1 //===-- FastISel.cpp - Implementation of the FastISel class ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the FastISel class. 11 // 12 // "Fast" instruction selection is designed to emit very poor code quickly. 13 // Also, it is not designed to be able to do much lowering, so most illegal 14 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is 15 // also not intended to be able to do much optimization, except in a few cases 16 // where doing optimizations reduces overall compile time. For example, folding 17 // constants into immediate fields is often done, because it's cheap and it 18 // reduces the number of instructions later phases have to examine. 19 // 20 // "Fast" instruction selection is able to fail gracefully and transfer 21 // control to the SelectionDAG selector for operations that it doesn't 22 // support. In many cases, this allows us to avoid duplicating a lot of 23 // the complicated lowering logic that SelectionDAG currently has. 24 // 25 // The intended use for "fast" instruction selection is "-O0" mode 26 // compilation, where the quality of the generated code is irrelevant when 27 // weighed against the speed at which the code can be generated. Also, 28 // at -O0, the LLVM optimizers are not running, and this makes the 29 // compile time of codegen a much higher portion of the overall compile 30 // time. Despite its limitations, "fast" instruction selection is able to 31 // handle enough code on its own to provide noticeable overall speedups 32 // in -O0 compiles. 33 // 34 // Basic operations are supported in a target-independent way, by reading 35 // the same instruction descriptions that the SelectionDAG selector reads, 36 // and identifying simple arithmetic operations that can be directly selected 37 // from simple operators. More complicated operations currently require 38 // target-specific code. 39 // 40 //===----------------------------------------------------------------------===// 41 42 #include "llvm/CodeGen/Analysis.h" 43 #include "llvm/ADT/Optional.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/Analysis/BranchProbabilityInfo.h" 46 #include "llvm/Analysis/Loads.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/CodeGen/Analysis.h" 49 #include "llvm/CodeGen/FastISel.h" 50 #include "llvm/CodeGen/FunctionLoweringInfo.h" 51 #include "llvm/CodeGen/MachineFrameInfo.h" 52 #include "llvm/CodeGen/MachineInstrBuilder.h" 53 #include "llvm/CodeGen/MachineModuleInfo.h" 54 #include "llvm/CodeGen/MachineRegisterInfo.h" 55 #include "llvm/CodeGen/StackMaps.h" 56 #include "llvm/IR/DataLayout.h" 57 #include "llvm/IR/DebugInfo.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/GlobalVariable.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Mangler.h" 63 #include "llvm/IR/Operator.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetInstrInfo.h" 68 #include "llvm/Target/TargetLowering.h" 69 #include "llvm/Target/TargetMachine.h" 70 #include "llvm/Target/TargetSubtargetInfo.h" 71 using namespace llvm; 72 73 #define DEBUG_TYPE "isel" 74 75 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " 76 "target-independent selector"); 77 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " 78 "target-specific selector"); 79 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); 80 81 void FastISel::ArgListEntry::setAttributes(ImmutableCallSite *CS, 82 unsigned AttrIdx) { 83 IsSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt); 84 IsZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt); 85 IsInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg); 86 IsSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet); 87 IsNest = CS->paramHasAttr(AttrIdx, Attribute::Nest); 88 IsByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal); 89 IsInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca); 90 IsReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned); 91 Alignment = CS->getParamAlignment(AttrIdx); 92 } 93 94 /// Set the current block to which generated machine instructions will be 95 /// appended, and clear the local CSE map. 96 void FastISel::startNewBlock() { 97 LocalValueMap.clear(); 98 99 // Instructions are appended to FuncInfo.MBB. If the basic block already 100 // contains labels or copies, use the last instruction as the last local 101 // value. 102 EmitStartPt = nullptr; 103 if (!FuncInfo.MBB->empty()) 104 EmitStartPt = &FuncInfo.MBB->back(); 105 LastLocalValue = EmitStartPt; 106 } 107 108 bool FastISel::lowerArguments() { 109 if (!FuncInfo.CanLowerReturn) 110 // Fallback to SDISel argument lowering code to deal with sret pointer 111 // parameter. 112 return false; 113 114 if (!fastLowerArguments()) 115 return false; 116 117 // Enter arguments into ValueMap for uses in non-entry BBs. 118 for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(), 119 E = FuncInfo.Fn->arg_end(); 120 I != E; ++I) { 121 DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(&*I); 122 assert(VI != LocalValueMap.end() && "Missed an argument?"); 123 FuncInfo.ValueMap[&*I] = VI->second; 124 } 125 return true; 126 } 127 128 void FastISel::flushLocalValueMap() { 129 LocalValueMap.clear(); 130 LastLocalValue = EmitStartPt; 131 recomputeInsertPt(); 132 SavedInsertPt = FuncInfo.InsertPt; 133 } 134 135 bool FastISel::hasTrivialKill(const Value *V) { 136 // Don't consider constants or arguments to have trivial kills. 137 const Instruction *I = dyn_cast<Instruction>(V); 138 if (!I) 139 return false; 140 141 // No-op casts are trivially coalesced by fast-isel. 142 if (const auto *Cast = dyn_cast<CastInst>(I)) 143 if (Cast->isNoopCast(DL.getIntPtrType(Cast->getContext())) && 144 !hasTrivialKill(Cast->getOperand(0))) 145 return false; 146 147 // Even the value might have only one use in the LLVM IR, it is possible that 148 // FastISel might fold the use into another instruction and now there is more 149 // than one use at the Machine Instruction level. 150 unsigned Reg = lookUpRegForValue(V); 151 if (Reg && !MRI.use_empty(Reg)) 152 return false; 153 154 // GEPs with all zero indices are trivially coalesced by fast-isel. 155 if (const auto *GEP = dyn_cast<GetElementPtrInst>(I)) 156 if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0))) 157 return false; 158 159 // Only instructions with a single use in the same basic block are considered 160 // to have trivial kills. 161 return I->hasOneUse() && 162 !(I->getOpcode() == Instruction::BitCast || 163 I->getOpcode() == Instruction::PtrToInt || 164 I->getOpcode() == Instruction::IntToPtr) && 165 cast<Instruction>(*I->user_begin())->getParent() == I->getParent(); 166 } 167 168 unsigned FastISel::getRegForValue(const Value *V) { 169 EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true); 170 // Don't handle non-simple values in FastISel. 171 if (!RealVT.isSimple()) 172 return 0; 173 174 // Ignore illegal types. We must do this before looking up the value 175 // in ValueMap because Arguments are given virtual registers regardless 176 // of whether FastISel can handle them. 177 MVT VT = RealVT.getSimpleVT(); 178 if (!TLI.isTypeLegal(VT)) { 179 // Handle integer promotions, though, because they're common and easy. 180 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 181 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); 182 else 183 return 0; 184 } 185 186 // Look up the value to see if we already have a register for it. 187 unsigned Reg = lookUpRegForValue(V); 188 if (Reg) 189 return Reg; 190 191 // In bottom-up mode, just create the virtual register which will be used 192 // to hold the value. It will be materialized later. 193 if (isa<Instruction>(V) && 194 (!isa<AllocaInst>(V) || 195 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) 196 return FuncInfo.InitializeRegForValue(V); 197 198 SavePoint SaveInsertPt = enterLocalValueArea(); 199 200 // Materialize the value in a register. Emit any instructions in the 201 // local value area. 202 Reg = materializeRegForValue(V, VT); 203 204 leaveLocalValueArea(SaveInsertPt); 205 206 return Reg; 207 } 208 209 unsigned FastISel::materializeConstant(const Value *V, MVT VT) { 210 unsigned Reg = 0; 211 if (const auto *CI = dyn_cast<ConstantInt>(V)) { 212 if (CI->getValue().getActiveBits() <= 64) 213 Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 214 } else if (isa<AllocaInst>(V)) 215 Reg = fastMaterializeAlloca(cast<AllocaInst>(V)); 216 else if (isa<ConstantPointerNull>(V)) 217 // Translate this as an integer zero so that it can be 218 // local-CSE'd with actual integer zeros. 219 Reg = getRegForValue( 220 Constant::getNullValue(DL.getIntPtrType(V->getContext()))); 221 else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 222 if (CF->isNullValue()) 223 Reg = fastMaterializeFloatZero(CF); 224 else 225 // Try to emit the constant directly. 226 Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF); 227 228 if (!Reg) { 229 // Try to emit the constant by using an integer constant with a cast. 230 const APFloat &Flt = CF->getValueAPF(); 231 EVT IntVT = TLI.getPointerTy(DL); 232 233 uint64_t x[2]; 234 uint32_t IntBitWidth = IntVT.getSizeInBits(); 235 bool isExact; 236 (void)Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true, 237 APFloat::rmTowardZero, &isExact); 238 if (isExact) { 239 APInt IntVal(IntBitWidth, x); 240 241 unsigned IntegerReg = 242 getRegForValue(ConstantInt::get(V->getContext(), IntVal)); 243 if (IntegerReg != 0) 244 Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg, 245 /*Kill=*/false); 246 } 247 } 248 } else if (const auto *Op = dyn_cast<Operator>(V)) { 249 if (!selectOperator(Op, Op->getOpcode())) 250 if (!isa<Instruction>(Op) || 251 !fastSelectInstruction(cast<Instruction>(Op))) 252 return 0; 253 Reg = lookUpRegForValue(Op); 254 } else if (isa<UndefValue>(V)) { 255 Reg = createResultReg(TLI.getRegClassFor(VT)); 256 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 257 TII.get(TargetOpcode::IMPLICIT_DEF), Reg); 258 } 259 return Reg; 260 } 261 262 /// Helper for getRegForValue. This function is called when the value isn't 263 /// already available in a register and must be materialized with new 264 /// instructions. 265 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) { 266 unsigned Reg = 0; 267 // Give the target-specific code a try first. 