Home | History | Annotate | Download | only in src
      1 // Copyright 2015 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/objects.h"
      6 
      7 #include <cmath>
      8 #include <iomanip>
      9 #include <sstream>
     10 
     11 #include "src/accessors.h"
     12 #include "src/allocation-site-scopes.h"
     13 #include "src/api.h"
     14 #include "src/arguments.h"
     15 #include "src/base/bits.h"
     16 #include "src/base/utils/random-number-generator.h"
     17 #include "src/bootstrapper.h"
     18 #include "src/code-stubs.h"
     19 #include "src/codegen.h"
     20 #include "src/compilation-dependencies.h"
     21 #include "src/compiler.h"
     22 #include "src/date.h"
     23 #include "src/debug/debug.h"
     24 #include "src/deoptimizer.h"
     25 #include "src/elements.h"
     26 #include "src/execution.h"
     27 #include "src/field-index.h"
     28 #include "src/field-index-inl.h"
     29 #include "src/full-codegen/full-codegen.h"
     30 #include "src/ic/ic.h"
     31 #include "src/identity-map.h"
     32 #include "src/interpreter/bytecodes.h"
     33 #include "src/isolate-inl.h"
     34 #include "src/key-accumulator.h"
     35 #include "src/list.h"
     36 #include "src/log.h"
     37 #include "src/lookup.h"
     38 #include "src/macro-assembler.h"
     39 #include "src/messages.h"
     40 #include "src/objects-inl.h"
     41 #include "src/objects-body-descriptors-inl.h"
     42 #include "src/profiler/cpu-profiler.h"
     43 #include "src/property-descriptor.h"
     44 #include "src/prototype.h"
     45 #include "src/regexp/jsregexp.h"
     46 #include "src/safepoint-table.h"
     47 #include "src/string-builder.h"
     48 #include "src/string-search.h"
     49 #include "src/string-stream.h"
     50 #include "src/utils.h"
     51 #include "src/zone.h"
     52 
     53 #ifdef ENABLE_DISASSEMBLER
     54 #include "src/disasm.h"
     55 #include "src/disassembler.h"
     56 #endif
     57 
     58 namespace v8 {
     59 namespace internal {
     60 
     61 std::ostream& operator<<(std::ostream& os, InstanceType instance_type) {
     62   switch (instance_type) {
     63 #define WRITE_TYPE(TYPE) \
     64   case TYPE:             \
     65     return os << #TYPE;
     66     INSTANCE_TYPE_LIST(WRITE_TYPE)
     67 #undef WRITE_TYPE
     68   }
     69   UNREACHABLE();
     70   return os << "UNKNOWN";  // Keep the compiler happy.
     71 }
     72 
     73 
     74 Handle<HeapType> Object::OptimalType(Isolate* isolate,
     75                                      Representation representation) {
     76   if (representation.IsNone()) return HeapType::None(isolate);
     77   if (FLAG_track_field_types) {
     78     if (representation.IsHeapObject() && IsHeapObject()) {
     79       // We can track only JavaScript objects with stable maps.
     80       Handle<Map> map(HeapObject::cast(this)->map(), isolate);
     81       if (map->is_stable() && map->IsJSReceiverMap()) {
     82         return HeapType::Class(map, isolate);
     83       }
     84     }
     85   }
     86   return HeapType::Any(isolate);
     87 }
     88 
     89 
     90 MaybeHandle<JSReceiver> Object::ToObject(Isolate* isolate,
     91                                          Handle<Object> object,
     92                                          Handle<Context> native_context) {
     93   if (object->IsJSReceiver()) return Handle<JSReceiver>::cast(object);
     94   Handle<JSFunction> constructor;
     95   if (object->IsSmi()) {
     96     constructor = handle(native_context->number_function(), isolate);
     97   } else {
     98     int constructor_function_index =
     99         Handle<HeapObject>::cast(object)->map()->GetConstructorFunctionIndex();
    100     if (constructor_function_index == Map::kNoConstructorFunctionIndex) {
    101       return MaybeHandle<JSReceiver>();
    102     }
    103     constructor = handle(
    104         JSFunction::cast(native_context->get(constructor_function_index)),
    105         isolate);
    106   }
    107   Handle<JSObject> result = isolate->factory()->NewJSObject(constructor);
    108   Handle<JSValue>::cast(result)->set_value(*object);
    109   return result;
    110 }
    111 
    112 
    113 // static
    114 MaybeHandle<Name> Object::ToName(Isolate* isolate, Handle<Object> input) {
    115   ASSIGN_RETURN_ON_EXCEPTION(
    116       isolate, input, Object::ToPrimitive(input, ToPrimitiveHint::kString),
    117       Name);
    118   if (input->IsName()) return Handle<Name>::cast(input);
    119   return ToString(isolate, input);
    120 }
    121 
    122 
    123 // static
    124 MaybeHandle<Object> Object::ToNumber(Handle<Object> input) {
    125   while (true) {
    126     if (input->IsNumber()) {
    127       return input;
    128     }
    129     if (input->IsString()) {
    130       return String::ToNumber(Handle<String>::cast(input));
    131     }
    132     if (input->IsOddball()) {
    133       return Oddball::ToNumber(Handle<Oddball>::cast(input));
    134     }
    135     Isolate* const isolate = Handle<HeapObject>::cast(input)->GetIsolate();
    136     if (input->IsSymbol()) {
    137       THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kSymbolToNumber),
    138                       Object);
    139     }
    140     if (input->IsSimd128Value()) {
    141       THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kSimdToNumber),
    142                       Object);
    143     }
    144     ASSIGN_RETURN_ON_EXCEPTION(
    145         isolate, input, JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(input),
    146                                                 ToPrimitiveHint::kNumber),
    147         Object);
    148   }
    149 }
    150 
    151 
    152 // static
    153 MaybeHandle<Object> Object::ToInteger(Isolate* isolate, Handle<Object> input) {
    154   ASSIGN_RETURN_ON_EXCEPTION(isolate, input, ToNumber(input), Object);
    155   return isolate->factory()->NewNumber(DoubleToInteger(input->Number()));
    156 }
    157 
    158 
    159 // static
    160 MaybeHandle<Object> Object::ToInt32(Isolate* isolate, Handle<Object> input) {
    161   ASSIGN_RETURN_ON_EXCEPTION(isolate, input, ToNumber(input), Object);
    162   return isolate->factory()->NewNumberFromInt(DoubleToInt32(input->Number()));
    163 }
    164 
    165 
    166 // static
    167 MaybeHandle<Object> Object::ToUint32(Isolate* isolate, Handle<Object> input) {
    168   ASSIGN_RETURN_ON_EXCEPTION(isolate, input, ToNumber(input), Object);
    169   return isolate->factory()->NewNumberFromUint(DoubleToUint32(input->Number()));
    170 }
    171 
    172 
    173 // static
    174 MaybeHandle<String> Object::ToString(Isolate* isolate, Handle<Object> input) {
    175   while (true) {
    176     if (input->IsString()) {
    177       return Handle<String>::cast(input);
    178     }
    179     if (input->IsOddball()) {
    180       return handle(Handle<Oddball>::cast(input)->to_string(), isolate);
    181     }
    182     if (input->IsNumber()) {
    183       return isolate->factory()->NumberToString(input);
    184     }
    185     if (input->IsSymbol()) {
    186       THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kSymbolToString),
    187                       String);
    188     }
    189     if (input->IsSimd128Value()) {
    190       return Simd128Value::ToString(Handle<Simd128Value>::cast(input));
    191     }
    192     ASSIGN_RETURN_ON_EXCEPTION(
    193         isolate, input, JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(input),
    194                                                 ToPrimitiveHint::kString),
    195         String);
    196   }
    197 }
    198 
    199 
    200 // static
    201 MaybeHandle<Object> Object::ToLength(Isolate* isolate, Handle<Object> input) {
    202   ASSIGN_RETURN_ON_EXCEPTION(isolate, input, ToNumber(input), Object);
    203   double len = DoubleToInteger(input->Number());
    204   if (len <= 0.0) {
    205     len = 0.0;
    206   } else if (len >= kMaxSafeInteger) {
    207     len = kMaxSafeInteger;
    208   }
    209   return isolate->factory()->NewNumber(len);
    210 }
    211 
    212 
    213 bool Object::BooleanValue() {
    214   if (IsBoolean()) return IsTrue();
    215   if (IsSmi()) return Smi::cast(this)->value() != 0;
    216   if (IsUndefined() || IsNull()) return false;
    217   if (IsUndetectableObject()) return false;   // Undetectable object is false.
    218   if (IsString()) return String::cast(this)->length() != 0;
    219   if (IsHeapNumber()) return HeapNumber::cast(this)->HeapNumberBooleanValue();
    220   return true;
    221 }
    222 
    223 
    224 namespace {
    225 
    226 // TODO(bmeurer): Maybe we should introduce a marker interface Number,
    227 // where we put all these methods at some point?
    228 ComparisonResult NumberCompare(double x, double y) {
    229   if (std::isnan(x) || std::isnan(y)) {
    230     return ComparisonResult::kUndefined;
    231   } else if (x < y) {
    232     return ComparisonResult::kLessThan;
    233   } else if (x > y) {
    234     return ComparisonResult::kGreaterThan;
    235   } else {
    236     return ComparisonResult::kEqual;
    237   }
    238 }
    239 
    240 
    241 bool NumberEquals(double x, double y) {
    242   // Must check explicitly for NaN's on Windows, but -0 works fine.
    243   if (std::isnan(x)) return false;
    244   if (std::isnan(y)) return false;
    245   return x == y;
    246 }
    247 
    248 
    249 bool NumberEquals(const Object* x, const Object* y) {
    250   return NumberEquals(x->Number(), y->Number());
    251 }
    252 
    253 
    254 bool NumberEquals(Handle<Object> x, Handle<Object> y) {
    255   return NumberEquals(*x, *y);
    256 }
    257 
    258 }  // namespace
    259 
    260 
    261 // static
    262 Maybe<ComparisonResult> Object::Compare(Handle<Object> x, Handle<Object> y,
    263                                         Strength strength) {
    264   if (!is_strong(strength)) {
    265     // ES6 section 7.2.11 Abstract Relational Comparison step 3 and 4.
    266     if (!Object::ToPrimitive(x, ToPrimitiveHint::kNumber).ToHandle(&x) ||
    267         !Object::ToPrimitive(y, ToPrimitiveHint::kNumber).ToHandle(&y)) {
    268       return Nothing<ComparisonResult>();
    269     }
    270   }
    271   if (x->IsString() && y->IsString()) {
    272     // ES6 section 7.2.11 Abstract Relational Comparison step 5.
    273     return Just(
    274         String::Compare(Handle<String>::cast(x), Handle<String>::cast(y)));
    275   }
    276   // ES6 section 7.2.11 Abstract Relational Comparison step 6.
    277   if (!is_strong(strength)) {
    278     if (!Object::ToNumber(x).ToHandle(&x) ||
    279         !Object::ToNumber(y).ToHandle(&y)) {
    280       return Nothing<ComparisonResult>();
    281     }
    282   } else {
    283     if (!x->IsNumber()) {
    284       Isolate* const isolate = Handle<HeapObject>::cast(x)->GetIsolate();
    285       isolate->Throw(*isolate->factory()->NewTypeError(
    286           MessageTemplate::kStrongImplicitConversion));
    287       return Nothing<ComparisonResult>();
    288     } else if (!y->IsNumber()) {
    289       Isolate* const isolate = Handle<HeapObject>::cast(y)->GetIsolate();
    290       isolate->Throw(*isolate->factory()->NewTypeError(
    291           MessageTemplate::kStrongImplicitConversion));
    292       return Nothing<ComparisonResult>();
    293     }
    294   }
    295   return Just(NumberCompare(x->Number(), y->Number()));
    296 }
    297 
    298 
    299 // static
    300 Maybe<bool> Object::Equals(Handle<Object> x, Handle<Object> y) {
    301   while (true) {
    302     if (x->IsNumber()) {
    303       if (y->IsNumber()) {
    304         return Just(NumberEquals(x, y));
    305       } else if (y->IsBoolean()) {
    306         return Just(NumberEquals(*x, Handle<Oddball>::cast(y)->to_number()));
    307       } else if (y->IsString()) {
    308         return Just(NumberEquals(x, String::ToNumber(Handle<String>::cast(y))));
    309       } else if (y->IsJSReceiver() && !y->IsUndetectableObject()) {
    310         if (!JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(y))
    311                  .ToHandle(&y)) {
    312           return Nothing<bool>();
    313         }
    314       } else {
    315         return Just(false);
    316       }
    317     } else if (x->IsString()) {
    318       if (y->IsString()) {
    319         return Just(
    320             String::Equals(Handle<String>::cast(x), Handle<String>::cast(y)));
    321       } else if (y->IsNumber()) {
    322         x = String::ToNumber(Handle<String>::cast(x));
    323         return Just(NumberEquals(x, y));
    324       } else if (y->IsBoolean()) {
    325         x = String::ToNumber(Handle<String>::cast(x));
    326         return Just(NumberEquals(*x, Handle<Oddball>::cast(y)->to_number()));
    327       } else if (y->IsJSReceiver() && !y->IsUndetectableObject()) {
    328         if (!JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(y))
    329                  .ToHandle(&y)) {
    330           return Nothing<bool>();
    331         }
    332       } else {
    333         return Just(false);
    334       }
    335     } else if (x->IsBoolean()) {
    336       if (y->IsOddball()) {
    337         return Just(x.is_identical_to(y));
    338       } else if (y->IsNumber()) {
    339         return Just(NumberEquals(Handle<Oddball>::cast(x)->to_number(), *y));
    340       } else if (y->IsString()) {
    341         y = String::ToNumber(Handle<String>::cast(y));
    342         return Just(NumberEquals(Handle<Oddball>::cast(x)->to_number(), *y));
    343       } else if (y->IsJSReceiver() && !y->IsUndetectableObject()) {
    344         if (!JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(y))
    345                  .ToHandle(&y)) {
    346           return Nothing<bool>();
    347         }
    348         x = Oddball::ToNumber(Handle<Oddball>::cast(x));
    349       } else {
    350         return Just(false);
    351       }
    352     } else if (x->IsSymbol()) {
    353       if (y->IsSymbol()) {
    354         return Just(x.is_identical_to(y));
    355       } else if (y->IsJSReceiver() && !y->IsUndetectableObject()) {
    356         if (!JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(y))
    357                  .ToHandle(&y)) {
    358           return Nothing<bool>();
    359         }
    360       } else {
    361         return Just(false);
    362       }
    363     } else if (x->IsSimd128Value()) {
    364       if (y->IsSimd128Value()) {
    365         return Just(Simd128Value::Equals(Handle<Simd128Value>::cast(x),
    366                                          Handle<Simd128Value>::cast(y)));
    367       } else if (y->IsJSReceiver() && !y->IsUndetectableObject()) {
    368         if (!JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(y))
    369                  .ToHandle(&y)) {
    370           return Nothing<bool>();
    371         }
    372       } else {
    373         return Just(false);
    374       }
    375     } else if (x->IsJSReceiver() && !x->IsUndetectableObject()) {
    376       if (y->IsJSReceiver()) {
    377         return Just(x.is_identical_to(y));
    378       } else if (y->IsNull() || y->IsUndefined()) {
    379         return Just(false);
    380       } else if (y->IsBoolean()) {
    381         y = Oddball::ToNumber(Handle<Oddball>::cast(y));
    382       } else if (!JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(x))
    383                       .ToHandle(&x)) {
    384         return Nothing<bool>();
    385       }
    386     } else {
    387       return Just(
    388           (x->IsNull() || x->IsUndefined() || x->IsUndetectableObject()) &&
    389           (y->IsNull() || y->IsUndefined() || y->IsUndetectableObject()));
    390     }
    391   }
    392 }
    393 
    394 
    395 bool Object::StrictEquals(Object* that) {
    396   if (this->IsNumber()) {
    397     if (!that->IsNumber()) return false;
    398     return NumberEquals(this, that);
    399   } else if (this->IsString()) {
    400     if (!that->IsString()) return false;
    401     return String::cast(this)->Equals(String::cast(that));
    402   } else if (this->IsSimd128Value()) {
    403     if (!that->IsSimd128Value()) return false;
    404     return Simd128Value::cast(this)->Equals(Simd128Value::cast(that));
    405   }
    406   return this == that;
    407 }
    408 
    409 
    410 // static
    411 Handle<String> Object::TypeOf(Isolate* isolate, Handle<Object> object) {
    412   if (object->IsNumber()) return isolate->factory()->number_string();
    413   if (object->IsUndefined() || object->IsUndetectableObject()) {
    414     return isolate->factory()->undefined_string();
    415   }
    416   if (object->IsBoolean()) return isolate->factory()->boolean_string();
    417   if (object->IsString()) return isolate->factory()->string_string();
    418   if (object->IsSymbol()) return isolate->factory()->symbol_string();
    419   if (object->IsString()) return isolate->factory()->string_string();
    420 #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \
    421   if (object->Is##Type()) return isolate->factory()->type##_string();
    422   SIMD128_TYPES(SIMD128_TYPE)
    423 #undef SIMD128_TYPE
    424   if (object->IsCallable()) return isolate->factory()->function_string();
    425   return isolate->factory()->object_string();
    426 }
    427 
    428 
    429 // static
    430 MaybeHandle<Object> Object::Multiply(Isolate* isolate, Handle<Object> lhs,
    431                                      Handle<Object> rhs, Strength strength) {
    432   if (!lhs->IsNumber() || !rhs->IsNumber()) {
    433     if (is_strong(strength)) {
    434       THROW_NEW_ERROR(isolate,
    435                       NewTypeError(MessageTemplate::kStrongImplicitConversion),
    436                       Object);
    437     }
    438     ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object);
    439     ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object);
    440   }
    441   return isolate->factory()->NewNumber(lhs->Number() * rhs->Number());
    442 }
    443 
    444 
    445 // static
    446 MaybeHandle<Object> Object::Divide(Isolate* isolate, Handle<Object> lhs,
    447                                    Handle<Object> rhs, Strength strength) {
    448   if (!lhs->IsNumber() || !rhs->IsNumber()) {
    449     if (is_strong(strength)) {
    450       THROW_NEW_ERROR(isolate,
    451                       NewTypeError(MessageTemplate::kStrongImplicitConversion),
    452                       Object);
    453     }
    454     ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object);
    455     ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object);
    456   }
    457   return isolate->factory()->NewNumber(lhs->Number() / rhs->Number());
    458 }
    459 
    460 
    461 // static
    462 MaybeHandle<Object> Object::Modulus(Isolate* isolate, Handle<Object> lhs,
    463                                     Handle<Object> rhs, Strength strength) {
    464   if (!lhs->IsNumber() || !rhs->IsNumber()) {
    465     if (is_strong(strength)) {
    466       THROW_NEW_ERROR(isolate,
    467                       NewTypeError(MessageTemplate::kStrongImplicitConversion),
    468                       Object);
    469     }
    470     ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object);
    471     ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object);
    472   }
    473   return isolate->factory()->NewNumber(modulo(lhs->Number(), rhs->Number()));
    474 }
    475 
    476 
    477 // static
    478 MaybeHandle<Object> Object::Add(Isolate* isolate, Handle<Object> lhs,
    479                                 Handle<Object> rhs, Strength strength) {
    480   if (lhs->IsNumber() && rhs->IsNumber()) {
    481     return isolate->factory()->NewNumber(lhs->Number() + rhs->Number());
    482   } else if (lhs->IsString() && rhs->IsString()) {
    483     return isolate->factory()->NewConsString(Handle<String>::cast(lhs),
    484                                              Handle<String>::cast(rhs));
    485   } else if (is_strong(strength)) {
    486     THROW_NEW_ERROR(isolate,
    487                     NewTypeError(MessageTemplate::kStrongImplicitConversion),
    488                     Object);
    489   }
    490   ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToPrimitive(lhs), Object);
    491   ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToPrimitive(rhs), Object);
    492   if (lhs->IsString() || rhs->IsString()) {
    493     ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToString(isolate, rhs),
    494                                Object);
    495     ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToString(isolate, lhs),
    496                                Object);
    497     return isolate->factory()->NewConsString(Handle<String>::cast(lhs),
    498                                              Handle<String>::cast(rhs));
    499   }
    500   ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object);
    501   ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object);
    502   return isolate->factory()->NewNumber(lhs->Number() + rhs->Number());
    503 }
    504 
    505 
    506 // static
    507 MaybeHandle<Object> Object::Subtract(Isolate* isolate, Handle<Object> lhs,
    508                                      Handle<Object> rhs, Strength strength) {
    509   if (!lhs->IsNumber() || !rhs->IsNumber()) {
    510     if (is_strong(strength)) {
    511       THROW_NEW_ERROR(isolate,
    512                       NewTypeError(MessageTemplate::kStrongImplicitConversion),
    513                       Object);
    514     }
    515     ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object);
    516     ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object);
    517   }
    518   return isolate->factory()->NewNumber(lhs->Number() - rhs->Number());
    519 }
    520 
    521 
    522 // static
    523 MaybeHandle<Object> Object::ShiftLeft(Isolate* isolate, Handle<Object> lhs,
    524                                       Handle<Object> rhs, Strength strength) {
    525   if (!lhs->IsNumber() || !rhs->IsNumber()) {
    526     if (is_strong(strength)) {
    527       THROW_NEW_ERROR(isolate,
    528                       NewTypeError(MessageTemplate::kStrongImplicitConversion),
    529                       Object);
    530     }
    531     ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object);
    532     ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object);
    533   }
    534   return isolate->factory()->NewNumberFromInt(NumberToInt32(*lhs)
    535                                               << (NumberToUint32(*rhs) & 0x1F));
    536 }
    537 
    538 
    539 // static
    540 MaybeHandle<Object> Object::ShiftRight(Isolate* isolate, Handle<Object> lhs,
    541                                        Handle<Object> rhs, Strength strength) {
    542   if (!lhs->IsNumber() || !rhs->IsNumber()) {
    543     if (is_strong(strength)) {
    544       THROW_NEW_ERROR(isolate,
    545                       NewTypeError(MessageTemplate::kStrongImplicitConversion),
    546                       Object);
    547     }
    548     ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object);
    549     ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object);
    550   }
    551   return isolate->factory()->NewNumberFromInt(NumberToInt32(*lhs) >>
    552                                               (NumberToUint32(*rhs) & 0x1F));
    553 }
    554 
    555 
    556 // static
    557 MaybeHandle<Object> Object::ShiftRightLogical(Isolate* isolate,
    558                                               Handle<Object> lhs,
    559                                               Handle<Object> rhs,
    560                                               Strength strength) {
    561   if (!lhs->IsNumber() || !rhs->IsNumber()) {
    562     if (is_strong(strength)) {
    563       THROW_NEW_ERROR(isolate,
    564                       NewTypeError(MessageTemplate::kStrongImplicitConversion),
    565                       Object);
    566     }
    567     ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object);
    568     ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object);
    569   }
    570   return isolate->factory()->NewNumberFromUint(NumberToUint32(*lhs) >>
    571                                                (NumberToUint32(*rhs) & 0x1F));
    572 }
    573 
    574 
    575 // static
    576 MaybeHandle<Object> Object::BitwiseAnd(Isolate* isolate, Handle<Object> lhs,
    577                                        Handle<Object> rhs, Strength strength) {
    578   if (!lhs->IsNumber() || !rhs->IsNumber()) {
    579     if (is_strong(strength)) {
    580       THROW_NEW_ERROR(isolate,
    581                       NewTypeError(MessageTemplate::kStrongImplicitConversion),
    582                       Object);
    583     }
    584     ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object);
    585     ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object);
    586   }
    587   return isolate->factory()->NewNumberFromInt(NumberToInt32(*lhs) &
    588                                               NumberToInt32(*rhs));
    589 }
    590 
    591 
    592 // static
    593 MaybeHandle<Object> Object::BitwiseOr(Isolate* isolate, Handle<Object> lhs,
    594                                       Handle<Object> rhs, Strength strength) {
    595   if (!lhs->IsNumber() || !rhs->IsNumber()) {
    596     if (is_strong(strength)) {
    597       THROW_NEW_ERROR(isolate,
    598                       NewTypeError(MessageTemplate::kStrongImplicitConversion),
    599                       Object);
    600     }
    601     ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object);
    602     ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object);
    603   }
    604   return isolate->factory()->NewNumberFromInt(NumberToInt32(*lhs) |
    605                                               NumberToInt32(*rhs));
    606 }
    607 
    608 
    609 // static
    610 MaybeHandle<Object> Object::BitwiseXor(Isolate* isolate, Handle<Object> lhs,
    611                                        Handle<Object> rhs, Strength strength) {
    612   if (!lhs->IsNumber() || !rhs->IsNumber()) {
    613     if (is_strong(strength)) {
    614       THROW_NEW_ERROR(isolate,
    615                       NewTypeError(MessageTemplate::kStrongImplicitConversion),
    616                       Object);
    617     }
    618     ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object);
    619     ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object);
    620   }
    621   return isolate->factory()->NewNumberFromInt(NumberToInt32(*lhs) ^
    622                                               NumberToInt32(*rhs));
    623 }
    624 
    625 
    626 Maybe<bool> Object::IsArray(Handle<Object> object) {
    627   if (object->IsJSArray()) return Just(true);
    628   if (object->IsJSProxy()) {
    629     Handle<JSProxy> proxy = Handle<JSProxy>::cast(object);
    630     Isolate* isolate = proxy->GetIsolate();
    631     if (proxy->IsRevoked()) {
    632       isolate->Throw(*isolate->factory()->NewTypeError(
    633           MessageTemplate::kProxyRevoked,
    634           isolate->factory()->NewStringFromAsciiChecked("IsArray")));
    635       return Nothing<bool>();
    636     }
    637     return Object::IsArray(handle(proxy->target(), isolate));
    638   }
    639   return Just(false);
    640 }
    641 
    642 
    643 bool Object::IsPromise(Handle<Object> object) {
    644   if (!object->IsJSObject()) return false;
    645   auto js_object = Handle<JSObject>::cast(object);
    646   // Promises can't have access checks.
    647   if (js_object->map()->is_access_check_needed()) return false;
    648   auto isolate = js_object->GetIsolate();
    649   // TODO(dcarney): this should just be read from the symbol registry so as not
    650   // to be context dependent.
    651   auto key = isolate->factory()->promise_status_symbol();
    652   // Shouldn't be possible to throw here.
    653   return JSObject::HasRealNamedProperty(js_object, key).FromJust();
    654 }
    655 
    656 
    657 // static
    658 MaybeHandle<Object> Object::GetMethod(Handle<JSReceiver> receiver,
    659                                       Handle<Name> name) {
    660   Handle<Object> func;
    661   Isolate* isolate = receiver->GetIsolate();
    662   ASSIGN_RETURN_ON_EXCEPTION(isolate, func,
    663                              JSReceiver::GetProperty(receiver, name), Object);
    664   if (func->IsNull() || func->IsUndefined()) {
    665     return isolate->factory()->undefined_value();
    666   }
    667   if (!func->IsCallable()) {
    668     THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kPropertyNotFunction,
    669                                           func, name, receiver),
    670                     Object);
    671   }
    672   return func;
    673 }
    674 
    675 
    676 // static
    677 MaybeHandle<FixedArray> Object::CreateListFromArrayLike(
    678     Isolate* isolate, Handle<Object> object, ElementTypes element_types) {
    679   // 1. ReturnIfAbrupt(object).
    680   // 2. (default elementTypes -- not applicable.)
    681   // 3. If Type(obj) is not Object, throw a TypeError exception.
    682   if (!object->IsJSReceiver()) {
    683     THROW_NEW_ERROR(isolate,
    684                     NewTypeError(MessageTemplate::kCalledOnNonObject,
    685                                  isolate->factory()->NewStringFromAsciiChecked(
    686                                      "CreateListFromArrayLike")),
    687                     FixedArray);
    688   }
    689   // 4. Let len be ? ToLength(? Get(obj, "length")).
    690   Handle<Object> raw_length_obj;
    691   ASSIGN_RETURN_ON_EXCEPTION(
    692       isolate, raw_length_obj,
    693       JSReceiver::GetProperty(object, isolate->factory()->length_string()),
    694       FixedArray);
    695   Handle<Object> raw_length_number;
    696   ASSIGN_RETURN_ON_EXCEPTION(isolate, raw_length_number,
    697                              Object::ToLength(isolate, raw_length_obj),
    698                              FixedArray);
    699   uint32_t len;
    700   if (!raw_length_number->ToUint32(&len) ||
    701       len > static_cast<uint32_t>(FixedArray::kMaxLength)) {
    702     THROW_NEW_ERROR(isolate,
    703                     NewRangeError(MessageTemplate::kInvalidArrayLength),
    704                     FixedArray);
    705   }
    706   // 5. Let list be an empty List.
    707   Handle<FixedArray> list = isolate->factory()->NewFixedArray(len);
    708   // 6. Let index be 0.
    709   // 7. Repeat while index < len:
    710   for (uint32_t index = 0; index < len; ++index) {
    711     // 7a. Let indexName be ToString(index).
    712     // 7b. Let next be ? Get(obj, indexName).
    713     Handle<Object> next;
    714     ASSIGN_RETURN_ON_EXCEPTION(
    715         isolate, next, Object::GetElement(isolate, object, index), FixedArray);
    716     switch (element_types) {
    717       case ElementTypes::kAll:
    718         // Nothing to do.
    719         break;
    720       case ElementTypes::kStringAndSymbol: {
    721         // 7c. If Type(next) is not an element of elementTypes, throw a
    722         //     TypeError exception.
    723         if (!next->IsName()) {
    724           THROW_NEW_ERROR(isolate,
    725                           NewTypeError(MessageTemplate::kNotPropertyName, next),
    726                           FixedArray);
    727         }
    728         // 7d. Append next as the last element of list.
    729         // Internalize on the fly so we can use pointer identity later.
    730         next = isolate->factory()->InternalizeName(Handle<Name>::cast(next));
    731         break;
    732       }
    733     }
    734     list->set(index, *next);
    735     // 7e. Set index to index + 1. (See loop header.)
    736   }
    737   // 8. Return list.
    738   return list;
    739 }
    740 
    741 
    742 // static
    743 Maybe<bool> JSReceiver::HasProperty(LookupIterator* it) {
    744   for (; it->IsFound(); it->Next()) {
    745     switch (it->state()) {
    746       case LookupIterator::NOT_FOUND:
    747       case LookupIterator::TRANSITION:
    748         UNREACHABLE();
    749       case LookupIterator::JSPROXY:
    750         // Call the "has" trap on proxies.
    751         return JSProxy::HasProperty(it->isolate(), it->GetHolder<JSProxy>(),
    752                                     it->GetName());
    753       case LookupIterator::INTERCEPTOR: {
    754         Maybe<PropertyAttributes> result =
    755             JSObject::GetPropertyAttributesWithInterceptor(it);
    756         if (!result.IsJust()) return Nothing<bool>();
    757         if (result.FromJust() != ABSENT) return Just(true);
    758         break;
    759       }
    760       case LookupIterator::ACCESS_CHECK: {
    761         if (it->HasAccess()) break;
    762         Maybe<PropertyAttributes> result =
    763             JSObject::GetPropertyAttributesWithFailedAccessCheck(it);
    764         if (!result.IsJust()) return Nothing<bool>();
    765         return Just(result.FromJust() != ABSENT);
    766       }
    767       case LookupIterator::INTEGER_INDEXED_EXOTIC:
    768         // TypedArray out-of-bounds access.
    769         return Just(false);
    770       case LookupIterator::ACCESSOR:
    771       case LookupIterator::DATA:
    772         return Just(true);
    773     }
    774   }
    775   return Just(false);
    776 }
    777 
    778 
    779 // static
    780 MaybeHandle<Object> Object::GetProperty(LookupIterator* it,
    781                                         LanguageMode language_mode) {
    782   for (; it->IsFound(); it->Next()) {
    783     switch (it->state()) {
    784       case LookupIterator::NOT_FOUND:
    785       case LookupIterator::TRANSITION:
    786         UNREACHABLE();
    787       case LookupIterator::JSPROXY:
    788         return JSProxy::GetProperty(it->isolate(), it->GetHolder<JSProxy>(),
    789                                     it->GetName(), it->GetReceiver(),
    790                                     language_mode);
    791       case LookupIterator::INTERCEPTOR: {
    792         bool done;
    793         Handle<Object> result;
    794         ASSIGN_RETURN_ON_EXCEPTION(
    795             it->isolate(), result,
    796             JSObject::GetPropertyWithInterceptor(it, &done), Object);
    797         if (done) return result;
    798         break;
    799       }
    800       case LookupIterator::ACCESS_CHECK:
    801         if (it->HasAccess()) break;
    802         return JSObject::GetPropertyWithFailedAccessCheck(it);
    803       case LookupIterator::ACCESSOR:
    804         return GetPropertyWithAccessor(it, language_mode);
    805       case LookupIterator::INTEGER_INDEXED_EXOTIC:
    806         return ReadAbsentProperty(it, language_mode);
    807       case LookupIterator::DATA:
    808         return it->GetDataValue();
    809     }
    810   }
    811   return ReadAbsentProperty(it, language_mode);
    812 }
    813 
    814 
    815 #define STACK_CHECK(result_value)                        \
    816   do {                                                   \
    817     StackLimitCheck stack_check(isolate);                \
    818     if (stack_check.HasOverflowed()) {                   \
    819       isolate->Throw(*isolate->factory()->NewRangeError( \
    820           MessageTemplate::kStackOverflow));             \
    821       return result_value;                               \
    822     }                                                    \
    823   } while (false)
    824 
    825 
    826 // static
    827 MaybeHandle<Object> JSProxy::GetProperty(Isolate* isolate,
    828                                          Handle<JSProxy> proxy,
    829                                          Handle<Name> name,
    830                                          Handle<Object> receiver,
    831                                          LanguageMode language_mode) {
    832   if (receiver->IsJSGlobalObject()) {
    833     THROW_NEW_ERROR(
    834         isolate,
    835         NewTypeError(MessageTemplate::kReadGlobalReferenceThroughProxy, name),
    836         Object);
    837   }
    838 
    839   DCHECK(!name->IsPrivate());
    840   STACK_CHECK(MaybeHandle<Object>());
    841   Handle<Name> trap_name = isolate->factory()->get_string();
    842   // 1. Assert: IsPropertyKey(P) is true.
    843   // 2. Let handler be the value of the [[ProxyHandler]] internal slot of O.
    844   Handle<Object> handler(proxy->handler(), isolate);
    845   // 3. If handler is null, throw a TypeError exception.
    846   // 4. Assert: Type(handler) is Object.
    847   if (proxy->IsRevoked()) {
    848     THROW_NEW_ERROR(isolate,
    849                     NewTypeError(MessageTemplate::kProxyRevoked, trap_name),
    850                     Object);
    851   }
    852   // 5. Let target be the value of the [[ProxyTarget]] internal slot of O.
    853   Handle<JSReceiver> target(proxy->target(), isolate);
    854   // 6. Let trap be ? GetMethod(handler, "get").
    855   Handle<Object> trap;
    856   ASSIGN_RETURN_ON_EXCEPTION(
    857       isolate, trap,
    858       Object::GetMethod(Handle<JSReceiver>::cast(handler), trap_name), Object);
    859   // 7. If trap is undefined, then
    860   if (trap->IsUndefined()) {
    861     // 7.a Return target.[[Get]](P, Receiver).
    862     LookupIterator it =
    863         LookupIterator::PropertyOrElement(isolate, receiver, name, target);
    864     return Object::GetProperty(&it, language_mode);
    865   }
    866   // 8. Let trapResult be ? Call(trap, handler, target, P, Receiver).
    867   Handle<Object> trap_result;
    868   Handle<Object> args[] = {target, name, receiver};
    869   ASSIGN_RETURN_ON_EXCEPTION(
    870       isolate, trap_result,
    871       Execution::Call(isolate, trap, handler, arraysize(args), args), Object);
    872   // 9. Let targetDesc be ? target.[[GetOwnProperty]](P).
    873   PropertyDescriptor target_desc;
    874   Maybe<bool> target_found =
    875       JSReceiver::GetOwnPropertyDescriptor(isolate, target, name, &target_desc);
    876   MAYBE_RETURN_NULL(target_found);
    877   // 10. If targetDesc is not undefined, then
    878   if (target_found.FromJust()) {
    879     // 10.a. If IsDataDescriptor(targetDesc) and targetDesc.[[Configurable]] is
    880     //       false and targetDesc.[[Writable]] is false, then
    881     // 10.a.i. If SameValue(trapResult, targetDesc.[[Value]]) is false,
    882     //        throw a TypeError exception.
    883     bool inconsistent = PropertyDescriptor::IsDataDescriptor(&target_desc) &&
    884                         !target_desc.configurable() &&
    885                         !target_desc.writable() &&
    886                         !trap_result->SameValue(*target_desc.value());
    887     if (inconsistent) {
    888       THROW_NEW_ERROR(
    889           isolate, NewTypeError(MessageTemplate::kProxyGetNonConfigurableData,
    890                                 name, target_desc.value(), trap_result),
    891           Object);
    892     }
    893     // 10.b. If IsAccessorDescriptor(targetDesc) and targetDesc.[[Configurable]]
    894     //       is false and targetDesc.[[Get]] is undefined, then
    895     // 10.b.i. If trapResult is not undefined, throw a TypeError exception.
    896     inconsistent = PropertyDescriptor::IsAccessorDescriptor(&target_desc) &&
    897                    !target_desc.configurable() &&
    898                    target_desc.get()->IsUndefined() &&
    899                    !trap_result->IsUndefined();
    900     if (inconsistent) {
    901       THROW_NEW_ERROR(
    902           isolate,
    903           NewTypeError(MessageTemplate::kProxyGetNonConfigurableAccessor, name,
    904                        trap_result),
    905           Object);
    906     }
    907   }
    908   // 11. Return trap_result
    909   return trap_result;
    910 }
    911 
    912 
    913 Handle<Object> JSReceiver::GetDataProperty(Handle<JSReceiver> object,
    914                                            Handle<Name> name) {
    915   LookupIterator it(object, name,
    916                     LookupIterator::PROTOTYPE_CHAIN_SKIP_INTERCEPTOR);
    917   return GetDataProperty(&it);
    918 }
    919 
    920 
    921 Handle<Object> JSReceiver::GetDataProperty(LookupIterator* it) {
    922   for (; it->IsFound(); it->Next()) {
    923     switch (it->state()) {
    924       case LookupIterator::INTERCEPTOR:
    925       case LookupIterator::NOT_FOUND:
    926       case LookupIterator::TRANSITION:
    927         UNREACHABLE();
    928       case LookupIterator::ACCESS_CHECK:
    929         // Support calling this method without an active context, but refuse
    930         // access to access-checked objects in that case.
    931         if (it->isolate()->context() != nullptr && it->HasAccess()) continue;
    932       // Fall through.
    933       case LookupIterator::JSPROXY:
    934         it->NotFound();
    935         return it->isolate()->factory()->undefined_value();
    936       case LookupIterator::ACCESSOR:
    937         // TODO(verwaest): For now this doesn't call into
    938         // ExecutableAccessorInfo, since clients don't need it. Update once
    939         // relevant.
    940         it->NotFound();
    941         return it->isolate()->factory()->undefined_value();
    942       case LookupIterator::INTEGER_INDEXED_EXOTIC:
    943         return it->isolate()->factory()->undefined_value();
    944       case LookupIterator::DATA:
    945         return it->GetDataValue();
    946     }
    947   }
    948   return it->isolate()->factory()->undefined_value();
    949 }
    950 
    951 
    952 bool Object::ToInt32(int32_t* value) {
    953   if (IsSmi()) {
    954     *value = Smi::cast(this)->value();
    955     return true;
    956   }
    957   if (IsHeapNumber()) {
    958     double num = HeapNumber::cast(this)->value();
    959     if (FastI2D(FastD2I(num)) == num) {
    960       *value = FastD2I(num);
    961       return true;
    962     }
    963   }
    964   return false;
    965 }
    966 
    967 
    968 bool Object::ToUint32(uint32_t* value) {
    969   if (IsSmi()) {
    970     int num = Smi::cast(this)->value();
    971     if (num < 0) return false;
    972     *value = static_cast<uint32_t>(num);
    973     return true;
    974   }
    975   if (IsHeapNumber()) {
    976     double num = HeapNumber::cast(this)->value();
    977     if (num < 0) return false;
    978     uint32_t uint_value = FastD2UI(num);
    979     if (FastUI2D(uint_value) == num) {
    980       *value = uint_value;
    981       return true;
    982     }
    983   }
    984   return false;
    985 }
    986 
    987 
    988 bool FunctionTemplateInfo::IsTemplateFor(Object* object) {
    989   if (!object->IsHeapObject()) return false;
    990   return IsTemplateFor(HeapObject::cast(object)->map());
    991 }
    992 
    993 
    994 bool FunctionTemplateInfo::IsTemplateFor(Map* map) {
    995   // There is a constraint on the object; check.
    996   if (!map->IsJSObjectMap()) return false;
    997   // Fetch the constructor function of the object.
    998   Object* cons_obj = map->GetConstructor();
    999   if (!cons_obj->IsJSFunction()) return false;
   1000   JSFunction* fun = JSFunction::cast(cons_obj);
   1001   // Iterate through the chain of inheriting function templates to
   1002   // see if the required one occurs.
   1003   for (Object* type = fun->shared()->function_data();
   1004        type->IsFunctionTemplateInfo();
   1005        type = FunctionTemplateInfo::cast(type)->parent_template()) {
   1006     if (type == this) return true;
   1007   }
   1008   // Didn't find the required type in the inheritance chain.
   1009   return false;
   1010 }
   1011 
   1012 
   1013 // TODO(dcarney): CallOptimization duplicates this logic, merge.
   1014 Object* FunctionTemplateInfo::GetCompatibleReceiver(Isolate* isolate,
   1015                                                     Object* receiver) {
   1016   // API calls are only supported with JSObject receivers.
   1017   if (!receiver->IsJSObject()) return isolate->heap()->null_value();
   1018   Object* recv_type = this->signature();
   1019   // No signature, return holder.
   1020   if (recv_type->IsUndefined()) return receiver;
   1021   FunctionTemplateInfo* signature = FunctionTemplateInfo::cast(recv_type);
   1022   // Check the receiver.
   1023   for (PrototypeIterator iter(isolate, receiver,
   1024                               PrototypeIterator::START_AT_RECEIVER);
   1025        !iter.IsAtEnd(PrototypeIterator::END_AT_NON_HIDDEN); iter.Advance()) {
   1026     if (signature->IsTemplateFor(iter.GetCurrent())) return iter.GetCurrent();
   1027   }
   1028   return isolate->heap()->null_value();
   1029 }
   1030 
   1031 
   1032 // static
   1033 MaybeHandle<JSObject> JSObject::New(Handle<JSFunction> constructor,
   1034                                     Handle<JSReceiver> new_target,
   1035                                     Handle<AllocationSite> site) {
   1036   // If called through new, new.target can be:
   1037   // - a subclass of constructor,
   1038   // - a proxy wrapper around constructor, or
   1039   // - the constructor itself.
   1040   // If called through Reflect.construct, it's guaranteed to be a constructor.
   1041   Isolate* const isolate = constructor->GetIsolate();
   1042   DCHECK(constructor->IsConstructor());
   1043   DCHECK(new_target->IsConstructor());
   1044   DCHECK(!constructor->has_initial_map() ||
   1045          constructor->initial_map()->instance_type() != JS_FUNCTION_TYPE);
   1046 
   1047   Handle<Map> initial_map;
   1048   ASSIGN_RETURN_ON_EXCEPTION(
   1049       isolate, initial_map,
   1050       JSFunction::GetDerivedMap(isolate, constructor, new_target), JSObject);
   1051   Handle<JSObject> result =
   1052       isolate->factory()->NewJSObjectFromMap(initial_map, NOT_TENURED, site);
   1053   isolate->counters()->constructed_objects()->Increment();
   1054   isolate->counters()->constructed_objects_runtime()->Increment();
   1055   return result;
   1056 }
   1057 
   1058 
   1059 Handle<FixedArray> JSObject::EnsureWritableFastElements(
   1060     Handle<JSObject> object) {
   1061   DCHECK(object->HasFastSmiOrObjectElements());
   1062   Isolate* isolate = object->GetIsolate();
   1063   Handle<FixedArray> elems(FixedArray::cast(object->elements()), isolate);
   1064   if (elems->map() != isolate->heap()->fixed_cow_array_map()) return elems;
   1065   Handle<FixedArray> writable_elems = isolate->factory()->CopyFixedArrayWithMap(
   1066       elems, isolate->factory()->fixed_array_map());
   1067   object->set_elements(*writable_elems);
   1068   isolate->counters()->cow_arrays_converted()->Increment();
   1069   return writable_elems;
   1070 }
   1071 
   1072 
   1073 // ES6 9.5.1
   1074 // static
   1075 MaybeHandle<Object> JSProxy::GetPrototype(Handle<JSProxy> proxy) {
   1076   Isolate* isolate = proxy->GetIsolate();
   1077   Handle<String> trap_name = isolate->factory()->getPrototypeOf_string();
   1078 
   1079   STACK_CHECK(MaybeHandle<Object>());
   1080 
   1081   // 1. Let handler be the value of the [[ProxyHandler]] internal slot.
   1082   // 2. If handler is null, throw a TypeError exception.
   1083   // 3. Assert: Type(handler) is Object.
   1084   // 4. Let target be the value of the [[ProxyTarget]] internal slot.
   1085   if (proxy->IsRevoked()) {
   1086     THROW_NEW_ERROR(isolate,
   1087                     NewTypeError(MessageTemplate::kProxyRevoked, trap_name),
   1088                     Object);
   1089   }
   1090   Handle<JSReceiver> target(proxy->target(), isolate);
   1091   Handle<JSReceiver> handler(JSReceiver::cast(proxy->handler()), isolate);
   1092 
   1093   // 5. Let trap be ? GetMethod(handler, "getPrototypeOf").
   1094   Handle<Object> trap;
   1095   ASSIGN_RETURN_ON_EXCEPTION(isolate, trap, GetMethod(handler, trap_name),
   1096                              Object);
   1097   // 6. If trap is undefined, then return target.[[GetPrototypeOf]]().
   1098   if (trap->IsUndefined()) {
   1099     return Object::GetPrototype(isolate, target);
   1100   }
   1101   // 7. Let handlerProto be ? Call(trap, handler, target).
   1102   Handle<Object> argv[] = {target};
   1103   Handle<Object> handler_proto;
   1104   ASSIGN_RETURN_ON_EXCEPTION(
   1105       isolate, handler_proto,
   1106       Execution::Call(isolate, trap, handler, arraysize(argv), argv), Object);
   1107   // 8. If Type(handlerProto) is neither Object nor Null, throw a TypeError.
   1108   if (!(handler_proto->IsJSReceiver() || handler_proto->IsNull())) {
   1109     THROW_NEW_ERROR(isolate,
   1110                     NewTypeError(MessageTemplate::kProxyGetPrototypeOfInvalid),
   1111                     Object);
   1112   }
   1113   // 9. Let extensibleTarget be ? IsExtensible(target).
   1114   Maybe<bool> is_extensible = JSReceiver::IsExtensible(target);
   1115   MAYBE_RETURN_NULL(is_extensible);
   1116   // 10. If extensibleTarget is true, return handlerProto.
   1117   if (is_extensible.FromJust()) return handler_proto;
   1118   // 11. Let targetProto be ? target.[[GetPrototypeOf]]().
   1119   Handle<Object> target_proto;
   1120   ASSIGN_RETURN_ON_EXCEPTION(isolate, target_proto,
   1121                              Object::GetPrototype(isolate, target), Object);
   1122   // 12. If SameValue(handlerProto, targetProto) is false, throw a TypeError.
   1123   if (!handler_proto->SameValue(*target_proto)) {
   1124     THROW_NEW_ERROR(
   1125         isolate,
   1126         NewTypeError(MessageTemplate::kProxyGetPrototypeOfNonExtensible),
   1127         Object);
   1128   }
   1129   // 13. Return handlerProto.
   1130   return handler_proto;
   1131 }
   1132 
   1133 
   1134 MaybeHandle<Object> Object::GetPropertyWithAccessor(
   1135     LookupIterator* it, LanguageMode language_mode) {
   1136   Isolate* isolate = it->isolate();
   1137   Handle<Object> structure = it->GetAccessors();
   1138   Handle<Object> receiver = it->GetReceiver();
   1139 
   1140   // We should never get here to initialize a const with the hole value since a
   1141   // const declaration would conflict with the getter.
   1142   DCHECK(!structure->IsForeign());
   1143 
   1144   // API style callbacks.
   1145   if (structure->IsAccessorInfo()) {
   1146     Handle<JSObject> holder = it->GetHolder<JSObject>();
   1147     Handle<Name> name = it->GetName();
   1148     Handle<ExecutableAccessorInfo> info =
   1149         Handle<ExecutableAccessorInfo>::cast(structure);
   1150     if (!info->IsCompatibleReceiver(*receiver)) {
   1151       THROW_NEW_ERROR(isolate,
   1152                       NewTypeError(MessageTemplate::kIncompatibleMethodReceiver,
   1153                                    name, receiver),
   1154                       Object);
   1155     }
   1156 
   1157     v8::AccessorNameGetterCallback call_fun =
   1158         v8::ToCData<v8::AccessorNameGetterCallback>(info->getter());
   1159     if (call_fun == nullptr) return isolate->factory()->undefined_value();
   1160 
   1161     LOG(isolate, ApiNamedPropertyAccess("load", *holder, *name));
   1162     PropertyCallbackArguments args(isolate, info->data(), *receiver, *holder);
   1163     v8::Local<v8::Value> result = args.Call(call_fun, v8::Utils::ToLocal(name));
   1164     RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object);
   1165     if (result.IsEmpty()) {
   1166       return ReadAbsentProperty(isolate, receiver, name, language_mode);
   1167     }
   1168     Handle<Object> return_value = v8::Utils::OpenHandle(*result);
   1169     return_value->VerifyApiCallResultType();
   1170     // Rebox handle before return.
   1171     return handle(*return_value, isolate);
   1172   }
   1173 
   1174   // Regular accessor.
   1175   Handle<Object> getter(AccessorPair::cast(*structure)->getter(), isolate);
   1176   if (getter->IsCallable()) {
   1177     // TODO(rossberg): nicer would be to cast to some JSCallable here...
   1178     return Object::GetPropertyWithDefinedGetter(
   1179         receiver, Handle<JSReceiver>::cast(getter));
   1180   }
   1181   // Getter is not a function.
   1182   return ReadAbsentProperty(isolate, receiver, it->GetName(), language_mode);
   1183 }
   1184 
   1185 
   1186 bool AccessorInfo::IsCompatibleReceiverMap(Isolate* isolate,
   1187                                            Handle<AccessorInfo> info,
   1188                                            Handle<Map> map) {
   1189   if (!info->HasExpectedReceiverType()) return true;
   1190   if (!map->IsJSObjectMap()) return false;
   1191   return FunctionTemplateInfo::cast(info->expected_receiver_type())
   1192       ->IsTemplateFor(*map);
   1193 }
   1194 
   1195 
   1196 Maybe<bool> Object::SetPropertyWithAccessor(LookupIterator* it,
   1197                                             Handle<Object> value,
   1198                                             ShouldThrow should_throw) {
   1199   Isolate* isolate = it->isolate();
   1200   Handle<Object> structure = it->GetAccessors();
   1201   Handle<Object> receiver = it->GetReceiver();
   1202 
   1203   // We should never get here to initialize a const with the hole value since a
   1204   // const declaration would conflict with the setter.
   1205   DCHECK(!structure->IsForeign());
   1206 
   1207   // API style callbacks.
   1208   if (structure->IsExecutableAccessorInfo()) {
   1209     Handle<JSObject> holder = it->GetHolder<JSObject>();
   1210     Handle<Name> name = it->GetName();
   1211     Handle<ExecutableAccessorInfo> info =
   1212         Handle<ExecutableAccessorInfo>::cast(structure);
   1213     if (!info->IsCompatibleReceiver(*receiver)) {
   1214       isolate->Throw(*isolate->factory()->NewTypeError(
   1215           MessageTemplate::kIncompatibleMethodReceiver, name, receiver));
   1216       return Nothing<bool>();
   1217     }
   1218 
   1219     v8::AccessorNameSetterCallback call_fun =
   1220         v8::ToCData<v8::AccessorNameSetterCallback>(info->setter());
   1221     if (call_fun == nullptr) return Just(true);
   1222     // TODO(verwaest): Shouldn't this case be unreachable (at least in the
   1223     // long run?) Should we have ExecutableAccessorPairs with missing setter
   1224     // that are "writable"? If they aren't writable, shouldn't we have bailed
   1225     // out already earlier?
   1226 
   1227     LOG(isolate, ApiNamedPropertyAccess("store", *holder, *name));
   1228     PropertyCallbackArguments args(isolate, info->data(), *receiver, *holder);
   1229     args.Call(call_fun, v8::Utils::ToLocal(name), v8::Utils::ToLocal(value));
   1230     RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>());
   1231     return Just(true);
   1232   }
   1233 
   1234   // Regular accessor.
   1235   Handle<Object> setter(AccessorPair::cast(*structure)->setter(), isolate);
   1236   if (setter->IsCallable()) {
   1237     // TODO(rossberg): nicer would be to cast to some JSCallable here...
   1238     return SetPropertyWithDefinedSetter(
   1239         receiver, Handle<JSReceiver>::cast(setter), value, should_throw);
   1240   }
   1241 
   1242   RETURN_FAILURE(isolate, should_throw,
   1243                  NewTypeError(MessageTemplate::kNoSetterInCallback,
   1244                               it->GetName(), it->GetHolder<JSObject>()));
   1245 }
   1246 
   1247 
   1248 MaybeHandle<Object> Object::GetPropertyWithDefinedGetter(
   1249     Handle<Object> receiver,
   1250     Handle<JSReceiver> getter) {
   1251   Isolate* isolate = getter->GetIsolate();
   1252 
   1253   // Platforms with simulators like arm/arm64 expose a funny issue. If the
   1254   // simulator has a separate JS stack pointer from the C++ stack pointer, it
   1255   // can miss C++ stack overflows in the stack guard at the start of JavaScript
   1256   // functions. It would be very expensive to check the C++ stack pointer at
   1257   // that location. The best solution seems to be to break the impasse by
   1258   // adding checks at possible recursion points. What's more, we don't put
   1259   // this stack check behind the USE_SIMULATOR define in order to keep
   1260   // behavior the same between hardware and simulators.
   1261   StackLimitCheck check(isolate);
   1262   if (check.JsHasOverflowed()) {
   1263     isolate->StackOverflow();
   1264     return MaybeHandle<Object>();
   1265   }
   1266 
   1267   return Execution::Call(isolate, getter, receiver, 0, NULL);
   1268 }
   1269 
   1270 
   1271 Maybe<bool> Object::SetPropertyWithDefinedSetter(Handle<Object> receiver,
   1272                                                  Handle<JSReceiver> setter,
   1273                                                  Handle<Object> value,
   1274                                                  ShouldThrow should_throw) {
   1275   Isolate* isolate = setter->GetIsolate();
   1276 
   1277   Handle<Object> argv[] = { value };
   1278   RETURN_ON_EXCEPTION_VALUE(isolate, Execution::Call(isolate, setter, receiver,
   1279                                                      arraysize(argv), argv),
   1280                             Nothing<bool>());
   1281   return Just(true);
   1282 }
   1283 
   1284 
   1285 // static
   1286 bool Object::IsErrorObject(Isolate* isolate, Handle<Object> object) {
   1287   if (!object->IsJSObject()) return false;
   1288   // Use stack_trace_symbol as proxy for [[ErrorData]].
   1289   Handle<Name> symbol = isolate->factory()->stack_trace_symbol();
   1290   Maybe<bool> has_stack_trace =
   1291       JSReceiver::HasOwnProperty(Handle<JSReceiver>::cast(object), symbol);
   1292   DCHECK(!has_stack_trace.IsNothing());
   1293   return has_stack_trace.FromJust();
   1294 }
   1295 
   1296 
   1297 // static
   1298 bool JSObject::AllCanRead(LookupIterator* it) {
   1299   // Skip current iteration, it's in state ACCESS_CHECK or INTERCEPTOR, both of
   1300   // which have already been checked.
   1301   DCHECK(it->state() == LookupIterator::ACCESS_CHECK ||
   1302          it->state() == LookupIterator::INTERCEPTOR);
   1303   for (it->Next(); it->IsFound(); it->Next()) {
   1304     if (it->state() == LookupIterator::ACCESSOR) {
   1305       auto accessors = it->GetAccessors();
   1306       if (accessors->IsAccessorInfo()) {
   1307         if (AccessorInfo::cast(*accessors)->all_can_read()) return true;
   1308       }
   1309     } else if (it->state() == LookupIterator::INTERCEPTOR) {
   1310       if (it->GetInterceptor()->all_can_read()) return true;
   1311     } else if (it->state() == LookupIterator::JSPROXY) {
   1312       // Stop lookupiterating. And no, AllCanNotRead.
   1313       return false;
   1314     }
   1315   }
   1316   return false;
   1317 }
   1318 
   1319 
   1320 MaybeHandle<Object> JSObject::GetPropertyWithFailedAccessCheck(
   1321     LookupIterator* it) {
   1322   Handle<JSObject> checked = it->GetHolder<JSObject>();
   1323   while (AllCanRead(it)) {
   1324     if (it->state() == LookupIterator::ACCESSOR) {
   1325       return GetPropertyWithAccessor(it, SLOPPY);
   1326     }
   1327     DCHECK_EQ(LookupIterator::INTERCEPTOR, it->state());
   1328     bool done;
   1329     Handle<Object> result;
   1330     ASSIGN_RETURN_ON_EXCEPTION(it->isolate(), result,
   1331                                GetPropertyWithInterceptor(it, &done), Object);
   1332     if (done) return result;
   1333   }
   1334 
   1335   // Cross-Origin [[Get]] of Well-Known Symbols does not throw, and returns
   1336   // undefined.
   1337   Handle<Name> name = it->GetName();
   1338   if (name->IsSymbol() && Symbol::cast(*name)->is_well_known_symbol()) {
   1339     return it->factory()->undefined_value();
   1340   }
   1341 
   1342   it->isolate()->ReportFailedAccessCheck(checked);
   1343   RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(it->isolate(), Object);
   1344   return it->factory()->undefined_value();
   1345 }
   1346 
   1347 
   1348 Maybe<PropertyAttributes> JSObject::GetPropertyAttributesWithFailedAccessCheck(
   1349     LookupIterator* it) {
   1350   Handle<JSObject> checked = it->GetHolder<JSObject>();
   1351   while (AllCanRead(it)) {
   1352     if (it->state() == LookupIterator::ACCESSOR) {
   1353       return Just(it->property_details().attributes());
   1354     }
   1355     DCHECK_EQ(LookupIterator::INTERCEPTOR, it->state());
   1356     auto result = GetPropertyAttributesWithInterceptor(it);
   1357     if (it->isolate()->has_scheduled_exception()) break;
   1358     if (result.IsJust() && result.FromJust() != ABSENT) return result;
   1359   }
   1360   it->isolate()->ReportFailedAccessCheck(checked);
   1361   RETURN_VALUE_IF_SCHEDULED_EXCEPTION(it->isolate(),
   1362                                       Nothing<PropertyAttributes>());
   1363   return Just(ABSENT);
   1364 }
   1365 
   1366 
   1367 // static
   1368 bool JSObject::AllCanWrite(LookupIterator* it) {
   1369   for (; it->IsFound() && it->state() != LookupIterator::JSPROXY; it->Next()) {
   1370     if (it->state() == LookupIterator::ACCESSOR) {
   1371       Handle<Object> accessors = it->GetAccessors();
   1372       if (accessors->IsAccessorInfo()) {
   1373         if (AccessorInfo::cast(*accessors)->all_can_write()) return true;
   1374       }
   1375     }
   1376   }
   1377   return false;
   1378 }
   1379 
   1380 
   1381 Maybe<bool> JSObject::SetPropertyWithFailedAccessCheck(
   1382     LookupIterator* it, Handle<Object> value, ShouldThrow should_throw) {
   1383   Handle<JSObject> checked = it->GetHolder<JSObject>();
   1384   if (AllCanWrite(it)) {
   1385     return SetPropertyWithAccessor(it, value, should_throw);
   1386   }
   1387 
   1388   it->isolate()->ReportFailedAccessCheck(checked);
   1389   RETURN_VALUE_IF_SCHEDULED_EXCEPTION(it->isolate(), Nothing<bool>());
   1390   return Just(true);
   1391 }
   1392 
   1393 
   1394 void JSObject::SetNormalizedProperty(Handle<JSObject> object,
   1395                                      Handle<Name> name,
   1396                                      Handle<Object> value,
   1397                                      PropertyDetails details) {
   1398   DCHECK(!object->HasFastProperties());
   1399   if (!name->IsUniqueName()) {
   1400     name = object->GetIsolate()->factory()->InternalizeString(
   1401         Handle<String>::cast(name));
   1402   }
   1403 
   1404   if (object->IsJSGlobalObject()) {
   1405     Handle<GlobalDictionary> property_dictionary(object->global_dictionary());
   1406 
   1407     int entry = property_dictionary->FindEntry(name);
   1408     if (entry == GlobalDictionary::kNotFound) {
   1409       auto cell = object->GetIsolate()->factory()->NewPropertyCell();
   1410       cell->set_value(*value);
   1411       auto cell_type = value->IsUndefined() ? PropertyCellType::kUndefined
   1412                                             : PropertyCellType::kConstant;
   1413       details = details.set_cell_type(cell_type);
   1414       value = cell;
   1415       property_dictionary =
   1416           GlobalDictionary::Add(property_dictionary, name, value, details);
   1417       object->set_properties(*property_dictionary);
   1418     } else {
   1419       PropertyCell::UpdateCell(property_dictionary, entry, value, details);
   1420     }
   1421   } else {
   1422     Handle<NameDictionary> property_dictionary(object->property_dictionary());
   1423 
   1424     int entry = property_dictionary->FindEntry(name);
   1425     if (entry == NameDictionary::kNotFound) {
   1426       property_dictionary =
   1427           NameDictionary::Add(property_dictionary, name, value, details);
   1428       object->set_properties(*property_dictionary);
   1429     } else {
   1430       PropertyDetails original_details = property_dictionary->DetailsAt(entry);
   1431       int enumeration_index = original_details.dictionary_index();
   1432       DCHECK(enumeration_index > 0);
   1433       details = details.set_index(enumeration_index);
   1434       property_dictionary->SetEntry(entry, name, value, details);
   1435     }
   1436   }
   1437 }
   1438 
   1439 
   1440 Maybe<bool> Object::HasInPrototypeChain(Isolate* isolate, Handle<Object> object,
   1441                                         Handle<Object> proto) {
   1442   PrototypeIterator iter(isolate, object, PrototypeIterator::START_AT_RECEIVER);
   1443   while (true) {
   1444     if (!iter.AdvanceFollowingProxies()) return Nothing<bool>();
   1445     if (iter.IsAtEnd()) return Just(false);
   1446     if (iter.IsAtEnd(proto)) return Just(true);
   1447   }
   1448 }
   1449 
   1450 
   1451 Map* Object::GetRootMap(Isolate* isolate) {
   1452   DisallowHeapAllocation no_alloc;
   1453   if (IsSmi()) {
   1454     Context* native_context = isolate->context()->native_context();
   1455     return native_context->number_function()->initial_map();
   1456   }
   1457 
   1458   // The object is either a number, a string, a symbol, a boolean, a SIMD value,
   1459   // a real JS object, or a Harmony proxy.
