1619     }
   1620 
   1621     if (Code == bitc::DEFINE_ABBREV) {
   1622       Stream.ReadAbbrevRecord();
   1623       continue;
   1624     }
   1625 
   1626     // Read a record.
   1627     Record.clear();
   1628     switch (Stream.readRecord(Code, Record)) {
   1629     default:  // Default behavior: unknown type.
   1630       break;
   1631     case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
   1632       if (ConvertToString(Record, 1, TypeName))
   1633         return Error("Invalid record");
   1634       unsigned TypeID = Record[0];
   1635       if (TypeID >= TypeList.size())
   1636         return Error("Invalid record");
   1637 
   1638       // Only apply the type name to a struct type with no name.
   1639       if (StructType *STy = dyn_cast<StructType>(TypeList[TypeID]))
   1640         if (!STy->isLiteral() && !STy->hasName())
   1641           STy->setName(TypeName);
   1642       TypeName.clear();
   1643       break;
   1644     }
   1645   }
   1646 }
   1647 
   1648 std::error_code BitcodeReader::ParseValueSymbolTable() {
   1649   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
   1650     return Error("Invalid record");
   1651 
   1652   SmallVector<uint64_t, 64> Record;
   1653 
   1654   // Read all the records for this value table.
   1655   SmallString<128> ValueName;
   1656   while (1) {
   1657     unsigned Code = Stream.ReadCode();
   1658     if (Code == bitc::END_BLOCK) {
   1659       if (Stream.ReadBlockEnd())
   1660         return Error("Malformed block");
   1661       return std::error_code();
   1662     }
   1663     if (Code == bitc::ENTER_SUBBLOCK) {
   1664       // No known subblocks, always skip them.
   1665       Stream.ReadSubBlockID();
   1666       if (Stream.SkipBlock())
   1667         return Error("Malformed block");
   1668       continue;
   1669     }
   1670 
   1671     if (Code == bitc::DEFINE_ABBREV) {
   1672       Stream.ReadAbbrevRecord();
   1673       continue;
   1674     }
   1675 
   1676     // Read a record.
   1677     Record.clear();
   1678     switch (Stream.readRecord(Code, Record)) {
   1679     default:  // Default behavior: unknown type.
   1680       break;
   1681     case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
   1682       if (ConvertToString(Record, 1, ValueName))
   1683         return Error("Invalid record");
   1684       unsigned ValueID = Record[0];
   1685       if (ValueID >= ValueList.size())
   1686         return Error("Invalid record");
   1687       Value *V = ValueList[ValueID];
   1688 
   1689       V->setName(StringRef(ValueName.data(), ValueName.size()));
   1690       ValueName.clear();
   1691       break;
   1692     }
   1693     case bitc::VST_CODE_BBENTRY: {
   1694       if (ConvertToString(Record, 1, ValueName))
   1695         return Error("Invalid record");
   1696       BasicBlock *BB = getBasicBlock(Record[0]);
   1697       if (!BB)
   1698         return Error("Invalid record");
   1699 
   1700       BB->setName(StringRef(ValueName.data(), ValueName.size()));
   1701       ValueName.clear();
   1702       break;
   1703     }
   1704     }
   1705   }
   1706 }
   1707 
   1708 std::error_code BitcodeReader::ParseMetadata() {
   1709   unsigned NextMDValueNo = MDValueList.size();
   1710 
   1711   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
   1712     return Error("Invalid record");
   1713 
   1714   SmallVector<uint64_t, 64> Record;
   1715 
   1716   // Read all the records.
   1717   while (1) {
   1718     unsigned Code = Stream.ReadCode();
   1719     if (Code == bitc::END_BLOCK) {
   1720       if (Stream.ReadBlockEnd())
   1721         return Error("Malformed block");
   1722       return std::error_code();
   1723     }
   1724 
   1725     if (Code == bitc::ENTER_SUBBLOCK) {
   1726       // No known subblocks, always skip them.
   1727       Stream.ReadSubBlockID();
   1728       if (Stream.SkipBlock())
   1729         return Error("Malformed block");
   1730       continue;
   1731     }
   1732 
   1733     if (Code == bitc::DEFINE_ABBREV) {
   1734       Stream.ReadAbbrevRecord();
   1735       continue;
   1736     }
   1737 
   1738     bool IsFunctionLocal = false;
   1739     // Read a record.
   1740     Record.clear();
   1741     Code = Stream.readRecord(Code, Record);
   1742     switch (Code) {
   1743     default:  // Default behavior: ignore.
   1744       break;
   1745     case bitc::METADATA_NAME: {
   1746       // Read name of the named metadata.
   1747       SmallString<8> Name(Record.begin(), Record.end());
   1748       Record.clear();
   1749       Code = Stream.ReadCode();
   1750 
   1751       // METADATA_NAME is always followed by METADATA_NAMED_NODE.
   1752       unsigned NextBitCode = Stream.readRecord(Code, Record);
   1753       assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode;
   1754 
   1755       // Read named metadata elements.
   1756       unsigned Size = Record.size();
   1757       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
   1758       for (unsigned i = 0; i != Size; ++i) {
   1759         MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i]));
   1760         if (!MD)
   1761           return Error("Invalid record");
   1762         NMD->addOperand(MD);
   1763       }
   1764       break;
   1765     }
   1766     case bitc::METADATA_OLD_FN_NODE:
   1767       IsFunctionLocal = true;
   1768       // fall-through
   1769     case bitc::METADATA_OLD_NODE: {
   1770       if (Record.size() % 2 == 1)
   1771         return Error("Invalid record");
   1772 
   1773       unsigned Size = Record.size();
   1774       SmallVector<Metadata *, 8> Elts;
   1775       for (unsigned i = 0; i != Size; i += 2) {
   1776         Type *Ty = getTypeByID(Record[i]);
   1777         if (!Ty)
   1778           return Error("Invalid record");
   1779         if (Ty->isMetadataTy())
   1780           Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
   1781         else if (!Ty->isVoidTy()) {
   1782           auto *MD =
   1783               ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty));
   1784           assert(isa<ConstantAsMetadata>(MD) &&
   1785                  "Expected non-function-local metadata");
   1786           Elts.push_back(MD);
   1787         } else
   1788           Elts.push_back(nullptr);
   1789       }
   1790       MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++);
   1791       break;
   1792     }
   1793     case bitc::METADATA_STRING: {
   1794       std::string String(Record.begin(), Record.end());
   1795       llvm::UpgradeMDStringConstant(String);
   1796       Metadata *MD = MDString::get(Context, String);
   1797       MDValueList.AssignValue(MD, NextMDValueNo++);
   1798       break;
   1799     }
   1800     case bitc::METADATA_KIND: {
   1801       if (Record.size() < 2)
   1802         return Error("Invalid record");
   1803 
   1804       unsigned Kind = Record[0];
   1805       SmallString<8> Name(Record.begin()+1, Record.end());
   1806 
   1807       unsigned NewKind = TheModule->getMDKindID(Name.str());
   1808       if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
   1809         return Error("Conflicting METADATA_KIND records");
   1810       break;
   1811     }
   1812     }
   1813   }
   1814 }
   1815 
   1816 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in
   1817 /// the LSB for dense VBR encoding.
   1818 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
   1819   if ((V & 1) == 0)
   1820     return V >> 1;
   1821   if (V != 1)
   1822     return -(V >> 1);
   1823   // There is no such thing as -0 with integers.  "-0" really means MININT.
   1824   return 1ULL << 63;
   1825 }
   1826 
   1827 // FIXME: Delete this in LLVM 4.0 and just assert that the aliasee is a
   1828 // GlobalObject.
   1829 static GlobalObject &
   1830 getGlobalObjectInExpr(const DenseMap<GlobalAlias *, Constant *> &Map,
   1831                       Constant &C) {
   1832   auto *GO = dyn_cast<GlobalObject>(&C);
   1833   if (GO)
   1834     return *GO;
   1835 
   1836   auto *GA = dyn_cast<GlobalAlias>(&C);
   1837   if (GA)
   1838     return getGlobalObjectInExpr(Map, *Map.find(GA)->second);
   1839 
   1840   auto &CE = cast<ConstantExpr>(C);
   1841   assert(CE.getOpcode() == Instruction::BitCast ||
   1842          CE.getOpcode() == Instruction::GetElementPtr ||
   1843          CE.getOpcode() == Instruction::AddrSpaceCast);
   1844   if (CE.getOpcode() == Instruction::GetElementPtr)
   1845     assert(cast<GEPOperator>(CE).hasAllZeroIndices());
   1846   return getGlobalObjectInExpr(Map, *CE.getOperand(0));
   1847 }
   1848 
   1849 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
   1850 /// values and aliases that we can.
   1851 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() {
   1852   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
   1853   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
   1854 
   1855   GlobalInitWorklist.swap(GlobalInits);
   1856   AliasInitWorklist.swap(AliasInits);
   1857 
   1858   while (!GlobalInitWorklist.empty()) {
   1859     unsigned ValID = GlobalInitWorklist.back().second;
   1860     if (ValID >= ValueList.size()) {
   1861       // Not ready to resolve this yet, it requires something later in the file.
   1862       GlobalInits.push_back(GlobalInitWorklist.back());
   1863     } else {
   1864       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
   1865         GlobalInitWorklist.back().first->setInitializer(C);
   1866       else
   1867         return Error("Expected a constant");
   1868     }
   1869     GlobalInitWorklist.pop_back();
   1870   }
   1871 
   1872   // FIXME: Delete this in LLVM 4.0
   1873   // Older versions of llvm could write an alias pointing to another. We cannot
   1874   // construct those aliases, so we first collect an alias to aliasee expression
   1875   // and then compute the actual aliasee.