268 if (isa<Constant>(V)) 269 Reg = fastMaterializeConstant(cast<Constant>(V)); 270 271 // If target-specific code couldn't or didn't want to handle the value, then 272 // give target-independent code a try. 273 if (!Reg) 274 Reg = materializeConstant(V, VT); 275 276 // Don't cache constant materializations in the general ValueMap. 277 // To do so would require tracking what uses they dominate. 278 if (Reg) { 279 LocalValueMap[V] = Reg; 280 LastLocalValue = MRI.getVRegDef(Reg); 281 } 282 return Reg; 283 } 284 285 unsigned FastISel::lookUpRegForValue(const Value *V) { 286 // Look up the value to see if we already have a register for it. We 287 // cache values defined by Instructions across blocks, and other values 288 // only locally. This is because Instructions already have the SSA 289 // def-dominates-use requirement enforced. 290 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V); 291 if (I != FuncInfo.ValueMap.end()) 292 return I->second; 293 return LocalValueMap[V]; 294 } 295 296 void FastISel::updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) { 297 if (!isa<Instruction>(I)) { 298 LocalValueMap[I] = Reg; 299 return; 300 } 301 302 unsigned &AssignedReg = FuncInfo.ValueMap[I]; 303 if (AssignedReg == 0) 304 // Use the new register. 305 AssignedReg = Reg; 306 else if (Reg != AssignedReg) { 307 // Arrange for uses of AssignedReg to be replaced by uses of Reg. 308 for (unsigned i = 0; i < NumRegs; i++) 309 FuncInfo.RegFixups[AssignedReg + i] = Reg + i; 310 311 AssignedReg = Reg; 312 } 313 } 314 315 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) { 316 unsigned IdxN = getRegForValue(Idx); 317 if (IdxN == 0) 318 // Unhandled operand. Halt "fast" selection and bail. 319 return std::pair<unsigned, bool>(0, false); 320 321 bool IdxNIsKill = hasTrivialKill(Idx); 322 323 // If the index is smaller or larger than intptr_t, truncate or extend it. 324 MVT PtrVT = TLI.getPointerTy(DL); 325 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); 326 if (IdxVT.bitsLT(PtrVT)) { 327 IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN, 328 IdxNIsKill); 329 IdxNIsKill = true; 330 } else if (IdxVT.bitsGT(PtrVT)) { 331 IdxN = 332 fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill); 333 IdxNIsKill = true; 334 } 335 return std::pair<unsigned, bool>(IdxN, IdxNIsKill); 336 } 337 338 void FastISel::recomputeInsertPt() { 339 if (getLastLocalValue()) { 340 FuncInfo.InsertPt = getLastLocalValue(); 341 FuncInfo.MBB = FuncInfo.InsertPt->getParent(); 342 ++FuncInfo.InsertPt; 343 } else 344 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); 345 346 // Now skip past any EH_LABELs, which must remain at the beginning. 347 while (FuncInfo.InsertPt != FuncInfo.MBB->end() && 348 FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL) 349 ++FuncInfo.InsertPt; 350 } 351 352 void FastISel::removeDeadCode(MachineBasicBlock::iterator I, 353 MachineBasicBlock::iterator E) { 354 assert(I && E && std::distance(I, E) > 0 && "Invalid iterator!"); 355 while (I != E) { 356 MachineInstr *Dead = &*I; 357 ++I; 358 Dead->eraseFromParent(); 359 ++NumFastIselDead; 360 } 361 recomputeInsertPt(); 362 } 363 364 FastISel::SavePoint FastISel::enterLocalValueArea() { 365 MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt; 366 DebugLoc OldDL = DbgLoc; 367 recomputeInsertPt(); 368 DbgLoc = DebugLoc(); 369 SavePoint SP = {OldInsertPt, OldDL}; 370 return SP; 371 } 372 373 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { 374 if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) 375 LastLocalValue = std::prev(FuncInfo.InsertPt); 376 377 // Restore the previous insert position. 378 FuncInfo.InsertPt = OldInsertPt.InsertPt; 379 DbgLoc = OldInsertPt.DL; 380 } 381 382 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) { 383 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); 384 if (VT == MVT::Other || !VT.isSimple()) 385 // Unhandled type. Halt "fast" selection and bail. 386 return false; 387 388 // We only handle legal types. For example, on x86-32 the instruction 389 // selector contains all of the 64-bit instructions from x86-64, 390 // under the assumption that i64 won't be used if the target doesn't 391 // support it. 392 if (!TLI.isTypeLegal(VT)) { 393 // MVT::i1 is special. Allow AND, OR, or XOR because they 394 // don't require additional zeroing, which makes them easy. 395 if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || 396 ISDOpcode == ISD::XOR)) 397 VT = TLI.getTypeToTransformTo(I->getContext(), VT); 398 else 399 return false; 400 } 401 402 // Check if the first operand is a constant, and handle it as "ri". At -O0, 403 // we don't have anything that canonicalizes operand order. 404 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0))) 405 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) { 406 unsigned Op1 = getRegForValue(I->getOperand(1)); 407 if (!Op1) 408 return false; 409 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 410 411 unsigned ResultReg = 412 fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill, 413 CI->getZExtValue(), VT.getSimpleVT()); 414 if (!ResultReg) 415 return false; 416 417 // We successfully emitted code for the given LLVM Instruction. 418 updateValueMap(I, ResultReg); 419 return true; 420 } 421 422 unsigned Op0 = getRegForValue(I->getOperand(0)); 423 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 424 return false; 425 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 426 427 // Check if the second operand is a constant and handle it appropriately. 428 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 429 uint64_t Imm = CI->getSExtValue(); 430 431 // Transform "sdiv exact X, 8" -> "sra X, 3". 432 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) && 433 cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) { 434 Imm = Log2_64(Imm); 435 ISDOpcode = ISD::SRA; 436 } 437 438 // Transform "urem x, pow2" -> "and x, pow2-1". 439 if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) && 440 isPowerOf2_64(Imm)) { 441 --Imm; 442 ISDOpcode = ISD::AND; 443 } 444 445 unsigned ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, 446 Op0IsKill, Imm, VT.getSimpleVT()); 447 if (!ResultReg) 448 return false; 449 450 // We successfully emitted code for the given LLVM Instruction. 451 updateValueMap(I, ResultReg); 452 return true; 453 } 454 455 // Check if the second operand is a constant float. 456 if (const auto *CF = dyn_cast<ConstantFP>(I->getOperand(1))) { 457 unsigned ResultReg = fastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(), 458 ISDOpcode, Op0, Op0IsKill, CF); 459 if (ResultReg) { 460 // We successfully emitted code for the given LLVM Instruction. 461 updateValueMap(I, ResultReg); 462 return true; 463 } 464 } 465 466 unsigned Op1 = getRegForValue(I->getOperand(1)); 467 if (!Op1) // Unhandled operand. Halt "fast" selection and bail. 468 return false; 469 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 470 471 // Now we have both operands in registers. Emit the instruction. 472 unsigned ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), 473 ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill); 474 if (!ResultReg) 475 // Target-specific code wasn't able to find a machine opcode for 476 // the given ISD opcode and type. Halt "fast" selection and bail. 477 return false; 478 479 // We successfully emitted code for the given LLVM Instruction. 480 updateValueMap(I, ResultReg); 481 return true; 482 } 483 484 bool FastISel::selectGetElementPtr(const User *I) { 485 unsigned N = getRegForValue(I->getOperand(0)); 486 if (!N) // Unhandled operand. Halt "fast" selection and bail. 487 return false; 488 bool NIsKill = hasTrivialKill(I->getOperand(0)); 489 490 // Keep a running tab of the total offset to coalesce multiple N = N + Offset 491 // into a single N = N + TotalOffset. 492 uint64_t TotalOffs = 0; 493 // FIXME: What's a good SWAG number for MaxOffs? 494 uint64_t MaxOffs = 2048; 495 Type *Ty = I->getOperand(0)->getType(); 496 MVT VT = TLI.getPointerTy(DL); 497 for (GetElementPtrInst::const_op_iterator OI = I->op_begin() + 1, 498 E = I->op_end(); 499 OI != E; ++OI) { 500 const Value *Idx = *OI; 501 if (auto *StTy = dyn_cast<StructType>(Ty)) { 502 uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue(); 503 if (Field) { 504 // N = N + Offset 505 TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field); 506 if (TotalOffs >= MaxOffs) { 507 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 508 if (!N) // Unhandled operand. Halt "fast" selection and bail. 509 return false; 510 NIsKill = true; 511 TotalOffs = 0; 512 } 513 } 514 Ty = StTy->getElementType(Field); 515 } else { 516 Ty = cast<SequentialType>(Ty)->getElementType(); 517 518 // If this is a constant subscript, handle it quickly. 519 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 520 if (CI->isZero()) 521 continue; 522 // N = N + Offset 523 uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue(); 524 TotalOffs += DL.getTypeAllocSize(Ty) * IdxN; 525 if (TotalOffs >= MaxOffs) { 526 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 527 if (!N) // Unhandled operand. Halt "fast" selection and bail. 528 return false; 529 NIsKill = true; 530 TotalOffs = 0; 531 } 532 continue; 533 } 534 if (TotalOffs) { 535 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 536 if (!N) // Unhandled operand. Halt "fast" selection and bail. 537 return false; 538 NIsKill = true; 539 TotalOffs = 0; 540 } 541 542 // N = N + Idx * ElementSize; 543 uint64_t ElementSize = DL.getTypeAllocSize(Ty); 544 std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx); 545 unsigned IdxN = Pair.first; 546 bool IdxNIsKill = Pair.second; 547 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 548 return false; 549 550 if (ElementSize != 1) { 551 IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT); 552 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 553 return false; 554 IdxNIsKill = true; 555 } 556 N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill); 557 if (!N) // Unhandled operand. Halt "fast" selection and bail. 558 return false; 559 } 560 } 561 if (TotalOffs) { 562 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 563 if (!N) // Unhandled operand. Halt "fast" selection and bail. 564 return false; 565 } 566 567 // We successfully emitted code for the given LLVM Instruction. 