   1460   HeapObject* heap_object = HeapObject::cast(this);
   1461   if (heap_object->IsJSReceiver()) {
   1462     return heap_object->map();
   1463   }
   1464   int constructor_function_index =
   1465       heap_object->map()->GetConstructorFunctionIndex();
   1466   if (constructor_function_index != Map::kNoConstructorFunctionIndex) {
   1467     Context* native_context = isolate->context()->native_context();
   1468     JSFunction* constructor_function =
   1469         JSFunction::cast(native_context->get(constructor_function_index));
   1470     return constructor_function->initial_map();
   1471   }
   1472   return isolate->heap()->null_value()->map();
   1473 }
   1474 
   1475 
   1476 Object* Object::GetHash() {
   1477   Object* hash = GetSimpleHash();
   1478   if (hash->IsSmi()) return hash;
   1479 
   1480   DCHECK(IsJSReceiver());
   1481   return JSReceiver::cast(this)->GetIdentityHash();
   1482 }
   1483 
   1484 
   1485 Object* Object::GetSimpleHash() {
   1486   // The object is either a Smi, a HeapNumber, a name, an odd-ball,
   1487   // a SIMD value type, a real JS object, or a Harmony proxy.
   1488   if (IsSmi()) {
   1489     uint32_t hash = ComputeIntegerHash(Smi::cast(this)->value(), kZeroHashSeed);
   1490     return Smi::FromInt(hash & Smi::kMaxValue);
   1491   }
   1492   if (IsHeapNumber()) {
   1493     double num = HeapNumber::cast(this)->value();
   1494     if (std::isnan(num)) return Smi::FromInt(Smi::kMaxValue);
   1495     if (i::IsMinusZero(num)) num = 0;
   1496     if (IsSmiDouble(num)) {
   1497       return Smi::FromInt(FastD2I(num))->GetHash();
   1498     }
   1499     uint32_t hash = ComputeLongHash(double_to_uint64(num));
   1500     return Smi::FromInt(hash & Smi::kMaxValue);
   1501   }
   1502   if (IsName()) {
   1503     uint32_t hash = Name::cast(this)->Hash();
   1504     return Smi::FromInt(hash);
   1505   }
   1506   if (IsOddball()) {
   1507     uint32_t hash = Oddball::cast(this)->to_string()->Hash();
   1508     return Smi::FromInt(hash);
   1509   }
   1510   if (IsSimd128Value()) {
   1511     uint32_t hash = Simd128Value::cast(this)->Hash();
   1512     return Smi::FromInt(hash & Smi::kMaxValue);
   1513   }
   1514   DCHECK(IsJSReceiver());
   1515   JSReceiver* receiver = JSReceiver::cast(this);
   1516   return receiver->GetHeap()->undefined_value();
   1517 }
   1518 
   1519 
   1520 Handle<Smi> Object::GetOrCreateHash(Isolate* isolate, Handle<Object> object) {
   1521   Handle<Object> hash(object->GetSimpleHash(), isolate);
   1522   if (hash->IsSmi()) return Handle<Smi>::cast(hash);
   1523 
   1524   DCHECK(object->IsJSReceiver());
   1525   return JSReceiver::GetOrCreateIdentityHash(Handle<JSReceiver>::cast(object));
   1526 }
   1527 
   1528 
   1529 bool Object::SameValue(Object* other) {
   1530   if (other == this) return true;
   1531 
   1532   // The object is either a number, a name, an odd-ball,
   1533   // a real JS object, or a Harmony proxy.
   1534   if (IsNumber() && other->IsNumber()) {
   1535     double this_value = Number();
   1536     double other_value = other->Number();
   1537     // SameValue(NaN, NaN) is true.
   1538     if (this_value != other_value) {
   1539       return std::isnan(this_value) && std::isnan(other_value);
   1540     }
   1541     // SameValue(0.0, -0.0) is false.
   1542     return (std::signbit(this_value) == std::signbit(other_value));
   1543   }
   1544   if (IsString() && other->IsString()) {
   1545     return String::cast(this)->Equals(String::cast(other));
   1546   }
   1547   if (IsSimd128Value() && other->IsSimd128Value()) {
   1548     if (IsFloat32x4() && other->IsFloat32x4()) {
   1549       Float32x4* a = Float32x4::cast(this);
   1550       Float32x4* b = Float32x4::cast(other);
   1551       for (int i = 0; i < 4; i++) {
   1552         float x = a->get_lane(i);
   1553         float y = b->get_lane(i);
   1554         // Implements the ES5 SameValue operation for floating point types.
   1555         // http://www.ecma-international.org/ecma-262/6.0/#sec-samevalue
   1556         if (x != y && !(std::isnan(x) && std::isnan(y))) return false;
   1557         if (std::signbit(x) != std::signbit(y)) return false;
   1558       }
   1559       return true;
   1560     } else {
   1561       Simd128Value* a = Simd128Value::cast(this);
   1562       Simd128Value* b = Simd128Value::cast(other);
   1563       return a->map()->instance_type() == b->map()->instance_type() &&
   1564              a->BitwiseEquals(b);
   1565     }
   1566   }
   1567   return false;
   1568 }
   1569 
   1570 
   1571 bool Object::SameValueZero(Object* other) {
   1572   if (other == this) return true;
   1573 
   1574   // The object is either a number, a name, an odd-ball,
   1575   // a real JS object, or a Harmony proxy.
   1576   if (IsNumber() && other->IsNumber()) {
   1577     double this_value = Number();
   1578     double other_value = other->Number();
   1579     // +0 == -0 is true
   1580     return this_value == other_value ||
   1581            (std::isnan(this_value) && std::isnan(other_value));
   1582   }
   1583   if (IsString() && other->IsString()) {
   1584     return String::cast(this)->Equals(String::cast(other));
   1585   }
   1586   if (IsSimd128Value() && other->IsSimd128Value()) {
   1587     if (IsFloat32x4() && other->IsFloat32x4()) {
   1588       Float32x4* a = Float32x4::cast(this);
   1589       Float32x4* b = Float32x4::cast(other);
   1590       for (int i = 0; i < 4; i++) {
   1591         float x = a->get_lane(i);
   1592         float y = b->get_lane(i);
   1593         // Implements the ES6 SameValueZero operation for floating point types.
   1594         // http://www.ecma-international.org/ecma-262/6.0/#sec-samevaluezero
   1595         if (x != y && !(std::isnan(x) && std::isnan(y))) return false;
   1596         // SameValueZero doesn't distinguish between 0 and -0.
   1597       }
   1598       return true;
   1599     } else {
   1600       Simd128Value* a = Simd128Value::cast(this);
   1601       Simd128Value* b = Simd128Value::cast(other);
   1602       return a->map()->instance_type() == b->map()->instance_type() &&
   1603              a->BitwiseEquals(b);
   1604     }
   1605   }
   1606   return false;
   1607 }
   1608 
   1609 
   1610 MaybeHandle<Object> Object::ArraySpeciesConstructor(
   1611     Isolate* isolate, Handle<Object> original_array) {
   1612   Handle<Context> native_context = isolate->native_context();
   1613   if (!FLAG_harmony_species) {
   1614     return Handle<Object>(native_context->array_function(), isolate);
   1615   }
   1616   Handle<Object> constructor = isolate->factory()->undefined_value();
   1617   Maybe<bool> is_array = Object::IsArray(original_array);
   1618   MAYBE_RETURN_NULL(is_array);
   1619   if (is_array.FromJust()) {
   1620     ASSIGN_RETURN_ON_EXCEPTION(
   1621         isolate, constructor,
   1622         Object::GetProperty(original_array,
   1623                             isolate->factory()->constructor_string()),
   1624         Object);
   1625     if (constructor->IsConstructor()) {
   1626       Handle<Context> constructor_context;
   1627       ASSIGN_RETURN_ON_EXCEPTION(
   1628           isolate, constructor_context,
   1629           JSReceiver::GetFunctionRealm(Handle<JSReceiver>::cast(constructor)),
   1630           Object);
   1631       if (*constructor_context != *native_context &&
   1632           *constructor == constructor_context->array_function()) {
   1633         constructor = isolate->factory()->undefined_value();
   1634       }
   1635     }
   1636     if (constructor->IsJSReceiver()) {
   1637       ASSIGN_RETURN_ON_EXCEPTION(
   1638           isolate, constructor,
   1639           Object::GetProperty(constructor,
   1640                               isolate->factory()->species_symbol()),
   1641           Object);
   1642       if (constructor->IsNull()) {
   1643         constructor = isolate->factory()->undefined_value();
   1644       }
   1645     }
   1646   }
   1647   if (constructor->IsUndefined()) {
   1648     return Handle<Object>(native_context->array_function(), isolate);
   1649   } else {
   1650     if (!constructor->IsConstructor()) {
   1651       THROW_NEW_ERROR(isolate,
   1652           NewTypeError(MessageTemplate::kSpeciesNotConstructor),
   1653           Object);
   1654     }
   1655     return constructor;
   1656   }
   1657 }
   1658 
   1659 
   1660 void Object::ShortPrint(FILE* out) {
   1661   OFStream os(out);
   1662   os << Brief(this);
   1663 }
   1664 
   1665 
   1666 void Object::ShortPrint(StringStream* accumulator) {
   1667   std::ostringstream os;
   1668   os << Brief(this);
   1669   accumulator->Add(os.str().c_str());
   1670 }
   1671 
   1672 
   1673 void Object::ShortPrint(std::ostream& os) { os << Brief(this); }
   1674 
   1675 
   1676 std::ostream& operator<<(std::ostream& os, const Brief& v) {
   1677   if (v.value->IsSmi()) {
   1678     Smi::cast(v.value)->SmiPrint(os);
   1679   } else {
   1680     // TODO(svenpanne) Const-correct HeapObjectShortPrint!
   1681     HeapObject* obj = const_cast<HeapObject*>(HeapObject::cast(v.value));
   1682     obj->HeapObjectShortPrint(os);
   1683   }
   1684   return os;
   1685 }
   1686 
   1687 
   1688 void Smi::SmiPrint(std::ostream& os) const {  // NOLINT
   1689   os << value();
   1690 }
   1691 
   1692 
   1693 // Should a word be prefixed by 'a' or 'an' in order to read naturally in
   1694 // English?  Returns false for non-ASCII or words that don't start with
   1695 // a capital letter.  The a/an rule follows pronunciation in English.
   1696 // We don't use the BBC's overcorrect "an historic occasion" though if
   1697 // you speak a dialect you may well say "an 'istoric occasion".
   1698 static bool AnWord(String* str) {
   1699   if (str->length() == 0) return false;  // A nothing.
   1700   int c0 = str->Get(0);
   1701   int c1 = str->length() > 1 ? str->Get(1) : 0;
   1702   if (c0 == 'U') {
   1703     if (c1 > 'Z') {
   1704       return true;  // An Umpire, but a UTF8String, a U.
   1705     }
   1706   } else if (c0 == 'A' || c0 == 'E' || c0 == 'I' || c0 == 'O') {
   1707     return true;    // An Ape, an ABCBook.
   1708   } else if ((c1 == 0 || (c1 >= 'A' && c1 <= 'Z')) &&
   1709            (c0 == 'F' || c0 == 'H' || c0 == 'M' || c0 == 'N' || c0 == 'R' ||
   1710             c0 == 'S' || c0 == 'X')) {
   1711     return true;    // An MP3File, an M.
   1712   }
   1713   return false;
   1714 }
   1715 
   1716 
   1717 Handle<String> String::SlowFlatten(Handle<ConsString> cons,
   1718                                    PretenureFlag pretenure) {
   1719   DCHECK(AllowHeapAllocation::IsAllowed());
   1720   DCHECK(cons->second()->length() != 0);
   1721   Isolate* isolate = cons->GetIsolate();
   1722   int length = cons->length();
   1723   PretenureFlag tenure = isolate->heap()->InNewSpace(*cons) ? pretenure
   1724                                                             : TENURED;
   1725   Handle<SeqString> result;
   1726   if (cons->IsOneByteRepresentation()) {
   1727     Handle<SeqOneByteString> flat = isolate->factory()->NewRawOneByteString(
   1728         length, tenure).ToHandleChecked();
   1729     DisallowHeapAllocation no_gc;
   1730     WriteToFlat(*cons, flat->GetChars(), 0, length);
   1731     result = flat;
   1732   } else {
   1733     Handle<SeqTwoByteString> flat = isolate->factory()->NewRawTwoByteString(
   1734         length, tenure).ToHandleChecked();
   1735     DisallowHeapAllocation no_gc;
   1736     WriteToFlat(*cons, flat->GetChars(), 0, length);
   1737     result = flat;
   1738   }
   1739   cons->set_first(*result);
   1740   cons->set_second(isolate->heap()->empty_string());
   1741   DCHECK(result->IsFlat());
   1742   return result;
   1743 }
   1744 
   1745 
   1746 
   1747 bool String::MakeExternal(v8::String::ExternalStringResource* resource) {
   1748   // Externalizing twice leaks the external resource, so it's
   1749   // prohibited by the API.
   1750   DCHECK(!this->IsExternalString());
   1751   DCHECK(!resource->IsCompressible());
   1752 #ifdef ENABLE_SLOW_DCHECKS
   1753   if (FLAG_enable_slow_asserts) {
   1754     // Assert that the resource and the string are equivalent.
   1755     DCHECK(static_cast<size_t>(this->length()) == resource->length());
   1756     ScopedVector<uc16> smart_chars(this->length());
   1757     String::WriteToFlat(this, smart_chars.start(), 0, this->length());
   1758     DCHECK(memcmp(smart_chars.start(),
   1759                   resource->data(),
   1760                   resource->length() * sizeof(smart_chars[0])) == 0);
   1761   }
   1762 #endif  // DEBUG
   1763   int size = this->Size();  // Byte size of the original string.
   1764   // Abort if size does not allow in-place conversion.
   1765   if (size < ExternalString::kShortSize) return false;
   1766   Heap* heap = GetHeap();
   1767   bool is_one_byte = this->IsOneByteRepresentation();
   1768   bool is_internalized = this->IsInternalizedString();
   1769 
   1770   // Morph the string to an external string by replacing the map and
   1771   // reinitializing the fields.  This won't work if the space the existing
   1772   // string occupies is too small for a regular  external string.
   1773   // Instead, we resort to a short external string instead, omitting
   1774   // the field caching the address of the backing store.  When we encounter
   1775   // short external strings in generated code, we need to bailout to runtime.
   1776   Map* new_map;
   1777   if (size < ExternalString::kSize) {
   1778     new_map = is_internalized
   1779         ? (is_one_byte
   1780            ? heap->short_external_internalized_string_with_one_byte_data_map()
   1781            : heap->short_external_internalized_string_map())
   1782         : (is_one_byte ? heap->short_external_string_with_one_byte_data_map()
   1783                        : heap->short_external_string_map());
   1784   } else {
   1785     new_map = is_internalized
   1786         ? (is_one_byte
   1787            ? heap->external_internalized_string_with_one_byte_data_map()
   1788            : heap->external_internalized_string_map())
   1789         : (is_one_byte ? heap->external_string_with_one_byte_data_map()
   1790                        : heap->external_string_map());
   1791   }
   1792 
   1793   // Byte size of the external String object.
   1794   int new_size = this->SizeFromMap(new_map);
   1795   heap->CreateFillerObjectAt(this->address() + new_size, size - new_size);
   1796 
   1797   // We are storing the new map using release store after creating a filler for
   1798   // the left-over space to avoid races with the sweeper thread.
   1799   this->synchronized_set_map(new_map);
   1800 
   1801   ExternalTwoByteString* self = ExternalTwoByteString::cast(this);
   1802   self->set_resource(resource);
   1803   if (is_internalized) self->Hash();  // Force regeneration of the hash value.
   1804 
   1805   heap->AdjustLiveBytes(this, new_size - size, Heap::CONCURRENT_TO_SWEEPER);
   1806   return true;
   1807 }
   1808 
   1809 
   1810 bool String::MakeExternal(v8::String::ExternalOneByteStringResource* resource) {
   1811   // Externalizing twice leaks the external resource, so it's
   1812   // prohibited by the API.
   1813   DCHECK(!this->IsExternalString());
   1814   DCHECK(!resource->IsCompressible());
   1815 #ifdef ENABLE_SLOW_DCHECKS
   1816   if (FLAG_enable_slow_asserts) {
   1817     // Assert that the resource and the string are equivalent.
   1818     DCHECK(static_cast<size_t>(this->length()) == resource->length());
   1819     if (this->IsTwoByteRepresentation()) {
   1820       ScopedVector<uint16_t> smart_chars(this->length());
   1821       String::WriteToFlat(this, smart_chars.start(), 0, this->length());
   1822       DCHECK(String::IsOneByte(smart_chars.start(), this->length()));
   1823     }
   1824     ScopedVector<char> smart_chars(this->length());
   1825     String::WriteToFlat(this, smart_chars.start(), 0, this->length());
   1826     DCHECK(memcmp(smart_chars.start(),
   1827                   resource->data(),
   1828                   resource->length() * sizeof(smart_chars[0])) == 0);
   1829   }
   1830 #endif  // DEBUG
   1831   int size = this->Size();  // Byte size of the original string.
   1832   // Abort if size does not allow in-place conversion.
   1833   if (size < ExternalString::kShortSize) return false;
   1834   Heap* heap = GetHeap();
   1835   bool is_internalized = this->IsInternalizedString();
   1836 
   1837   // Morph the string to an external string by replacing the map and
   1838   // reinitializing the fields.  This won't work if the space the existing
   1839   // string occupies is too small for a regular  external string.
   1840   // Instead, we resort to a short external string instead, omitting
   1841   // the field caching the address of the backing store.  When we encounter
   1842   // short external strings in generated code, we need to bailout to runtime.
   1843   Map* new_map;
   1844   if (size < ExternalString::kSize) {
   1845     new_map = is_internalized
   1846                   ? heap->short_external_one_byte_internalized_string_map()
   1847                   : heap->short_external_one_byte_string_map();
   1848   } else {
   1849     new_map = is_internalized
   1850                   ? heap->external_one_byte_internalized_string_map()
   1851                   : heap->external_one_byte_string_map();
   1852   }
   1853 
   1854   // Byte size of the external String object.
   1855   int new_size = this->SizeFromMap(new_map);
   1856   heap->CreateFillerObjectAt(this->address() + new_size, size - new_size);
   1857 
   1858   // We are storing the new map using release store after creating a filler for
   1859   // the left-over space to avoid races with the sweeper thread.
   1860   this->synchronized_set_map(new_map);
   1861 
   1862   ExternalOneByteString* self = ExternalOneByteString::cast(this);
   1863   self->set_resource(resource);
   1864   if (is_internalized) self->Hash();  // Force regeneration of the hash value.
   1865 
   1866   heap->AdjustLiveBytes(this, new_size - size, Heap::CONCURRENT_TO_SWEEPER);
   1867   return true;
   1868 }
   1869 
   1870 
   1871 void String::StringShortPrint(StringStream* accumulator) {
   1872   int len = length();
   1873   if (len > kMaxShortPrintLength) {
   1874     accumulator->Add("<Very long string[%u]>", len);
   1875     return;
   1876   }
   1877 
   1878   if (!LooksValid()) {
   1879     accumulator->Add("<Invalid String>");
   1880     return;
   1881   }
   1882 
   1883   StringCharacterStream stream(this);
   1884 
   1885   bool truncated = false;
   1886   if (len > kMaxShortPrintLength) {
   1887     len = kMaxShortPrintLength;
   1888     truncated = true;
   1889   }
   1890   bool one_byte = true;
   1891   for (int i = 0; i < len; i++) {
   1892     uint16_t c = stream.GetNext();
   1893 
   1894     if (c < 32 || c >= 127) {
   1895       one_byte = false;
   1896     }
   1897   }
   1898   stream.Reset(this);
   1899   if (one_byte) {
   1900     accumulator->Add("<String[%u]: ", length());
   1901     for (int i = 0; i < len; i++) {
   1902       accumulator->Put(static_cast<char>(stream.GetNext()));
   1903     }
   1904     accumulator->Put('>');
   1905   } else {
   1906     // Backslash indicates that the string contains control
   1907     // characters and that backslashes are therefore escaped.
   1908     accumulator->Add("<String[%u]\\: ", length());
   1909     for (int i = 0; i < len; i++) {
   1910       uint16_t c = stream.GetNext();
   1911       if (c == '\n') {
   1912         accumulator->Add("\\n");
   1913       } else if (c == '\r') {
   1914         accumulator->Add("\\r");
   1915       } else if (c == '\\') {
   1916         accumulator->Add("\\\\");
   1917       } else if (c < 32 || c > 126) {
   1918         accumulator->Add("\\x%02x", c);
   1919       } else {
   1920         accumulator->Put(static_cast<char>(c));
   1921       }
   1922     }
   1923     if (truncated) {
   1924       accumulator->Put('.');
   1925       accumulator->Put('.');
   1926       accumulator->Put('.');
   1927     }
   1928     accumulator->Put('>');
   1929   }
   1930   return;
   1931 }
   1932 
   1933 
   1934 void String::PrintUC16(std::ostream& os, int start, int end) {  // NOLINT
   1935   if (end < 0) end = length();
   1936   StringCharacterStream stream(this, start);
   1937   for (int i = start; i < end && stream.HasMore(); i++) {
   1938     os << AsUC16(stream.GetNext());
   1939   }
   1940 }
   1941 
   1942 
   1943 void JSObject::JSObjectShortPrint(StringStream* accumulator) {
   1944   switch (map()->instance_type()) {
   1945     case JS_ARRAY_TYPE: {
   1946       double length = JSArray::cast(this)->length()->IsUndefined()
   1947           ? 0
   1948           : JSArray::cast(this)->length()->Number();
   1949       accumulator->Add("<JS Array[%u]>", static_cast<uint32_t>(length));
   1950       break;
   1951     }
   1952     case JS_BOUND_FUNCTION_TYPE: {
   1953       JSBoundFunction* bound_function = JSBoundFunction::cast(this);
   1954       Object* name = bound_function->name();
   1955       accumulator->Add("<JS BoundFunction");
   1956       if (name->IsString()) {
   1957         String* str = String::cast(name);
   1958         if (str->length() > 0) {
   1959           accumulator->Add(" ");
   1960           accumulator->Put(str);
   1961         }
   1962       }
   1963       accumulator->Add(
   1964           " (BoundTargetFunction %p)>",
   1965           reinterpret_cast<void*>(bound_function->bound_target_function()));
   1966       break;
   1967     }
   1968     case JS_WEAK_MAP_TYPE: {
   1969       accumulator->Add("<JS WeakMap>");
   1970       break;
   1971     }
   1972     case JS_WEAK_SET_TYPE: {
   1973       accumulator->Add("<JS WeakSet>");
   1974       break;
   1975     }
   1976     case JS_REGEXP_TYPE: {
   1977       accumulator->Add("<JS RegExp>");
   1978       break;
   1979     }
   1980     case JS_FUNCTION_TYPE: {
   1981       JSFunction* function = JSFunction::cast(this);
   1982       Object* fun_name = function->shared()->DebugName();
   1983       bool printed = false;
   1984       if (fun_name->IsString()) {
   1985         String* str = String::cast(fun_name);
   1986         if (str->length() > 0) {
   1987           accumulator->Add("<JS Function ");
   1988           accumulator->Put(str);
   1989           printed = true;
   1990         }
   1991       }
   1992       if (!printed) {
   1993         accumulator->Add("<JS Function");
   1994       }
   1995       accumulator->Add(" (SharedFunctionInfo %p)",
   1996                        reinterpret_cast<void*>(function->shared()));
   1997       accumulator->Put('>');
   1998       break;
   1999     }
   2000     case JS_GENERATOR_OBJECT_TYPE: {
   2001       accumulator->Add("<JS Generator>");
   2002       break;
   2003     }
   2004     case JS_MODULE_TYPE: {
   2005       accumulator->Add("<JS Module>");
   2006       break;
   2007     }
   2008     // All other JSObjects are rather similar to each other (JSObject,
   2009     // JSGlobalProxy, JSGlobalObject, JSUndetectableObject, JSValue).
   2010     default: {
   2011       Map* map_of_this = map();
   2012       Heap* heap = GetHeap();
   2013       Object* constructor = map_of_this->GetConstructor();
   2014       bool printed = false;
   2015       if (constructor->IsHeapObject() &&
   2016           !heap->Contains(HeapObject::cast(constructor))) {
   2017         accumulator->Add("!!!INVALID CONSTRUCTOR!!!");
   2018       } else {
   2019         bool global_object = IsJSGlobalProxy();
   2020         if (constructor->IsJSFunction()) {
   2021           if (!heap->Contains(JSFunction::cast(constructor)->shared())) {
   2022             accumulator->Add("!!!INVALID SHARED ON CONSTRUCTOR!!!");
   2023           } else {
   2024             Object* constructor_name =
   2025                 JSFunction::cast(constructor)->shared()->name();
   2026             if (constructor_name->IsString()) {
   2027               String* str = String::cast(constructor_name);
   2028               if (str->length() > 0) {
   2029                 bool vowel = AnWord(str);
   2030                 accumulator->Add("<%sa%s ",
   2031                        global_object ? "Global Object: " : "",
   2032                        vowel ? "n" : "");
   2033                 accumulator->Put(str);
   2034                 accumulator->Add(" with %smap %p",
   2035                     map_of_this->is_deprecated() ? "deprecated " : "",
   2036                     map_of_this);
   2037                 printed = true;
   2038               }
   2039             }
   2040           }
   2041         }
   2042         if (!printed) {
   2043           accumulator->Add("<JS %sObject", global_object ? "Global " : "");
   2044         }
   2045       }
   2046       if (IsJSValue()) {
   2047         accumulator->Add(" value = ");
   2048         JSValue::cast(this)->value()->ShortPrint(accumulator);
   2049       }
   2050       accumulator->Put('>');
   2051       break;
   2052     }
   2053   }
   2054 }
   2055 
   2056 
   2057 void JSObject::PrintElementsTransition(
   2058     FILE* file, Handle<JSObject> object,
   2059     ElementsKind from_kind, Handle<FixedArrayBase> from_elements,
   2060     ElementsKind to_kind, Handle<FixedArrayBase> to_elements) {
   2061   if (from_kind != to_kind) {
   2062     OFStream os(file);
   2063     os << "elements transition [" << ElementsKindToString(from_kind) << " -> "
   2064        << ElementsKindToString(to_kind) << "] in ";
   2065     JavaScriptFrame::PrintTop(object->GetIsolate(), file, false, true);
   2066     PrintF(file, " for ");
   2067     object->ShortPrint(file);
   2068     PrintF(file, " from ");
   2069     from_elements->ShortPrint(file);
   2070     PrintF(file, " to ");
   2071     to_elements->ShortPrint(file);
   2072     PrintF(file, "\n");
   2073   }
   2074 }
   2075 
   2076 
   2077 // static
   2078 MaybeHandle<JSFunction> Map::GetConstructorFunction(
   2079     Handle<Map> map, Handle<Context> native_context) {
   2080   if (map->IsPrimitiveMap()) {
   2081     int const constructor_function_index = map->GetConstructorFunctionIndex();
   2082     if (constructor_function_index != kNoConstructorFunctionIndex) {
   2083       return handle(
   2084           JSFunction::cast(native_context->get(constructor_function_index)));
   2085     }
   2086   }
   2087   return MaybeHandle<JSFunction>();
   2088 }
   2089 
   2090 
   2091 void Map::PrintReconfiguration(FILE* file, int modify_index, PropertyKind kind,
   2092                                PropertyAttributes attributes) {
   2093   OFStream os(file);
   2094   os << "[reconfiguring]";
   2095   Name* name = instance_descriptors()->GetKey(modify_index);
   2096   if (name->IsString()) {
   2097     String::cast(name)->PrintOn(file);
   2098   } else {
   2099     os << "{symbol " << static_cast<void*>(name) << "}";
   2100   }
   2101   os << ": " << (kind == kData ? "kData" : "ACCESSORS") << ", attrs: ";
   2102   os << attributes << " [";
   2103   JavaScriptFrame::PrintTop(GetIsolate(), file, false, true);
   2104   os << "]\n";
   2105 }
   2106 
   2107 
   2108 void Map::PrintGeneralization(FILE* file,
   2109                               const char* reason,
   2110                               int modify_index,
   2111                               int split,
   2112                               int descriptors,
   2113                               bool constant_to_field,
   2114                               Representation old_representation,
   2115                               Representation new_representation,
   2116                               HeapType* old_field_type,
   2117                               HeapType* new_field_type) {
   2118   OFStream os(file);
   2119   os << "[generalizing]";
   2120   Name* name = instance_descriptors()->GetKey(modify_index);
   2121   if (name->IsString()) {
   2122     String::cast(name)->PrintOn(file);
   2123   } else {
   2124     os << "{symbol " << static_cast<void*>(name) << "}";
   2125   }
   2126   os << ":";
   2127   if (constant_to_field) {
   2128     os << "c";
   2129   } else {
   2130     os << old_representation.Mnemonic() << "{";
   2131     old_field_type->PrintTo(os, HeapType::SEMANTIC_DIM);
   2132     os << "}";
   2133   }
   2134   os << "->" << new_representation.Mnemonic() << "{";
   2135   new_field_type->PrintTo(os, HeapType::SEMANTIC_DIM);
   2136   os << "} (";
   2137   if (strlen(reason) > 0) {
   2138     os << reason;
   2139   } else {
   2140     os << "+" << (descriptors - split) << " maps";
   2141   }
   2142   os << ") [";
   2143   JavaScriptFrame::PrintTop(GetIsolate(), file, false, true);
   2144   os << "]\n";
   2145 }
   2146 
   2147 
   2148 void JSObject::PrintInstanceMigration(FILE* file,
   2149                                       Map* original_map,
   2150                                       Map* new_map) {
   2151   PrintF(file, "[migrating]");
   2152   DescriptorArray* o = original_map->instance_descriptors();
   2153   DescriptorArray* n = new_map->instance_descriptors();
   2154   for (int i = 0; i < original_map->NumberOfOwnDescriptors(); i++) {
   2155     Representation o_r = o->GetDetails(i).representation();
   2156     Representation n_r = n->GetDetails(i).representation();
   2157     if (!o_r.Equals(n_r)) {
   2158       String::cast(o->GetKey(i))->PrintOn(file);
   2159       PrintF(file, ":%s->%s ", o_r.Mnemonic(), n_r.Mnemonic());
   2160     } else if (o->GetDetails(i).type() == DATA_CONSTANT &&
   2161                n->GetDetails(i).type() == DATA) {
   2162       Name* name = o->GetKey(i);
   2163       if (name->IsString()) {
   2164         String::cast(name)->PrintOn(file);
   2165       } else {
   2166         PrintF(file, "{symbol %p}", static_cast<void*>(name));
   2167       }
   2168       PrintF(file, " ");
   2169     }
   2170   }
   2171   PrintF(file, "\n");
   2172 }
   2173 
   2174 
   2175 void HeapObject::HeapObjectShortPrint(std::ostream& os) {  // NOLINT
   2176   Heap* heap = GetHeap();
   2177   if (!heap->Contains(this)) {
   2178     os << "!!!INVALID POINTER!!!";
   2179     return;
   2180   }
   2181   if (!heap->Contains(map())) {
   2182     os << "!!!INVALID MAP!!!";
   2183     return;
   2184   }
   2185 
   2186   os << this << " ";
   2187 
   2188   if (IsString()) {
   2189     HeapStringAllocator allocator;
   2190     StringStream accumulator(&allocator);
   2191     String::cast(this)->StringShortPrint(&accumulator);
   2192     os << accumulator.ToCString().get();
   2193     return;
   2194   }
   2195   if (IsJSObject()) {
   2196     HeapStringAllocator allocator;
   2197     StringStream accumulator(&allocator);
   2198     JSObject::cast(this)->JSObjectShortPrint(&accumulator);
   2199     os << accumulator.ToCString().get();
   2200     return;
   2201   }
   2202   switch (map()->instance_type()) {
   2203     case MAP_TYPE:
   2204       os << "<Map(" << ElementsKindToString(Map::cast(this)->elements_kind())
   2205          << ")>";
   2206       break;
   2207     case FIXED_ARRAY_TYPE:
   2208       os << "<FixedArray[" << FixedArray::cast(this)->length() << "]>";
   2209       break;
   2210     case FIXED_DOUBLE_ARRAY_TYPE:
   2211       os << "<FixedDoubleArray[" << FixedDoubleArray::cast(this)->length()
   2212          << "]>";
   2213       break;
   2214     case BYTE_ARRAY_TYPE:
   2215       os << "<ByteArray[" << ByteArray::cast(this)->length() << "]>";
   2216       break;
   2217     case BYTECODE_ARRAY_TYPE:
   2218       os << "<BytecodeArray[" << BytecodeArray::cast(this)->length() << "]>";
   2219       break;
   2220     case TRANSITION_ARRAY_TYPE:
   2221       os << "<TransitionArray[" << TransitionArray::cast(this)->length()
   2222          << "]>";
   2223       break;
   2224     case FREE_SPACE_TYPE:
   2225       os << "<FreeSpace[" << FreeSpace::cast(this)->size() << "]>";
   2226       break;
   2227 #define TYPED_ARRAY_SHORT_PRINT(Type, type, TYPE, ctype, size)                \
   2228   case FIXED_##TYPE##_ARRAY_TYPE:                                             \
   2229     os << "<Fixed" #Type "Array[" << Fixed##Type##Array::cast(this)->length() \
   2230        << "]>";                                                               \
   2231     break;
   2232 
   2233     TYPED_ARRAYS(TYPED_ARRAY_SHORT_PRINT)
   2234 #undef TYPED_ARRAY_SHORT_PRINT
   2235 
   2236     case SHARED_FUNCTION_INFO_TYPE: {
   2237       SharedFunctionInfo* shared = SharedFunctionInfo::cast(this);
   2238       base::SmartArrayPointer<char> debug_name =
   2239           shared->DebugName()->ToCString();
   2240       if (debug_name[0] != 0) {
   2241         os << "<SharedFunctionInfo " << debug_name.get() << ">";
   2242       } else {
   2243         os << "<SharedFunctionInfo>";
   2244       }
   2245       break;
   2246     }
   2247     case JS_MESSAGE_OBJECT_TYPE:
   2248       os << "<JSMessageObject>";
   2249       break;
   2250 #define MAKE_STRUCT_CASE(NAME, Name, name) \
   2251   case NAME##_TYPE:                        \
   2252     os << "<" #Name ">";                   \
   2253     break;
   2254   STRUCT_LIST(MAKE_STRUCT_CASE)
   2255 #undef MAKE_STRUCT_CASE
   2256     case CODE_TYPE: {
   2257       Code* code = Code::cast(this);
   2258       os << "<Code: " << Code::Kind2String(code->kind()) << ">";
   2259       break;
   2260     }
   2261     case ODDBALL_TYPE: {
   2262       if (IsUndefined()) {
   2263         os << "<undefined>";
   2264       } else if (IsTheHole()) {
   2265         os << "<the hole>";
   2266       } else if (IsNull()) {
   2267         os << "<null>";
   2268       } else if (IsTrue()) {
   2269         os << "<true>";
   2270       } else if (IsFalse()) {
   2271         os << "<false>";
   2272       } else {
   2273         os << "<Odd Oddball>";
   2274       }
   2275       break;
   2276     }
   2277     case SYMBOL_TYPE: {
   2278       Symbol* symbol = Symbol::cast(this);
   2279       symbol->SymbolShortPrint(os);
   2280       break;
   2281     }
   2282     case HEAP_NUMBER_TYPE: {
   2283       os << "<Number: ";
   2284       HeapNumber::cast(this)->HeapNumberPrint(os);
   2285       os << ">";
   2286       break;
   2287     }
   2288     case MUTABLE_HEAP_NUMBER_TYPE: {
   2289       os << "<MutableNumber: ";
   2290       HeapNumber::cast(this)->HeapNumberPrint(os);
   2291       os << '>';
   2292       break;
   2293     }
   2294     case SIMD128_VALUE_TYPE: {
   2295 #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \
   2296   if (Is##Type()) {                                           \
   2297     os << "<" #Type ">";                                      \
   2298     break;                                                    \
   2299   }
   2300       SIMD128_TYPES(SIMD128_TYPE)
   2301 #undef SIMD128_TYPE
   2302       UNREACHABLE();
   2303       break;
   2304     }
   2305     case JS_PROXY_TYPE:
   2306       os << "<JSProxy>";
   2307       break;
   2308     case FOREIGN_TYPE:
   2309       os << "<Foreign>";
   2310       break;
   2311     case CELL_TYPE: {
   2312       os << "Cell for ";
   2313       HeapStringAllocator allocator;
   2314       StringStream accumulator(&allocator);
   2315       Cell::cast(this)->value()->ShortPrint(&accumulator);
   2316       os << accumulator.ToCString().get();
   2317       break;
   2318     }
   2319     case PROPERTY_CELL_TYPE: {
   2320       os << "PropertyCell for ";
   2321       HeapStringAllocator allocator;
   2322       StringStream accumulator(&allocator);
   2323       PropertyCell* cell = PropertyCell::cast(this);
   2324       cell->value()->ShortPrint(&accumulator);
   2325       os << accumulator.ToCString().get();
   2326       break;
   2327     }
   2328     case WEAK_CELL_TYPE: {
   2329       os << "WeakCell for ";
   2330       HeapStringAllocator allocator;
   2331       StringStream accumulator(&allocator);
   2332       WeakCell::cast(this)->value()->ShortPrint(&accumulator);
   2333       os << accumulator.ToCString().get();
   2334       break;
   2335     }
   2336     default:
   2337       os << "<Other heap object (" << map()->instance_type() << ")>";
   2338       break;
   2339   }
   2340 }
   2341 
   2342 
   2343 void HeapObject::Iterate(ObjectVisitor* v) { IterateFast<ObjectVisitor>(v); }
   2344 
   2345 
   2346 void HeapObject::IterateBody(ObjectVisitor* v) {
   2347   Map* m = map();
   2348   IterateBodyFast<ObjectVisitor>(m->instance_type(), SizeFromMap(m), v);
   2349 }
   2350 
   2351 
   2352 void HeapObject::IterateBody(InstanceType type, int object_size,
   2353                              ObjectVisitor* v) {
   2354   IterateBodyFast<ObjectVisitor>(type, object_size, v);
   2355 }
   2356 
   2357 
   2358 struct CallIsValidSlot {
   2359   template <typename BodyDescriptor>
   2360   static bool apply(HeapObject* obj, int offset, int) {
   2361     return BodyDescriptor::IsValidSlot(obj, offset);
   2362   }
   2363 };
   2364 
   2365 
   2366 bool HeapObject::IsValidSlot(int offset) {
   2367   DCHECK_NE(0, offset);
   2368   return BodyDescriptorApply<CallIsValidSlot, bool>(map()->instance_type(),
   2369                                                     this, offset, 0);
   2370 }
   2371 
   2372 
   2373 bool HeapNumber::HeapNumberBooleanValue() {
   2374   return DoubleToBoolean(value());
   2375 }
   2376 
   2377 
   2378 void HeapNumber::HeapNumberPrint(std::ostream& os) {  // NOLINT
   2379   os << value();
   2380 }
   2381 
   2382 
   2383 #define FIELD_ADDR_CONST(p, offset) \
   2384   (reinterpret_cast<const byte*>(p) + offset - kHeapObjectTag)
   2385 
   2386 #define READ_INT32_FIELD(p, offset) \
   2387   (*reinterpret_cast<const int32_t*>(FIELD_ADDR_CONST(p, offset)))
   2388 
   2389 #define READ_INT64_FIELD(p, offset) \
   2390   (*reinterpret_cast<const int64_t*>(FIELD_ADDR_CONST(p, offset)))
   2391 
   2392 #define READ_BYTE_FIELD(p, offset) \
   2393   (*reinterpret_cast<const byte*>(FIELD_ADDR_CONST(p, offset)))
   2394 
   2395 
   2396 // static
   2397 Handle<String> Simd128Value::ToString(Handle<Simd128Value> input) {
   2398 #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \
   2399   if (input->Is##Type()) return Type::ToString(Handle<Type>::cast(input));
   2400   SIMD128_TYPES(SIMD128_TYPE)
   2401 #undef SIMD128_TYPE
   2402   UNREACHABLE();
   2403   return Handle<String>::null();
   2404 }
   2405 
   2406 
   2407 // static
   2408 Handle<String> Float32x4::ToString(Handle<Float32x4> input) {
   2409   Isolate* const isolate = input->GetIsolate();
   2410   char arr[100];
   2411   Vector<char> buffer(arr, arraysize(arr));
   2412   std::ostringstream os;
   2413   os << "SIMD.Float32x4("
   2414      << std::string(DoubleToCString(input->get_lane(0), buffer)) << ", "
   2415      << std::string(DoubleToCString(input->get_lane(1), buffer)) << ", "
   2416      << std::string(DoubleToCString(input->get_lane(2), buffer)) << ", "
   2417      << std::string(DoubleToCString(input->get_lane(3), buffer)) << ")";
   2418   return isolate->factory()->NewStringFromAsciiChecked(os.str().c_str());
   2419 }
   2420 
   2421 
   2422 #define SIMD128_BOOL_TO_STRING(Type, lane_count)                            \
   2423   Handle<String> Type::ToString(Handle<Type> input) {                       \
   2424     Isolate* const isolate = input->GetIsolate();                           \
   2425     std::ostringstream os;                                                  \
   2426     os << "SIMD." #Type "(";                                                \
   2427     os << (input->get_lane(0) ? "true" : "false");                          \
   2428     for (int i = 1; i < lane_count; i++) {                                  \
   2429       os << ", " << (input->get_lane(i) ? "true" : "false");                \
   2430     }                                                                       \
   2431     os << ")";                                                              \
   2432     return isolate->factory()->NewStringFromAsciiChecked(os.str().c_str()); \
   2433   }
   2434 SIMD128_BOOL_TO_STRING(Bool32x4, 4)
   2435 SIMD128_BOOL_TO_STRING(Bool16x8, 8)
   2436 SIMD128_BOOL_TO_STRING(Bool8x16, 16)
   2437 #undef SIMD128_BOOL_TO_STRING
   2438 
   2439 
   2440 #define SIMD128_INT_TO_STRING(Type, lane_count)                             \
   2441   Handle<String> Type::ToString(Handle<Type> input) {                       \
   2442     Isolate* const isolate = input->GetIsolate();                           \
   2443     char arr[100];                                                          \
   2444     Vector<char> buffer(arr, arraysize(arr));                               \
   2445     std::ostringstream os;                                                  \
   2446     os << "SIMD." #Type "(";                                                \
   2447     os << IntToCString(input->get_lane(0), buffer);                         \
   2448     for (int i = 1; i < lane_count; i++) {                                  \
   2449       os << ", " << IntToCString(input->get_lane(i), buffer);               \
   2450     }                                                                       \
   2451     os << ")";                                                              \
   2452     return isolate->factory()->NewStringFromAsciiChecked(os.str().c_str()); \
   2453   }
   2454 SIMD128_INT_TO_STRING(Int32x4, 4)
   2455 SIMD128_INT_TO_STRING(Uint32x4, 4)
   2456 SIMD128_INT_TO_STRING(Int16x8, 8)
   2457 SIMD128_INT_TO_STRING(Uint16x8, 8)
   2458 SIMD128_INT_TO_STRING(Int8x16, 16)
   2459 SIMD128_INT_TO_STRING(Uint8x16, 16)
   2460 #undef SIMD128_INT_TO_STRING
   2461 
   2462 
   2463 bool Simd128Value::BitwiseEquals(const Simd128Value* other) const {
   2464   return READ_INT64_FIELD(this, kValueOffset) ==
   2465              READ_INT64_FIELD(other, kValueOffset) &&
   2466          READ_INT64_FIELD(this, kValueOffset + kInt64Size) ==
   2467              READ_INT64_FIELD(other, kValueOffset + kInt64Size);
   2468 }
   2469 
   2470 
   2471 uint32_t Simd128Value::Hash() const {
   2472   uint32_t seed = v8::internal::kZeroHashSeed;
   2473   uint32_t hash;
   2474   hash = ComputeIntegerHash(READ_INT32_FIELD(this, kValueOffset), seed);
   2475   hash = ComputeIntegerHash(
   2476       READ_INT32_FIELD(this, kValueOffset + 1 * kInt32Size), hash * 31);
   2477   hash = ComputeIntegerHash(
   2478       READ_INT32_FIELD(this, kValueOffset + 2 * kInt32Size), hash * 31);
   2479   hash = ComputeIntegerHash(
   2480       READ_INT32_FIELD(this, kValueOffset + 3 * kInt32Size), hash * 31);
   2481   return hash;
   2482 }
   2483 
   2484 
   2485 void Simd128Value::CopyBits(void* destination) const {
   2486   memcpy(destination, &READ_BYTE_FIELD(this, kValueOffset), kSimd128Size);
   2487 }
   2488 
   2489 
   2490 String* JSReceiver::class_name() {
   2491   if (IsFunction()) {
   2492     return GetHeap()->Function_string();
   2493   }
   2494   Object* maybe_constructor = map()->GetConstructor();
   2495   if (maybe_constructor->IsJSFunction()) {
   2496     JSFunction* constructor = JSFunction::cast(maybe_constructor);
   2497     return String::cast(constructor->shared()->instance_class_name());
   2498   }
   2499   // If the constructor is not present, return "Object".
   2500   return GetHeap()->Object_string();
   2501 }
   2502 
   2503 
   2504 MaybeHandle<String> JSReceiver::BuiltinStringTag(Handle<JSReceiver> object) {
   2505   Maybe<bool> is_array = Object::IsArray(object);
   2506   MAYBE_RETURN(is_array, MaybeHandle<String>());
   2507   Isolate* const isolate = object->GetIsolate();
   2508   if (is_array.FromJust()) {
   2509     return isolate->factory()->Array_string();
   2510   }
   2511   // TODO(adamk): According to ES2015, we should return "Function" when
   2512   // object has a [[Call]] internal method (corresponds to IsCallable).
   2513   // But this is well cemented in layout tests and might cause webbreakage.
   2514   // if (object->IsCallable()) {
   2515   //   return isolate->factory()->Function_string();
   2516   // }
   2517   // TODO(adamk): class_name() is expensive, replace with instance type
   2518   // checks where possible.
   2519   return handle(object->class_name(), isolate);
   2520 }
   2521 
   2522 
   2523 // static
   2524 Handle<String> JSReceiver::GetConstructorName(Handle<JSReceiver> receiver) {
   2525   Isolate* isolate = receiver->GetIsolate();
   2526 
   2527   // If the object was instantiated simply with base == new.target, the
   2528   // constructor on the map provides the most accurate name.
   2529   // Don't provide the info for prototypes, since their constructors are
   2530   // reclaimed and replaced by Object in OptimizeAsPrototype.
   2531   if (!receiver->IsJSProxy() && receiver->map()->new_target_is_base() &&
   2532       !receiver->map()->is_prototype_map()) {
   2533     Object* maybe_constructor = receiver->map()->GetConstructor();
   2534     if (maybe_constructor->IsJSFunction()) {
   2535       JSFunction* constructor = JSFunction::cast(maybe_constructor);
   2536       String* name = String::cast(constructor->shared()->name());
   2537       if (name->length() == 0) name = constructor->shared()->inferred_name();
   2538       if (name->length() != 0 &&
   2539           !name->Equals(isolate->heap()->Object_string())) {
   2540         return handle(name, isolate);
   2541       }
   2542     }
   2543   }
   2544 
   2545   if (FLAG_harmony_tostring) {
   2546     Handle<Object> maybe_tag = JSReceiver::GetDataProperty(
   2547         receiver, isolate->factory()->to_string_tag_symbol());
   2548     if (maybe_tag->IsString()) return Handle<String>::cast(maybe_tag);
   2549   }
   2550 
   2551   PrototypeIterator iter(isolate, receiver);
   2552   if (iter.IsAtEnd()) return handle(receiver->class_name());
   2553   Handle<JSReceiver> start = PrototypeIterator::GetCurrent<JSReceiver>(iter);
   2554   LookupIterator it(receiver, isolate->factory()->constructor_string(), start,
   2555                     LookupIterator::PROTOTYPE_CHAIN_SKIP_INTERCEPTOR);
   2556   Handle<Object> maybe_constructor = JSReceiver::GetDataProperty(&it);
   2557   Handle<String> result = isolate->factory()->Object_string();
   2558   if (maybe_constructor->IsJSFunction()) {
   2559     JSFunction* constructor = JSFunction::cast(*maybe_constructor);
   2560     String* name = String::cast(constructor->shared()->name());
   2561     if (name->length() == 0) name = constructor->shared()->inferred_name();
   2562     if (name->length() > 0) result = handle(name, isolate);
   2563   }
   2564 
   2565   return result.is_identical_to(isolate->factory()->Object_string())
   2566              ? handle(receiver->class_name())
   2567              : result;
   2568 }
   2569 
   2570 
   2571 Context* JSReceiver::GetCreationContext() {
   2572   if (IsJSBoundFunction()) {
   2573     return JSBoundFunction::cast(this)->creation_context();
   2574   }
   2575   Object* constructor = map()->GetConstructor();
   2576   JSFunction* function;
   2577   if (constructor->IsJSFunction()) {
   2578     function = JSFunction::cast(constructor);
   2579   } else {
   2580     // Functions have null as a constructor,
   2581     // but any JSFunction knows its context immediately.
   2582     CHECK(IsJSFunction());
   2583     function = JSFunction::cast(this);
   2584   }
   2585 
   2586   return function->context()->native_context();
   2587 }
   2588 
   2589 
   2590 static Handle<Object> WrapType(Handle<HeapType> type) {
   2591   if (type->IsClass()) return Map::WeakCellForMap(type->AsClass()->Map());
   2592   return type;
   2593 }
   2594 
   2595 
   2596 MaybeHandle<Map> Map::CopyWithField(Handle<Map> map,
   2597                                     Handle<Name> name,
   2598                                     Handle<HeapType> type,
   2599                                     PropertyAttributes attributes,
   2600                                     Representation representation,
   2601                                     TransitionFlag flag) {
   2602   DCHECK(DescriptorArray::kNotFound ==
   2603          map->instance_descriptors()->Search(
   2604              *name, map->NumberOfOwnDescriptors()));
   2605 
   2606   // Ensure the descriptor array does not get too big.
   2607   if (map->NumberOfOwnDescriptors() >= kMaxNumberOfDescriptors) {
   2608     return MaybeHandle<Map>();
   2609   }
   2610 
   2611   Isolate* isolate = map->GetIsolate();
   2612 
   2613   // Compute the new index for new field.
   2614   int index = map->NextFreePropertyIndex();
   2615 
   2616   if (map->instance_type() == JS_CONTEXT_EXTENSION_OBJECT_TYPE) {
   2617     representation = Representation::Tagged();
   2618     type = HeapType::Any(isolate);
   2619   }
   2620 
   2621   Handle<Object> wrapped_type(WrapType(type));
   2622 
   2623   DataDescriptor new_field_desc(name, index, wrapped_type, attributes,
   2624                                 representation);
   2625   Handle<Map> new_map = Map::CopyAddDescriptor(map, &new_field_desc, flag);
   2626   int unused_property_fields = new_map->unused_property_fields() - 1;
   2627   if (unused_property_fields < 0) {
   2628     unused_property_fields += JSObject::kFieldsAdded;
   2629   }
   2630   new_map->set_unused_property_fields(unused_property_fields);
   2631   return new_map;
   2632 }
   2633 
   2634 
   2635 MaybeHandle<Map> Map::CopyWithConstant(Handle<Map> map,
   2636                                        Handle<Name> name,
   2637                                        Handle<Object> constant,
   2638                                        PropertyAttributes attributes,
   2639                                        TransitionFlag flag) {
   2640   // Ensure the descriptor array does not get too big.
   2641   if (map->NumberOfOwnDescriptors() >= kMaxNumberOfDescriptors) {
   2642     return MaybeHandle<Map>();
   2643   }
   2644 
   2645   // Allocate new instance descriptors with (name, constant) added.
   2646   DataConstantDescriptor new_constant_desc(name, constant, attributes);
   2647   return Map::CopyAddDescriptor(map, &new_constant_desc, flag);
   2648 }
   2649 
   2650 
   2651 void JSObject::AddSlowProperty(Handle<JSObject> object,
   2652                                Handle<Name> name,
   2653                                Handle<Object> value,
   2654                                PropertyAttributes attributes) {
   2655   DCHECK(!object->HasFastProperties());
   2656   Isolate* isolate = object->GetIsolate();
   2657   if (object->IsJSGlobalObject()) {
   2658     Handle<GlobalDictionary> dict(object->global_dictionary());
   2659     PropertyDetails details(attributes, DATA, 0, PropertyCellType::kNoCell);
   2660     int entry = dict->FindEntry(name);
   2661     // If there's a cell there, just invalidate and set the property.
   2662     if (entry != GlobalDictionary::kNotFound) {
   2663       PropertyCell::UpdateCell(dict, entry, value, details);
   2664       // TODO(ishell): move this to UpdateCell.
   2665       // Need to adjust the details.
   2666       int index = dict->NextEnumerationIndex();
   2667       dict->SetNextEnumerationIndex(index + 1);
   2668       PropertyCell* cell = PropertyCell::cast(dict->ValueAt(entry));
   2669       details = cell->property_details().set_index(index);
   2670       cell->set_property_details(details);
   2671 
   2672     } else {
   2673       auto cell = isolate->factory()->NewPropertyCell();
   2674       cell->set_value(*value);
   2675       auto cell_type = value->IsUndefined() ? PropertyCellType::kUndefined
   2676                                             : PropertyCellType::kConstant;
   2677       details = details.set_cell_type(cell_type);
   2678       value = cell;
   2679 
   2680       Handle<GlobalDictionary> result =
   2681           GlobalDictionary::Add(dict, name, value, details);
   2682       if (*dict != *result) object->set_properties(*result);
   2683     }
   2684   } else {
   2685     Handle<NameDictionary> dict(object->property_dictionary());
   2686     PropertyDetails details(attributes, DATA, 0, PropertyCellType::kNoCell);
   2687     Handle<NameDictionary> result =
   2688         NameDictionary::Add(dict, name, value, details);
   2689     if (*dict != *result) object->set_properties(*result);
   2690   }
   2691 }
   2692 
   2693 
   2694 MaybeHandle<Object> JSObject::EnqueueChangeRecord(Handle<JSObject> object,
   2695                                                   const char* type_str,
   2696                                                   Handle<Name> name,
   2697                                                   Handle<Object> old_value) {
   2698   DCHECK(!object->IsJSGlobalProxy());
   2699   DCHECK(!object->IsJSGlobalObject());
   2700   Isolate* isolate = object->GetIsolate();
   2701   HandleScope scope(isolate);
   2702   Handle<String> type = isolate->factory()->InternalizeUtf8String(type_str);
   2703   Handle<Object> args[] = { type, object, name, old_value };
   2704   int argc = name.is_null() ? 2 : old_value->IsTheHole() ? 3 : 4;
   2705 
   2706   return Execution::Call(isolate,
   2707                          Handle<JSFunction>(isolate->observers_notify_change()),
   2708                          isolate->factory()->undefined_value(), argc, args);
   2709 }
   2710 
   2711 
   2712 const char* Representation::Mnemonic() const {
   2713   switch (kind_) {
   2714     case kNone: return "v";
   2715     case kTagged: return "t";
   2716     case kSmi: return "s";
   2717     case kDouble: return "d";
   2718     case kInteger32: return "i";
   2719     case kHeapObject: return "h";
   2720     case kExternal: return "x";
   2721     default:
   2722       UNREACHABLE();
   2723       return NULL;
   2724   }
   2725 }
   2726 
   2727 
   2728 bool Map::InstancesNeedRewriting(Map* target, int target_number_of_fields,
   2729                                  int target_inobject, int target_unused,
   2730                                  int* old_number_of_fields) {
   2731   // If fields were added (or removed), rewrite the instance.
   2732   *old_number_of_fields = NumberOfFields();
   2733   DCHECK(target_number_of_fields >= *old_number_of_fields);
   2734   if (target_number_of_fields != *old_number_of_fields) return true;
   2735 
   2736   // If smi descriptors were replaced by double descriptors, rewrite.
   2737   DescriptorArray* old_desc = instance_descriptors();
   2738   DescriptorArray* new_desc = target->instance_descriptors();
   2739   int limit = NumberOfOwnDescriptors();
   2740   for (int i = 0; i < limit; i++) {
   2741     if (new_desc->GetDetails(i).representation().IsDouble() !=
   2742         old_desc->GetDetails(i).representation().IsDouble()) {
   2743       return true;
   2744     }
   2745   }
   2746 
   2747   // If no fields were added, and no inobject properties were removed, setting
   2748   // the map is sufficient.
   2749   if (target_inobject == GetInObjectProperties()) return false;
   2750   // In-object slack tracking may have reduced the object size of the new map.
   2751   // In that case, succeed if all existing fields were inobject, and they still
   2752   // fit within the new inobject size.
   2753   DCHECK(target_inobject < GetInObjectProperties());
   2754   if (target_number_of_fields <= target_inobject) {
   2755     DCHECK(target_number_of_fields + target_unused == target_inobject);
   2756     return false;
   2757   }
   2758   // Otherwise, properties will need to be moved to the backing store.
   2759   return true;
   2760 }
   2761 
   2762 
   2763 // static
   2764 void JSObject::UpdatePrototypeUserRegistration(Handle<Map> old_map,
   2765                                                Handle<Map> new_map,
   2766                                                Isolate* isolate) {
   2767   if (!FLAG_track_prototype_users) return;
   2768   if (!old_map->is_prototype_map()) return;
   2769   DCHECK(new_map->is_prototype_map());
   2770   bool was_registered = JSObject::UnregisterPrototypeUser(old_map, isolate);
   2771   new_map->set_prototype_info(old_map->prototype_info());
   2772   old_map->set_prototype_info(Smi::FromInt(0));
   2773   if (FLAG_trace_prototype_users) {
   2774     PrintF("Moving prototype_info %p from map %p to map %p.\n",
   2775            reinterpret_cast<void*>(new_map->prototype_info()),
   2776            reinterpret_cast<void*>(*old_map),
   2777            reinterpret_cast<void*>(*new_map));
   2778   }
   2779   if (was_registered) {
   2780     if (new_map->prototype_info()->IsPrototypeInfo()) {
   2781       // The new map isn't registered with its prototype yet; reflect this fact
   2782       // in the PrototypeInfo it just inherited from the old map.
   2783       PrototypeInfo::cast(new_map->prototype_info())
   2784           ->set_registry_slot(PrototypeInfo::UNREGISTERED);
   2785     }
   2786     JSObject::LazyRegisterPrototypeUser(new_map, isolate);
   2787   }
   2788 }
   2789 
   2790 
   2791 void JSObject::MigrateToMap(Handle<JSObject> object, Handle<Map> new_map,
   2792                             int expected_additional_properties) {
   2793   if (object->map() == *new_map) return;
   2794   // If this object is a prototype (the callee will check), invalidate any
   2795   // prototype chains involving it.
   2796   InvalidatePrototypeChains(object->map());
   2797   Handle<Map> old_map(object->map());
   2798 
   2799   // If the map was registered with its prototype before, ensure that it
   2800   // registers with its new prototype now. This preserves the invariant that
   2801   // when a map on a prototype chain is registered with its prototype, then
   2802   // all prototypes further up the chain are also registered with their
   2803   // respective prototypes.
   2804   UpdatePrototypeUserRegistration(old_map, new_map, new_map->GetIsolate());
   2805 
   2806   if (object->HasFastProperties()) {
   2807     if (!new_map->is_dictionary_map()) {
   2808       MigrateFastToFast(object, new_map);
   2809       if (old_map->is_prototype_map()) {
   2810         DCHECK(!old_map->is_stable());
   2811         DCHECK(new_map->is_stable());
   2812         // Clear out the old descriptor array to avoid problems to sharing
   2813         // the descriptor array without using an explicit.
   2814         old_map->InitializeDescriptors(
   2815             old_map->GetHeap()->empty_descriptor_array(),
   2816             LayoutDescriptor::FastPointerLayout());
   2817         // Ensure that no transition was inserted for prototype migrations.
   2818         DCHECK_EQ(0, TransitionArray::NumberOfTransitions(
   2819                          old_map->raw_transitions()));
   2820         DCHECK(new_map->GetBackPointer()->IsUndefined());
   2821       }
   2822     } else {
   2823       MigrateFastToSlow(object, new_map, expected_additional_properties);
   2824     }
   2825   } else {
   2826     // For slow-to-fast migrations JSObject::MigrateSlowToFast()
   2827     // must be used instead.
   2828     CHECK(new_map->is_dictionary_map());
   2829 
   2830     // Slow-to-slow migration is trivial.
   2831     object->set_map(*new_map);
   2832   }
   2833 
   2834   // Careful: Don't allocate here!
   2835   // For some callers of this method, |object| might be in an inconsistent
   2836   // state now: the new map might have a new elements_kind, but the object's
   2837   // elements pointer hasn't been updated yet. Callers will fix this, but in
   2838   // the meantime, (indirectly) calling JSObjectVerify() must be avoided.
   2839   // When adding code here, add a DisallowHeapAllocation too.
   2840 }
   2841 
   2842 
   2843 // To migrate a fast instance to a fast map:
   2844 // - First check whether the instance needs to be rewritten. If not, simply
   2845 //   change the map.
   2846 // - Otherwise, allocate a fixed array large enough to hold all fields, in
   2847 //   addition to unused space.
   2848 // - Copy all existing properties in, in the following order: backing store
   2849 //   properties, unused fields, inobject properties.
   2850 // - If all allocation succeeded, commit the state atomically:
   2851 //   * Copy inobject properties from the backing store back into the object.
   2852 //   * Trim the difference in instance size of the object. This also cleanly
   2853 //     frees inobject properties that moved to the backing store.
   2854 //   * If there are properties left in the backing store, trim of the space used
   2855 //     to temporarily store the inobject properties.
   2856 //   * If there are properties left in the backing store, install the backing
   2857 //     store.
   2858 void JSObject::MigrateFastToFast(Handle<JSObject> object, Handle<Map> new_map) {
   2859   Isolate* isolate = object->GetIsolate();
   2860   Handle<Map> old_map(object->map());
   2861   int old_number_of_fields;
   2862   int number_of_fields = new_map->NumberOfFields();
   2863   int inobject = new_map->GetInObjectProperties();
   2864   int unused = new_map->unused_property_fields();
   2865 
   2866   // Nothing to do if no functions were converted to fields and no smis were
   2867   // converted to doubles.