   1876   DenseMap<GlobalAlias *, Constant *> AliasInit;
   1877 
   1878   while (!AliasInitWorklist.empty()) {
   1879     unsigned ValID = AliasInitWorklist.back().second;
   1880     if (ValID >= ValueList.size()) {
   1881       AliasInits.push_back(AliasInitWorklist.back());
   1882     } else {
   1883       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
   1884         AliasInit.insert(std::make_pair(AliasInitWorklist.back().first, C));
   1885       else
   1886         return Error("Expected a constant");
   1887     }
   1888     AliasInitWorklist.pop_back();
   1889   }
   1890 
   1891   for (auto &Pair : AliasInit) {
   1892     auto &GO = getGlobalObjectInExpr(AliasInit, *Pair.second);
   1893     Pair.first->setAliasee(&GO);
   1894   }
   1895 
   1896   return std::error_code();
   1897 }
   1898 
   1899 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
   1900   SmallVector<uint64_t, 8> Words(Vals.size());
   1901   std::transform(Vals.begin(), Vals.end(), Words.begin(),
   1902                  BitcodeReader::decodeSignRotatedValue);
   1903 
   1904   return APInt(TypeBits, Words);
   1905 }
   1906 
   1907 std::error_code BitcodeReader::ParseConstants() {
   1908   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
   1909     return Error("Invalid record");
   1910 
   1911   SmallVector<uint64_t, 64> Record;
   1912 
   1913   // Read all the records for this value table.
   1914   Type *CurTy = Type::getInt32Ty(Context);
   1915   unsigned NextCstNo = ValueList.size();
   1916   while (1) {
   1917     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   1918 
   1919     switch (Entry.Kind) {
   1920     case BitstreamEntry::SubBlock: // Handled for us already.
   1921     case BitstreamEntry::Error:
   1922       return Error("Malformed block");
   1923     case BitstreamEntry::EndBlock:
   1924       if (NextCstNo != ValueList.size())
   1925         return Error("Invalid constant reference");
   1926 
   1927       // Once all the constants have been read, go through and resolve forward
   1928       // references.
   1929       ValueList.ResolveConstantForwardRefs();
   1930       return std::error_code();
   1931     case BitstreamEntry::Record:
   1932       // The interesting case.
   1933       break;
   1934     }
   1935 
   1936     // Read a record.
   1937     Record.clear();
   1938     Value *V = nullptr;
   1939     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
   1940     switch (BitCode) {
   1941     default:  // Default behavior: unknown constant
   1942     case bitc::CST_CODE_UNDEF:     // UNDEF
   1943       V = UndefValue::get(CurTy);
   1944       break;
   1945     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
   1946       if (Record.empty())
   1947         return Error("Invalid record");
   1948       if (Record[0] >= TypeList.size())
   1949         return Error("Invalid record");
   1950       CurTy = TypeList[Record[0]];
   1951       continue;  // Skip the ValueList manipulation.
   1952     case bitc::CST_CODE_NULL:      // NULL
   1953       V = Constant::getNullValue(CurTy);
   1954       break;
   1955     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
   1956       if (!CurTy->isIntegerTy() || Record.empty())
   1957         return Error("Invalid record");
   1958       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
   1959       break;
   1960     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
   1961       if (!CurTy->isIntegerTy() || Record.empty())
   1962         return Error("Invalid record");
   1963 
   1964       APInt VInt = ReadWideAPInt(Record,
   1965                                  cast<IntegerType>(CurTy)->getBitWidth());
   1966       V = ConstantInt::get(Context, VInt);
   1967 
   1968       break;
   1969     }
   1970     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
   1971       if (Record.empty())
   1972         return Error("Invalid record");
   1973       if (CurTy->isHalfTy())
   1974         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
   1975                                              APInt(16, (uint16_t)Record[0])));
   1976       else if (CurTy->isFloatTy())
   1977         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
   1978                                              APInt(32, (uint32_t)Record[0])));
   1979       else if (CurTy->isDoubleTy())
   1980         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
   1981                                              APInt(64, Record[0])));
   1982       else if (CurTy->isX86_FP80Ty()) {
   1983         // Bits are not stored the same way as a normal i80 APInt, compensate.
   1984         uint64_t Rearrange[2];
   1985         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
   1986         Rearrange[1] = Record[0] >> 48;
   1987         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
   1988                                              APInt(80, Rearrange)));
   1989       } else if (CurTy->isFP128Ty())
   1990         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
   1991                                              APInt(128, Record)));
   1992       else if (CurTy->isPPC_FP128Ty())
   1993         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
   1994                                              APInt(128, Record)));
   1995       else
   1996         V = UndefValue::get(CurTy);
   1997       break;
   1998     }
   1999 
   2000     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
   2001       if (Record.empty())
   2002         return Error("Invalid record");
   2003 
   2004       unsigned Size = Record.size();
   2005       SmallVector<Constant*, 16> Elts;
   2006 
   2007       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
   2008         for (unsigned i = 0; i != Size; ++i)
   2009           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
   2010                                                      STy->getElementType(i)));
   2011         V = ConstantStruct::get(STy, Elts);
   2012       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
   2013         Type *EltTy = ATy->getElementType();
   2014         for (unsigned i = 0; i != Size; ++i)
   2015           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
   2016         V = ConstantArray::get(ATy, Elts);
   2017       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
   2018         Type *EltTy = VTy->getElementType();
   2019         for (unsigned i = 0; i != Size; ++i)
   2020           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
   2021         V = ConstantVector::get(Elts);
   2022       } else {
   2023         V = UndefValue::get(CurTy);
   2024       }
   2025       break;
   2026     }
   2027     case bitc::CST_CODE_STRING: { // STRING: [values]
   2028       if (Record.empty())
   2029         return Error("Invalid record");
   2030 
   2031       ArrayType *ATy = cast<ArrayType>(CurTy);
   2032       Type *EltTy = ATy->getElementType();
   2033 
   2034       unsigned Size = Record.size();
   2035       std::vector<Constant*> Elts;
   2036       for (unsigned i = 0; i != Size; ++i)
   2037         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
   2038       V = ConstantArray::get(ATy, Elts);
   2039       break;
   2040     }
   2041     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
   2042       if (Record.empty())
   2043         return Error("Invalid record");
   2044 
   2045       ArrayType *ATy = cast<ArrayType>(CurTy);
   2046       Type *EltTy = ATy->getElementType();
   2047 
   2048       unsigned Size = Record.size();
   2049       std::vector<Constant*> Elts;
   2050       for (unsigned i = 0; i != Size; ++i)
   2051         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
   2052       Elts.push_back(Constant::getNullValue(EltTy));
   2053       V = ConstantArray::get(ATy, Elts);
   2054       break;
   2055     }
   2056     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
   2057       if (Record.size() < 3)
   2058         return Error("Invalid record");
   2059       int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
   2060       if (Opc < 0) {
   2061         V = UndefValue::get(CurTy);  // Unknown binop.
   2062       } else {
   2063         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
   2064         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
   2065         unsigned Flags = 0;
   2066         if (Record.size() >= 4) {
   2067           if (Opc == Instruction::Add ||
   2068               Opc == Instruction::Sub ||
   2069               Opc == Instruction::Mul ||
   2070               Opc == Instruction::Shl) {
   2071             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
   2072               Flags |= OverflowingBinaryOperator::NoSignedWrap;
   2073             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
   2074               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
   2075           } else if (Opc == Instruction::SDiv ||
   2076                      Opc == Instruction::UDiv ||
   2077                      Opc == Instruction::LShr ||
   2078                      Opc == Instruction::AShr) {
   2079             if (Record[3] & (1 << bitc::PEO_EXACT))
   2080               Flags |= SDivOperator::IsExact;
   2081           }
   2082         }
   2083         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
   2084       }
   2085       break;
   2086     }
   2087     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
   2088       if (Record.size() < 3)
   2089         return Error("Invalid record");
   2090       int Opc = GetDecodedCastOpcode(Record[0]);
   2091       if (Opc < 0) {
   2092         V = UndefValue::get(CurTy);  // Unknown cast.
   2093       } else {
   2094         Type *OpTy = getTypeByID(Record[1]);
   2095         if (!OpTy)
   2096           return Error("Invalid record");
   2097         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
   2098         V = ConstantExpr::getCast(Opc, Op, CurTy);
   2099       }
   2100       break;
   2101     }
   2102     case bitc::CST_CODE_CE_INBOUNDS_GEP:
   2103     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
   2104       Type *PointeeType = nullptr;
   2105       if (Record.size() & 1)
   2106         return Error("Invalid record");
   2107       SmallVector<Constant*, 16> Elts;
   2108       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
   2109         Type *ElTy = getTypeByID(Record[i]);
   2110         if (!ElTy)
   2111           return Error("Invalid record");
   2112         Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
   2113       }
   2114       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
   2115       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
   2116                                          BitCode ==
   2117                                            bitc::CST_CODE_CE_INBOUNDS_GEP);
   2118       break;
   2119     }
   2120     case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
   2121       if (Record.size() < 3)
   2122         return Error("Invalid record");
   2123       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
   2124                                                               Type::getInt1Ty(Context)),
   2125                                   ValueList.getConstantFwdRef(Record[1],CurTy),
   2126                                   ValueList.getConstantFwdRef(Record[2],CurTy));
   2127       break;
   2128     case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
   2129       if (Record.size() < 3)
   2130         return Error("Invalid record");
   2131       VectorType *OpTy =
   2132         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
   2133       if (!OpTy)
   2134         return Error("Invalid record");
   2135       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
   2136       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
   2137       V = ConstantExpr::getExtractElement(Op0, Op1);
   2138       break;
   2139     }
   2140     case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
   2141       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
   2142       if (Record.size() < 3 || !OpTy)
   2143         return Error("Invalid record");
   2144       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
   2145       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
   2146                                                   OpTy->getElementType());
   2147       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
   2148       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
   2149       break;
   2150     }
   2151     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
   2152       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
   2153       if (Record.size() < 3 || !OpTy)
   2154         return Error("Invalid record");
   2155       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
   2156       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
   2157       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
   2158                                                  OpTy->getNumElements());
   2159       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
   2160       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
   2161       break;
   2162     }
   2163     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
   2164       VectorType *RTy = dyn_cast<VectorType>(CurTy);
   2165       VectorType *OpTy =
   2166         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
   2167       if (Record.size() < 4 || !RTy || !OpTy)
   2168         return Error("Invalid record");
   2169       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
   2170       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
   2171       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
   2172                                                  RTy->getNumElements());
   2173       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
   2174       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
   2175       break;
   2176     }
   2177     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
   2178       if (Record.size() < 4)
   2179         return Error("Invalid record");
   2180       Type *OpTy = getTypeByID(Record[0]);
   2181       if (!OpTy)
   2182         return Error("Invalid record");
   2183       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
   2184       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
   2185 
   2186       if (OpTy->isFPOrFPVectorTy())
   2187         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
   2188       else
   2189         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
   2190       break;
   2191     }
   2192     case bitc::CST_CODE_INLINEASM:
   2193     case bitc::CST_CODE_INLINEASM_OLD: {
   2194       if (Record.size() < 2)
   2195         return Error("Invalid record");
   2196       std::string AsmStr, ConstrStr;
   2197       bool HasSideEffects = Record[0] & 1;
   2198       bool IsAlignStack = Record[0] >> 1;
   2199       unsigned AsmStrSize = Record[1];
   2200       if (2+AsmStrSize >= Record.size())
   2201         return Error("Invalid record");
   2202       unsigned ConstStrSize = Record[2+AsmStrSize];
   2203       if (3+AsmStrSize+ConstStrSize > Record.size())
   2204         return Error("Invalid record");
   2205 
   2206       for (unsigned i = 0; i != AsmStrSize; ++i)
   2207         AsmStr += (char)Record[2+i];
   2208       for (unsigned i = 0; i != ConstStrSize; ++i)
   2209         ConstrStr += (char)Record[3+AsmStrSize+i];
   2210       PointerType *PTy = cast<PointerType>(CurTy);
   2211       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
   2212                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
   2213       break;
   2214     }
   2215     case bitc::CST_CODE_BLOCKADDRESS:{
   2216       if (Record.size() < 3)
   2217         return Error("Invalid record");
   2218       Type *FnTy = getTypeByID(Record[0]);
   2219       if (!FnTy)
   2220         return Error("Invalid record");
   2221       Function *Fn =
   2222         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
   2223       if (!Fn)
   2224         return Error("Invalid record");
   2225 
   2226       GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
   2227                                                   Type::getInt8Ty(Context),
   2228                                             false, GlobalValue::InternalLinkage,
   2229                                                   0, "");
   2230       BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
   2231       V = FwdRef;
   2232       break;
   2233     }
   2234     }
   2235 
   2236     ValueList.AssignValue(V, NextCstNo);
   2237     ++NextCstNo;
   2238   }
   2239 
   2240   if (NextCstNo != ValueList.size())
   2241     return Error("Invalid constant reference");
   2242 
   2243   if (Stream.ReadBlockEnd())
   2244     return Error("Expected a constant");
   2245 
   2246   // Once all the constants have been read, go through and resolve forward
   2247   // references.