568 updateValueMap(I, N); 569 return true; 570 } 571 572 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops, 573 const CallInst *CI, unsigned StartIdx) { 574 for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) { 575 Value *Val = CI->getArgOperand(i); 576 // Check for constants and encode them with a StackMaps::ConstantOp prefix. 577 if (const auto *C = dyn_cast<ConstantInt>(Val)) { 578 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 579 Ops.push_back(MachineOperand::CreateImm(C->getSExtValue())); 580 } else if (isa<ConstantPointerNull>(Val)) { 581 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 582 Ops.push_back(MachineOperand::CreateImm(0)); 583 } else if (auto *AI = dyn_cast<AllocaInst>(Val)) { 584 // Values coming from a stack location also require a sepcial encoding, 585 // but that is added later on by the target specific frame index 586 // elimination implementation. 587 auto SI = FuncInfo.StaticAllocaMap.find(AI); 588 if (SI != FuncInfo.StaticAllocaMap.end()) 589 Ops.push_back(MachineOperand::CreateFI(SI->second)); 590 else 591 return false; 592 } else { 593 unsigned Reg = getRegForValue(Val); 594 if (!Reg) 595 return false; 596 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 597 } 598 } 599 return true; 600 } 601 602 bool FastISel::selectStackmap(const CallInst *I) { 603 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 604 // [live variables...]) 605 assert(I->getCalledFunction()->getReturnType()->isVoidTy() && 606 "Stackmap cannot return a value."); 607 608 // The stackmap intrinsic only records the live variables (the arguments 609 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 610 // intrinsic, this won't be lowered to a function call. This means we don't 611 // have to worry about calling conventions and target-specific lowering code. 612 // Instead we perform the call lowering right here. 613 // 614 // CALLSEQ_START(0...) 615 // STACKMAP(id, nbytes, ...) 616 // CALLSEQ_END(0, 0) 617 // 618 SmallVector<MachineOperand, 32> Ops; 619 620 // Add the <id> and <numBytes> constants. 621 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 622 "Expected a constant integer."); 623 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 624 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 625 626 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 627 "Expected a constant integer."); 628 const auto *NumBytes = 629 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 630 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 631 632 // Push live variables for the stack map (skipping the first two arguments 633 // <id> and <numBytes>). 634 if (!addStackMapLiveVars(Ops, I, 2)) 635 return false; 636 637 // We are not adding any register mask info here, because the stackmap doesn't 638 // clobber anything. 639 640 // Add scratch registers as implicit def and early clobber. 641 CallingConv::ID CC = I->getCallingConv(); 642 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 643 for (unsigned i = 0; ScratchRegs[i]; ++i) 644 Ops.push_back(MachineOperand::CreateReg( 645 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false, 646 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true)); 647 648 // Issue CALLSEQ_START 649 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 650 auto Builder = 651 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown)); 652 const MCInstrDesc &MCID = Builder.getInstr()->getDesc(); 653 for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I) 654 Builder.addImm(0); 655 656 // Issue STACKMAP. 657 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 658 TII.get(TargetOpcode::STACKMAP)); 659 for (auto const &MO : Ops) 660 MIB.addOperand(MO); 661 662 // Issue CALLSEQ_END 663 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 664 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp)) 665 .addImm(0) 666 .addImm(0); 667 668 // Inform the Frame Information that we have a stackmap in this function. 669 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 670 671 return true; 672 } 673 674 /// \brief Lower an argument list according to the target calling convention. 675 /// 676 /// This is a helper for lowering intrinsics that follow a target calling 677 /// convention or require stack pointer adjustment. Only a subset of the 678 /// intrinsic's operands need to participate in the calling convention. 679 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx, 680 unsigned NumArgs, const Value *Callee, 681 bool ForceRetVoidTy, CallLoweringInfo &CLI) { 682 ArgListTy Args; 683 Args.reserve(NumArgs); 684 685 // Populate the argument list. 686 // Attributes for args start at offset 1, after the return attribute. 687 ImmutableCallSite CS(CI); 688 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 689 ArgI != ArgE; ++ArgI) { 690 Value *V = CI->getOperand(ArgI); 691 692 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 693 694 ArgListEntry Entry; 695 Entry.Val = V; 696 Entry.Ty = V->getType(); 697 Entry.setAttributes(&CS, AttrI); 698 Args.push_back(Entry); 699 } 700 701 Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext()) 702 : CI->getType(); 703 CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs); 704 705 return lowerCallTo(CLI); 706 } 707 708 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee( 709 const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy, 710 const char *Target, ArgListTy &&ArgsList, unsigned FixedArgs) { 711 SmallString<32> MangledName; 712 Mangler::getNameWithPrefix(MangledName, Target, DL); 713 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 714 return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs); 715 } 716 717 bool FastISel::selectPatchpoint(const CallInst *I) { 718 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 719 // i32 <numBytes>, 720 // i8* <target>, 721 // i32 <numArgs>, 722 // [Args...], 723 // [live variables...]) 724 CallingConv::ID CC = I->getCallingConv(); 725 bool IsAnyRegCC = CC == CallingConv::AnyReg; 726 bool HasDef = !I->getType()->isVoidTy(); 727 Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts(); 728 729 // Get the real number of arguments participating in the call <numArgs> 730 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) && 731 "Expected a constant integer."); 732 const auto *NumArgsVal = 733 cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)); 734 unsigned NumArgs = NumArgsVal->getZExtValue(); 735 736 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 737 // This includes all meta-operands up to but not including CC. 738 unsigned NumMetaOpers = PatchPointOpers::CCPos; 739 assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs && 740 "Not enough arguments provided to the patchpoint intrinsic"); 741 742 // For AnyRegCC the arguments are lowered later on manually. 743 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 744 CallLoweringInfo CLI; 745 CLI.setIsPatchPoint(); 746 if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI)) 747 return false; 748 749 assert(CLI.Call && "No call instruction specified."); 750 751 SmallVector<MachineOperand, 32> Ops; 752 753 // Add an explicit result reg if we use the anyreg calling convention. 754 if (IsAnyRegCC && HasDef) { 755 assert(CLI.NumResultRegs == 0 && "Unexpected result register."); 756 CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64)); 757 CLI.NumResultRegs = 1; 758 Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*IsDef=*/true)); 759 } 760 761 // Add the <id> and <numBytes> constants. 762 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 763 "Expected a constant integer."); 764 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 765 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 766 767 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 768 "Expected a constant integer."); 769 const auto *NumBytes = 770 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 771 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 772 773 // Add the call target. 774 if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) { 775 uint64_t CalleeConstAddr = 776 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 777 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 778 } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) { 779 if (C->getOpcode() == Instruction::IntToPtr) { 780 uint64_t CalleeConstAddr = 781 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 782 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 783 } else 784 llvm_unreachable("Unsupported ConstantExpr."); 785 } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) { 786 Ops.push_back(MachineOperand::CreateGA(GV, 0)); 787 } else if (isa<ConstantPointerNull>(Callee)) 788 Ops.push_back(MachineOperand::CreateImm(0)); 789 else 790 llvm_unreachable("Unsupported callee address."); 791 792 // Adjust <numArgs> to account for any arguments that have been passed on 793 // the stack instead. 794 unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size(); 795 Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs)); 796 797 // Add the calling convention 798 Ops.push_back(MachineOperand::CreateImm((unsigned)CC)); 799 800 // Add the arguments we omitted previously. The register allocator should 801 // place these in any free register. 802 if (IsAnyRegCC) { 803 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) { 804 unsigned Reg = getRegForValue(I->getArgOperand(i)); 805 if (!Reg) 806 return false; 807 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 808 } 809 } 810 811 // Push the arguments from the call instruction. 812 for (auto Reg : CLI.OutRegs) 813 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 814 815 // Push live variables for the stack map. 816 if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs)) 817 return false; 818 819 // Push the register mask info. 820 Ops.push_back(MachineOperand::CreateRegMask( 821 TRI.getCallPreservedMask(*FuncInfo.MF, CC))); 822 823 // Add scratch registers as implicit def and early clobber. 