   2868   if (!old_map->InstancesNeedRewriting(*new_map, number_of_fields, inobject,
   2869                                        unused, &old_number_of_fields)) {
   2870     object->synchronized_set_map(*new_map);
   2871     return;
   2872   }
   2873 
   2874   int total_size = number_of_fields + unused;
   2875   int external = total_size - inobject;
   2876 
   2877   if (number_of_fields != old_number_of_fields &&
   2878       new_map->GetBackPointer() == *old_map) {
   2879     PropertyDetails details = new_map->GetLastDescriptorDetails();
   2880 
   2881     if (old_map->unused_property_fields() > 0) {
   2882       if (details.representation().IsDouble()) {
   2883         FieldIndex index =
   2884             FieldIndex::ForDescriptor(*new_map, new_map->LastAdded());
   2885         if (new_map->IsUnboxedDoubleField(index)) {
   2886           object->RawFastDoublePropertyAtPut(index, 0);
   2887         } else {
   2888           Handle<Object> value = isolate->factory()->NewHeapNumber(0, MUTABLE);
   2889           object->RawFastPropertyAtPut(index, *value);
   2890         }
   2891       }
   2892       object->synchronized_set_map(*new_map);
   2893       return;
   2894     }
   2895 
   2896     DCHECK(number_of_fields == old_number_of_fields + 1);
   2897     // This migration is a transition from a map that has run out of property
   2898     // space. Therefore it could be done by extending the backing store.
   2899     int grow_by = external - object->properties()->length();
   2900     Handle<FixedArray> old_storage = handle(object->properties(), isolate);
   2901     Handle<FixedArray> new_storage =
   2902         isolate->factory()->CopyFixedArrayAndGrow(old_storage, grow_by);
   2903 
   2904     // Properly initialize newly added property.
   2905     Handle<Object> value;
   2906     if (details.representation().IsDouble()) {
   2907       value = isolate->factory()->NewHeapNumber(0, MUTABLE);
   2908     } else {
   2909       value = isolate->factory()->uninitialized_value();
   2910     }
   2911     DCHECK(details.type() == DATA);
   2912     int target_index = details.field_index() - inobject;
   2913     DCHECK(target_index >= 0);  // Must be a backing store index.
   2914     new_storage->set(target_index, *value);
   2915 
   2916     // From here on we cannot fail and we shouldn't GC anymore.
   2917     DisallowHeapAllocation no_allocation;
   2918 
   2919     // Set the new property value and do the map transition.
   2920     object->set_properties(*new_storage);
   2921     object->synchronized_set_map(*new_map);
   2922     return;
   2923   }
   2924   Handle<FixedArray> array = isolate->factory()->NewFixedArray(total_size);
   2925 
   2926   Handle<DescriptorArray> old_descriptors(old_map->instance_descriptors());
   2927   Handle<DescriptorArray> new_descriptors(new_map->instance_descriptors());
   2928   int old_nof = old_map->NumberOfOwnDescriptors();
   2929   int new_nof = new_map->NumberOfOwnDescriptors();
   2930 
   2931   // This method only supports generalizing instances to at least the same
   2932   // number of properties.
   2933   DCHECK(old_nof <= new_nof);
   2934 
   2935   for (int i = 0; i < old_nof; i++) {
   2936     PropertyDetails details = new_descriptors->GetDetails(i);
   2937     if (details.type() != DATA) continue;
   2938     PropertyDetails old_details = old_descriptors->GetDetails(i);
   2939     Representation old_representation = old_details.representation();
   2940     Representation representation = details.representation();
   2941     Handle<Object> value;
   2942     if (old_details.type() == ACCESSOR_CONSTANT) {
   2943       // In case of kAccessor -> kData property reconfiguration, the property
   2944       // must already be prepared for data or certain type.
   2945       DCHECK(!details.representation().IsNone());
   2946       if (details.representation().IsDouble()) {
   2947         value = isolate->factory()->NewHeapNumber(0, MUTABLE);
   2948       } else {
   2949         value = isolate->factory()->uninitialized_value();
   2950       }
   2951     } else if (old_details.type() == DATA_CONSTANT) {
   2952       value = handle(old_descriptors->GetValue(i), isolate);
   2953       DCHECK(!old_representation.IsDouble() && !representation.IsDouble());
   2954     } else {
   2955       FieldIndex index = FieldIndex::ForDescriptor(*old_map, i);
   2956       if (object->IsUnboxedDoubleField(index)) {
   2957         double old = object->RawFastDoublePropertyAt(index);
   2958         value = isolate->factory()->NewHeapNumber(
   2959             old, representation.IsDouble() ? MUTABLE : IMMUTABLE);
   2960 
   2961       } else {
   2962         value = handle(object->RawFastPropertyAt(index), isolate);
   2963         if (!old_representation.IsDouble() && representation.IsDouble()) {
   2964           if (old_representation.IsNone()) {
   2965             value = handle(Smi::FromInt(0), isolate);
   2966           }
   2967           value = Object::NewStorageFor(isolate, value, representation);
   2968         } else if (old_representation.IsDouble() &&
   2969                    !representation.IsDouble()) {
   2970           value = Object::WrapForRead(isolate, value, old_representation);
   2971         }
   2972       }
   2973     }
   2974     DCHECK(!(representation.IsDouble() && value->IsSmi()));
   2975     int target_index = new_descriptors->GetFieldIndex(i) - inobject;
   2976     if (target_index < 0) target_index += total_size;
   2977     array->set(target_index, *value);
   2978   }
   2979 
   2980   for (int i = old_nof; i < new_nof; i++) {
   2981     PropertyDetails details = new_descriptors->GetDetails(i);
   2982     if (details.type() != DATA) continue;
   2983     Handle<Object> value;
   2984     if (details.representation().IsDouble()) {
   2985       value = isolate->factory()->NewHeapNumber(0, MUTABLE);
   2986     } else {
   2987       value = isolate->factory()->uninitialized_value();
   2988     }
   2989     int target_index = new_descriptors->GetFieldIndex(i) - inobject;
   2990     if (target_index < 0) target_index += total_size;
   2991     array->set(target_index, *value);
   2992   }
   2993 
   2994   // From here on we cannot fail and we shouldn't GC anymore.
   2995   DisallowHeapAllocation no_allocation;
   2996 
   2997   // Copy (real) inobject properties. If necessary, stop at number_of_fields to
   2998   // avoid overwriting |one_pointer_filler_map|.
   2999   int limit = Min(inobject, number_of_fields);
   3000   for (int i = 0; i < limit; i++) {
   3001     FieldIndex index = FieldIndex::ForPropertyIndex(*new_map, i);
   3002     Object* value = array->get(external + i);
   3003     // Can't use JSObject::FastPropertyAtPut() because proper map was not set
   3004     // yet.
   3005     if (new_map->IsUnboxedDoubleField(index)) {
   3006       DCHECK(value->IsMutableHeapNumber());
   3007       object->RawFastDoublePropertyAtPut(index,
   3008                                          HeapNumber::cast(value)->value());
   3009     } else {
   3010       object->RawFastPropertyAtPut(index, value);
   3011     }
   3012   }
   3013 
   3014   Heap* heap = isolate->heap();
   3015 
   3016   // If there are properties in the new backing store, trim it to the correct
   3017   // size and install the backing store into the object.
   3018   if (external > 0) {
   3019     heap->RightTrimFixedArray<Heap::CONCURRENT_TO_SWEEPER>(*array, inobject);
   3020     object->set_properties(*array);
   3021   }
   3022 
   3023   // Create filler object past the new instance size.
   3024   int new_instance_size = new_map->instance_size();
   3025   int instance_size_delta = old_map->instance_size() - new_instance_size;
   3026   DCHECK(instance_size_delta >= 0);
   3027 
   3028   if (instance_size_delta > 0) {
   3029     Address address = object->address();
   3030     heap->CreateFillerObjectAt(
   3031         address + new_instance_size, instance_size_delta);
   3032     heap->AdjustLiveBytes(*object, -instance_size_delta,
   3033                           Heap::CONCURRENT_TO_SWEEPER);
   3034   }
   3035 
   3036   // We are storing the new map using release store after creating a filler for
   3037   // the left-over space to avoid races with the sweeper thread.
   3038   object->synchronized_set_map(*new_map);
   3039 }
   3040 
   3041 
   3042 int Map::NumberOfFields() {
   3043   DescriptorArray* descriptors = instance_descriptors();
   3044   int result = 0;
   3045   for (int i = 0; i < NumberOfOwnDescriptors(); i++) {
   3046     if (descriptors->GetDetails(i).location() == kField) result++;
   3047   }
   3048   return result;
   3049 }
   3050 
   3051 
   3052 Handle<Map> Map::CopyGeneralizeAllRepresentations(
   3053     Handle<Map> map, int modify_index, StoreMode store_mode, PropertyKind kind,
   3054     PropertyAttributes attributes, const char* reason) {
   3055   Isolate* isolate = map->GetIsolate();
   3056   Handle<DescriptorArray> old_descriptors(map->instance_descriptors(), isolate);
   3057   int number_of_own_descriptors = map->NumberOfOwnDescriptors();
   3058   Handle<DescriptorArray> descriptors =
   3059       DescriptorArray::CopyUpTo(old_descriptors, number_of_own_descriptors);
   3060 
   3061   for (int i = 0; i < number_of_own_descriptors; i++) {
   3062     descriptors->SetRepresentation(i, Representation::Tagged());
   3063     if (descriptors->GetDetails(i).type() == DATA) {
   3064       descriptors->SetValue(i, HeapType::Any());
   3065     }
   3066   }
   3067 
   3068   Handle<LayoutDescriptor> new_layout_descriptor(
   3069       LayoutDescriptor::FastPointerLayout(), isolate);
   3070   Handle<Map> new_map = CopyReplaceDescriptors(
   3071       map, descriptors, new_layout_descriptor, OMIT_TRANSITION,
   3072       MaybeHandle<Name>(), reason, SPECIAL_TRANSITION);
   3073 
   3074   // Unless the instance is being migrated, ensure that modify_index is a field.
   3075   if (modify_index >= 0) {
   3076     PropertyDetails details = descriptors->GetDetails(modify_index);
   3077     if (store_mode == FORCE_FIELD &&
   3078         (details.type() != DATA || details.attributes() != attributes)) {
   3079       int field_index = details.type() == DATA ? details.field_index()
   3080                                                : new_map->NumberOfFields();
   3081       DataDescriptor d(handle(descriptors->GetKey(modify_index), isolate),
   3082                        field_index, attributes, Representation::Tagged());
   3083       descriptors->Replace(modify_index, &d);
   3084       if (details.type() != DATA) {
   3085         int unused_property_fields = new_map->unused_property_fields() - 1;
   3086         if (unused_property_fields < 0) {
   3087           unused_property_fields += JSObject::kFieldsAdded;
   3088         }
   3089         new_map->set_unused_property_fields(unused_property_fields);
   3090       }
   3091     } else {
   3092       DCHECK(details.attributes() == attributes);
   3093     }
   3094 
   3095     if (FLAG_trace_generalization) {
   3096       HeapType* field_type =
   3097           (details.type() == DATA)
   3098               ? map->instance_descriptors()->GetFieldType(modify_index)
   3099               : NULL;
   3100       map->PrintGeneralization(
   3101           stdout, reason, modify_index, new_map->NumberOfOwnDescriptors(),
   3102           new_map->NumberOfOwnDescriptors(),
   3103           details.type() == DATA_CONSTANT && store_mode == FORCE_FIELD,
   3104           details.representation(), Representation::Tagged(), field_type,
   3105           HeapType::Any());
   3106     }
   3107   }
   3108   return new_map;
   3109 }
   3110 
   3111 
   3112 void Map::DeprecateTransitionTree() {
   3113   if (is_deprecated()) return;
   3114   Object* transitions = raw_transitions();
   3115   int num_transitions = TransitionArray::NumberOfTransitions(transitions);
   3116   for (int i = 0; i < num_transitions; ++i) {
   3117     TransitionArray::GetTarget(transitions, i)->DeprecateTransitionTree();
   3118   }
   3119   deprecate();
   3120   dependent_code()->DeoptimizeDependentCodeGroup(
   3121       GetIsolate(), DependentCode::kTransitionGroup);
   3122   NotifyLeafMapLayoutChange();
   3123 }
   3124 
   3125 
   3126 static inline bool EqualImmutableValues(Object* obj1, Object* obj2) {
   3127   if (obj1 == obj2) return true;  // Valid for both kData and kAccessor kinds.
   3128   // TODO(ishell): compare AccessorPairs.
   3129   return false;
   3130 }
   3131 
   3132 
   3133 // Installs |new_descriptors| over the current instance_descriptors to ensure
   3134 // proper sharing of descriptor arrays.
   3135 void Map::ReplaceDescriptors(DescriptorArray* new_descriptors,
   3136                              LayoutDescriptor* new_layout_descriptor) {
   3137   // Don't overwrite the empty descriptor array or initial map's descriptors.
   3138   if (NumberOfOwnDescriptors() == 0 || GetBackPointer()->IsUndefined()) {
   3139     return;
   3140   }
   3141 
   3142   DescriptorArray* to_replace = instance_descriptors();
   3143   GetHeap()->incremental_marking()->RecordWrites(to_replace);
   3144   Map* current = this;
   3145   while (current->instance_descriptors() == to_replace) {
   3146     Object* next = current->GetBackPointer();
   3147     if (next->IsUndefined()) break;  // Stop overwriting at initial map.
   3148     current->SetEnumLength(kInvalidEnumCacheSentinel);
   3149     current->UpdateDescriptors(new_descriptors, new_layout_descriptor);
   3150     current = Map::cast(next);
   3151   }
   3152   set_owns_descriptors(false);
   3153 }
   3154 
   3155 
   3156 Map* Map::FindRootMap() {
   3157   Map* result = this;
   3158   while (true) {
   3159     Object* back = result->GetBackPointer();
   3160     if (back->IsUndefined()) {
   3161       // Initial map always owns descriptors and doesn't have unused entries
   3162       // in the descriptor array.
   3163       DCHECK(result->owns_descriptors());
   3164       DCHECK_EQ(result->NumberOfOwnDescriptors(),
   3165                 result->instance_descriptors()->number_of_descriptors());
   3166       return result;
   3167     }
   3168     result = Map::cast(back);
   3169   }
   3170 }
   3171 
   3172 
   3173 Map* Map::FindLastMatchMap(int verbatim,
   3174                            int length,
   3175                            DescriptorArray* descriptors) {
   3176   DisallowHeapAllocation no_allocation;
   3177 
   3178   // This can only be called on roots of transition trees.
   3179   DCHECK_EQ(verbatim, NumberOfOwnDescriptors());
   3180 
   3181   Map* current = this;
   3182 
   3183   for (int i = verbatim; i < length; i++) {
   3184     Name* name = descriptors->GetKey(i);
   3185     PropertyDetails details = descriptors->GetDetails(i);
   3186     Map* next = TransitionArray::SearchTransition(current, details.kind(), name,
   3187                                                   details.attributes());
   3188     if (next == NULL) break;
   3189     DescriptorArray* next_descriptors = next->instance_descriptors();
   3190 
   3191     PropertyDetails next_details = next_descriptors->GetDetails(i);
   3192     DCHECK_EQ(details.kind(), next_details.kind());
   3193     DCHECK_EQ(details.attributes(), next_details.attributes());
   3194     if (details.location() != next_details.location()) break;
   3195     if (!details.representation().Equals(next_details.representation())) break;
   3196 
   3197     if (next_details.location() == kField) {
   3198       HeapType* next_field_type = next_descriptors->GetFieldType(i);
   3199       if (!descriptors->GetFieldType(i)->NowIs(next_field_type)) {
   3200         break;
   3201       }
   3202     } else {
   3203       if (!EqualImmutableValues(descriptors->GetValue(i),
   3204                                 next_descriptors->GetValue(i))) {
   3205         break;
   3206       }
   3207     }
   3208     current = next;
   3209   }
   3210   return current;
   3211 }
   3212 
   3213 
   3214 Map* Map::FindFieldOwner(int descriptor) {
   3215   DisallowHeapAllocation no_allocation;
   3216   DCHECK_EQ(DATA, instance_descriptors()->GetDetails(descriptor).type());
   3217   Map* result = this;
   3218   while (true) {
   3219     Object* back = result->GetBackPointer();
   3220     if (back->IsUndefined()) break;
   3221     Map* parent = Map::cast(back);
   3222     if (parent->NumberOfOwnDescriptors() <= descriptor) break;
   3223     result = parent;
   3224   }
   3225   return result;
   3226 }
   3227 
   3228 
   3229 void Map::UpdateFieldType(int descriptor, Handle<Name> name,
   3230                           Representation new_representation,
   3231                           Handle<Object> new_wrapped_type) {
   3232   DCHECK(new_wrapped_type->IsSmi() || new_wrapped_type->IsWeakCell());
   3233   DisallowHeapAllocation no_allocation;
   3234   PropertyDetails details = instance_descriptors()->GetDetails(descriptor);
   3235   if (details.type() != DATA) return;
   3236   Object* transitions = raw_transitions();
   3237   int num_transitions = TransitionArray::NumberOfTransitions(transitions);
   3238   for (int i = 0; i < num_transitions; ++i) {
   3239     Map* target = TransitionArray::GetTarget(transitions, i);
   3240     target->UpdateFieldType(descriptor, name, new_representation,
   3241                             new_wrapped_type);
   3242   }
   3243   // It is allowed to change representation here only from None to something.
   3244   DCHECK(details.representation().Equals(new_representation) ||
   3245          details.representation().IsNone());
   3246 
   3247   // Skip if already updated the shared descriptor.
   3248   if (instance_descriptors()->GetValue(descriptor) == *new_wrapped_type) return;
   3249   DataDescriptor d(name, instance_descriptors()->GetFieldIndex(descriptor),
   3250                    new_wrapped_type, details.attributes(), new_representation);
   3251   instance_descriptors()->Replace(descriptor, &d);
   3252 }
   3253 
   3254 
   3255 bool FieldTypeIsCleared(Representation rep, HeapType* type) {
   3256   return type->Is(HeapType::None()) && rep.IsHeapObject();
   3257 }
   3258 
   3259 
   3260 // static
   3261 Handle<HeapType> Map::GeneralizeFieldType(Representation rep1,
   3262                                           Handle<HeapType> type1,
   3263                                           Representation rep2,
   3264                                           Handle<HeapType> type2,
   3265                                           Isolate* isolate) {
   3266   // Cleared field types need special treatment. They represent lost knowledge,
   3267   // so we must be conservative, so their generalization with any other type
   3268   // is "Any".
   3269   if (FieldTypeIsCleared(rep1, *type1) || FieldTypeIsCleared(rep2, *type2)) {
   3270     return HeapType::Any(isolate);
   3271   }
   3272   if (type1->NowIs(type2)) return type2;
   3273   if (type2->NowIs(type1)) return type1;
   3274   return HeapType::Any(isolate);
   3275 }
   3276 
   3277 
   3278 // static
   3279 void Map::GeneralizeFieldType(Handle<Map> map, int modify_index,
   3280                               Representation new_representation,
   3281                               Handle<HeapType> new_field_type) {
   3282   Isolate* isolate = map->GetIsolate();
   3283 
   3284   // Check if we actually need to generalize the field type at all.
   3285   Handle<DescriptorArray> old_descriptors(map->instance_descriptors(), isolate);
   3286   Representation old_representation =
   3287       old_descriptors->GetDetails(modify_index).representation();
   3288   Handle<HeapType> old_field_type(old_descriptors->GetFieldType(modify_index),
   3289                                   isolate);
   3290 
   3291   if (old_representation.Equals(new_representation) &&
   3292       !FieldTypeIsCleared(new_representation, *new_field_type) &&
   3293       // Checking old_field_type for being cleared is not necessary because
   3294       // the NowIs check below would fail anyway in that case.
   3295       new_field_type->NowIs(old_field_type)) {
   3296     DCHECK(Map::GeneralizeFieldType(old_representation, old_field_type,
   3297                                     new_representation, new_field_type, isolate)
   3298                ->NowIs(old_field_type));
   3299     return;
   3300   }
   3301 
   3302   // Determine the field owner.
   3303   Handle<Map> field_owner(map->FindFieldOwner(modify_index), isolate);
   3304   Handle<DescriptorArray> descriptors(
   3305       field_owner->instance_descriptors(), isolate);
   3306   DCHECK_EQ(*old_field_type, descriptors->GetFieldType(modify_index));
   3307 
   3308   new_field_type =
   3309       Map::GeneralizeFieldType(old_representation, old_field_type,
   3310                                new_representation, new_field_type, isolate);
   3311 
   3312   PropertyDetails details = descriptors->GetDetails(modify_index);
   3313   Handle<Name> name(descriptors->GetKey(modify_index));
   3314 
   3315   Handle<Object> wrapped_type(WrapType(new_field_type));
   3316   field_owner->UpdateFieldType(modify_index, name, new_representation,
   3317                                wrapped_type);
   3318   field_owner->dependent_code()->DeoptimizeDependentCodeGroup(
   3319       isolate, DependentCode::kFieldTypeGroup);
   3320 
   3321   if (FLAG_trace_generalization) {
   3322     map->PrintGeneralization(
   3323         stdout, "field type generalization",
   3324         modify_index, map->NumberOfOwnDescriptors(),
   3325         map->NumberOfOwnDescriptors(), false,
   3326         details.representation(), details.representation(),
   3327         *old_field_type, *new_field_type);
   3328   }
   3329 }
   3330 
   3331 
   3332 static inline Handle<HeapType> GetFieldType(Isolate* isolate,
   3333                                             Handle<DescriptorArray> descriptors,
   3334                                             int descriptor,
   3335                                             PropertyLocation location,
   3336                                             Representation representation) {
   3337 #ifdef DEBUG
   3338   PropertyDetails details = descriptors->GetDetails(descriptor);
   3339   DCHECK_EQ(kData, details.kind());
   3340   DCHECK_EQ(details.location(), location);
   3341 #endif
   3342   if (location == kField) {
   3343     return handle(descriptors->GetFieldType(descriptor), isolate);
   3344   } else {
   3345     return descriptors->GetValue(descriptor)
   3346         ->OptimalType(isolate, representation);
   3347   }
   3348 }
   3349 
   3350 
   3351 // Reconfigures property at |modify_index| with |new_kind|, |new_attributes|,
   3352 // |store_mode| and/or |new_representation|/|new_field_type|.
   3353 // If |modify_index| is negative then no properties are reconfigured but the
   3354 // map is migrated to the up-to-date non-deprecated state.
   3355 //
   3356 // This method rewrites or completes the transition tree to reflect the new
   3357 // change. To avoid high degrees over polymorphism, and to stabilize quickly,
   3358 // on every rewrite the new type is deduced by merging the current type with
   3359 // any potential new (partial) version of the type in the transition tree.
   3360 // To do this, on each rewrite:
   3361 // - Search the root of the transition tree using FindRootMap.
   3362 // - Find |target_map|, the newest matching version of this map using the
   3363 //   virtually "enhanced" |old_map|'s descriptor array (i.e. whose entry at
   3364 //   |modify_index| is considered to be of |new_kind| and having
   3365 //   |new_attributes|) to walk the transition tree.
   3366 // - Merge/generalize the "enhanced" descriptor array of the |old_map| and
   3367 //   descriptor array of the |target_map|.
   3368 // - Generalize the |modify_index| descriptor using |new_representation| and
   3369 //   |new_field_type|.
   3370 // - Walk the tree again starting from the root towards |target_map|. Stop at
   3371 //   |split_map|, the first map who's descriptor array does not match the merged
   3372 //   descriptor array.
   3373 // - If |target_map| == |split_map|, |target_map| is in the expected state.
   3374 //   Return it.
   3375 // - Otherwise, invalidate the outdated transition target from |target_map|, and
   3376 //   replace its transition tree with a new branch for the updated descriptors.
   3377 Handle<Map> Map::ReconfigureProperty(Handle<Map> old_map, int modify_index,
   3378                                      PropertyKind new_kind,
   3379                                      PropertyAttributes new_attributes,
   3380                                      Representation new_representation,
   3381                                      Handle<HeapType> new_field_type,
   3382                                      StoreMode store_mode) {
   3383   DCHECK_NE(kAccessor, new_kind);  // TODO(ishell): not supported yet.
   3384   DCHECK(store_mode != FORCE_FIELD || modify_index >= 0);
   3385   Isolate* isolate = old_map->GetIsolate();
   3386 
   3387   Handle<DescriptorArray> old_descriptors(
   3388       old_map->instance_descriptors(), isolate);
   3389   int old_nof = old_map->NumberOfOwnDescriptors();
   3390 
   3391   // If it's just a representation generalization case (i.e. property kind and
   3392   // attributes stays unchanged) it's fine to transition from None to anything
   3393   // but double without any modification to the object, because the default
   3394   // uninitialized value for representation None can be overwritten by both
   3395   // smi and tagged values. Doubles, however, would require a box allocation.
   3396   if (modify_index >= 0 && !new_representation.IsNone() &&
   3397       !new_representation.IsDouble()) {
   3398     PropertyDetails old_details = old_descriptors->GetDetails(modify_index);
   3399     Representation old_representation = old_details.representation();
   3400 
   3401     if (old_representation.IsNone()) {
   3402       DCHECK_EQ(new_kind, old_details.kind());
   3403       DCHECK_EQ(new_attributes, old_details.attributes());
   3404       DCHECK_EQ(DATA, old_details.type());
   3405       if (FLAG_trace_generalization) {
   3406         old_map->PrintGeneralization(
   3407             stdout, "uninitialized field", modify_index,
   3408             old_map->NumberOfOwnDescriptors(),
   3409             old_map->NumberOfOwnDescriptors(), false, old_representation,
   3410             new_representation, old_descriptors->GetFieldType(modify_index),
   3411             *new_field_type);
   3412       }
   3413       Handle<Map> field_owner(old_map->FindFieldOwner(modify_index), isolate);
   3414 
   3415       GeneralizeFieldType(field_owner, modify_index, new_representation,
   3416                           new_field_type);
   3417       DCHECK(old_descriptors->GetDetails(modify_index)
   3418                  .representation()
   3419                  .Equals(new_representation));
   3420       DCHECK(
   3421           old_descriptors->GetFieldType(modify_index)->NowIs(new_field_type));
   3422       return old_map;
   3423     }
   3424   }
   3425 
   3426   // Check the state of the root map.
   3427   Handle<Map> root_map(old_map->FindRootMap(), isolate);
   3428   if (!old_map->EquivalentToForTransition(*root_map)) {
   3429     return CopyGeneralizeAllRepresentations(old_map, modify_index, store_mode,
   3430                                             new_kind, new_attributes,
   3431                                             "GenAll_NotEquivalent");
   3432   }
   3433 
   3434   ElementsKind from_kind = root_map->elements_kind();
   3435   ElementsKind to_kind = old_map->elements_kind();
   3436   // TODO(ishell): Add a test for SLOW_SLOPPY_ARGUMENTS_ELEMENTS.
   3437   if (from_kind != to_kind && to_kind != DICTIONARY_ELEMENTS &&
   3438       to_kind != SLOW_SLOPPY_ARGUMENTS_ELEMENTS &&
   3439       !(IsTransitionableFastElementsKind(from_kind) &&
   3440         IsMoreGeneralElementsKindTransition(from_kind, to_kind))) {
   3441     return CopyGeneralizeAllRepresentations(old_map, modify_index, store_mode,
   3442                                             new_kind, new_attributes,
   3443                                             "GenAll_InvalidElementsTransition");
   3444   }
   3445   int root_nof = root_map->NumberOfOwnDescriptors();
   3446   if (modify_index >= 0 && modify_index < root_nof) {
   3447     PropertyDetails old_details = old_descriptors->GetDetails(modify_index);
   3448     if (old_details.kind() != new_kind ||
   3449         old_details.attributes() != new_attributes) {
   3450       return CopyGeneralizeAllRepresentations(old_map, modify_index, store_mode,
   3451                                               new_kind, new_attributes,
   3452                                               "GenAll_RootModification1");
   3453     }
   3454     if ((old_details.type() != DATA && store_mode == FORCE_FIELD) ||
   3455         (old_details.type() == DATA &&
   3456          (!new_field_type->NowIs(old_descriptors->GetFieldType(modify_index)) ||
   3457           !new_representation.fits_into(old_details.representation())))) {
   3458       return CopyGeneralizeAllRepresentations(old_map, modify_index, store_mode,
   3459                                               new_kind, new_attributes,
   3460                                               "GenAll_RootModification2");
   3461     }
   3462   }
   3463 
   3464   // From here on, use the map with correct elements kind as root map.
   3465   if (from_kind != to_kind) {
   3466     root_map = Map::AsElementsKind(root_map, to_kind);
   3467   }
   3468 
   3469   Handle<Map> target_map = root_map;
   3470   for (int i = root_nof; i < old_nof; ++i) {
   3471     PropertyDetails old_details = old_descriptors->GetDetails(i);
   3472     PropertyKind next_kind;
   3473     PropertyLocation next_location;
   3474     PropertyAttributes next_attributes;
   3475     Representation next_representation;
   3476     bool property_kind_reconfiguration = false;
   3477 
   3478     if (modify_index == i) {
   3479       DCHECK_EQ(FORCE_FIELD, store_mode);
   3480       property_kind_reconfiguration = old_details.kind() != new_kind;
   3481 
   3482       next_kind = new_kind;
   3483       next_location = kField;
   3484       next_attributes = new_attributes;
   3485       // If property kind is not reconfigured merge the result with
   3486       // representation/field type from the old descriptor.
   3487       next_representation = new_representation;
   3488       if (!property_kind_reconfiguration) {
   3489         next_representation =
   3490             next_representation.generalize(old_details.representation());
   3491       }
   3492 
   3493     } else {
   3494       next_kind = old_details.kind();
   3495       next_location = old_details.location();
   3496       next_attributes = old_details.attributes();
   3497       next_representation = old_details.representation();
   3498     }
   3499     Map* transition = TransitionArray::SearchTransition(
   3500         *target_map, next_kind, old_descriptors->GetKey(i), next_attributes);
   3501     if (transition == NULL) break;
   3502     Handle<Map> tmp_map(transition, isolate);
   3503 
   3504     Handle<DescriptorArray> tmp_descriptors = handle(
   3505         tmp_map->instance_descriptors(), isolate);
   3506 
   3507     // Check if target map is incompatible.
   3508     PropertyDetails tmp_details = tmp_descriptors->GetDetails(i);
   3509     DCHECK_EQ(next_kind, tmp_details.kind());
   3510     DCHECK_EQ(next_attributes, tmp_details.attributes());
   3511     if (next_kind == kAccessor &&
   3512         !EqualImmutableValues(old_descriptors->GetValue(i),
   3513                               tmp_descriptors->GetValue(i))) {
   3514       return CopyGeneralizeAllRepresentations(old_map, modify_index, store_mode,
   3515                                               new_kind, new_attributes,
   3516                                               "GenAll_Incompatible");
   3517     }
   3518     if (next_location == kField && tmp_details.location() == kDescriptor) break;
   3519 
   3520     Representation tmp_representation = tmp_details.representation();
   3521     if (!next_representation.fits_into(tmp_representation)) break;
   3522 
   3523     PropertyLocation old_location = old_details.location();
   3524     PropertyLocation tmp_location = tmp_details.location();
   3525     if (tmp_location == kField) {
   3526       if (next_kind == kData) {
   3527         Handle<HeapType> next_field_type;
   3528         if (modify_index == i) {
   3529           next_field_type = new_field_type;
   3530           if (!property_kind_reconfiguration) {
   3531             Handle<HeapType> old_field_type =
   3532                 GetFieldType(isolate, old_descriptors, i,
   3533                              old_details.location(), tmp_representation);
   3534             Representation old_representation = old_details.representation();
   3535             next_field_type = GeneralizeFieldType(
   3536                 old_representation, old_field_type, new_representation,
   3537                 next_field_type, isolate);
   3538           }
   3539         } else {
   3540           Handle<HeapType> old_field_type =
   3541               GetFieldType(isolate, old_descriptors, i, old_details.location(),
   3542                            tmp_representation);
   3543           next_field_type = old_field_type;
   3544         }
   3545         GeneralizeFieldType(tmp_map, i, tmp_representation, next_field_type);
   3546       }
   3547     } else if (old_location == kField ||
   3548                !EqualImmutableValues(old_descriptors->GetValue(i),
   3549                                      tmp_descriptors->GetValue(i))) {
   3550       break;
   3551     }
   3552     DCHECK(!tmp_map->is_deprecated());
   3553     target_map = tmp_map;
   3554   }
   3555 
   3556   // Directly change the map if the target map is more general.
   3557   Handle<DescriptorArray> target_descriptors(
   3558       target_map->instance_descriptors(), isolate);
   3559   int target_nof = target_map->NumberOfOwnDescriptors();
   3560   if (target_nof == old_nof &&
   3561       (store_mode != FORCE_FIELD ||
   3562        (modify_index >= 0 &&
   3563         target_descriptors->GetDetails(modify_index).location() == kField))) {
   3564 #ifdef DEBUG
   3565     if (modify_index >= 0) {
   3566       PropertyDetails details = target_descriptors->GetDetails(modify_index);
   3567       DCHECK_EQ(new_kind, details.kind());
   3568       DCHECK_EQ(new_attributes, details.attributes());
   3569       DCHECK(new_representation.fits_into(details.representation()));
   3570       DCHECK(details.location() != kField ||
   3571              new_field_type->NowIs(
   3572                  target_descriptors->GetFieldType(modify_index)));
   3573     }
   3574 #endif
   3575     if (*target_map != *old_map) {
   3576       old_map->NotifyLeafMapLayoutChange();
   3577     }
   3578     return target_map;
   3579   }
   3580 
   3581   // Find the last compatible target map in the transition tree.
   3582   for (int i = target_nof; i < old_nof; ++i) {
   3583     PropertyDetails old_details = old_descriptors->GetDetails(i);
   3584     PropertyKind next_kind;
   3585     PropertyAttributes next_attributes;
   3586     if (modify_index == i) {
   3587       next_kind = new_kind;
   3588       next_attributes = new_attributes;
   3589     } else {
   3590       next_kind = old_details.kind();
   3591       next_attributes = old_details.attributes();
   3592     }
   3593     Map* transition = TransitionArray::SearchTransition(
   3594         *target_map, next_kind, old_descriptors->GetKey(i), next_attributes);
   3595     if (transition == NULL) break;
   3596     Handle<Map> tmp_map(transition, isolate);
   3597     Handle<DescriptorArray> tmp_descriptors(
   3598         tmp_map->instance_descriptors(), isolate);
   3599 
   3600     // Check if target map is compatible.
   3601 #ifdef DEBUG
   3602     PropertyDetails tmp_details = tmp_descriptors->GetDetails(i);
   3603     DCHECK_EQ(next_kind, tmp_details.kind());
   3604     DCHECK_EQ(next_attributes, tmp_details.attributes());
   3605 #endif
   3606     if (next_kind == kAccessor &&
   3607         !EqualImmutableValues(old_descriptors->GetValue(i),
   3608                               tmp_descriptors->GetValue(i))) {
   3609       return CopyGeneralizeAllRepresentations(old_map, modify_index, store_mode,
   3610                                               new_kind, new_attributes,
   3611                                               "GenAll_Incompatible");
   3612     }
   3613     DCHECK(!tmp_map->is_deprecated());
   3614     target_map = tmp_map;
   3615   }
   3616   target_nof = target_map->NumberOfOwnDescriptors();
   3617   target_descriptors = handle(target_map->instance_descriptors(), isolate);
   3618 
   3619   // Allocate a new descriptor array large enough to hold the required
   3620   // descriptors, with minimally the exact same size as the old descriptor
   3621   // array.
   3622   int new_slack = Max(
   3623       old_nof, old_descriptors->number_of_descriptors()) - old_nof;
   3624   Handle<DescriptorArray> new_descriptors = DescriptorArray::Allocate(
   3625       isolate, old_nof, new_slack);
   3626   DCHECK(new_descriptors->length() > target_descriptors->length() ||
   3627          new_descriptors->NumberOfSlackDescriptors() > 0 ||
   3628          new_descriptors->number_of_descriptors() ==
   3629          old_descriptors->number_of_descriptors());
   3630   DCHECK(new_descriptors->number_of_descriptors() == old_nof);
   3631 
   3632   // 0 -> |root_nof|
   3633   int current_offset = 0;
   3634   for (int i = 0; i < root_nof; ++i) {
   3635     PropertyDetails old_details = old_descriptors->GetDetails(i);
   3636     if (old_details.location() == kField) {
   3637       current_offset += old_details.field_width_in_words();
   3638     }
   3639     Descriptor d(handle(old_descriptors->GetKey(i), isolate),
   3640                  handle(old_descriptors->GetValue(i), isolate),
   3641                  old_details);
   3642     new_descriptors->Set(i, &d);
   3643   }
   3644 
   3645   // |root_nof| -> |target_nof|
   3646   for (int i = root_nof; i < target_nof; ++i) {
   3647     Handle<Name> target_key(target_descriptors->GetKey(i), isolate);
   3648     PropertyDetails old_details = old_descriptors->GetDetails(i);
   3649     PropertyDetails target_details = target_descriptors->GetDetails(i);
   3650 
   3651     PropertyKind next_kind;
   3652     PropertyAttributes next_attributes;
   3653     PropertyLocation next_location;
   3654     Representation next_representation;
   3655     bool property_kind_reconfiguration = false;
   3656 
   3657     if (modify_index == i) {
   3658       DCHECK_EQ(FORCE_FIELD, store_mode);
   3659       property_kind_reconfiguration = old_details.kind() != new_kind;
   3660 
   3661       next_kind = new_kind;
   3662       next_attributes = new_attributes;
   3663       next_location = kField;
   3664 
   3665       // Merge new representation/field type with ones from the target
   3666       // descriptor. If property kind is not reconfigured merge the result with
   3667       // representation/field type from the old descriptor.
   3668       next_representation =
   3669           new_representation.generalize(target_details.representation());
   3670       if (!property_kind_reconfiguration) {
   3671         next_representation =
   3672             next_representation.generalize(old_details.representation());
   3673       }
   3674     } else {
   3675       // Merge old_descriptor and target_descriptor entries.
   3676       DCHECK_EQ(target_details.kind(), old_details.kind());
   3677       next_kind = target_details.kind();
   3678       next_attributes = target_details.attributes();
   3679       next_location =
   3680           old_details.location() == kField ||
   3681                   target_details.location() == kField ||
   3682                   !EqualImmutableValues(target_descriptors->GetValue(i),
   3683                                         old_descriptors->GetValue(i))
   3684               ? kField
   3685               : kDescriptor;
   3686 
   3687       next_representation = old_details.representation().generalize(
   3688           target_details.representation());
   3689     }
   3690     DCHECK_EQ(next_kind, target_details.kind());
   3691     DCHECK_EQ(next_attributes, target_details.attributes());
   3692 
   3693     if (next_location == kField) {
   3694       if (next_kind == kData) {
   3695         Handle<HeapType> target_field_type =
   3696             GetFieldType(isolate, target_descriptors, i,
   3697                          target_details.location(), next_representation);
   3698 
   3699         Handle<HeapType> next_field_type;
   3700         if (modify_index == i) {
   3701           next_field_type = GeneralizeFieldType(
   3702               target_details.representation(), target_field_type,
   3703               new_representation, new_field_type, isolate);
   3704           if (!property_kind_reconfiguration) {
   3705             Handle<HeapType> old_field_type =
   3706                 GetFieldType(isolate, old_descriptors, i,
   3707                              old_details.location(), next_representation);
   3708             next_field_type = GeneralizeFieldType(
   3709                 old_details.representation(), old_field_type,
   3710                 next_representation, next_field_type, isolate);
   3711           }
   3712         } else {
   3713           Handle<HeapType> old_field_type =
   3714               GetFieldType(isolate, old_descriptors, i, old_details.location(),
   3715                            next_representation);
   3716           next_field_type = GeneralizeFieldType(
   3717               old_details.representation(), old_field_type, next_representation,
   3718               target_field_type, isolate);
   3719         }
   3720         Handle<Object> wrapped_type(WrapType(next_field_type));
   3721         DataDescriptor d(target_key, current_offset, wrapped_type,
   3722                          next_attributes, next_representation);
   3723         current_offset += d.GetDetails().field_width_in_words();
   3724         new_descriptors->Set(i, &d);
   3725       } else {
   3726         UNIMPLEMENTED();  // TODO(ishell): implement.
   3727       }
   3728     } else {
   3729       PropertyDetails details(next_attributes, next_kind, next_location,
   3730                               next_representation);
   3731       Descriptor d(target_key, handle(target_descriptors->GetValue(i), isolate),
   3732                    details);
   3733       new_descriptors->Set(i, &d);
   3734     }
   3735   }
   3736 
   3737   // |target_nof| -> |old_nof|
   3738   for (int i = target_nof; i < old_nof; ++i) {
   3739     PropertyDetails old_details = old_descriptors->GetDetails(i);
   3740     Handle<Name> old_key(old_descriptors->GetKey(i), isolate);
   3741 
   3742     // Merge old_descriptor entry and modified details together.
   3743     PropertyKind next_kind;
   3744     PropertyAttributes next_attributes;
   3745     PropertyLocation next_location;
   3746     Representation next_representation;
   3747     bool property_kind_reconfiguration = false;
   3748 
   3749     if (modify_index == i) {
   3750       DCHECK_EQ(FORCE_FIELD, store_mode);
   3751       // In case of property kind reconfiguration it is not necessary to
   3752       // take into account representation/field type of the old descriptor.
   3753       property_kind_reconfiguration = old_details.kind() != new_kind;
   3754 
   3755       next_kind = new_kind;
   3756       next_attributes = new_attributes;
   3757       next_location = kField;
   3758       next_representation = new_representation;
   3759       if (!property_kind_reconfiguration) {
   3760         next_representation =
   3761             next_representation.generalize(old_details.representation());
   3762       }
   3763     } else {
   3764       next_kind = old_details.kind();
   3765       next_attributes = old_details.attributes();
   3766       next_location = old_details.location();
   3767       next_representation = old_details.representation();
   3768     }
   3769 
   3770     if (next_location == kField) {
   3771       if (next_kind == kData) {
   3772         Handle<HeapType> next_field_type;
   3773         if (modify_index == i) {
   3774           next_field_type = new_field_type;
   3775           if (!property_kind_reconfiguration) {
   3776             Handle<HeapType> old_field_type =
   3777                 GetFieldType(isolate, old_descriptors, i,
   3778                              old_details.location(), next_representation);
   3779             next_field_type = GeneralizeFieldType(
   3780                 old_details.representation(), old_field_type,
   3781                 next_representation, next_field_type, isolate);
   3782           }
   3783         } else {
   3784           Handle<HeapType> old_field_type =
   3785               GetFieldType(isolate, old_descriptors, i, old_details.location(),
   3786                            next_representation);
   3787           next_field_type = old_field_type;
   3788         }
   3789 
   3790         Handle<Object> wrapped_type(WrapType(next_field_type));
   3791 
   3792         DataDescriptor d(old_key, current_offset, wrapped_type, next_attributes,
   3793                          next_representation);
   3794         current_offset += d.GetDetails().field_width_in_words();
   3795         new_descriptors->Set(i, &d);
   3796       } else {
   3797         UNIMPLEMENTED();  // TODO(ishell): implement.
   3798       }
   3799     } else {
   3800       PropertyDetails details(next_attributes, next_kind, next_location,
   3801                               next_representation);
   3802       Descriptor d(old_key, handle(old_descriptors->GetValue(i), isolate),
   3803                    details);
   3804       new_descriptors->Set(i, &d);
   3805     }
   3806   }
   3807 
   3808   new_descriptors->Sort();
   3809 
   3810   DCHECK(store_mode != FORCE_FIELD ||
   3811          new_descriptors->GetDetails(modify_index).location() == kField);
   3812 
   3813   Handle<Map> split_map(root_map->FindLastMatchMap(
   3814           root_nof, old_nof, *new_descriptors), isolate);
   3815   int split_nof = split_map->NumberOfOwnDescriptors();
   3816   DCHECK_NE(old_nof, split_nof);
   3817 
   3818   PropertyKind split_kind;
   3819   PropertyAttributes split_attributes;
   3820   if (modify_index == split_nof) {
   3821     split_kind = new_kind;
   3822     split_attributes = new_attributes;
   3823   } else {
   3824     PropertyDetails split_prop_details = old_descriptors->GetDetails(split_nof);
   3825     split_kind = split_prop_details.kind();
   3826     split_attributes = split_prop_details.attributes();
   3827   }
   3828 
   3829   // Invalidate a transition target at |key|.
   3830   Map* maybe_transition = TransitionArray::SearchTransition(
   3831       *split_map, split_kind, old_descriptors->GetKey(split_nof),
   3832       split_attributes);
   3833   if (maybe_transition != NULL) {
   3834     maybe_transition->DeprecateTransitionTree();
   3835   }
   3836 
   3837   // If |maybe_transition| is not NULL then the transition array already
   3838   // contains entry for given descriptor. This means that the transition
   3839   // could be inserted regardless of whether transitions array is full or not.
   3840   if (maybe_transition == NULL &&
   3841       !TransitionArray::CanHaveMoreTransitions(split_map)) {
   3842     return CopyGeneralizeAllRepresentations(old_map, modify_index, store_mode,
   3843                                             new_kind, new_attributes,
   3844                                             "GenAll_CantHaveMoreTransitions");
   3845   }
   3846 
   3847   old_map->NotifyLeafMapLayoutChange();
   3848 
   3849   if (FLAG_trace_generalization && modify_index >= 0) {
   3850     PropertyDetails old_details = old_descriptors->GetDetails(modify_index);
   3851     PropertyDetails new_details = new_descriptors->GetDetails(modify_index);
   3852     Handle<HeapType> old_field_type =
   3853         (old_details.type() == DATA)
   3854             ? handle(old_descriptors->GetFieldType(modify_index), isolate)
   3855             : HeapType::Constant(
   3856                   handle(old_descriptors->GetValue(modify_index), isolate),
   3857                   isolate);
   3858     Handle<HeapType> new_field_type =
   3859         (new_details.type() == DATA)
   3860             ? handle(new_descriptors->GetFieldType(modify_index), isolate)
   3861             : HeapType::Constant(
   3862                   handle(new_descriptors->GetValue(modify_index), isolate),
   3863                   isolate);
   3864     old_map->PrintGeneralization(
   3865         stdout, "", modify_index, split_nof, old_nof,
   3866         old_details.location() == kDescriptor && store_mode == FORCE_FIELD,
   3867         old_details.representation(), new_details.representation(),
   3868         *old_field_type, *new_field_type);
   3869   }
   3870 
   3871   Handle<LayoutDescriptor> new_layout_descriptor =
   3872       LayoutDescriptor::New(split_map, new_descriptors, old_nof);
   3873 
   3874   Handle<Map> new_map =
   3875       AddMissingTransitions(split_map, new_descriptors, new_layout_descriptor);
   3876 
   3877   // Deprecated part of the transition tree is no longer reachable, so replace
   3878   // current instance descriptors in the "survived" part of the tree with
   3879   // the new descriptors to maintain descriptors sharing invariant.
   3880   split_map->ReplaceDescriptors(*new_descriptors, *new_layout_descriptor);
   3881   return new_map;
   3882 }
   3883 
   3884 
   3885 // Generalize the representation of all DATA descriptors.
   3886 Handle<Map> Map::GeneralizeAllFieldRepresentations(
   3887     Handle<Map> map) {
   3888   Handle<DescriptorArray> descriptors(map->instance_descriptors());
   3889   for (int i = 0; i < map->NumberOfOwnDescriptors(); ++i) {
   3890     PropertyDetails details = descriptors->GetDetails(i);
   3891     if (details.type() == DATA) {
   3892       map = ReconfigureProperty(map, i, kData, details.attributes(),
   3893                                 Representation::Tagged(),
   3894                                 HeapType::Any(map->GetIsolate()), FORCE_FIELD);
   3895     }
   3896   }
   3897   return map;
   3898 }
   3899 
   3900 
   3901 // static
   3902 MaybeHandle<Map> Map::TryUpdate(Handle<Map> old_map) {
   3903   DisallowHeapAllocation no_allocation;
   3904   DisallowDeoptimization no_deoptimization(old_map->GetIsolate());
   3905 
   3906   if (!old_map->is_deprecated()) return old_map;
   3907 
   3908   // Check the state of the root map.
   3909   Map* root_map = old_map->FindRootMap();
   3910   if (!old_map->EquivalentToForTransition(root_map)) return MaybeHandle<Map>();
   3911 
   3912   ElementsKind from_kind = root_map->elements_kind();
   3913   ElementsKind to_kind = old_map->elements_kind();
   3914   if (from_kind != to_kind) {
   3915     // Try to follow existing elements kind transitions.
   3916     root_map = root_map->LookupElementsTransitionMap(to_kind);
   3917     if (root_map == NULL) return MaybeHandle<Map>();
   3918     // From here on, use the map with correct elements kind as root map.
   3919   }
   3920   int root_nof = root_map->NumberOfOwnDescriptors();
   3921 
   3922   int old_nof = old_map->NumberOfOwnDescriptors();
   3923   DescriptorArray* old_descriptors = old_map->instance_descriptors();
   3924 
   3925   Map* new_map = root_map;
   3926   for (int i = root_nof; i < old_nof; ++i) {
   3927     PropertyDetails old_details = old_descriptors->GetDetails(i);
   3928     Map* transition = TransitionArray::SearchTransition(
   3929         new_map, old_details.kind(), old_descriptors->GetKey(i),
   3930         old_details.attributes());
   3931     if (transition == NULL) return MaybeHandle<Map>();
   3932     new_map = transition;
   3933     DescriptorArray* new_descriptors = new_map->instance_descriptors();
   3934 
   3935     PropertyDetails new_details = new_descriptors->GetDetails(i);
   3936     DCHECK_EQ(old_details.kind(), new_details.kind());
   3937     DCHECK_EQ(old_details.attributes(), new_details.attributes());
   3938     if (!old_details.representation().fits_into(new_details.representation())) {
   3939       return MaybeHandle<Map>();
   3940     }
   3941     switch (new_details.type()) {
   3942       case DATA: {
   3943         HeapType* new_type = new_descriptors->GetFieldType(i);
   3944         // Cleared field types need special treatment. They represent lost
   3945         // knowledge, so we must first generalize the new_type to "Any".
   3946         if (FieldTypeIsCleared(new_details.representation(), new_type)) {
   3947           return MaybeHandle<Map>();
   3948         }
   3949         PropertyType old_property_type = old_details.type();
   3950         if (old_property_type == DATA) {
   3951           HeapType* old_type = old_descriptors->GetFieldType(i);
   3952           if (FieldTypeIsCleared(old_details.representation(), old_type) ||
   3953               !old_type->NowIs(new_type)) {
   3954             return MaybeHandle<Map>();
   3955           }
   3956         } else {
   3957           DCHECK(old_property_type == DATA_CONSTANT);
   3958           Object* old_value = old_descriptors->GetValue(i);
   3959           if (!new_type->NowContains(old_value)) {
   3960             return MaybeHandle<Map>();
   3961           }
   3962         }
   3963         break;
   3964       }
   3965       case ACCESSOR: {
   3966 #ifdef DEBUG
   3967         HeapType* new_type = new_descriptors->GetFieldType(i);
   3968         DCHECK(HeapType::Any()->Is(new_type));
   3969 #endif
   3970         break;
   3971       }
   3972 
   3973       case DATA_CONSTANT:
   3974       case ACCESSOR_CONSTANT: {
   3975         Object* old_value = old_descriptors->GetValue(i);
   3976         Object* new_value = new_descriptors->GetValue(i);
   3977         if (old_details.location() == kField || old_value != new_value) {
   3978           return MaybeHandle<Map>();
   3979         }
   3980         break;
   3981       }
   3982     }
   3983   }
   3984   if (new_map->NumberOfOwnDescriptors() != old_nof) return MaybeHandle<Map>();
   3985   return handle(new_map);
   3986 }
   3987 
   3988 
   3989 // static
   3990 Handle<Map> Map::Update(Handle<Map> map) {
   3991   if (!map->is_deprecated()) return map;
   3992   return ReconfigureProperty(map, -1, kData, NONE, Representation::None(),
   3993                              HeapType::None(map->GetIsolate()),
   3994                              ALLOW_IN_DESCRIPTOR);
   3995 }
   3996 
   3997 
   3998 Maybe<bool> JSObject::SetPropertyWithInterceptor(LookupIterator* it,
   3999                                                  Handle<Object> value) {
   4000   Isolate* isolate = it->isolate();
   4001   // Make sure that the top context does not change when doing callbacks or
   4002   // interceptor calls.
   4003   AssertNoContextChange ncc(isolate);
   4004 
   4005   DCHECK_EQ(LookupIterator::INTERCEPTOR, it->state());
   4006   Handle<InterceptorInfo> interceptor(it->GetInterceptor());
   4007   if (interceptor->setter()->IsUndefined()) return Just(false);
   4008 
   4009   Handle<JSObject> holder = it->GetHolder<JSObject>();
   4010   v8::Local<v8::Value> result;
   4011   PropertyCallbackArguments args(isolate, interceptor->data(),
   4012                                  *it->GetReceiver(), *holder);
   4013 
   4014   if (it->IsElement()) {
   4015     uint32_t index = it->index();
   4016     v8::IndexedPropertySetterCallback setter =
   4017         v8::ToCData<v8::IndexedPropertySetterCallback>(interceptor->setter());
   4018     LOG(isolate,
   4019         ApiIndexedPropertyAccess("interceptor-indexed-set", *holder, index));
   4020     result = args.Call(setter, index, v8::Utils::ToLocal(value));
   4021   } else {
   4022     Handle<Name> name = it->name();
   4023     DCHECK(!name->IsPrivate());
   4024 
   4025     if (name->IsSymbol() && !interceptor->can_intercept_symbols()) {
   4026       return Just(false);
   4027     }
   4028 
   4029     v8::GenericNamedPropertySetterCallback setter =
   4030         v8::ToCData<v8::GenericNamedPropertySetterCallback>(
   4031             interceptor->setter());
   4032     LOG(it->isolate(),
   4033         ApiNamedPropertyAccess("interceptor-named-set", *holder, *name));
   4034     result =
   4035         args.Call(setter, v8::Utils::ToLocal(name), v8::Utils::ToLocal(value));
   4036   }
   4037 
   4038   RETURN_VALUE_IF_SCHEDULED_EXCEPTION(it->isolate(), Nothing<bool>());
   4039   if (result.IsEmpty()) return Just(false);
   4040 #ifdef DEBUG
   4041   Handle<Object> result_internal = v8::Utils::OpenHandle(*result);
   4042   result_internal->VerifyApiCallResultType();
   4043 #endif
   4044   return Just(true);
   4045   // TODO(neis): In the future, we may want to actually return the interceptor's
   4046   // result, which then should be a boolean.
   4047 }
   4048 
   4049 
   4050 MaybeHandle<Object> Object::SetProperty(Handle<Object> object,
   4051                                         Handle<Name> name, Handle<Object> value,
   4052                                         LanguageMode language_mode,
   4053                                         StoreFromKeyed store_mode) {
   4054   LookupIterator it(object, name);
   4055   MAYBE_RETURN_NULL(SetProperty(&it, value, language_mode, store_mode));
   4056   return value;
   4057 }
   4058 
   4059 
   4060 Maybe<bool> Object::SetPropertyInternal(LookupIterator* it,
   4061                                         Handle<Object> value,
   4062                                         LanguageMode language_mode,
   4063                                         StoreFromKeyed store_mode,
   4064                                         bool* found) {
   4065   ShouldThrow should_throw =
   4066       is_sloppy(language_mode) ? DONT_THROW : THROW_ON_ERROR;
   4067 
   4068   // Make sure that the top context does not change when doing callbacks or
   4069   // interceptor calls.
   4070   AssertNoContextChange ncc(it->isolate());
   4071 
   4072   *found = true;
   4073 
   4074   bool done = false;
   4075   for (; it->IsFound(); it->Next()) {
   4076     switch (it->state()) {
   4077       case LookupIterator::NOT_FOUND:
   4078         UNREACHABLE();
   4079 
   4080       case LookupIterator::ACCESS_CHECK:
   4081         if (it->HasAccess()) break;
   4082         // Check whether it makes sense to reuse the lookup iterator. Here it
   4083         // might still call into setters up the prototype chain.
   4084         return JSObject::SetPropertyWithFailedAccessCheck(it, value,
   4085                                                           should_throw);
   4086 
   4087       case LookupIterator::JSPROXY:
   4088         return JSProxy::SetProperty(it->GetHolder<JSProxy>(), it->GetName(),
   4089                                     value, it->GetReceiver(), language_mode);
   4090 
   4091       case LookupIterator::INTERCEPTOR:
   4092         if (it->HolderIsReceiverOrHiddenPrototype()) {
   4093           Maybe<bool> result = JSObject::SetPropertyWithInterceptor(it, value);
   4094           if (result.IsNothing() || result.FromJust()) return result;
   4095         } else {
   4096           Maybe<PropertyAttributes> maybe_attributes =
   4097               JSObject::GetPropertyAttributesWithInterceptor(it);
   4098           if (!maybe_attributes.IsJust()) return Nothing<bool>();
   4099           done = maybe_attributes.FromJust() != ABSENT;
   4100           if (done && (maybe_attributes.FromJust() & READ_ONLY) != 0) {
   4101             return WriteToReadOnlyProperty(it, value, should_throw);
   4102           }
   4103         }
   4104         break;
   4105 
   4106       case LookupIterator::ACCESSOR: {
   4107         if (it->IsReadOnly()) {
   4108           return WriteToReadOnlyProperty(it, value, should_throw);
   4109         }
   4110         Handle<Object> accessors = it->GetAccessors();
   4111         if (accessors->IsAccessorInfo() &&
   4112             !it->HolderIsReceiverOrHiddenPrototype() &&
   4113             AccessorInfo::cast(*accessors)->is_special_data_property()) {
   4114           done = true;
   4115           break;
   4116         }
   4117         return SetPropertyWithAccessor(it, value, should_throw);
   4118       }
   4119       case LookupIterator::INTEGER_INDEXED_EXOTIC:
   4120         // TODO(verwaest): We should throw an exception.
   4121         return Just(true);
   4122 
   4123       case LookupIterator::DATA:
   4124         if (it->IsReadOnly()) {
   4125           return WriteToReadOnlyProperty(it, value, should_throw);
   4126         }
   4127         if (it->HolderIsReceiverOrHiddenPrototype()) {
   4128           return SetDataProperty(it, value);
   4129         }
   4130         done = true;
   4131         break;
   4132 
   4133       case LookupIterator::TRANSITION:
   4134         done = true;
   4135         break;
   4136     }
   4137 
   4138     if (done) break;
   4139   }
   4140 
   4141   // If the receiver is the JSGlobalObject, the store was contextual. In case
   4142   // the property did not exist yet on the global object itself, we have to
   4143   // throw a reference error in strict mode.  In sloppy mode, we continue.
   4144   if (it->GetReceiver()->IsJSGlobalObject() && is_strict(language_mode)) {
   4145     it->isolate()->Throw(*it->isolate()->factory()->NewReferenceError(
   4146         MessageTemplate::kNotDefined, it->name()));
   4147     return Nothing<bool>();
   4148   }
   4149 
   4150   *found = false;
   4151   return Nothing<bool>();
   4152 }
   4153 
   4154 
   4155 Maybe<bool> Object::SetProperty(LookupIterator* it, Handle<Object> value,
   4156                                 LanguageMode language_mode,
   4157                                 StoreFromKeyed store_mode) {
   4158   ShouldThrow should_throw =
   4159       is_sloppy(language_mode) ? DONT_THROW : THROW_ON_ERROR;
   4160   if (it->GetReceiver()->IsJSProxy() && it->GetName()->IsPrivate()) {
   4161     RETURN_FAILURE(it->isolate(), should_throw,
   4162                    NewTypeError(MessageTemplate::kProxyPrivate));
   4163   }
   4164   bool found = false;
   4165   Maybe<bool> result =
   4166       SetPropertyInternal(it, value, language_mode, store_mode, &found);
   4167   if (found) return result;
   4168   return AddDataProperty(it, value, NONE, should_throw, store_mode);
   4169 }
   4170 
   4171 
   4172 Maybe<bool> Object::SetSuperProperty(LookupIterator* it, Handle<Object> value,
   4173                                      LanguageMode language_mode,
   4174                                      StoreFromKeyed store_mode) {
   4175   ShouldThrow should_throw =
   4176       is_sloppy(language_mode) ? DONT_THROW : THROW_ON_ERROR;
   4177   Isolate* isolate = it->isolate();
   4178   if (it->GetReceiver()->IsJSProxy() && it->GetName()->IsPrivate()) {
   4179     RETURN_FAILURE(isolate, should_throw,
   4180                    NewTypeError(MessageTemplate::kProxyPrivate));
   4181   }
   4182 
   4183   bool found = false;
   4184   Maybe<bool> result =
   4185       SetPropertyInternal(it, value, language_mode, store_mode, &found);
   4186   if (found) return result;
   4187 
   4188   // The property either doesn't exist on the holder or exists there as a data
   4189   // property.