   2248   ValueList.ResolveConstantForwardRefs();
   2249   return std::error_code();
   2250 }
   2251 
   2252 std::error_code BitcodeReader::materializeMetadata() {
   2253   return std::error_code();
   2254 }
   2255 
   2256 void BitcodeReader::setStripDebugInfo() { }
   2257 
   2258 /// RememberAndSkipFunctionBody - When we see the block for a function body,
   2259 /// remember where it is and then skip it.  This lets us lazily deserialize the
   2260 /// functions.
   2261 std::error_code BitcodeReader::RememberAndSkipFunctionBody() {
   2262   // Get the function we are talking about.
   2263   if (FunctionsWithBodies.empty())
   2264     return Error("Insufficient function protos");
   2265 
   2266   Function *Fn = FunctionsWithBodies.back();
   2267   FunctionsWithBodies.pop_back();
   2268 
   2269   // Save the current stream state.
   2270   uint64_t CurBit = Stream.GetCurrentBitNo();
   2271   DeferredFunctionInfo[Fn] = CurBit;
   2272 
   2273   // Skip over the function block for now.
   2274   if (Stream.SkipBlock())
   2275     return Error("Invalid record");
   2276   return std::error_code();
   2277 }
   2278 
   2279 std::error_code BitcodeReader::GlobalCleanup() {
   2280   // Patch the initializers for globals and aliases up.
   2281   ResolveGlobalAndAliasInits();
   2282   if (!GlobalInits.empty() || !AliasInits.empty())
   2283     return Error("Malformed global initializer set");
   2284 
   2285   // Look for intrinsic functions which need to be upgraded at some point
   2286   for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
   2287        FI != FE; ++FI) {
   2288     Function *NewFn;
   2289     if (UpgradeIntrinsicFunction(FI, NewFn))
   2290       UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
   2291   }
   2292 
   2293   // Look for global variables which need to be renamed.
   2294   for (Module::global_iterator
   2295          GI = TheModule->global_begin(), GE = TheModule->global_end();
   2296        GI != GE;) {
   2297     GlobalVariable *GV = GI++;
   2298     UpgradeGlobalVariable(GV);
   2299   }
   2300 
   2301   // Force deallocation of memory for these vectors to favor the client that
   2302   // want lazy deserialization.
   2303   std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
   2304   std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
   2305   return std::error_code();
   2306 }
   2307 
   2308 std::error_code BitcodeReader::ParseModule(bool Resume) {
   2309   if (Resume)
   2310     Stream.JumpToBit(NextUnreadBit);
   2311   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
   2312     return Error("Invalid record");
   2313 
   2314   SmallVector<uint64_t, 64> Record;
   2315   std::vector<std::string> SectionTable;
   2316   std::vector<std::string> GCTable;
   2317 
   2318   // Read all the records for this module.
   2319   while (1) {
   2320     BitstreamEntry Entry = Stream.advance();
   2321 
   2322     switch (Entry.Kind) {
   2323     case BitstreamEntry::Error:
   2324       return Error("Malformed block");
   2325     case BitstreamEntry::EndBlock:
   2326       return GlobalCleanup();
   2327 
   2328     case BitstreamEntry::SubBlock:
   2329       switch (Entry.ID) {
   2330       default:  // Skip unknown content.
   2331         if (Stream.SkipBlock())
   2332           return Error("Invalid record");
   2333         break;
   2334       case bitc::BLOCKINFO_BLOCK_ID:
   2335         if (Stream.ReadBlockInfoBlock())
   2336           return Error("Malformed block");
   2337         break;
   2338       case bitc::PARAMATTR_BLOCK_ID:
   2339         if (std::error_code EC = ParseAttributeBlock())
   2340           return EC;
   2341         break;
   2342       case bitc::TYPE_BLOCK_ID_NEW:
   2343         if (std::error_code EC = ParseTypeTable())
   2344           return EC;
   2345         break;
   2346       case TYPE_BLOCK_ID_OLD_3_0:
   2347         if (std::error_code EC = ParseOldTypeTable())
   2348           return EC;
   2349         break;
   2350       case TYPE_SYMTAB_BLOCK_ID_OLD_3_0:
   2351         if (std::error_code EC = ParseOldTypeSymbolTable())
   2352           return EC;
   2353         break;
   2354       case bitc::VALUE_SYMTAB_BLOCK_ID:
   2355         if (std::error_code EC = ParseValueSymbolTable())
   2356           return EC;
   2357         SeenValueSymbolTable = true;
   2358         break;
   2359       case bitc::CONSTANTS_BLOCK_ID:
   2360         if (std::error_code EC = ParseConstants())
   2361           return EC;
   2362         if (std::error_code EC = ResolveGlobalAndAliasInits())
   2363           return EC;
   2364         break;
   2365       case bitc::METADATA_BLOCK_ID:
   2366         if (std::error_code EC = ParseMetadata())
   2367           return EC;
   2368         break;
   2369       case bitc::FUNCTION_BLOCK_ID:
   2370         // If this is the first function body we've seen, reverse the
   2371         // FunctionsWithBodies list.
   2372         if (!SeenFirstFunctionBody) {
   2373           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
   2374           if (std::error_code EC = GlobalCleanup())
   2375             return EC;
   2376           SeenFirstFunctionBody = true;
   2377         }
   2378 
   2379         if (std::error_code EC = RememberAndSkipFunctionBody())
   2380           return EC;
   2381         // For streaming bitcode, suspend parsing when we reach the function
   2382         // bodies. Subsequent materialization calls will resume it when
   2383         // necessary. For streaming, the function bodies must be at the end of
   2384         // the bitcode. If the bitcode file is old, the symbol table will be
   2385         // at the end instead and will not have been seen yet. In this case,
   2386         // just finish the parse now.
   2387         if (LazyStreamer && SeenValueSymbolTable) {
   2388           NextUnreadBit = Stream.GetCurrentBitNo();
   2389           return std::error_code();
   2390         }
   2391         break;
   2392         break;
   2393       }
   2394       continue;
   2395 
   2396     case BitstreamEntry::Record:
   2397       // The interesting case.
   2398       break;
   2399     }
   2400 
   2401 
   2402     // Read a record.
   2403     switch (Stream.readRecord(Entry.ID, Record)) {
   2404     default: break;  // Default behavior, ignore unknown content.
   2405     case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
   2406       if (Record.size() < 1)
   2407         return Error("Invalid record");
   2408       // Only version #0 is supported so far.
   2409       if (Record[0] != 0)
   2410         return Error("Invalid value");
   2411       break;
   2412     }
   2413     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
   2414       std::string S;
   2415       if (ConvertToString(Record, 0, S))
   2416         return Error("Invalid record");
   2417       TheModule->setTargetTriple(S);
   2418       break;
   2419     }
   2420     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
   2421       std::string S;
   2422       if (ConvertToString(Record, 0, S))
   2423         return Error("Invalid record");
   2424       TheModule->setDataLayout(S);
   2425       break;
   2426     }
   2427     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
   2428       std::string S;
   2429       if (ConvertToString(Record, 0, S))
   2430         return Error("Invalid record");
   2431       TheModule->setModuleInlineAsm(S);
   2432       break;
   2433     }
   2434     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
   2435       std::string S;
   2436       if (ConvertToString(Record, 0, S))
   2437         return Error("Invalid record");
   2438       // ANDROID: Ignore value, since we never used it anyways.