824 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 825 for (unsigned i = 0; ScratchRegs[i]; ++i) 826 Ops.push_back(MachineOperand::CreateReg( 827 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false, 828 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true)); 829 830 // Add implicit defs (return values). 831 for (auto Reg : CLI.InRegs) 832 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/true, 833 /*IsImpl=*/true)); 834 835 // Insert the patchpoint instruction before the call generated by the target. 836 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc, 837 TII.get(TargetOpcode::PATCHPOINT)); 838 839 for (auto &MO : Ops) 840 MIB.addOperand(MO); 841 842 MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI); 843 844 // Delete the original call instruction. 845 CLI.Call->eraseFromParent(); 846 847 // Inform the Frame Information that we have a patchpoint in this function. 848 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 849 850 if (CLI.NumResultRegs) 851 updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs); 852 return true; 853 } 854 855 /// Returns an AttributeSet representing the attributes applied to the return 856 /// value of the given call. 857 static AttributeSet getReturnAttrs(FastISel::CallLoweringInfo &CLI) { 858 SmallVector<Attribute::AttrKind, 2> Attrs; 859 if (CLI.RetSExt) 860 Attrs.push_back(Attribute::SExt); 861 if (CLI.RetZExt) 862 Attrs.push_back(Attribute::ZExt); 863 if (CLI.IsInReg) 864 Attrs.push_back(Attribute::InReg); 865 866 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 867 Attrs); 868 } 869 870 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName, 871 unsigned NumArgs) { 872 MCContext &Ctx = MF->getContext(); 873 SmallString<32> MangledName; 874 Mangler::getNameWithPrefix(MangledName, SymName, DL); 875 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 876 return lowerCallTo(CI, Sym, NumArgs); 877 } 878 879 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol, 880 unsigned NumArgs) { 881 ImmutableCallSite CS(CI); 882 883 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 884 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 885 Type *RetTy = FTy->getReturnType(); 886 887 ArgListTy Args; 888 Args.reserve(NumArgs); 889 890 // Populate the argument list. 891 // Attributes for args start at offset 1, after the return attribute. 892 for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) { 893 Value *V = CI->getOperand(ArgI); 894 895 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 896 897 ArgListEntry Entry; 898 Entry.Val = V; 899 Entry.Ty = V->getType(); 900 Entry.setAttributes(&CS, ArgI + 1); 901 Args.push_back(Entry); 902 } 903 904 CallLoweringInfo CLI; 905 CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), CS, NumArgs); 906 907 return lowerCallTo(CLI); 908 } 909 910 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) { 911 // Handle the incoming return values from the call. 912 CLI.clearIns(); 913 SmallVector<EVT, 4> RetTys; 914 ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys); 915 916 SmallVector<ISD::OutputArg, 4> Outs; 917 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL); 918 919 bool CanLowerReturn = TLI.CanLowerReturn( 920 CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 921 922 // FIXME: sret demotion isn't supported yet - bail out. 923 if (!CanLowerReturn) 924 return false; 925 926 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 927 EVT VT = RetTys[I]; 928 MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT); 929 unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT); 930 for (unsigned i = 0; i != NumRegs; ++i) { 931 ISD::InputArg MyFlags; 932 MyFlags.VT = RegisterVT; 933 MyFlags.ArgVT = VT; 934 MyFlags.Used = CLI.IsReturnValueUsed; 935 if (CLI.RetSExt) 936 MyFlags.Flags.setSExt(); 937 if (CLI.RetZExt) 938 MyFlags.Flags.setZExt(); 939 if (CLI.IsInReg) 940 MyFlags.Flags.setInReg(); 941 CLI.Ins.push_back(MyFlags); 942 } 943 } 944 945 // Handle all of the outgoing arguments. 946 CLI.clearOuts(); 947 for (auto &Arg : CLI.getArgs()) { 948 Type *FinalType = Arg.Ty; 949 if (Arg.IsByVal) 950 FinalType = cast<PointerType>(Arg.Ty)->getElementType(); 951 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 952 FinalType, CLI.CallConv, CLI.IsVarArg); 953 954 ISD::ArgFlagsTy Flags; 955 if (Arg.IsZExt) 956 Flags.setZExt(); 957 if (Arg.IsSExt) 958 Flags.setSExt(); 959 if (Arg.IsInReg) 960 Flags.setInReg(); 961 if (Arg.IsSRet) 962 Flags.setSRet(); 963 if (Arg.IsByVal) 964 Flags.setByVal(); 965 if (Arg.IsInAlloca) { 966 Flags.setInAlloca(); 967 // Set the byval flag for CCAssignFn callbacks that don't know about 968 // inalloca. This way we can know how many bytes we should've allocated 969 // and how many bytes a callee cleanup function will pop. If we port 970 // inalloca to more targets, we'll have to add custom inalloca handling in 971 // the various CC lowering callbacks. 972 Flags.setByVal(); 973 } 974 if (Arg.IsByVal || Arg.IsInAlloca) { 975 PointerType *Ty = cast<PointerType>(Arg.Ty); 976 Type *ElementTy = Ty->getElementType(); 977 unsigned FrameSize = DL.getTypeAllocSize(ElementTy); 978 // For ByVal, alignment should come from FE. BE will guess if this info is 979 // not there, but there are cases it cannot get right. 980 unsigned FrameAlign = Arg.Alignment; 981 if (!FrameAlign) 982 FrameAlign = TLI.getByValTypeAlignment(ElementTy, DL); 983 Flags.setByValSize(FrameSize); 984 Flags.setByValAlign(FrameAlign); 985 } 986 if (Arg.IsNest) 987 Flags.setNest(); 988 if (NeedsRegBlock) 989 Flags.setInConsecutiveRegs(); 990 unsigned OriginalAlignment = DL.getABITypeAlignment(Arg.Ty); 991 Flags.setOrigAlign(OriginalAlignment); 992 993 CLI.OutVals.push_back(Arg.Val); 994 CLI.OutFlags.push_back(Flags); 995 } 996 997 if (!fastLowerCall(CLI)) 998 return false; 999 1000 // Set all unused physreg defs as dead. 1001 assert(CLI.Call && "No call instruction specified."); 1002 CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI); 1003 1004 if (CLI.NumResultRegs && CLI.CS) 1005 updateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs); 1006 1007 return true; 1008 } 1009 1010 bool FastISel::lowerCall(const CallInst *CI) { 1011 ImmutableCallSite CS(CI); 1012 1013 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 1014 FunctionType *FuncTy = cast<FunctionType>(PT->getElementType()); 1015 Type *RetTy = FuncTy->getReturnType(); 1016 1017 ArgListTy Args; 1018 ArgListEntry Entry; 1019 Args.reserve(CS.arg_size()); 1020 1021 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 1022 i != e; ++i) { 1023 Value *V = *i; 1024 1025 // Skip empty types 1026 if (V->getType()->isEmptyTy()) 1027 continue; 1028 1029 Entry.Val = V; 1030 Entry.Ty = V->getType(); 1031 1032 // Skip the first return-type Attribute to get to params. 1033 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 1034 Args.push_back(Entry); 1035 } 1036 1037 // Check if target-independent constraints permit a tail call here. 1038 // Target-dependent constraints are checked within fastLowerCall. 1039 bool IsTailCall = CI->isTailCall(); 1040 if (IsTailCall && !isInTailCallPosition(CS, TM)) 1041 IsTailCall = false; 1042 1043 CallLoweringInfo CLI; 1044 CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS) 1045 .setTailCall(IsTailCall); 1046 1047 return lowerCallTo(CLI); 1048 } 1049 1050 bool FastISel::selectCall(const User *I) { 1051 const CallInst *Call = cast<CallInst>(I); 1052 1053 // Handle simple inline asms. 1054 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) { 1055 // If the inline asm has side effects, then make sure that no local value 1056 // lives across by flushing the local value map. 1057 if (IA->hasSideEffects()) 1058 flushLocalValueMap(); 1059 1060 // Don't attempt to handle constraints. 1061 if (!IA->getConstraintString().empty()) 1062 return false; 1063 1064 unsigned ExtraInfo = 0; 1065 if (IA->hasSideEffects()) 1066 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1067 if (IA->isAlignStack()) 1068 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 1069 1070 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1071 TII.get(TargetOpcode::INLINEASM)) 1072 .addExternalSymbol(IA->getAsmString().c_str()) 1073 .addImm(ExtraInfo); 1074 return true; 1075 } 1076 1077 MachineModuleInfo &MMI = FuncInfo.MF->getMMI(); 1078 ComputeUsesVAFloatArgument(*Call, &MMI); 1079 1080 // Handle intrinsic function calls. 1081 if (const auto *II = dyn_cast<IntrinsicInst>(Call)) 1082 return selectIntrinsicCall(II); 1083 1084 // Usually, it does not make sense to initialize a value, 1085 // make an unrelated function call and use the value, because 1086 // it tends to be spilled on the stack. So, we move the pointer 1087 // to the last local value to the beginning of the block, so that 1088 // all the values which have already been materialized, 1089 // appear after the call. It also makes sense to skip intrinsics 1090 // since they tend to be inlined. 1091 flushLocalValueMap(); 1092 1093 return lowerCall(Call); 1094 } 1095 1096 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) { 1097 switch (II->getIntrinsicID()) { 1098 default: 1099 break; 1100 // At -O0 we don't care about the lifetime intrinsics. 1101 case Intrinsic::lifetime_start: 1102 case Intrinsic::lifetime_end: 1103 // The donothing intrinsic does, well, nothing. 1104 case Intrinsic::donothing: 1105 return true; 1106 case Intrinsic::dbg_declare: { 1107 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); 1108 assert(DI->getVariable() && "Missing variable"); 1109 if (!FuncInfo.MF->getMMI().hasDebugInfo()) { 1110 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1111 return true; 1112 } 1113 1114 const Value *Address = DI->getAddress(); 1115 if (!Address || isa<UndefValue>(Address)) { 1116 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1117 return true; 1118 } 1119 1120 unsigned Offset = 0; 1121 Optional<MachineOperand> Op; 1122 if (const auto *Arg = dyn_cast<Argument>(Address)) 1123 // Some arguments' frame index is recorded during argument lowering. 