   4190 
   4191   if (!it->GetReceiver()->IsJSReceiver()) {
   4192     return WriteToReadOnlyProperty(it, value, should_throw);
   4193   }
   4194   Handle<JSReceiver> receiver = Handle<JSReceiver>::cast(it->GetReceiver());
   4195 
   4196   LookupIterator::Configuration c = LookupIterator::OWN;
   4197   LookupIterator own_lookup =
   4198       it->IsElement() ? LookupIterator(isolate, receiver, it->index(), c)
   4199                       : LookupIterator(receiver, it->name(), c);
   4200 
   4201   for (; own_lookup.IsFound(); own_lookup.Next()) {
   4202     switch (own_lookup.state()) {
   4203       case LookupIterator::ACCESS_CHECK:
   4204         if (!own_lookup.HasAccess()) {
   4205           return JSObject::SetPropertyWithFailedAccessCheck(&own_lookup, value,
   4206                                                             should_throw);
   4207         }
   4208         break;
   4209 
   4210       case LookupIterator::INTEGER_INDEXED_EXOTIC:
   4211       case LookupIterator::ACCESSOR:
   4212         return RedefineIncompatibleProperty(isolate, it->GetName(), value,
   4213                                             should_throw);
   4214 
   4215       case LookupIterator::DATA: {
   4216         PropertyDetails details = own_lookup.property_details();
   4217         if (details.IsReadOnly()) {
   4218           return WriteToReadOnlyProperty(&own_lookup, value, should_throw);
   4219         }
   4220         return SetDataProperty(&own_lookup, value);
   4221       }
   4222 
   4223       case LookupIterator::INTERCEPTOR:
   4224       case LookupIterator::JSPROXY: {
   4225         PropertyDescriptor desc;
   4226         Maybe<bool> owned =
   4227             JSReceiver::GetOwnPropertyDescriptor(&own_lookup, &desc);
   4228         MAYBE_RETURN(owned, Nothing<bool>());
   4229         if (!owned.FromJust()) {
   4230           return JSReceiver::CreateDataProperty(&own_lookup, value,
   4231                                                 should_throw);
   4232         }
   4233         if (PropertyDescriptor::IsAccessorDescriptor(&desc) ||
   4234             !desc.writable()) {
   4235           return RedefineIncompatibleProperty(isolate, it->GetName(), value,
   4236                                               should_throw);
   4237         }
   4238 
   4239         PropertyDescriptor value_desc;
   4240         value_desc.set_value(value);
   4241         return JSReceiver::DefineOwnProperty(isolate, receiver, it->GetName(),
   4242                                              &value_desc, should_throw);
   4243       }
   4244 
   4245       case LookupIterator::NOT_FOUND:
   4246       case LookupIterator::TRANSITION:
   4247         UNREACHABLE();
   4248     }
   4249   }
   4250 
   4251   return JSObject::AddDataProperty(&own_lookup, value, NONE, should_throw,
   4252                                    store_mode);
   4253 }
   4254 
   4255 
   4256 MaybeHandle<Object> Object::ReadAbsentProperty(LookupIterator* it,
   4257                                                LanguageMode language_mode) {
   4258   if (is_strong(language_mode)) {
   4259     THROW_NEW_ERROR(it->isolate(),
   4260                     NewTypeError(MessageTemplate::kStrongPropertyAccess,
   4261                                  it->GetName(), it->GetReceiver()),
   4262                     Object);
   4263   }
   4264   return it->isolate()->factory()->undefined_value();
   4265 }
   4266 
   4267 MaybeHandle<Object> Object::ReadAbsentProperty(Isolate* isolate,
   4268                                                Handle<Object> receiver,
   4269                                                Handle<Object> name,
   4270                                                LanguageMode language_mode) {
   4271   if (is_strong(language_mode)) {
   4272     THROW_NEW_ERROR(
   4273         isolate,
   4274         NewTypeError(MessageTemplate::kStrongPropertyAccess, name, receiver),
   4275         Object);
   4276   }
   4277   return isolate->factory()->undefined_value();
   4278 }
   4279 
   4280 
   4281 Maybe<bool> Object::CannotCreateProperty(Isolate* isolate,
   4282                                          Handle<Object> receiver,
   4283                                          Handle<Object> name,
   4284                                          Handle<Object> value,
   4285                                          ShouldThrow should_throw) {
   4286   RETURN_FAILURE(
   4287       isolate, should_throw,
   4288       NewTypeError(MessageTemplate::kStrictCannotCreateProperty, name,
   4289                    Object::TypeOf(isolate, receiver), receiver));
   4290 }
   4291 
   4292 
   4293 Maybe<bool> Object::WriteToReadOnlyProperty(LookupIterator* it,
   4294                                             Handle<Object> value,
   4295                                             ShouldThrow should_throw) {
   4296   return WriteToReadOnlyProperty(it->isolate(), it->GetReceiver(),
   4297                                  it->GetName(), value, should_throw);
   4298 }
   4299 
   4300 
   4301 Maybe<bool> Object::WriteToReadOnlyProperty(Isolate* isolate,
   4302                                             Handle<Object> receiver,
   4303                                             Handle<Object> name,
   4304                                             Handle<Object> value,
   4305                                             ShouldThrow should_throw) {
   4306   RETURN_FAILURE(isolate, should_throw,
   4307                  NewTypeError(MessageTemplate::kStrictReadOnlyProperty, name,
   4308                               Object::TypeOf(isolate, receiver), receiver));
   4309 }
   4310 
   4311 
   4312 Maybe<bool> Object::RedefineIncompatibleProperty(Isolate* isolate,
   4313                                                  Handle<Object> name,
   4314                                                  Handle<Object> value,
   4315                                                  ShouldThrow should_throw) {
   4316   RETURN_FAILURE(isolate, should_throw,
   4317                  NewTypeError(MessageTemplate::kRedefineDisallowed, name));
   4318 }
   4319 
   4320 
   4321 Maybe<bool> Object::SetDataProperty(LookupIterator* it, Handle<Object> value) {
   4322   // Proxies are handled elsewhere. Other non-JSObjects cannot have own
   4323   // properties.
   4324   Handle<JSObject> receiver = Handle<JSObject>::cast(it->GetReceiver());
   4325 
   4326   // Store on the holder which may be hidden behind the receiver.
   4327   DCHECK(it->HolderIsReceiverOrHiddenPrototype());
   4328 
   4329   // Old value for the observation change record.
   4330   // Fetch before transforming the object since the encoding may become
   4331   // incompatible with what's cached in |it|.
   4332   bool is_observed = receiver->map()->is_observed() &&
   4333                      (it->IsElement() ||
   4334                       !it->isolate()->IsInternallyUsedPropertyName(it->name()));
   4335   MaybeHandle<Object> maybe_old;
   4336   if (is_observed) maybe_old = it->GetDataValue();
   4337 
   4338   Handle<Object> to_assign = value;
   4339   // Convert the incoming value to a number for storing into typed arrays.
   4340   if (it->IsElement() && receiver->HasFixedTypedArrayElements()) {
   4341     if (!value->IsNumber() && !value->IsUndefined()) {
   4342       ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   4343           it->isolate(), to_assign, Object::ToNumber(value), Nothing<bool>());
   4344       // ToNumber above might modify the receiver, causing the cached
   4345       // holder_map to mismatch the actual holder->map() after this point.
   4346       // Reload the map to be in consistent state. Other cached state cannot
   4347       // have been invalidated since typed array elements cannot be reconfigured
   4348       // in any way.
   4349       it->ReloadHolderMap();
   4350 
   4351       // We have to recheck the length. However, it can only change if the
   4352       // underlying buffer was neutered, so just check that.
   4353       if (Handle<JSArrayBufferView>::cast(receiver)->WasNeutered()) {
   4354         return Just(true);
   4355         // TODO(neis): According to the spec, this should throw a TypeError.
   4356       }
   4357     }
   4358   }
   4359 
   4360   // Possibly migrate to the most up-to-date map that will be able to store
   4361   // |value| under it->name().
   4362   it->PrepareForDataProperty(to_assign);
   4363 
   4364   // Write the property value.
   4365   it->WriteDataValue(to_assign);
   4366 
   4367   // Send the change record if there are observers.
   4368   if (is_observed && !value->SameValue(*maybe_old.ToHandleChecked())) {
   4369     RETURN_ON_EXCEPTION_VALUE(
   4370         it->isolate(),
   4371         JSObject::EnqueueChangeRecord(receiver, "update", it->GetName(),
   4372                                       maybe_old.ToHandleChecked()),
   4373         Nothing<bool>());
   4374   }
   4375 
   4376 #if VERIFY_HEAP
   4377   if (FLAG_verify_heap) {
   4378     receiver->JSObjectVerify();
   4379   }
   4380 #endif
   4381   return Just(true);
   4382 }
   4383 
   4384 
   4385 MUST_USE_RESULT static MaybeHandle<Object> BeginPerformSplice(
   4386     Handle<JSArray> object) {
   4387   Isolate* isolate = object->GetIsolate();
   4388   HandleScope scope(isolate);
   4389   Handle<Object> args[] = {object};
   4390 
   4391   return Execution::Call(
   4392       isolate, Handle<JSFunction>(isolate->observers_begin_perform_splice()),
   4393       isolate->factory()->undefined_value(), arraysize(args), args);
   4394 }
   4395 
   4396 
   4397 MUST_USE_RESULT static MaybeHandle<Object> EndPerformSplice(
   4398     Handle<JSArray> object) {
   4399   Isolate* isolate = object->GetIsolate();
   4400   HandleScope scope(isolate);
   4401   Handle<Object> args[] = {object};
   4402 
   4403   return Execution::Call(
   4404       isolate, Handle<JSFunction>(isolate->observers_end_perform_splice()),
   4405       isolate->factory()->undefined_value(), arraysize(args), args);
   4406 }
   4407 
   4408 
   4409 MUST_USE_RESULT static MaybeHandle<Object> EnqueueSpliceRecord(
   4410     Handle<JSArray> object, uint32_t index, Handle<JSArray> deleted,
   4411     uint32_t add_count) {
   4412   Isolate* isolate = object->GetIsolate();
   4413   HandleScope scope(isolate);
   4414   Handle<Object> index_object = isolate->factory()->NewNumberFromUint(index);
   4415   Handle<Object> add_count_object =
   4416       isolate->factory()->NewNumberFromUint(add_count);
   4417 
   4418   Handle<Object> args[] = {object, index_object, deleted, add_count_object};
   4419 
   4420   return Execution::Call(
   4421       isolate, Handle<JSFunction>(isolate->observers_enqueue_splice()),
   4422       isolate->factory()->undefined_value(), arraysize(args), args);
   4423 }
   4424 
   4425 
   4426 Maybe<bool> Object::AddDataProperty(LookupIterator* it, Handle<Object> value,
   4427                                     PropertyAttributes attributes,
   4428                                     ShouldThrow should_throw,
   4429                                     StoreFromKeyed store_mode) {
   4430   DCHECK(!it->GetReceiver()->IsJSProxy());
   4431   if (!it->GetReceiver()->IsJSObject()) {
   4432     return CannotCreateProperty(it->isolate(), it->GetReceiver(), it->GetName(),
   4433                                 value, should_throw);
   4434   }
   4435 
   4436   DCHECK_NE(LookupIterator::INTEGER_INDEXED_EXOTIC, it->state());
   4437 
   4438   Handle<JSObject> receiver = it->GetStoreTarget();
   4439 
   4440   // If the receiver is a JSGlobalProxy, store on the prototype (JSGlobalObject)
   4441   // instead. If the prototype is Null, the proxy is detached.
   4442   if (receiver->IsJSGlobalProxy()) return Just(true);
   4443 
   4444   Isolate* isolate = it->isolate();
   4445 
   4446   if (!receiver->map()->is_extensible() &&
   4447       (it->IsElement() || !isolate->IsInternallyUsedPropertyName(it->name()))) {
   4448     RETURN_FAILURE(
   4449         isolate, should_throw,
   4450         NewTypeError(MessageTemplate::kObjectNotExtensible, it->GetName()));
   4451   }
   4452 
   4453   if (it->IsElement()) {
   4454     if (receiver->IsJSArray()) {
   4455       Handle<JSArray> array = Handle<JSArray>::cast(receiver);
   4456       if (JSArray::WouldChangeReadOnlyLength(array, it->index())) {
   4457         RETURN_FAILURE(array->GetIsolate(), should_throw,
   4458                        NewTypeError(MessageTemplate::kStrictReadOnlyProperty,
   4459                                     isolate->factory()->length_string(),
   4460                                     Object::TypeOf(isolate, array), array));
   4461       }
   4462 
   4463       if (FLAG_trace_external_array_abuse &&
   4464           array->HasFixedTypedArrayElements()) {
   4465         CheckArrayAbuse(array, "typed elements write", it->index(), true);
   4466       }
   4467 
   4468       if (FLAG_trace_js_array_abuse && !array->HasFixedTypedArrayElements()) {
   4469         CheckArrayAbuse(array, "elements write", it->index(), false);
   4470       }
   4471     }
   4472 
   4473     Maybe<bool> result = JSObject::AddDataElement(receiver, it->index(), value,
   4474                                                   attributes, should_throw);
   4475     JSObject::ValidateElements(receiver);
   4476     return result;
   4477   } else {
   4478     // Migrate to the most up-to-date map that will be able to store |value|
   4479     // under it->name() with |attributes|.
   4480     it->PrepareTransitionToDataProperty(value, attributes, store_mode);
   4481     DCHECK_EQ(LookupIterator::TRANSITION, it->state());
   4482     it->ApplyTransitionToDataProperty();
   4483 
   4484     // TODO(verwaest): Encapsulate dictionary handling better.
   4485     if (receiver->map()->is_dictionary_map()) {
   4486       // TODO(verwaest): Probably should ensure this is done beforehand.
   4487       it->InternalizeName();
   4488       // TODO(dcarney): just populate TransitionPropertyCell here?
   4489       JSObject::AddSlowProperty(receiver, it->name(), value, attributes);
   4490     } else {
   4491       // Write the property value.
   4492       it->WriteDataValue(value);
   4493     }
   4494 
   4495     // Send the change record if there are observers.
   4496     if (receiver->map()->is_observed() &&
   4497         !isolate->IsInternallyUsedPropertyName(it->name())) {
   4498       RETURN_ON_EXCEPTION_VALUE(isolate, JSObject::EnqueueChangeRecord(
   4499                                              receiver, "add", it->name(),
   4500                                              it->factory()->the_hole_value()),
   4501                                 Nothing<bool>());
   4502     }
   4503 #if VERIFY_HEAP
   4504     if (FLAG_verify_heap) {
   4505       receiver->JSObjectVerify();
   4506     }
   4507 #endif
   4508   }
   4509 
   4510   return Just(true);
   4511 }
   4512 
   4513 
   4514 void Map::EnsureDescriptorSlack(Handle<Map> map, int slack) {
   4515   // Only supports adding slack to owned descriptors.
   4516   DCHECK(map->owns_descriptors());
   4517 
   4518   Handle<DescriptorArray> descriptors(map->instance_descriptors());
   4519   int old_size = map->NumberOfOwnDescriptors();
   4520   if (slack <= descriptors->NumberOfSlackDescriptors()) return;
   4521 
   4522   Handle<DescriptorArray> new_descriptors = DescriptorArray::CopyUpTo(
   4523       descriptors, old_size, slack);
   4524 
   4525   DisallowHeapAllocation no_allocation;
   4526   // The descriptors are still the same, so keep the layout descriptor.
   4527   LayoutDescriptor* layout_descriptor = map->GetLayoutDescriptor();
   4528 
   4529   if (old_size == 0) {
   4530     map->UpdateDescriptors(*new_descriptors, layout_descriptor);
   4531     return;
   4532   }
   4533 
   4534   // If the source descriptors had an enum cache we copy it. This ensures
   4535   // that the maps to which we push the new descriptor array back can rely
   4536   // on a cache always being available once it is set. If the map has more
   4537   // enumerated descriptors than available in the original cache, the cache
   4538   // will be lazily replaced by the extended cache when needed.
   4539   if (descriptors->HasEnumCache()) {
   4540     new_descriptors->CopyEnumCacheFrom(*descriptors);
   4541   }
   4542 
   4543   // Replace descriptors by new_descriptors in all maps that share it.
   4544   map->GetHeap()->incremental_marking()->RecordWrites(*descriptors);
   4545 
   4546   Map* current = *map;
   4547   while (current->instance_descriptors() == *descriptors) {
   4548     Object* next = current->GetBackPointer();
   4549     if (next->IsUndefined()) break;  // Stop overwriting at initial map.
   4550     current->UpdateDescriptors(*new_descriptors, layout_descriptor);
   4551     current = Map::cast(next);
   4552   }
   4553   map->UpdateDescriptors(*new_descriptors, layout_descriptor);
   4554 }
   4555 
   4556 
   4557 template<class T>
   4558 static int AppendUniqueCallbacks(NeanderArray* callbacks,
   4559                                  Handle<typename T::Array> array,
   4560                                  int valid_descriptors) {
   4561   int nof_callbacks = callbacks->length();
   4562 
   4563   Isolate* isolate = array->GetIsolate();
   4564   // Ensure the keys are unique names before writing them into the
   4565   // instance descriptor. Since it may cause a GC, it has to be done before we
   4566   // temporarily put the heap in an invalid state while appending descriptors.
   4567   for (int i = 0; i < nof_callbacks; ++i) {
   4568     Handle<AccessorInfo> entry(AccessorInfo::cast(callbacks->get(i)));
   4569     if (entry->name()->IsUniqueName()) continue;
   4570     Handle<String> key =
   4571         isolate->factory()->InternalizeString(
   4572             Handle<String>(String::cast(entry->name())));
   4573     entry->set_name(*key);
   4574   }
   4575 
   4576   // Fill in new callback descriptors.  Process the callbacks from
   4577   // back to front so that the last callback with a given name takes
   4578   // precedence over previously added callbacks with that name.
   4579   for (int i = nof_callbacks - 1; i >= 0; i--) {
   4580     Handle<AccessorInfo> entry(AccessorInfo::cast(callbacks->get(i)));
   4581     Handle<Name> key(Name::cast(entry->name()));
   4582     // Check if a descriptor with this name already exists before writing.
   4583     if (!T::Contains(key, entry, valid_descriptors, array)) {
   4584       T::Insert(key, entry, valid_descriptors, array);
   4585       valid_descriptors++;
   4586     }
   4587   }
   4588 
   4589   return valid_descriptors;
   4590 }
   4591 
   4592 struct DescriptorArrayAppender {
   4593   typedef DescriptorArray Array;
   4594   static bool Contains(Handle<Name> key,
   4595                        Handle<AccessorInfo> entry,
   4596                        int valid_descriptors,
   4597                        Handle<DescriptorArray> array) {
   4598     DisallowHeapAllocation no_gc;
   4599     return array->Search(*key, valid_descriptors) != DescriptorArray::kNotFound;
   4600   }
   4601   static void Insert(Handle<Name> key,
   4602                      Handle<AccessorInfo> entry,
   4603                      int valid_descriptors,
   4604                      Handle<DescriptorArray> array) {
   4605     DisallowHeapAllocation no_gc;
   4606     AccessorConstantDescriptor desc(key, entry, entry->property_attributes());
   4607     array->Append(&desc);
   4608   }
   4609 };
   4610 
   4611 
   4612 struct FixedArrayAppender {
   4613   typedef FixedArray Array;
   4614   static bool Contains(Handle<Name> key,
   4615                        Handle<AccessorInfo> entry,
   4616                        int valid_descriptors,
   4617                        Handle<FixedArray> array) {
   4618     for (int i = 0; i < valid_descriptors; i++) {
   4619       if (*key == AccessorInfo::cast(array->get(i))->name()) return true;
   4620     }
   4621     return false;
   4622   }
   4623   static void Insert(Handle<Name> key,
   4624                      Handle<AccessorInfo> entry,
   4625                      int valid_descriptors,
   4626                      Handle<FixedArray> array) {
   4627     DisallowHeapAllocation no_gc;
   4628     array->set(valid_descriptors, *entry);
   4629   }
   4630 };
   4631 
   4632 
   4633 void Map::AppendCallbackDescriptors(Handle<Map> map,
   4634                                     Handle<Object> descriptors) {
   4635   int nof = map->NumberOfOwnDescriptors();
   4636   Handle<DescriptorArray> array(map->instance_descriptors());
   4637   NeanderArray callbacks(descriptors);
   4638   DCHECK(array->NumberOfSlackDescriptors() >= callbacks.length());
   4639   nof = AppendUniqueCallbacks<DescriptorArrayAppender>(&callbacks, array, nof);
   4640   map->SetNumberOfOwnDescriptors(nof);
   4641 }
   4642 
   4643 
   4644 int AccessorInfo::AppendUnique(Handle<Object> descriptors,
   4645                                Handle<FixedArray> array,
   4646                                int valid_descriptors) {
   4647   NeanderArray callbacks(descriptors);
   4648   DCHECK(array->length() >= callbacks.length() + valid_descriptors);
   4649   return AppendUniqueCallbacks<FixedArrayAppender>(&callbacks,
   4650                                                    array,
   4651                                                    valid_descriptors);
   4652 }
   4653 
   4654 
   4655 static bool ContainsMap(MapHandleList* maps, Map* map) {
   4656   DCHECK_NOT_NULL(map);
   4657   for (int i = 0; i < maps->length(); ++i) {
   4658     if (!maps->at(i).is_null() && *maps->at(i) == map) return true;
   4659   }
   4660   return false;
   4661 }
   4662 
   4663 
   4664 Handle<Map> Map::FindTransitionedMap(Handle<Map> map,
   4665                                      MapHandleList* candidates) {
   4666   ElementsKind kind = map->elements_kind();
   4667   bool packed = IsFastPackedElementsKind(kind);
   4668 
   4669   Map* transition = nullptr;
   4670   if (IsTransitionableFastElementsKind(kind)) {
   4671     for (Map* current = map->ElementsTransitionMap();
   4672          current != nullptr && current->has_fast_elements();
   4673          current = current->ElementsTransitionMap()) {
   4674       if (ContainsMap(candidates, current) &&
   4675           (packed || !IsFastPackedElementsKind(current->elements_kind()))) {
   4676         transition = current;
   4677         packed = packed && IsFastPackedElementsKind(current->elements_kind());
   4678       }
   4679     }
   4680   }
   4681   return transition == nullptr ? Handle<Map>() : handle(transition);
   4682 }
   4683 
   4684 
   4685 static Map* FindClosestElementsTransition(Map* map, ElementsKind to_kind) {
   4686   Map* current_map = map;
   4687 
   4688   ElementsKind kind = map->elements_kind();
   4689   while (kind != to_kind) {
   4690     Map* next_map = current_map->ElementsTransitionMap();
   4691     if (next_map == nullptr) return current_map;
   4692     kind = next_map->elements_kind();
   4693     current_map = next_map;
   4694   }
   4695 
   4696   DCHECK_EQ(to_kind, current_map->elements_kind());
   4697   return current_map;
   4698 }
   4699 
   4700 
   4701 Map* Map::LookupElementsTransitionMap(ElementsKind to_kind) {
   4702   Map* to_map = FindClosestElementsTransition(this, to_kind);
   4703   if (to_map->elements_kind() == to_kind) return to_map;
   4704   return nullptr;
   4705 }
   4706 
   4707 
   4708 bool Map::IsMapInArrayPrototypeChain() {
   4709   Isolate* isolate = GetIsolate();
   4710   if (isolate->initial_array_prototype()->map() == this) {
   4711     return true;
   4712   }
   4713 
   4714   if (isolate->initial_object_prototype()->map() == this) {
   4715     return true;
   4716   }
   4717 
   4718   return false;
   4719 }
   4720 
   4721 
   4722 Handle<WeakCell> Map::WeakCellForMap(Handle<Map> map) {
   4723   Isolate* isolate = map->GetIsolate();
   4724   if (map->weak_cell_cache()->IsWeakCell()) {
   4725     return Handle<WeakCell>(WeakCell::cast(map->weak_cell_cache()));
   4726   }
   4727   Handle<WeakCell> weak_cell = isolate->factory()->NewWeakCell(map);
   4728   map->set_weak_cell_cache(*weak_cell);
   4729   return weak_cell;
   4730 }
   4731 
   4732 
   4733 static Handle<Map> AddMissingElementsTransitions(Handle<Map> map,
   4734                                                  ElementsKind to_kind) {
   4735   DCHECK(IsTransitionElementsKind(map->elements_kind()));
   4736 
   4737   Handle<Map> current_map = map;
   4738 
   4739   ElementsKind kind = map->elements_kind();
   4740   TransitionFlag flag;
   4741   if (map->is_prototype_map()) {
   4742     flag = OMIT_TRANSITION;
   4743   } else {
   4744     flag = INSERT_TRANSITION;
   4745     if (IsFastElementsKind(kind)) {
   4746       while (kind != to_kind && !IsTerminalElementsKind(kind)) {
   4747         kind = GetNextTransitionElementsKind(kind);
   4748         current_map = Map::CopyAsElementsKind(current_map, kind, flag);
   4749       }
   4750     }
   4751   }
   4752 
   4753   // In case we are exiting the fast elements kind system, just add the map in
   4754   // the end.
   4755   if (kind != to_kind) {
   4756     current_map = Map::CopyAsElementsKind(current_map, to_kind, flag);
   4757   }
   4758 
   4759   DCHECK(current_map->elements_kind() == to_kind);
   4760   return current_map;
   4761 }
   4762 
   4763 
   4764 Handle<Map> Map::TransitionElementsTo(Handle<Map> map,
   4765                                       ElementsKind to_kind) {
   4766   ElementsKind from_kind = map->elements_kind();
   4767   if (from_kind == to_kind) return map;
   4768 
   4769   Isolate* isolate = map->GetIsolate();
   4770   Context* native_context = isolate->context()->native_context();
   4771   if (from_kind == FAST_SLOPPY_ARGUMENTS_ELEMENTS) {
   4772     if (*map == native_context->fast_aliased_arguments_map()) {
   4773       DCHECK_EQ(SLOW_SLOPPY_ARGUMENTS_ELEMENTS, to_kind);
   4774       return handle(native_context->slow_aliased_arguments_map());
   4775     }
   4776   } else if (from_kind == SLOW_SLOPPY_ARGUMENTS_ELEMENTS) {
   4777     if (*map == native_context->slow_aliased_arguments_map()) {
   4778       DCHECK_EQ(FAST_SLOPPY_ARGUMENTS_ELEMENTS, to_kind);
   4779       return handle(native_context->fast_aliased_arguments_map());
   4780     }
   4781   } else if (IsFastElementsKind(from_kind) && IsFastElementsKind(to_kind)) {
   4782     // Reuse map transitions for JSArrays.
   4783     DisallowHeapAllocation no_gc;
   4784     Strength strength = map->is_strong() ? Strength::STRONG : Strength::WEAK;
   4785     if (native_context->get(Context::ArrayMapIndex(from_kind, strength)) ==
   4786         *map) {
   4787       Object* maybe_transitioned_map =
   4788           native_context->get(Context::ArrayMapIndex(to_kind, strength));
   4789       if (maybe_transitioned_map->IsMap()) {
   4790         return handle(Map::cast(maybe_transitioned_map), isolate);
   4791       }
   4792     }
   4793   }
   4794 
   4795   DCHECK(!map->IsUndefined());
   4796   // Check if we can go back in the elements kind transition chain.
   4797   if (IsHoleyElementsKind(from_kind) &&
   4798       to_kind == GetPackedElementsKind(from_kind) &&
   4799       map->GetBackPointer()->IsMap() &&
   4800       Map::cast(map->GetBackPointer())->elements_kind() == to_kind) {
   4801     return handle(Map::cast(map->GetBackPointer()));
   4802   }
   4803 
   4804   bool allow_store_transition = IsTransitionElementsKind(from_kind);
   4805   // Only store fast element maps in ascending generality.
   4806   if (IsFastElementsKind(to_kind)) {
   4807     allow_store_transition =
   4808         allow_store_transition && IsTransitionableFastElementsKind(from_kind) &&
   4809         IsMoreGeneralElementsKindTransition(from_kind, to_kind);
   4810   }
   4811 
   4812   if (!allow_store_transition) {
   4813     return Map::CopyAsElementsKind(map, to_kind, OMIT_TRANSITION);
   4814   }
   4815 
   4816   return Map::AsElementsKind(map, to_kind);
   4817 }
   4818 
   4819 
   4820 // static
   4821 Handle<Map> Map::AsElementsKind(Handle<Map> map, ElementsKind kind) {
   4822   Handle<Map> closest_map(FindClosestElementsTransition(*map, kind));
   4823 
   4824   if (closest_map->elements_kind() == kind) {
   4825     return closest_map;
   4826   }
   4827 
   4828   return AddMissingElementsTransitions(closest_map, kind);
   4829 }
   4830 
   4831 
   4832 Handle<Map> JSObject::GetElementsTransitionMap(Handle<JSObject> object,
   4833                                                ElementsKind to_kind) {
   4834   Handle<Map> map(object->map());
   4835   return Map::TransitionElementsTo(map, to_kind);
   4836 }
   4837 
   4838 
   4839 void JSProxy::Revoke(Handle<JSProxy> proxy) {
   4840   Isolate* isolate = proxy->GetIsolate();
   4841   if (!proxy->IsRevoked()) proxy->set_handler(isolate->heap()->null_value());
   4842   DCHECK(proxy->IsRevoked());
   4843 }
   4844 
   4845 
   4846 Maybe<bool> JSProxy::HasProperty(Isolate* isolate, Handle<JSProxy> proxy,
   4847                                  Handle<Name> name) {
   4848   DCHECK(!name->IsPrivate());
   4849   STACK_CHECK(Nothing<bool>());
   4850   // 1. (Assert)
   4851   // 2. Let handler be the value of the [[ProxyHandler]] internal slot of O.
   4852   Handle<Object> handler(proxy->handler(), isolate);
   4853   // 3. If handler is null, throw a TypeError exception.
   4854   // 4. Assert: Type(handler) is Object.
   4855   if (proxy->IsRevoked()) {
   4856     isolate->Throw(*isolate->factory()->NewTypeError(
   4857         MessageTemplate::kProxyRevoked, isolate->factory()->has_string()));
   4858     return Nothing<bool>();
   4859   }
   4860   // 5. Let target be the value of the [[ProxyTarget]] internal slot of O.
   4861   Handle<JSReceiver> target(proxy->target(), isolate);
   4862   // 6. Let trap be ? GetMethod(handler, "has").
   4863   Handle<Object> trap;
   4864   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   4865       isolate, trap, Object::GetMethod(Handle<JSReceiver>::cast(handler),
   4866                                        isolate->factory()->has_string()),
   4867       Nothing<bool>());
   4868   // 7. If trap is undefined, then
   4869   if (trap->IsUndefined()) {
   4870     // 7a. Return target.[[HasProperty]](P).
   4871     return JSReceiver::HasProperty(target, name);
   4872   }
   4873   // 8. Let booleanTrapResult be ToBoolean(? Call(trap, handler, target, P)).
   4874   Handle<Object> trap_result_obj;
   4875   Handle<Object> args[] = {target, name};
   4876   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   4877       isolate, trap_result_obj,
   4878       Execution::Call(isolate, trap, handler, arraysize(args), args),
   4879       Nothing<bool>());
   4880   bool boolean_trap_result = trap_result_obj->BooleanValue();
   4881   // 9. If booleanTrapResult is false, then:
   4882   if (!boolean_trap_result) {
   4883     // 9a. Let targetDesc be ? target.[[GetOwnProperty]](P).
   4884     PropertyDescriptor target_desc;
   4885     Maybe<bool> target_found = JSReceiver::GetOwnPropertyDescriptor(
   4886         isolate, target, name, &target_desc);
   4887     MAYBE_RETURN(target_found, Nothing<bool>());
   4888     // 9b. If targetDesc is not undefined, then:
   4889     if (target_found.FromJust()) {
   4890       // 9b i. If targetDesc.[[Configurable]] is false, throw a TypeError
   4891       //       exception.
   4892       if (!target_desc.configurable()) {
   4893         isolate->Throw(*isolate->factory()->NewTypeError(
   4894             MessageTemplate::kProxyHasNonConfigurable, name));
   4895         return Nothing<bool>();
   4896       }
   4897       // 9b ii. Let extensibleTarget be ? IsExtensible(target).
   4898       Maybe<bool> extensible_target = JSReceiver::IsExtensible(target);
   4899       MAYBE_RETURN(extensible_target, Nothing<bool>());
   4900       // 9b iii. If extensibleTarget is false, throw a TypeError exception.
   4901       if (!extensible_target.FromJust()) {
   4902         isolate->Throw(*isolate->factory()->NewTypeError(
   4903             MessageTemplate::kProxyHasNonExtensible, name));
   4904         return Nothing<bool>();
   4905       }
   4906     }
   4907   }
   4908   // 10. Return booleanTrapResult.
   4909   return Just(boolean_trap_result);
   4910 }
   4911 
   4912 
   4913 Maybe<bool> JSProxy::SetProperty(Handle<JSProxy> proxy, Handle<Name> name,
   4914                                  Handle<Object> value, Handle<Object> receiver,
   4915                                  LanguageMode language_mode) {
   4916   DCHECK(!name->IsPrivate());
   4917   Isolate* isolate = proxy->GetIsolate();
   4918   STACK_CHECK(Nothing<bool>());
   4919   Factory* factory = isolate->factory();
   4920   Handle<String> trap_name = factory->set_string();
   4921   ShouldThrow should_throw =
   4922       is_sloppy(language_mode) ? DONT_THROW : THROW_ON_ERROR;
   4923 
   4924   if (proxy->IsRevoked()) {
   4925     isolate->Throw(
   4926         *factory->NewTypeError(MessageTemplate::kProxyRevoked, trap_name));
   4927     return Nothing<bool>();
   4928   }
   4929   Handle<JSReceiver> target(proxy->target(), isolate);
   4930   Handle<JSReceiver> handler(JSReceiver::cast(proxy->handler()), isolate);
   4931 
   4932   Handle<Object> trap;
   4933   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   4934       isolate, trap, Object::GetMethod(handler, trap_name), Nothing<bool>());
   4935   if (trap->IsUndefined()) {
   4936     LookupIterator it =
   4937         LookupIterator::PropertyOrElement(isolate, receiver, name, target);
   4938     return Object::SetSuperProperty(&it, value, language_mode,
   4939                                     Object::MAY_BE_STORE_FROM_KEYED);
   4940   }
   4941 
   4942   Handle<Object> trap_result;
   4943   Handle<Object> args[] = {target, name, value, receiver};
   4944   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   4945       isolate, trap_result,
   4946       Execution::Call(isolate, trap, handler, arraysize(args), args),
   4947       Nothing<bool>());
   4948   if (!trap_result->BooleanValue()) {
   4949     RETURN_FAILURE(isolate, should_throw,
   4950                    NewTypeError(MessageTemplate::kProxyTrapReturnedFalsishFor,
   4951                                 trap_name, name));
   4952   }
   4953 
   4954   // Enforce the invariant.
   4955   PropertyDescriptor target_desc;
   4956   Maybe<bool> owned =
   4957       JSReceiver::GetOwnPropertyDescriptor(isolate, target, name, &target_desc);
   4958   MAYBE_RETURN(owned, Nothing<bool>());
   4959   if (owned.FromJust()) {
   4960     bool inconsistent = PropertyDescriptor::IsDataDescriptor(&target_desc) &&
   4961                         !target_desc.configurable() &&
   4962                         !target_desc.writable() &&
   4963                         !value->SameValue(*target_desc.value());
   4964     if (inconsistent) {
   4965       isolate->Throw(*isolate->factory()->NewTypeError(
   4966           MessageTemplate::kProxySetFrozenData, name));
   4967       return Nothing<bool>();
   4968     }
   4969     inconsistent = PropertyDescriptor::IsAccessorDescriptor(&target_desc) &&
   4970                    !target_desc.configurable() &&
   4971                    target_desc.set()->IsUndefined();
   4972     if (inconsistent) {
   4973       isolate->Throw(*isolate->factory()->NewTypeError(
   4974           MessageTemplate::kProxySetFrozenAccessor, name));
   4975       return Nothing<bool>();
   4976     }
   4977   }
   4978   return Just(true);
   4979 }
   4980 
   4981 
   4982 Maybe<bool> JSProxy::DeletePropertyOrElement(Handle<JSProxy> proxy,
   4983                                              Handle<Name> name,
   4984                                              LanguageMode language_mode) {
   4985   DCHECK(!name->IsPrivate());
   4986   ShouldThrow should_throw =
   4987       is_sloppy(language_mode) ? DONT_THROW : THROW_ON_ERROR;
   4988   Isolate* isolate = proxy->GetIsolate();
   4989   STACK_CHECK(Nothing<bool>());
   4990   Factory* factory = isolate->factory();
   4991   Handle<String> trap_name = factory->deleteProperty_string();
   4992 
   4993   if (proxy->IsRevoked()) {
   4994     isolate->Throw(
   4995         *factory->NewTypeError(MessageTemplate::kProxyRevoked, trap_name));
   4996     return Nothing<bool>();
   4997   }
   4998   Handle<JSReceiver> target(proxy->target(), isolate);
   4999   Handle<JSReceiver> handler(JSReceiver::cast(proxy->handler()), isolate);
   5000 
   5001   Handle<Object> trap;
   5002   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   5003       isolate, trap, Object::GetMethod(handler, trap_name), Nothing<bool>());
   5004   if (trap->IsUndefined()) {
   5005     return JSReceiver::DeletePropertyOrElement(target, name, language_mode);
   5006   }
   5007 
   5008   Handle<Object> trap_result;
   5009   Handle<Object> args[] = {target, name};
   5010   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   5011       isolate, trap_result,
   5012       Execution::Call(isolate, trap, handler, arraysize(args), args),
   5013       Nothing<bool>());
   5014   if (!trap_result->BooleanValue()) {
   5015     RETURN_FAILURE(isolate, should_throw,
   5016                    NewTypeError(MessageTemplate::kProxyTrapReturnedFalsishFor,
   5017                                 trap_name, name));
   5018   }
   5019 
   5020   // Enforce the invariant.
   5021   PropertyDescriptor target_desc;
   5022   Maybe<bool> owned =
   5023       JSReceiver::GetOwnPropertyDescriptor(isolate, target, name, &target_desc);
   5024   MAYBE_RETURN(owned, Nothing<bool>());
   5025   if (owned.FromJust() && !target_desc.configurable()) {
   5026     isolate->Throw(*factory->NewTypeError(
   5027         MessageTemplate::kProxyDeletePropertyNonConfigurable, name));
   5028     return Nothing<bool>();
   5029   }
   5030   return Just(true);
   5031 }
   5032 
   5033 
   5034 // static
   5035 MaybeHandle<JSProxy> JSProxy::New(Isolate* isolate, Handle<Object> target,
   5036                                   Handle<Object> handler) {
   5037   if (!target->IsJSReceiver()) {
   5038     THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kProxyNonObject),
   5039                     JSProxy);
   5040   }
   5041   if (target->IsJSProxy() && JSProxy::cast(*target)->IsRevoked()) {
   5042     THROW_NEW_ERROR(isolate,
   5043                     NewTypeError(MessageTemplate::kProxyHandlerOrTargetRevoked),
   5044                     JSProxy);
   5045   }
   5046   if (!handler->IsJSReceiver()) {
   5047     THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kProxyNonObject),
   5048                     JSProxy);
   5049   }
   5050   if (handler->IsJSProxy() && JSProxy::cast(*handler)->IsRevoked()) {
   5051     THROW_NEW_ERROR(isolate,
   5052                     NewTypeError(MessageTemplate::kProxyHandlerOrTargetRevoked),
   5053                     JSProxy);
   5054   }
   5055   return isolate->factory()->NewJSProxy(Handle<JSReceiver>::cast(target),
   5056                                         Handle<JSReceiver>::cast(handler));
   5057 }
   5058 
   5059 
   5060 // static
   5061 MaybeHandle<Context> JSProxy::GetFunctionRealm(Handle<JSProxy> proxy) {
   5062   DCHECK(proxy->map()->is_constructor());
   5063   if (proxy->IsRevoked()) {
   5064     THROW_NEW_ERROR(proxy->GetIsolate(),
   5065                     NewTypeError(MessageTemplate::kProxyRevoked), Context);
   5066   }
   5067   Handle<JSReceiver> target(JSReceiver::cast(proxy->target()));
   5068   return JSReceiver::GetFunctionRealm(target);
   5069 }
   5070 
   5071 
   5072 // static
   5073 MaybeHandle<Context> JSBoundFunction::GetFunctionRealm(
   5074     Handle<JSBoundFunction> function) {
   5075   DCHECK(function->map()->is_constructor());
   5076   return JSReceiver::GetFunctionRealm(
   5077       handle(function->bound_target_function()));
   5078 }
   5079 
   5080 
   5081 // static
   5082 Handle<Context> JSFunction::GetFunctionRealm(Handle<JSFunction> function) {
   5083   DCHECK(function->map()->is_constructor());
   5084   return handle(function->context()->native_context());
   5085 }
   5086 
   5087 
   5088 // static
   5089 MaybeHandle<Context> JSObject::GetFunctionRealm(Handle<JSObject> object) {
   5090   DCHECK(object->map()->is_constructor());
   5091   DCHECK(!object->IsJSFunction());
   5092   return handle(object->GetCreationContext());
   5093 }
   5094 
   5095 
   5096 // static
   5097 MaybeHandle<Context> JSReceiver::GetFunctionRealm(Handle<JSReceiver> receiver) {
   5098   if (receiver->IsJSProxy()) {
   5099     return JSProxy::GetFunctionRealm(Handle<JSProxy>::cast(receiver));
   5100   }
   5101 
   5102   if (receiver->IsJSFunction()) {
   5103     return JSFunction::GetFunctionRealm(Handle<JSFunction>::cast(receiver));
   5104   }
   5105 
   5106   if (receiver->IsJSBoundFunction()) {
   5107     return JSBoundFunction::GetFunctionRealm(
   5108         Handle<JSBoundFunction>::cast(receiver));
   5109   }
   5110 
   5111   return JSObject::GetFunctionRealm(Handle<JSObject>::cast(receiver));
   5112 }
   5113 
   5114 
   5115 Maybe<PropertyAttributes> JSProxy::GetPropertyAttributes(LookupIterator* it) {
   5116   Isolate* isolate = it->isolate();
   5117   HandleScope scope(isolate);
   5118   PropertyDescriptor desc;
   5119   Maybe<bool> found = JSProxy::GetOwnPropertyDescriptor(
   5120       isolate, it->GetHolder<JSProxy>(), it->GetName(), &desc);
   5121   MAYBE_RETURN(found, Nothing<PropertyAttributes>());
   5122   if (!found.FromJust()) return Just(ABSENT);
   5123   return Just(desc.ToAttributes());
   5124 }
   5125 
   5126 
   5127 void JSObject::AllocateStorageForMap(Handle<JSObject> object, Handle<Map> map) {
   5128   DCHECK(object->map()->GetInObjectProperties() ==
   5129          map->GetInObjectProperties());
   5130   ElementsKind obj_kind = object->map()->elements_kind();
   5131   ElementsKind map_kind = map->elements_kind();
   5132   if (map_kind != obj_kind) {
   5133     ElementsKind to_kind = GetMoreGeneralElementsKind(map_kind, obj_kind);
   5134     if (IsDictionaryElementsKind(obj_kind)) {
   5135       to_kind = obj_kind;
   5136     }
   5137     if (IsDictionaryElementsKind(to_kind)) {
   5138       NormalizeElements(object);
   5139     } else {
   5140       TransitionElementsKind(object, to_kind);
   5141     }
   5142     map = Map::AsElementsKind(map, to_kind);
   5143   }
   5144   JSObject::MigrateToMap(object, map);
   5145 }
   5146 
   5147 
   5148 void JSObject::MigrateInstance(Handle<JSObject> object) {
   5149   Handle<Map> original_map(object->map());
   5150   Handle<Map> map = Map::Update(original_map);
   5151   map->set_migration_target(true);
   5152   MigrateToMap(object, map);
   5153   if (FLAG_trace_migration) {
   5154     object->PrintInstanceMigration(stdout, *original_map, *map);
   5155   }
   5156 #if VERIFY_HEAP
   5157   if (FLAG_verify_heap) {
   5158     object->JSObjectVerify();
   5159   }
   5160 #endif
   5161 }
   5162 
   5163 
   5164 // static
   5165 bool JSObject::TryMigrateInstance(Handle<JSObject> object) {
   5166   Isolate* isolate = object->GetIsolate();
   5167   DisallowDeoptimization no_deoptimization(isolate);
   5168   Handle<Map> original_map(object->map(), isolate);
   5169   Handle<Map> new_map;
   5170   if (!Map::TryUpdate(original_map).ToHandle(&new_map)) {
   5171     return false;
   5172   }
   5173   JSObject::MigrateToMap(object, new_map);
   5174   if (FLAG_trace_migration) {
   5175     object->PrintInstanceMigration(stdout, *original_map, object->map());
   5176   }
   5177 #if VERIFY_HEAP
   5178   if (FLAG_verify_heap) {
   5179     object->JSObjectVerify();
   5180   }
   5181 #endif
   5182   return true;
   5183 }
   5184 
   5185 
   5186 void JSObject::AddProperty(Handle<JSObject> object, Handle<Name> name,
   5187                            Handle<Object> value,
   5188                            PropertyAttributes attributes) {
   5189   LookupIterator it(object, name, LookupIterator::OWN_SKIP_INTERCEPTOR);
   5190   CHECK_NE(LookupIterator::ACCESS_CHECK, it.state());
   5191 #ifdef DEBUG
   5192   uint32_t index;
   5193   DCHECK(!object->IsJSProxy());
   5194   DCHECK(!name->AsArrayIndex(&index));
   5195   Maybe<PropertyAttributes> maybe = GetPropertyAttributes(&it);
   5196   DCHECK(maybe.IsJust());
   5197   DCHECK(!it.IsFound());
   5198   DCHECK(object->map()->is_extensible() ||
   5199          it.isolate()->IsInternallyUsedPropertyName(name));
   5200 #endif
   5201   CHECK(AddDataProperty(&it, value, attributes, THROW_ON_ERROR,
   5202                         CERTAINLY_NOT_STORE_FROM_KEYED)
   5203             .IsJust());
   5204 }
   5205 
   5206 
   5207 // static
   5208 void ExecutableAccessorInfo::ClearSetter(Handle<ExecutableAccessorInfo> info) {
   5209   Handle<Object> object = v8::FromCData(info->GetIsolate(), nullptr);
   5210   info->set_setter(*object);
   5211 }
   5212 
   5213 
   5214 // Reconfigures a property to a data property with attributes, even if it is not
   5215 // reconfigurable.
   5216 // Requires a LookupIterator that does not look at the prototype chain beyond
   5217 // hidden prototypes.
   5218 MaybeHandle<Object> JSObject::DefineOwnPropertyIgnoreAttributes(
   5219     LookupIterator* it, Handle<Object> value, PropertyAttributes attributes,
   5220     ExecutableAccessorInfoHandling handling) {
   5221   MAYBE_RETURN_NULL(DefineOwnPropertyIgnoreAttributes(
   5222       it, value, attributes, THROW_ON_ERROR, handling));
   5223   return value;
   5224 }
   5225 
   5226 
   5227 Maybe<bool> JSObject::DefineOwnPropertyIgnoreAttributes(
   5228     LookupIterator* it, Handle<Object> value, PropertyAttributes attributes,
   5229     ShouldThrow should_throw, ExecutableAccessorInfoHandling handling) {
   5230   Handle<JSObject> object = Handle<JSObject>::cast(it->GetReceiver());
   5231   bool is_observed = object->map()->is_observed() &&
   5232                      (it->IsElement() ||
   5233                       !it->isolate()->IsInternallyUsedPropertyName(it->name()));
   5234 
   5235   for (; it->IsFound(); it->Next()) {
   5236     switch (it->state()) {
   5237       case LookupIterator::JSPROXY:
   5238       case LookupIterator::NOT_FOUND:
   5239       case LookupIterator::TRANSITION:
   5240         UNREACHABLE();
   5241 
   5242       case LookupIterator::ACCESS_CHECK:
   5243         if (!it->HasAccess()) {
   5244           it->isolate()->ReportFailedAccessCheck(it->GetHolder<JSObject>());
   5245           RETURN_VALUE_IF_SCHEDULED_EXCEPTION(it->isolate(), Nothing<bool>());
   5246           return Just(true);
   5247         }
   5248         break;
   5249 
   5250       // If there's an interceptor, try to store the property with the
   5251       // interceptor.
   5252       // In case of success, the attributes will have been reset to the default
   5253       // attributes of the interceptor, rather than the incoming attributes.
   5254       //
   5255       // TODO(verwaest): JSProxy afterwards verify the attributes that the
   5256       // JSProxy claims it has, and verifies that they are compatible. If not,
   5257       // they throw. Here we should do the same.
   5258       case LookupIterator::INTERCEPTOR:
   5259         if (handling == DONT_FORCE_FIELD) {
   5260           Maybe<bool> result = JSObject::SetPropertyWithInterceptor(it, value);
   5261           if (result.IsNothing() || result.FromJust()) return result;
   5262         }
   5263         break;
   5264 
   5265       case LookupIterator::ACCESSOR: {
   5266         Handle<Object> accessors = it->GetAccessors();
   5267 
   5268         // Special handling for ExecutableAccessorInfo, which behaves like a
   5269         // data property.
   5270         if (accessors->IsExecutableAccessorInfo() &&
   5271             handling == DONT_FORCE_FIELD) {
   5272           PropertyDetails details = it->property_details();
   5273           // Ensure the context isn't changed after calling into accessors.
   5274           AssertNoContextChange ncc(it->isolate());
   5275 
   5276           Maybe<bool> result =
   5277               JSObject::SetPropertyWithAccessor(it, value, should_throw);
   5278           if (result.IsNothing() || !result.FromJust()) return result;
   5279 
   5280           if (details.attributes() == attributes) return Just(true);
   5281 
   5282           // Reconfigure the accessor if attributes mismatch.
   5283           Handle<ExecutableAccessorInfo> new_data = Accessors::CloneAccessor(
   5284               it->isolate(), Handle<ExecutableAccessorInfo>::cast(accessors));
   5285           new_data->set_property_attributes(attributes);
   5286           // By clearing the setter we don't have to introduce a lookup to
   5287           // the setter, simply make it unavailable to reflect the
   5288           // attributes.
   5289           if (attributes & READ_ONLY) {
   5290             ExecutableAccessorInfo::ClearSetter(new_data);
   5291           }
   5292 
   5293           it->TransitionToAccessorPair(new_data, attributes);
   5294         } else {
   5295           it->ReconfigureDataProperty(value, attributes);
   5296         }
   5297 
   5298         if (is_observed) {
   5299           RETURN_ON_EXCEPTION_VALUE(
   5300               it->isolate(),
   5301               EnqueueChangeRecord(object, "reconfigure", it->GetName(),
   5302                                   it->factory()->the_hole_value()),
   5303               Nothing<bool>());
   5304         }
   5305 
   5306         return Just(true);
   5307       }
   5308       case LookupIterator::INTEGER_INDEXED_EXOTIC:
   5309         return RedefineIncompatibleProperty(it->isolate(), it->GetName(), value,
   5310                                             should_throw);
   5311 
   5312       case LookupIterator::DATA: {
   5313         PropertyDetails details = it->property_details();
   5314         Handle<Object> old_value = it->factory()->the_hole_value();
   5315         // Regular property update if the attributes match.
   5316         if (details.attributes() == attributes) {
   5317           return SetDataProperty(it, value);
   5318         }
   5319 
   5320         // Special case: properties of typed arrays cannot be reconfigured to
   5321         // non-writable nor to non-enumerable.
   5322         if (it->IsElement() && object->HasFixedTypedArrayElements()) {
   5323           return RedefineIncompatibleProperty(it->isolate(), it->GetName(),
   5324                                               value, should_throw);
   5325         }
   5326 
   5327         // Reconfigure the data property if the attributes mismatch.
   5328         if (is_observed) old_value = it->GetDataValue();
   5329 
   5330         it->ReconfigureDataProperty(value, attributes);
   5331 
   5332         if (is_observed) {
   5333           if (old_value->SameValue(*value)) {
   5334             old_value = it->factory()->the_hole_value();
   5335           }
   5336           RETURN_ON_EXCEPTION_VALUE(
   5337               it->isolate(), EnqueueChangeRecord(object, "reconfigure",
   5338                                                  it->GetName(), old_value),
   5339               Nothing<bool>());
   5340         }
   5341         return Just(true);
   5342       }
   5343     }
   5344   }
   5345 
   5346   return AddDataProperty(it, value, attributes, should_throw,
   5347                          CERTAINLY_NOT_STORE_FROM_KEYED);
   5348 }
   5349 
   5350 
   5351 MaybeHandle<Object> JSObject::SetOwnPropertyIgnoreAttributes(
   5352     Handle<JSObject> object, Handle<Name> name, Handle<Object> value,
   5353     PropertyAttributes attributes, ExecutableAccessorInfoHandling handling) {
   5354   DCHECK(!value->IsTheHole());
   5355   LookupIterator it(object, name, LookupIterator::OWN);
   5356   return DefineOwnPropertyIgnoreAttributes(&it, value, attributes, handling);
   5357 }
   5358 
   5359 
   5360 MaybeHandle<Object> JSObject::SetOwnElementIgnoreAttributes(
   5361     Handle<JSObject> object, uint32_t index, Handle<Object> value,
   5362     PropertyAttributes attributes, ExecutableAccessorInfoHandling handling) {
   5363   Isolate* isolate = object->GetIsolate();
   5364   LookupIterator it(isolate, object, index, LookupIterator::OWN);
   5365   return DefineOwnPropertyIgnoreAttributes(&it, value, attributes, handling);
   5366 }
   5367 
   5368 
   5369 MaybeHandle<Object> JSObject::DefinePropertyOrElementIgnoreAttributes(
   5370     Handle<JSObject> object, Handle<Name> name, Handle<Object> value,
   5371     PropertyAttributes attributes, ExecutableAccessorInfoHandling handling) {
   5372   Isolate* isolate = object->GetIsolate();
   5373   LookupIterator it = LookupIterator::PropertyOrElement(isolate, object, name,
   5374                                                         LookupIterator::OWN);
   5375   return DefineOwnPropertyIgnoreAttributes(&it, value, attributes, handling);
   5376 }
   5377 
   5378 
   5379 Maybe<PropertyAttributes> JSObject::GetPropertyAttributesWithInterceptor(
   5380     LookupIterator* it) {
   5381   Isolate* isolate = it->isolate();
   5382   // Make sure that the top context does not change when doing
   5383   // callbacks or interceptor calls.
   5384   AssertNoContextChange ncc(isolate);
   5385   HandleScope scope(isolate);
   5386 
   5387   Handle<JSObject> holder = it->GetHolder<JSObject>();
   5388   Handle<InterceptorInfo> interceptor(it->GetInterceptor());
   5389   if (!it->IsElement() && it->name()->IsSymbol() &&
   5390       !interceptor->can_intercept_symbols()) {
   5391     return Just(ABSENT);
   5392   }
   5393   PropertyCallbackArguments args(isolate, interceptor->data(),
   5394                                  *it->GetReceiver(), *holder);
   5395   if (!interceptor->query()->IsUndefined()) {
   5396     v8::Local<v8::Integer> result;
   5397     if (it->IsElement()) {
   5398       uint32_t index = it->index();
   5399       v8::IndexedPropertyQueryCallback query =
   5400           v8::ToCData<v8::IndexedPropertyQueryCallback>(interceptor->query());
   5401       LOG(isolate,
   5402           ApiIndexedPropertyAccess("interceptor-indexed-has", *holder, index));
   5403       result = args.Call(query, index);
   5404     } else {
   5405       Handle<Name> name = it->name();
   5406       DCHECK(!name->IsPrivate());
   5407       v8::GenericNamedPropertyQueryCallback query =
   5408           v8::ToCData<v8::GenericNamedPropertyQueryCallback>(
   5409               interceptor->query());
   5410       LOG(isolate,
   5411           ApiNamedPropertyAccess("interceptor-named-has", *holder, *name));
   5412       result = args.Call(query, v8::Utils::ToLocal(name));
   5413     }
   5414     if (!result.IsEmpty()) {
   5415       DCHECK(result->IsInt32());
   5416       return Just(static_cast<PropertyAttributes>(
   5417           result->Int32Value(reinterpret_cast<v8::Isolate*>(isolate)
   5418                                  ->GetCurrentContext()).FromJust()));
   5419     }
   5420   } else if (!interceptor->getter()->IsUndefined()) {
   5421     // TODO(verwaest): Use GetPropertyWithInterceptor?
   5422     v8::Local<v8::Value> result;
   5423     if (it->IsElement()) {
   5424       uint32_t index = it->index();
   5425       v8::IndexedPropertyGetterCallback getter =
   5426           v8::ToCData<v8::IndexedPropertyGetterCallback>(interceptor->getter());
   5427       LOG(isolate, ApiIndexedPropertyAccess("interceptor-indexed-get-has",
   5428                                             *holder, index));
   5429       result = args.Call(getter, index);
   5430     } else {
   5431       Handle<Name> name = it->name();
   5432       DCHECK(!name->IsPrivate());
   5433       v8::GenericNamedPropertyGetterCallback getter =
   5434           v8::ToCData<v8::GenericNamedPropertyGetterCallback>(
   5435               interceptor->getter());
   5436       LOG(isolate,
   5437           ApiNamedPropertyAccess("interceptor-named-get-has", *holder, *name));
   5438       result = args.Call(getter, v8::Utils::ToLocal(name));
   5439     }
   5440     if (!result.IsEmpty()) return Just(DONT_ENUM);
   5441   }
   5442 
   5443   RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<PropertyAttributes>());
   5444   return Just(ABSENT);
   5445 }
   5446 
   5447 
   5448 Maybe<PropertyAttributes> JSReceiver::GetPropertyAttributes(
   5449     LookupIterator* it) {
   5450   for (; it->IsFound(); it->Next()) {
   5451     switch (it->state()) {
   5452       case LookupIterator::NOT_FOUND:
   5453       case LookupIterator::TRANSITION:
   5454         UNREACHABLE();
   5455       case LookupIterator::JSPROXY:
   5456         return JSProxy::GetPropertyAttributes(it);
   5457       case LookupIterator::INTERCEPTOR: {
   5458         Maybe<PropertyAttributes> result =
   5459             JSObject::GetPropertyAttributesWithInterceptor(it);
   5460         if (!result.IsJust()) return result;
   5461         if (result.FromJust() != ABSENT) return result;
   5462         break;
   5463       }
   5464       case LookupIterator::ACCESS_CHECK:
   5465         if (it->HasAccess()) break;
   5466         return JSObject::GetPropertyAttributesWithFailedAccessCheck(it);
   5467       case LookupIterator::INTEGER_INDEXED_EXOTIC:
   5468         return Just(ABSENT);
   5469       case LookupIterator::ACCESSOR:
   5470       case LookupIterator::DATA:
   5471         return Just(it->property_details().attributes());
   5472     }
   5473   }
   5474   return Just(ABSENT);
   5475 }
   5476 
   5477 
   5478 Handle<NormalizedMapCache> NormalizedMapCache::New(Isolate* isolate) {
   5479   Handle<FixedArray> array(
   5480       isolate->factory()->NewFixedArray(kEntries, TENURED));
   5481   return Handle<NormalizedMapCache>::cast(array);
   5482 }
   5483 
   5484 
   5485 MaybeHandle<Map> NormalizedMapCache::Get(Handle<Map> fast_map,
   5486                                          PropertyNormalizationMode mode) {
   5487   DisallowHeapAllocation no_gc;
   5488   Object* value = FixedArray::get(GetIndex(fast_map));
   5489   if (!value->IsMap() ||
   5490       !Map::cast(value)->EquivalentToForNormalization(*fast_map, mode)) {
   5491     return MaybeHandle<Map>();
   5492   }
   5493   return handle(Map::cast(value));
   5494 }
   5495 
   5496 
   5497 void NormalizedMapCache::Set(Handle<Map> fast_map,
   5498                              Handle<Map> normalized_map) {
   5499   DisallowHeapAllocation no_gc;
   5500   DCHECK(normalized_map->is_dictionary_map());
   5501   FixedArray::set(GetIndex(fast_map), *normalized_map);
   5502 }
   5503 
   5504 
   5505 void NormalizedMapCache::Clear() {
   5506   int entries = length();
   5507   for (int i = 0; i != entries; i++) {
   5508     set_undefined(i);
   5509   }
   5510 }
   5511 
   5512 
   5513 void HeapObject::UpdateMapCodeCache(Handle<HeapObject> object,
   5514                                     Handle<Name> name,
   5515                                     Handle<Code> code) {
   5516   Handle<Map> map(object->map());
   5517   Map::UpdateCodeCache(map, name, code);
   5518 }
   5519 
   5520 
   5521 void JSObject::NormalizeProperties(Handle<JSObject> object,
   5522                                    PropertyNormalizationMode mode,
   5523                                    int expected_additional_properties,
   5524                                    const char* reason) {
   5525   if (!object->HasFastProperties()) return;
   5526 
   5527   Handle<Map> map(object->map());
   5528   Handle<Map> new_map = Map::Normalize(map, mode, reason);
   5529 
   5530   MigrateToMap(object, new_map, expected_additional_properties);
   5531 }
   5532 
   5533 
   5534 void JSObject::MigrateFastToSlow(Handle<JSObject> object,
   5535                                  Handle<Map> new_map,
   5536                                  int expected_additional_properties) {
   5537   // The global object is always normalized.
   5538   DCHECK(!object->IsJSGlobalObject());
   5539   // JSGlobalProxy must never be normalized
   5540   DCHECK(!object->IsJSGlobalProxy());
   5541 
   5542   Isolate* isolate = object->GetIsolate();
   5543   HandleScope scope(isolate);
   5544   Handle<Map> map(object->map());
   5545 
   5546   // Allocate new content.
   5547   int real_size = map->NumberOfOwnDescriptors();
   5548   int property_count = real_size;
   5549   if (expected_additional_properties > 0) {
   5550     property_count += expected_additional_properties;
   5551   } else {
   5552     property_count += 2;  // Make space for two more properties.
   5553   }
   5554   Handle<NameDictionary> dictionary =
   5555       NameDictionary::New(isolate, property_count);
   5556 
   5557   Handle<DescriptorArray> descs(map->instance_descriptors());
   5558   for (int i = 0; i < real_size; i++) {
   5559     PropertyDetails details = descs->GetDetails(i);
   5560     Handle<Name> key(descs->GetKey(i));
   5561     switch (details.type()) {
   5562       case DATA_CONSTANT: {
   5563         Handle<Object> value(descs->GetConstant(i), isolate);
   5564         PropertyDetails d(details.attributes(), DATA, i + 1,
   5565                           PropertyCellType::kNoCell);
   5566         dictionary = NameDictionary::Add(dictionary, key, value, d);
   5567         break;
   5568       }
   5569       case DATA: {
   5570         FieldIndex index = FieldIndex::ForDescriptor(*map, i);
   5571         Handle<Object> value;
   5572         if (object->IsUnboxedDoubleField(index)) {
   5573           double old_value = object->RawFastDoublePropertyAt(index);
   5574           value = isolate->factory()->NewHeapNumber(old_value);
   5575         } else {
   5576           value = handle(object->RawFastPropertyAt(index), isolate);
   5577           if (details.representation().IsDouble()) {
   5578             DCHECK(value->IsMutableHeapNumber());
   5579             Handle<HeapNumber> old = Handle<HeapNumber>::cast(value);
   5580             value = isolate->factory()->NewHeapNumber(old->value());
   5581           }
   5582         }
   5583         PropertyDetails d(details.attributes(), DATA, i + 1,
   5584                           PropertyCellType::kNoCell);
   5585         dictionary = NameDictionary::Add(dictionary, key, value, d);
   5586         break;
   5587       }
   5588       case ACCESSOR: {
   5589         FieldIndex index = FieldIndex::ForDescriptor(*map, i);
   5590         Handle<Object> value(object->RawFastPropertyAt(index), isolate);
   5591         PropertyDetails d(details.attributes(), ACCESSOR_CONSTANT, i + 1,
   5592                           PropertyCellType::kNoCell);
   5593         dictionary = NameDictionary::Add(dictionary, key, value, d);
   5594         break;
   5595       }
   5596       case ACCESSOR_CONSTANT: {
   5597         Handle<Object> value(descs->GetCallbacksObject(i), isolate);
   5598         PropertyDetails d(details.attributes(), ACCESSOR_CONSTANT, i + 1,
   5599                           PropertyCellType::kNoCell);
   5600         dictionary = NameDictionary::Add(dictionary, key, value, d);
   5601         break;
   5602       }
   5603     }
   5604   }
   5605 
   5606   // Copy the next enumeration index from instance descriptor.
