Home | History | Annotate | Download | only in CodeGen
      1 //===-- FastISel.h - Definition of the FastISel class ---*- C++ -*---------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 ///
     10 /// \file
     11 /// This file defines the FastISel class.
     12 ///
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_CODEGEN_FASTISEL_H
     16 #define LLVM_CODEGEN_FASTISEL_H
     17 
     18 #include "llvm/ADT/DenseMap.h"
     19 #include "llvm/CodeGen/CallingConvLower.h"
     20 #include "llvm/CodeGen/MachineBasicBlock.h"
     21 #include "llvm/IR/CallingConv.h"
     22 #include "llvm/IR/IntrinsicInst.h"
     23 #include "llvm/Target/TargetLowering.h"
     24 
     25 namespace llvm {
     26 
     27 /// \brief This is a fast-path instruction selection class that generates poor
     28 /// code and doesn't support illegal types or non-trivial lowering, but runs
     29 /// quickly.
     30 class FastISel {
     31 public:
     32   struct ArgListEntry {
     33     Value *Val;
     34     Type *Ty;
     35     bool IsSExt : 1;
     36     bool IsZExt : 1;
     37     bool IsInReg : 1;
     38     bool IsSRet : 1;
     39     bool IsNest : 1;
     40     bool IsByVal : 1;
     41     bool IsInAlloca : 1;
     42     bool IsReturned : 1;
     43     uint16_t Alignment;
     44 
     45     ArgListEntry()
     46         : Val(nullptr), Ty(nullptr), IsSExt(false), IsZExt(false),
     47           IsInReg(false), IsSRet(false), IsNest(false), IsByVal(false),
     48           IsInAlloca(false), IsReturned(false), Alignment(0) {}
     49 
     50     /// \brief Set CallLoweringInfo attribute flags based on a call instruction
     51     /// and called function attributes.
     52     void setAttributes(ImmutableCallSite *CS, unsigned AttrIdx);
     53   };
     54   typedef std::vector<ArgListEntry> ArgListTy;
     55 
     56   struct CallLoweringInfo {
     57     Type *RetTy;
     58     bool RetSExt : 1;
     59     bool RetZExt : 1;
     60     bool IsVarArg : 1;
     61     bool IsInReg : 1;
     62     bool DoesNotReturn : 1;
     63     bool IsReturnValueUsed : 1;
     64 
     65     // \brief IsTailCall Should be modified by implementations of FastLowerCall
     66     // that perform tail call conversions.
     67     bool IsTailCall;
     68 
     69     unsigned NumFixedArgs;
     70     CallingConv::ID CallConv;
     71     const Value *Callee;
     72     MCSymbol *Symbol;
     73     ArgListTy Args;
     74     ImmutableCallSite *CS;
     75     MachineInstr *Call;
     76     unsigned ResultReg;
     77     unsigned NumResultRegs;
     78 
     79     bool IsPatchPoint;
     80 
     81     SmallVector<Value *, 16> OutVals;
     82     SmallVector<ISD::ArgFlagsTy, 16> OutFlags;
     83     SmallVector<unsigned, 16> OutRegs;
     84     SmallVector<ISD::InputArg, 4> Ins;
     85     SmallVector<unsigned, 4> InRegs;
     86 
     87     CallLoweringInfo()
     88         : RetTy(nullptr), RetSExt(false), RetZExt(false), IsVarArg(false),
     89           IsInReg(false), DoesNotReturn(false), IsReturnValueUsed(true),
     90           IsTailCall(false), NumFixedArgs(-1), CallConv(CallingConv::C),
     91           Callee(nullptr), Symbol(nullptr), CS(nullptr), Call(nullptr),
     92           ResultReg(0), NumResultRegs(0), IsPatchPoint(false) {}
     93 
     94     CallLoweringInfo &setCallee(Type *ResultTy, FunctionType *FuncTy,
     95                                 const Value *Target, ArgListTy &&ArgsList,
     96                                 ImmutableCallSite &Call) {
     97       RetTy = ResultTy;
     98       Callee = Target;
     99 
    100       IsInReg = Call.paramHasAttr(0, Attribute::InReg);
    101       DoesNotReturn = Call.doesNotReturn();
    102       IsVarArg = FuncTy->isVarArg();
    103       IsReturnValueUsed = !Call.getInstruction()->use_empty();
    104       RetSExt = Call.paramHasAttr(0, Attribute::SExt);
    105       RetZExt = Call.paramHasAttr(0, Attribute::ZExt);
    106 
    107       CallConv = Call.getCallingConv();
    108       Args = std::move(ArgsList);
    109       NumFixedArgs = FuncTy->getNumParams();
    110 
    111       CS = &Call;
    112 
    113       return *this;
    114     }
    115 