1124 Offset = FuncInfo.getArgumentFrameIndex(Arg); 1125 if (Offset) 1126 Op = MachineOperand::CreateFI(Offset); 1127 if (!Op) 1128 if (unsigned Reg = lookUpRegForValue(Address)) 1129 Op = MachineOperand::CreateReg(Reg, false); 1130 1131 // If we have a VLA that has a "use" in a metadata node that's then used 1132 // here but it has no other uses, then we have a problem. E.g., 1133 // 1134 // int foo (const int *x) { 1135 // char a[*x]; 1136 // return 0; 1137 // } 1138 // 1139 // If we assign 'a' a vreg and fast isel later on has to use the selection 1140 // DAG isel, it will want to copy the value to the vreg. However, there are 1141 // no uses, which goes counter to what selection DAG isel expects. 1142 if (!Op && !Address->use_empty() && isa<Instruction>(Address) && 1143 (!isa<AllocaInst>(Address) || 1144 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address)))) 1145 Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address), 1146 false); 1147 1148 if (Op) { 1149 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 1150 "Expected inlined-at fields to agree"); 1151 if (Op->isReg()) { 1152 Op->setIsDebug(true); 1153 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1154 TII.get(TargetOpcode::DBG_VALUE), false, Op->getReg(), 0, 1155 DI->getVariable(), DI->getExpression()); 1156 } else 1157 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1158 TII.get(TargetOpcode::DBG_VALUE)) 1159 .addOperand(*Op) 1160 .addImm(0) 1161 .addMetadata(DI->getVariable()) 1162 .addMetadata(DI->getExpression()); 1163 } else { 1164 // We can't yet handle anything else here because it would require 1165 // generating code, thus altering codegen because of debug info. 1166 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1167 } 1168 return true; 1169 } 1170 case Intrinsic::dbg_value: { 1171 // This form of DBG_VALUE is target-independent. 1172 const DbgValueInst *DI = cast<DbgValueInst>(II); 1173 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 1174 const Value *V = DI->getValue(); 1175 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 1176 "Expected inlined-at fields to agree"); 1177 if (!V) { 1178 // Currently the optimizer can produce this; insert an undef to 1179 // help debugging. Probably the optimizer should not do this. 1180 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1181 .addReg(0U) 1182 .addImm(DI->getOffset()) 1183 .addMetadata(DI->getVariable()) 1184 .addMetadata(DI->getExpression()); 1185 } else if (const auto *CI = dyn_cast<ConstantInt>(V)) { 1186 if (CI->getBitWidth() > 64) 1187 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1188 .addCImm(CI) 1189 .addImm(DI->getOffset()) 1190 .addMetadata(DI->getVariable()) 1191 .addMetadata(DI->getExpression()); 1192 else 1193 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1194 .addImm(CI->getZExtValue()) 1195 .addImm(DI->getOffset()) 1196 .addMetadata(DI->getVariable()) 1197 .addMetadata(DI->getExpression()); 1198 } else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 1199 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1200 .addFPImm(CF) 1201 .addImm(DI->getOffset()) 1202 .addMetadata(DI->getVariable()) 1203 .addMetadata(DI->getExpression()); 1204 } else if (unsigned Reg = lookUpRegForValue(V)) { 1205 // FIXME: This does not handle register-indirect values at offset 0. 1206 bool IsIndirect = DI->getOffset() != 0; 1207 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg, 1208 DI->getOffset(), DI->getVariable(), DI->getExpression()); 1209 } else { 1210 // We can't yet handle anything else here because it would require 1211 // generating code, thus altering codegen because of debug info. 1212 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1213 } 1214 return true; 1215 } 1216 case Intrinsic::objectsize: { 1217 ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1)); 1218 unsigned long long Res = CI->isZero() ? -1ULL : 0; 1219 Constant *ResCI = ConstantInt::get(II->getType(), Res); 1220 unsigned ResultReg = getRegForValue(ResCI); 1221 if (!ResultReg) 1222 return false; 1223 updateValueMap(II, ResultReg); 1224 return true; 1225 } 1226 case Intrinsic::expect: { 1227 unsigned ResultReg = getRegForValue(II->getArgOperand(0)); 1228 if (!ResultReg) 1229 return false; 1230 updateValueMap(II, ResultReg); 1231 return true; 1232 } 1233 case Intrinsic::experimental_stackmap: 1234 return selectStackmap(II); 1235 case Intrinsic::experimental_patchpoint_void: 1236 case Intrinsic::experimental_patchpoint_i64: 1237 return selectPatchpoint(II); 1238 } 1239 1240 return fastLowerIntrinsicCall(II); 1241 } 1242 1243 bool FastISel::selectCast(const User *I, unsigned Opcode) { 1244 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1245 EVT DstVT = TLI.getValueType(DL, I->getType()); 1246 1247 if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other || 1248 !DstVT.isSimple()) 1249 // Unhandled type. Halt "fast" selection and bail. 1250 return false; 1251 1252 // Check if the destination type is legal. 1253 if (!TLI.isTypeLegal(DstVT)) 1254 return false; 1255 1256 // Check if the source operand is legal. 1257 if (!TLI.isTypeLegal(SrcVT)) 1258 return false; 1259 1260 unsigned InputReg = getRegForValue(I->getOperand(0)); 1261 if (!InputReg) 1262 // Unhandled operand. Halt "fast" selection and bail. 1263 return false; 1264 1265 bool InputRegIsKill = hasTrivialKill(I->getOperand(0)); 1266 1267 unsigned ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), 1268 Opcode, InputReg, InputRegIsKill); 1269 if (!ResultReg) 1270 return false; 1271 1272 updateValueMap(I, ResultReg); 1273 return true; 1274 } 1275 1276 bool FastISel::selectBitCast(const User *I) { 1277 // If the bitcast doesn't change the type, just use the operand value. 1278 if (I->getType() == I->getOperand(0)->getType()) { 1279 unsigned Reg = getRegForValue(I->getOperand(0)); 1280 if (!Reg) 1281 return false; 1282 updateValueMap(I, Reg); 1283 return true; 1284 } 1285 1286 // Bitcasts of other values become reg-reg copies or BITCAST operators. 1287 EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1288 EVT DstEVT = TLI.getValueType(DL, I->getType()); 1289 if (SrcEVT == MVT::Other || DstEVT == MVT::Other || 1290 !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT)) 1291 // Unhandled type. Halt "fast" selection and bail. 1292 return false; 1293 1294 MVT SrcVT = SrcEVT.getSimpleVT(); 1295 MVT DstVT = DstEVT.getSimpleVT(); 1296 unsigned Op0 = getRegForValue(I->getOperand(0)); 1297 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 1298 return false; 1299 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 1300 1301 // First, try to perform the bitcast by inserting a reg-reg copy. 1302 unsigned ResultReg = 0; 1303 if (SrcVT == DstVT) { 1304 const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT); 1305 const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT); 1306 // Don't attempt a cross-class copy. It will likely fail. 1307 if (SrcClass == DstClass) { 1308 ResultReg = createResultReg(DstClass); 1309 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1310 TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0); 1311 } 1312 } 1313 1314 // If the reg-reg copy failed, select a BITCAST opcode. 1315 if (!ResultReg) 1316 ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill); 1317 1318 if (!ResultReg) 1319 return false; 1320 1321 updateValueMap(I, ResultReg); 1322 return true; 1323 } 1324 1325 // Remove local value instructions starting from the instruction after 1326 // SavedLastLocalValue to the current function insert point. 1327 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue) 1328 { 1329 MachineInstr *CurLastLocalValue = getLastLocalValue(); 1330 if (CurLastLocalValue != SavedLastLocalValue) { 1331 // Find the first local value instruction to be deleted. 1332 // This is the instruction after SavedLastLocalValue if it is non-NULL. 1333 // Otherwise it's the first instruction in the block. 1334 MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue); 1335 if (SavedLastLocalValue) 1336 ++FirstDeadInst; 1337 else 1338 FirstDeadInst = FuncInfo.MBB->getFirstNonPHI(); 1339 setLastLocalValue(SavedLastLocalValue); 1340 removeDeadCode(FirstDeadInst, FuncInfo.InsertPt); 1341 } 1342 } 1343 1344 bool FastISel::selectInstruction(const Instruction *I) { 1345 MachineInstr *SavedLastLocalValue = getLastLocalValue(); 1346 // Just before the terminator instruction, insert instructions to 1347 // feed PHI nodes in successor blocks. 1348 if (isa<TerminatorInst>(I)) 1349 if (!handlePHINodesInSuccessorBlocks(I->getParent())) { 1350 // PHI node handling may have generated local value instructions, 1351 // even though it failed to handle all PHI nodes. 1352 // We remove these instructions because SelectionDAGISel will generate 1353 // them again. 1354 removeDeadLocalValueCode(SavedLastLocalValue); 1355 return false; 1356 } 1357 1358 DbgLoc = I->getDebugLoc(); 1359 1360 SavedInsertPt = FuncInfo.InsertPt; 1361 1362 if (const auto *Call = dyn_cast<CallInst>(I)) { 1363 const Function *F = Call->getCalledFunction(); 1364 LibFunc::Func Func; 1365 1366 // As a special case, don't handle calls to builtin library functions that 1367 // may be translated directly to target instructions. 1368 if (F && !F->hasLocalLinkage() && F->hasName() && 1369 LibInfo->getLibFunc(F->getName(), Func) && 1370 LibInfo->hasOptimizedCodeGen(Func)) 1371 return false; 1372 1373 // Don't handle Intrinsic::trap if a trap function is specified. 1374 if (F && F->getIntrinsicID() == Intrinsic::trap && 1375 Call->hasFnAttr("trap-func-name")) 1376 return false; 1377 } 1378 1379 // First, try doing target-independent selection. 1380 if (!SkipTargetIndependentISel) { 1381 if (selectOperator(I, I->getOpcode())) { 1382 ++NumFastIselSuccessIndependent; 1383 DbgLoc = DebugLoc(); 1384 return true; 1385 } 1386 // Remove dead code. 1387 recomputeInsertPt(); 1388 if (SavedInsertPt != FuncInfo.InsertPt) 1389 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1390 SavedInsertPt = FuncInfo.InsertPt; 1391 } 1392 // Next, try calling the target to attempt to handle the instruction. 1393 if (fastSelectInstruction(I)) { 1394 ++NumFastIselSuccessTarget; 1395 DbgLoc = DebugLoc(); 1396 return true; 1397 } 1398 // Remove dead code. 1399 recomputeInsertPt(); 1400 if (SavedInsertPt != FuncInfo.InsertPt) 1401 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1402 1403 DbgLoc = DebugLoc(); 1404 // Undo phi node updates, because they will be added again by SelectionDAG. 