   5607   dictionary->SetNextEnumerationIndex(real_size + 1);
   5608 
   5609   // From here on we cannot fail and we shouldn't GC anymore.
   5610   DisallowHeapAllocation no_allocation;
   5611 
   5612   // Resize the object in the heap if necessary.
   5613   int new_instance_size = new_map->instance_size();
   5614   int instance_size_delta = map->instance_size() - new_instance_size;
   5615   DCHECK(instance_size_delta >= 0);
   5616 
   5617   if (instance_size_delta > 0) {
   5618     Heap* heap = isolate->heap();
   5619     heap->CreateFillerObjectAt(object->address() + new_instance_size,
   5620                                instance_size_delta);
   5621     heap->AdjustLiveBytes(*object, -instance_size_delta,
   5622                           Heap::CONCURRENT_TO_SWEEPER);
   5623   }
   5624 
   5625   // We are storing the new map using release store after creating a filler for
   5626   // the left-over space to avoid races with the sweeper thread.
   5627   object->synchronized_set_map(*new_map);
   5628 
   5629   object->set_properties(*dictionary);
   5630 
   5631   // Ensure that in-object space of slow-mode object does not contain random
   5632   // garbage.
   5633   int inobject_properties = new_map->GetInObjectProperties();
   5634   for (int i = 0; i < inobject_properties; i++) {
   5635     FieldIndex index = FieldIndex::ForPropertyIndex(*new_map, i);
   5636     object->RawFastPropertyAtPut(index, Smi::FromInt(0));
   5637   }
   5638 
   5639   isolate->counters()->props_to_dictionary()->Increment();
   5640 
   5641 #ifdef DEBUG
   5642   if (FLAG_trace_normalization) {
   5643     OFStream os(stdout);
   5644     os << "Object properties have been normalized:\n";
   5645     object->Print(os);
   5646   }
   5647 #endif
   5648 }
   5649 
   5650 
   5651 void JSObject::MigrateSlowToFast(Handle<JSObject> object,
   5652                                  int unused_property_fields,
   5653                                  const char* reason) {
   5654   if (object->HasFastProperties()) return;
   5655   DCHECK(!object->IsJSGlobalObject());
   5656   Isolate* isolate = object->GetIsolate();
   5657   Factory* factory = isolate->factory();
   5658   Handle<NameDictionary> dictionary(object->property_dictionary());
   5659 
   5660   // Make sure we preserve dictionary representation if there are too many
   5661   // descriptors.
   5662   int number_of_elements = dictionary->NumberOfElements();
   5663   if (number_of_elements > kMaxNumberOfDescriptors) return;
   5664 
   5665   Handle<FixedArray> iteration_order;
   5666   if (number_of_elements != dictionary->NextEnumerationIndex()) {
   5667     iteration_order =
   5668         NameDictionary::DoGenerateNewEnumerationIndices(dictionary);
   5669   } else {
   5670     iteration_order = NameDictionary::BuildIterationIndicesArray(dictionary);
   5671   }
   5672 
   5673   int instance_descriptor_length = iteration_order->length();
   5674   int number_of_fields = 0;
   5675 
   5676   // Compute the length of the instance descriptor.
   5677   for (int i = 0; i < instance_descriptor_length; i++) {
   5678     int index = Smi::cast(iteration_order->get(i))->value();
   5679     DCHECK(dictionary->IsKey(dictionary->KeyAt(index)));
   5680 
   5681     Object* value = dictionary->ValueAt(index);
   5682     PropertyType type = dictionary->DetailsAt(index).type();
   5683     if (type == DATA && !value->IsJSFunction()) {
   5684       number_of_fields += 1;
   5685     }
   5686   }
   5687 
   5688   Handle<Map> old_map(object->map(), isolate);
   5689 
   5690   int inobject_props = old_map->GetInObjectProperties();
   5691 
   5692   // Allocate new map.
   5693   Handle<Map> new_map = Map::CopyDropDescriptors(old_map);
   5694   new_map->set_dictionary_map(false);
   5695 
   5696   UpdatePrototypeUserRegistration(old_map, new_map, isolate);
   5697 
   5698 #if TRACE_MAPS
   5699   if (FLAG_trace_maps) {
   5700     PrintF("[TraceMaps: SlowToFast from= %p to= %p reason= %s ]\n",
   5701            reinterpret_cast<void*>(*old_map), reinterpret_cast<void*>(*new_map),
   5702            reason);
   5703   }
   5704 #endif
   5705 
   5706   if (instance_descriptor_length == 0) {
   5707     DisallowHeapAllocation no_gc;
   5708     DCHECK_LE(unused_property_fields, inobject_props);
   5709     // Transform the object.
   5710     new_map->set_unused_property_fields(inobject_props);
   5711     object->synchronized_set_map(*new_map);
   5712     object->set_properties(isolate->heap()->empty_fixed_array());
   5713     // Check that it really works.
   5714     DCHECK(object->HasFastProperties());
   5715     return;
   5716   }
   5717 
   5718   // Allocate the instance descriptor.
   5719   Handle<DescriptorArray> descriptors = DescriptorArray::Allocate(
   5720       isolate, instance_descriptor_length);
   5721 
   5722   int number_of_allocated_fields =
   5723       number_of_fields + unused_property_fields - inobject_props;
   5724   if (number_of_allocated_fields < 0) {
   5725     // There is enough inobject space for all fields (including unused).
   5726     number_of_allocated_fields = 0;
   5727     unused_property_fields = inobject_props - number_of_fields;
   5728   }
   5729 
   5730   // Allocate the fixed array for the fields.
   5731   Handle<FixedArray> fields = factory->NewFixedArray(
   5732       number_of_allocated_fields);
   5733 
   5734   // Fill in the instance descriptor and the fields.
   5735   int current_offset = 0;
   5736   for (int i = 0; i < instance_descriptor_length; i++) {
   5737     int index = Smi::cast(iteration_order->get(i))->value();
   5738     Object* k = dictionary->KeyAt(index);
   5739     DCHECK(dictionary->IsKey(k));
   5740     // Dictionary keys are internalized upon insertion.
   5741     // TODO(jkummerow): Turn this into a DCHECK if it's not hit in the wild.
   5742     CHECK(k->IsUniqueName());
   5743     Handle<Name> key(Name::cast(k), isolate);
   5744 
   5745     Object* value = dictionary->ValueAt(index);
   5746 
   5747     PropertyDetails details = dictionary->DetailsAt(index);
   5748     int enumeration_index = details.dictionary_index();
   5749     PropertyType type = details.type();
   5750 
   5751     if (value->IsJSFunction()) {
   5752       DataConstantDescriptor d(key, handle(value, isolate),
   5753                                details.attributes());
   5754       descriptors->Set(enumeration_index - 1, &d);
   5755     } else if (type == DATA) {
   5756       if (current_offset < inobject_props) {
   5757         object->InObjectPropertyAtPut(current_offset, value,
   5758                                       UPDATE_WRITE_BARRIER);
   5759       } else {
   5760         int offset = current_offset - inobject_props;
   5761         fields->set(offset, value);
   5762       }
   5763       DataDescriptor d(key, current_offset, details.attributes(),
   5764                        // TODO(verwaest): value->OptimalRepresentation();
   5765                        Representation::Tagged());
   5766       current_offset += d.GetDetails().field_width_in_words();
   5767       descriptors->Set(enumeration_index - 1, &d);
   5768     } else if (type == ACCESSOR_CONSTANT) {
   5769       AccessorConstantDescriptor d(key, handle(value, isolate),
   5770                                    details.attributes());
   5771       descriptors->Set(enumeration_index - 1, &d);
   5772     } else {
   5773       UNREACHABLE();
   5774     }
   5775   }
   5776   DCHECK(current_offset == number_of_fields);
   5777 
   5778   descriptors->Sort();
   5779 
   5780   Handle<LayoutDescriptor> layout_descriptor = LayoutDescriptor::New(
   5781       new_map, descriptors, descriptors->number_of_descriptors());
   5782 
   5783   DisallowHeapAllocation no_gc;
   5784   new_map->InitializeDescriptors(*descriptors, *layout_descriptor);
   5785   new_map->set_unused_property_fields(unused_property_fields);
   5786 
   5787   // Transform the object.
   5788   object->synchronized_set_map(*new_map);
   5789 
   5790   object->set_properties(*fields);
   5791   DCHECK(object->IsJSObject());
   5792 
   5793   // Check that it really works.
   5794   DCHECK(object->HasFastProperties());
   5795 }
   5796 
   5797 
   5798 void JSObject::ResetElements(Handle<JSObject> object) {
   5799   Isolate* isolate = object->GetIsolate();
   5800   CHECK(object->map() != isolate->heap()->sloppy_arguments_elements_map());
   5801   if (object->map()->has_dictionary_elements()) {
   5802     Handle<SeededNumberDictionary> new_elements =
   5803         SeededNumberDictionary::New(isolate, 0);
   5804     object->set_elements(*new_elements);
   5805   } else {
   5806     object->set_elements(object->map()->GetInitialElements());
   5807   }
   5808 }
   5809 
   5810 
   5811 static Handle<SeededNumberDictionary> CopyFastElementsToDictionary(
   5812     Handle<FixedArrayBase> array, int length,
   5813     Handle<SeededNumberDictionary> dictionary, bool used_as_prototype) {
   5814   Isolate* isolate = array->GetIsolate();
   5815   Factory* factory = isolate->factory();
   5816   bool has_double_elements = array->IsFixedDoubleArray();
   5817   for (int i = 0; i < length; i++) {
   5818     Handle<Object> value;
   5819     if (has_double_elements) {
   5820       Handle<FixedDoubleArray> double_array =
   5821           Handle<FixedDoubleArray>::cast(array);
   5822       if (double_array->is_the_hole(i)) {
   5823         value = factory->the_hole_value();
   5824       } else {
   5825         value = factory->NewHeapNumber(double_array->get_scalar(i));
   5826       }
   5827     } else {
   5828       value = handle(Handle<FixedArray>::cast(array)->get(i), isolate);
   5829     }
   5830     if (!value->IsTheHole()) {
   5831       PropertyDetails details = PropertyDetails::Empty();
   5832       dictionary = SeededNumberDictionary::AddNumberEntry(
   5833           dictionary, i, value, details, used_as_prototype);
   5834     }
   5835   }
   5836   return dictionary;
   5837 }
   5838 
   5839 
   5840 void JSObject::RequireSlowElements(SeededNumberDictionary* dictionary) {
   5841   if (dictionary->requires_slow_elements()) return;
   5842   dictionary->set_requires_slow_elements();
   5843   // TODO(verwaest): Remove this hack.
   5844   if (map()->is_prototype_map()) {
   5845     TypeFeedbackVector::ClearAllKeyedStoreICs(GetIsolate());
   5846   }
   5847 }
   5848 
   5849 
   5850 Handle<SeededNumberDictionary> JSObject::GetNormalizedElementDictionary(
   5851     Handle<JSObject> object, Handle<FixedArrayBase> elements) {
   5852   DCHECK(!object->HasDictionaryElements());
   5853   DCHECK(!object->HasSlowArgumentsElements());
   5854   Isolate* isolate = object->GetIsolate();
   5855   // Ensure that notifications fire if the array or object prototypes are
   5856   // normalizing.
   5857   isolate->UpdateArrayProtectorOnNormalizeElements(object);
   5858   int length = object->IsJSArray()
   5859                    ? Smi::cast(Handle<JSArray>::cast(object)->length())->value()
   5860                    : elements->length();
   5861   int used = object->GetFastElementsUsage();
   5862   Handle<SeededNumberDictionary> dictionary =
   5863       SeededNumberDictionary::New(isolate, used);
   5864   return CopyFastElementsToDictionary(elements, length, dictionary,
   5865                                       object->map()->is_prototype_map());
   5866 }
   5867 
   5868 
   5869 Handle<SeededNumberDictionary> JSObject::NormalizeElements(
   5870     Handle<JSObject> object) {
   5871   DCHECK(!object->HasFixedTypedArrayElements());
   5872   Isolate* isolate = object->GetIsolate();
   5873 
   5874   // Find the backing store.
   5875   Handle<FixedArrayBase> elements(object->elements(), isolate);
   5876   bool is_arguments = object->HasSloppyArgumentsElements();
   5877   if (is_arguments) {
   5878     FixedArray* parameter_map = FixedArray::cast(*elements);
   5879     elements = handle(FixedArrayBase::cast(parameter_map->get(1)), isolate);
   5880   }
   5881 
   5882   if (elements->IsDictionary()) {
   5883     return Handle<SeededNumberDictionary>::cast(elements);
   5884   }
   5885 
   5886   DCHECK(object->HasFastSmiOrObjectElements() ||
   5887          object->HasFastDoubleElements() ||
   5888          object->HasFastArgumentsElements());
   5889 
   5890   Handle<SeededNumberDictionary> dictionary =
   5891       GetNormalizedElementDictionary(object, elements);
   5892 
   5893   // Switch to using the dictionary as the backing storage for elements.
   5894   ElementsKind target_kind =
   5895       is_arguments ? SLOW_SLOPPY_ARGUMENTS_ELEMENTS : DICTIONARY_ELEMENTS;
   5896   Handle<Map> new_map = JSObject::GetElementsTransitionMap(object, target_kind);
   5897   // Set the new map first to satify the elements type assert in set_elements().
   5898   JSObject::MigrateToMap(object, new_map);
   5899 
   5900   if (is_arguments) {
   5901     FixedArray::cast(object->elements())->set(1, *dictionary);
   5902   } else {
   5903     object->set_elements(*dictionary);
   5904   }
   5905 
   5906   isolate->counters()->elements_to_dictionary()->Increment();
   5907 
   5908 #ifdef DEBUG
   5909   if (FLAG_trace_normalization) {
   5910     OFStream os(stdout);
   5911     os << "Object elements have been normalized:\n";
   5912     object->Print(os);
   5913   }
   5914 #endif
   5915 
   5916   DCHECK(object->HasDictionaryElements() || object->HasSlowArgumentsElements());
   5917   return dictionary;
   5918 }
   5919 
   5920 
   5921 static Smi* GenerateIdentityHash(Isolate* isolate) {
   5922   int hash_value;
   5923   int attempts = 0;
   5924   do {
   5925     // Generate a random 32-bit hash value but limit range to fit
   5926     // within a smi.
   5927     hash_value = isolate->random_number_generator()->NextInt() & Smi::kMaxValue;
   5928     attempts++;
   5929   } while (hash_value == 0 && attempts < 30);
   5930   hash_value = hash_value != 0 ? hash_value : 1;  // never return 0
   5931 
   5932   return Smi::FromInt(hash_value);
   5933 }
   5934 
   5935 
   5936 void JSObject::SetIdentityHash(Handle<JSObject> object, Handle<Smi> hash) {
   5937   DCHECK(!object->IsJSGlobalProxy());
   5938   Isolate* isolate = object->GetIsolate();
   5939   Handle<Name> hash_code_symbol(isolate->heap()->hash_code_symbol());
   5940   JSObject::AddProperty(object, hash_code_symbol, hash, NONE);
   5941 }
   5942 
   5943 
   5944 template<typename ProxyType>
   5945 static Handle<Smi> GetOrCreateIdentityHashHelper(Handle<ProxyType> proxy) {
   5946   Isolate* isolate = proxy->GetIsolate();
   5947 
   5948   Handle<Object> maybe_hash(proxy->hash(), isolate);
   5949   if (maybe_hash->IsSmi()) return Handle<Smi>::cast(maybe_hash);
   5950 
   5951   Handle<Smi> hash(GenerateIdentityHash(isolate), isolate);
   5952   proxy->set_hash(*hash);
   5953   return hash;
   5954 }
   5955 
   5956 
   5957 Object* JSObject::GetIdentityHash() {
   5958   DisallowHeapAllocation no_gc;
   5959   Isolate* isolate = GetIsolate();
   5960   if (IsJSGlobalProxy()) {
   5961     return JSGlobalProxy::cast(this)->hash();
   5962   }
   5963   Handle<Name> hash_code_symbol(isolate->heap()->hash_code_symbol());
   5964   Handle<Object> stored_value =
   5965       Object::GetPropertyOrElement(Handle<Object>(this, isolate),
   5966                                    hash_code_symbol).ToHandleChecked();
   5967   return stored_value->IsSmi() ? *stored_value
   5968                                : isolate->heap()->undefined_value();
   5969 }
   5970 
   5971 
   5972 Handle<Smi> JSObject::GetOrCreateIdentityHash(Handle<JSObject> object) {
   5973   if (object->IsJSGlobalProxy()) {
   5974     return GetOrCreateIdentityHashHelper(Handle<JSGlobalProxy>::cast(object));
   5975   }
   5976   Isolate* isolate = object->GetIsolate();
   5977 
   5978   Handle<Object> maybe_hash(object->GetIdentityHash(), isolate);
   5979   if (maybe_hash->IsSmi()) return Handle<Smi>::cast(maybe_hash);
   5980 
   5981   Handle<Smi> hash(GenerateIdentityHash(isolate), isolate);
   5982   Handle<Name> hash_code_symbol(isolate->heap()->hash_code_symbol());
   5983   JSObject::AddProperty(object, hash_code_symbol, hash, NONE);
   5984   return hash;
   5985 }
   5986 
   5987 
   5988 Object* JSProxy::GetIdentityHash() {
   5989   return this->hash();
   5990 }
   5991 
   5992 
   5993 Handle<Smi> JSProxy::GetOrCreateIdentityHash(Handle<JSProxy> proxy) {
   5994   return GetOrCreateIdentityHashHelper(proxy);
   5995 }
   5996 
   5997 
   5998 Object* JSObject::GetHiddenProperty(Handle<Name> key) {
   5999   DisallowHeapAllocation no_gc;
   6000   DCHECK(key->IsUniqueName());
   6001   if (IsJSGlobalProxy()) {
   6002     // For a proxy, use the prototype as target object.
   6003     PrototypeIterator iter(GetIsolate(), this);
   6004     // If the proxy is detached, return undefined.
   6005     if (iter.IsAtEnd()) return GetHeap()->the_hole_value();
   6006     DCHECK(iter.GetCurrent()->IsJSGlobalObject());
   6007     return iter.GetCurrent<JSObject>()->GetHiddenProperty(key);
   6008   }
   6009   DCHECK(!IsJSGlobalProxy());
   6010   Object* inline_value = GetHiddenPropertiesHashTable();
   6011 
   6012   if (inline_value->IsUndefined()) return GetHeap()->the_hole_value();
   6013 
   6014   ObjectHashTable* hashtable = ObjectHashTable::cast(inline_value);
   6015   Object* entry = hashtable->Lookup(key);
   6016   return entry;
   6017 }
   6018 
   6019 
   6020 Handle<Object> JSObject::SetHiddenProperty(Handle<JSObject> object,
   6021                                            Handle<Name> key,
   6022                                            Handle<Object> value) {
   6023   Isolate* isolate = object->GetIsolate();
   6024 
   6025   DCHECK(key->IsUniqueName());
   6026   if (object->IsJSGlobalProxy()) {
   6027     // For a proxy, use the prototype as target object.
   6028     PrototypeIterator iter(isolate, object);
   6029     // If the proxy is detached, return undefined.
   6030     if (iter.IsAtEnd()) return isolate->factory()->undefined_value();
   6031     DCHECK(PrototypeIterator::GetCurrent(iter)->IsJSGlobalObject());
   6032     return SetHiddenProperty(PrototypeIterator::GetCurrent<JSObject>(iter), key,
   6033                              value);
   6034   }
   6035   DCHECK(!object->IsJSGlobalProxy());
   6036 
   6037   Handle<Object> inline_value(object->GetHiddenPropertiesHashTable(), isolate);
   6038 
   6039   Handle<ObjectHashTable> hashtable =
   6040       GetOrCreateHiddenPropertiesHashtable(object);
   6041 
   6042   // If it was found, check if the key is already in the dictionary.
   6043   Handle<ObjectHashTable> new_table = ObjectHashTable::Put(hashtable, key,
   6044                                                            value);
   6045   if (*new_table != *hashtable) {
   6046     // If adding the key expanded the dictionary (i.e., Add returned a new
   6047     // dictionary), store it back to the object.
   6048     SetHiddenPropertiesHashTable(object, new_table);
   6049   }
   6050 
   6051   // Return this to mark success.
   6052   return object;
   6053 }
   6054 
   6055 
   6056 void JSObject::DeleteHiddenProperty(Handle<JSObject> object, Handle<Name> key) {
   6057   Isolate* isolate = object->GetIsolate();
   6058   DCHECK(key->IsUniqueName());
   6059 
   6060   if (object->IsJSGlobalProxy()) {
   6061     PrototypeIterator iter(isolate, object);
   6062     if (iter.IsAtEnd()) return;
   6063     DCHECK(PrototypeIterator::GetCurrent(iter)->IsJSGlobalObject());
   6064     return DeleteHiddenProperty(PrototypeIterator::GetCurrent<JSObject>(iter),
   6065                                 key);
   6066   }
   6067 
   6068   Object* inline_value = object->GetHiddenPropertiesHashTable();
   6069 
   6070   if (inline_value->IsUndefined()) return;
   6071 
   6072   Handle<ObjectHashTable> hashtable(ObjectHashTable::cast(inline_value));
   6073   bool was_present = false;
   6074   ObjectHashTable::Remove(hashtable, key, &was_present);
   6075 }
   6076 
   6077 
   6078 bool JSObject::HasHiddenProperties(Handle<JSObject> object) {
   6079   Handle<Name> hidden = object->GetIsolate()->factory()->hidden_string();
   6080   LookupIterator it(object, hidden, LookupIterator::OWN_SKIP_INTERCEPTOR);
   6081   Maybe<PropertyAttributes> maybe = GetPropertyAttributes(&it);
   6082   // Cannot get an exception since the hidden_string isn't accessible to JS.
   6083   DCHECK(maybe.IsJust());
   6084   return maybe.FromJust() != ABSENT;
   6085 }
   6086 
   6087 
   6088 Object* JSObject::GetHiddenPropertiesHashTable() {
   6089   DCHECK(!IsJSGlobalProxy());
   6090   if (HasFastProperties()) {
   6091     // If the object has fast properties, check whether the first slot
   6092     // in the descriptor array matches the hidden string. Since the
   6093     // hidden strings hash code is zero (and no other name has hash
   6094     // code zero) it will always occupy the first entry if present.
   6095     DescriptorArray* descriptors = this->map()->instance_descriptors();
   6096     if (descriptors->number_of_descriptors() > 0) {
   6097       int sorted_index = descriptors->GetSortedKeyIndex(0);
   6098       if (descriptors->GetKey(sorted_index) == GetHeap()->hidden_string() &&
   6099           sorted_index < map()->NumberOfOwnDescriptors()) {
   6100         DCHECK(descriptors->GetType(sorted_index) == DATA);
   6101         DCHECK(descriptors->GetDetails(sorted_index).representation().
   6102                IsCompatibleForLoad(Representation::Tagged()));
   6103         FieldIndex index = FieldIndex::ForDescriptor(this->map(),
   6104                                                      sorted_index);
   6105         return this->RawFastPropertyAt(index);
   6106       } else {
   6107         return GetHeap()->undefined_value();
   6108       }
   6109     } else {
   6110       return GetHeap()->undefined_value();
   6111     }
   6112   } else {
   6113     Isolate* isolate = GetIsolate();
   6114     LookupIterator it(handle(this), isolate->factory()->hidden_string(),
   6115                       LookupIterator::OWN_SKIP_INTERCEPTOR);
   6116     // Access check is always skipped for the hidden string anyways.
   6117     return *GetDataProperty(&it);
   6118   }
   6119 }
   6120 
   6121 Handle<ObjectHashTable> JSObject::GetOrCreateHiddenPropertiesHashtable(
   6122     Handle<JSObject> object) {
   6123   Isolate* isolate = object->GetIsolate();
   6124 
   6125   static const int kInitialCapacity = 4;
   6126   Handle<Object> inline_value(object->GetHiddenPropertiesHashTable(), isolate);
   6127   if (inline_value->IsHashTable()) {
   6128     return Handle<ObjectHashTable>::cast(inline_value);
   6129   }
   6130 
   6131   Handle<ObjectHashTable> hashtable = ObjectHashTable::New(
   6132       isolate, kInitialCapacity, USE_CUSTOM_MINIMUM_CAPACITY);
   6133 
   6134   DCHECK(inline_value->IsUndefined());
   6135   SetHiddenPropertiesHashTable(object, hashtable);
   6136   return hashtable;
   6137 }
   6138 
   6139 
   6140 Handle<Object> JSObject::SetHiddenPropertiesHashTable(Handle<JSObject> object,
   6141                                                       Handle<Object> value) {
   6142   DCHECK(!object->IsJSGlobalProxy());
   6143   Isolate* isolate = object->GetIsolate();
   6144   Handle<Name> name = isolate->factory()->hidden_string();
   6145   SetOwnPropertyIgnoreAttributes(object, name, value, DONT_ENUM).Assert();
   6146   return object;
   6147 }
   6148 
   6149 
   6150 Maybe<bool> JSObject::DeletePropertyWithInterceptor(LookupIterator* it) {
   6151   Isolate* isolate = it->isolate();
   6152   // Make sure that the top context does not change when doing callbacks or
   6153   // interceptor calls.
   6154   AssertNoContextChange ncc(isolate);
   6155 
   6156   DCHECK_EQ(LookupIterator::INTERCEPTOR, it->state());
   6157   Handle<InterceptorInfo> interceptor(it->GetInterceptor());
   6158   if (interceptor->deleter()->IsUndefined()) return Nothing<bool>();
   6159 
   6160   Handle<JSObject> holder = it->GetHolder<JSObject>();
   6161 
   6162   PropertyCallbackArguments args(isolate, interceptor->data(),
   6163                                  *it->GetReceiver(), *holder);
   6164   v8::Local<v8::Boolean> result;
   6165   if (it->IsElement()) {
   6166     uint32_t index = it->index();
   6167     v8::IndexedPropertyDeleterCallback deleter =
   6168         v8::ToCData<v8::IndexedPropertyDeleterCallback>(interceptor->deleter());
   6169     LOG(isolate,
   6170         ApiIndexedPropertyAccess("interceptor-indexed-delete", *holder, index));
   6171     result = args.Call(deleter, index);
   6172   } else if (it->name()->IsSymbol() && !interceptor->can_intercept_symbols()) {
   6173     return Nothing<bool>();
   6174   } else {
   6175     Handle<Name> name = it->name();
   6176     DCHECK(!name->IsPrivate());
   6177     v8::GenericNamedPropertyDeleterCallback deleter =
   6178         v8::ToCData<v8::GenericNamedPropertyDeleterCallback>(
   6179             interceptor->deleter());
   6180     LOG(isolate,
   6181         ApiNamedPropertyAccess("interceptor-named-delete", *holder, *name));
   6182     result = args.Call(deleter, v8::Utils::ToLocal(name));
   6183   }
   6184 
   6185   RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>());
   6186   if (result.IsEmpty()) return Nothing<bool>();
   6187 
   6188   DCHECK(result->IsBoolean());
   6189   Handle<Object> result_internal = v8::Utils::OpenHandle(*result);
   6190   result_internal->VerifyApiCallResultType();
   6191   // Rebox CustomArguments::kReturnValueOffset before returning.
   6192   return Just(result_internal->BooleanValue());
   6193 }
   6194 
   6195 
   6196 void JSReceiver::DeleteNormalizedProperty(Handle<JSReceiver> object,
   6197                                           Handle<Name> name, int entry) {
   6198   DCHECK(!object->HasFastProperties());
   6199   Isolate* isolate = object->GetIsolate();
   6200 
   6201   if (object->IsJSGlobalObject()) {
   6202     // If we have a global object, invalidate the cell and swap in a new one.
   6203     Handle<GlobalDictionary> dictionary(
   6204         JSObject::cast(*object)->global_dictionary());
   6205     DCHECK_NE(GlobalDictionary::kNotFound, entry);
   6206 
   6207     auto cell = PropertyCell::InvalidateEntry(dictionary, entry);
   6208     cell->set_value(isolate->heap()->the_hole_value());
   6209     // TODO(ishell): InvalidateForDelete
   6210     cell->set_property_details(
   6211         cell->property_details().set_cell_type(PropertyCellType::kInvalidated));
   6212   } else {
   6213     Handle<NameDictionary> dictionary(object->property_dictionary());
   6214     DCHECK_NE(NameDictionary::kNotFound, entry);
   6215 
   6216     NameDictionary::DeleteProperty(dictionary, entry);
   6217     Handle<NameDictionary> new_properties =
   6218         NameDictionary::Shrink(dictionary, name);
   6219     object->set_properties(*new_properties);
   6220   }
   6221 }
   6222 
   6223 
   6224 Maybe<bool> JSReceiver::DeleteProperty(LookupIterator* it,
   6225                                        LanguageMode language_mode) {
   6226   Isolate* isolate = it->isolate();
   6227 
   6228   if (it->state() == LookupIterator::JSPROXY) {
   6229     return JSProxy::DeletePropertyOrElement(it->GetHolder<JSProxy>(),
   6230                                             it->GetName(), language_mode);
   6231   }
   6232 
   6233   if (it->GetReceiver()->IsJSProxy()) {
   6234     if (it->state() != LookupIterator::NOT_FOUND) {
   6235       DCHECK_EQ(LookupIterator::DATA, it->state());
   6236       DCHECK(it->GetName()->IsPrivate());
   6237       it->Delete();
   6238     }
   6239     return Just(true);
   6240   }
   6241   Handle<JSObject> receiver = Handle<JSObject>::cast(it->GetReceiver());
   6242 
   6243   bool is_observed =
   6244       receiver->map()->is_observed() &&
   6245       (it->IsElement() || !isolate->IsInternallyUsedPropertyName(it->name()));
   6246 
   6247   Handle<Object> old_value = it->factory()->the_hole_value();
   6248 
   6249   for (; it->IsFound(); it->Next()) {
   6250     switch (it->state()) {
   6251       case LookupIterator::JSPROXY:
   6252       case LookupIterator::NOT_FOUND:
   6253       case LookupIterator::TRANSITION:
   6254         UNREACHABLE();
   6255       case LookupIterator::ACCESS_CHECK:
   6256         if (it->HasAccess()) break;
   6257         isolate->ReportFailedAccessCheck(it->GetHolder<JSObject>());
   6258         RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>());
   6259         return Just(false);
   6260       case LookupIterator::INTERCEPTOR: {
   6261         Maybe<bool> result = JSObject::DeletePropertyWithInterceptor(it);
   6262         // An exception was thrown in the interceptor. Propagate.
   6263         if (isolate->has_pending_exception()) return Nothing<bool>();
   6264         // Delete with interceptor succeeded. Return result.
   6265         // TODO(neis): In strict mode, we should probably throw if the
   6266         // interceptor returns false.
   6267         if (result.IsJust()) return result;
   6268         break;
   6269       }
   6270       case LookupIterator::INTEGER_INDEXED_EXOTIC:
   6271         return Just(true);
   6272       case LookupIterator::DATA:
   6273         if (is_observed) {
   6274           old_value = it->GetDataValue();
   6275         }
   6276       // Fall through.
   6277       case LookupIterator::ACCESSOR: {
   6278         if (!it->IsConfigurable() || receiver->map()->is_strong()) {
   6279           // Fail if the property is not configurable, or on a strong object.
   6280           if (is_strict(language_mode)) {
   6281             MessageTemplate::Template templ =
   6282                 receiver->map()->is_strong()
   6283                     ? MessageTemplate::kStrongDeleteProperty
   6284                     : MessageTemplate::kStrictDeleteProperty;
   6285             isolate->Throw(*isolate->factory()->NewTypeError(
   6286                 templ, it->GetName(), receiver));
   6287             return Nothing<bool>();
   6288           }
   6289           return Just(false);
   6290         }
   6291 
   6292         it->Delete();
   6293 
   6294         if (is_observed) {
   6295           RETURN_ON_EXCEPTION_VALUE(
   6296               isolate, JSObject::EnqueueChangeRecord(receiver, "delete",
   6297                                                      it->GetName(), old_value),
   6298               Nothing<bool>());
   6299         }
   6300 
   6301         return Just(true);
   6302       }
   6303     }
   6304   }
   6305 
   6306   return Just(true);
   6307 }
   6308 
   6309 
   6310 Maybe<bool> JSReceiver::DeleteElement(Handle<JSReceiver> object, uint32_t index,
   6311                                       LanguageMode language_mode) {
   6312   LookupIterator it(object->GetIsolate(), object, index,
   6313                     LookupIterator::HIDDEN);
   6314   return DeleteProperty(&it, language_mode);
   6315 }
   6316 
   6317 
   6318 Maybe<bool> JSReceiver::DeleteProperty(Handle<JSReceiver> object,
   6319                                        Handle<Name> name,
   6320                                        LanguageMode language_mode) {
   6321   LookupIterator it(object, name, LookupIterator::HIDDEN);
   6322   return DeleteProperty(&it, language_mode);
   6323 }
   6324 
   6325 
   6326 Maybe<bool> JSReceiver::DeletePropertyOrElement(Handle<JSReceiver> object,
   6327                                                 Handle<Name> name,
   6328                                                 LanguageMode language_mode) {
   6329   LookupIterator it = LookupIterator::PropertyOrElement(
   6330       name->GetIsolate(), object, name, LookupIterator::HIDDEN);
   6331   return DeleteProperty(&it, language_mode);
   6332 }
   6333 
   6334 
   6335 // ES6 7.1.14
   6336 MaybeHandle<Object> ToPropertyKey(Isolate* isolate, Handle<Object> value) {
   6337   // 1. Let key be ToPrimitive(argument, hint String).
   6338   MaybeHandle<Object> maybe_key =
   6339       Object::ToPrimitive(value, ToPrimitiveHint::kString);
   6340   // 2. ReturnIfAbrupt(key).
   6341   Handle<Object> key;
   6342   if (!maybe_key.ToHandle(&key)) return key;
   6343   // 3. If Type(key) is Symbol, then return key.
   6344   if (key->IsSymbol()) return key;
   6345   // 4. Return ToString(key).
   6346   // Extending spec'ed behavior, we'd be happy to return an element index.
   6347   if (key->IsSmi()) return key;
   6348   if (key->IsHeapNumber()) {
   6349     uint32_t uint_value;
   6350     if (value->ToArrayLength(&uint_value) &&
   6351         uint_value <= static_cast<uint32_t>(Smi::kMaxValue)) {
   6352       return handle(Smi::FromInt(static_cast<int>(uint_value)), isolate);
   6353     }
   6354   }
   6355   return Object::ToString(isolate, key);
   6356 }
   6357 
   6358 
   6359 // ES6 19.1.2.4
   6360 // static
   6361 Object* JSReceiver::DefineProperty(Isolate* isolate, Handle<Object> object,
   6362                                    Handle<Object> key,
   6363                                    Handle<Object> attributes) {
   6364   // 1. If Type(O) is not Object, throw a TypeError exception.
   6365   if (!object->IsJSReceiver()) {
   6366     Handle<String> fun_name =
   6367         isolate->factory()->InternalizeUtf8String("Object.defineProperty");
   6368     THROW_NEW_ERROR_RETURN_FAILURE(
   6369         isolate, NewTypeError(MessageTemplate::kCalledOnNonObject, fun_name));
   6370   }
   6371   // 2. Let key be ToPropertyKey(P).
   6372   // 3. ReturnIfAbrupt(key).
   6373   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, key, ToPropertyKey(isolate, key));
   6374   // 4. Let desc be ToPropertyDescriptor(Attributes).
   6375   // 5. ReturnIfAbrupt(desc).
   6376   PropertyDescriptor desc;
   6377   if (!PropertyDescriptor::ToPropertyDescriptor(isolate, attributes, &desc)) {
   6378     return isolate->heap()->exception();
   6379   }
   6380   // 6. Let success be DefinePropertyOrThrow(O,key, desc).
   6381   Maybe<bool> success = DefineOwnProperty(
   6382       isolate, Handle<JSReceiver>::cast(object), key, &desc, THROW_ON_ERROR);
   6383   // 7. ReturnIfAbrupt(success).
   6384   MAYBE_RETURN(success, isolate->heap()->exception());
   6385   CHECK(success.FromJust());
   6386   // 8. Return O.
   6387   return *object;
   6388 }
   6389 
   6390 
   6391 // ES6 19.1.2.3.1
   6392 // static
   6393 MaybeHandle<Object> JSReceiver::DefineProperties(Isolate* isolate,
   6394                                                  Handle<Object> object,
   6395                                                  Handle<Object> properties) {
   6396   // 1. If Type(O) is not Object, throw a TypeError exception.
   6397   if (!object->IsJSReceiver()) {
   6398     Handle<String> fun_name =
   6399         isolate->factory()->InternalizeUtf8String("Object.defineProperties");
   6400     THROW_NEW_ERROR(isolate,
   6401                     NewTypeError(MessageTemplate::kCalledOnNonObject, fun_name),
   6402                     Object);
   6403   }
   6404   // 2. Let props be ToObject(Properties).
   6405   // 3. ReturnIfAbrupt(props).
   6406   Handle<JSReceiver> props;
   6407   if (!Object::ToObject(isolate, properties).ToHandle(&props)) {
   6408     THROW_NEW_ERROR(isolate,
   6409                     NewTypeError(MessageTemplate::kUndefinedOrNullToObject),
   6410                     Object);
   6411   }
   6412   // 4. Let keys be props.[[OwnPropertyKeys]]().
   6413   // 5. ReturnIfAbrupt(keys).
   6414   Handle<FixedArray> keys;
   6415   ASSIGN_RETURN_ON_EXCEPTION(
   6416       isolate, keys,
   6417       JSReceiver::GetKeys(props, JSReceiver::OWN_ONLY, ALL_PROPERTIES), Object);
   6418   // 6. Let descriptors be an empty List.
   6419   int capacity = keys->length();
   6420   std::vector<PropertyDescriptor> descriptors(capacity);
   6421   size_t descriptors_index = 0;
   6422   // 7. Repeat for each element nextKey of keys in List order,
   6423   for (int i = 0; i < keys->length(); ++i) {
   6424     Handle<Object> next_key(keys->get(i), isolate);
   6425     // 7a. Let propDesc be props.[[GetOwnProperty]](nextKey).
   6426     // 7b. ReturnIfAbrupt(propDesc).
   6427     bool success = false;
   6428     LookupIterator it = LookupIterator::PropertyOrElement(
   6429         isolate, props, next_key, &success, LookupIterator::HIDDEN);
   6430     DCHECK(success);
   6431     Maybe<PropertyAttributes> maybe = JSReceiver::GetPropertyAttributes(&it);
   6432     if (!maybe.IsJust()) return MaybeHandle<Object>();
   6433     PropertyAttributes attrs = maybe.FromJust();
   6434     // 7c. If propDesc is not undefined and propDesc.[[Enumerable]] is true:
   6435     if (attrs == ABSENT) continue;
   6436     if (attrs & DONT_ENUM) continue;
   6437     // 7c i. Let descObj be Get(props, nextKey).
   6438     // 7c ii. ReturnIfAbrupt(descObj).
   6439     Handle<Object> desc_obj;
   6440     ASSIGN_RETURN_ON_EXCEPTION(isolate, desc_obj, Object::GetProperty(&it),
   6441                                Object);
   6442     // 7c iii. Let desc be ToPropertyDescriptor(descObj).
   6443     success = PropertyDescriptor::ToPropertyDescriptor(
   6444         isolate, desc_obj, &descriptors[descriptors_index]);
   6445     // 7c iv. ReturnIfAbrupt(desc).
   6446     if (!success) return MaybeHandle<Object>();
   6447     // 7c v. Append the pair (a two element List) consisting of nextKey and
   6448     //       desc to the end of descriptors.
   6449     descriptors[descriptors_index].set_name(next_key);
   6450     descriptors_index++;
   6451   }
   6452   // 8. For each pair from descriptors in list order,
   6453   for (size_t i = 0; i < descriptors_index; ++i) {
   6454     PropertyDescriptor* desc = &descriptors[i];
   6455     // 8a. Let P be the first element of pair.
   6456     // 8b. Let desc be the second element of pair.
   6457     // 8c. Let status be DefinePropertyOrThrow(O, P, desc).
   6458     Maybe<bool> status =
   6459         DefineOwnProperty(isolate, Handle<JSReceiver>::cast(object),
   6460                           desc->name(), desc, THROW_ON_ERROR);
   6461     // 8d. ReturnIfAbrupt(status).
   6462     if (!status.IsJust()) return MaybeHandle<Object>();
   6463     CHECK(status.FromJust());
   6464   }
   6465   // 9. Return o.
   6466   return object;
   6467 }
   6468 
   6469 
   6470 // static
   6471 Maybe<bool> JSReceiver::DefineOwnProperty(Isolate* isolate,
   6472                                           Handle<JSReceiver> object,
   6473                                           Handle<Object> key,
   6474                                           PropertyDescriptor* desc,
   6475                                           ShouldThrow should_throw) {
   6476   if (object->IsJSArray()) {
   6477     return JSArray::DefineOwnProperty(isolate, Handle<JSArray>::cast(object),
   6478                                       key, desc, should_throw);
   6479   }
   6480   if (object->IsJSProxy()) {
   6481     return JSProxy::DefineOwnProperty(isolate, Handle<JSProxy>::cast(object),
   6482                                       key, desc, should_throw);
   6483   }
   6484   // TODO(jkummerow): Support Modules (ES6 9.4.6.6)
   6485 
   6486   // OrdinaryDefineOwnProperty, by virtue of calling
   6487   // DefineOwnPropertyIgnoreAttributes, can handle arguments (ES6 9.4.4.2)
   6488   // and IntegerIndexedExotics (ES6 9.4.5.3), with one exception:
   6489   // TODO(jkummerow): Setting an indexed accessor on a typed array should throw.
   6490   return OrdinaryDefineOwnProperty(isolate, Handle<JSObject>::cast(object), key,
   6491                                    desc, should_throw);
   6492 }
   6493 
   6494 
   6495 // static
   6496 Maybe<bool> JSReceiver::OrdinaryDefineOwnProperty(Isolate* isolate,
   6497                                                   Handle<JSObject> object,
   6498                                                   Handle<Object> key,
   6499                                                   PropertyDescriptor* desc,
   6500                                                   ShouldThrow should_throw) {
   6501   bool success = false;
   6502   DCHECK(key->IsName() || key->IsNumber());  // |key| is a PropertyKey...
   6503   LookupIterator it = LookupIterator::PropertyOrElement(
   6504       isolate, object, key, &success, LookupIterator::HIDDEN);
   6505   DCHECK(success);  // ...so creating a LookupIterator can't fail.
   6506 
   6507   // Deal with access checks first.
   6508   if (it.state() == LookupIterator::ACCESS_CHECK) {
   6509     if (!it.HasAccess()) {
   6510       isolate->ReportFailedAccessCheck(it.GetHolder<JSObject>());
   6511       RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>());
   6512       return Just(true);
   6513     }
   6514     it.Next();
   6515   }
   6516 
   6517   return OrdinaryDefineOwnProperty(&it, desc, should_throw);
   6518 }
   6519 
   6520 
   6521 // ES6 9.1.6.1
   6522 // static
   6523 Maybe<bool> JSReceiver::OrdinaryDefineOwnProperty(LookupIterator* it,
   6524                                                   PropertyDescriptor* desc,
   6525                                                   ShouldThrow should_throw) {
   6526   Isolate* isolate = it->isolate();
   6527   // 1. Let current be O.[[GetOwnProperty]](P).
   6528   // 2. ReturnIfAbrupt(current).
   6529   PropertyDescriptor current;
   6530   MAYBE_RETURN(GetOwnPropertyDescriptor(it, &current), Nothing<bool>());
   6531 
   6532   // TODO(jkummerow/verwaest): It would be nice if we didn't have to reset
   6533   // the iterator every time. Currently, the reasons why we need it are:
   6534   // - handle interceptors correctly
   6535   // - handle accessors correctly (which might change the holder's map)
   6536   it->Restart();
   6537   // 3. Let extensible be the value of the [[Extensible]] internal slot of O.
   6538   Handle<JSObject> object = Handle<JSObject>::cast(it->GetReceiver());
   6539   bool extensible = JSObject::IsExtensible(object);
   6540 
   6541   return ValidateAndApplyPropertyDescriptor(isolate, it, extensible, desc,
   6542                                             &current, should_throw);
   6543 }
   6544 
   6545 
   6546 // ES6 9.1.6.2
   6547 // static
   6548 Maybe<bool> JSReceiver::IsCompatiblePropertyDescriptor(
   6549     Isolate* isolate, bool extensible, PropertyDescriptor* desc,
   6550     PropertyDescriptor* current, Handle<Name> property_name,
   6551     ShouldThrow should_throw) {
   6552   // 1. Return ValidateAndApplyPropertyDescriptor(undefined, undefined,
   6553   //    Extensible, Desc, Current).
   6554   return ValidateAndApplyPropertyDescriptor(
   6555       isolate, NULL, extensible, desc, current, should_throw, property_name);
   6556 }
   6557 
   6558 
   6559 // ES6 9.1.6.3
   6560 // static
   6561 Maybe<bool> JSReceiver::ValidateAndApplyPropertyDescriptor(
   6562     Isolate* isolate, LookupIterator* it, bool extensible,
   6563     PropertyDescriptor* desc, PropertyDescriptor* current,
   6564     ShouldThrow should_throw, Handle<Name> property_name) {
   6565   // We either need a LookupIterator, or a property name.
   6566   DCHECK((it == NULL) != property_name.is_null());
   6567   Handle<JSObject> object;
   6568   if (it != NULL) object = Handle<JSObject>::cast(it->GetReceiver());
   6569   bool desc_is_data_descriptor = PropertyDescriptor::IsDataDescriptor(desc);
   6570   bool desc_is_accessor_descriptor =
   6571       PropertyDescriptor::IsAccessorDescriptor(desc);
   6572   bool desc_is_generic_descriptor =
   6573       PropertyDescriptor::IsGenericDescriptor(desc);
   6574   // 1. (Assert)
   6575   // 2. If current is undefined, then
   6576   if (current->is_empty()) {
   6577     // 2a. If extensible is false, return false.
   6578     if (!extensible) {
   6579       RETURN_FAILURE(isolate, should_throw,
   6580                      NewTypeError(MessageTemplate::kDefineDisallowed,
   6581                                   it != NULL ? it->GetName() : property_name));
   6582     }
   6583     // 2c. If IsGenericDescriptor(Desc) or IsDataDescriptor(Desc) is true, then:
   6584     // (This is equivalent to !IsAccessorDescriptor(desc).)
   6585     DCHECK((desc_is_generic_descriptor || desc_is_data_descriptor) ==
   6586            !desc_is_accessor_descriptor);
   6587     if (!desc_is_accessor_descriptor) {
   6588       // 2c i. If O is not undefined, create an own data property named P of
   6589       // object O whose [[Value]], [[Writable]], [[Enumerable]] and
   6590       // [[Configurable]] attribute values are described by Desc. If the value
   6591       // of an attribute field of Desc is absent, the attribute of the newly
   6592       // created property is set to its default value.
   6593       if (it != NULL) {
   6594         if (!desc->has_writable()) desc->set_writable(false);
   6595         if (!desc->has_enumerable()) desc->set_enumerable(false);
   6596         if (!desc->has_configurable()) desc->set_configurable(false);
   6597         Handle<Object> value(
   6598             desc->has_value()
   6599                 ? desc->value()
   6600                 : Handle<Object>::cast(isolate->factory()->undefined_value()));
   6601         MaybeHandle<Object> result =
   6602             JSObject::DefineOwnPropertyIgnoreAttributes(
   6603                 it, value, desc->ToAttributes(), JSObject::DONT_FORCE_FIELD);
   6604         if (result.is_null()) return Nothing<bool>();
   6605       }
   6606     } else {
   6607       // 2d. Else Desc must be an accessor Property Descriptor,
   6608       DCHECK(desc_is_accessor_descriptor);
   6609       // 2d i. If O is not undefined, create an own accessor property named P
   6610       // of object O whose [[Get]], [[Set]], [[Enumerable]] and
   6611       // [[Configurable]] attribute values are described by Desc. If the value
   6612       // of an attribute field of Desc is absent, the attribute of the newly
   6613       // created property is set to its default value.
   6614       if (it != NULL) {
   6615         if (!desc->has_enumerable()) desc->set_enumerable(false);
   6616         if (!desc->has_configurable()) desc->set_configurable(false);
   6617         Handle<Object> getter(
   6618             desc->has_get()
   6619                 ? desc->get()
   6620                 : Handle<Object>::cast(isolate->factory()->null_value()));
   6621         Handle<Object> setter(
   6622             desc->has_set()
   6623                 ? desc->set()
   6624                 : Handle<Object>::cast(isolate->factory()->null_value()));
   6625         MaybeHandle<Object> result =
   6626             JSObject::DefineAccessor(it, getter, setter, desc->ToAttributes());
   6627         if (result.is_null()) return Nothing<bool>();
   6628       }
   6629     }
   6630     // 2e. Return true.
   6631     return Just(true);
   6632   }
   6633   // 3. Return true, if every field in Desc is absent.
   6634   // 4. Return true, if every field in Desc also occurs in current and the
   6635   // value of every field in Desc is the same value as the corresponding field
   6636   // in current when compared using the SameValue algorithm.
   6637   if ((!desc->has_enumerable() ||
   6638        desc->enumerable() == current->enumerable()) &&
   6639       (!desc->has_configurable() ||
   6640        desc->configurable() == current->configurable()) &&
   6641       (!desc->has_value() ||
   6642        (current->has_value() && current->value()->SameValue(*desc->value()))) &&
   6643       (!desc->has_writable() ||
   6644        (current->has_writable() && current->writable() == desc->writable())) &&
   6645       (!desc->has_get() ||
   6646        (current->has_get() && current->get()->SameValue(*desc->get()))) &&
   6647       (!desc->has_set() ||
   6648        (current->has_set() && current->set()->SameValue(*desc->set())))) {
   6649     return Just(true);
   6650   }
   6651   // 5. If the [[Configurable]] field of current is false, then
   6652   if (!current->configurable()) {
   6653     // 5a. Return false, if the [[Configurable]] field of Desc is true.
   6654     if (desc->has_configurable() && desc->configurable()) {
   6655       RETURN_FAILURE(isolate, should_throw,
   6656                      NewTypeError(MessageTemplate::kRedefineDisallowed,
   6657                                   it != NULL ? it->GetName() : property_name));
   6658     }
   6659     // 5b. Return false, if the [[Enumerable]] field of Desc is present and the
   6660     // [[Enumerable]] fields of current and Desc are the Boolean negation of
   6661     // each other.
   6662     if (desc->has_enumerable() && desc->enumerable() != current->enumerable()) {
   6663       RETURN_FAILURE(isolate, should_throw,
   6664                      NewTypeError(MessageTemplate::kRedefineDisallowed,
   6665                                   it != NULL ? it->GetName() : property_name));
   6666     }
   6667   }
   6668 
   6669   bool current_is_data_descriptor =
   6670       PropertyDescriptor::IsDataDescriptor(current);
   6671   // 6. If IsGenericDescriptor(Desc) is true, no further validation is required.
   6672   if (desc_is_generic_descriptor) {
   6673     // Nothing to see here.
   6674 
   6675     // 7. Else if IsDataDescriptor(current) and IsDataDescriptor(Desc) have
   6676     // different results, then:
   6677   } else if (current_is_data_descriptor != desc_is_data_descriptor) {
   6678     // 7a. Return false, if the [[Configurable]] field of current is false.
   6679     if (!current->configurable()) {
   6680       RETURN_FAILURE(isolate, should_throw,
   6681                      NewTypeError(MessageTemplate::kRedefineDisallowed,
   6682                                   it != NULL ? it->GetName() : property_name));
   6683     }
   6684     // 7b. If IsDataDescriptor(current) is true, then:
   6685     if (current_is_data_descriptor) {
   6686       // 7b i. If O is not undefined, convert the property named P of object O
   6687       // from a data property to an accessor property. Preserve the existing
   6688       // values of the converted property's [[Configurable]] and [[Enumerable]]
   6689       // attributes and set the rest of the property's attributes to their
   6690       // default values.
   6691       // --> Folded into step 10.
   6692     } else {
   6693       // 7c i. If O is not undefined, convert the property named P of object O
   6694       // from an accessor property to a data property. Preserve the existing
   6695       // values of the converted propertys [[Configurable]] and [[Enumerable]]
   6696       // attributes and set the rest of the propertys attributes to their
   6697       // default values.
   6698       // --> Folded into step 10.
   6699     }
   6700 
   6701     // 8. Else if IsDataDescriptor(current) and IsDataDescriptor(Desc) are both
   6702     // true, then:
   6703   } else if (current_is_data_descriptor && desc_is_data_descriptor) {
   6704     // 8a. If the [[Configurable]] field of current is false, then:
   6705     if (!current->configurable()) {
   6706       // [Strong mode] Disallow changing writable -> readonly for
   6707       // non-configurable properties.
   6708       if (it != NULL && current->writable() && desc->has_writable() &&
   6709           !desc->writable() && object->map()->is_strong()) {
   6710         RETURN_FAILURE(isolate, should_throw,
   6711                        NewTypeError(MessageTemplate::kStrongRedefineDisallowed,
   6712                                     object, it->GetName()));
   6713       }
   6714       // 8a i. Return false, if the [[Writable]] field of current is false and
   6715       // the [[Writable]] field of Desc is true.
   6716       if (!current->writable() && desc->has_writable() && desc->writable()) {
   6717         RETURN_FAILURE(
   6718             isolate, should_throw,
   6719             NewTypeError(MessageTemplate::kRedefineDisallowed,
   6720                          it != NULL ? it->GetName() : property_name));
   6721       }
   6722       // 8a ii. If the [[Writable]] field of current is false, then:
   6723       if (!current->writable()) {
   6724         // 8a ii 1. Return false, if the [[Value]] field of Desc is present and
   6725         // SameValue(Desc.[[Value]], current.[[Value]]) is false.
   6726         if (desc->has_value() && !desc->value()->SameValue(*current->value())) {
   6727           RETURN_FAILURE(
   6728               isolate, should_throw,
   6729               NewTypeError(MessageTemplate::kRedefineDisallowed,
   6730                            it != NULL ? it->GetName() : property_name));
   6731         }
   6732       }
   6733     }
   6734   } else {
   6735     // 9. Else IsAccessorDescriptor(current) and IsAccessorDescriptor(Desc)
   6736     // are both true,
   6737     DCHECK(PropertyDescriptor::IsAccessorDescriptor(current) &&
   6738            desc_is_accessor_descriptor);
   6739     // 9a. If the [[Configurable]] field of current is false, then:
   6740     if (!current->configurable()) {
   6741       // 9a i. Return false, if the [[Set]] field of Desc is present and
   6742       // SameValue(Desc.[[Set]], current.[[Set]]) is false.
   6743       if (desc->has_set() && !desc->set()->SameValue(*current->set())) {
   6744         RETURN_FAILURE(
   6745             isolate, should_throw,
   6746             NewTypeError(MessageTemplate::kRedefineDisallowed,
   6747                          it != NULL ? it->GetName() : property_name));
   6748       }
   6749       // 9a ii. Return false, if the [[Get]] field of Desc is present and
   6750       // SameValue(Desc.[[Get]], current.[[Get]]) is false.
   6751       if (desc->has_get() && !desc->get()->SameValue(*current->get())) {
   6752         RETURN_FAILURE(
   6753             isolate, should_throw,
   6754             NewTypeError(MessageTemplate::kRedefineDisallowed,
   6755                          it != NULL ? it->GetName() : property_name));
   6756       }
   6757     }
   6758   }
   6759 
   6760   // 10. If O is not undefined, then:
   6761   if (it != NULL) {
   6762     // 10a. For each field of Desc that is present, set the corresponding
   6763     // attribute of the property named P of object O to the value of the field.
   6764     PropertyAttributes attrs = NONE;
   6765 
   6766     if (desc->has_enumerable()) {
   6767       attrs = static_cast<PropertyAttributes>(
   6768           attrs | (desc->enumerable() ? NONE : DONT_ENUM));
   6769     } else {
   6770       attrs = static_cast<PropertyAttributes>(
   6771           attrs | (current->enumerable() ? NONE : DONT_ENUM));
   6772     }
   6773     if (desc->has_configurable()) {
   6774       attrs = static_cast<PropertyAttributes>(
   6775           attrs | (desc->configurable() ? NONE : DONT_DELETE));
   6776     } else {
   6777       attrs = static_cast<PropertyAttributes>(
   6778           attrs | (current->configurable() ? NONE : DONT_DELETE));
   6779     }
   6780     if (desc_is_data_descriptor ||
   6781         (desc_is_generic_descriptor && current_is_data_descriptor)) {
   6782       if (desc->has_writable()) {
   6783         attrs = static_cast<PropertyAttributes>(
   6784             attrs | (desc->writable() ? NONE : READ_ONLY));
   6785       } else {
   6786         attrs = static_cast<PropertyAttributes>(
   6787             attrs | (current->writable() ? NONE : READ_ONLY));
   6788       }
   6789       Handle<Object> value(
   6790           desc->has_value() ? desc->value()
   6791                             : current->has_value()
   6792                                   ? current->value()
   6793                                   : Handle<Object>::cast(
   6794                                         isolate->factory()->undefined_value()));
   6795       MaybeHandle<Object> result = JSObject::DefineOwnPropertyIgnoreAttributes(
   6796           it, value, attrs, JSObject::DONT_FORCE_FIELD);
   6797       if (result.is_null()) return Nothing<bool>();
   6798     } else {
   6799       DCHECK(desc_is_accessor_descriptor ||
   6800              (desc_is_generic_descriptor &&
   6801               PropertyDescriptor::IsAccessorDescriptor(current)));
   6802       Handle<Object> getter(
   6803           desc->has_get()
   6804               ? desc->get()
   6805               : current->has_get()
   6806                     ? current->get()
   6807                     : Handle<Object>::cast(isolate->factory()->null_value()));
   6808       Handle<Object> setter(
   6809           desc->has_set()
   6810               ? desc->set()
   6811               : current->has_set()
   6812                     ? current->set()
   6813                     : Handle<Object>::cast(isolate->factory()->null_value()));
   6814       MaybeHandle<Object> result =
   6815           JSObject::DefineAccessor(it, getter, setter, attrs);
   6816       if (result.is_null()) return Nothing<bool>();
   6817     }
   6818   }
   6819 
   6820   // 11. Return true.
   6821   return Just(true);
   6822 }
   6823 
   6824 
   6825 // static
   6826 Maybe<bool> JSReceiver::CreateDataProperty(LookupIterator* it,
   6827                                            Handle<Object> value,
   6828                                            ShouldThrow should_throw) {
   6829   DCHECK(!it->check_prototype_chain());
   6830   Handle<JSReceiver> receiver = Handle<JSReceiver>::cast(it->GetReceiver());
   6831   Isolate* isolate = receiver->GetIsolate();
   6832 
   6833   if (receiver->IsJSObject()) {
   6834     return JSObject::CreateDataProperty(it, value);  // Shortcut.
   6835   }
   6836 
   6837   PropertyDescriptor new_desc;
   6838   new_desc.set_value(value);
   6839   new_desc.set_writable(true);
   6840   new_desc.set_enumerable(true);
   6841   new_desc.set_configurable(true);
   6842 
   6843   return JSReceiver::DefineOwnProperty(isolate, receiver, it->GetName(),
   6844                                        &new_desc, should_throw);
   6845 }
   6846 
   6847 
   6848 Maybe<bool> JSObject::CreateDataProperty(LookupIterator* it,
   6849                                          Handle<Object> value) {
   6850   DCHECK(it->GetReceiver()->IsJSObject());
   6851   MAYBE_RETURN(JSReceiver::GetPropertyAttributes(it), Nothing<bool>());
   6852 
   6853   if (it->IsFound()) {
   6854     if (!it->IsConfigurable()) return Just(false);
   6855   } else {
   6856     if (!JSObject::IsExtensible(Handle<JSObject>::cast(it->GetReceiver())))
   6857       return Just(false);
   6858   }
   6859 
   6860   RETURN_ON_EXCEPTION_VALUE(
   6861       it->isolate(),
   6862       DefineOwnPropertyIgnoreAttributes(it, value, NONE, DONT_FORCE_FIELD),
   6863       Nothing<bool>());
   6864 
   6865   return Just(true);
   6866 }
   6867 
   6868 
   6869 // TODO(jkummerow): Consider unification with FastAsArrayLength() in
   6870 // accessors.cc.
   6871 bool PropertyKeyToArrayLength(Handle<Object> value, uint32_t* length) {
   6872   DCHECK(value->IsNumber() || value->IsName());
   6873   if (value->ToArrayLength(length)) return true;
   6874   if (value->IsString()) return String::cast(*value)->AsArrayIndex(length);
   6875   return false;
   6876 }
   6877 
   6878 
   6879 bool PropertyKeyToArrayIndex(Handle<Object> index_obj, uint32_t* output) {
   6880   return PropertyKeyToArrayLength(index_obj, output) && *output != kMaxUInt32;
   6881 }
   6882 
   6883 
   6884 // ES6 9.4.2.1
   6885 // static
   6886 Maybe<bool> JSArray::DefineOwnProperty(Isolate* isolate, Handle<JSArray> o,
   6887                                        Handle<Object> name,
   6888                                        PropertyDescriptor* desc,
   6889                                        ShouldThrow should_throw) {
   6890   // 1. Assert: IsPropertyKey(P) is true. ("P" is |name|.)
   6891   // 2. If P is "length", then:
   6892   // TODO(jkummerow): Check if we need slow string comparison.
   6893   if (*name == isolate->heap()->length_string()) {
   6894     // 2a. Return ArraySetLength(A, Desc).
   6895     return ArraySetLength(isolate, o, desc, should_throw);
   6896   }
   6897   // 3. Else if P is an array index, then:
   6898   uint32_t index = 0;
   6899   if (PropertyKeyToArrayIndex(name, &index)) {
   6900     // 3a. Let oldLenDesc be OrdinaryGetOwnProperty(A, "length").
   6901     PropertyDescriptor old_len_desc;
   6902     Maybe<bool> success = GetOwnPropertyDescriptor(
   6903         isolate, o, isolate->factory()->length_string(), &old_len_desc);
   6904     // 3b. (Assert)
   6905     DCHECK(success.FromJust());
   6906     USE(success);
   6907     // 3c. Let oldLen be oldLenDesc.[[Value]].
   6908     uint32_t old_len = 0;
   6909     CHECK(old_len_desc.value()->ToArrayLength(&old_len));
   6910     // 3d. Let index be ToUint32(P).
   6911     // (Already done above.)
   6912     // 3e. (Assert)
   6913     // 3f. If index >= oldLen and oldLenDesc.[[Writable]] is false,
   6914     //     return false.