    116     CallLoweringInfo &setCallee(Type *ResultTy, FunctionType *FuncTy,
    117                                 MCSymbol *Target, ArgListTy &&ArgsList,
    118                                 ImmutableCallSite &Call,
    119                                 unsigned FixedArgs = ~0U) {
    120       RetTy = ResultTy;
    121       Callee = Call.getCalledValue();
    122       Symbol = Target;
    123 
    124       IsInReg = Call.paramHasAttr(0, Attribute::InReg);
    125       DoesNotReturn = Call.doesNotReturn();
    126       IsVarArg = FuncTy->isVarArg();
    127       IsReturnValueUsed = !Call.getInstruction()->use_empty();
    128       RetSExt = Call.paramHasAttr(0, Attribute::SExt);
    129       RetZExt = Call.paramHasAttr(0, Attribute::ZExt);
    130 
    131       CallConv = Call.getCallingConv();
    132       Args = std::move(ArgsList);
    133       NumFixedArgs = (FixedArgs == ~0U) ? FuncTy->getNumParams() : FixedArgs;
    134 
    135       CS = &Call;
    136 
    137       return *this;
    138     }
    139 
    140     CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultTy,
    141                                 const Value *Target, ArgListTy &&ArgsList,
    142                                 unsigned FixedArgs = ~0U) {
    143       RetTy = ResultTy;
    144       Callee = Target;
    145       CallConv = CC;
    146       Args = std::move(ArgsList);
    147       NumFixedArgs = (FixedArgs == ~0U) ? Args.size() : FixedArgs;
    148       return *this;
    149     }
    150 
    151     CallLoweringInfo &setCallee(const DataLayout &DL, MCContext &Ctx,
    152                                 CallingConv::ID CC, Type *ResultTy,
    153                                 const char *Target, ArgListTy &&ArgsList,
    154                                 unsigned FixedArgs = ~0U);
    155 
    156     CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultTy,
    157                                 MCSymbol *Target, ArgListTy &&ArgsList,
    158                                 unsigned FixedArgs = ~0U) {
    159       RetTy = ResultTy;
    160       Symbol = Target;
    161       CallConv = CC;
    162       Args = std::move(ArgsList);
    163       NumFixedArgs = (FixedArgs == ~0U) ? Args.size() : FixedArgs;
    164       return *this;
    165     }
    166 
    167     CallLoweringInfo &setTailCall(bool Value = true) {
    168       IsTailCall = Value;
    169       return *this;
    170     }
    171 
    172     CallLoweringInfo &setIsPatchPoint(bool Value = true) {
    173       IsPatchPoint = Value;
    174       return *this;
    175     }
    176 
    177     ArgListTy &getArgs() { return Args; }
    178 
    179     void clearOuts() {
    180       OutVals.clear();
    181       OutFlags.clear();
    182       OutRegs.clear();
    183     }
    184 
    185     void clearIns() {
    186       Ins.clear();
    187       InRegs.clear();
    188     }
    189   };
    190 
    191 protected:
    192   DenseMap<const Value *, unsigned> LocalValueMap;
    193   FunctionLoweringInfo &FuncInfo;
    194   MachineFunction *MF;
    195   MachineRegisterInfo &MRI;
    196   MachineFrameInfo &MFI;
    197   MachineConstantPool &MCP;
    198   DebugLoc DbgLoc;
    199   const TargetMachine &TM;
    200   const DataLayout &DL;
    201   const TargetInstrInfo &TII;
    202   const TargetLowering &TLI;
    203   const TargetRegisterInfo &TRI;
    204   const TargetLibraryInfo *LibInfo;
    205   bool SkipTargetIndependentISel;
    206 
    207   /// \brief The position of the last instruction for materializing constants
    208   /// for use in the current block. It resets to EmitStartPt when it makes sense
    209   /// (for example, it's usually profitable to avoid function calls between the
    210   /// definition and the use)
    211   MachineInstr *LastLocalValue;
    212 
    213   /// \brief The top most instruction in the current block that is allowed for
    214   /// emitting local variables. LastLocalValue resets to EmitStartPt when it
    215   /// makes sense (for example, on function calls)
    216   MachineInstr *EmitStartPt;
    217 
    218 public:
    219   /// \brief Return the position of the last instruction emitted for
    220   /// materializing constants for use in the current block.