   2439       // TheModule->addLibrary(S);
   2440       break;
   2441     }
   2442     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
   2443       std::string S;
   2444       if (ConvertToString(Record, 0, S))
   2445         return Error("Invalid record");
   2446       SectionTable.push_back(S);
   2447       break;
   2448     }
   2449     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
   2450       std::string S;
   2451       if (ConvertToString(Record, 0, S))
   2452         return Error("Invalid record");
   2453       GCTable.push_back(S);
   2454       break;
   2455     }
   2456     // GLOBALVAR: [pointer type, isconst, initid,
   2457     //             linkage, alignment, section, visibility, threadlocal,
   2458     //             unnamed_addr]
   2459     case bitc::MODULE_CODE_GLOBALVAR: {
   2460       if (Record.size() < 6)
   2461         return Error("Invalid record");
   2462       Type *Ty = getTypeByID(Record[0]);
   2463       if (!Ty)
   2464         return Error("Invalid record");
   2465       if (!Ty->isPointerTy())
   2466         return Error("Invalid type for value");
   2467       unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
   2468       Ty = cast<PointerType>(Ty)->getElementType();
   2469 
   2470       bool isConstant = Record[1];
   2471       uint64_t RawLinkage = Record[3];
   2472       GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
   2473       unsigned Alignment = (1 << Record[4]) >> 1;
   2474       std::string Section;
   2475       if (Record[5]) {
   2476         if (Record[5]-1 >= SectionTable.size())
   2477           return Error("Invalid ID");
   2478         Section = SectionTable[Record[5]-1];
   2479       }
   2480       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
   2481       if (Record.size() > 6)
   2482         Visibility = GetDecodedVisibility(Record[6]);
   2483 
   2484       GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
   2485       if (Record.size() > 7)
   2486         TLM = GetDecodedThreadLocalMode(Record[7]);
   2487 
   2488       bool UnnamedAddr = false;
   2489       if (Record.size() > 8)
   2490         UnnamedAddr = Record[8];
   2491 
   2492       GlobalVariable *NewGV =
   2493         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr,
   2494                            TLM, AddressSpace);
   2495       NewGV->setAlignment(Alignment);
   2496       if (!Section.empty())
   2497         NewGV->setSection(Section);
   2498       NewGV->setVisibility(Visibility);
   2499       NewGV->setUnnamedAddr(UnnamedAddr);
   2500 
   2501       ValueList.push_back(NewGV);
   2502 
   2503       // Remember which value to use for the global initializer.
   2504       if (unsigned InitID = Record[2])
   2505         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
   2506       break;
   2507     }
   2508     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
   2509     //             alignment, section, visibility, gc, unnamed_addr]
   2510     case bitc::MODULE_CODE_FUNCTION: {
   2511       if (Record.size() < 8)
   2512         return Error("Invalid record");
   2513       Type *Ty = getTypeByID(Record[0]);
   2514       if (!Ty)
   2515         return Error("Invalid record");
   2516       if (!Ty->isPointerTy())
   2517         return Error("Invalid type for value");
   2518       FunctionType *FTy =
   2519         dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
   2520       if (!FTy)
   2521         return Error("Invalid type for value");
   2522 
   2523       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
   2524                                         "", TheModule);
   2525 
   2526       Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
   2527       bool isProto = Record[2];
   2528       uint64_t RawLinkage = Record[3];
   2529       Func->setLinkage(getDecodedLinkage(RawLinkage));
   2530       Func->setAttributes(getAttributes(Record[4]));
   2531 
   2532       Func->setAlignment((1 << Record[5]) >> 1);
   2533       if (Record[6]) {
   2534         if (Record[6]-1 >= SectionTable.size())
   2535           return Error("Invalid ID");
   2536         Func->setSection(SectionTable[Record[6]-1]);
   2537       }
   2538       Func->setVisibility(GetDecodedVisibility(Record[7]));
   2539       if (Record.size() > 8 && Record[8]) {
   2540         if (Record[8]-1 > GCTable.size())
   2541           return Error("Invalid ID");
   2542         Func->setGC(GCTable[Record[8]-1].c_str());
   2543       }
   2544       bool UnnamedAddr = false;
   2545       if (Record.size() > 9)
   2546         UnnamedAddr = Record[9];
   2547       Func->setUnnamedAddr(UnnamedAddr);
   2548       ValueList.push_back(Func);
   2549 
   2550       // If this is a function with a body, remember the prototype we are
   2551       // creating now, so that we can match up the body with them later.
   2552       if (!isProto) {
   2553         Func->setIsMaterializable(true);
   2554         FunctionsWithBodies.push_back(Func);
   2555         if (LazyStreamer)
   2556           DeferredFunctionInfo[Func] = 0;
   2557       }
   2558       break;
   2559     }
   2560     // ALIAS: [alias type, aliasee val#, linkage]
   2561     // ALIAS: [alias type, aliasee val#, linkage, visibility]
   2562     case bitc::MODULE_CODE_ALIAS: {
   2563       if (Record.size() < 3)
   2564         return Error("Invalid record");
   2565       Type *Ty = getTypeByID(Record[0]);
   2566       if (!Ty)
   2567         return Error("Invalid record");
   2568       auto *PTy = dyn_cast<PointerType>(Ty);
   2569       if (!PTy)
   2570         return Error("Invalid type for value");
   2571 
   2572       auto *NewGA =
   2573           GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(),
   2574                               getDecodedLinkage(Record[2]), "", TheModule);
   2575       // Old bitcode files didn't have visibility field.
   2576       if (Record.size() > 3)
   2577         NewGA->setVisibility(GetDecodedVisibility(Record[3]));
   2578       ValueList.push_back(NewGA);
   2579       AliasInits.push_back(std::make_pair(NewGA, Record[1]));
   2580       break;
   2581     }
   2582     /// MODULE_CODE_PURGEVALS: [numvals]
   2583     case bitc::MODULE_CODE_PURGEVALS:
   2584       // Trim down the value list to the specified size.
   2585       if (Record.size() < 1 || Record[0] > ValueList.size())
   2586         return Error("Invalid record");
   2587       ValueList.shrinkTo(Record[0]);
   2588       break;
   2589     }
   2590     Record.clear();
   2591   }
   2592 }
   2593 
   2594 std::error_code BitcodeReader::ParseBitcodeInto(Module *M) {
   2595   TheModule = nullptr;
   2596 
   2597   if (std::error_code EC = InitStream())
   2598     return EC;
   2599 
   2600   // Sniff for the signature.
   2601   if (Stream.Read(8) != 'B' ||
   2602       Stream.Read(8) != 'C' ||
   2603       Stream.Read(4) != 0x0 ||
   2604       Stream.Read(4) != 0xC ||
   2605       Stream.Read(4) != 0xE ||
   2606       Stream.Read(4) != 0xD)
   2607     return Error("Invalid bitcode signature");
   2608 
   2609   // We expect a number of well-defined blocks, though we don't necessarily
   2610   // need to understand them all.
   2611   while (1) {
   2612     if (Stream.AtEndOfStream())
   2613       return std::error_code();
   2614 
   2615     BitstreamEntry Entry =
   2616       Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
   2617 
   2618     switch (Entry.Kind) {
   2619     case BitstreamEntry::Error:
   2620       return Error("Malformed block");
   2621     case BitstreamEntry::EndBlock:
   2622       return std::error_code();
   2623 
   2624     case BitstreamEntry::SubBlock:
   2625       switch (Entry.ID) {
   2626       case bitc::BLOCKINFO_BLOCK_ID:
   2627         if (Stream.ReadBlockInfoBlock())
   2628           return Error("Malformed block");
   2629         break;
   2630       case bitc::MODULE_BLOCK_ID:
   2631         // Reject multiple MODULE_BLOCK's in a single bitstream.
   2632         if (TheModule)
   2633           return Error("Invalid multiple blocks");
   2634         TheModule = M;
   2635         if (std::error_code EC = ParseModule(false))
   2636           return EC;
   2637         if (LazyStreamer)
   2638           return std::error_code();
   2639         break;
   2640       default:
   2641         if (Stream.SkipBlock())
   2642           return Error("Invalid record");
   2643         break;
   2644       }
   2645       continue;
   2646     case BitstreamEntry::Record:
   2647       // There should be no records in the top-level of blocks.
   2648 
   2649       // The ranlib in Xcode 4 will align archive members by appending newlines
   2650       // to the end of them. If this file size is a multiple of 4 but not 8, we
   2651       // have to read and ignore these final 4 bytes :-(
   2652       if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 &&
   2653           Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
   2654           Stream.AtEndOfStream())
   2655         return std::error_code();
   2656 
   2657       return Error("Invalid record");
   2658     }
   2659   }
   2660 }
   2661 
   2662 llvm::ErrorOr<std::string> BitcodeReader::parseModuleTriple() {
   2663   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
   2664     return Error("Invalid record");
   2665 
   2666   SmallVector<uint64_t, 64> Record;
   2667 
   2668   std::string Triple;
   2669   // Read all the records for this module.
   2670   while (1) {
   2671     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   2672 
   2673     switch (Entry.Kind) {
   2674     case BitstreamEntry::SubBlock: // Handled for us already.
   2675     case BitstreamEntry::Error:
   2676       return Error("Malformed block");
   2677     case BitstreamEntry::EndBlock:
   2678       return Triple;
   2679     case BitstreamEntry::Record:
   2680       // The interesting case.
   2681       break;
   2682     }
   2683 
   2684     // Read a record.
   2685     switch (Stream.readRecord(Entry.ID, Record)) {
   2686     default: break;  // Default behavior, ignore unknown content.
   2687     case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
   2688       if (Record.size() < 1)
   2689         return Error("Invalid record");
   2690       // Only version #0 is supported so far.
   2691       if (Record[0] != 0)
   2692         return Error("Invalid record");
   2693       break;
   2694     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
   2695       std::string S;
   2696       if (ConvertToString(Record, 0, S))
   2697         return Error("Invalid record");
   2698       Triple = S;
   2699       break;
   2700     }
   2701     }
   2702     Record.clear();
   2703   }
   2704 
   2705   return Error("Invalid bitcode signature");
   2706 }
   2707 
   2708 llvm::ErrorOr<std::string> BitcodeReader::parseTriple() {
   2709   if (std::error_code EC = InitStream())
   2710     return EC;
   2711 
   2712   // Sniff for the signature.
   2713   if (Stream.Read(8) != 'B' ||
   2714       Stream.Read(8) != 'C' ||
   2715       Stream.Read(4) != 0x0 ||
   2716       Stream.Read(4) != 0xC ||
   2717       Stream.Read(4) != 0xE ||
   2718       Stream.Read(4) != 0xD)
   2719     return Error("Invalid bitcode signature");
   2720 
   2721   // We expect a number of well-defined blocks, though we don't necessarily
   2722   // need to understand them all.
   2723   while (1) {
   2724     BitstreamEntry Entry = Stream.advance();
   2725 
   2726     switch (Entry.Kind) {
   2727     case BitstreamEntry::Error:
   2728       return Error("Malformed block");
   2729     case BitstreamEntry::EndBlock:
   2730       return std::error_code();
   2731 
   2732     case BitstreamEntry::SubBlock:
   2733       if (Entry.ID == bitc::MODULE_BLOCK_ID)
   2734         return parseModuleTriple();
   2735 
   2736       // Ignore other sub-blocks.