   6915     if (index >= old_len && old_len_desc.has_writable() &&
   6916         !old_len_desc.writable()) {
   6917       RETURN_FAILURE(isolate, should_throw,
   6918                      NewTypeError(MessageTemplate::kDefineDisallowed, name));
   6919     }
   6920     // 3g. Let succeeded be OrdinaryDefineOwnProperty(A, P, Desc).
   6921     Maybe<bool> succeeded =
   6922         OrdinaryDefineOwnProperty(isolate, o, name, desc, should_throw);
   6923     // 3h. Assert: succeeded is not an abrupt completion.
   6924     //     In our case, if should_throw == THROW_ON_ERROR, it can be!
   6925     // 3i. If succeeded is false, return false.
   6926     if (succeeded.IsNothing() || !succeeded.FromJust()) return succeeded;
   6927     // 3j. If index >= oldLen, then:
   6928     if (index >= old_len) {
   6929       // 3j i. Set oldLenDesc.[[Value]] to index + 1.
   6930       old_len_desc.set_value(isolate->factory()->NewNumberFromUint(index + 1));
   6931       // 3j ii. Let succeeded be
   6932       //        OrdinaryDefineOwnProperty(A, "length", oldLenDesc).
   6933       succeeded = OrdinaryDefineOwnProperty(isolate, o,
   6934                                             isolate->factory()->length_string(),
   6935                                             &old_len_desc, should_throw);
   6936       // 3j iii. Assert: succeeded is true.
   6937       DCHECK(succeeded.FromJust());
   6938       USE(succeeded);
   6939     }
   6940     // 3k. Return true.
   6941     return Just(true);
   6942   }
   6943 
   6944   // 4. Return OrdinaryDefineOwnProperty(A, P, Desc).
   6945   return OrdinaryDefineOwnProperty(isolate, o, name, desc, should_throw);
   6946 }
   6947 
   6948 
   6949 // Part of ES6 9.4.2.4 ArraySetLength.
   6950 // static
   6951 bool JSArray::AnythingToArrayLength(Isolate* isolate,
   6952                                     Handle<Object> length_object,
   6953                                     uint32_t* output) {
   6954   // Fast path: check numbers and strings that can be converted directly
   6955   // and unobservably.
   6956   if (length_object->ToArrayLength(output)) return true;
   6957   if (length_object->IsString() &&
   6958       Handle<String>::cast(length_object)->AsArrayIndex(output)) {
   6959     return true;
   6960   }
   6961   // Slow path: follow steps in ES6 9.4.2.4 "ArraySetLength".
   6962   // 3. Let newLen be ToUint32(Desc.[[Value]]).
   6963   Handle<Object> uint32_v;
   6964   if (!Object::ToUint32(isolate, length_object).ToHandle(&uint32_v)) {
   6965     // 4. ReturnIfAbrupt(newLen).
   6966     return false;
   6967   }
   6968   // 5. Let numberLen be ToNumber(Desc.[[Value]]).
   6969   Handle<Object> number_v;
   6970   if (!Object::ToNumber(length_object).ToHandle(&number_v)) {
   6971     // 6. ReturnIfAbrupt(newLen).
   6972     return false;
   6973   }
   6974   // 7. If newLen != numberLen, throw a RangeError exception.
   6975   if (uint32_v->Number() != number_v->Number()) {
   6976     Handle<Object> exception =
   6977         isolate->factory()->NewRangeError(MessageTemplate::kInvalidArrayLength);
   6978     isolate->Throw(*exception);
   6979     return false;
   6980   }
   6981   CHECK(uint32_v->ToArrayLength(output));
   6982   return true;
   6983 }
   6984 
   6985 
   6986 // ES6 9.4.2.4
   6987 // static
   6988 Maybe<bool> JSArray::ArraySetLength(Isolate* isolate, Handle<JSArray> a,
   6989                                     PropertyDescriptor* desc,
   6990                                     ShouldThrow should_throw) {
   6991   // 1. If the [[Value]] field of Desc is absent, then
   6992   if (!desc->has_value()) {
   6993     // 1a. Return OrdinaryDefineOwnProperty(A, "length", Desc).
   6994     return OrdinaryDefineOwnProperty(
   6995         isolate, a, isolate->factory()->length_string(), desc, should_throw);
   6996   }
   6997   // 2. Let newLenDesc be a copy of Desc.
   6998   // (Actual copying is not necessary.)
   6999   PropertyDescriptor* new_len_desc = desc;
   7000   // 3. - 7. Convert Desc.[[Value]] to newLen.
   7001   uint32_t new_len = 0;
   7002   if (!AnythingToArrayLength(isolate, desc->value(), &new_len)) {
   7003     DCHECK(isolate->has_pending_exception());
   7004     return Nothing<bool>();
   7005   }
   7006   // 8. Set newLenDesc.[[Value]] to newLen.
   7007   // (Done below, if needed.)
   7008   // 9. Let oldLenDesc be OrdinaryGetOwnProperty(A, "length").
   7009   PropertyDescriptor old_len_desc;
   7010   Maybe<bool> success = GetOwnPropertyDescriptor(
   7011       isolate, a, isolate->factory()->length_string(), &old_len_desc);
   7012   // 10. (Assert)
   7013   DCHECK(success.FromJust());
   7014   USE(success);
   7015   // 11. Let oldLen be oldLenDesc.[[Value]].
   7016   uint32_t old_len = 0;
   7017   CHECK(old_len_desc.value()->ToArrayLength(&old_len));
   7018   // 12. If newLen >= oldLen, then
   7019   if (new_len >= old_len) {
   7020     // 8. Set newLenDesc.[[Value]] to newLen.
   7021     // 12a. Return OrdinaryDefineOwnProperty(A, "length", newLenDesc).
   7022     new_len_desc->set_value(isolate->factory()->NewNumberFromUint(new_len));
   7023     return OrdinaryDefineOwnProperty(isolate, a,
   7024                                      isolate->factory()->length_string(),
   7025                                      new_len_desc, should_throw);
   7026   }
   7027   // 13. If oldLenDesc.[[Writable]] is false, return false.
   7028   if (!old_len_desc.writable()) {
   7029     RETURN_FAILURE(isolate, should_throw,
   7030                    NewTypeError(MessageTemplate::kRedefineDisallowed,
   7031                                 isolate->factory()->length_string()));
   7032   }
   7033   // 14. If newLenDesc.[[Writable]] is absent or has the value true,
   7034   // let newWritable be true.
   7035   bool new_writable = false;
   7036   if (!new_len_desc->has_writable() || new_len_desc->writable()) {
   7037     new_writable = true;
   7038   } else {
   7039     // 15. Else,
   7040     // 15a. Need to defer setting the [[Writable]] attribute to false in case
   7041     //      any elements cannot be deleted.
   7042     // 15b. Let newWritable be false. (It's initialized as "false" anyway.)
   7043     // 15c. Set newLenDesc.[[Writable]] to true.
   7044     // (Not needed.)
   7045   }
   7046   // Most of steps 16 through 19 is implemented by JSArray::SetLength.
   7047   if (JSArray::ObservableSetLength(a, new_len).is_null()) {
   7048     DCHECK(isolate->has_pending_exception());
   7049     return Nothing<bool>();
   7050   }
   7051   // Steps 19d-ii, 20.
   7052   if (!new_writable) {
   7053     PropertyDescriptor readonly;
   7054     readonly.set_writable(false);
   7055     Maybe<bool> success = OrdinaryDefineOwnProperty(
   7056         isolate, a, isolate->factory()->length_string(), &readonly,
   7057         should_throw);
   7058     DCHECK(success.FromJust());
   7059     USE(success);
   7060   }
   7061   uint32_t actual_new_len = 0;
   7062   CHECK(a->length()->ToArrayLength(&actual_new_len));
   7063   // Steps 19d-v, 21. Return false if there were non-deletable elements.
   7064   bool result = actual_new_len == new_len;
   7065   if (!result) {
   7066     RETURN_FAILURE(
   7067         isolate, should_throw,
   7068         NewTypeError(MessageTemplate::kStrictDeleteProperty,
   7069                      isolate->factory()->NewNumberFromUint(actual_new_len - 1),
   7070                      a));
   7071   }
   7072   return Just(result);
   7073 }
   7074 
   7075 
   7076 // ES6 9.5.6
   7077 // static
   7078 Maybe<bool> JSProxy::DefineOwnProperty(Isolate* isolate, Handle<JSProxy> proxy,
   7079                                        Handle<Object> key,
   7080                                        PropertyDescriptor* desc,
   7081                                        ShouldThrow should_throw) {
   7082   STACK_CHECK(Nothing<bool>());
   7083   if (key->IsSymbol() && Handle<Symbol>::cast(key)->IsPrivate()) {
   7084     return AddPrivateProperty(isolate, proxy, Handle<Symbol>::cast(key), desc,
   7085                               should_throw);
   7086   }
   7087   Handle<String> trap_name = isolate->factory()->defineProperty_string();
   7088   // 1. Assert: IsPropertyKey(P) is true.
   7089   DCHECK(key->IsName() || key->IsNumber());
   7090   // 2. Let handler be the value of the [[ProxyHandler]] internal slot of O.
   7091   Handle<Object> handler(proxy->handler(), isolate);
   7092   // 3. If handler is null, throw a TypeError exception.
   7093   // 4. Assert: Type(handler) is Object.
   7094   if (proxy->IsRevoked()) {
   7095     isolate->Throw(*isolate->factory()->NewTypeError(
   7096         MessageTemplate::kProxyRevoked, trap_name));
   7097     return Nothing<bool>();
   7098   }
   7099   // 5. Let target be the value of the [[ProxyTarget]] internal slot of O.
   7100   Handle<JSReceiver> target(proxy->target(), isolate);
   7101   // 6. Let trap be ? GetMethod(handler, "defineProperty").
   7102   Handle<Object> trap;
   7103   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   7104       isolate, trap,
   7105       Object::GetMethod(Handle<JSReceiver>::cast(handler), trap_name),
   7106       Nothing<bool>());
   7107   // 7. If trap is undefined, then:
   7108   if (trap->IsUndefined()) {
   7109     // 7a. Return target.[[DefineOwnProperty]](P, Desc).
   7110     return JSReceiver::DefineOwnProperty(isolate, target, key, desc,
   7111                                          should_throw);
   7112   }
   7113   // 8. Let descObj be FromPropertyDescriptor(Desc).
   7114   Handle<Object> desc_obj = desc->ToObject(isolate);
   7115   // 9. Let booleanTrapResult be
   7116   //    ToBoolean(? Call(trap, handler, target, P, descObj)).
   7117   Handle<Name> property_name =
   7118       key->IsName()
   7119           ? Handle<Name>::cast(key)
   7120           : Handle<Name>::cast(isolate->factory()->NumberToString(key));
   7121   // Do not leak private property names.
   7122   DCHECK(!property_name->IsPrivate());
   7123   Handle<Object> trap_result_obj;
   7124   Handle<Object> args[] = {target, property_name, desc_obj};
   7125   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   7126       isolate, trap_result_obj,
   7127       Execution::Call(isolate, trap, handler, arraysize(args), args),
   7128       Nothing<bool>());
   7129   // 10. If booleanTrapResult is false, return false.
   7130   if (!trap_result_obj->BooleanValue()) {
   7131     RETURN_FAILURE(isolate, should_throw,
   7132                    NewTypeError(MessageTemplate::kProxyTrapReturnedFalsishFor,
   7133                                 trap_name, property_name));
   7134   }
   7135   // 11. Let targetDesc be ? target.[[GetOwnProperty]](P).
   7136   PropertyDescriptor target_desc;
   7137   Maybe<bool> target_found =
   7138       JSReceiver::GetOwnPropertyDescriptor(isolate, target, key, &target_desc);
   7139   MAYBE_RETURN(target_found, Nothing<bool>());
   7140   // 12. Let extensibleTarget be ? IsExtensible(target).
   7141   Maybe<bool> maybe_extensible = JSReceiver::IsExtensible(target);
   7142   MAYBE_RETURN(maybe_extensible, Nothing<bool>());
   7143   bool extensible_target = maybe_extensible.FromJust();
   7144   // 13. If Desc has a [[Configurable]] field and if Desc.[[Configurable]]
   7145   //     is false, then:
   7146   // 13a. Let settingConfigFalse be true.
   7147   // 14. Else let settingConfigFalse be false.
   7148   bool setting_config_false = desc->has_configurable() && !desc->configurable();
   7149   // 15. If targetDesc is undefined, then
   7150   if (!target_found.FromJust()) {
   7151     // 15a. If extensibleTarget is false, throw a TypeError exception.
   7152     if (!extensible_target) {
   7153       isolate->Throw(*isolate->factory()->NewTypeError(
   7154           MessageTemplate::kProxyDefinePropertyNonExtensible, property_name));
   7155       return Nothing<bool>();
   7156     }
   7157     // 15b. If settingConfigFalse is true, throw a TypeError exception.
   7158     if (setting_config_false) {
   7159       isolate->Throw(*isolate->factory()->NewTypeError(
   7160           MessageTemplate::kProxyDefinePropertyNonConfigurable, property_name));
   7161       return Nothing<bool>();
   7162     }
   7163   } else {
   7164     // 16. Else targetDesc is not undefined,
   7165     // 16a. If IsCompatiblePropertyDescriptor(extensibleTarget, Desc,
   7166     //      targetDesc) is false, throw a TypeError exception.
   7167     Maybe<bool> valid =
   7168         IsCompatiblePropertyDescriptor(isolate, extensible_target, desc,
   7169                                        &target_desc, property_name, DONT_THROW);
   7170     MAYBE_RETURN(valid, Nothing<bool>());
   7171     if (!valid.FromJust()) {
   7172       isolate->Throw(*isolate->factory()->NewTypeError(
   7173           MessageTemplate::kProxyDefinePropertyIncompatible, property_name));
   7174       return Nothing<bool>();
   7175     }
   7176     // 16b. If settingConfigFalse is true and targetDesc.[[Configurable]] is
   7177     //      true, throw a TypeError exception.
   7178     if (setting_config_false && target_desc.configurable()) {
   7179       isolate->Throw(*isolate->factory()->NewTypeError(
   7180           MessageTemplate::kProxyDefinePropertyNonConfigurable, property_name));
   7181       return Nothing<bool>();
   7182     }
   7183   }
   7184   // 17. Return true.
   7185   return Just(true);
   7186 }
   7187 
   7188 
   7189 // static
   7190 Maybe<bool> JSProxy::AddPrivateProperty(Isolate* isolate, Handle<JSProxy> proxy,
   7191                                         Handle<Symbol> private_name,
   7192                                         PropertyDescriptor* desc,
   7193                                         ShouldThrow should_throw) {
   7194   // Despite the generic name, this can only add private data properties.
   7195   if (!PropertyDescriptor::IsDataDescriptor(desc) ||
   7196       desc->ToAttributes() != DONT_ENUM) {
   7197     RETURN_FAILURE(isolate, should_throw,
   7198                    NewTypeError(MessageTemplate::kProxyPrivate));
   7199   }
   7200   DCHECK(proxy->map()->is_dictionary_map());
   7201   Handle<Object> value =
   7202       desc->has_value()
   7203           ? desc->value()
   7204           : Handle<Object>::cast(isolate->factory()->undefined_value());
   7205 
   7206   LookupIterator it(proxy, private_name);
   7207 
   7208   if (it.IsFound()) {
   7209     DCHECK_EQ(LookupIterator::DATA, it.state());
   7210     DCHECK_EQ(DONT_ENUM, it.property_details().attributes());
   7211     it.WriteDataValue(value);
   7212     return Just(true);
   7213   }
   7214 
   7215   Handle<NameDictionary> dict(proxy->property_dictionary());
   7216   PropertyDetails details(DONT_ENUM, DATA, 0, PropertyCellType::kNoCell);
   7217   Handle<NameDictionary> result =
   7218       NameDictionary::Add(dict, private_name, value, details);
   7219   if (!dict.is_identical_to(result)) proxy->set_properties(*result);
   7220   return Just(true);
   7221 }
   7222 
   7223 
   7224 // static
   7225 Maybe<bool> JSReceiver::GetOwnPropertyDescriptor(Isolate* isolate,
   7226                                                  Handle<JSReceiver> object,
   7227                                                  Handle<Object> key,
   7228                                                  PropertyDescriptor* desc) {
   7229   bool success = false;
   7230   DCHECK(key->IsName() || key->IsNumber());  // |key| is a PropertyKey...
   7231   LookupIterator it = LookupIterator::PropertyOrElement(
   7232       isolate, object, key, &success, LookupIterator::HIDDEN);
   7233   DCHECK(success);  // ...so creating a LookupIterator can't fail.
   7234   return GetOwnPropertyDescriptor(&it, desc);
   7235 }
   7236 
   7237 
   7238 // ES6 9.1.5.1
   7239 // Returns true on success, false if the property didn't exist, nothing if
   7240 // an exception was thrown.
   7241 // static
   7242 Maybe<bool> JSReceiver::GetOwnPropertyDescriptor(LookupIterator* it,
   7243                                                  PropertyDescriptor* desc) {
   7244   Isolate* isolate = it->isolate();
   7245   // "Virtual" dispatch.
   7246   if (it->IsFound() && it->GetHolder<JSReceiver>()->IsJSProxy()) {
   7247     return JSProxy::GetOwnPropertyDescriptor(isolate, it->GetHolder<JSProxy>(),
   7248                                              it->GetName(), desc);
   7249   }
   7250 
   7251   // 1. (Assert)
   7252   // 2. If O does not have an own property with key P, return undefined.
   7253   Maybe<PropertyAttributes> maybe = JSObject::GetPropertyAttributes(it);
   7254   MAYBE_RETURN(maybe, Nothing<bool>());
   7255   PropertyAttributes attrs = maybe.FromJust();
   7256   if (attrs == ABSENT) return Just(false);
   7257   DCHECK(!isolate->has_pending_exception());
   7258 
   7259   // 3. Let D be a newly created Property Descriptor with no fields.
   7260   DCHECK(desc->is_empty());
   7261   // 4. Let X be O's own property whose key is P.
   7262   // 5. If X is a data property, then
   7263   bool is_accessor_pair = it->state() == LookupIterator::ACCESSOR &&
   7264                           it->GetAccessors()->IsAccessorPair();
   7265   if (!is_accessor_pair) {
   7266     // 5a. Set D.[[Value]] to the value of X's [[Value]] attribute.
   7267     Handle<Object> value;
   7268     if (!JSObject::GetProperty(it).ToHandle(&value)) {
   7269       DCHECK(isolate->has_pending_exception());
   7270       return Nothing<bool>();
   7271     }
   7272     desc->set_value(value);
   7273     // 5b. Set D.[[Writable]] to the value of X's [[Writable]] attribute
   7274     desc->set_writable((attrs & READ_ONLY) == 0);
   7275   } else {
   7276     // 6. Else X is an accessor property, so
   7277     Handle<AccessorPair> accessors =
   7278         Handle<AccessorPair>::cast(it->GetAccessors());
   7279     // 6a. Set D.[[Get]] to the value of X's [[Get]] attribute.
   7280     desc->set_get(handle(accessors->GetComponent(ACCESSOR_GETTER), isolate));
   7281     // 6b. Set D.[[Set]] to the value of X's [[Set]] attribute.
   7282     desc->set_set(handle(accessors->GetComponent(ACCESSOR_SETTER), isolate));
   7283   }
   7284 
   7285   // 7. Set D.[[Enumerable]] to the value of X's [[Enumerable]] attribute.
   7286   desc->set_enumerable((attrs & DONT_ENUM) == 0);
   7287   // 8. Set D.[[Configurable]] to the value of X's [[Configurable]] attribute.
   7288   desc->set_configurable((attrs & DONT_DELETE) == 0);
   7289   // 9. Return D.
   7290   DCHECK(PropertyDescriptor::IsAccessorDescriptor(desc) !=
   7291          PropertyDescriptor::IsDataDescriptor(desc));
   7292   return Just(true);
   7293 }
   7294 
   7295 
   7296 // ES6 9.5.5
   7297 // static
   7298 Maybe<bool> JSProxy::GetOwnPropertyDescriptor(Isolate* isolate,
   7299                                               Handle<JSProxy> proxy,
   7300                                               Handle<Name> name,
   7301                                               PropertyDescriptor* desc) {
   7302   DCHECK(!name->IsPrivate());
   7303   STACK_CHECK(Nothing<bool>());
   7304 
   7305   Handle<String> trap_name =
   7306       isolate->factory()->getOwnPropertyDescriptor_string();
   7307   // 1. (Assert)
   7308   // 2. Let handler be the value of the [[ProxyHandler]] internal slot of O.
   7309   Handle<Object> handler(proxy->handler(), isolate);
   7310   // 3. If handler is null, throw a TypeError exception.
   7311   // 4. Assert: Type(handler) is Object.
   7312   if (proxy->IsRevoked()) {
   7313     isolate->Throw(*isolate->factory()->NewTypeError(
   7314         MessageTemplate::kProxyRevoked, trap_name));
   7315     return Nothing<bool>();
   7316   }
   7317   // 5. Let target be the value of the [[ProxyTarget]] internal slot of O.
   7318   Handle<JSReceiver> target(proxy->target(), isolate);
   7319   // 6. Let trap be ? GetMethod(handler, "getOwnPropertyDescriptor").
   7320   Handle<Object> trap;
   7321   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   7322       isolate, trap,
   7323       Object::GetMethod(Handle<JSReceiver>::cast(handler), trap_name),
   7324       Nothing<bool>());
   7325   // 7. If trap is undefined, then
   7326   if (trap->IsUndefined()) {
   7327     // 7a. Return target.[[GetOwnProperty]](P).
   7328     return JSReceiver::GetOwnPropertyDescriptor(isolate, target, name, desc);
   7329   }
   7330   // 8. Let trapResultObj be ? Call(trap, handler, target, P).
   7331   Handle<Object> trap_result_obj;
   7332   Handle<Object> args[] = {target, name};
   7333   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   7334       isolate, trap_result_obj,
   7335       Execution::Call(isolate, trap, handler, arraysize(args), args),
   7336       Nothing<bool>());
   7337   // 9. If Type(trapResultObj) is neither Object nor Undefined, throw a
   7338   //    TypeError exception.
   7339   if (!trap_result_obj->IsJSReceiver() && !trap_result_obj->IsUndefined()) {
   7340     isolate->Throw(*isolate->factory()->NewTypeError(
   7341         MessageTemplate::kProxyGetOwnPropertyDescriptorInvalid, name));
   7342     return Nothing<bool>();
   7343   }
   7344   // 10. Let targetDesc be ? target.[[GetOwnProperty]](P).
   7345   PropertyDescriptor target_desc;
   7346   Maybe<bool> found =
   7347       JSReceiver::GetOwnPropertyDescriptor(isolate, target, name, &target_desc);
   7348   MAYBE_RETURN(found, Nothing<bool>());
   7349   // 11. If trapResultObj is undefined, then
   7350   if (trap_result_obj->IsUndefined()) {
   7351     // 11a. If targetDesc is undefined, return undefined.
   7352     if (!found.FromJust()) return Just(false);
   7353     // 11b. If targetDesc.[[Configurable]] is false, throw a TypeError
   7354     //      exception.
   7355     if (!target_desc.configurable()) {
   7356       isolate->Throw(*isolate->factory()->NewTypeError(
   7357           MessageTemplate::kProxyGetOwnPropertyDescriptorUndefined, name));
   7358       return Nothing<bool>();
   7359     }
   7360     // 11c. Let extensibleTarget be ? IsExtensible(target).
   7361     Maybe<bool> extensible_target = JSReceiver::IsExtensible(target);
   7362     MAYBE_RETURN(extensible_target, Nothing<bool>());
   7363     // 11d. (Assert)
   7364     // 11e. If extensibleTarget is false, throw a TypeError exception.
   7365     if (!extensible_target.FromJust()) {
   7366       isolate->Throw(*isolate->factory()->NewTypeError(
   7367           MessageTemplate::kProxyGetOwnPropertyDescriptorNonExtensible, name));
   7368       return Nothing<bool>();
   7369     }
   7370     // 11f. Return undefined.
   7371     return Just(false);
   7372   }
   7373   // 12. Let extensibleTarget be ? IsExtensible(target).
   7374   Maybe<bool> extensible_target = JSReceiver::IsExtensible(target);
   7375   MAYBE_RETURN(extensible_target, Nothing<bool>());
   7376   // 13. Let resultDesc be ? ToPropertyDescriptor(trapResultObj).
   7377   if (!PropertyDescriptor::ToPropertyDescriptor(isolate, trap_result_obj,
   7378                                                 desc)) {
   7379     DCHECK(isolate->has_pending_exception());
   7380     return Nothing<bool>();
   7381   }
   7382   // 14. Call CompletePropertyDescriptor(resultDesc).
   7383   PropertyDescriptor::CompletePropertyDescriptor(isolate, desc);
   7384   // 15. Let valid be IsCompatiblePropertyDescriptor (extensibleTarget,
   7385   //     resultDesc, targetDesc).
   7386   Maybe<bool> valid =
   7387       IsCompatiblePropertyDescriptor(isolate, extensible_target.FromJust(),
   7388                                      desc, &target_desc, name, DONT_THROW);
   7389   MAYBE_RETURN(valid, Nothing<bool>());
   7390   // 16. If valid is false, throw a TypeError exception.
   7391   if (!valid.FromJust()) {
   7392     isolate->Throw(*isolate->factory()->NewTypeError(
   7393         MessageTemplate::kProxyGetOwnPropertyDescriptorIncompatible, name));
   7394     return Nothing<bool>();
   7395   }
   7396   // 17. If resultDesc.[[Configurable]] is false, then
   7397   if (!desc->configurable()) {
   7398     // 17a. If targetDesc is undefined or targetDesc.[[Configurable]] is true:
   7399     if (target_desc.is_empty() || target_desc.configurable()) {
   7400       // 17a i. Throw a TypeError exception.
   7401       isolate->Throw(*isolate->factory()->NewTypeError(
   7402           MessageTemplate::kProxyGetOwnPropertyDescriptorNonConfigurable,
   7403           name));
   7404       return Nothing<bool>();
   7405     }
   7406   }
   7407   // 18. Return resultDesc.
   7408   return Just(true);
   7409 }
   7410 
   7411 
   7412 bool JSObject::ReferencesObjectFromElements(FixedArray* elements,
   7413                                             ElementsKind kind,
   7414                                             Object* object) {
   7415   DCHECK(IsFastObjectElementsKind(kind) ||
   7416          kind == DICTIONARY_ELEMENTS);
   7417   if (IsFastObjectElementsKind(kind)) {
   7418     int length = IsJSArray()
   7419         ? Smi::cast(JSArray::cast(this)->length())->value()
   7420         : elements->length();
   7421     for (int i = 0; i < length; ++i) {
   7422       Object* element = elements->get(i);
   7423       if (!element->IsTheHole() && element == object) return true;
   7424     }
   7425   } else {
   7426     Object* key =
   7427         SeededNumberDictionary::cast(elements)->SlowReverseLookup(object);
   7428     if (!key->IsUndefined()) return true;
   7429   }
   7430   return false;
   7431 }
   7432 
   7433 
   7434 // Check whether this object references another object.
   7435 bool JSObject::ReferencesObject(Object* obj) {
   7436   Map* map_of_this = map();
   7437   Heap* heap = GetHeap();
   7438   DisallowHeapAllocation no_allocation;
   7439 
   7440   // Is the object the constructor for this object?
   7441   if (map_of_this->GetConstructor() == obj) {
   7442     return true;
   7443   }
   7444 
   7445   // Is the object the prototype for this object?
   7446   if (map_of_this->prototype() == obj) {
   7447     return true;
   7448   }
   7449 
   7450   // Check if the object is among the named properties.
   7451   Object* key = SlowReverseLookup(obj);
   7452   if (!key->IsUndefined()) {
   7453     return true;
   7454   }
   7455 
   7456   // Check if the object is among the indexed properties.
   7457   ElementsKind kind = GetElementsKind();
   7458   switch (kind) {
   7459     // Raw pixels and external arrays do not reference other
   7460     // objects.
   7461 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size)                        \
   7462     case TYPE##_ELEMENTS:                                                      \
   7463       break;
   7464 
   7465     TYPED_ARRAYS(TYPED_ARRAY_CASE)
   7466 #undef TYPED_ARRAY_CASE
   7467 
   7468     case FAST_DOUBLE_ELEMENTS:
   7469     case FAST_HOLEY_DOUBLE_ELEMENTS:
   7470       break;
   7471     case FAST_SMI_ELEMENTS:
   7472     case FAST_HOLEY_SMI_ELEMENTS:
   7473       break;
   7474     case FAST_ELEMENTS:
   7475     case FAST_HOLEY_ELEMENTS:
   7476     case DICTIONARY_ELEMENTS: {
   7477       FixedArray* elements = FixedArray::cast(this->elements());
   7478       if (ReferencesObjectFromElements(elements, kind, obj)) return true;
   7479       break;
   7480     }
   7481     case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
   7482     case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: {
   7483       FixedArray* parameter_map = FixedArray::cast(elements());
   7484       // Check the mapped parameters.
   7485       int length = parameter_map->length();
   7486       for (int i = 2; i < length; ++i) {
   7487         Object* value = parameter_map->get(i);
   7488         if (!value->IsTheHole() && value == obj) return true;
   7489       }
   7490       // Check the arguments.
   7491       FixedArray* arguments = FixedArray::cast(parameter_map->get(1));
   7492       kind = arguments->IsDictionary() ? DICTIONARY_ELEMENTS :
   7493           FAST_HOLEY_ELEMENTS;
   7494       if (ReferencesObjectFromElements(arguments, kind, obj)) return true;
   7495       break;
   7496     }
   7497   }
   7498 
   7499   // For functions check the context.
   7500   if (IsJSFunction()) {
   7501     // Get the constructor function for arguments array.
   7502     Map* arguments_map =
   7503         heap->isolate()->context()->native_context()->sloppy_arguments_map();
   7504     JSFunction* arguments_function =
   7505         JSFunction::cast(arguments_map->GetConstructor());
   7506 
   7507     // Get the context and don't check if it is the native context.
   7508     JSFunction* f = JSFunction::cast(this);
   7509     Context* context = f->context();
   7510     if (context->IsNativeContext()) {
   7511       return false;
   7512     }
   7513 
   7514     // Check the non-special context slots.
   7515     for (int i = Context::MIN_CONTEXT_SLOTS; i < context->length(); i++) {
   7516       // Only check JS objects.
   7517       if (context->get(i)->IsJSObject()) {
   7518         JSObject* ctxobj = JSObject::cast(context->get(i));
   7519         // If it is an arguments array check the content.
   7520         if (ctxobj->map()->GetConstructor() == arguments_function) {
   7521           if (ctxobj->ReferencesObject(obj)) {
   7522             return true;
   7523           }
   7524         } else if (ctxobj == obj) {
   7525           return true;
   7526         }
   7527       }
   7528     }
   7529 
   7530     // Check the context extension (if any) if it can have references.
   7531     if (context->has_extension() && !context->IsCatchContext()) {
   7532       // With harmony scoping, a JSFunction may have a script context.
   7533       // TODO(mvstanton): walk into the ScopeInfo.
   7534       if (context->IsScriptContext()) {
   7535         return false;
   7536       }
   7537 
   7538       return context->extension_object()->ReferencesObject(obj);
   7539     }
   7540   }
   7541 
   7542   // No references to object.
   7543   return false;
   7544 }
   7545 
   7546 
   7547 Maybe<bool> JSReceiver::SetIntegrityLevel(Handle<JSReceiver> receiver,
   7548                                           IntegrityLevel level,
   7549                                           ShouldThrow should_throw) {
   7550   DCHECK(level == SEALED || level == FROZEN);
   7551 
   7552   if (receiver->IsJSObject()) {
   7553     Handle<JSObject> object = Handle<JSObject>::cast(receiver);
   7554     if (!object->HasSloppyArgumentsElements() &&
   7555         !object->map()->is_observed() &&
   7556         (!object->map()->is_strong() || level == SEALED)) {  // Fast path.
   7557       if (level == SEALED) {
   7558         return JSObject::PreventExtensionsWithTransition<SEALED>(object,
   7559                                                                  should_throw);
   7560       } else {
   7561         return JSObject::PreventExtensionsWithTransition<FROZEN>(object,
   7562                                                                  should_throw);
   7563       }
   7564     }
   7565   }
   7566 
   7567   Isolate* isolate = receiver->GetIsolate();
   7568 
   7569   MAYBE_RETURN(JSReceiver::PreventExtensions(receiver, should_throw),
   7570                Nothing<bool>());
   7571 
   7572   Handle<FixedArray> keys;
   7573   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   7574       isolate, keys, JSReceiver::OwnPropertyKeys(receiver), Nothing<bool>());
   7575 
   7576   PropertyDescriptor no_conf;
   7577   no_conf.set_configurable(false);
   7578 
   7579   PropertyDescriptor no_conf_no_write;
   7580   no_conf_no_write.set_configurable(false);
   7581   no_conf_no_write.set_writable(false);
   7582 
   7583   if (level == SEALED) {
   7584     for (int i = 0; i < keys->length(); ++i) {
   7585       Handle<Object> key(keys->get(i), isolate);
   7586       MAYBE_RETURN(
   7587           DefineOwnProperty(isolate, receiver, key, &no_conf, THROW_ON_ERROR),
   7588           Nothing<bool>());
   7589     }
   7590     return Just(true);
   7591   }
   7592 
   7593   for (int i = 0; i < keys->length(); ++i) {
   7594     Handle<Object> key(keys->get(i), isolate);
   7595     PropertyDescriptor current_desc;
   7596     Maybe<bool> owned = JSReceiver::GetOwnPropertyDescriptor(
   7597         isolate, receiver, key, &current_desc);
   7598     MAYBE_RETURN(owned, Nothing<bool>());
   7599     if (owned.FromJust()) {
   7600       PropertyDescriptor desc =
   7601           PropertyDescriptor::IsAccessorDescriptor(&current_desc)
   7602               ? no_conf
   7603               : no_conf_no_write;
   7604       MAYBE_RETURN(
   7605           DefineOwnProperty(isolate, receiver, key, &desc, THROW_ON_ERROR),
   7606           Nothing<bool>());
   7607     }
   7608   }
   7609   return Just(true);
   7610 }
   7611 
   7612 
   7613 Maybe<bool> JSReceiver::TestIntegrityLevel(Handle<JSReceiver> object,
   7614                                            IntegrityLevel level) {
   7615   DCHECK(level == SEALED || level == FROZEN);
   7616   Isolate* isolate = object->GetIsolate();
   7617 
   7618   Maybe<bool> extensible = JSReceiver::IsExtensible(object);
   7619   MAYBE_RETURN(extensible, Nothing<bool>());
   7620   if (extensible.FromJust()) return Just(false);
   7621 
   7622   Handle<FixedArray> keys;
   7623   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   7624       isolate, keys, JSReceiver::OwnPropertyKeys(object), Nothing<bool>());
   7625 
   7626   for (int i = 0; i < keys->length(); ++i) {
   7627     Handle<Object> key(keys->get(i), isolate);
   7628     PropertyDescriptor current_desc;
   7629     Maybe<bool> owned = JSReceiver::GetOwnPropertyDescriptor(
   7630         isolate, object, key, &current_desc);
   7631     MAYBE_RETURN(owned, Nothing<bool>());
   7632     if (owned.FromJust()) {
   7633       if (current_desc.configurable()) return Just(false);
   7634       if (level == FROZEN &&
   7635           PropertyDescriptor::IsDataDescriptor(&current_desc) &&
   7636           current_desc.writable()) {
   7637         return Just(false);
   7638       }
   7639     }
   7640   }
   7641   return Just(true);
   7642 }
   7643 
   7644 
   7645 Maybe<bool> JSReceiver::PreventExtensions(Handle<JSReceiver> object,
   7646                                           ShouldThrow should_throw) {
   7647   if (object->IsJSProxy()) {
   7648     return JSProxy::PreventExtensions(Handle<JSProxy>::cast(object),
   7649                                       should_throw);
   7650   }
   7651   DCHECK(object->IsJSObject());
   7652   return JSObject::PreventExtensions(Handle<JSObject>::cast(object),
   7653                                      should_throw);
   7654 }
   7655 
   7656 
   7657 Maybe<bool> JSProxy::PreventExtensions(Handle<JSProxy> proxy,
   7658                                        ShouldThrow should_throw) {
   7659   Isolate* isolate = proxy->GetIsolate();
   7660   STACK_CHECK(Nothing<bool>());
   7661   Factory* factory = isolate->factory();
   7662   Handle<String> trap_name = factory->preventExtensions_string();
   7663 
   7664   if (proxy->IsRevoked()) {
   7665     isolate->Throw(
   7666         *factory->NewTypeError(MessageTemplate::kProxyRevoked, trap_name));
   7667     return Nothing<bool>();
   7668   }
   7669   Handle<JSReceiver> target(proxy->target(), isolate);
   7670   Handle<JSReceiver> handler(JSReceiver::cast(proxy->handler()), isolate);
   7671 
   7672   Handle<Object> trap;
   7673   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   7674       isolate, trap, Object::GetMethod(handler, trap_name), Nothing<bool>());
   7675   if (trap->IsUndefined()) {
   7676     return JSReceiver::PreventExtensions(target, should_throw);
   7677   }
   7678 
   7679   Handle<Object> trap_result;
   7680   Handle<Object> args[] = {target};
   7681   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   7682       isolate, trap_result,
   7683       Execution::Call(isolate, trap, handler, arraysize(args), args),
   7684       Nothing<bool>());
   7685   if (!trap_result->BooleanValue()) {
   7686     RETURN_FAILURE(
   7687         isolate, should_throw,
   7688         NewTypeError(MessageTemplate::kProxyTrapReturnedFalsish, trap_name));
   7689   }
   7690 
   7691   // Enforce the invariant.
   7692   Maybe<bool> target_result = JSReceiver::IsExtensible(target);
   7693   MAYBE_RETURN(target_result, Nothing<bool>());
   7694   if (target_result.FromJust()) {
   7695     isolate->Throw(*factory->NewTypeError(
   7696         MessageTemplate::kProxyPreventExtensionsExtensible));
   7697     return Nothing<bool>();
   7698   }
   7699   return Just(true);
   7700 }
   7701 
   7702 
   7703 Maybe<bool> JSObject::PreventExtensions(Handle<JSObject> object,
   7704                                         ShouldThrow should_throw) {
   7705   Isolate* isolate = object->GetIsolate();
   7706 
   7707   if (!object->HasSloppyArgumentsElements() && !object->map()->is_observed()) {
   7708     return PreventExtensionsWithTransition<NONE>(object, should_throw);
   7709   }
   7710 
   7711   if (object->IsAccessCheckNeeded() &&
   7712       !isolate->MayAccess(handle(isolate->context()), object)) {
   7713     isolate->ReportFailedAccessCheck(object);
   7714     RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>());
   7715     RETURN_FAILURE(isolate, should_throw,
   7716                    NewTypeError(MessageTemplate::kNoAccess));
   7717   }
   7718 
   7719   if (!object->map()->is_extensible()) return Just(true);
   7720 
   7721   if (object->IsJSGlobalProxy()) {
   7722     PrototypeIterator iter(isolate, object);
   7723     if (iter.IsAtEnd()) return Just(true);
   7724     DCHECK(PrototypeIterator::GetCurrent(iter)->IsJSGlobalObject());
   7725     return PreventExtensions(PrototypeIterator::GetCurrent<JSObject>(iter),
   7726                              should_throw);
   7727   }
   7728 
   7729   if (!object->HasFixedTypedArrayElements()) {
   7730     // If there are fast elements we normalize.
   7731     Handle<SeededNumberDictionary> dictionary = NormalizeElements(object);
   7732     DCHECK(object->HasDictionaryElements() ||
   7733            object->HasSlowArgumentsElements());
   7734 
   7735     // Make sure that we never go back to fast case.
   7736     object->RequireSlowElements(*dictionary);
   7737   }
   7738 
   7739   // Do a map transition, other objects with this map may still
   7740   // be extensible.
   7741   // TODO(adamk): Extend the NormalizedMapCache to handle non-extensible maps.
   7742   Handle<Map> new_map = Map::Copy(handle(object->map()), "PreventExtensions");
   7743 
   7744   new_map->set_is_extensible(false);
   7745   JSObject::MigrateToMap(object, new_map);
   7746   DCHECK(!object->map()->is_extensible());
   7747 
   7748   if (object->map()->is_observed()) {
   7749     RETURN_ON_EXCEPTION_VALUE(
   7750         isolate,
   7751         EnqueueChangeRecord(object, "preventExtensions", Handle<Name>(),
   7752                             isolate->factory()->the_hole_value()),
   7753         Nothing<bool>());
   7754   }
   7755   return Just(true);
   7756 }
   7757 
   7758 
   7759 Maybe<bool> JSReceiver::IsExtensible(Handle<JSReceiver> object) {
   7760   if (object->IsJSProxy()) {
   7761     return JSProxy::IsExtensible(Handle<JSProxy>::cast(object));
   7762   }
   7763   return Just(JSObject::IsExtensible(Handle<JSObject>::cast(object)));
   7764 }
   7765 
   7766 
   7767 Maybe<bool> JSProxy::IsExtensible(Handle<JSProxy> proxy) {
   7768   Isolate* isolate = proxy->GetIsolate();
   7769   STACK_CHECK(Nothing<bool>());
   7770   Factory* factory = isolate->factory();
   7771   Handle<String> trap_name = factory->isExtensible_string();
   7772 
   7773   if (proxy->IsRevoked()) {
   7774     isolate->Throw(
   7775         *factory->NewTypeError(MessageTemplate::kProxyRevoked, trap_name));
   7776     return Nothing<bool>();
   7777   }
   7778   Handle<JSReceiver> target(proxy->target(), isolate);
   7779   Handle<JSReceiver> handler(JSReceiver::cast(proxy->handler()), isolate);
   7780 
   7781   Handle<Object> trap;
   7782   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   7783       isolate, trap, Object::GetMethod(handler, trap_name), Nothing<bool>());
   7784   if (trap->IsUndefined()) {
   7785     return JSReceiver::IsExtensible(target);
   7786   }
   7787 
   7788   Handle<Object> trap_result;
   7789   Handle<Object> args[] = {target};
   7790   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   7791       isolate, trap_result,
   7792       Execution::Call(isolate, trap, handler, arraysize(args), args),
   7793       Nothing<bool>());
   7794 
   7795   // Enforce the invariant.
   7796   Maybe<bool> target_result = JSReceiver::IsExtensible(target);
   7797   MAYBE_RETURN(target_result, Nothing<bool>());
   7798   if (target_result.FromJust() != trap_result->BooleanValue()) {
   7799     isolate->Throw(
   7800         *factory->NewTypeError(MessageTemplate::kProxyIsExtensibleInconsistent,
   7801                                factory->ToBoolean(target_result.FromJust())));
   7802     return Nothing<bool>();
   7803   }
   7804   return target_result;
   7805 }
   7806 
   7807 
   7808 bool JSObject::IsExtensible(Handle<JSObject> object) {
   7809   Isolate* isolate = object->GetIsolate();
   7810   if (object->IsAccessCheckNeeded() &&
   7811       !isolate->MayAccess(handle(isolate->context()), object)) {
   7812     return true;
   7813   }
   7814   if (object->IsJSGlobalProxy()) {
   7815     PrototypeIterator iter(isolate, *object);
   7816     if (iter.IsAtEnd()) return false;
   7817     DCHECK(iter.GetCurrent()->IsJSGlobalObject());
   7818     return iter.GetCurrent<JSObject>()->map()->is_extensible();
   7819   }
   7820   return object->map()->is_extensible();
   7821 }
   7822 
   7823 
   7824 template <typename Dictionary>
   7825 static void ApplyAttributesToDictionary(Dictionary* dictionary,
   7826                                         const PropertyAttributes attributes) {
   7827   int capacity = dictionary->Capacity();
   7828   for (int i = 0; i < capacity; i++) {
   7829     Object* k = dictionary->KeyAt(i);
   7830     if (dictionary->IsKey(k) &&
   7831         !(k->IsSymbol() && Symbol::cast(k)->is_private())) {
   7832       PropertyDetails details = dictionary->DetailsAt(i);
   7833       int attrs = attributes;
   7834       // READ_ONLY is an invalid attribute for JS setters/getters.
   7835       if ((attributes & READ_ONLY) && details.type() == ACCESSOR_CONSTANT) {
   7836         Object* v = dictionary->ValueAt(i);
   7837         if (v->IsPropertyCell()) v = PropertyCell::cast(v)->value();
   7838         if (v->IsAccessorPair()) attrs &= ~READ_ONLY;
   7839       }
   7840       details = details.CopyAddAttributes(
   7841           static_cast<PropertyAttributes>(attrs));
   7842       dictionary->DetailsAtPut(i, details);
   7843     }
   7844   }
   7845 }
   7846 
   7847 
   7848 template <PropertyAttributes attrs>
   7849 Maybe<bool> JSObject::PreventExtensionsWithTransition(
   7850     Handle<JSObject> object, ShouldThrow should_throw) {
   7851   STATIC_ASSERT(attrs == NONE || attrs == SEALED || attrs == FROZEN);
   7852 
   7853   // Sealing/freezing sloppy arguments should be handled elsewhere.
   7854   DCHECK(!object->HasSloppyArgumentsElements());
   7855   DCHECK(!object->map()->is_observed());
   7856 
   7857   Isolate* isolate = object->GetIsolate();
   7858   if (object->IsAccessCheckNeeded() &&
   7859       !isolate->MayAccess(handle(isolate->context()), object)) {
   7860     isolate->ReportFailedAccessCheck(object);
   7861     RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>());
   7862     RETURN_FAILURE(isolate, should_throw,
   7863                    NewTypeError(MessageTemplate::kNoAccess));
   7864   }
   7865 
   7866   if (attrs == NONE && !object->map()->is_extensible()) return Just(true);
   7867 
   7868   if (object->IsJSGlobalProxy()) {
   7869     PrototypeIterator iter(isolate, object);
   7870     if (iter.IsAtEnd()) return Just(true);
   7871     DCHECK(PrototypeIterator::GetCurrent(iter)->IsJSGlobalObject());
   7872     return PreventExtensionsWithTransition<attrs>(
   7873         PrototypeIterator::GetCurrent<JSObject>(iter), should_throw);
   7874   }
   7875 
   7876   Handle<SeededNumberDictionary> new_element_dictionary;
   7877   if (!object->HasFixedTypedArrayElements() &&
   7878       !object->HasDictionaryElements()) {
   7879     int length =
   7880         object->IsJSArray()
   7881             ? Smi::cast(Handle<JSArray>::cast(object)->length())->value()
   7882             : object->elements()->length();
   7883     new_element_dictionary =
   7884         length == 0 ? isolate->factory()->empty_slow_element_dictionary()
   7885                     : GetNormalizedElementDictionary(
   7886                           object, handle(object->elements()));
   7887   }
   7888 
   7889   Handle<Symbol> transition_marker;
   7890   if (attrs == NONE) {
   7891     transition_marker = isolate->factory()->nonextensible_symbol();
   7892   } else if (attrs == SEALED) {
   7893     transition_marker = isolate->factory()->sealed_symbol();
   7894   } else {
   7895     DCHECK(attrs == FROZEN);
   7896     transition_marker = isolate->factory()->frozen_symbol();
   7897   }
   7898 
   7899   Handle<Map> old_map(object->map(), isolate);
   7900   Map* transition =
   7901       TransitionArray::SearchSpecial(*old_map, *transition_marker);
   7902   if (transition != NULL) {
   7903     Handle<Map> transition_map(transition, isolate);
   7904     DCHECK(transition_map->has_dictionary_elements() ||
   7905            transition_map->has_fixed_typed_array_elements());
   7906     DCHECK(!transition_map->is_extensible());
   7907     JSObject::MigrateToMap(object, transition_map);
   7908   } else if (TransitionArray::CanHaveMoreTransitions(old_map)) {
   7909     // Create a new descriptor array with the appropriate property attributes
   7910     Handle<Map> new_map = Map::CopyForPreventExtensions(
   7911         old_map, attrs, transition_marker, "CopyForPreventExtensions");
   7912     JSObject::MigrateToMap(object, new_map);
   7913   } else {
   7914     DCHECK(old_map->is_dictionary_map() || !old_map->is_prototype_map());
   7915     // Slow path: need to normalize properties for safety
   7916     NormalizeProperties(object, CLEAR_INOBJECT_PROPERTIES, 0,
   7917                         "SlowPreventExtensions");
   7918 
   7919     // Create a new map, since other objects with this map may be extensible.
   7920     // TODO(adamk): Extend the NormalizedMapCache to handle non-extensible maps.
   7921     Handle<Map> new_map =
   7922         Map::Copy(handle(object->map()), "SlowCopyForPreventExtensions");
   7923     new_map->set_is_extensible(false);
   7924     if (!new_element_dictionary.is_null()) {
   7925       new_map->set_elements_kind(DICTIONARY_ELEMENTS);
   7926     }
   7927     JSObject::MigrateToMap(object, new_map);
   7928 
   7929     if (attrs != NONE) {
   7930       if (object->IsJSGlobalObject()) {
   7931         ApplyAttributesToDictionary(object->global_dictionary(), attrs);
   7932       } else {
   7933         ApplyAttributesToDictionary(object->property_dictionary(), attrs);
   7934       }
   7935     }
   7936   }
   7937 
   7938   // Both seal and preventExtensions always go through without modifications to
   7939   // typed array elements. Freeze works only if there are no actual elements.
   7940   if (object->HasFixedTypedArrayElements()) {
   7941     if (attrs == FROZEN &&
   7942         JSArrayBufferView::cast(*object)->byte_length()->Number() > 0) {
   7943       isolate->Throw(*isolate->factory()->NewTypeError(
   7944           MessageTemplate::kCannotFreezeArrayBufferView));
   7945       return Nothing<bool>();
   7946     }
   7947     return Just(true);
   7948   }
   7949 
   7950   DCHECK(object->map()->has_dictionary_elements());
   7951   if (!new_element_dictionary.is_null()) {
   7952     object->set_elements(*new_element_dictionary);
   7953   }
   7954 
   7955   if (object->elements() != isolate->heap()->empty_slow_element_dictionary()) {
   7956     SeededNumberDictionary* dictionary = object->element_dictionary();
   7957     // Make sure we never go back to the fast case
   7958     object->RequireSlowElements(dictionary);
   7959     if (attrs != NONE) {
   7960       ApplyAttributesToDictionary(dictionary, attrs);
   7961     }
   7962   }
   7963 
   7964   return Just(true);
   7965 }
   7966 
   7967 
   7968 void JSObject::SetObserved(Handle<JSObject> object) {
   7969   DCHECK(!object->IsJSGlobalProxy());
   7970   DCHECK(!object->IsJSGlobalObject());
   7971   Isolate* isolate = object->GetIsolate();
   7972   Handle<Map> new_map;
   7973   Handle<Map> old_map(object->map(), isolate);
   7974   DCHECK(!old_map->is_observed());
   7975   Map* transition = TransitionArray::SearchSpecial(
   7976       *old_map, isolate->heap()->observed_symbol());
   7977   if (transition != NULL) {
   7978     new_map = handle(transition, isolate);
   7979     DCHECK(new_map->is_observed());
   7980   } else if (TransitionArray::CanHaveMoreTransitions(old_map)) {
   7981     new_map = Map::CopyForObserved(old_map);
   7982   } else {
   7983     new_map = Map::Copy(old_map, "SlowObserved");
   7984     new_map->set_is_observed();
   7985   }
   7986   JSObject::MigrateToMap(object, new_map);
   7987 }
   7988 
   7989 
   7990 Handle<Object> JSObject::FastPropertyAt(Handle<JSObject> object,
   7991                                         Representation representation,
   7992                                         FieldIndex index) {
   7993   Isolate* isolate = object->GetIsolate();
   7994   if (object->IsUnboxedDoubleField(index)) {
   7995     double value = object->RawFastDoublePropertyAt(index);
   7996     return isolate->factory()->NewHeapNumber(value);
   7997   }
   7998   Handle<Object> raw_value(object->RawFastPropertyAt(index), isolate);
   7999   return Object::WrapForRead(isolate, raw_value, representation);
   8000 }
   8001 
   8002 
   8003 template<class ContextObject>
   8004 class JSObjectWalkVisitor {
   8005  public:
   8006   JSObjectWalkVisitor(ContextObject* site_context, bool copying,
   8007                       JSObject::DeepCopyHints hints)
   8008     : site_context_(site_context),
   8009       copying_(copying),
   8010       hints_(hints) {}
   8011 
   8012   MUST_USE_RESULT MaybeHandle<JSObject> StructureWalk(Handle<JSObject> object);
   8013 
   8014  protected:
   8015   MUST_USE_RESULT inline MaybeHandle<JSObject> VisitElementOrProperty(
   8016       Handle<JSObject> object,
   8017       Handle<JSObject> value) {
   8018     Handle<AllocationSite> current_site = site_context()->EnterNewScope();
   8019     MaybeHandle<JSObject> copy_of_value = StructureWalk(value);
   8020     site_context()->ExitScope(current_site, value);
   8021     return copy_of_value;
   8022   }
   8023 
   8024   inline ContextObject* site_context() { return site_context_; }
   8025   inline Isolate* isolate() { return site_context()->isolate(); }
   8026 
   8027   inline bool copying() const { return copying_; }
   8028 
   8029  private:
   8030   ContextObject* site_context_;
   8031   const bool copying_;
   8032   const JSObject::DeepCopyHints hints_;
   8033 };
   8034 
   8035 
   8036 template <class ContextObject>
   8037 MaybeHandle<JSObject> JSObjectWalkVisitor<ContextObject>::StructureWalk(
   8038     Handle<JSObject> object) {
   8039   Isolate* isolate = this->isolate();
   8040   bool copying = this->copying();
   8041   bool shallow = hints_ == JSObject::kObjectIsShallow;
   8042 
   8043   if (!shallow) {
   8044     StackLimitCheck check(isolate);
   8045 
   8046     if (check.HasOverflowed()) {
   8047       isolate->StackOverflow();
   8048       return MaybeHandle<JSObject>();
   8049     }
   8050   }
   8051 
   8052   if (object->map()->is_deprecated()) {
   8053     JSObject::MigrateInstance(object);
   8054   }
   8055 
   8056   Handle<JSObject> copy;
   8057   if (copying) {
   8058     Handle<AllocationSite> site_to_pass;
   8059     if (site_context()->ShouldCreateMemento(object)) {
   8060       site_to_pass = site_context()->current();
   8061     }
   8062     copy = isolate->factory()->CopyJSObjectWithAllocationSite(
   8063         object, site_to_pass);
   8064   } else {
   8065     copy = object;
   8066   }
   8067 
   8068   DCHECK(copying || copy.is_identical_to(object));
   8069 
   8070   ElementsKind kind = copy->GetElementsKind();
   8071   if (copying && IsFastSmiOrObjectElementsKind(kind) &&
   8072       FixedArray::cast(copy->elements())->map() ==
   8073         isolate->heap()->fixed_cow_array_map()) {
   8074     isolate->counters()->cow_arrays_created_runtime()->Increment();
   8075   }
   8076 
   8077   if (!shallow) {
   8078     HandleScope scope(isolate);
   8079 
   8080     // Deep copy own properties.
   8081     if (copy->HasFastProperties()) {
   8082       Handle<DescriptorArray> descriptors(copy->map()->instance_descriptors());
   8083       int limit = copy->map()->NumberOfOwnDescriptors();
   8084       for (int i = 0; i < limit; i++) {
   8085         PropertyDetails details = descriptors->GetDetails(i);
   8086         if (details.type() != DATA) continue;
   8087         FieldIndex index = FieldIndex::ForDescriptor(copy->map(), i);
   8088         if (object->IsUnboxedDoubleField(index)) {
   8089           if (copying) {
   8090             double value = object->RawFastDoublePropertyAt(index);
   8091             copy->RawFastDoublePropertyAtPut(index, value);
   8092           }
   8093         } else {
   8094           Handle<Object> value(object->RawFastPropertyAt(index), isolate);
   8095           if (value->IsJSObject()) {
   8096             ASSIGN_RETURN_ON_EXCEPTION(
   8097                 isolate, value,
   8098                 VisitElementOrProperty(copy, Handle<JSObject>::cast(value)),
   8099                 JSObject);
   8100             if (copying) {
   8101               copy->FastPropertyAtPut(index, *value);
   8102             }
   8103           } else {
   8104             if (copying) {
   8105               Representation representation = details.representation();
   8106               value = Object::NewStorageFor(isolate, value, representation);
   8107               copy->FastPropertyAtPut(index, *value);
   8108             }
   8109           }
   8110         }
   8111       }
   8112     } else {
   8113       // Only deep copy fields from the object literal expression.
   8114       // In particular, don't try to copy the length attribute of
   8115       // an array.
   8116       PropertyFilter filter = static_cast<PropertyFilter>(
   8117           ONLY_WRITABLE | ONLY_ENUMERABLE | ONLY_CONFIGURABLE);
   8118       KeyAccumulator accumulator(isolate, filter);
   8119       accumulator.NextPrototype();
   8120       copy->CollectOwnPropertyNames(&accumulator, filter);
   8121       Handle<FixedArray> names = accumulator.GetKeys();
   8122       for (int i = 0; i < names->length(); i++) {
   8123         DCHECK(names->get(i)->IsName());
   8124         Handle<Name> name(Name::cast(names->get(i)));
   8125         Handle<Object> value =
   8126             Object::GetProperty(copy, name).ToHandleChecked();
   8127         if (value->IsJSObject()) {
   8128           Handle<JSObject> result;
   8129           ASSIGN_RETURN_ON_EXCEPTION(
   8130               isolate, result,
   8131               VisitElementOrProperty(copy, Handle<JSObject>::cast(value)),
   8132               JSObject);
   8133           if (copying) {
   8134             // Creating object copy for literals. No strict mode needed.
   8135             JSObject::SetProperty(copy, name, result, SLOPPY).Assert();
   8136           }
   8137         }
   8138       }
   8139     }
   8140 
   8141     // Deep copy own elements.
   8142     // Pixel elements cannot be created using an object literal.
   8143     DCHECK(!copy->HasFixedTypedArrayElements());
   8144     switch (kind) {
   8145       case FAST_SMI_ELEMENTS:
   8146       case FAST_ELEMENTS:
   8147       case FAST_HOLEY_SMI_ELEMENTS:
   8148       case FAST_HOLEY_ELEMENTS: {
   8149         Handle<FixedArray> elements(FixedArray::cast(copy->elements()));
   8150         if (elements->map() == isolate->heap()->fixed_cow_array_map()) {
   8151 #ifdef DEBUG
   8152           for (int i = 0; i < elements->length(); i++) {
   8153             DCHECK(!elements->get(i)->IsJSObject());
   8154           }
   8155 #endif
   8156         } else {
   8157           for (int i = 0; i < elements->length(); i++) {
   8158             Handle<Object> value(elements->get(i), isolate);
   8159             DCHECK(value->IsSmi() ||
   8160                    value->IsTheHole() ||
   8161                    (IsFastObjectElementsKind(copy->GetElementsKind())));
   8162             if (value->IsJSObject()) {
   8163               Handle<JSObject> result;
   8164               ASSIGN_RETURN_ON_EXCEPTION(
   8165                   isolate, result,
   8166                   VisitElementOrProperty(copy, Handle<JSObject>::cast(value)),
   8167                   JSObject);
   8168               if (copying) {
   8169                 elements->set(i, *result);
   8170               }
   8171             }
   8172           }
   8173         }
   8174         break;
   8175       }
   8176       case DICTIONARY_ELEMENTS: {
   8177         Handle<SeededNumberDictionary> element_dictionary(
   8178             copy->element_dictionary());
   8179         int capacity = element_dictionary->Capacity();
   8180         for (int i = 0; i < capacity; i++) {
   8181           Object* k = element_dictionary->KeyAt(i);
   8182           if (element_dictionary->IsKey(k)) {
   8183             Handle<Object> value(element_dictionary->ValueAt(i), isolate);
   8184             if (value->IsJSObject()) {
   8185               Handle<JSObject> result;
   8186               ASSIGN_RETURN_ON_EXCEPTION(
   8187                   isolate, result,
   8188                   VisitElementOrProperty(copy, Handle<JSObject>::cast(value)),
   8189                   JSObject);
   8190               if (copying) {
   8191                 element_dictionary->ValueAtPut(i, *result);
   8192               }
   8193             }
   8194           }
   8195         }
   8196         break;
   8197       }
   8198       case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
   8199       case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
   8200         UNIMPLEMENTED();
   8201         break;
   8202 
   8203 
   8204 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size)                        \
   8205       case TYPE##_ELEMENTS:                                                    \
   8206 
   8207       TYPED_ARRAYS(TYPED_ARRAY_CASE)
   8208 #undef TYPED_ARRAY_CASE
   8209 
   8210       case FAST_DOUBLE_ELEMENTS:
   8211       case FAST_HOLEY_DOUBLE_ELEMENTS:
   8212         // No contained objects, nothing to do.