    221   MachineInstr *getLastLocalValue() { return LastLocalValue; }
    222 
    223   /// \brief Update the position of the last instruction emitted for
    224   /// materializing constants for use in the current block.
    225   void setLastLocalValue(MachineInstr *I) {
    226     EmitStartPt = I;
    227     LastLocalValue = I;
    228   }
    229 
    230   /// \brief Set the current block to which generated machine instructions will
    231   /// be appended, and clear the local CSE map.
    232   void startNewBlock();
    233 
    234   /// \brief Return current debug location information.
    235   DebugLoc getCurDebugLoc() const { return DbgLoc; }
    236 
    237   /// \brief Do "fast" instruction selection for function arguments and append
    238   /// the machine instructions to the current block. Returns true when
    239   /// successful.
    240   bool lowerArguments();
    241 
    242   /// \brief Do "fast" instruction selection for the given LLVM IR instruction
    243   /// and append the generated machine instructions to the current block.
    244   /// Returns true if selection was successful.
    245   bool selectInstruction(const Instruction *I);
    246 
    247   /// \brief Do "fast" instruction selection for the given LLVM IR operator
    248   /// (Instruction or ConstantExpr), and append generated machine instructions
    249   /// to the current block. Return true if selection was successful.
    250   bool selectOperator(const User *I, unsigned Opcode);
    251 
    252   /// \brief Create a virtual register and arrange for it to be assigned the
    253   /// value for the given LLVM value.
    254   unsigned getRegForValue(const Value *V);
    255 
    256   /// \brief Look up the value to see if its value is already cached in a
    257   /// register. It may be defined by instructions across blocks or defined
    258   /// locally.
    259   unsigned lookUpRegForValue(const Value *V);
    260 
    261   /// \brief This is a wrapper around getRegForValue that also takes care of
    262   /// truncating or sign-extending the given getelementptr index value.
    263   std::pair<unsigned, bool> getRegForGEPIndex(const Value *V);
    264 
    265   /// \brief We're checking to see if we can fold \p LI into \p FoldInst. Note
    266   /// that we could have a sequence where multiple LLVM IR instructions are
    267   /// folded into the same machineinstr.  For example we could have:
    268   ///
    269   ///   A: x = load i32 *P
    270   ///   B: y = icmp A, 42
    271   ///   C: br y, ...
    272   ///
    273   /// In this scenario, \p LI is "A", and \p FoldInst is "C".  We know about "B"
    274   /// (and any other folded instructions) because it is between A and C.
    275   ///
    276   /// If we succeed folding, return true.
    277   bool tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst);
    278 
    279   /// \brief The specified machine instr operand is a vreg, and that vreg is
    280   /// being provided by the specified load instruction.  If possible, try to
    281   /// fold the load as an operand to the instruction, returning true if
    282   /// possible.
    283   ///
    284   /// This method should be implemented by targets.
    285   virtual bool tryToFoldLoadIntoMI(MachineInstr * /*MI*/, unsigned /*OpNo*/,
    286                                    const LoadInst * /*LI*/) {
    287     return false;
    288   }
    289 
    290   /// \brief Reset InsertPt to prepare for inserting instructions into the
    291   /// current block.
    292   void recomputeInsertPt();
    293 
    294   /// \brief Remove all dead instructions between the I and E.
    295   void removeDeadCode(MachineBasicBlock::iterator I,
    296                       MachineBasicBlock::iterator E);
    297 
    298   struct SavePoint {
    299     MachineBasicBlock::iterator InsertPt;
    300     DebugLoc DL;
    301   };
    302 
    303   /// \brief Prepare InsertPt to begin inserting instructions into the local
    304   /// value area and return the old insert position.
    305   SavePoint enterLocalValueArea();
    306 
    307   /// \brief Reset InsertPt to the given old insert position.
    308   void leaveLocalValueArea(SavePoint Old);
    309 
    310   virtual ~FastISel();
    311 
    312 protected:
    313   explicit FastISel(FunctionLoweringInfo &FuncInfo,
    314                     const TargetLibraryInfo *LibInfo,
    315                     bool SkipTargetIndependentISel = false);
    316 
    317   /// \brief This method is called by target-independent code when the normal
    318   /// FastISel process fails to select an instruction. This gives targets a
    319   /// chance to emit code for anything that doesn't fit into FastISel's
    320   /// framework. It returns true if it was successful.