   2737       if (Stream.SkipBlock())
   2738         return Error("Malformed block");
   2739       continue;
   2740 
   2741     case BitstreamEntry::Record:
   2742       Stream.skipRecord(Entry.ID);
   2743       continue;
   2744     }
   2745   }
   2746 }
   2747 
   2748 /// ParseMetadataAttachment - Parse metadata attachments.
   2749 std::error_code BitcodeReader::ParseMetadataAttachment() {
   2750   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
   2751     return Error("Invalid record");
   2752 
   2753   SmallVector<uint64_t, 64> Record;
   2754   while (1) {
   2755     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   2756 
   2757     switch (Entry.Kind) {
   2758     case BitstreamEntry::SubBlock: // Handled for us already.
   2759     case BitstreamEntry::Error:
   2760       return Error("Malformed block");
   2761     case BitstreamEntry::EndBlock:
   2762       return std::error_code();
   2763     case BitstreamEntry::Record:
   2764       // The interesting case.
   2765       break;
   2766     }
   2767 
   2768     // Read a metadata attachment record.
   2769     Record.clear();
   2770     switch (Stream.readRecord(Entry.ID, Record)) {
   2771     default:  // Default behavior: ignore.
   2772       break;
   2773     case bitc::METADATA_ATTACHMENT: {
   2774       unsigned RecordLength = Record.size();
   2775       if (Record.empty() || (RecordLength - 1) % 2 == 1)
   2776         return Error("Invalid record");
   2777       Instruction *Inst = InstructionList[Record[0]];
   2778       for (unsigned i = 1; i != RecordLength; i = i+2) {
   2779         unsigned Kind = Record[i];
   2780         DenseMap<unsigned, unsigned>::iterator I =
   2781           MDKindMap.find(Kind);
   2782         if (I == MDKindMap.end())
   2783           return Error("Invalid ID");
   2784         Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]);
   2785         Inst->setMetadata(I->second, cast<MDNode>(Node));
   2786       }
   2787       break;
   2788     }
   2789     }
   2790   }
   2791 }
   2792 
   2793 /// ParseFunctionBody - Lazily parse the specified function body block.
   2794 std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
   2795   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
   2796     return Error("Invalid record");
   2797 
   2798   InstructionList.clear();
   2799   unsigned ModuleValueListSize = ValueList.size();
   2800   unsigned ModuleMDValueListSize = MDValueList.size();
   2801 
   2802   // Add all the function arguments to the value table.
   2803   for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
   2804     ValueList.push_back(I);
   2805 
   2806   unsigned NextValueNo = ValueList.size();
   2807   BasicBlock *CurBB = nullptr;
   2808   unsigned CurBBNo = 0;
   2809 
   2810   DebugLoc LastLoc;
   2811 
   2812   // Read all the records.
   2813   SmallVector<uint64_t, 64> Record;
   2814   while (1) {
   2815     unsigned Code = Stream.ReadCode();
   2816     if (Code == bitc::END_BLOCK) {
   2817       if (Stream.ReadBlockEnd())
   2818         return Error("Malformed block");
   2819       break;
   2820     }
   2821 
   2822     if (Code == bitc::ENTER_SUBBLOCK) {
   2823       switch (Stream.ReadSubBlockID()) {
   2824       default:  // Skip unknown content.
   2825         if (Stream.SkipBlock())
   2826           return Error("Invalid record");
   2827         break;
   2828       case bitc::CONSTANTS_BLOCK_ID:
   2829         if (std::error_code EC = ParseConstants())
   2830           return EC;
   2831         NextValueNo = ValueList.size();
   2832         break;
   2833       case bitc::VALUE_SYMTAB_BLOCK_ID:
   2834         if (std::error_code EC = ParseValueSymbolTable())
   2835           return EC;
   2836         break;
   2837       case bitc::METADATA_ATTACHMENT_ID:
   2838         if (std::error_code EC = ParseMetadataAttachment())
   2839           return EC;
   2840         break;
   2841       case bitc::METADATA_BLOCK_ID:
   2842         if (std::error_code EC = ParseMetadata())
   2843           return EC;
   2844         break;
   2845       }
   2846       continue;
   2847     }
   2848 
   2849     if (Code == bitc::DEFINE_ABBREV) {
   2850       Stream.ReadAbbrevRecord();
   2851       continue;
   2852     }
   2853 
   2854     // Read a record.
   2855     Record.clear();
   2856     Instruction *I = nullptr;
   2857     unsigned BitCode = Stream.readRecord(Code, Record);
   2858     switch (BitCode) {
   2859     default: // Default behavior: reject
   2860       return Error("Invalid value");
   2861     case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
   2862       if (Record.size() < 1 || Record[0] == 0)
   2863         return Error("Invalid record");
   2864       // Create all the basic blocks for the function.
   2865       FunctionBBs.resize(Record[0]);
   2866       for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
   2867         FunctionBBs[i] = BasicBlock::Create(Context, "", F);
   2868       CurBB = FunctionBBs[0];
   2869       continue;
   2870 
   2871     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
   2872       // This record indicates that the last instruction is at the same
   2873       // location as the previous instruction with a location.
   2874       I = nullptr;
   2875 
   2876       // Get the last instruction emitted.
   2877       if (CurBB && !CurBB->empty())
   2878         I = &CurBB->back();
   2879       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
   2880                !FunctionBBs[CurBBNo-1]->empty())
   2881         I = &FunctionBBs[CurBBNo-1]->back();
   2882 
   2883       if (!I)
   2884         return Error("Invalid record");
   2885       I->setDebugLoc(LastLoc);
   2886       I = nullptr;
   2887       continue;
   2888 
   2889     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
   2890       I = nullptr;     // Get the last instruction emitted.
   2891       if (CurBB && !CurBB->empty())
   2892         I = &CurBB->back();
   2893       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
   2894                !FunctionBBs[CurBBNo-1]->empty())
   2895         I = &FunctionBBs[CurBBNo-1]->back();
   2896       if (!I || Record.size() < 4)
   2897         return Error("Invalid record");
   2898 
   2899       unsigned Line = Record[0], Col = Record[1];
   2900       unsigned ScopeID = Record[2], IAID = Record[3];
   2901 
   2902       MDNode *Scope = nullptr, *IA = nullptr;
   2903       if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
   2904       if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
   2905       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
   2906       I->setDebugLoc(LastLoc);
   2907       I = nullptr;
   2908       continue;
   2909     }
   2910 
   2911     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
   2912       unsigned OpNum = 0;
   2913       Value *LHS, *RHS;
   2914       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
   2915           getValue(Record, OpNum, LHS->getType(), RHS) ||
   2916           OpNum+1 > Record.size())
   2917         return Error("Invalid record");
   2918 
   2919       int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
   2920       if (Opc == -1)
   2921         return Error("Invalid record");
   2922       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
   2923       InstructionList.push_back(I);
   2924       if (OpNum < Record.size()) {
   2925         if (Opc == Instruction::Add ||
   2926             Opc == Instruction::Sub ||
   2927             Opc == Instruction::Mul ||
   2928             Opc == Instruction::Shl) {
   2929           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
   2930             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
   2931           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
   2932             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
   2933         } else if (Opc == Instruction::SDiv ||
   2934                    Opc == Instruction::UDiv ||
   2935                    Opc == Instruction::LShr ||
   2936                    Opc == Instruction::AShr) {
   2937           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
   2938             cast<BinaryOperator>(I)->setIsExact(true);
   2939         }
   2940       }
   2941       break;
   2942     }
   2943     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
   2944       unsigned OpNum = 0;
   2945       Value *Op;
   2946       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
   2947           OpNum+2 != Record.size())
   2948         return Error("Invalid record");
   2949 
   2950       Type *ResTy = getTypeByID(Record[OpNum]);
   2951       int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
   2952       if (Opc == -1 || !ResTy)
   2953         return Error("Invalid record");
   2954       I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
   2955       InstructionList.push_back(I);
   2956       break;
   2957     }
   2958     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
   2959     case bitc::FUNC_CODE_INST_GEP_OLD: // GEP: [n x operands]
   2960     case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
   2961       unsigned OpNum = 0;
   2962 
   2963       Type *Ty;
   2964       bool InBounds;
   2965 
   2966       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
   2967         InBounds = Record[OpNum++];
   2968         Ty = getTypeByID(Record[OpNum++]);
   2969       } else {
   2970         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
   2971         Ty = nullptr;
   2972       }
   2973 
   2974       Value *BasePtr;
   2975       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
   2976         return Error("Invalid record");
   2977 
   2978       if (Ty &&
   2979           Ty !=
   2980               cast<SequentialType>(BasePtr->getType()->getScalarType())
   2981                   ->getElementType())
   2982         return Error(
   2983             "Explicit gep type does not match pointee type of pointer operand");
   2984 
   2985       SmallVector<Value*, 16> GEPIdx;
   2986       while (OpNum != Record.size()) {
   2987         Value *Op;
   2988         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
   2989           return Error("Invalid record");
   2990         GEPIdx.push_back(Op);
   2991       }
   2992 
   2993       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
   2994 
   2995       InstructionList.push_back(I);
   2996       if (InBounds)
   2997         cast<GetElementPtrInst>(I)->setIsInBounds(true);
   2998       break;
   2999     }
   3000 
   3001     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
   3002                                        // EXTRACTVAL: [opty, opval, n x indices]
   3003       unsigned OpNum = 0;
   3004       Value *Agg;
   3005       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
   3006         return Error("Invalid record");
   3007 
   3008       SmallVector<unsigned, 4> EXTRACTVALIdx;
   3009       for (unsigned RecSize = Record.size();
   3010            OpNum != RecSize; ++OpNum) {
   3011         uint64_t Index = Record[OpNum];
   3012         if ((unsigned)Index != Index)
   3013           return Error("Invalid value");
   3014         EXTRACTVALIdx.push_back((unsigned)Index);
   3015       }
   3016 
   3017       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
   3018       InstructionList.push_back(I);
   3019       break;
   3020     }
   3021 
   3022     case bitc::FUNC_CODE_INST_INSERTVAL: {
   3023                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
   3024       unsigned OpNum = 0;