   8213         break;
   8214     }
   8215   }
   8216 
   8217   return copy;
   8218 }
   8219 
   8220 
   8221 MaybeHandle<JSObject> JSObject::DeepWalk(
   8222     Handle<JSObject> object,
   8223     AllocationSiteCreationContext* site_context) {
   8224   JSObjectWalkVisitor<AllocationSiteCreationContext> v(site_context, false,
   8225                                                        kNoHints);
   8226   MaybeHandle<JSObject> result = v.StructureWalk(object);
   8227   Handle<JSObject> for_assert;
   8228   DCHECK(!result.ToHandle(&for_assert) || for_assert.is_identical_to(object));
   8229   return result;
   8230 }
   8231 
   8232 
   8233 MaybeHandle<JSObject> JSObject::DeepCopy(
   8234     Handle<JSObject> object,
   8235     AllocationSiteUsageContext* site_context,
   8236     DeepCopyHints hints) {
   8237   JSObjectWalkVisitor<AllocationSiteUsageContext> v(site_context, true, hints);
   8238   MaybeHandle<JSObject> copy = v.StructureWalk(object);
   8239   Handle<JSObject> for_assert;
   8240   DCHECK(!copy.ToHandle(&for_assert) || !for_assert.is_identical_to(object));
   8241   return copy;
   8242 }
   8243 
   8244 
   8245 // static
   8246 MaybeHandle<Object> JSReceiver::ToPrimitive(Handle<JSReceiver> receiver,
   8247                                             ToPrimitiveHint hint) {
   8248   Isolate* const isolate = receiver->GetIsolate();
   8249   Handle<Object> exotic_to_prim;
   8250   ASSIGN_RETURN_ON_EXCEPTION(
   8251       isolate, exotic_to_prim,
   8252       GetMethod(receiver, isolate->factory()->to_primitive_symbol()), Object);
   8253   if (!exotic_to_prim->IsUndefined()) {
   8254     Handle<Object> hint_string;
   8255     switch (hint) {
   8256       case ToPrimitiveHint::kDefault:
   8257         hint_string = isolate->factory()->default_string();
   8258         break;
   8259       case ToPrimitiveHint::kNumber:
   8260         hint_string = isolate->factory()->number_string();
   8261         break;
   8262       case ToPrimitiveHint::kString:
   8263         hint_string = isolate->factory()->string_string();
   8264         break;
   8265     }
   8266     Handle<Object> result;
   8267     ASSIGN_RETURN_ON_EXCEPTION(
   8268         isolate, result,
   8269         Execution::Call(isolate, exotic_to_prim, receiver, 1, &hint_string),
   8270         Object);
   8271     if (result->IsPrimitive()) return result;
   8272     THROW_NEW_ERROR(isolate,
   8273                     NewTypeError(MessageTemplate::kCannotConvertToPrimitive),
   8274                     Object);
   8275   }
   8276   return OrdinaryToPrimitive(receiver, (hint == ToPrimitiveHint::kString)
   8277                                            ? OrdinaryToPrimitiveHint::kString
   8278                                            : OrdinaryToPrimitiveHint::kNumber);
   8279 }
   8280 
   8281 
   8282 // static
   8283 MaybeHandle<Object> JSReceiver::OrdinaryToPrimitive(
   8284     Handle<JSReceiver> receiver, OrdinaryToPrimitiveHint hint) {
   8285   Isolate* const isolate = receiver->GetIsolate();
   8286   Handle<String> method_names[2];
   8287   switch (hint) {
   8288     case OrdinaryToPrimitiveHint::kNumber:
   8289       method_names[0] = isolate->factory()->valueOf_string();
   8290       method_names[1] = isolate->factory()->toString_string();
   8291       break;
   8292     case OrdinaryToPrimitiveHint::kString:
   8293       method_names[0] = isolate->factory()->toString_string();
   8294       method_names[1] = isolate->factory()->valueOf_string();
   8295       break;
   8296   }
   8297   for (Handle<String> name : method_names) {
   8298     Handle<Object> method;
   8299     ASSIGN_RETURN_ON_EXCEPTION(isolate, method,
   8300                                JSReceiver::GetProperty(receiver, name), Object);
   8301     if (method->IsCallable()) {
   8302       Handle<Object> result;
   8303       ASSIGN_RETURN_ON_EXCEPTION(
   8304           isolate, result, Execution::Call(isolate, method, receiver, 0, NULL),
   8305           Object);
   8306       if (result->IsPrimitive()) return result;
   8307     }
   8308   }
   8309   THROW_NEW_ERROR(isolate,
   8310                   NewTypeError(MessageTemplate::kCannotConvertToPrimitive),
   8311                   Object);
   8312 }
   8313 
   8314 
   8315 // TODO(cbruni/jkummerow): Consider moving this into elements.cc.
   8316 bool HasEnumerableElements(JSObject* object) {
   8317   if (object->IsJSValue()) {
   8318     Object* value = JSValue::cast(object)->value();
   8319     if (value->IsString()) {
   8320       if (String::cast(value)->length() > 0) return true;
   8321     }
   8322   }
   8323   switch (object->GetElementsKind()) {
   8324     case FAST_SMI_ELEMENTS:
   8325     case FAST_ELEMENTS:
   8326     case FAST_DOUBLE_ELEMENTS: {
   8327       int length = object->IsJSArray()
   8328                        ? Smi::cast(JSArray::cast(object)->length())->value()
   8329                        : object->elements()->length();
   8330       return length > 0;
   8331     }
   8332     case FAST_HOLEY_SMI_ELEMENTS:
   8333     case FAST_HOLEY_ELEMENTS: {
   8334       FixedArray* elements = FixedArray::cast(object->elements());
   8335       int length = object->IsJSArray()
   8336                        ? Smi::cast(JSArray::cast(object)->length())->value()
   8337                        : elements->length();
   8338       for (int i = 0; i < length; i++) {
   8339         if (!elements->is_the_hole(i)) return true;
   8340       }
   8341       return false;
   8342     }
   8343     case FAST_HOLEY_DOUBLE_ELEMENTS: {
   8344       int length = object->IsJSArray()
   8345                        ? Smi::cast(JSArray::cast(object)->length())->value()
   8346                        : object->elements()->length();
   8347       // Zero-length arrays would use the empty FixedArray...
   8348       if (length == 0) return false;
   8349       // ...so only cast to FixedDoubleArray otherwise.
   8350       FixedDoubleArray* elements = FixedDoubleArray::cast(object->elements());
   8351       for (int i = 0; i < length; i++) {
   8352         if (!elements->is_the_hole(i)) return true;
   8353       }
   8354       return false;
   8355     }
   8356 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
   8357     case TYPE##_ELEMENTS:
   8358 
   8359       TYPED_ARRAYS(TYPED_ARRAY_CASE)
   8360 #undef TYPED_ARRAY_CASE
   8361       {
   8362         int length = object->elements()->length();
   8363         return length > 0;
   8364       }
   8365     case DICTIONARY_ELEMENTS: {
   8366       SeededNumberDictionary* elements =
   8367           SeededNumberDictionary::cast(object->elements());
   8368       return elements->NumberOfElementsFilterAttributes(ONLY_ENUMERABLE) > 0;
   8369     }
   8370     case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
   8371     case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
   8372       // We're approximating non-empty arguments objects here.
   8373       return true;
   8374   }
   8375   UNREACHABLE();
   8376   return true;
   8377 }
   8378 
   8379 
   8380 // Tests for the fast common case for property enumeration:
   8381 // - This object and all prototypes has an enum cache (which means that
   8382 //   it is no proxy, has no interceptors and needs no access checks).
   8383 // - This object has no elements.
   8384 // - No prototype has enumerable properties/elements.
   8385 bool JSReceiver::IsSimpleEnum() {
   8386   for (PrototypeIterator iter(GetIsolate(), this,
   8387                               PrototypeIterator::START_AT_RECEIVER);
   8388        !iter.IsAtEnd(); iter.Advance()) {
   8389     if (!iter.GetCurrent()->IsJSObject()) return false;
   8390     JSObject* current = iter.GetCurrent<JSObject>();
   8391     int enum_length = current->map()->EnumLength();
   8392     if (enum_length == kInvalidEnumCacheSentinel) return false;
   8393     if (current->IsAccessCheckNeeded()) return false;
   8394     DCHECK(!current->HasNamedInterceptor());
   8395     DCHECK(!current->HasIndexedInterceptor());
   8396     if (HasEnumerableElements(current)) return false;
   8397     if (current != this && enum_length != 0) return false;
   8398   }
   8399   return true;
   8400 }
   8401 
   8402 
   8403 int Map::NumberOfDescribedProperties(DescriptorFlag which,
   8404                                      PropertyFilter filter) {
   8405   int result = 0;
   8406   DescriptorArray* descs = instance_descriptors();
   8407   int limit = which == ALL_DESCRIPTORS
   8408       ? descs->number_of_descriptors()
   8409       : NumberOfOwnDescriptors();
   8410   for (int i = 0; i < limit; i++) {
   8411     if ((descs->GetDetails(i).attributes() & filter) == 0 &&
   8412         !descs->GetKey(i)->FilterKey(filter)) {
   8413       result++;
   8414     }
   8415   }
   8416   return result;
   8417 }
   8418 
   8419 
   8420 int Map::NextFreePropertyIndex() {
   8421   int free_index = 0;
   8422   int number_of_own_descriptors = NumberOfOwnDescriptors();
   8423   DescriptorArray* descs = instance_descriptors();
   8424   for (int i = 0; i < number_of_own_descriptors; i++) {
   8425     PropertyDetails details = descs->GetDetails(i);
   8426     if (details.location() == kField) {
   8427       int candidate = details.field_index() + details.field_width_in_words();
   8428       if (candidate > free_index) free_index = candidate;
   8429     }
   8430   }
   8431   return free_index;
   8432 }
   8433 
   8434 
   8435 static bool ContainsOnlyValidKeys(Handle<FixedArray> array) {
   8436   int len = array->length();
   8437   for (int i = 0; i < len; i++) {
   8438     Object* e = array->get(i);
   8439     if (!(e->IsName() || e->IsNumber())) return false;
   8440   }
   8441   return true;
   8442 }
   8443 
   8444 
   8445 static Handle<FixedArray> ReduceFixedArrayTo(
   8446     Handle<FixedArray> array, int length) {
   8447   DCHECK(array->length() >= length);
   8448   if (array->length() == length) return array;
   8449 
   8450   Handle<FixedArray> new_array =
   8451       array->GetIsolate()->factory()->NewFixedArray(length);
   8452   for (int i = 0; i < length; ++i) new_array->set(i, array->get(i));
   8453   return new_array;
   8454 }
   8455 
   8456 
   8457 namespace {
   8458 
   8459 Handle<FixedArray> GetFastEnumPropertyKeys(Isolate* isolate,
   8460                                            Handle<JSObject> object,
   8461                                            bool cache_enum_length) {
   8462   Handle<Map> map(object->map());
   8463   Handle<DescriptorArray> descs =
   8464       Handle<DescriptorArray>(map->instance_descriptors(), isolate);
   8465   int own_property_count = map->EnumLength();
   8466   // If the enum length of the given map is set to kInvalidEnumCache, this
   8467   // means that the map itself has never used the present enum cache. The
   8468   // first step to using the cache is to set the enum length of the map by
   8469   // counting the number of own descriptors that are ENUMERABLE_STRINGS.
   8470   if (own_property_count == kInvalidEnumCacheSentinel) {
   8471     own_property_count =
   8472         map->NumberOfDescribedProperties(OWN_DESCRIPTORS, ENUMERABLE_STRINGS);
   8473   } else {
   8474     DCHECK(
   8475         own_property_count ==
   8476         map->NumberOfDescribedProperties(OWN_DESCRIPTORS, ENUMERABLE_STRINGS));
   8477   }
   8478 
   8479   if (descs->HasEnumCache()) {
   8480     Handle<FixedArray> keys(descs->GetEnumCache(), isolate);
   8481     // In case the number of properties required in the enum are actually
   8482     // present, we can reuse the enum cache. Otherwise, this means that the
   8483     // enum cache was generated for a previous (smaller) version of the
   8484     // Descriptor Array. In that case we regenerate the enum cache.
   8485     if (own_property_count <= keys->length()) {
   8486       isolate->counters()->enum_cache_hits()->Increment();
   8487       if (cache_enum_length) map->SetEnumLength(own_property_count);
   8488       return ReduceFixedArrayTo(keys, own_property_count);
   8489     }
   8490   }
   8491 
   8492   if (descs->IsEmpty()) {
   8493     isolate->counters()->enum_cache_hits()->Increment();
   8494     if (cache_enum_length) map->SetEnumLength(0);
   8495     return isolate->factory()->empty_fixed_array();
   8496   }
   8497 
   8498   isolate->counters()->enum_cache_misses()->Increment();
   8499 
   8500   Handle<FixedArray> storage =
   8501       isolate->factory()->NewFixedArray(own_property_count);
   8502   Handle<FixedArray> indices =
   8503       isolate->factory()->NewFixedArray(own_property_count);
   8504 
   8505   int size = map->NumberOfOwnDescriptors();
   8506   int index = 0;
   8507 
   8508   for (int i = 0; i < size; i++) {
   8509     PropertyDetails details = descs->GetDetails(i);
   8510     Object* key = descs->GetKey(i);
   8511     if (details.IsDontEnum() || key->IsSymbol()) continue;
   8512     storage->set(index, key);
   8513     if (!indices.is_null()) {
   8514       if (details.type() != DATA) {
   8515         indices = Handle<FixedArray>();
   8516       } else {
   8517         FieldIndex field_index = FieldIndex::ForDescriptor(*map, i);
   8518         int load_by_field_index = field_index.GetLoadByFieldIndex();
   8519         indices->set(index, Smi::FromInt(load_by_field_index));
   8520       }
   8521     }
   8522     index++;
   8523   }
   8524   DCHECK(index == storage->length());
   8525 
   8526   DescriptorArray::SetEnumCache(descs, isolate, storage, indices);
   8527   if (cache_enum_length) {
   8528     map->SetEnumLength(own_property_count);
   8529   }
   8530   return storage;
   8531 }
   8532 
   8533 }  // namespace
   8534 
   8535 
   8536 Handle<FixedArray> JSObject::GetEnumPropertyKeys(Handle<JSObject> object,
   8537                                                  bool cache_enum_length) {
   8538   Isolate* isolate = object->GetIsolate();
   8539   if (object->HasFastProperties()) {
   8540     return GetFastEnumPropertyKeys(isolate, object, cache_enum_length);
   8541   } else if (object->IsJSGlobalObject()) {
   8542     Handle<GlobalDictionary> dictionary(object->global_dictionary());
   8543     int length = dictionary->NumberOfEnumElements();
   8544     if (length == 0) {
   8545       return Handle<FixedArray>(isolate->heap()->empty_fixed_array());
   8546     }
   8547     Handle<FixedArray> storage = isolate->factory()->NewFixedArray(length);
   8548     dictionary->CopyEnumKeysTo(*storage);
   8549     return storage;
   8550   } else {
   8551     Handle<NameDictionary> dictionary(object->property_dictionary());
   8552     int length = dictionary->NumberOfEnumElements();
   8553     if (length == 0) {
   8554       return Handle<FixedArray>(isolate->heap()->empty_fixed_array());
   8555     }
   8556     Handle<FixedArray> storage = isolate->factory()->NewFixedArray(length);
   8557     dictionary->CopyEnumKeysTo(*storage);
   8558     return storage;
   8559   }
   8560 }
   8561 
   8562 
   8563 enum IndexedOrNamed { kIndexed, kNamed };
   8564 
   8565 
   8566 // Returns |true| on success, |nothing| on exception.
   8567 template <class Callback, IndexedOrNamed type>
   8568 static Maybe<bool> GetKeysFromInterceptor(Isolate* isolate,
   8569                                           Handle<JSReceiver> receiver,
   8570                                           Handle<JSObject> object,
   8571                                           PropertyFilter filter,
   8572                                           KeyAccumulator* accumulator) {
   8573   if (type == kIndexed) {
   8574     if (!object->HasIndexedInterceptor()) return Just(true);
   8575   } else {
   8576     if (!object->HasNamedInterceptor()) return Just(true);
   8577   }
   8578   Handle<InterceptorInfo> interceptor(type == kIndexed
   8579                                           ? object->GetIndexedInterceptor()
   8580                                           : object->GetNamedInterceptor(),
   8581                                       isolate);
   8582   if ((filter & ONLY_ALL_CAN_READ) && !interceptor->all_can_read()) {
   8583     return Just(true);
   8584   }
   8585   PropertyCallbackArguments args(isolate, interceptor->data(), *receiver,
   8586                                  *object);
   8587   v8::Local<v8::Object> result;
   8588   if (!interceptor->enumerator()->IsUndefined()) {
   8589     Callback enum_fun = v8::ToCData<Callback>(interceptor->enumerator());
   8590     const char* log_tag = type == kIndexed ? "interceptor-indexed-enum"
   8591                                            : "interceptor-named-enum";
   8592     LOG(isolate, ApiObjectAccess(log_tag, *object));
   8593     result = args.Call(enum_fun);
   8594   }
   8595   RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>());
   8596   if (result.IsEmpty()) return Just(true);
   8597   DCHECK(v8::Utils::OpenHandle(*result)->IsJSArray() ||
   8598          (v8::Utils::OpenHandle(*result)->IsJSObject() &&
   8599           Handle<JSObject>::cast(v8::Utils::OpenHandle(*result))
   8600               ->HasSloppyArgumentsElements()));
   8601   // The accumulator takes care of string/symbol filtering.
   8602   if (type == kIndexed) {
   8603     accumulator->AddElementKeysFromInterceptor(
   8604         Handle<JSObject>::cast(v8::Utils::OpenHandle(*result)));
   8605   } else {
   8606     accumulator->AddKeys(
   8607         Handle<JSObject>::cast(v8::Utils::OpenHandle(*result)));
   8608   }
   8609   return Just(true);
   8610 }
   8611 
   8612 
   8613 // Returns |true| on success, |false| if prototype walking should be stopped,
   8614 // |nothing| if an exception was thrown.
   8615 static Maybe<bool> GetKeysFromJSObject(Isolate* isolate,
   8616                                        Handle<JSReceiver> receiver,
   8617                                        Handle<JSObject> object,
   8618                                        PropertyFilter* filter,
   8619                                        JSReceiver::KeyCollectionType type,
   8620                                        KeyAccumulator* accumulator) {
   8621   accumulator->NextPrototype();
   8622   // Check access rights if required.
   8623   if (object->IsAccessCheckNeeded() &&
   8624       !isolate->MayAccess(handle(isolate->context()), object)) {
   8625     // The cross-origin spec says that [[Enumerate]] shall return an empty
   8626     // iterator when it doesn't have access...
   8627     if (type == JSReceiver::INCLUDE_PROTOS) {
   8628       return Just(false);
   8629     }
   8630     // ...whereas [[OwnPropertyKeys]] shall return whitelisted properties.
   8631     DCHECK(type == JSReceiver::OWN_ONLY);
   8632     *filter = static_cast<PropertyFilter>(*filter | ONLY_ALL_CAN_READ);
   8633   }
   8634 
   8635   JSObject::CollectOwnElementKeys(object, accumulator, *filter);
   8636 
   8637   // Add the element keys from the interceptor.
   8638   Maybe<bool> success =
   8639       GetKeysFromInterceptor<v8::IndexedPropertyEnumeratorCallback, kIndexed>(
   8640           isolate, receiver, object, *filter, accumulator);
   8641   MAYBE_RETURN(success, Nothing<bool>());
   8642 
   8643   if (*filter == ENUMERABLE_STRINGS) {
   8644     // We can cache the computed property keys if access checks are
   8645     // not needed and no interceptors are involved.
   8646     //
   8647     // We do not use the cache if the object has elements and
   8648     // therefore it does not make sense to cache the property names
   8649     // for arguments objects.  Arguments objects will always have
   8650     // elements.
   8651     // Wrapped strings have elements, but don't have an elements
   8652     // array or dictionary.  So the fast inline test for whether to
   8653     // use the cache says yes, so we should not create a cache.
   8654     Handle<JSFunction> arguments_function(
   8655         JSFunction::cast(isolate->sloppy_arguments_map()->GetConstructor()));
   8656     bool has_hidden_prototype = false;
   8657     Object* prototype = object->map()->prototype();
   8658     if (prototype->IsJSObject()) {
   8659       has_hidden_prototype =
   8660           JSObject::cast(prototype)->map()->is_hidden_prototype();
   8661     }
   8662     bool cache_enum_length =
   8663         ((object->map()->GetConstructor() != *arguments_function) &&
   8664          !object->IsJSValue() && !object->IsAccessCheckNeeded() &&
   8665          !object->HasNamedInterceptor() && !object->HasIndexedInterceptor() &&
   8666          !has_hidden_prototype);
   8667     // Compute the property keys and cache them if possible.
   8668     Handle<FixedArray> enum_keys =
   8669         JSObject::GetEnumPropertyKeys(object, cache_enum_length);
   8670     accumulator->AddKeys(enum_keys);
   8671   } else {
   8672     object->CollectOwnPropertyNames(accumulator, *filter);
   8673   }
   8674 
   8675   // Add the property keys from the interceptor.
   8676   success = GetKeysFromInterceptor<v8::GenericNamedPropertyEnumeratorCallback,
   8677                                    kNamed>(isolate, receiver, object, *filter,
   8678                                            accumulator);
   8679   MAYBE_RETURN(success, Nothing<bool>());
   8680   return Just(true);
   8681 }
   8682 
   8683 
   8684 // Helper function for JSReceiver::GetKeys() below. Can be called recursively.
   8685 // Returns |true| or |nothing|.
   8686 static Maybe<bool> GetKeys_Internal(Isolate* isolate,
   8687                                     Handle<JSReceiver> receiver,
   8688                                     Handle<JSReceiver> object,
   8689                                     JSReceiver::KeyCollectionType type,
   8690                                     PropertyFilter filter,
   8691                                     KeyAccumulator* accumulator) {
   8692   PrototypeIterator::WhereToEnd end = type == JSReceiver::OWN_ONLY
   8693                                           ? PrototypeIterator::END_AT_NON_HIDDEN
   8694                                           : PrototypeIterator::END_AT_NULL;
   8695   for (PrototypeIterator iter(isolate, object,
   8696                               PrototypeIterator::START_AT_RECEIVER);
   8697        !iter.IsAtEnd(end); iter.Advance()) {
   8698     Handle<JSReceiver> current =
   8699         PrototypeIterator::GetCurrent<JSReceiver>(iter);
   8700     Maybe<bool> result = Just(false);  // Dummy initialization.
   8701     if (current->IsJSProxy()) {
   8702       if (type == JSReceiver::OWN_ONLY) {
   8703         result = JSProxy::OwnPropertyKeys(isolate, receiver,
   8704                                           Handle<JSProxy>::cast(current),
   8705                                           filter, accumulator);
   8706       } else {
   8707         DCHECK(type == JSReceiver::INCLUDE_PROTOS);
   8708         result = JSProxy::Enumerate(
   8709             isolate, receiver, Handle<JSProxy>::cast(current), accumulator);
   8710       }
   8711     } else {
   8712       DCHECK(current->IsJSObject());
   8713       result = GetKeysFromJSObject(isolate, receiver,
   8714                                    Handle<JSObject>::cast(current), &filter,
   8715                                    type, accumulator);
   8716     }
   8717     MAYBE_RETURN(result, Nothing<bool>());
   8718     if (!result.FromJust()) break;  // |false| means "stop iterating".
   8719   }
   8720   return Just(true);
   8721 }
   8722 
   8723 
   8724 // ES6 9.5.11
   8725 // Returns false in case of exception.
   8726 // static
   8727 Maybe<bool> JSProxy::Enumerate(Isolate* isolate, Handle<JSReceiver> receiver,
   8728                                Handle<JSProxy> proxy,
   8729                                KeyAccumulator* accumulator) {
   8730   STACK_CHECK(Nothing<bool>());
   8731   // 1. Let handler be the value of the [[ProxyHandler]] internal slot of O.
   8732   Handle<Object> handler(proxy->handler(), isolate);
   8733   // 2. If handler is null, throw a TypeError exception.
   8734   // 3. Assert: Type(handler) is Object.
   8735   if (proxy->IsRevoked()) {
   8736     isolate->Throw(*isolate->factory()->NewTypeError(
   8737         MessageTemplate::kProxyRevoked,
   8738         isolate->factory()->enumerate_string()));
   8739     return Nothing<bool>();
   8740   }
   8741   // 4. Let target be the value of the [[ProxyTarget]] internal slot of O.
   8742   Handle<JSReceiver> target(proxy->target(), isolate);
   8743   // 5. Let trap be ? GetMethod(handler, "enumerate").
   8744   Handle<Object> trap;
   8745   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   8746       isolate, trap, Object::GetMethod(Handle<JSReceiver>::cast(handler),
   8747                                        isolate->factory()->enumerate_string()),
   8748       Nothing<bool>());
   8749   // 6. If trap is undefined, then
   8750   if (trap->IsUndefined()) {
   8751     // 6a. Return target.[[Enumerate]]().
   8752     return GetKeys_Internal(isolate, receiver, target, INCLUDE_PROTOS,
   8753                             ENUMERABLE_STRINGS, accumulator);
   8754   }
   8755   // The "proxy_enumerate" helper calls the trap (steps 7 - 9), which returns
   8756   // a generator; it then iterates over that generator until it's exhausted
   8757   // and returns an array containing the generated values.
   8758   Handle<Object> trap_result_array;
   8759   Handle<Object> args[] = {trap, handler, target};
   8760   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   8761       isolate, trap_result_array,
   8762       Execution::Call(isolate, isolate->proxy_enumerate(),
   8763                       isolate->factory()->undefined_value(), arraysize(args),
   8764                       args),
   8765       Nothing<bool>());
   8766   accumulator->NextPrototype();
   8767   accumulator->AddKeysFromProxy(Handle<JSObject>::cast(trap_result_array));
   8768   return Just(true);
   8769 }
   8770 
   8771 
   8772 // ES6 9.5.12
   8773 // Returns |true| on success, |nothing| in case of exception.
   8774 // static
   8775 Maybe<bool> JSProxy::OwnPropertyKeys(Isolate* isolate,
   8776                                      Handle<JSReceiver> receiver,
   8777                                      Handle<JSProxy> proxy,
   8778                                      PropertyFilter filter,
   8779                                      KeyAccumulator* accumulator) {
   8780   STACK_CHECK(Nothing<bool>());
   8781   // 1. Let handler be the value of the [[ProxyHandler]] internal slot of O.
   8782   Handle<Object> handler(proxy->handler(), isolate);
   8783   // 2. If handler is null, throw a TypeError exception.
   8784   // 3. Assert: Type(handler) is Object.
   8785   if (proxy->IsRevoked()) {
   8786     isolate->Throw(*isolate->factory()->NewTypeError(
   8787         MessageTemplate::kProxyRevoked, isolate->factory()->ownKeys_string()));
   8788     return Nothing<bool>();
   8789   }
   8790   // 4. Let target be the value of the [[ProxyTarget]] internal slot of O.
   8791   Handle<JSReceiver> target(proxy->target(), isolate);
   8792   // 5. Let trap be ? GetMethod(handler, "ownKeys").
   8793   Handle<Object> trap;
   8794   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   8795       isolate, trap, Object::GetMethod(Handle<JSReceiver>::cast(handler),
   8796                                        isolate->factory()->ownKeys_string()),
   8797       Nothing<bool>());
   8798   // 6. If trap is undefined, then
   8799   if (trap->IsUndefined()) {
   8800     // 6a. Return target.[[OwnPropertyKeys]]().
   8801     return GetKeys_Internal(isolate, receiver, target, OWN_ONLY, filter,
   8802                             accumulator);
   8803   }
   8804   // 7. Let trapResultArray be Call(trap, handler, target).
   8805   Handle<Object> trap_result_array;
   8806   Handle<Object> args[] = {target};
   8807   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   8808       isolate, trap_result_array,
   8809       Execution::Call(isolate, trap, handler, arraysize(args), args),
   8810       Nothing<bool>());
   8811   // 8. Let trapResult be ? CreateListFromArrayLike(trapResultArray,
   8812   //    String, Symbol).
   8813   Handle<FixedArray> trap_result;
   8814   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   8815       isolate, trap_result,
   8816       Object::CreateListFromArrayLike(isolate, trap_result_array,
   8817                                       ElementTypes::kStringAndSymbol),
   8818       Nothing<bool>());
   8819   // 9. Let extensibleTarget be ? IsExtensible(target).
   8820   Maybe<bool> maybe_extensible = JSReceiver::IsExtensible(target);
   8821   MAYBE_RETURN(maybe_extensible, Nothing<bool>());
   8822   bool extensible_target = maybe_extensible.FromJust();
   8823   // 10. Let targetKeys be ? target.[[OwnPropertyKeys]]().
   8824   Handle<FixedArray> target_keys;
   8825   ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, target_keys,
   8826                                    JSReceiver::OwnPropertyKeys(target),
   8827                                    Nothing<bool>());
   8828   // 11. (Assert)
   8829   // 12. Let targetConfigurableKeys be an empty List.
   8830   // To save memory, we're re-using target_keys and will modify it in-place.
   8831   Handle<FixedArray> target_configurable_keys = target_keys;
   8832   // 13. Let targetNonconfigurableKeys be an empty List.
   8833   Handle<FixedArray> target_nonconfigurable_keys =
   8834       isolate->factory()->NewFixedArray(target_keys->length());
   8835   int nonconfigurable_keys_length = 0;
   8836   // 14. Repeat, for each element key of targetKeys:
   8837   for (int i = 0; i < target_keys->length(); ++i) {
   8838     // 14a. Let desc be ? target.[[GetOwnProperty]](key).
   8839     PropertyDescriptor desc;
   8840     Maybe<bool> found = JSReceiver::GetOwnPropertyDescriptor(
   8841         isolate, target, handle(target_keys->get(i), isolate), &desc);
   8842     MAYBE_RETURN(found, Nothing<bool>());
   8843     // 14b. If desc is not undefined and desc.[[Configurable]] is false, then
   8844     if (found.FromJust() && !desc.configurable()) {
   8845       // 14b i. Append key as an element of targetNonconfigurableKeys.
   8846       target_nonconfigurable_keys->set(nonconfigurable_keys_length,
   8847                                        target_keys->get(i));
   8848       nonconfigurable_keys_length++;
   8849       // The key was moved, null it out in the original list.
   8850       target_keys->set(i, Smi::FromInt(0));
   8851     } else {
   8852       // 14c. Else,
   8853       // 14c i. Append key as an element of targetConfigurableKeys.
   8854       // (No-op, just keep it in |target_keys|.)
   8855     }
   8856   }
   8857   accumulator->NextPrototype();  // Prepare for accumulating keys.
   8858   // 15. If extensibleTarget is true and targetNonconfigurableKeys is empty,
   8859   //     then:
   8860   if (extensible_target && nonconfigurable_keys_length == 0) {
   8861     // 15a. Return trapResult.
   8862     return accumulator->AddKeysFromProxy(proxy, trap_result);
   8863   }
   8864   // 16. Let uncheckedResultKeys be a new List which is a copy of trapResult.
   8865   Zone set_zone;
   8866   const int kPresent = 1;
   8867   const int kGone = 0;
   8868   IdentityMap<int> unchecked_result_keys(isolate->heap(), &set_zone);
   8869   int unchecked_result_keys_size = trap_result->length();
   8870   for (int i = 0; i < trap_result->length(); ++i) {
   8871     DCHECK(trap_result->get(i)->IsUniqueName());
   8872     unchecked_result_keys.Set(trap_result->get(i), kPresent);
   8873   }
   8874   // 17. Repeat, for each key that is an element of targetNonconfigurableKeys:
   8875   for (int i = 0; i < nonconfigurable_keys_length; ++i) {
   8876     Object* key = target_nonconfigurable_keys->get(i);
   8877     // 17a. If key is not an element of uncheckedResultKeys, throw a
   8878     //      TypeError exception.
   8879     int* found = unchecked_result_keys.Find(key);
   8880     if (found == nullptr || *found == kGone) {
   8881       isolate->Throw(*isolate->factory()->NewTypeError(
   8882           MessageTemplate::kProxyOwnKeysMissing, handle(key, isolate)));
   8883       return Nothing<bool>();
   8884     }
   8885     // 17b. Remove key from uncheckedResultKeys.
   8886     *found = kGone;
   8887     unchecked_result_keys_size--;
   8888   }
   8889   // 18. If extensibleTarget is true, return trapResult.
   8890   if (extensible_target) {
   8891     return accumulator->AddKeysFromProxy(proxy, trap_result);
   8892   }
   8893   // 19. Repeat, for each key that is an element of targetConfigurableKeys:
   8894   for (int i = 0; i < target_configurable_keys->length(); ++i) {
   8895     Object* key = target_configurable_keys->get(i);
   8896     if (key->IsSmi()) continue;  // Zapped entry, was nonconfigurable.
   8897     // 19a. If key is not an element of uncheckedResultKeys, throw a
   8898     //      TypeError exception.
   8899     int* found = unchecked_result_keys.Find(key);
   8900     if (found == nullptr || *found == kGone) {
   8901       isolate->Throw(*isolate->factory()->NewTypeError(
   8902           MessageTemplate::kProxyOwnKeysMissing, handle(key, isolate)));
   8903       return Nothing<bool>();
   8904     }
   8905     // 19b. Remove key from uncheckedResultKeys.
   8906     *found = kGone;
   8907     unchecked_result_keys_size--;
   8908   }
   8909   // 20. If uncheckedResultKeys is not empty, throw a TypeError exception.
   8910   if (unchecked_result_keys_size != 0) {
   8911     DCHECK_GT(unchecked_result_keys_size, 0);
   8912     isolate->Throw(*isolate->factory()->NewTypeError(
   8913         MessageTemplate::kProxyOwnKeysNonExtensible));
   8914     return Nothing<bool>();
   8915   }
   8916   // 21. Return trapResult.
   8917   return accumulator->AddKeysFromProxy(proxy, trap_result);
   8918 }
   8919 
   8920 
   8921 MaybeHandle<FixedArray> JSReceiver::GetKeys(Handle<JSReceiver> object,
   8922                                             KeyCollectionType type,
   8923                                             PropertyFilter filter,
   8924                                             GetKeysConversion keys_conversion) {
   8925   USE(ContainsOnlyValidKeys);
   8926   Isolate* isolate = object->GetIsolate();
   8927   KeyAccumulator accumulator(isolate, filter);
   8928   MAYBE_RETURN(
   8929       GetKeys_Internal(isolate, object, object, type, filter, &accumulator),
   8930       MaybeHandle<FixedArray>());
   8931   Handle<FixedArray> keys = accumulator.GetKeys(keys_conversion);
   8932   DCHECK(ContainsOnlyValidKeys(keys));
   8933   return keys;
   8934 }
   8935 
   8936 
   8937 bool Map::DictionaryElementsInPrototypeChainOnly() {
   8938   if (IsDictionaryElementsKind(elements_kind())) {
   8939     return false;
   8940   }
   8941 
   8942   for (PrototypeIterator iter(this); !iter.IsAtEnd(); iter.Advance()) {
   8943     // Be conservative, don't walk into proxies.
   8944     if (iter.GetCurrent()->IsJSProxy()) return true;
   8945     // String wrappers have non-configurable, non-writable elements.
   8946     if (iter.GetCurrent()->IsStringWrapper()) return true;
   8947     JSObject* current = iter.GetCurrent<JSObject>();
   8948 
   8949     if (current->HasDictionaryElements() &&
   8950         current->element_dictionary()->requires_slow_elements()) {
   8951       return true;
   8952     }
   8953 
   8954     if (current->HasSlowArgumentsElements()) {
   8955       FixedArray* parameter_map = FixedArray::cast(current->elements());
   8956       Object* arguments = parameter_map->get(1);
   8957       if (SeededNumberDictionary::cast(arguments)->requires_slow_elements()) {
   8958         return true;
   8959       }
   8960     }
   8961   }
   8962 
   8963   return false;
   8964 }
   8965 
   8966 
   8967 MaybeHandle<Object> JSObject::DefineAccessor(Handle<JSObject> object,
   8968                                              Handle<Name> name,
   8969                                              Handle<Object> getter,
   8970                                              Handle<Object> setter,
   8971                                              PropertyAttributes attributes) {
   8972   Isolate* isolate = object->GetIsolate();
   8973 
   8974   LookupIterator it = LookupIterator::PropertyOrElement(
   8975       isolate, object, name, LookupIterator::HIDDEN_SKIP_INTERCEPTOR);
   8976   return DefineAccessor(&it, getter, setter, attributes);
   8977 }
   8978 
   8979 
   8980 MaybeHandle<Object> JSObject::DefineAccessor(LookupIterator* it,
   8981                                              Handle<Object> getter,
   8982                                              Handle<Object> setter,
   8983                                              PropertyAttributes attributes) {
   8984   Isolate* isolate = it->isolate();
   8985 
   8986   if (it->state() == LookupIterator::ACCESS_CHECK) {
   8987     if (!it->HasAccess()) {
   8988       isolate->ReportFailedAccessCheck(it->GetHolder<JSObject>());
   8989       RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object);
   8990       return isolate->factory()->undefined_value();
   8991     }
   8992     it->Next();
   8993   }
   8994 
   8995   Handle<JSObject> object = Handle<JSObject>::cast(it->GetReceiver());
   8996   // Ignore accessors on typed arrays.
   8997   if (it->IsElement() && object->HasFixedTypedArrayElements()) {
   8998     return it->factory()->undefined_value();
   8999   }
   9000 
   9001   Handle<Object> old_value = isolate->factory()->the_hole_value();
   9002   bool is_observed = object->map()->is_observed() &&
   9003                      !isolate->IsInternallyUsedPropertyName(it->GetName());
   9004   bool preexists = false;
   9005   if (is_observed) {
   9006     CHECK(GetPropertyAttributes(it).IsJust());
   9007     preexists = it->IsFound();
   9008     if (preexists && (it->state() == LookupIterator::DATA ||
   9009                       it->GetAccessors()->IsAccessorInfo())) {
   9010       old_value = GetProperty(it).ToHandleChecked();
   9011     }
   9012   }
   9013 
   9014   DCHECK(getter->IsCallable() || getter->IsUndefined() || getter->IsNull());
   9015   DCHECK(setter->IsCallable() || setter->IsUndefined() || setter->IsNull());
   9016   // At least one of the accessors needs to be a new value.
   9017   DCHECK(!getter->IsNull() || !setter->IsNull());
   9018   if (!getter->IsNull()) {
   9019     it->TransitionToAccessorProperty(ACCESSOR_GETTER, getter, attributes);
   9020   }
   9021   if (!setter->IsNull()) {
   9022     it->TransitionToAccessorProperty(ACCESSOR_SETTER, setter, attributes);
   9023   }
   9024 
   9025   if (is_observed) {
   9026     // Make sure the top context isn't changed.
   9027     AssertNoContextChange ncc(isolate);
   9028     const char* type = preexists ? "reconfigure" : "add";
   9029     RETURN_ON_EXCEPTION(
   9030         isolate, EnqueueChangeRecord(object, type, it->GetName(), old_value),
   9031         Object);
   9032   }
   9033 
   9034   return isolate->factory()->undefined_value();
   9035 }
   9036 
   9037 
   9038 MaybeHandle<Object> JSObject::SetAccessor(Handle<JSObject> object,
   9039                                           Handle<AccessorInfo> info) {
   9040   Isolate* isolate = object->GetIsolate();
   9041   Handle<Name> name(Name::cast(info->name()), isolate);
   9042 
   9043   LookupIterator it = LookupIterator::PropertyOrElement(
   9044       isolate, object, name, LookupIterator::HIDDEN_SKIP_INTERCEPTOR);
   9045 
   9046   // Duplicate ACCESS_CHECK outside of GetPropertyAttributes for the case that
   9047   // the FailedAccessCheckCallbackFunction doesn't throw an exception.
   9048   //
   9049   // TODO(verwaest): Force throw an exception if the callback doesn't, so we can
   9050   // remove reliance on default return values.
   9051   if (it.state() == LookupIterator::ACCESS_CHECK) {
   9052     if (!it.HasAccess()) {
   9053       isolate->ReportFailedAccessCheck(object);
   9054       RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object);
   9055       return it.factory()->undefined_value();
   9056     }
   9057     it.Next();
   9058   }
   9059 
   9060   // Ignore accessors on typed arrays.
   9061   if (it.IsElement() && object->HasFixedTypedArrayElements()) {
   9062     return it.factory()->undefined_value();
   9063   }
   9064 
   9065   CHECK(GetPropertyAttributes(&it).IsJust());
   9066 
   9067   // ES5 forbids turning a property into an accessor if it's not
   9068   // configurable. See 8.6.1 (Table 5).
   9069   if (it.IsFound() && !it.IsConfigurable()) {
   9070     return it.factory()->undefined_value();
   9071   }
   9072 
   9073   it.TransitionToAccessorPair(info, info->property_attributes());
   9074 
   9075   return object;
   9076 }
   9077 
   9078 
   9079 MaybeHandle<Object> JSObject::GetAccessor(Handle<JSObject> object,
   9080                                           Handle<Name> name,
   9081                                           AccessorComponent component) {
   9082   Isolate* isolate = object->GetIsolate();
   9083 
   9084   // Make sure that the top context does not change when doing callbacks or
   9085   // interceptor calls.
   9086   AssertNoContextChange ncc(isolate);
   9087 
   9088   LookupIterator it = LookupIterator::PropertyOrElement(
   9089       isolate, object, name, LookupIterator::PROTOTYPE_CHAIN_SKIP_INTERCEPTOR);
   9090 
   9091   for (; it.IsFound(); it.Next()) {
   9092     switch (it.state()) {
   9093       case LookupIterator::INTERCEPTOR:
   9094       case LookupIterator::NOT_FOUND:
   9095       case LookupIterator::TRANSITION:
   9096         UNREACHABLE();
   9097 
   9098       case LookupIterator::ACCESS_CHECK:
   9099         if (it.HasAccess()) continue;
   9100         isolate->ReportFailedAccessCheck(it.GetHolder<JSObject>());
   9101         RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object);
   9102         return isolate->factory()->undefined_value();
   9103 
   9104       case LookupIterator::JSPROXY:
   9105         return isolate->factory()->undefined_value();
   9106 
   9107       case LookupIterator::INTEGER_INDEXED_EXOTIC:
   9108         return isolate->factory()->undefined_value();
   9109       case LookupIterator::DATA:
   9110         continue;
   9111       case LookupIterator::ACCESSOR: {
   9112         Handle<Object> maybe_pair = it.GetAccessors();
   9113         if (maybe_pair->IsAccessorPair()) {
   9114           return handle(
   9115               AccessorPair::cast(*maybe_pair)->GetComponent(component),
   9116               isolate);
   9117         }
   9118       }
   9119     }
   9120   }
   9121 
   9122   return isolate->factory()->undefined_value();
   9123 }
   9124 
   9125 
   9126 Object* JSObject::SlowReverseLookup(Object* value) {
   9127   if (HasFastProperties()) {
   9128     int number_of_own_descriptors = map()->NumberOfOwnDescriptors();
   9129     DescriptorArray* descs = map()->instance_descriptors();
   9130     bool value_is_number = value->IsNumber();
   9131     for (int i = 0; i < number_of_own_descriptors; i++) {
   9132       if (descs->GetType(i) == DATA) {
   9133         FieldIndex field_index = FieldIndex::ForDescriptor(map(), i);
   9134         if (IsUnboxedDoubleField(field_index)) {
   9135           if (value_is_number) {
   9136             double property = RawFastDoublePropertyAt(field_index);
   9137             if (property == value->Number()) {
   9138               return descs->GetKey(i);
   9139             }
   9140           }
   9141         } else {
   9142           Object* property = RawFastPropertyAt(field_index);
   9143           if (field_index.is_double()) {
   9144             DCHECK(property->IsMutableHeapNumber());
   9145             if (value_is_number && property->Number() == value->Number()) {
   9146               return descs->GetKey(i);
   9147             }
   9148           } else if (property == value) {
   9149             return descs->GetKey(i);
   9150           }
   9151         }
   9152       } else if (descs->GetType(i) == DATA_CONSTANT) {
   9153         if (descs->GetConstant(i) == value) {
   9154           return descs->GetKey(i);
   9155         }
   9156       }
   9157     }
   9158     return GetHeap()->undefined_value();
   9159   } else if (IsJSGlobalObject()) {
   9160     return global_dictionary()->SlowReverseLookup(value);
   9161   } else {
   9162     return property_dictionary()->SlowReverseLookup(value);
   9163   }
   9164 }
   9165 
   9166 
   9167 Handle<Map> Map::RawCopy(Handle<Map> map, int instance_size) {
   9168   Isolate* isolate = map->GetIsolate();
   9169   Handle<Map> result =
   9170       isolate->factory()->NewMap(map->instance_type(), instance_size);
   9171   Handle<Object> prototype(map->prototype(), isolate);
   9172   Map::SetPrototype(result, prototype);
   9173   result->set_constructor_or_backpointer(map->GetConstructor());
   9174   result->set_bit_field(map->bit_field());
   9175   result->set_bit_field2(map->bit_field2());
   9176   int new_bit_field3 = map->bit_field3();
   9177   new_bit_field3 = OwnsDescriptors::update(new_bit_field3, true);
   9178   new_bit_field3 = NumberOfOwnDescriptorsBits::update(new_bit_field3, 0);
   9179   new_bit_field3 = EnumLengthBits::update(new_bit_field3,
   9180                                           kInvalidEnumCacheSentinel);
   9181   new_bit_field3 = Deprecated::update(new_bit_field3, false);
   9182   if (!map->is_dictionary_map()) {
   9183     new_bit_field3 = IsUnstable::update(new_bit_field3, false);
   9184   }
   9185   new_bit_field3 =
   9186       ConstructionCounter::update(new_bit_field3, kNoSlackTracking);
   9187   result->set_bit_field3(new_bit_field3);
   9188   return result;
   9189 }
   9190 
   9191 
   9192 Handle<Map> Map::Normalize(Handle<Map> fast_map, PropertyNormalizationMode mode,
   9193                            const char* reason) {
   9194   DCHECK(!fast_map->is_dictionary_map());
   9195 
   9196   Isolate* isolate = fast_map->GetIsolate();
   9197   Handle<Object> maybe_cache(isolate->native_context()->normalized_map_cache(),
   9198                              isolate);
   9199   bool use_cache = !fast_map->is_prototype_map() && !maybe_cache->IsUndefined();
   9200   Handle<NormalizedMapCache> cache;
   9201   if (use_cache) cache = Handle<NormalizedMapCache>::cast(maybe_cache);
   9202 
   9203   Handle<Map> new_map;
   9204   if (use_cache && cache->Get(fast_map, mode).ToHandle(&new_map)) {
   9205 #ifdef VERIFY_HEAP
   9206     if (FLAG_verify_heap) new_map->DictionaryMapVerify();
   9207 #endif
   9208 #ifdef ENABLE_SLOW_DCHECKS
   9209     if (FLAG_enable_slow_asserts) {
   9210       // The cached map should match newly created normalized map bit-by-bit,
   9211       // except for the code cache, which can contain some ics which can be
   9212       // applied to the shared map, dependent code and weak cell cache.
   9213       Handle<Map> fresh = Map::CopyNormalized(fast_map, mode);
   9214 
   9215       if (new_map->is_prototype_map()) {
   9216         // For prototype maps, the PrototypeInfo is not copied.
   9217         DCHECK(memcmp(fresh->address(), new_map->address(),
   9218                       kTransitionsOrPrototypeInfoOffset) == 0);
   9219         DCHECK(fresh->raw_transitions() == Smi::FromInt(0));
   9220         STATIC_ASSERT(kDescriptorsOffset ==
   9221                       kTransitionsOrPrototypeInfoOffset + kPointerSize);
   9222         DCHECK(memcmp(HeapObject::RawField(*fresh, kDescriptorsOffset),
   9223                       HeapObject::RawField(*new_map, kDescriptorsOffset),
   9224                       kCodeCacheOffset - kDescriptorsOffset) == 0);
   9225       } else {
   9226         DCHECK(memcmp(fresh->address(), new_map->address(),
   9227                       Map::kCodeCacheOffset) == 0);
   9228       }
   9229       STATIC_ASSERT(Map::kDependentCodeOffset ==
   9230                     Map::kCodeCacheOffset + kPointerSize);
   9231       STATIC_ASSERT(Map::kWeakCellCacheOffset ==
   9232                     Map::kDependentCodeOffset + kPointerSize);
   9233       int offset = Map::kWeakCellCacheOffset + kPointerSize;
   9234       DCHECK(memcmp(fresh->address() + offset,
   9235                     new_map->address() + offset,
   9236                     Map::kSize - offset) == 0);
   9237     }
   9238 #endif
   9239   } else {
   9240     new_map = Map::CopyNormalized(fast_map, mode);
   9241     if (use_cache) {
   9242       cache->Set(fast_map, new_map);
   9243       isolate->counters()->normalized_maps()->Increment();
   9244     }
   9245 #if TRACE_MAPS
   9246     if (FLAG_trace_maps) {
   9247       PrintF("[TraceMaps: Normalize from= %p to= %p reason= %s ]\n",
   9248              reinterpret_cast<void*>(*fast_map),
   9249              reinterpret_cast<void*>(*new_map), reason);
   9250     }
   9251 #endif
   9252   }
   9253   fast_map->NotifyLeafMapLayoutChange();
   9254   return new_map;
   9255 }
   9256 
   9257 
   9258 Handle<Map> Map::CopyNormalized(Handle<Map> map,
   9259                                 PropertyNormalizationMode mode) {
   9260   int new_instance_size = map->instance_size();
   9261   if (mode == CLEAR_INOBJECT_PROPERTIES) {
   9262     new_instance_size -= map->GetInObjectProperties() * kPointerSize;
   9263   }
   9264 
   9265   Handle<Map> result = RawCopy(map, new_instance_size);
   9266 
   9267   if (mode != CLEAR_INOBJECT_PROPERTIES) {
   9268     result->SetInObjectProperties(map->GetInObjectProperties());
   9269   }
   9270 
   9271   result->set_dictionary_map(true);
   9272   result->set_migration_target(false);
   9273 
   9274 #ifdef VERIFY_HEAP
   9275   if (FLAG_verify_heap) result->DictionaryMapVerify();
   9276 #endif
   9277 
   9278   return result;
   9279 }
   9280 
   9281 
   9282 Handle<Map> Map::CopyInitialMap(Handle<Map> map, int instance_size,
   9283                                 int in_object_properties,
   9284                                 int unused_property_fields) {
   9285 #ifdef DEBUG
   9286   Isolate* isolate = map->GetIsolate();
   9287   // Strict and strong function maps have Function as a constructor but the
   9288   // Function's initial map is a sloppy function map. Same holds for
   9289   // GeneratorFunction and its initial map.
   9290   Object* constructor = map->GetConstructor();
   9291   DCHECK(constructor->IsJSFunction());
   9292   DCHECK(*map == JSFunction::cast(constructor)->initial_map() ||
   9293          *map == *isolate->strict_function_map() ||
   9294          *map == *isolate->strong_function_map() ||
   9295          *map == *isolate->strict_generator_function_map() ||
   9296          *map == *isolate->strong_generator_function_map());
   9297 #endif
   9298   // Initial maps must always own their descriptors and it's descriptor array
   9299   // does not contain descriptors that do not belong to the map.
   9300   DCHECK(map->owns_descriptors());
   9301   DCHECK_EQ(map->NumberOfOwnDescriptors(),
   9302             map->instance_descriptors()->number_of_descriptors());
   9303 
   9304   Handle<Map> result = RawCopy(map, instance_size);
   9305 
   9306   // Please note instance_type and instance_size are set when allocated.
   9307   result->SetInObjectProperties(in_object_properties);
   9308   result->set_unused_property_fields(unused_property_fields);
   9309 
   9310   int number_of_own_descriptors = map->NumberOfOwnDescriptors();
   9311   if (number_of_own_descriptors > 0) {
   9312     // The copy will use the same descriptors array.
   9313     result->UpdateDescriptors(map->instance_descriptors(),
   9314                               map->GetLayoutDescriptor());
   9315     result->SetNumberOfOwnDescriptors(number_of_own_descriptors);
   9316 
   9317     DCHECK_EQ(result->NumberOfFields(),
   9318               in_object_properties - unused_property_fields);
   9319   }
   9320 
   9321   return result;
   9322 }
   9323 
   9324 
   9325 Handle<Map> Map::CopyDropDescriptors(Handle<Map> map) {
   9326   Handle<Map> result = RawCopy(map, map->instance_size());
   9327 
   9328   // Please note instance_type and instance_size are set when allocated.
   9329   if (map->IsJSObjectMap()) {
   9330     result->SetInObjectProperties(map->GetInObjectProperties());
   9331     result->set_unused_property_fields(map->unused_property_fields());
   9332   }
   9333   result->ClearCodeCache(map->GetHeap());
   9334   map->NotifyLeafMapLayoutChange();
   9335   return result;
   9336 }
   9337 
   9338 
   9339 Handle<Map> Map::ShareDescriptor(Handle<Map> map,
   9340                                  Handle<DescriptorArray> descriptors,
   9341                                  Descriptor* descriptor) {
   9342   // Sanity check. This path is only to be taken if the map owns its descriptor
   9343   // array, implying that its NumberOfOwnDescriptors equals the number of
   9344   // descriptors in the descriptor array.
   9345   DCHECK_EQ(map->NumberOfOwnDescriptors(),
   9346             map->instance_descriptors()->number_of_descriptors());
   9347 
   9348   Handle<Map> result = CopyDropDescriptors(map);
   9349   Handle<Name> name = descriptor->GetKey();
   9350 
   9351   // Ensure there's space for the new descriptor in the shared descriptor array.
   9352   if (descriptors->NumberOfSlackDescriptors() == 0) {
   9353     int old_size = descriptors->number_of_descriptors();
   9354     if (old_size == 0) {
   9355       descriptors = DescriptorArray::Allocate(map->GetIsolate(), 0, 1);
   9356     } else {
   9357       int slack = SlackForArraySize(old_size, kMaxNumberOfDescriptors);
   9358       EnsureDescriptorSlack(map, slack);
   9359       descriptors = handle(map->instance_descriptors());
   9360     }
   9361   }
   9362 
   9363   Handle<LayoutDescriptor> layout_descriptor =
   9364       FLAG_unbox_double_fields
   9365           ? LayoutDescriptor::ShareAppend(map, descriptor->GetDetails())
   9366           : handle(LayoutDescriptor::FastPointerLayout(), map->GetIsolate());
   9367 
   9368   {
   9369     DisallowHeapAllocation no_gc;
   9370     descriptors->Append(descriptor);
   9371     result->InitializeDescriptors(*descriptors, *layout_descriptor);
   9372   }
   9373 
   9374   DCHECK(result->NumberOfOwnDescriptors() == map->NumberOfOwnDescriptors() + 1);
   9375   ConnectTransition(map, result, name, SIMPLE_PROPERTY_TRANSITION);
   9376 
   9377   return result;
   9378 }
   9379 
   9380 
   9381 #if TRACE_MAPS
   9382 
   9383 // static
   9384 void Map::TraceTransition(const char* what, Map* from, Map* to, Name* name) {
   9385   if (FLAG_trace_maps) {
   9386     PrintF("[TraceMaps: %s from= %p to= %p name= ", what,
   9387            reinterpret_cast<void*>(from), reinterpret_cast<void*>(to));
   9388     name->NameShortPrint();
   9389     PrintF(" ]\n");
   9390   }
   9391 }
   9392 
   9393 
   9394 // static
   9395 void Map::TraceAllTransitions(Map* map) {
   9396   Object* transitions = map->raw_transitions();
   9397   int num_transitions = TransitionArray::NumberOfTransitions(transitions);
   9398   for (int i = -0; i < num_transitions; ++i) {
   9399     Map* target = TransitionArray::GetTarget(transitions, i);
   9400     Name* key = TransitionArray::GetKey(transitions, i);
   9401     Map::TraceTransition("Transition", map, target, key);
   9402     Map::TraceAllTransitions(target);
   9403   }
   9404 }
   9405 
   9406 #endif  // TRACE_MAPS
   9407 
   9408 
   9409 void Map::ConnectTransition(Handle<Map> parent, Handle<Map> child,
   9410                             Handle<Name> name, SimpleTransitionFlag flag) {
   9411   if (!parent->GetBackPointer()->IsUndefined()) {
   9412     parent->set_owns_descriptors(false);
   9413   } else {
   9414     // |parent| is initial map and it must keep the ownership, there must be no
   9415     // descriptors in the descriptors array that do not belong to the map.
   9416     DCHECK(parent->owns_descriptors());
   9417     DCHECK_EQ(parent->NumberOfOwnDescriptors(),
   9418               parent->instance_descriptors()->number_of_descriptors());
   9419   }
   9420   if (parent->is_prototype_map()) {
   9421     DCHECK(child->is_prototype_map());
   9422 #if TRACE_MAPS
   9423     Map::TraceTransition("NoTransition", *parent, *child, *name);
   9424 #endif
   9425   } else {
   9426     TransitionArray::Insert(parent, name, child, flag);
   9427 #if TRACE_MAPS
   9428     Map::TraceTransition("Transition", *parent, *child, *name);
   9429 #endif
   9430   }
   9431 }
   9432 
   9433 
   9434 Handle<Map> Map::CopyReplaceDescriptors(
   9435     Handle<Map> map, Handle<DescriptorArray> descriptors,
   9436     Handle<LayoutDescriptor> layout_descriptor, TransitionFlag flag,
   9437     MaybeHandle<Name> maybe_name, const char* reason,
   9438     SimpleTransitionFlag simple_flag) {
   9439   DCHECK(descriptors->IsSortedNoDuplicates());
   9440 
   9441   Handle<Map> result = CopyDropDescriptors(map);
   9442 
   9443   if (!map->is_prototype_map()) {
   9444     if (flag == INSERT_TRANSITION &&
   9445         TransitionArray::CanHaveMoreTransitions(map)) {
   9446       result->InitializeDescriptors(*descriptors, *layout_descriptor);
   9447 
   9448       Handle<Name> name;
   9449       CHECK(maybe_name.ToHandle(&name));
   9450       ConnectTransition(map, result, name, simple_flag);
   9451     } else {
   9452       int length = descriptors->number_of_descriptors();
   9453       for (int i = 0; i < length; i++) {
   9454         descriptors->SetRepresentation(i, Representation::Tagged());
   9455         if (descriptors->GetDetails(i).type() == DATA) {
   9456           descriptors->SetValue(i, HeapType::Any());
   9457         }
   9458       }
   9459       result->InitializeDescriptors(*descriptors,
   9460                                     LayoutDescriptor::FastPointerLayout());
   9461     }
   9462   } else {
   9463     result->InitializeDescriptors(*descriptors, *layout_descriptor);
   9464   }
   9465 #if TRACE_MAPS
   9466   if (FLAG_trace_maps &&
   9467       // Mirror conditions above that did not call ConnectTransition().
   9468       (map->is_prototype_map() ||
   9469        !(flag == INSERT_TRANSITION &&
   9470          TransitionArray::CanHaveMoreTransitions(map)))) {
   9471     PrintF("[TraceMaps: ReplaceDescriptors from= %p to= %p reason= %s ]\n",
   9472            reinterpret_cast<void*>(*map), reinterpret_cast<void*>(*result),
   9473            reason);
   9474   }
   9475 #endif
   9476 
   9477   return result;
   9478 }
   9479 
   9480 
   9481 // Creates transition tree starting from |split_map| and adding all descriptors
   9482 // starting from descriptor with index |split_map|.NumberOfOwnDescriptors().
   9483 // The way how it is done is tricky because of GC and special descriptors
   9484 // marking logic.
   9485 Handle<Map> Map::AddMissingTransitions(
   9486     Handle<Map> split_map, Handle<DescriptorArray> descriptors,
   9487     Handle<LayoutDescriptor> full_layout_descriptor) {
   9488   DCHECK(descriptors->IsSortedNoDuplicates());
   9489   int split_nof = split_map->NumberOfOwnDescriptors();
   9490   int nof_descriptors = descriptors->number_of_descriptors();
   9491   DCHECK_LT(split_nof, nof_descriptors);
   9492 
   9493   // Start with creating last map which will own full descriptors array.
   9494   // This is necessary to guarantee that GC will mark the whole descriptor
   9495   // array if any of the allocations happening below fail.
   9496   // Number of unused properties is temporarily incorrect and the layout
   9497   // descriptor could unnecessarily be in slow mode but we will fix after
   9498   // all the other intermediate maps are created.
   9499   Handle<Map> last_map = CopyDropDescriptors(split_map);
   9500   last_map->InitializeDescriptors(*descriptors, *full_layout_descriptor);
   9501   last_map->set_unused_property_fields(0);
   9502 
   9503   // During creation of intermediate maps we violate descriptors sharing
   9504   // invariant since the last map is not yet connected to the transition tree
   9505   // we create here. But it is safe because GC never trims map's descriptors
   9506   // if there are no dead transitions from that map and this is exactly the
   9507   // case for all the intermediate maps we create here.
   9508   Handle<Map> map = split_map;
   9509   for (int i = split_nof; i < nof_descriptors - 1; ++i) {
   9510     Handle<Map> new_map = CopyDropDescriptors(map);
   9511     InstallDescriptors(map, new_map, i, descriptors, full_layout_descriptor);
   9512     map = new_map;
   9513   }
   9514   map->NotifyLeafMapLayoutChange();
   9515   InstallDescriptors(map, last_map, nof_descriptors - 1, descriptors,
   9516                      full_layout_descriptor);
   9517   return last_map;
   9518 }
   9519 
   9520 
   9521 // Since this method is used to rewrite an existing transition tree, it can
   9522 // always insert transitions without checking.
   9523 void Map::InstallDescriptors(Handle<Map> parent, Handle<Map> child,
   9524                              int new_descriptor,
   9525                              Handle<DescriptorArray> descriptors,
   9526                              Handle<LayoutDescriptor> full_layout_descriptor) {
   9527   DCHECK(descriptors->IsSortedNoDuplicates());
   9528 
   9529   child->set_instance_descriptors(*descriptors);
   9530   child->SetNumberOfOwnDescriptors(new_descriptor + 1);
   9531 
   9532   int unused_property_fields = parent->unused_property_fields();
   9533   PropertyDetails details = descriptors->GetDetails(new_descriptor);
   9534   if (details.location() == kField) {
   9535     unused_property_fields = parent->unused_property_fields() - 1;
   9536     if (unused_property_fields < 0) {
   9537       unused_property_fields += JSObject::kFieldsAdded;
   9538     }
   9539   }
   9540   child->set_unused_property_fields(unused_property_fields);
   9541 
   9542   if (FLAG_unbox_double_fields) {
   9543     Handle<LayoutDescriptor> layout_descriptor =
   9544         LayoutDescriptor::AppendIfFastOrUseFull(parent, details,
   9545                                                 full_layout_descriptor);
   9546     child->set_layout_descriptor(*layout_descriptor);
   9547 #ifdef VERIFY_HEAP
   9548     // TODO(ishell): remove these checks from VERIFY_HEAP mode.
   9549     if (FLAG_verify_heap) {
   9550       CHECK(child->layout_descriptor()->IsConsistentWithMap(*child));
   9551     }
   9552 #else
   9553     SLOW_DCHECK(child->layout_descriptor()->IsConsistentWithMap(*child));
   9554 #endif
   9555     child->set_visitor_id(Heap::GetStaticVisitorIdForMap(*child));
   9556   }
   9557 
   9558   Handle<Name> name = handle(descriptors->GetKey(new_descriptor));
   9559   ConnectTransition(parent, child, name, SIMPLE_PROPERTY_TRANSITION);
   9560 }
   9561 
   9562 
   9563 Handle<Map> Map::CopyAsElementsKind(Handle<Map> map, ElementsKind kind,
   9564                                     TransitionFlag flag) {
   9565   Map* maybe_elements_transition_map = NULL;
   9566   if (flag == INSERT_TRANSITION) {
   9567     maybe_elements_transition_map = map->ElementsTransitionMap();
   9568     DCHECK(maybe_elements_transition_map == NULL ||
   9569            (maybe_elements_transition_map->elements_kind() ==
   9570                 DICTIONARY_ELEMENTS &&
   9571             kind == DICTIONARY_ELEMENTS));
   9572     DCHECK(!IsFastElementsKind(kind) ||
   9573            IsMoreGeneralElementsKindTransition(map->elements_kind(), kind));
   9574     DCHECK(kind != map->elements_kind());
   9575   }
   9576 
   9577   bool insert_transition = flag == INSERT_TRANSITION &&
   9578                            TransitionArray::CanHaveMoreTransitions(map) &&
   9579                            maybe_elements_transition_map == NULL;
   9580 
   9581   if (insert_transition) {
   9582     Handle<Map> new_map = CopyForTransition(map, "CopyAsElementsKind");
   9583     new_map->set_elements_kind(kind);
   9584 
   9585     Isolate* isolate = map->GetIsolate();
   9586     Handle<Name> name = isolate->factory()->elements_transition_symbol();
   9587     ConnectTransition(map, new_map, name, SPECIAL_TRANSITION);
   9588     return new_map;
   9589   }
   9590 
   9591   // Create a new free-floating map only if we are not allowed to store it.