    321   virtual bool fastSelectInstruction(const Instruction *I) = 0;
    322 
    323   /// \brief This method is called by target-independent code to do target-
    324   /// specific argument lowering. It returns true if it was successful.
    325   virtual bool fastLowerArguments();
    326 
    327   /// \brief This method is called by target-independent code to do target-
    328   /// specific call lowering. It returns true if it was successful.
    329   virtual bool fastLowerCall(CallLoweringInfo &CLI);
    330 
    331   /// \brief This method is called by target-independent code to do target-
    332   /// specific intrinsic lowering. It returns true if it was successful.
    333   virtual bool fastLowerIntrinsicCall(const IntrinsicInst *II);
    334 
    335   /// \brief This method is called by target-independent code to request that an
    336   /// instruction with the given type and opcode be emitted.
    337   virtual unsigned fastEmit_(MVT VT, MVT RetVT, unsigned Opcode);
    338 
    339   /// \brief This method is called by target-independent code to request that an
    340   /// instruction with the given type, opcode, and register operand be emitted.
    341   virtual unsigned fastEmit_r(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
    342                               bool Op0IsKill);
    343 
    344   /// \brief This method is called by target-independent code to request that an
    345   /// instruction with the given type, opcode, and register operands be emitted.
    346   virtual unsigned fastEmit_rr(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
    347                                bool Op0IsKill, unsigned Op1, bool Op1IsKill);
    348 
    349   /// \brief This method is called by target-independent code to request that an
    350   /// instruction with the given type, opcode, and register and immediate
    351   // operands be emitted.
    352   virtual unsigned fastEmit_ri(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
    353                                bool Op0IsKill, uint64_t Imm);
    354 
    355   /// \brief This method is called by target-independent code to request that an
    356   /// instruction with the given type, opcode, and register and floating-point
    357   /// immediate operands be emitted.
    358   virtual unsigned fastEmit_rf(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
    359                                bool Op0IsKill, const ConstantFP *FPImm);
    360 
    361   /// \brief This method is called by target-independent code to request that an
    362   /// instruction with the given type, opcode, and register and immediate
    363   /// operands be emitted.
    364   virtual unsigned fastEmit_rri(MVT VT, MVT RetVT, unsigned Opcode,
    365                                 unsigned Op0, bool Op0IsKill, unsigned Op1,
    366                                 bool Op1IsKill, uint64_t Imm);
    367 
    368   /// \brief This method is a wrapper of fastEmit_ri.
    369   ///
    370   /// It first tries to emit an instruction with an immediate operand using
    371   /// fastEmit_ri.  If that fails, it materializes the immediate into a register
    372   /// and try fastEmit_rr instead.
    373   unsigned fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, bool Op0IsKill,
    374                         uint64_t Imm, MVT ImmType);
    375 
    376   /// \brief This method is called by target-independent code to request that an
    377   /// instruction with the given type, opcode, and immediate operand be emitted.
    378   virtual unsigned fastEmit_i(MVT VT, MVT RetVT, unsigned Opcode, uint64_t Imm);
    379 
    380   /// \brief This method is called by target-independent code to request that an
    381   /// instruction with the given type, opcode, and floating-point immediate
    382   /// operand be emitted.
    383   virtual unsigned fastEmit_f(MVT VT, MVT RetVT, unsigned Opcode,
    384                               const ConstantFP *FPImm);
    385 
    386   /// \brief Emit a MachineInstr with no operands and a result register in the
    387   /// given register class.
    388   unsigned fastEmitInst_(unsigned MachineInstOpcode,
    389                          const TargetRegisterClass *RC);
    390 
    391   /// \brief Emit a MachineInstr with one register operand and a result register
    392   /// in the given register class.
    393   unsigned fastEmitInst_r(unsigned MachineInstOpcode,
    394                           const TargetRegisterClass *RC, unsigned Op0,
    395                           bool Op0IsKill);
    396 
    397   /// \brief Emit a MachineInstr with two register operands and a result
    398   /// register in the given register class.