   3025       Value *Agg;
   3026       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
   3027         return Error("Invalid record");
   3028       Value *Val;
   3029       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
   3030         return Error("Invalid record");
   3031 
   3032       SmallVector<unsigned, 4> INSERTVALIdx;
   3033       for (unsigned RecSize = Record.size();
   3034            OpNum != RecSize; ++OpNum) {
   3035         uint64_t Index = Record[OpNum];
   3036         if ((unsigned)Index != Index)
   3037           return Error("Invalid value");
   3038         INSERTVALIdx.push_back((unsigned)Index);
   3039       }
   3040 
   3041       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
   3042       InstructionList.push_back(I);
   3043       break;
   3044     }
   3045 
   3046     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
   3047       // obsolete form of select
   3048       // handles select i1 ... in old bitcode
   3049       unsigned OpNum = 0;
   3050       Value *TrueVal, *FalseVal, *Cond;
   3051       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
   3052           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
   3053           getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
   3054         return Error("Invalid record");
   3055 
   3056       I = SelectInst::Create(Cond, TrueVal, FalseVal);
   3057       InstructionList.push_back(I);
   3058       break;
   3059     }
   3060 
   3061     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
   3062       // new form of select
   3063       // handles select i1 or select [N x i1]
   3064       unsigned OpNum = 0;
   3065       Value *TrueVal, *FalseVal, *Cond;
   3066       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
   3067           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
   3068           getValueTypePair(Record, OpNum, NextValueNo, Cond))
   3069         return Error("Invalid record");
   3070 
   3071       // select condition can be either i1 or [N x i1]
   3072       if (VectorType* vector_type =
   3073           dyn_cast<VectorType>(Cond->getType())) {
   3074         // expect <n x i1>
   3075         if (vector_type->getElementType() != Type::getInt1Ty(Context))
   3076           return Error("Invalid type for value");
   3077       } else {
   3078         // expect i1
   3079         if (Cond->getType() != Type::getInt1Ty(Context))
   3080           return Error("Invalid type for value");
   3081       }
   3082 
   3083       I = SelectInst::Create(Cond, TrueVal, FalseVal);
   3084       InstructionList.push_back(I);
   3085       break;
   3086     }
   3087 
   3088     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
   3089       unsigned OpNum = 0;
   3090       Value *Vec, *Idx;
   3091       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
   3092           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
   3093         return Error("Invalid record");
   3094       I = ExtractElementInst::Create(Vec, Idx);
   3095       InstructionList.push_back(I);
   3096       break;
   3097     }
   3098 
   3099     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
   3100       unsigned OpNum = 0;
   3101       Value *Vec, *Elt, *Idx;
   3102       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
   3103           getValue(Record, OpNum,
   3104                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
   3105           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
   3106         return Error("Invalid record");
   3107       I = InsertElementInst::Create(Vec, Elt, Idx);
   3108       InstructionList.push_back(I);
   3109       break;
   3110     }
   3111 
   3112     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
   3113       unsigned OpNum = 0;
   3114       Value *Vec1, *Vec2, *Mask;
   3115       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
   3116           getValue(Record, OpNum, Vec1->getType(), Vec2))
   3117         return Error("Invalid record");
   3118 
   3119       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
   3120         return Error("Invalid record");
   3121       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
   3122       InstructionList.push_back(I);
   3123       break;
   3124     }
   3125 
   3126     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
   3127       // Old form of ICmp/FCmp returning bool
   3128       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
   3129       // both legal on vectors but had different behaviour.
   3130     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
   3131       // FCmp/ICmp returning bool or vector of bool
   3132 
   3133       unsigned OpNum = 0;
   3134       Value *LHS, *RHS;
   3135       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
   3136           getValue(Record, OpNum, LHS->getType(), RHS) ||
   3137           OpNum+1 != Record.size())
   3138         return Error("Invalid record");
   3139 
   3140       if (LHS->getType()->isFPOrFPVectorTy())
   3141         I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
   3142       else
   3143         I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
   3144       InstructionList.push_back(I);
   3145       break;
   3146     }
   3147 
   3148     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
   3149       {
   3150         unsigned Size = Record.size();
   3151         if (Size == 0) {
   3152           I = ReturnInst::Create(Context);
   3153           InstructionList.push_back(I);
   3154           break;
   3155         }
   3156 
   3157         unsigned OpNum = 0;
   3158         Value *Op = nullptr;
   3159         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
   3160           return Error("Invalid record");
   3161         if (OpNum != Record.size())
   3162           return Error("Invalid record");
   3163 
   3164         I = ReturnInst::Create(Context, Op);
   3165         InstructionList.push_back(I);
   3166         break;
   3167       }
   3168     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
   3169       if (Record.size() != 1 && Record.size() != 3)
   3170         return Error("Invalid record");
   3171       BasicBlock *TrueDest = getBasicBlock(Record[0]);
   3172       if (!TrueDest)
   3173         return Error("Invalid record");
   3174 
   3175       if (Record.size() == 1) {
   3176         I = BranchInst::Create(TrueDest);
   3177         InstructionList.push_back(I);
   3178       }
   3179       else {
   3180         BasicBlock *FalseDest = getBasicBlock(Record[1]);
   3181         Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
   3182         if (!FalseDest || !Cond)
   3183           return Error("Invalid record");
   3184         I = BranchInst::Create(TrueDest, FalseDest, Cond);
   3185         InstructionList.push_back(I);
   3186       }
   3187       break;
   3188     }
   3189     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
   3190       if (Record.size() < 3 || (Record.size() & 1) == 0)
   3191         return Error("Invalid record");
   3192       Type *OpTy = getTypeByID(Record[0]);
   3193       Value *Cond = getFnValueByID(Record[1], OpTy);
   3194       BasicBlock *Default = getBasicBlock(Record[2]);
   3195       if (!OpTy || !Cond || !Default)
   3196         return Error("Invalid record");
   3197       unsigned NumCases = (Record.size()-3)/2;
   3198       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
   3199       InstructionList.push_back(SI);
   3200       for (unsigned i = 0, e = NumCases; i != e; ++i) {
   3201         ConstantInt *CaseVal =
   3202           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
   3203         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
   3204         if (!CaseVal || !DestBB) {
   3205           delete SI;
   3206           return Error("Invalid record");
   3207         }
   3208         SI->addCase(CaseVal, DestBB);
   3209       }
   3210       I = SI;
   3211       break;
   3212     }
   3213     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
   3214       if (Record.size() < 2)
   3215         return Error("Invalid record");
   3216       Type *OpTy = getTypeByID(Record[0]);
   3217       Value *Address = getFnValueByID(Record[1], OpTy);
   3218       if (!OpTy || !Address)
   3219         return Error("Invalid record");
   3220       unsigned NumDests = Record.size()-2;
   3221       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
   3222       InstructionList.push_back(IBI);
   3223       for (unsigned i = 0, e = NumDests; i != e; ++i) {
   3224         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
   3225           IBI->addDestination(DestBB);
   3226         } else {
   3227           delete IBI;
   3228           return Error("Invalid record");
   3229         }
   3230       }
   3231       I = IBI;
   3232       break;
   3233     }
   3234 
   3235     case bitc::FUNC_CODE_INST_INVOKE: {
   3236       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
   3237       if (Record.size() < 4)
   3238         return Error("Invalid record");
   3239       AttributeSet PAL = getAttributes(Record[0]);
   3240       unsigned CCInfo = Record[1];
   3241       BasicBlock *NormalBB = getBasicBlock(Record[2]);
   3242       BasicBlock *UnwindBB = getBasicBlock(Record[3]);
   3243 
   3244       unsigned OpNum = 4;
   3245       Value *Callee;
   3246       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
   3247         return Error("Invalid record");
   3248 
   3249       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
   3250       FunctionType *FTy = !CalleeTy ? nullptr :
   3251         dyn_cast<FunctionType>(CalleeTy->getElementType());
   3252 
   3253       // Check that the right number of fixed parameters are here.
   3254       if (!FTy || !NormalBB || !UnwindBB ||
   3255           Record.size() < OpNum+FTy->getNumParams())
   3256         return Error("Invalid record");
   3257 
   3258       SmallVector<Value*, 16> Ops;
   3259       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
   3260         Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
   3261         if (!Ops.back())
   3262           return Error("Invalid record");
   3263       }
   3264 
   3265       if (!FTy->isVarArg()) {
   3266         if (Record.size() != OpNum)
   3267           return Error("Invalid record");
   3268       } else {
   3269         // Read type/value pairs for varargs params.
   3270         while (OpNum != Record.size()) {
   3271           Value *Op;
   3272           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
   3273             return Error("Invalid record");
   3274           Ops.push_back(Op);
   3275         }
   3276       }
   3277 
   3278       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
   3279       InstructionList.push_back(I);
   3280       cast<InvokeInst>(I)->setCallingConv(
   3281         static_cast<CallingConv::ID>(CCInfo));
   3282       cast<InvokeInst>(I)->setAttributes(PAL);
   3283       break;
   3284     }
   3285     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
   3286       unsigned Idx = 0;
   3287       Value *Val = nullptr;
   3288       if (getValueTypePair(Record, Idx, NextValueNo, Val))
   3289         return Error("Invalid record");
   3290       I = ResumeInst::Create(Val);
   3291       InstructionList.push_back(I);
   3292       break;
   3293     }
   3294     case FUNC_CODE_INST_UNWIND_2_7: { // UNWIND_OLD
   3295       // 'unwind' instruction has been removed in LLVM 3.1
   3296       // Replace 'unwind' with 'landingpad' and 'resume'.