1405 if (isa<TerminatorInst>(I)) { 1406 // PHI node handling may have generated local value instructions. 1407 // We remove them because SelectionDAGISel will generate them again. 1408 removeDeadLocalValueCode(SavedLastLocalValue); 1409 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 1410 } 1411 return false; 1412 } 1413 1414 /// Emit an unconditional branch to the given block, unless it is the immediate 1415 /// (fall-through) successor, and update the CFG. 1416 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DbgLoc) { 1417 if (FuncInfo.MBB->getBasicBlock()->size() > 1 && 1418 FuncInfo.MBB->isLayoutSuccessor(MSucc)) { 1419 // For more accurate line information if this is the only instruction 1420 // in the block then emit it, otherwise we have the unconditional 1421 // fall-through case, which needs no instructions. 1422 } else { 1423 // The unconditional branch case. 1424 TII.InsertBranch(*FuncInfo.MBB, MSucc, nullptr, 1425 SmallVector<MachineOperand, 0>(), DbgLoc); 1426 } 1427 if (FuncInfo.BPI) { 1428 auto BranchProbability = FuncInfo.BPI->getEdgeProbability( 1429 FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock()); 1430 FuncInfo.MBB->addSuccessor(MSucc, BranchProbability); 1431 } else 1432 FuncInfo.MBB->addSuccessorWithoutProb(MSucc); 1433 } 1434 1435 void FastISel::finishCondBranch(const BasicBlock *BranchBB, 1436 MachineBasicBlock *TrueMBB, 1437 MachineBasicBlock *FalseMBB) { 1438 // Add TrueMBB as successor unless it is equal to the FalseMBB: This can 1439 // happen in degenerate IR and MachineIR forbids to have a block twice in the 1440 // successor/predecessor lists. 1441 if (TrueMBB != FalseMBB) { 1442 if (FuncInfo.BPI) { 1443 auto BranchProbability = 1444 FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock()); 1445 FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability); 1446 } else 1447 FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB); 1448 } 1449 1450 fastEmitBranch(FalseMBB, DbgLoc); 1451 } 1452 1453 /// Emit an FNeg operation. 1454 bool FastISel::selectFNeg(const User *I) { 1455 unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I)); 1456 if (!OpReg) 1457 return false; 1458 bool OpRegIsKill = hasTrivialKill(I); 1459 1460 // If the target has ISD::FNEG, use it. 1461 EVT VT = TLI.getValueType(DL, I->getType()); 1462 unsigned ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG, 1463 OpReg, OpRegIsKill); 1464 if (ResultReg) { 1465 updateValueMap(I, ResultReg); 1466 return true; 1467 } 1468 1469 // Bitcast the value to integer, twiddle the sign bit with xor, 1470 // and then bitcast it back to floating-point. 1471 if (VT.getSizeInBits() > 64) 1472 return false; 1473 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); 1474 if (!TLI.isTypeLegal(IntVT)) 1475 return false; 1476 1477 unsigned IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), 1478 ISD::BITCAST, OpReg, OpRegIsKill); 1479 if (!IntReg) 1480 return false; 1481 1482 unsigned IntResultReg = fastEmit_ri_( 1483 IntVT.getSimpleVT(), ISD::XOR, IntReg, /*IsKill=*/true, 1484 UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT()); 1485 if (!IntResultReg) 1486 return false; 1487 1488 ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST, 1489 IntResultReg, /*IsKill=*/true); 1490 if (!ResultReg) 1491 return false; 1492 1493 updateValueMap(I, ResultReg); 1494 return true; 1495 } 1496 1497 bool FastISel::selectExtractValue(const User *U) { 1498 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U); 1499 if (!EVI) 1500 return false; 1501 1502 // Make sure we only try to handle extracts with a legal result. But also 1503 // allow i1 because it's easy. 1504 EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true); 1505 if (!RealVT.isSimple()) 1506 return false; 1507 MVT VT = RealVT.getSimpleVT(); 1508 if (!TLI.isTypeLegal(VT) && VT != MVT::i1) 1509 return false; 1510 1511 const Value *Op0 = EVI->getOperand(0); 1512 Type *AggTy = Op0->getType(); 1513 1514 // Get the base result register. 1515 unsigned ResultReg; 1516 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0); 1517 if (I != FuncInfo.ValueMap.end()) 1518 ResultReg = I->second; 1519 else if (isa<Instruction>(Op0)) 1520 ResultReg = FuncInfo.InitializeRegForValue(Op0); 1521 else 1522 return false; // fast-isel can't handle aggregate constants at the moment 1523 1524 // Get the actual result register, which is an offset from the base register. 1525 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); 1526 1527 SmallVector<EVT, 4> AggValueVTs; 1528 ComputeValueVTs(TLI, DL, AggTy, AggValueVTs); 1529 1530 for (unsigned i = 0; i < VTIndex; i++) 1531 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); 1532 1533 updateValueMap(EVI, ResultReg); 1534 return true; 1535 } 1536 1537 bool FastISel::selectOperator(const User *I, unsigned Opcode) { 1538 switch (Opcode) { 1539 case Instruction::Add: 1540 return selectBinaryOp(I, ISD::ADD); 1541 case Instruction::FAdd: 1542 return selectBinaryOp(I, ISD::FADD); 1543 case Instruction::Sub: 1544 return selectBinaryOp(I, ISD::SUB); 1545 case Instruction::FSub: 1546 // FNeg is currently represented in LLVM IR as a special case of FSub. 1547 if (BinaryOperator::isFNeg(I)) 1548 return selectFNeg(I); 1549 return selectBinaryOp(I, ISD::FSUB); 1550 case Instruction::Mul: 1551 return selectBinaryOp(I, ISD::MUL); 1552 case Instruction::FMul: 1553 return selectBinaryOp(I, ISD::FMUL); 1554 case Instruction::SDiv: 1555 return selectBinaryOp(I, ISD::SDIV); 1556 case Instruction::UDiv: 1557 return selectBinaryOp(I, ISD::UDIV); 1558 case Instruction::FDiv: 1559 return selectBinaryOp(I, ISD::FDIV); 1560 case Instruction::SRem: 1561 return selectBinaryOp(I, ISD::SREM); 1562 case Instruction::URem: 1563 return selectBinaryOp(I, ISD::UREM); 1564 case Instruction::FRem: 1565 return selectBinaryOp(I, ISD::FREM); 1566 case Instruction::Shl: 1567 return selectBinaryOp(I, ISD::SHL); 1568 case Instruction::LShr: 1569 return selectBinaryOp(I, ISD::SRL); 1570 case Instruction::AShr: 1571 return selectBinaryOp(I, ISD::SRA); 1572 case Instruction::And: 1573 return selectBinaryOp(I, ISD::AND); 1574 case Instruction::Or: 1575 return selectBinaryOp(I, ISD::OR); 1576 case Instruction::Xor: 1577 return selectBinaryOp(I, ISD::XOR); 1578 1579 case Instruction::GetElementPtr: 1580 return selectGetElementPtr(I); 1581 1582 case Instruction::Br: { 1583 const BranchInst *BI = cast<BranchInst>(I); 1584 1585 if (BI->isUnconditional()) { 1586 const BasicBlock *LLVMSucc = BI->getSuccessor(0); 1587 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; 1588 fastEmitBranch(MSucc, BI->getDebugLoc()); 1589 return true; 1590 } 1591 1592 // Conditional branches are not handed yet. 1593 // Halt "fast" selection and bail. 1594 return false; 1595 } 1596 1597 case Instruction::Unreachable: 1598 if (TM.Options.TrapUnreachable) 1599 return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0; 1600 else 1601 return true; 1602 1603 case Instruction::Alloca: 1604 // FunctionLowering has the static-sized case covered. 1605 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I))) 1606 return true; 1607 1608 // Dynamic-sized alloca is not handled yet. 1609 return false; 1610 1611 case Instruction::Call: 1612 return selectCall(I); 1613 1614 case Instruction::BitCast: 1615 return selectBitCast(I); 1616 1617 case Instruction::FPToSI: 1618 return selectCast(I, ISD::FP_TO_SINT); 1619 case Instruction::ZExt: 1620 return selectCast(I, ISD::ZERO_EXTEND); 1621 case Instruction::SExt: 1622 return selectCast(I, ISD::SIGN_EXTEND); 1623 case Instruction::Trunc: 1624 return selectCast(I, ISD::TRUNCATE); 1625 case Instruction::SIToFP: 1626 return selectCast(I, ISD::SINT_TO_FP); 1627 1628 case Instruction::IntToPtr: // Deliberate fall-through. 1629 case Instruction::PtrToInt: { 1630 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1631 EVT DstVT = TLI.getValueType(DL, I->getType()); 1632 if (DstVT.bitsGT(SrcVT)) 1633 return selectCast(I, ISD::ZERO_EXTEND); 1634 if (DstVT.bitsLT(SrcVT)) 1635 return selectCast(I, ISD::TRUNCATE); 1636 unsigned Reg = getRegForValue(I->getOperand(0)); 1637 if (!Reg) 1638 return false; 1639 updateValueMap(I, Reg); 1640 return true; 1641 } 1642 1643 case Instruction::ExtractValue: 1644 return selectExtractValue(I); 1645 1646 case Instruction::PHI: 1647 llvm_unreachable("FastISel shouldn't visit PHI nodes!"); 1648 1649 default: 1650 // Unhandled instruction. Halt "fast" selection and bail. 1651 return false; 1652 } 1653 } 1654 1655 FastISel::FastISel(FunctionLoweringInfo &FuncInfo, 1656 const TargetLibraryInfo *LibInfo, 1657 bool SkipTargetIndependentISel) 1658 : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()), 1659 MFI(*FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()), 1660 TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()), 1661 TII(*MF->getSubtarget().getInstrInfo()), 1662 TLI(*MF->getSubtarget().getTargetLowering()), 1663 TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo), 1664 SkipTargetIndependentISel(SkipTargetIndependentISel) {} 1665 1666 FastISel::~FastISel() {} 1667 1668 bool FastISel::fastLowerArguments() { return false; } 1669 1670 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; } 1671 1672 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) { 1673 return false; 1674 } 1675 1676 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; } 1677 1678 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/, 1679 bool /*Op0IsKill*/) { 1680 return 0; 1681 } 1682 1683 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/, 1684 bool /*Op0IsKill*/, unsigned /*Op1*/, 1685 bool /*Op1IsKill*/) { 1686 return 0; 1687 } 1688 1689 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { 1690 return 0; 1691 } 1692 1693 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned, 1694 const ConstantFP * /*FPImm*/) { 1695 return 0; 1696 } 1697 1698 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/, 1699 bool /*Op0IsKill*/, uint64_t /*Imm*/) { 1700 return 0; 1701 } 1702 1703 unsigned FastISel::fastEmit_rf(MVT, MVT, unsigned, unsigned /*Op0*/, 1704 bool /*Op0IsKill*/, 1705 const ConstantFP * /*FPImm*/) { 1706 return 0; 1707 } 1708 1709 unsigned FastISel::fastEmit_rri(MVT, MVT, unsigned, unsigned /*Op0*/, 1710 bool /*Op0IsKill*/, unsigned /*Op1*/, 1711 bool /*Op1IsKill*/, uint64_t /*Imm*/) { 1712 return 0; 1713 } 1714 1715 /// This method is a wrapper of fastEmit_ri. It first tries to emit an 1716 /// instruction with an immediate operand using fastEmit_ri. 1717 /// If that fails, it materializes the immediate into a register and try 1718 /// fastEmit_rr instead. 