    399   unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
    400                            const TargetRegisterClass *RC, unsigned Op0,
    401                            bool Op0IsKill, unsigned Op1, bool Op1IsKill);
    402 
    403   /// \brief Emit a MachineInstr with three register operands and a result
    404   /// register in the given register class.
    405   unsigned fastEmitInst_rrr(unsigned MachineInstOpcode,
    406                             const TargetRegisterClass *RC, unsigned Op0,
    407                             bool Op0IsKill, unsigned Op1, bool Op1IsKill,
    408                             unsigned Op2, bool Op2IsKill);
    409 
    410   /// \brief Emit a MachineInstr with a register operand, an immediate, and a
    411   /// result register in the given register class.
    412   unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
    413                            const TargetRegisterClass *RC, unsigned Op0,
    414                            bool Op0IsKill, uint64_t Imm);
    415 
    416   /// \brief Emit a MachineInstr with one register operand and two immediate
    417   /// operands.
    418   unsigned fastEmitInst_rii(unsigned MachineInstOpcode,
    419                             const TargetRegisterClass *RC, unsigned Op0,
    420                             bool Op0IsKill, uint64_t Imm1, uint64_t Imm2);
    421 
    422   /// \brief Emit a MachineInstr with a floating point immediate, and a result
    423   /// register in the given register class.
    424   unsigned fastEmitInst_f(unsigned MachineInstOpcode,
    425                           const TargetRegisterClass *RC,
    426                           const ConstantFP *FPImm);
    427 
    428   /// \brief Emit a MachineInstr with two register operands, an immediate, and a
    429   /// result register in the given register class.
    430   unsigned fastEmitInst_rri(unsigned MachineInstOpcode,
    431                             const TargetRegisterClass *RC, unsigned Op0,
    432                             bool Op0IsKill, unsigned Op1, bool Op1IsKill,
    433                             uint64_t Imm);
    434 
    435   /// \brief Emit a MachineInstr with a single immediate operand, and a result
    436   /// register in the given register class.
    437   unsigned fastEmitInst_i(unsigned MachineInstrOpcode,
    438                           const TargetRegisterClass *RC, uint64_t Imm);
    439 
    440   /// \brief Emit a MachineInstr for an extract_subreg from a specified index of
    441   /// a superregister to a specified type.
    442   unsigned fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, bool Op0IsKill,
    443                                       uint32_t Idx);
    444 
    445   /// \brief Emit MachineInstrs to compute the value of Op with all but the
    446   /// least significant bit set to zero.
    447   unsigned fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill);
    448 
    449   /// \brief Emit an unconditional branch to the given block, unless it is the
    450   /// immediate (fall-through) successor, and update the CFG.
    451   void fastEmitBranch(MachineBasicBlock *MBB, DebugLoc DL);
    452 
    453   /// Emit an unconditional branch to \p FalseMBB, obtains the branch weight
    454   /// and adds TrueMBB and FalseMBB to the successor list.
    455   void finishCondBranch(const BasicBlock *BranchBB, MachineBasicBlock *TrueMBB,
    456                         MachineBasicBlock *FalseMBB);
    457 
    458   /// \brief Update the value map to include the new mapping for this
    459   /// instruction, or insert an extra copy to get the result in a previous
    460   /// determined register.
    461   ///
    462   /// NOTE: This is only necessary because we might select a block that uses a
    463   /// value before we select the block that defines the value. It might be
    464   /// possible to fix this by selecting blocks in reverse postorder.
    465   void updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs = 1);
    466 
    467   unsigned createResultReg(const TargetRegisterClass *RC);
    468 
    469   /// \brief Try to constrain Op so that it is usable by argument OpNum of the
    470   /// provided MCInstrDesc. If this fails, create a new virtual register in the
    471   /// correct class and COPY the value there.
    472   unsigned constrainOperandRegClass(const MCInstrDesc &II, unsigned Op,
    473                                     unsigned OpNum);
    474 
    475   /// \brief Emit a constant in a register using target-specific logic, such as
    476   /// constant pool loads.
    477   virtual unsigned fastMaterializeConstant(const Constant *C) { return 0; }
    478 
    479   /// \brief Emit an alloca address in a register using target-specific logic.
    480   virtual unsigned fastMaterializeAlloca(const AllocaInst *C) { return 0; }
    481 
    482   /// \brief Emit the floating-point constant +0.0 in a register using target-
    483   /// specific logic.