   3297       Type *ExnTy = StructType::get(Type::getInt8PtrTy(Context),
   3298                                     Type::getInt32Ty(Context), nullptr);
   3299       Constant *PersFn =
   3300         F->getParent()->
   3301         getOrInsertFunction("__gcc_personality_v0",
   3302                           FunctionType::get(Type::getInt32Ty(Context), true));
   3303 
   3304       LandingPadInst *LP = LandingPadInst::Create(ExnTy, PersFn, 1);
   3305       LP->setCleanup(true);
   3306 
   3307       CurBB->getInstList().push_back(LP);
   3308       I = ResumeInst::Create(LP);
   3309       InstructionList.push_back(I);
   3310       break;
   3311     }
   3312     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
   3313       I = new UnreachableInst(Context);
   3314       InstructionList.push_back(I);
   3315       break;
   3316     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
   3317       if (Record.size() < 1 || ((Record.size()-1)&1))
   3318         return Error("Invalid record");
   3319       Type *Ty = getTypeByID(Record[0]);
   3320       if (!Ty)
   3321         return Error("Invalid record");
   3322 
   3323       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
   3324       InstructionList.push_back(PN);
   3325 
   3326       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
   3327         Value *V = getFnValueByID(Record[1+i], Ty);
   3328         BasicBlock *BB = getBasicBlock(Record[2+i]);
   3329         if (!V || !BB)
   3330           return Error("Invalid record");
   3331         PN->addIncoming(V, BB);
   3332       }
   3333       I = PN;
   3334       break;
   3335     }
   3336 
   3337     case bitc::FUNC_CODE_INST_LANDINGPAD: {
   3338       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
   3339       unsigned Idx = 0;
   3340       if (Record.size() < 4)
   3341         return Error("Invalid record");
   3342       Type *Ty = getTypeByID(Record[Idx++]);
   3343       if (!Ty)
   3344         return Error("Invalid record");
   3345       Value *PersFn = nullptr;
   3346       if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
   3347         return Error("Invalid record");
   3348 
   3349       bool IsCleanup = !!Record[Idx++];
   3350       unsigned NumClauses = Record[Idx++];
   3351       LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses);
   3352       LP->setCleanup(IsCleanup);
   3353       for (unsigned J = 0; J != NumClauses; ++J) {
   3354         LandingPadInst::ClauseType CT =
   3355           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
   3356         Value *Val;
   3357 
   3358         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
   3359           delete LP;
   3360           return Error("Invalid record");
   3361         }
   3362 
   3363         assert((CT != LandingPadInst::Catch ||
   3364                 !isa<ArrayType>(Val->getType())) &&
   3365                "Catch clause has a invalid type!");
   3366         assert((CT != LandingPadInst::Filter ||
   3367                 isa<ArrayType>(Val->getType())) &&
   3368                "Filter clause has invalid type!");
   3369         LP->addClause(cast<Constant>(Val));
   3370       }
   3371 
   3372       I = LP;
   3373       InstructionList.push_back(I);
   3374       break;
   3375     }
   3376 
   3377     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
   3378       if (Record.size() != 4)
   3379         return Error("Invalid record");
   3380       PointerType *Ty =
   3381         dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
   3382       Type *OpTy = getTypeByID(Record[1]);
   3383       Value *Size = getFnValueByID(Record[2], OpTy);
   3384       unsigned Align = Record[3];
   3385       if (!Ty || !Size)
   3386         return Error("Invalid record");
   3387       I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
   3388       InstructionList.push_back(I);
   3389       break;
   3390     }
   3391     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
   3392       unsigned OpNum = 0;
   3393       Value *Op;
   3394       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
   3395           OpNum+2 != Record.size())
   3396         return Error("Invalid record");
   3397 
   3398       I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
   3399       InstructionList.push_back(I);
   3400       break;
   3401     }
   3402     case bitc::FUNC_CODE_INST_LOADATOMIC: {
   3403        // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
   3404       unsigned OpNum = 0;
   3405       Value *Op;
   3406       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
   3407           OpNum+4 != Record.size())
   3408         return Error("Invalid record");
   3409 
   3410       AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
   3411       if (Ordering == NotAtomic || Ordering == Release ||
   3412           Ordering == AcquireRelease)
   3413         return Error("Invalid record");
   3414       if (Ordering != NotAtomic && Record[OpNum] == 0)
   3415         return Error("Invalid record");
   3416       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
   3417 
   3418       I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1,
   3419                        Ordering, SynchScope);
   3420       InstructionList.push_back(I);
   3421       break;
   3422     }
   3423     case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol]
   3424       unsigned OpNum = 0;
   3425       Value *Val, *Ptr;
   3426       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
   3427           getValue(Record, OpNum,
   3428                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
   3429           OpNum+2 != Record.size())
   3430         return Error("Invalid record");
   3431 
   3432       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
   3433       InstructionList.push_back(I);
   3434       break;
   3435     }
   3436     case bitc::FUNC_CODE_INST_STOREATOMIC: {
   3437       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
   3438       unsigned OpNum = 0;
   3439       Value *Val, *Ptr;
   3440       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
   3441           getValue(Record, OpNum,
   3442                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
   3443           OpNum+4 != Record.size())
   3444         return Error("Invalid record");
   3445 
   3446       AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
   3447       if (Ordering == NotAtomic || Ordering == Acquire ||
   3448           Ordering == AcquireRelease)
   3449         return Error("Invalid record");
   3450       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
   3451       if (Ordering != NotAtomic && Record[OpNum] == 0)
   3452         return Error("Invalid record");
   3453 
   3454       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1,
   3455                         Ordering, SynchScope);
   3456       InstructionList.push_back(I);
   3457       break;
   3458     }
   3459     case bitc::FUNC_CODE_INST_CMPXCHG: {
   3460       // CMPXCHG:[ptrty, ptr, cmp, new, vol, ordering, synchscope]
   3461       unsigned OpNum = 0;
   3462       Value *Ptr, *Cmp, *New;
   3463       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
   3464           getValue(Record, OpNum,
   3465                     cast<PointerType>(Ptr->getType())->getElementType(), Cmp) ||
   3466           getValue(Record, OpNum,
   3467                     cast<PointerType>(Ptr->getType())->getElementType(), New) ||
   3468           OpNum+3 != Record.size())
   3469         return Error("Invalid record");
   3470       AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+1]);
   3471       if (Ordering == NotAtomic || Ordering == Unordered)
   3472         return Error("Invalid record");
   3473       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]);
   3474       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Ordering, SynchScope);
   3475       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
   3476       InstructionList.push_back(I);
   3477       break;
   3478     }
   3479     case bitc::FUNC_CODE_INST_ATOMICRMW: {
   3480       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
   3481       unsigned OpNum = 0;
   3482       Value *Ptr, *Val;
   3483       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
   3484           getValue(Record, OpNum,
   3485                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
   3486           OpNum+4 != Record.size())
   3487         return Error("Invalid record");
   3488       AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]);
   3489       if (Operation < AtomicRMWInst::FIRST_BINOP ||
   3490           Operation > AtomicRMWInst::LAST_BINOP)
   3491         return Error("Invalid record");
   3492       AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
   3493       if (Ordering == NotAtomic || Ordering == Unordered)
   3494         return Error("Invalid record");
   3495       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
   3496       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
   3497       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
   3498       InstructionList.push_back(I);
   3499       break;
   3500     }
   3501     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
   3502       if (2 != Record.size())
   3503         return Error("Invalid record");
   3504       AtomicOrdering Ordering = GetDecodedOrdering(Record[0]);
   3505       if (Ordering == NotAtomic || Ordering == Unordered ||
   3506           Ordering == Monotonic)
   3507         return Error("Invalid record");
   3508       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]);
   3509       I = new FenceInst(Context, Ordering, SynchScope);
   3510       InstructionList.push_back(I);
   3511       break;
   3512     }
   3513     case bitc::FUNC_CODE_INST_CALL: {
   3514       // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
   3515       if (Record.size() < 3)
   3516         return Error("Invalid record");
   3517 
   3518       AttributeSet PAL = getAttributes(Record[0]);
   3519       unsigned CCInfo = Record[1];
   3520 
   3521       unsigned OpNum = 2;
   3522       Value *Callee;
   3523       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
   3524         return Error("Invalid record");
   3525 
   3526       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
   3527       FunctionType *FTy = nullptr;
   3528       if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
   3529       if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
   3530         return Error("Invalid record");
   3531 
   3532       SmallVector<Value*, 16> Args;
   3533       // Read the fixed params.
   3534       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
   3535         if (FTy->getParamType(i)->isLabelTy())
   3536           Args.push_back(getBasicBlock(Record[OpNum]));
   3537         else
   3538           Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
   3539         if (!Args.back())
   3540           return Error("Invalid record");
   3541       }
   3542 
   3543       // Read type/value pairs for varargs params.
   3544       if (!FTy->isVarArg()) {
   3545         if (OpNum != Record.size())
   3546           return Error("Invalid record");
   3547       } else {
   3548         while (OpNum != Record.size()) {
   3549           Value *Op;
   3550           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
   3551             return Error("Invalid record");
   3552           Args.push_back(Op);
   3553         }
   3554       }
   3555 
   3556       I = CallInst::Create(Callee, Args);
   3557       InstructionList.push_back(I);
   3558       cast<CallInst>(I)->setCallingConv(
   3559         static_cast<CallingConv::ID>(CCInfo>>1));
   3560       cast<CallInst>(I)->setTailCall(CCInfo & 1);
   3561       cast<CallInst>(I)->setAttributes(PAL);
   3562       break;
   3563     }
   3564     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
   3565       if (Record.size() < 3)
   3566         return Error("Invalid record");
   3567       Type *OpTy = getTypeByID(Record[0]);
   3568       Value *Op = getFnValueByID(Record[1], OpTy);
   3569       Type *ResTy = getTypeByID(Record[2]);
   3570       if (!OpTy || !Op || !ResTy)
   3571         return Error("Invalid record");
   3572       I = new VAArgInst(Op, ResTy);
   3573       InstructionList.push_back(I);
   3574       break;
   3575     }
   3576     }
   3577 
   3578     // Add instruction to end of current BB.  If there is no current BB, reject
   3579     // this file.
   3580     if (!CurBB) {
   3581       delete I;
   3582       return Error("Invalid instruction with no BB");
   3583     }
   3584     CurBB->getInstList().push_back(I);
   3585 
   3586     // If this was a terminator instruction, move to the next block.
   3587     if (isa<TerminatorInst>(I)) {
   3588       ++CurBBNo;
   3589       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
   3590     }
   3591 
   3592     // Non-void values get registered in the value table for future use.
   3593     if (I && !I->getType()->isVoidTy())
   3594       ValueList.AssignValue(I, NextValueNo++);
   3595   }
   3596 
   3597   // Check the function list for unresolved values.
   3598   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
   3599     if (!A->getParent()) {
   3600       // We found at least one unresolved value.  Nuke them all to avoid leaks.
   3601       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
   3602         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
   3603           A->replaceAllUsesWith(UndefValue::get(A->getType()));
   3604           delete A;
   3605         }
   3606       }
   3607       return Error("Never resolved value found in function");
   3608     }
   3609   }
   3610 
   3611   // FIXME: Check for unresolved forward-declared metadata references
   3612   // and clean up leaks.