1719 unsigned FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, 1720 bool Op0IsKill, uint64_t Imm, MVT ImmType) { 1721 // If this is a multiply by a power of two, emit this as a shift left. 1722 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { 1723 Opcode = ISD::SHL; 1724 Imm = Log2_64(Imm); 1725 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { 1726 // div x, 8 -> srl x, 3 1727 Opcode = ISD::SRL; 1728 Imm = Log2_64(Imm); 1729 } 1730 1731 // Horrible hack (to be removed), check to make sure shift amounts are 1732 // in-range. 1733 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && 1734 Imm >= VT.getSizeInBits()) 1735 return 0; 1736 1737 // First check if immediate type is legal. If not, we can't use the ri form. 1738 unsigned ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm); 1739 if (ResultReg) 1740 return ResultReg; 1741 unsigned MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm); 1742 bool IsImmKill = true; 1743 if (!MaterialReg) { 1744 // This is a bit ugly/slow, but failing here means falling out of 1745 // fast-isel, which would be very slow. 1746 IntegerType *ITy = 1747 IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits()); 1748 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); 1749 if (!MaterialReg) 1750 return 0; 1751 // FIXME: If the materialized register here has no uses yet then this 1752 // will be the first use and we should be able to mark it as killed. 1753 // However, the local value area for materialising constant expressions 1754 // grows down, not up, which means that any constant expressions we generate 1755 // later which also use 'Imm' could be after this instruction and therefore 1756 // after this kill. 1757 IsImmKill = false; 1758 } 1759 return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg, IsImmKill); 1760 } 1761 1762 unsigned FastISel::createResultReg(const TargetRegisterClass *RC) { 1763 return MRI.createVirtualRegister(RC); 1764 } 1765 1766 unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, unsigned Op, 1767 unsigned OpNum) { 1768 if (TargetRegisterInfo::isVirtualRegister(Op)) { 1769 const TargetRegisterClass *RegClass = 1770 TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF); 1771 if (!MRI.constrainRegClass(Op, RegClass)) { 1772 // If it's not legal to COPY between the register classes, something 1773 // has gone very wrong before we got here. 1774 unsigned NewOp = createResultReg(RegClass); 1775 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1776 TII.get(TargetOpcode::COPY), NewOp).addReg(Op); 1777 return NewOp; 1778 } 1779 } 1780 return Op; 1781 } 1782 1783 unsigned FastISel::fastEmitInst_(unsigned MachineInstOpcode, 1784 const TargetRegisterClass *RC) { 1785 unsigned ResultReg = createResultReg(RC); 1786 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1787 1788 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg); 1789 return ResultReg; 1790 } 1791 1792 unsigned FastISel::fastEmitInst_r(unsigned MachineInstOpcode, 1793 const TargetRegisterClass *RC, unsigned Op0, 1794 bool Op0IsKill) { 1795 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1796 1797 unsigned ResultReg = createResultReg(RC); 1798 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1799 1800 if (II.getNumDefs() >= 1) 1801 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1802 .addReg(Op0, getKillRegState(Op0IsKill)); 1803 else { 1804 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1805 .addReg(Op0, getKillRegState(Op0IsKill)); 1806 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1807 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1808 } 1809 1810 return ResultReg; 1811 } 1812 1813 unsigned FastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 1814 const TargetRegisterClass *RC, unsigned Op0, 1815 bool Op0IsKill, unsigned Op1, 1816 bool Op1IsKill) { 1817 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1818 1819 unsigned ResultReg = createResultReg(RC); 1820 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1821 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1822 1823 if (II.getNumDefs() >= 1) 1824 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1825 .addReg(Op0, getKillRegState(Op0IsKill)) 1826 .addReg(Op1, getKillRegState(Op1IsKill)); 1827 else { 1828 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1829 .addReg(Op0, getKillRegState(Op0IsKill)) 1830 .addReg(Op1, getKillRegState(Op1IsKill)); 1831 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1832 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1833 } 1834 return ResultReg; 1835 } 1836 1837 unsigned FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode, 1838 const TargetRegisterClass *RC, unsigned Op0, 1839 bool Op0IsKill, unsigned Op1, 1840 bool Op1IsKill, unsigned Op2, 1841 bool Op2IsKill) { 1842 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1843 1844 unsigned ResultReg = createResultReg(RC); 1845 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1846 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1847 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); 1848 1849 if (II.getNumDefs() >= 1) 1850 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1851 .addReg(Op0, getKillRegState(Op0IsKill)) 1852 .addReg(Op1, getKillRegState(Op1IsKill)) 1853 .addReg(Op2, getKillRegState(Op2IsKill)); 1854 else { 1855 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1856 .addReg(Op0, getKillRegState(Op0IsKill)) 1857 .addReg(Op1, getKillRegState(Op1IsKill)) 1858 .addReg(Op2, getKillRegState(Op2IsKill)); 1859 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1860 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1861 } 1862 return ResultReg; 1863 } 1864 1865 unsigned FastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 1866 const TargetRegisterClass *RC, unsigned Op0, 1867 bool Op0IsKill, uint64_t Imm) { 1868 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1869 1870 unsigned ResultReg = createResultReg(RC); 1871 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1872 1873 if (II.getNumDefs() >= 1) 1874 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1875 .addReg(Op0, getKillRegState(Op0IsKill)) 1876 .addImm(Imm); 1877 else { 1878 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1879 .addReg(Op0, getKillRegState(Op0IsKill)) 1880 .addImm(Imm); 1881 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1882 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1883 } 1884 return ResultReg; 1885 } 1886 1887 unsigned FastISel::fastEmitInst_rii(unsigned MachineInstOpcode, 1888 const TargetRegisterClass *RC, unsigned Op0, 1889 bool Op0IsKill, uint64_t Imm1, 1890 uint64_t Imm2) { 1891 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1892 1893 unsigned ResultReg = createResultReg(RC); 1894 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1895 1896 if (II.getNumDefs() >= 1) 1897 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1898 .addReg(Op0, getKillRegState(Op0IsKill)) 1899 .addImm(Imm1) 1900 .addImm(Imm2); 1901 else { 1902 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1903 .addReg(Op0, getKillRegState(Op0IsKill)) 1904 .addImm(Imm1) 1905 .addImm(Imm2); 1906 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1907 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1908 } 1909 return ResultReg; 1910 } 1911 1912 unsigned FastISel::fastEmitInst_f(unsigned MachineInstOpcode, 1913 const TargetRegisterClass *RC, 1914 const ConstantFP *FPImm) { 1915 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1916 1917 unsigned ResultReg = createResultReg(RC); 1918 1919 if (II.getNumDefs() >= 1) 1920 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1921 .addFPImm(FPImm); 1922 else { 1923 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1924 .addFPImm(FPImm); 1925 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1926 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1927 } 1928 return ResultReg; 1929 } 1930 1931 unsigned FastISel::fastEmitInst_rri(unsigned MachineInstOpcode, 1932 const TargetRegisterClass *RC, unsigned Op0, 1933 bool Op0IsKill, unsigned Op1, 1934 bool Op1IsKill, uint64_t Imm) { 1935 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1936 1937 unsigned ResultReg = createResultReg(RC); 1938 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1939 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1940 1941 if (II.getNumDefs() >= 1) 1942 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1943 .addReg(Op0, getKillRegState(Op0IsKill)) 1944 .addReg(Op1, getKillRegState(Op1IsKill)) 1945 .addImm(Imm); 1946 else { 1947 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1948 .addReg(Op0, getKillRegState(Op0IsKill)) 1949 .addReg(Op1, getKillRegState(Op1IsKill)) 1950 .addImm(Imm); 1951 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1952 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1953 } 1954 return ResultReg; 1955 } 1956 1957 unsigned FastISel::fastEmitInst_i(unsigned MachineInstOpcode, 1958 const TargetRegisterClass *RC, uint64_t Imm) { 1959 unsigned ResultReg = createResultReg(RC); 1960 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1961 1962 if (II.getNumDefs() >= 1) 1963 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1964 .addImm(Imm); 1965 else { 1966 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm); 1967 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1968 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1969 } 1970 return ResultReg; 1971 } 1972 1973 unsigned FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, 1974 bool Op0IsKill, uint32_t Idx) { 1975 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 1976 assert(TargetRegisterInfo::isVirtualRegister(Op0) && 1977 "Cannot yet extract from physregs"); 1978 const TargetRegisterClass *RC = MRI.getRegClass(Op0); 1979 MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx)); 1980 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), 1981 ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx); 1982 return ResultReg; 1983 } 1984 1985 /// Emit MachineInstrs to compute the value of Op with all but the least 1986 /// significant bit set to zero. 1987 unsigned FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) { 1988 return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1); 1989 } 1990 1991 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. 