    484   virtual unsigned fastMaterializeFloatZero(const ConstantFP *CF) {
    485     return 0;
    486   }
    487 
    488   /// \brief Check if \c Add is an add that can be safely folded into \c GEP.
    489   ///
    490   /// \c Add can be folded into \c GEP if:
    491   /// - \c Add is an add,
    492   /// - \c Add's size matches \c GEP's,
    493   /// - \c Add is in the same basic block as \c GEP, and
    494   /// - \c Add has a constant operand.
    495   bool canFoldAddIntoGEP(const User *GEP, const Value *Add);
    496 
    497   /// \brief Test whether the given value has exactly one use.
    498   bool hasTrivialKill(const Value *V);
    499 
    500   /// \brief Create a machine mem operand from the given instruction.
    501   MachineMemOperand *createMachineMemOperandFor(const Instruction *I) const;
    502 
    503   CmpInst::Predicate optimizeCmpPredicate(const CmpInst *CI) const;
    504 
    505   bool lowerCallTo(const CallInst *CI, MCSymbol *Symbol, unsigned NumArgs);
    506   bool lowerCallTo(const CallInst *CI, const char *SymbolName,
    507                    unsigned NumArgs);
    508   bool lowerCallTo(CallLoweringInfo &CLI);
    509 
    510   bool isCommutativeIntrinsic(IntrinsicInst const *II) {
    511     switch (II->getIntrinsicID()) {
    512     case Intrinsic::sadd_with_overflow:
    513     case Intrinsic::uadd_with_overflow:
    514     case Intrinsic::smul_with_overflow:
    515     case Intrinsic::umul_with_overflow:
    516       return true;
    517     default:
    518       return false;
    519     }
    520   }
    521 
    522 
    523   bool lowerCall(const CallInst *I);
    524   /// \brief Select and emit code for a binary operator instruction, which has
    525   /// an opcode which directly corresponds to the given ISD opcode.
    526   bool selectBinaryOp(const User *I, unsigned ISDOpcode);
    527   bool selectFNeg(const User *I);
    528   bool selectGetElementPtr(const User *I);
    529   bool selectStackmap(const CallInst *I);
    530   bool selectPatchpoint(const CallInst *I);
    531   bool selectCall(const User *Call);
    532   bool selectIntrinsicCall(const IntrinsicInst *II);
    533   bool selectBitCast(const User *I);
    534   bool selectCast(const User *I, unsigned Opcode);
    535   bool selectExtractValue(const User *I);
    536   bool selectInsertValue(const User *I);
    537 
    538 private:
    539   /// \brief Handle PHI nodes in successor blocks.
    540   ///
    541   /// Emit code to ensure constants are copied into registers when needed.
    542   /// Remember the virtual registers that need to be added to the Machine PHI
    543   /// nodes as input.  We cannot just directly add them, because expansion might
    544   /// result in multiple MBB's for one BB.  As such, the start of the BB might
    545   /// correspond to a different MBB than the end.
    546   bool handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB);
    547 
    548   /// \brief Helper for materializeRegForValue to materialize a constant in a
    549   /// target-independent way.
    550   unsigned materializeConstant(const Value *V, MVT VT);
    551 
    552   /// \brief Helper for getRegForVale. This function is called when the value
    553   /// isn't already available in a register and must be materialized with new
    554   /// instructions.
    555   unsigned materializeRegForValue(const Value *V, MVT VT);
    556 
    557   /// \brief Clears LocalValueMap and moves the area for the new local variables
    558   /// to the beginning of the block. It helps to avoid spilling cached variables
    559   /// across heavy instructions like calls.
    560   void flushLocalValueMap();
    561 
    562   /// \brief Removes dead local value instructions after SavedLastLocalvalue.
    563   void removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue);
    564 
    565   /// \brief Insertion point before trying to select the current instruction.
    566   MachineBasicBlock::iterator SavedInsertPt;
    567 
    568   /// \brief Add a stackmap or patchpoint intrinsic call's live variable
    569   /// operands to a stackmap or patchpoint machine instruction.
    570   bool addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
    571                            const CallInst *CI, unsigned StartIdx);
    572   bool lowerCallOperands(const CallInst *CI, unsigned ArgIdx, unsigned NumArgs,
    573                          const Value *Callee, bool ForceRetVoidTy,
    574                          CallLoweringInfo &CLI);
    575 };
    576 
    577 } // end namespace llvm
    578 
    579 #endif
    580