   3613 
   3614   // See if anything took the address of blocks in this function.  If so,
   3615   // resolve them now.
   3616   DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
   3617     BlockAddrFwdRefs.find(F);
   3618   if (BAFRI != BlockAddrFwdRefs.end()) {
   3619     std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
   3620     for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
   3621       unsigned BlockIdx = RefList[i].first;
   3622       if (BlockIdx >= FunctionBBs.size())
   3623         return Error("Invalid ID");
   3624 
   3625       GlobalVariable *FwdRef = RefList[i].second;
   3626       FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
   3627       FwdRef->eraseFromParent();
   3628     }
   3629 
   3630     BlockAddrFwdRefs.erase(BAFRI);
   3631   }
   3632 
   3633   // Trim the value list down to the size it was before we parsed this function.
   3634   ValueList.shrinkTo(ModuleValueListSize);
   3635   MDValueList.shrinkTo(ModuleMDValueListSize);
   3636   std::vector<BasicBlock*>().swap(FunctionBBs);
   3637   return std::error_code();
   3638 }
   3639 
   3640 //===----------------------------------------------------------------------===//
   3641 // GVMaterializer implementation
   3642 //===----------------------------------------------------------------------===//
   3643 
   3644 void BitcodeReader::releaseBuffer() { Buffer.release(); }
   3645 
   3646 std::error_code BitcodeReader::materialize(GlobalValue *GV) {
   3647   if (std::error_code EC = materializeMetadata())
   3648     return EC;
   3649 
   3650   Function *F = dyn_cast<Function>(GV);
   3651   // If it's not a function or is already material, ignore the request.
   3652   if (!F || !F->isMaterializable())
   3653     return std::error_code();
   3654 
   3655   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
   3656   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
   3657 
   3658   // Move the bit stream to the saved position of the deferred function body.
   3659   Stream.JumpToBit(DFII->second);
   3660 
   3661   if (std::error_code EC = ParseFunctionBody(F))
   3662     return EC;
   3663   F->setIsMaterializable(false);
   3664 
   3665   // Upgrade any old intrinsic calls in the function.
   3666   for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
   3667        E = UpgradedIntrinsics.end(); I != E; ++I) {
   3668     if (I->first != I->second) {
   3669       for (auto UI = I->first->user_begin(), UE = I->first->user_end();
   3670            UI != UE;) {
   3671         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
   3672           UpgradeIntrinsicCall(CI, I->second);
   3673       }
   3674     }
   3675   }
   3676 
   3677   return std::error_code();
   3678 }
   3679 
   3680 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
   3681   const Function *F = dyn_cast<Function>(GV);
   3682   if (!F || F->isDeclaration())
   3683     return false;
   3684   return DeferredFunctionInfo.count(const_cast<Function*>(F));
   3685 }
   3686 
   3687 void BitcodeReader::Dematerialize(GlobalValue *GV) {
   3688   Function *F = dyn_cast<Function>(GV);
   3689   // If this function isn't dematerializable, this is a noop.
   3690   if (!F || !isDematerializable(F))
   3691     return;
   3692 
   3693   assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
   3694 
   3695   // Just forget the function body, we can remat it later.
   3696   F->deleteBody();
   3697   F->setIsMaterializable(true);
   3698 }
   3699 
   3700 std::error_code BitcodeReader::MaterializeModule(Module *M) {
   3701   assert(M == TheModule &&
   3702          "Can only Materialize the Module this BitcodeReader is attached to.");
   3703   // Iterate over the module, deserializing any functions that are still on
   3704   // disk.
   3705   for (Module::iterator F = TheModule->begin(), E = TheModule->end();
   3706        F != E; ++F) {
   3707     if (std::error_code EC = materialize(F))
   3708       return EC;
   3709   }
   3710   // At this point, if there are any function bodies, the current bit is
   3711   // pointing to the END_BLOCK record after them. Now make sure the rest
   3712   // of the bits in the module have been read.
   3713   if (NextUnreadBit)
   3714     ParseModule(true);
   3715 
   3716   // Upgrade any intrinsic calls that slipped through (should not happen!) and
   3717   // delete the old functions to clean up. We can't do this unless the entire
   3718   // module is materialized because there could always be another function body
   3719   // with calls to the old function.
   3720   for (std::vector<std::pair<Function*, Function*> >::iterator I =
   3721        UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
   3722     if (I->first != I->second) {
   3723       for (auto UI = I->first->user_begin(), UE = I->first->user_end();
   3724            UI != UE;) {
   3725         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
   3726           UpgradeIntrinsicCall(CI, I->second);
   3727       }
   3728       if (!I->first->use_empty())
   3729         I->first->replaceAllUsesWith(I->second);
   3730       I->first->eraseFromParent();
   3731     }
   3732   }
   3733   std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
   3734 
   3735   // Upgrade to new EH scheme. N.B. This will go away in 3.1.
   3736   UpgradeExceptionHandling(M);
   3737 
   3738   // Check debug info intrinsics.
   3739   CheckDebugInfoIntrinsics(TheModule);
   3740 
   3741   return std::error_code();
   3742 }
   3743 
   3744 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
   3745   return IdentifiedStructTypes;
   3746 }
   3747 
   3748 std::error_code BitcodeReader::InitStream() {
   3749   if (LazyStreamer)
   3750     return InitLazyStream();
   3751   return InitStreamFromBuffer();
   3752 }
   3753 
   3754 std::error_code BitcodeReader::InitStreamFromBuffer() {
   3755   const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
   3756   const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
   3757 
   3758   if (Buffer->getBufferSize() & 3)
   3759     return Error("Invalid bitcode signature");
   3760 
   3761   // If we have a wrapper header, parse it and ignore the non-bc file contents.
   3762   // The magic number is 0x0B17C0DE stored in little endian.
   3763   if (isBitcodeWrapper(BufPtr, BufEnd))
   3764     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
   3765       return Error("Invalid bitcode wrapper header");
   3766 
   3767   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
   3768   Stream.init(&*StreamFile);
   3769 
   3770   return std::error_code();
   3771 }
   3772 
   3773 std::error_code BitcodeReader::InitLazyStream() {
   3774   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
   3775   // see it.
   3776   auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer);
   3777   StreamingMemoryObject &Bytes = *OwnedBytes;
   3778   StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
   3779   Stream.init(&*StreamFile);
   3780 
   3781   unsigned char buf[16];
   3782   if (Bytes.readBytes(buf, 16, 0) != 16)
   3783     return Error("Invalid bitcode signature");
   3784 
   3785   if (!isBitcode(buf, buf + 16))
   3786     return Error("Invalid bitcode signature");
   3787 
   3788   if (isBitcodeWrapper(buf, buf + 4)) {
   3789     const unsigned char *bitcodeStart = buf;
   3790     const unsigned char *bitcodeEnd = buf + 16;
   3791     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
   3792     Bytes.dropLeadingBytes(bitcodeStart - buf);
   3793     Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
   3794   }
   3795   return std::error_code();
   3796 }
   3797 
   3798 namespace {
   3799 class BitcodeErrorCategoryType : public std::error_category {
   3800   const char *name() const LLVM_NOEXCEPT override {
   3801     return "llvm.bitcode";
   3802   }
   3803   std::string message(int IE) const override {
   3804     BitcodeError E = static_cast<BitcodeError>(IE);
   3805     switch (E) {
   3806     case BitcodeError::InvalidBitcodeSignature:
   3807       return "Invalid bitcode signature";
   3808     case BitcodeError::CorruptedBitcode:
   3809       return "Corrupted bitcode";
   3810     }
   3811     llvm_unreachable("Unknown error type!");
   3812   }
   3813 };
   3814 }
   3815 
   3816 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
   3817 
   3818 const std::error_category &BitcodeReader::BitcodeErrorCategory() {
   3819   return *ErrorCategory;
   3820 }
   3821 
   3822 //===----------------------------------------------------------------------===//
   3823 // External interface
   3824 //===----------------------------------------------------------------------===//
   3825 
   3826 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
   3827 ///
   3828 static llvm::ErrorOr<llvm::Module *>
   3829 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer,
   3830                          LLVMContext &Context, bool WillMaterializeAll,
   3831                          DiagnosticHandlerFunction DiagnosticHandler) {
   3832   Module *M = new Module(Buffer->getBufferIdentifier(), Context);
   3833   BitcodeReader *R =
   3834       new BitcodeReader(Buffer.get(), Context, DiagnosticHandler);
   3835   M->setMaterializer(R);
   3836 
   3837   auto cleanupOnError = [&](std::error_code EC) {
   3838     R->releaseBuffer(); // Never take ownership on error.
   3839     delete M;  // Also deletes R.
   3840     return EC;
   3841   };
   3842 
   3843   if (std::error_code EC = R->ParseBitcodeInto(M))
   3844     return cleanupOnError(EC);
   3845 
   3846   Buffer.release(); // The BitcodeReader owns it now.
   3847   return M;
   3848 }
   3849 
   3850 llvm::ErrorOr<Module *>
   3851 llvm_3_0::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer,
   3852                            LLVMContext &Context,
   3853                            DiagnosticHandlerFunction DiagnosticHandler) {
   3854   return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false,
   3855                                   DiagnosticHandler);
   3856 }
   3857 
   3858 /// ParseBitcodeFile - Read the specified bitcode file, returning the module.
   3859 /// If an error occurs, return null and fill in *ErrMsg if non-null.
   3860 llvm::ErrorOr<llvm::Module *>
   3861 llvm_3_0::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
   3862                        DiagnosticHandlerFunction DiagnosticHandler) {
   3863   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
   3864   ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl(
   3865       std::move(Buf), Context, true, DiagnosticHandler);
   3866   if (!ModuleOrErr)
   3867     return ModuleOrErr;
   3868   Module *M = ModuleOrErr.get();
   3869   // Read in the entire module, and destroy the BitcodeReader.
   3870   if (std::error_code EC = M->materializeAllPermanently()) {
   3871     delete M;
   3872     return EC;
   3873   }
   3874 
   3875   return M;
   3876 }
   3877 
   3878 std::string
   3879 llvm_3_0::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context,
   3880                              DiagnosticHandlerFunction DiagnosticHandler) {
   3881   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
   3882   auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context,
   3883                                             DiagnosticHandler);
   3884   ErrorOr<std::string> Triple = R->parseTriple();
   3885   if (Triple.getError())
   3886     return "";
   3887   return Triple.get();
   3888 }
   3889