1992 /// Emit code to ensure constants are copied into registers when needed. 1993 /// Remember the virtual registers that need to be added to the Machine PHI 1994 /// nodes as input. We cannot just directly add them, because expansion 1995 /// might result in multiple MBB's for one BB. As such, the start of the 1996 /// BB might correspond to a different MBB than the end. 1997 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 1998 const TerminatorInst *TI = LLVMBB->getTerminator(); 1999 2000 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 2001 FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); 2002 2003 // Check successor nodes' PHI nodes that expect a constant to be available 2004 // from this block. 2005 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 2006 const BasicBlock *SuccBB = TI->getSuccessor(succ); 2007 if (!isa<PHINode>(SuccBB->begin())) 2008 continue; 2009 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 2010 2011 // If this terminator has multiple identical successors (common for 2012 // switches), only handle each succ once. 2013 if (!SuccsHandled.insert(SuccMBB).second) 2014 continue; 2015 2016 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 2017 2018 // At this point we know that there is a 1-1 correspondence between LLVM PHI 2019 // nodes and Machine PHI nodes, but the incoming operands have not been 2020 // emitted yet. 2021 for (BasicBlock::const_iterator I = SuccBB->begin(); 2022 const auto *PN = dyn_cast<PHINode>(I); ++I) { 2023 2024 // Ignore dead phi's. 2025 if (PN->use_empty()) 2026 continue; 2027 2028 // Only handle legal types. Two interesting things to note here. First, 2029 // by bailing out early, we may leave behind some dead instructions, 2030 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 2031 // own moves. Second, this check is necessary because FastISel doesn't 2032 // use CreateRegs to create registers, so it always creates 2033 // exactly one register for each non-void instruction. 2034 EVT VT = TLI.getValueType(DL, PN->getType(), /*AllowUnknown=*/true); 2035 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 2036 // Handle integer promotions, though, because they're common and easy. 2037 if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) { 2038 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2039 return false; 2040 } 2041 } 2042 2043 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 2044 2045 // Set the DebugLoc for the copy. Prefer the location of the operand 2046 // if there is one; use the location of the PHI otherwise. 2047 DbgLoc = PN->getDebugLoc(); 2048 if (const auto *Inst = dyn_cast<Instruction>(PHIOp)) 2049 DbgLoc = Inst->getDebugLoc(); 2050 2051 unsigned Reg = getRegForValue(PHIOp); 2052 if (!Reg) { 2053 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2054 return false; 2055 } 2056 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg)); 2057 DbgLoc = DebugLoc(); 2058 } 2059 } 2060 2061 return true; 2062 } 2063 2064 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) { 2065 assert(LI->hasOneUse() && 2066 "tryToFoldLoad expected a LoadInst with a single use"); 2067 // We know that the load has a single use, but don't know what it is. If it 2068 // isn't one of the folded instructions, then we can't succeed here. Handle 2069 // this by scanning the single-use users of the load until we get to FoldInst. 2070 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs. 2071 2072 const Instruction *TheUser = LI->user_back(); 2073 while (TheUser != FoldInst && // Scan up until we find FoldInst. 2074 // Stay in the right block. 2075 TheUser->getParent() == FoldInst->getParent() && 2076 --MaxUsers) { // Don't scan too far. 2077 // If there are multiple or no uses of this instruction, then bail out. 2078 if (!TheUser->hasOneUse()) 2079 return false; 2080 2081 TheUser = TheUser->user_back(); 2082 } 2083 2084 // If we didn't find the fold instruction, then we failed to collapse the 2085 // sequence. 2086 if (TheUser != FoldInst) 2087 return false; 2088 2089 // Don't try to fold volatile loads. Target has to deal with alignment 2090 // constraints. 2091 if (LI->isVolatile()) 2092 return false; 2093 2094 // Figure out which vreg this is going into. If there is no assigned vreg yet 2095 // then there actually was no reference to it. Perhaps the load is referenced 2096 // by a dead instruction. 2097 unsigned LoadReg = getRegForValue(LI); 2098 if (!LoadReg) 2099 return false; 2100 2101 // We can't fold if this vreg has no uses or more than one use. Multiple uses 2102 // may mean that the instruction got lowered to multiple MIs, or the use of 2103 // the loaded value ended up being multiple operands of the result. 2104 if (!MRI.hasOneUse(LoadReg)) 2105 return false; 2106 2107 MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg); 2108 MachineInstr *User = RI->getParent(); 2109 2110 // Set the insertion point properly. Folding the load can cause generation of 2111 // other random instructions (like sign extends) for addressing modes; make 2112 // sure they get inserted in a logical place before the new instruction. 2113 FuncInfo.InsertPt = User; 2114 FuncInfo.MBB = User->getParent(); 2115 2116 // Ask the target to try folding the load. 2117 return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI); 2118 } 2119 2120 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) { 2121 // Must be an add. 2122 if (!isa<AddOperator>(Add)) 2123 return false; 2124 // Type size needs to match. 2125 if (DL.getTypeSizeInBits(GEP->getType()) != 2126 DL.getTypeSizeInBits(Add->getType())) 2127 return false; 2128 // Must be in the same basic block. 2129 if (isa<Instruction>(Add) && 2130 FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB) 2131 return false; 2132 // Must have a constant operand. 2133 return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1)); 2134 } 2135 2136 MachineMemOperand * 2137 FastISel::createMachineMemOperandFor(const Instruction *I) const { 2138 const Value *Ptr; 2139 Type *ValTy; 2140 unsigned Alignment; 2141 unsigned Flags; 2142 bool IsVolatile; 2143 2144 if (const auto *LI = dyn_cast<LoadInst>(I)) { 2145 Alignment = LI->getAlignment(); 2146 IsVolatile = LI->isVolatile(); 2147 Flags = MachineMemOperand::MOLoad; 2148 Ptr = LI->getPointerOperand(); 2149 ValTy = LI->getType(); 2150 } else if (const auto *SI = dyn_cast<StoreInst>(I)) { 2151 Alignment = SI->getAlignment(); 2152 IsVolatile = SI->isVolatile(); 2153 Flags = MachineMemOperand::MOStore; 2154 Ptr = SI->getPointerOperand(); 2155 ValTy = SI->getValueOperand()->getType(); 2156 } else 2157 return nullptr; 2158 2159 bool IsNonTemporal = I->getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2160 bool IsInvariant = I->getMetadata(LLVMContext::MD_invariant_load) != nullptr; 2161 const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range); 2162 2163 AAMDNodes AAInfo; 2164 I->getAAMetadata(AAInfo); 2165 2166 if (Alignment == 0) // Ensure that codegen never sees alignment 0. 2167 Alignment = DL.getABITypeAlignment(ValTy); 2168 2169 unsigned Size = DL.getTypeStoreSize(ValTy); 2170 2171 if (IsVolatile) 2172 Flags |= MachineMemOperand::MOVolatile; 2173 if (IsNonTemporal) 2174 Flags |= MachineMemOperand::MONonTemporal; 2175 if (IsInvariant) 2176 Flags |= MachineMemOperand::MOInvariant; 2177 2178 return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size, 2179 Alignment, AAInfo, Ranges); 2180 } 2181 2182 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const { 2183 // If both operands are the same, then try to optimize or fold the cmp. 2184 CmpInst::Predicate Predicate = CI->getPredicate(); 2185 if (CI->getOperand(0) != CI->getOperand(1)) 2186 return Predicate; 2187 2188 switch (Predicate) { 2189 default: llvm_unreachable("Invalid predicate!"); 2190 case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break; 2191 case CmpInst::FCMP_OEQ: Predicate = CmpInst::FCMP_ORD; break; 2192 case CmpInst::FCMP_OGT: Predicate = CmpInst::FCMP_FALSE; break; 2193 case CmpInst::FCMP_OGE: Predicate = CmpInst::FCMP_ORD; break; 2194 case CmpInst::FCMP_OLT: Predicate = CmpInst::FCMP_FALSE; break; 2195 case CmpInst::FCMP_OLE: Predicate = CmpInst::FCMP_ORD; break; 2196 case CmpInst::FCMP_ONE: Predicate = CmpInst::FCMP_FALSE; break; 2197 case CmpInst::FCMP_ORD: Predicate = CmpInst::FCMP_ORD; break; 2198 case CmpInst::FCMP_UNO: Predicate = CmpInst::FCMP_UNO; break; 2199 case CmpInst::FCMP_UEQ: Predicate = CmpInst::FCMP_TRUE; break; 2200 case CmpInst::FCMP_UGT: Predicate = CmpInst::FCMP_UNO; break; 2201 case CmpInst::FCMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2202 case CmpInst::FCMP_ULT: Predicate = CmpInst::FCMP_UNO; break; 2203 case CmpInst::FCMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2204 case CmpInst::FCMP_UNE: Predicate = CmpInst::FCMP_UNO; break; 2205 case CmpInst::FCMP_TRUE: Predicate = CmpInst::FCMP_TRUE; break; 2206 2207 case CmpInst::ICMP_EQ: Predicate = CmpInst::FCMP_TRUE; break; 2208 case CmpInst::ICMP_NE: Predicate = CmpInst::FCMP_FALSE; break; 2209 case CmpInst::ICMP_UGT: Predicate = CmpInst::FCMP_FALSE; break; 2210 case CmpInst::ICMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2211 case CmpInst::ICMP_ULT: Predicate = CmpInst::FCMP_FALSE; break; 2212 case CmpInst::ICMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2213 case CmpInst::ICMP_SGT: Predicate = CmpInst::FCMP_FALSE; break; 2214 case CmpInst::ICMP_SGE: Predicate = CmpInst::FCMP_TRUE; break; 2215 case CmpInst::ICMP_SLT: Predicate = CmpInst::FCMP_FALSE; break; 2216 case CmpInst::ICMP_SLE: Predicate = CmpInst::FCMP_TRUE; break; 2217 } 2218 2219 return Predicate; 2220 } 2221