   9592   Handle<Map> new_map = Copy(map, "CopyAsElementsKind");
   9593   new_map->set_elements_kind(kind);
   9594   return new_map;
   9595 }
   9596 
   9597 
   9598 Handle<Map> Map::AsLanguageMode(Handle<Map> initial_map,
   9599                                 LanguageMode language_mode, FunctionKind kind) {
   9600   DCHECK_EQ(JS_FUNCTION_TYPE, initial_map->instance_type());
   9601   // Initial map for sloppy mode function is stored in the function
   9602   // constructor. Initial maps for strict and strong modes are cached as
   9603   // special transitions using |strict_function_transition_symbol| and
   9604   // |strong_function_transition_symbol| respectively as a key.
   9605   if (language_mode == SLOPPY) return initial_map;
   9606   Isolate* isolate = initial_map->GetIsolate();
   9607   Factory* factory = isolate->factory();
   9608   Handle<Symbol> transition_symbol;
   9609 
   9610   int map_index = Context::FunctionMapIndex(language_mode, kind);
   9611   Handle<Map> function_map(
   9612       Map::cast(isolate->native_context()->get(map_index)));
   9613 
   9614   STATIC_ASSERT(LANGUAGE_END == 3);
   9615   switch (language_mode) {
   9616     case STRICT:
   9617       transition_symbol = factory->strict_function_transition_symbol();
   9618       break;
   9619     case STRONG:
   9620       transition_symbol = factory->strong_function_transition_symbol();
   9621       break;
   9622     default:
   9623       UNREACHABLE();
   9624       break;
   9625   }
   9626   Map* maybe_transition =
   9627       TransitionArray::SearchSpecial(*initial_map, *transition_symbol);
   9628   if (maybe_transition != NULL) {
   9629     return handle(maybe_transition, isolate);
   9630   }
   9631   initial_map->NotifyLeafMapLayoutChange();
   9632 
   9633   // Create new map taking descriptors from the |function_map| and all
   9634   // the other details from the |initial_map|.
   9635   Handle<Map> map =
   9636       Map::CopyInitialMap(function_map, initial_map->instance_size(),
   9637                           initial_map->GetInObjectProperties(),
   9638                           initial_map->unused_property_fields());
   9639   map->SetConstructor(initial_map->GetConstructor());
   9640   map->set_prototype(initial_map->prototype());
   9641 
   9642   if (TransitionArray::CanHaveMoreTransitions(initial_map)) {
   9643     Map::ConnectTransition(initial_map, map, transition_symbol,
   9644                            SPECIAL_TRANSITION);
   9645   }
   9646   return map;
   9647 }
   9648 
   9649 
   9650 Handle<Map> Map::CopyForObserved(Handle<Map> map) {
   9651   DCHECK(!map->is_observed());
   9652 
   9653   Isolate* isolate = map->GetIsolate();
   9654 
   9655   bool insert_transition =
   9656       TransitionArray::CanHaveMoreTransitions(map) && !map->is_prototype_map();
   9657 
   9658   if (insert_transition) {
   9659     Handle<Map> new_map = CopyForTransition(map, "CopyForObserved");
   9660     new_map->set_is_observed();
   9661 
   9662     Handle<Name> name = isolate->factory()->observed_symbol();
   9663     ConnectTransition(map, new_map, name, SPECIAL_TRANSITION);
   9664     return new_map;
   9665   }
   9666 
   9667   // Create a new free-floating map only if we are not allowed to store it.
   9668   Handle<Map> new_map = Map::Copy(map, "CopyForObserved");
   9669   new_map->set_is_observed();
   9670   return new_map;
   9671 }
   9672 
   9673 
   9674 Handle<Map> Map::CopyForTransition(Handle<Map> map, const char* reason) {
   9675   DCHECK(!map->is_prototype_map());
   9676   Handle<Map> new_map = CopyDropDescriptors(map);
   9677 
   9678   if (map->owns_descriptors()) {
   9679     // In case the map owned its own descriptors, share the descriptors and
   9680     // transfer ownership to the new map.
   9681     // The properties did not change, so reuse descriptors.
   9682     new_map->InitializeDescriptors(map->instance_descriptors(),
   9683                                    map->GetLayoutDescriptor());
   9684   } else {
   9685     // In case the map did not own its own descriptors, a split is forced by
   9686     // copying the map; creating a new descriptor array cell.
   9687     Handle<DescriptorArray> descriptors(map->instance_descriptors());
   9688     int number_of_own_descriptors = map->NumberOfOwnDescriptors();
   9689     Handle<DescriptorArray> new_descriptors =
   9690         DescriptorArray::CopyUpTo(descriptors, number_of_own_descriptors);
   9691     Handle<LayoutDescriptor> new_layout_descriptor(map->GetLayoutDescriptor(),
   9692                                                    map->GetIsolate());
   9693     new_map->InitializeDescriptors(*new_descriptors, *new_layout_descriptor);
   9694   }
   9695 
   9696 #if TRACE_MAPS
   9697   if (FLAG_trace_maps) {
   9698     PrintF("[TraceMaps: CopyForTransition from= %p to= %p reason= %s ]\n",
   9699            reinterpret_cast<void*>(*map), reinterpret_cast<void*>(*new_map),
   9700            reason);
   9701   }
   9702 #endif
   9703 
   9704   return new_map;
   9705 }
   9706 
   9707 
   9708 Handle<Map> Map::Copy(Handle<Map> map, const char* reason) {
   9709   Handle<DescriptorArray> descriptors(map->instance_descriptors());
   9710   int number_of_own_descriptors = map->NumberOfOwnDescriptors();
   9711   Handle<DescriptorArray> new_descriptors =
   9712       DescriptorArray::CopyUpTo(descriptors, number_of_own_descriptors);
   9713   Handle<LayoutDescriptor> new_layout_descriptor(map->GetLayoutDescriptor(),
   9714                                                  map->GetIsolate());
   9715   return CopyReplaceDescriptors(map, new_descriptors, new_layout_descriptor,
   9716                                 OMIT_TRANSITION, MaybeHandle<Name>(), reason,
   9717                                 SPECIAL_TRANSITION);
   9718 }
   9719 
   9720 
   9721 Handle<Map> Map::Create(Isolate* isolate, int inobject_properties) {
   9722   Handle<Map> copy =
   9723       Copy(handle(isolate->object_function()->initial_map()), "MapCreate");
   9724 
   9725   // Check that we do not overflow the instance size when adding the extra
   9726   // inobject properties. If the instance size overflows, we allocate as many
   9727   // properties as we can as inobject properties.
   9728   int max_extra_properties =
   9729       (JSObject::kMaxInstanceSize - JSObject::kHeaderSize) >> kPointerSizeLog2;
   9730 
   9731   if (inobject_properties > max_extra_properties) {
   9732     inobject_properties = max_extra_properties;
   9733   }
   9734 
   9735   int new_instance_size =
   9736       JSObject::kHeaderSize + kPointerSize * inobject_properties;
   9737 
   9738   // Adjust the map with the extra inobject properties.
   9739   copy->SetInObjectProperties(inobject_properties);
   9740   copy->set_unused_property_fields(inobject_properties);
   9741   copy->set_instance_size(new_instance_size);
   9742   copy->set_visitor_id(Heap::GetStaticVisitorIdForMap(*copy));
   9743   return copy;
   9744 }
   9745 
   9746 
   9747 Handle<Map> Map::CopyForPreventExtensions(Handle<Map> map,
   9748                                           PropertyAttributes attrs_to_add,
   9749                                           Handle<Symbol> transition_marker,
   9750                                           const char* reason) {
   9751   int num_descriptors = map->NumberOfOwnDescriptors();
   9752   Isolate* isolate = map->GetIsolate();
   9753   Handle<DescriptorArray> new_desc = DescriptorArray::CopyUpToAddAttributes(
   9754       handle(map->instance_descriptors(), isolate), num_descriptors,
   9755       attrs_to_add);
   9756   Handle<LayoutDescriptor> new_layout_descriptor(map->GetLayoutDescriptor(),
   9757                                                  isolate);
   9758   Handle<Map> new_map = CopyReplaceDescriptors(
   9759       map, new_desc, new_layout_descriptor, INSERT_TRANSITION,
   9760       transition_marker, reason, SPECIAL_TRANSITION);
   9761   new_map->set_is_extensible(false);
   9762   if (!IsFixedTypedArrayElementsKind(map->elements_kind())) {
   9763     new_map->set_elements_kind(DICTIONARY_ELEMENTS);
   9764   }
   9765   return new_map;
   9766 }
   9767 
   9768 
   9769 bool DescriptorArray::CanHoldValue(int descriptor, Object* value) {
   9770   PropertyDetails details = GetDetails(descriptor);
   9771   switch (details.type()) {
   9772     case DATA:
   9773       return value->FitsRepresentation(details.representation()) &&
   9774              GetFieldType(descriptor)->NowContains(value);
   9775 
   9776     case DATA_CONSTANT:
   9777       DCHECK(GetConstant(descriptor) != value ||
   9778              value->FitsRepresentation(details.representation()));
   9779       return GetConstant(descriptor) == value;
   9780 
   9781     case ACCESSOR:
   9782     case ACCESSOR_CONSTANT:
   9783       return false;
   9784   }
   9785 
   9786   UNREACHABLE();
   9787   return false;
   9788 }
   9789 
   9790 
   9791 // static
   9792 Handle<Map> Map::PrepareForDataProperty(Handle<Map> map, int descriptor,
   9793                                         Handle<Object> value) {
   9794   // Dictionaries can store any property value.
   9795   if (map->is_dictionary_map()) return map;
   9796 
   9797   // Migrate to the newest map before storing the property.
   9798   map = Update(map);
   9799 
   9800   Handle<DescriptorArray> descriptors(map->instance_descriptors());
   9801 
   9802   if (descriptors->CanHoldValue(descriptor, *value)) return map;
   9803 
   9804   Isolate* isolate = map->GetIsolate();
   9805   PropertyAttributes attributes =
   9806       descriptors->GetDetails(descriptor).attributes();
   9807   Representation representation = value->OptimalRepresentation();
   9808   Handle<HeapType> type = value->OptimalType(isolate, representation);
   9809 
   9810   return ReconfigureProperty(map, descriptor, kData, attributes, representation,
   9811                              type, FORCE_FIELD);
   9812 }
   9813 
   9814 
   9815 Handle<Map> Map::TransitionToDataProperty(Handle<Map> map, Handle<Name> name,
   9816                                           Handle<Object> value,
   9817                                           PropertyAttributes attributes,
   9818                                           StoreFromKeyed store_mode) {
   9819   // Dictionary maps can always have additional data properties.
   9820   if (map->is_dictionary_map()) return map;
   9821 
   9822   // Migrate to the newest map before storing the property.
   9823   map = Update(map);
   9824 
   9825   Map* maybe_transition =
   9826       TransitionArray::SearchTransition(*map, kData, *name, attributes);
   9827   if (maybe_transition != NULL) {
   9828     Handle<Map> transition(maybe_transition);
   9829     int descriptor = transition->LastAdded();
   9830 
   9831     DCHECK_EQ(attributes, transition->instance_descriptors()
   9832                               ->GetDetails(descriptor)
   9833                               .attributes());
   9834 
   9835     return Map::PrepareForDataProperty(transition, descriptor, value);
   9836   }
   9837 
   9838   TransitionFlag flag = INSERT_TRANSITION;
   9839   MaybeHandle<Map> maybe_map;
   9840   if (value->IsJSFunction()) {
   9841     maybe_map = Map::CopyWithConstant(map, name, value, attributes, flag);
   9842   } else if (!map->TooManyFastProperties(store_mode)) {
   9843     Isolate* isolate = name->GetIsolate();
   9844     Representation representation = value->OptimalRepresentation();
   9845     Handle<HeapType> type = value->OptimalType(isolate, representation);
   9846     maybe_map =
   9847         Map::CopyWithField(map, name, type, attributes, representation, flag);
   9848   }
   9849 
   9850   Handle<Map> result;
   9851   if (!maybe_map.ToHandle(&result)) {
   9852 #if TRACE_MAPS
   9853     if (FLAG_trace_maps) {
   9854       Vector<char> name_buffer = Vector<char>::New(100);
   9855       name->NameShortPrint(name_buffer);
   9856       Vector<char> buffer = Vector<char>::New(128);
   9857       SNPrintF(buffer, "TooManyFastProperties %s", name_buffer.start());
   9858       return Map::Normalize(map, CLEAR_INOBJECT_PROPERTIES, buffer.start());
   9859     }
   9860 #endif
   9861     return Map::Normalize(map, CLEAR_INOBJECT_PROPERTIES,
   9862                           "TooManyFastProperties");
   9863   }
   9864 
   9865   return result;
   9866 }
   9867 
   9868 
   9869 Handle<Map> Map::ReconfigureExistingProperty(Handle<Map> map, int descriptor,
   9870                                              PropertyKind kind,
   9871                                              PropertyAttributes attributes) {
   9872   // Dictionaries have to be reconfigured in-place.
   9873   DCHECK(!map->is_dictionary_map());
   9874 
   9875   if (!map->GetBackPointer()->IsMap()) {
   9876     // There is no benefit from reconstructing transition tree for maps without
   9877     // back pointers.
   9878     return CopyGeneralizeAllRepresentations(
   9879         map, descriptor, FORCE_FIELD, kind, attributes,
   9880         "GenAll_AttributesMismatchProtoMap");
   9881   }
   9882 
   9883   if (FLAG_trace_generalization) {
   9884     map->PrintReconfiguration(stdout, descriptor, kind, attributes);
   9885   }
   9886 
   9887   Isolate* isolate = map->GetIsolate();
   9888   Handle<Map> new_map = ReconfigureProperty(
   9889       map, descriptor, kind, attributes, Representation::None(),
   9890       HeapType::None(isolate), FORCE_FIELD);
   9891   return new_map;
   9892 }
   9893 
   9894 
   9895 Handle<Map> Map::TransitionToAccessorProperty(Handle<Map> map,
   9896                                               Handle<Name> name,
   9897                                               AccessorComponent component,
   9898                                               Handle<Object> accessor,
   9899                                               PropertyAttributes attributes) {
   9900   Isolate* isolate = name->GetIsolate();
   9901 
   9902   // Dictionary maps can always have additional data properties.
   9903   if (map->is_dictionary_map()) return map;
   9904 
   9905   // Migrate to the newest map before transitioning to the new property.
   9906   map = Update(map);
   9907 
   9908   PropertyNormalizationMode mode = map->is_prototype_map()
   9909                                        ? KEEP_INOBJECT_PROPERTIES
   9910                                        : CLEAR_INOBJECT_PROPERTIES;
   9911 
   9912   Map* maybe_transition =
   9913       TransitionArray::SearchTransition(*map, kAccessor, *name, attributes);
   9914   if (maybe_transition != NULL) {
   9915     Handle<Map> transition(maybe_transition, isolate);
   9916     DescriptorArray* descriptors = transition->instance_descriptors();
   9917     int descriptor = transition->LastAdded();
   9918     DCHECK(descriptors->GetKey(descriptor)->Equals(*name));
   9919 
   9920     DCHECK_EQ(kAccessor, descriptors->GetDetails(descriptor).kind());
   9921     DCHECK_EQ(attributes, descriptors->GetDetails(descriptor).attributes());
   9922 
   9923     Handle<Object> maybe_pair(descriptors->GetValue(descriptor), isolate);
   9924     if (!maybe_pair->IsAccessorPair()) {
   9925       return Map::Normalize(map, mode, "TransitionToAccessorFromNonPair");
   9926     }
   9927 
   9928     Handle<AccessorPair> pair = Handle<AccessorPair>::cast(maybe_pair);
   9929     if (pair->get(component) != *accessor) {
   9930       return Map::Normalize(map, mode, "TransitionToDifferentAccessor");
   9931     }
   9932 
   9933     return transition;
   9934   }
   9935 
   9936   Handle<AccessorPair> pair;
   9937   DescriptorArray* old_descriptors = map->instance_descriptors();
   9938   int descriptor = old_descriptors->SearchWithCache(*name, *map);
   9939   if (descriptor != DescriptorArray::kNotFound) {
   9940     if (descriptor != map->LastAdded()) {
   9941       return Map::Normalize(map, mode, "AccessorsOverwritingNonLast");
   9942     }
   9943     PropertyDetails old_details = old_descriptors->GetDetails(descriptor);
   9944     if (old_details.type() != ACCESSOR_CONSTANT) {
   9945       return Map::Normalize(map, mode, "AccessorsOverwritingNonAccessors");
   9946     }
   9947 
   9948     if (old_details.attributes() != attributes) {
   9949       return Map::Normalize(map, mode, "AccessorsWithAttributes");
   9950     }
   9951 
   9952     Handle<Object> maybe_pair(old_descriptors->GetValue(descriptor), isolate);
   9953     if (!maybe_pair->IsAccessorPair()) {
   9954       return Map::Normalize(map, mode, "AccessorsOverwritingNonPair");
   9955     }
   9956 
   9957     Object* current = Handle<AccessorPair>::cast(maybe_pair)->get(component);
   9958     if (current == *accessor) return map;
   9959 
   9960     if (!current->IsTheHole()) {
   9961       return Map::Normalize(map, mode, "AccessorsOverwritingAccessors");
   9962     }
   9963 
   9964     pair = AccessorPair::Copy(Handle<AccessorPair>::cast(maybe_pair));
   9965   } else if (map->NumberOfOwnDescriptors() >= kMaxNumberOfDescriptors ||
   9966              map->TooManyFastProperties(CERTAINLY_NOT_STORE_FROM_KEYED)) {
   9967     return Map::Normalize(map, CLEAR_INOBJECT_PROPERTIES, "TooManyAccessors");
   9968   } else {
   9969     pair = isolate->factory()->NewAccessorPair();
   9970   }
   9971 
   9972   pair->set(component, *accessor);
   9973   TransitionFlag flag = INSERT_TRANSITION;
   9974   AccessorConstantDescriptor new_desc(name, pair, attributes);
   9975   return Map::CopyInsertDescriptor(map, &new_desc, flag);
   9976 }
   9977 
   9978 
   9979 Handle<Map> Map::CopyAddDescriptor(Handle<Map> map,
   9980                                    Descriptor* descriptor,
   9981                                    TransitionFlag flag) {
   9982   Handle<DescriptorArray> descriptors(map->instance_descriptors());
   9983 
   9984   // Ensure the key is unique.
   9985   descriptor->KeyToUniqueName();
   9986 
   9987   // Share descriptors only if map owns descriptors and it not an initial map.
   9988   if (flag == INSERT_TRANSITION && map->owns_descriptors() &&
   9989       !map->GetBackPointer()->IsUndefined() &&
   9990       TransitionArray::CanHaveMoreTransitions(map)) {
   9991     return ShareDescriptor(map, descriptors, descriptor);
   9992   }
   9993 
   9994   int nof = map->NumberOfOwnDescriptors();
   9995   Handle<DescriptorArray> new_descriptors =
   9996       DescriptorArray::CopyUpTo(descriptors, nof, 1);
   9997   new_descriptors->Append(descriptor);
   9998 
   9999   Handle<LayoutDescriptor> new_layout_descriptor =
   10000       FLAG_unbox_double_fields
   10001           ? LayoutDescriptor::New(map, new_descriptors, nof + 1)
   10002           : handle(LayoutDescriptor::FastPointerLayout(), map->GetIsolate());
   10003 
   10004   return CopyReplaceDescriptors(map, new_descriptors, new_layout_descriptor,
   10005                                 flag, descriptor->GetKey(), "CopyAddDescriptor",
   10006                                 SIMPLE_PROPERTY_TRANSITION);
   10007 }
   10008 
   10009 
   10010 Handle<Map> Map::CopyInsertDescriptor(Handle<Map> map,
   10011                                       Descriptor* descriptor,
   10012                                       TransitionFlag flag) {
   10013   Handle<DescriptorArray> old_descriptors(map->instance_descriptors());
   10014 
   10015   // Ensure the key is unique.
   10016   descriptor->KeyToUniqueName();
   10017 
   10018   // We replace the key if it is already present.
   10019   int index = old_descriptors->SearchWithCache(*descriptor->GetKey(), *map);
   10020   if (index != DescriptorArray::kNotFound) {
   10021     return CopyReplaceDescriptor(map, old_descriptors, descriptor, index, flag);
   10022   }
   10023   return CopyAddDescriptor(map, descriptor, flag);
   10024 }
   10025 
   10026 
   10027 Handle<DescriptorArray> DescriptorArray::CopyUpTo(
   10028     Handle<DescriptorArray> desc,
   10029     int enumeration_index,
   10030     int slack) {
   10031   return DescriptorArray::CopyUpToAddAttributes(
   10032       desc, enumeration_index, NONE, slack);
   10033 }
   10034 
   10035 
   10036 Handle<DescriptorArray> DescriptorArray::CopyUpToAddAttributes(
   10037     Handle<DescriptorArray> desc,
   10038     int enumeration_index,
   10039     PropertyAttributes attributes,
   10040     int slack) {
   10041   if (enumeration_index + slack == 0) {
   10042     return desc->GetIsolate()->factory()->empty_descriptor_array();
   10043   }
   10044 
   10045   int size = enumeration_index;
   10046 
   10047   Handle<DescriptorArray> descriptors =
   10048       DescriptorArray::Allocate(desc->GetIsolate(), size, slack);
   10049 
   10050   if (attributes != NONE) {
   10051     for (int i = 0; i < size; ++i) {
   10052       Object* value = desc->GetValue(i);
   10053       Name* key = desc->GetKey(i);
   10054       PropertyDetails details = desc->GetDetails(i);
   10055       // Bulk attribute changes never affect private properties.
   10056       if (!key->IsPrivate()) {
   10057         int mask = DONT_DELETE | DONT_ENUM;
   10058         // READ_ONLY is an invalid attribute for JS setters/getters.
   10059         if (details.type() != ACCESSOR_CONSTANT || !value->IsAccessorPair()) {
   10060           mask |= READ_ONLY;
   10061         }
   10062         details = details.CopyAddAttributes(
   10063             static_cast<PropertyAttributes>(attributes & mask));
   10064       }
   10065       Descriptor inner_desc(
   10066           handle(key), handle(value, desc->GetIsolate()), details);
   10067       descriptors->SetDescriptor(i, &inner_desc);
   10068     }
   10069   } else {
   10070     for (int i = 0; i < size; ++i) {
   10071       descriptors->CopyFrom(i, *desc);
   10072     }
   10073   }
   10074 
   10075   if (desc->number_of_descriptors() != enumeration_index) descriptors->Sort();
   10076 
   10077   return descriptors;
   10078 }
   10079 
   10080 
   10081 bool DescriptorArray::IsEqualUpTo(DescriptorArray* desc, int nof_descriptors) {
   10082   for (int i = 0; i < nof_descriptors; i++) {
   10083     if (GetKey(i) != desc->GetKey(i) || GetValue(i) != desc->GetValue(i)) {
   10084       return false;
   10085     }
   10086     PropertyDetails details = GetDetails(i);
   10087     PropertyDetails other_details = desc->GetDetails(i);
   10088     if (details.type() != other_details.type() ||
   10089         !details.representation().Equals(other_details.representation())) {
   10090       return false;
   10091     }
   10092   }
   10093   return true;
   10094 }
   10095 
   10096 
   10097 Handle<Map> Map::CopyReplaceDescriptor(Handle<Map> map,
   10098                                        Handle<DescriptorArray> descriptors,
   10099                                        Descriptor* descriptor,
   10100                                        int insertion_index,
   10101                                        TransitionFlag flag) {
   10102   // Ensure the key is unique.
   10103   descriptor->KeyToUniqueName();
   10104 
   10105   Handle<Name> key = descriptor->GetKey();
   10106   DCHECK(*key == descriptors->GetKey(insertion_index));
   10107 
   10108   Handle<DescriptorArray> new_descriptors = DescriptorArray::CopyUpTo(
   10109       descriptors, map->NumberOfOwnDescriptors());
   10110 
   10111   new_descriptors->Replace(insertion_index, descriptor);
   10112   Handle<LayoutDescriptor> new_layout_descriptor = LayoutDescriptor::New(
   10113       map, new_descriptors, new_descriptors->number_of_descriptors());
   10114 
   10115   SimpleTransitionFlag simple_flag =
   10116       (insertion_index == descriptors->number_of_descriptors() - 1)
   10117           ? SIMPLE_PROPERTY_TRANSITION
   10118           : PROPERTY_TRANSITION;
   10119   return CopyReplaceDescriptors(map, new_descriptors, new_layout_descriptor,
   10120                                 flag, key, "CopyReplaceDescriptor",
   10121                                 simple_flag);
   10122 }
   10123 
   10124 
   10125 void Map::UpdateCodeCache(Handle<Map> map,
   10126                           Handle<Name> name,
   10127                           Handle<Code> code) {
   10128   Isolate* isolate = map->GetIsolate();
   10129   HandleScope scope(isolate);
   10130   // Allocate the code cache if not present.
   10131   if (map->code_cache()->IsFixedArray()) {
   10132     Handle<Object> result = isolate->factory()->NewCodeCache();
   10133     map->set_code_cache(*result);
   10134   }
   10135 
   10136   // Update the code cache.
   10137   Handle<CodeCache> code_cache(CodeCache::cast(map->code_cache()), isolate);
   10138   CodeCache::Update(code_cache, name, code);
   10139 }
   10140 
   10141 
   10142 Object* Map::FindInCodeCache(Name* name, Code::Flags flags) {
   10143   // Do a lookup if a code cache exists.
   10144   if (!code_cache()->IsFixedArray()) {
   10145     return CodeCache::cast(code_cache())->Lookup(name, flags);
   10146   } else {
   10147     return GetHeap()->undefined_value();
   10148   }
   10149 }
   10150 
   10151 
   10152 int Map::IndexInCodeCache(Object* name, Code* code) {
   10153   // Get the internal index if a code cache exists.
   10154   if (!code_cache()->IsFixedArray()) {
   10155     return CodeCache::cast(code_cache())->GetIndex(name, code);
   10156   }
   10157   return -1;
   10158 }
   10159 
   10160 
   10161 void Map::RemoveFromCodeCache(Name* name, Code* code, int index) {
   10162   // No GC is supposed to happen between a call to IndexInCodeCache and
   10163   // RemoveFromCodeCache so the code cache must be there.
   10164   DCHECK(!code_cache()->IsFixedArray());
   10165   CodeCache::cast(code_cache())->RemoveByIndex(name, code, index);
   10166 }
   10167 
   10168 
   10169 void CodeCache::Update(
   10170     Handle<CodeCache> code_cache, Handle<Name> name, Handle<Code> code) {
   10171   // The number of monomorphic stubs for normal load/store/call IC's can grow to
   10172   // a large number and therefore they need to go into a hash table. They are
   10173   // used to load global properties from cells.
   10174   if (code->type() == Code::NORMAL) {
   10175     // Make sure that a hash table is allocated for the normal load code cache.
   10176     if (code_cache->normal_type_cache()->IsUndefined()) {
   10177       Handle<Object> result =
   10178           CodeCacheHashTable::New(code_cache->GetIsolate(),
   10179                                   CodeCacheHashTable::kInitialSize);
   10180       code_cache->set_normal_type_cache(*result);
   10181     }
   10182     UpdateNormalTypeCache(code_cache, name, code);
   10183   } else {
   10184     DCHECK(code_cache->default_cache()->IsFixedArray());
   10185     UpdateDefaultCache(code_cache, name, code);
   10186   }
   10187 }
   10188 
   10189 
   10190 void CodeCache::UpdateDefaultCache(
   10191     Handle<CodeCache> code_cache, Handle<Name> name, Handle<Code> code) {
   10192   // When updating the default code cache we disregard the type encoded in the
   10193   // flags. This allows call constant stubs to overwrite call field
   10194   // stubs, etc.
   10195   Code::Flags flags = Code::RemoveTypeFromFlags(code->flags());
   10196 
   10197   // First check whether we can update existing code cache without
   10198   // extending it.
   10199   Handle<FixedArray> cache = handle(code_cache->default_cache());
   10200   int length = cache->length();
   10201   {
   10202     DisallowHeapAllocation no_alloc;
   10203     int deleted_index = -1;
   10204     for (int i = 0; i < length; i += kCodeCacheEntrySize) {
   10205       Object* key = cache->get(i);
   10206       if (key->IsNull()) {
   10207         if (deleted_index < 0) deleted_index = i;
   10208         continue;
   10209       }
   10210       if (key->IsUndefined()) {
   10211         if (deleted_index >= 0) i = deleted_index;
   10212         cache->set(i + kCodeCacheEntryNameOffset, *name);
   10213         cache->set(i + kCodeCacheEntryCodeOffset, *code);
   10214         return;
   10215       }
   10216       if (name->Equals(Name::cast(key))) {
   10217         Code::Flags found =
   10218             Code::cast(cache->get(i + kCodeCacheEntryCodeOffset))->flags();
   10219         if (Code::RemoveTypeFromFlags(found) == flags) {
   10220           cache->set(i + kCodeCacheEntryCodeOffset, *code);
   10221           return;
   10222         }
   10223       }
   10224     }
   10225 
   10226     // Reached the end of the code cache.  If there were deleted
   10227     // elements, reuse the space for the first of them.
   10228     if (deleted_index >= 0) {
   10229       cache->set(deleted_index + kCodeCacheEntryNameOffset, *name);
   10230       cache->set(deleted_index + kCodeCacheEntryCodeOffset, *code);
   10231       return;
   10232     }
   10233   }
   10234 
   10235   // Extend the code cache with some new entries (at least one). Must be a
   10236   // multiple of the entry size.
   10237   Isolate* isolate = cache->GetIsolate();
   10238   int new_length = length + (length >> 1) + kCodeCacheEntrySize;
   10239   new_length = new_length - new_length % kCodeCacheEntrySize;
   10240   DCHECK((new_length % kCodeCacheEntrySize) == 0);
   10241   cache = isolate->factory()->CopyFixedArrayAndGrow(cache, new_length - length);
   10242 
   10243   // Add the (name, code) pair to the new cache.
   10244   cache->set(length + kCodeCacheEntryNameOffset, *name);
   10245   cache->set(length + kCodeCacheEntryCodeOffset, *code);
   10246   code_cache->set_default_cache(*cache);
   10247 }
   10248 
   10249 
   10250 void CodeCache::UpdateNormalTypeCache(
   10251     Handle<CodeCache> code_cache, Handle<Name> name, Handle<Code> code) {
   10252   // Adding a new entry can cause a new cache to be allocated.
   10253   Handle<CodeCacheHashTable> cache(
   10254       CodeCacheHashTable::cast(code_cache->normal_type_cache()));
   10255   Handle<Object> new_cache = CodeCacheHashTable::Put(cache, name, code);
   10256   code_cache->set_normal_type_cache(*new_cache);
   10257 }
   10258 
   10259 
   10260 Object* CodeCache::Lookup(Name* name, Code::Flags flags) {
   10261   Object* result = LookupDefaultCache(name, Code::RemoveTypeFromFlags(flags));
   10262   if (result->IsCode()) {
   10263     if (Code::cast(result)->flags() == flags) return result;
   10264     return GetHeap()->undefined_value();
   10265   }
   10266   return LookupNormalTypeCache(name, flags);
   10267 }
   10268 
   10269 
   10270 Object* CodeCache::LookupDefaultCache(Name* name, Code::Flags flags) {
   10271   FixedArray* cache = default_cache();
   10272   int length = cache->length();
   10273   for (int i = 0; i < length; i += kCodeCacheEntrySize) {
   10274     Object* key = cache->get(i + kCodeCacheEntryNameOffset);
   10275     // Skip deleted elements.
   10276     if (key->IsNull()) continue;
   10277     if (key->IsUndefined()) return key;
   10278     if (name->Equals(Name::cast(key))) {
   10279       Code* code = Code::cast(cache->get(i + kCodeCacheEntryCodeOffset));
   10280       if (Code::RemoveTypeFromFlags(code->flags()) == flags) {
   10281         return code;
   10282       }
   10283     }
   10284   }
   10285   return GetHeap()->undefined_value();
   10286 }
   10287 
   10288 
   10289 Object* CodeCache::LookupNormalTypeCache(Name* name, Code::Flags flags) {
   10290   if (!normal_type_cache()->IsUndefined()) {
   10291     CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache());
   10292     return cache->Lookup(name, flags);
   10293   } else {
   10294     return GetHeap()->undefined_value();
   10295   }
   10296 }
   10297 
   10298 
   10299 int CodeCache::GetIndex(Object* name, Code* code) {
   10300   if (code->type() == Code::NORMAL) {
   10301     if (normal_type_cache()->IsUndefined()) return -1;
   10302     CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache());
   10303     return cache->GetIndex(Name::cast(name), code->flags());
   10304   }
   10305 
   10306   FixedArray* array = default_cache();
   10307   int len = array->length();
   10308   for (int i = 0; i < len; i += kCodeCacheEntrySize) {
   10309     if (array->get(i + kCodeCacheEntryCodeOffset) == code) return i + 1;
   10310   }
   10311   return -1;
   10312 }
   10313 
   10314 
   10315 void CodeCache::RemoveByIndex(Object* name, Code* code, int index) {
   10316   if (code->type() == Code::NORMAL) {
   10317     DCHECK(!normal_type_cache()->IsUndefined());
   10318     CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache());
   10319     DCHECK(cache->GetIndex(Name::cast(name), code->flags()) == index);
   10320     cache->RemoveByIndex(index);
   10321   } else {
   10322     FixedArray* array = default_cache();
   10323     DCHECK(array->length() >= index && array->get(index)->IsCode());
   10324     // Use null instead of undefined for deleted elements to distinguish
   10325     // deleted elements from unused elements.  This distinction is used
   10326     // when looking up in the cache and when updating the cache.
   10327     DCHECK_EQ(1, kCodeCacheEntryCodeOffset - kCodeCacheEntryNameOffset);
   10328     array->set_null(index - 1);  // Name.
   10329     array->set_null(index);  // Code.
   10330   }
   10331 }
   10332 
   10333 
   10334 // The key in the code cache hash table consists of the property name and the
   10335 // code object. The actual match is on the name and the code flags. If a key
   10336 // is created using the flags and not a code object it can only be used for
   10337 // lookup not to create a new entry.
   10338 class CodeCacheHashTableKey : public HashTableKey {
   10339  public:
   10340   CodeCacheHashTableKey(Handle<Name> name, Code::Flags flags)
   10341       : name_(name), flags_(flags), code_() { }
   10342 
   10343   CodeCacheHashTableKey(Handle<Name> name, Handle<Code> code)
   10344       : name_(name), flags_(code->flags()), code_(code) { }
   10345 
   10346   bool IsMatch(Object* other) override {
   10347     if (!other->IsFixedArray()) return false;
   10348     FixedArray* pair = FixedArray::cast(other);
   10349     Name* name = Name::cast(pair->get(0));
   10350     Code::Flags flags = Code::cast(pair->get(1))->flags();
   10351     if (flags != flags_) {
   10352       return false;
   10353     }
   10354     return name_->Equals(name);
   10355   }
   10356 
   10357   static uint32_t NameFlagsHashHelper(Name* name, Code::Flags flags) {
   10358     return name->Hash() ^ flags;
   10359   }
   10360 
   10361   uint32_t Hash() override { return NameFlagsHashHelper(*name_, flags_); }
   10362 
   10363   uint32_t HashForObject(Object* obj) override {
   10364     FixedArray* pair = FixedArray::cast(obj);
   10365     Name* name = Name::cast(pair->get(0));
   10366     Code* code = Code::cast(pair->get(1));
   10367     return NameFlagsHashHelper(name, code->flags());
   10368   }
   10369 
   10370   MUST_USE_RESULT Handle<Object> AsHandle(Isolate* isolate) override {
   10371     Handle<Code> code = code_.ToHandleChecked();
   10372     Handle<FixedArray> pair = isolate->factory()->NewFixedArray(2);
   10373     pair->set(0, *name_);
   10374     pair->set(1, *code);
   10375     return pair;
   10376   }
   10377 
   10378  private:
   10379   Handle<Name> name_;
   10380   Code::Flags flags_;
   10381   // TODO(jkummerow): We should be able to get by without this.
   10382   MaybeHandle<Code> code_;
   10383 };
   10384 
   10385 
   10386 Object* CodeCacheHashTable::Lookup(Name* name, Code::Flags flags) {
   10387   DisallowHeapAllocation no_alloc;
   10388   CodeCacheHashTableKey key(handle(name), flags);
   10389   int entry = FindEntry(&key);
   10390   if (entry == kNotFound) return GetHeap()->undefined_value();
   10391   return get(EntryToIndex(entry) + 1);
   10392 }
   10393 
   10394 
   10395 Handle<CodeCacheHashTable> CodeCacheHashTable::Put(
   10396     Handle<CodeCacheHashTable> cache, Handle<Name> name, Handle<Code> code) {
   10397   CodeCacheHashTableKey key(name, code);
   10398 
   10399   Handle<CodeCacheHashTable> new_cache = EnsureCapacity(cache, 1, &key);
   10400 
   10401   int entry = new_cache->FindInsertionEntry(key.Hash());
   10402   Handle<Object> k = key.AsHandle(cache->GetIsolate());
   10403 
   10404   new_cache->set(EntryToIndex(entry), *k);
   10405   new_cache->set(EntryToIndex(entry) + 1, *code);
   10406   new_cache->ElementAdded();
   10407   return new_cache;
   10408 }
   10409 
   10410 
   10411 int CodeCacheHashTable::GetIndex(Name* name, Code::Flags flags) {
   10412   DisallowHeapAllocation no_alloc;
   10413   CodeCacheHashTableKey key(handle(name), flags);
   10414   int entry = FindEntry(&key);
   10415   return (entry == kNotFound) ? -1 : entry;
   10416 }
   10417 
   10418 
   10419 void CodeCacheHashTable::RemoveByIndex(int index) {
   10420   DCHECK(index >= 0);
   10421   Heap* heap = GetHeap();
   10422   set(EntryToIndex(index), heap->the_hole_value());
   10423   set(EntryToIndex(index) + 1, heap->the_hole_value());
   10424   ElementRemoved();
   10425 }
   10426 
   10427 
   10428 void PolymorphicCodeCache::Update(Handle<PolymorphicCodeCache> code_cache,
   10429                                   MapHandleList* maps,
   10430                                   Code::Flags flags,
   10431                                   Handle<Code> code) {
   10432   Isolate* isolate = code_cache->GetIsolate();
   10433   if (code_cache->cache()->IsUndefined()) {
   10434     Handle<PolymorphicCodeCacheHashTable> result =
   10435         PolymorphicCodeCacheHashTable::New(
   10436             isolate,
   10437             PolymorphicCodeCacheHashTable::kInitialSize);
   10438     code_cache->set_cache(*result);
   10439   } else {
   10440     // This entry shouldn't be contained in the cache yet.
   10441     DCHECK(PolymorphicCodeCacheHashTable::cast(code_cache->cache())
   10442                ->Lookup(maps, flags)->IsUndefined());
   10443   }
   10444   Handle<PolymorphicCodeCacheHashTable> hash_table =
   10445       handle(PolymorphicCodeCacheHashTable::cast(code_cache->cache()));
   10446   Handle<PolymorphicCodeCacheHashTable> new_cache =
   10447       PolymorphicCodeCacheHashTable::Put(hash_table, maps, flags, code);
   10448   code_cache->set_cache(*new_cache);
   10449 }
   10450 
   10451 
   10452 Handle<Object> PolymorphicCodeCache::Lookup(MapHandleList* maps,
   10453                                             Code::Flags flags) {
   10454   if (!cache()->IsUndefined()) {
   10455     PolymorphicCodeCacheHashTable* hash_table =
   10456         PolymorphicCodeCacheHashTable::cast(cache());
   10457     return Handle<Object>(hash_table->Lookup(maps, flags), GetIsolate());
   10458   } else {
   10459     return GetIsolate()->factory()->undefined_value();
   10460   }
   10461 }
   10462 
   10463 
   10464 // Despite their name, object of this class are not stored in the actual
   10465 // hash table; instead they're temporarily used for lookups. It is therefore
   10466 // safe to have a weak (non-owning) pointer to a MapList as a member field.
   10467 class PolymorphicCodeCacheHashTableKey : public HashTableKey {
   10468  public:
   10469   // Callers must ensure that |maps| outlives the newly constructed object.
   10470   PolymorphicCodeCacheHashTableKey(MapHandleList* maps, int code_flags)
   10471       : maps_(maps),
   10472         code_flags_(code_flags) {}
   10473 
   10474   bool IsMatch(Object* other) override {
   10475     MapHandleList other_maps(kDefaultListAllocationSize);
   10476     int other_flags;
   10477     FromObject(other, &other_flags, &other_maps);
   10478     if (code_flags_ != other_flags) return false;
   10479     if (maps_->length() != other_maps.length()) return false;
   10480     // Compare just the hashes first because it's faster.
   10481     int this_hash = MapsHashHelper(maps_, code_flags_);
   10482     int other_hash = MapsHashHelper(&other_maps, other_flags);
   10483     if (this_hash != other_hash) return false;
   10484 
   10485     // Full comparison: for each map in maps_, look for an equivalent map in
   10486     // other_maps. This implementation is slow, but probably good enough for
   10487     // now because the lists are short (<= 4 elements currently).
   10488     for (int i = 0; i < maps_->length(); ++i) {
   10489       bool match_found = false;
   10490       for (int j = 0; j < other_maps.length(); ++j) {
   10491         if (*(maps_->at(i)) == *(other_maps.at(j))) {
   10492           match_found = true;
   10493           break;
   10494         }
   10495       }
   10496       if (!match_found) return false;
   10497     }
   10498     return true;
   10499   }
   10500 
   10501   static uint32_t MapsHashHelper(MapHandleList* maps, int code_flags) {
   10502     uint32_t hash = code_flags;
   10503     for (int i = 0; i < maps->length(); ++i) {
   10504       hash ^= maps->at(i)->Hash();
   10505     }
   10506     return hash;
   10507   }
   10508 
   10509   uint32_t Hash() override { return MapsHashHelper(maps_, code_flags_); }
   10510 
   10511   uint32_t HashForObject(Object* obj) override {
   10512     MapHandleList other_maps(kDefaultListAllocationSize);
   10513     int other_flags;
   10514     FromObject(obj, &other_flags, &other_maps);
   10515     return MapsHashHelper(&other_maps, other_flags);
   10516   }
   10517 
   10518   MUST_USE_RESULT Handle<Object> AsHandle(Isolate* isolate) override {
   10519     // The maps in |maps_| must be copied to a newly allocated FixedArray,
   10520     // both because the referenced MapList is short-lived, and because C++
   10521     // objects can't be stored in the heap anyway.
   10522     Handle<FixedArray> list =
   10523         isolate->factory()->NewUninitializedFixedArray(maps_->length() + 1);
   10524     list->set(0, Smi::FromInt(code_flags_));
   10525     for (int i = 0; i < maps_->length(); ++i) {
   10526       list->set(i + 1, *maps_->at(i));
   10527     }
   10528     return list;
   10529   }
   10530 
   10531  private:
   10532   static MapHandleList* FromObject(Object* obj,
   10533                                    int* code_flags,
   10534                                    MapHandleList* maps) {
   10535     FixedArray* list = FixedArray::cast(obj);
   10536     maps->Rewind(0);
   10537     *code_flags = Smi::cast(list->get(0))->value();
   10538     for (int i = 1; i < list->length(); ++i) {
   10539       maps->Add(Handle<Map>(Map::cast(list->get(i))));
   10540     }
   10541     return maps;
   10542   }
   10543 
   10544   MapHandleList* maps_;  // weak.
   10545   int code_flags_;
   10546   static const int kDefaultListAllocationSize = kMaxKeyedPolymorphism + 1;
   10547 };
   10548 
   10549 
   10550 Object* PolymorphicCodeCacheHashTable::Lookup(MapHandleList* maps,
   10551                                               int code_kind) {
   10552   DisallowHeapAllocation no_alloc;
   10553   PolymorphicCodeCacheHashTableKey key(maps, code_kind);
   10554   int entry = FindEntry(&key);
   10555   if (entry == kNotFound) return GetHeap()->undefined_value();
   10556   return get(EntryToIndex(entry) + 1);
   10557 }
   10558 
   10559 
   10560 Handle<PolymorphicCodeCacheHashTable> PolymorphicCodeCacheHashTable::Put(
   10561       Handle<PolymorphicCodeCacheHashTable> hash_table,
   10562       MapHandleList* maps,
   10563       int code_kind,
   10564       Handle<Code> code) {
   10565   PolymorphicCodeCacheHashTableKey key(maps, code_kind);
   10566   Handle<PolymorphicCodeCacheHashTable> cache =
   10567       EnsureCapacity(hash_table, 1, &key);
   10568   int entry = cache->FindInsertionEntry(key.Hash());
   10569 
   10570   Handle<Object> obj = key.AsHandle(hash_table->GetIsolate());
   10571   cache->set(EntryToIndex(entry), *obj);
   10572   cache->set(EntryToIndex(entry) + 1, *code);
   10573   cache->ElementAdded();
   10574   return cache;
   10575 }
   10576 
   10577 
   10578 void FixedArray::Shrink(int new_length) {
   10579   DCHECK(0 <= new_length && new_length <= length());
   10580   if (new_length < length()) {
   10581     GetHeap()->RightTrimFixedArray<Heap::CONCURRENT_TO_SWEEPER>(
   10582         this, length() - new_length);
   10583   }
   10584 }
   10585 
   10586 
   10587 void FixedArray::CopyTo(int pos, FixedArray* dest, int dest_pos, int len) {
   10588   DisallowHeapAllocation no_gc;
   10589   WriteBarrierMode mode = dest->GetWriteBarrierMode(no_gc);
   10590   for (int index = 0; index < len; index++) {
   10591     dest->set(dest_pos+index, get(pos+index), mode);
   10592   }
   10593 }
   10594 
   10595 
   10596 #ifdef DEBUG
   10597 bool FixedArray::IsEqualTo(FixedArray* other) {
   10598   if (length() != other->length()) return false;
   10599   for (int i = 0 ; i < length(); ++i) {
   10600     if (get(i) != other->get(i)) return false;
   10601   }
   10602   return true;
   10603 }
   10604 #endif
   10605 
   10606 
   10607 // static
   10608 void WeakFixedArray::Set(Handle<WeakFixedArray> array, int index,
   10609                          Handle<HeapObject> value) {
   10610   DCHECK(array->IsEmptySlot(index));  // Don't overwrite anything.
   10611   Handle<WeakCell> cell =
   10612       value->IsMap() ? Map::WeakCellForMap(Handle<Map>::cast(value))
   10613                      : array->GetIsolate()->factory()->NewWeakCell(value);
   10614   Handle<FixedArray>::cast(array)->set(index + kFirstIndex, *cell);
   10615   if (FLAG_trace_weak_arrays) {
   10616     PrintF("[WeakFixedArray: storing at index %d ]\n", index);
   10617   }
   10618   array->set_last_used_index(index);
   10619 }
   10620 
   10621 
   10622 // static
   10623 Handle<WeakFixedArray> WeakFixedArray::Add(Handle<Object> maybe_array,
   10624                                            Handle<HeapObject> value,
   10625                                            int* assigned_index) {
   10626   Handle<WeakFixedArray> array =
   10627       (maybe_array.is_null() || !maybe_array->IsWeakFixedArray())
   10628           ? Allocate(value->GetIsolate(), 1, Handle<WeakFixedArray>::null())
   10629           : Handle<WeakFixedArray>::cast(maybe_array);
   10630   // Try to store the new entry if there's room. Optimize for consecutive
   10631   // accesses.
   10632   int first_index = array->last_used_index();
   10633   int length = array->Length();
   10634   if (length > 0) {
   10635     for (int i = first_index;;) {
   10636       if (array->IsEmptySlot((i))) {
   10637         WeakFixedArray::Set(array, i, value);
   10638         if (assigned_index != NULL) *assigned_index = i;
   10639         return array;
   10640       }
   10641       if (FLAG_trace_weak_arrays) {
   10642         PrintF("[WeakFixedArray: searching for free slot]\n");
   10643       }
   10644       i = (i + 1) % length;
   10645       if (i == first_index) break;
   10646     }
   10647   }
   10648 
   10649   // No usable slot found, grow the array.
   10650   int new_length = length == 0 ? 1 : length + (length >> 1) + 4;
   10651   Handle<WeakFixedArray> new_array =
   10652       Allocate(array->GetIsolate(), new_length, array);
   10653   if (FLAG_trace_weak_arrays) {
   10654     PrintF("[WeakFixedArray: growing to size %d ]\n", new_length);
   10655   }
   10656   WeakFixedArray::Set(new_array, length, value);
   10657   if (assigned_index != NULL) *assigned_index = length;
   10658   return new_array;
   10659 }
   10660 
   10661 
   10662 template <class CompactionCallback>
   10663 void WeakFixedArray::Compact() {
   10664   FixedArray* array = FixedArray::cast(this);
   10665   int new_length = kFirstIndex;
   10666   for (int i = kFirstIndex; i < array->length(); i++) {
   10667     Object* element = array->get(i);
   10668     if (element->IsSmi()) continue;
   10669     if (WeakCell::cast(element)->cleared()) continue;
   10670     Object* value = WeakCell::cast(element)->value();
   10671     CompactionCallback::Callback(value, i - kFirstIndex,
   10672                                  new_length - kFirstIndex);
   10673     array->set(new_length++, element);
   10674   }
   10675   array->Shrink(new_length);
   10676   set_last_used_index(0);
   10677 }
   10678 
   10679 
   10680 void WeakFixedArray::Iterator::Reset(Object* maybe_array) {
   10681   if (maybe_array->IsWeakFixedArray()) {
   10682     list_ = WeakFixedArray::cast(maybe_array);
   10683     index_ = 0;
   10684 #ifdef DEBUG
   10685     last_used_index_ = list_->last_used_index();
   10686 #endif  // DEBUG
   10687   }
   10688 }
   10689 
   10690 
   10691 void JSObject::PrototypeRegistryCompactionCallback::Callback(Object* value,
   10692                                                              int old_index,
   10693                                                              int new_index) {
   10694   DCHECK(value->IsMap() && Map::cast(value)->is_prototype_map());
   10695   Map* map = Map::cast(value);
   10696   DCHECK(map->prototype_info()->IsPrototypeInfo());
   10697   PrototypeInfo* proto_info = PrototypeInfo::cast(map->prototype_info());
   10698   DCHECK_EQ(old_index, proto_info->registry_slot());
   10699   proto_info->set_registry_slot(new_index);
   10700 }
   10701 
   10702 
   10703 template void WeakFixedArray::Compact<WeakFixedArray::NullCallback>();
   10704 template void
   10705 WeakFixedArray::Compact<JSObject::PrototypeRegistryCompactionCallback>();
   10706 
   10707 
   10708 bool WeakFixedArray::Remove(Handle<HeapObject> value) {
   10709   if (Length() == 0) return false;
   10710   // Optimize for the most recently added element to be removed again.
   10711   int first_index = last_used_index();
   10712   for (int i = first_index;;) {
   10713     if (Get(i) == *value) {
   10714       Clear(i);
   10715       // Users of WeakFixedArray should make sure that there are no duplicates.
   10716       return true;
   10717     }
   10718     i = (i + 1) % Length();
   10719     if (i == first_index) return false;
   10720   }
   10721   UNREACHABLE();
   10722 }
   10723 
   10724 
   10725 // static
   10726 Handle<WeakFixedArray> WeakFixedArray::Allocate(
   10727     Isolate* isolate, int size, Handle<WeakFixedArray> initialize_from) {
   10728   DCHECK(0 <= size);
   10729   Handle<FixedArray> result =
   10730       isolate->factory()->NewUninitializedFixedArray(size + kFirstIndex);
   10731   int index = 0;
   10732   if (!initialize_from.is_null()) {
   10733     DCHECK(initialize_from->Length() <= size);
   10734     Handle<FixedArray> raw_source = Handle<FixedArray>::cast(initialize_from);
   10735     // Copy the entries without compacting, since the PrototypeInfo relies on
   10736     // the index of the entries not to change.
   10737     while (index < raw_source->length()) {
   10738       result->set(index, raw_source->get(index));
   10739       index++;
   10740     }
   10741   }
   10742   while (index < result->length()) {
   10743     result->set(index, Smi::FromInt(0));
   10744     index++;
   10745   }
   10746   return Handle<WeakFixedArray>::cast(result);
   10747 }
   10748 
   10749 
   10750 Handle<ArrayList> ArrayList::Add(Handle<ArrayList> array, Handle<Object> obj,
   10751                                  AddMode mode) {
   10752   int length = array->Length();
   10753   array = EnsureSpace(array, length + 1);
   10754   if (mode == kReloadLengthAfterAllocation) {
   10755     DCHECK(array->Length() <= length);
   10756     length = array->Length();
   10757   }
   10758   array->Set(length, *obj);
   10759   array->SetLength(length + 1);
   10760   return array;
   10761 }
   10762 
   10763 
   10764 Handle<ArrayList> ArrayList::Add(Handle<ArrayList> array, Handle<Object> obj1,
   10765                                  Handle<Object> obj2, AddMode mode) {
   10766   int length = array->Length();
   10767   array = EnsureSpace(array, length + 2);
   10768   if (mode == kReloadLengthAfterAllocation) {
   10769     length = array->Length();
   10770   }
   10771   array->Set(length, *obj1);
   10772   array->Set(length + 1, *obj2);
   10773   array->SetLength(length + 2);
   10774   return array;
   10775 }
   10776 
   10777 
   10778 bool ArrayList::IsFull() {
   10779   int capacity = length();
   10780   return kFirstIndex + Length() == capacity;
   10781 }
   10782 
   10783 
   10784 Handle<ArrayList> ArrayList::EnsureSpace(Handle<ArrayList> array, int length) {
   10785   int capacity = array->length();
   10786   bool empty = (capacity == 0);
   10787   if (capacity < kFirstIndex + length) {
   10788     Isolate* isolate = array->GetIsolate();
   10789     int new_capacity = kFirstIndex + length;
   10790     new_capacity = new_capacity + Max(new_capacity / 2, 2);
   10791     int grow_by = new_capacity - capacity;
   10792     array = Handle<ArrayList>::cast(
   10793         isolate->factory()->CopyFixedArrayAndGrow(array, grow_by));
   10794     if (empty) array->SetLength(0);
   10795   }
   10796   return array;
   10797 }
   10798 
   10799 
   10800 Handle<DescriptorArray> DescriptorArray::Allocate(Isolate* isolate,
   10801                                                   int number_of_descriptors,
   10802                                                   int slack) {
   10803   DCHECK(0 <= number_of_descriptors);
   10804   Factory* factory = isolate->factory();
   10805   // Do not use DescriptorArray::cast on incomplete object.
   10806   int size = number_of_descriptors + slack;
   10807   if (size == 0) return factory->empty_descriptor_array();
   10808   // Allocate the array of keys.
   10809   Handle<FixedArray> result = factory->NewFixedArray(LengthFor(size), TENURED);
   10810 
   10811   result->set(kDescriptorLengthIndex, Smi::FromInt(number_of_descriptors));
   10812   result->set(kEnumCacheIndex, Smi::FromInt(0));
   10813   return Handle<DescriptorArray>::cast(result);
   10814 }
   10815 
   10816 
   10817 void DescriptorArray::ClearEnumCache() {
   10818   set(kEnumCacheIndex, Smi::FromInt(0));
   10819 }
   10820 
   10821 
   10822 void DescriptorArray::Replace(int index, Descriptor* descriptor) {
   10823   descriptor->SetSortedKeyIndex(GetSortedKeyIndex(index));
   10824   Set(index, descriptor);
   10825 }
   10826 
   10827 
   10828 // static
   10829 void DescriptorArray::SetEnumCache(Handle<DescriptorArray> descriptors,
   10830                                    Isolate* isolate,
   10831                                    Handle<FixedArray> new_cache,
   10832                                    Handle<FixedArray> new_index_cache) {
   10833   DCHECK(!descriptors->IsEmpty());
   10834   FixedArray* bridge_storage;
   10835   bool needs_new_enum_cache = !descriptors->HasEnumCache();
   10836   if (needs_new_enum_cache) {
   10837     bridge_storage = *isolate->factory()->NewFixedArray(
   10838         DescriptorArray::kEnumCacheBridgeLength);
   10839   } else {
   10840     bridge_storage = FixedArray::cast(descriptors->get(kEnumCacheIndex));
   10841   }
   10842   bridge_storage->set(kEnumCacheBridgeCacheIndex, *new_cache);
   10843   bridge_storage->set(kEnumCacheBridgeIndicesCacheIndex,
   10844                       new_index_cache.is_null() ? Object::cast(Smi::FromInt(0))
   10845                                                 : *new_index_cache);
   10846   if (needs_new_enum_cache) {
   10847     descriptors->set(kEnumCacheIndex, bridge_storage);
   10848   }
   10849 }
   10850 
   10851 
   10852 void DescriptorArray::CopyFrom(int index, DescriptorArray* src) {
   10853   Object* value = src->GetValue(index);
   10854   PropertyDetails details = src->GetDetails(index);
   10855   Descriptor desc(handle(src->GetKey(index)),
   10856                   handle(value, src->GetIsolate()),
   10857                   details);
   10858   SetDescriptor(index, &desc);
   10859 }
   10860 
   10861 
   10862 void DescriptorArray::Sort() {
   10863   // In-place heap sort.
   10864   int len = number_of_descriptors();
   10865   // Reset sorting since the descriptor array might contain invalid pointers.
   10866   for (int i = 0; i < len; ++i) SetSortedKey(i, i);
   10867   // Bottom-up max-heap construction.
   10868   // Index of the last node with children
   10869   const int max_parent_index = (len / 2) - 1;
   10870   for (int i = max_parent_index; i >= 0; --i) {
   10871     int parent_index = i;
   10872     const uint32_t parent_hash = GetSortedKey(i)->Hash();
   10873     while (parent_index <= max_parent_index) {
   10874       int child_index = 2 * parent_index + 1;
   10875       uint32_t child_hash = GetSortedKey(child_index)->Hash();
   10876       if (child_index + 1 < len) {
   10877         uint32_t right_child_hash = GetSortedKey(child_index + 1)->Hash();
   10878         if (right_child_hash > child_hash) {
   10879           child_index++;
   10880           child_hash = right_child_hash;
   10881         }
   10882       }
   10883       if (child_hash <= parent_hash) break;
   10884       SwapSortedKeys(parent_index, child_index);
   10885       // Now element at child_index could be < its children.
   10886       parent_index = child_index;  // parent_hash remains correct.
   10887     }
   10888   }
   10889 
   10890   // Extract elements and create sorted array.
   10891   for (int i = len - 1; i > 0; --i) {
   10892     // Put max element at the back of the array.
   10893     SwapSortedKeys(0, i);
   10894     // Shift down the new top element.
   10895     int parent_index = 0;
   10896     const uint32_t parent_hash = GetSortedKey(parent_index)->Hash();
   10897     const int max_parent_index = (i / 2) - 1;
   10898     while (parent_index <= max_parent_index) {
   10899       int child_index = parent_index * 2 + 1;
   10900       uint32_t child_hash = GetSortedKey(child_index)->Hash();
   10901       if (child_index + 1 < i) {
   10902         uint32_t right_child_hash = GetSortedKey(child_index + 1)->Hash();
   10903         if (right_child_hash > child_hash) {
   10904           child_index++;
   10905           child_hash = right_child_hash;
   10906         }
   10907       }
   10908       if (child_hash <= parent_hash) break;
   10909       SwapSortedKeys(parent_index, child_index);
   10910       parent_index = child_index;
   10911     }
   10912   }
   10913   DCHECK(IsSortedNoDuplicates());
   10914 }
   10915 
   10916 
   10917 Handle<AccessorPair> AccessorPair::Copy(Handle<AccessorPair> pair) {
   10918   Handle<AccessorPair> copy = pair->GetIsolate()->factory()->NewAccessorPair();
   10919   copy->set_getter(pair->getter());
   10920   copy->set_setter(pair->setter());
   10921   return copy;
   10922 }
   10923 
   10924 
   10925 Object* AccessorPair::GetComponent(AccessorComponent component) {
   10926   Object* accessor = get(component);
   10927   return accessor->IsTheHole() ? GetHeap()->undefined_value() : accessor;
   10928 }
   10929 
   10930 
   10931 Handle<DeoptimizationInputData> DeoptimizationInputData::New(
   10932     Isolate* isolate, int deopt_entry_count, PretenureFlag pretenure) {
   10933   return Handle<DeoptimizationInputData>::cast(
   10934       isolate->factory()->NewFixedArray(LengthFor(deopt_entry_count),
   10935                                         pretenure));
   10936 }
   10937 
   10938 
   10939 Handle<DeoptimizationOutputData> DeoptimizationOutputData::New(
   10940     Isolate* isolate,
   10941     int number_of_deopt_points,
   10942     PretenureFlag pretenure) {
   10943   Handle<FixedArray> result;
   10944   if (number_of_deopt_points == 0) {
   10945     result = isolate->factory()->empty_fixed_array();
   10946   } else {
   10947     result = isolate->factory()->NewFixedArray(
   10948         LengthOfFixedArray(number_of_deopt_points), pretenure);
   10949   }
   10950   return Handle<DeoptimizationOutputData>::cast(result);
   10951 }
   10952 
   10953 
   10954 // static
   10955 Handle<LiteralsArray> LiteralsArray::New(Isolate* isolate,
   10956                                          Handle<TypeFeedbackVector> vector,
   10957                                          int number_of_literals,
   10958                                          PretenureFlag pretenure) {
   10959   Handle<FixedArray> literals = isolate->factory()->NewFixedArray(
   10960       number_of_literals + kFirstLiteralIndex, pretenure);
   10961   Handle<LiteralsArray> casted_literals = Handle<LiteralsArray>::cast(literals);
   10962   casted_literals->set_feedback_vector(*vector);
   10963   return casted_literals;
   10964 }
   10965 
   10966 
   10967 int HandlerTable::LookupRange(int pc_offset, int* stack_depth_out,
   10968                               CatchPrediction* prediction_out) {
   10969   int innermost_handler = -1, innermost_start = -1;
   10970   for (int i = 0; i < length(); i += kRangeEntrySize) {
   10971     int start_offset = Smi::cast(get(i + kRangeStartIndex))->value();
   10972     int end_offset = Smi::cast(get(i + kRangeEndIndex))->value();
   10973     int handler_field = Smi::cast(get(i + kRangeHandlerIndex))->value();
   10974     int handler_offset = HandlerOffsetField::decode(handler_field);
   10975     CatchPrediction prediction = HandlerPredictionField::decode(handler_field);
   10976     int stack_depth = Smi::cast(get(i + kRangeDepthIndex))->value();
   10977     if (pc_offset > start_offset && pc_offset <= end_offset) {
   10978       DCHECK_NE(start_offset, innermost_start);
   10979       if (start_offset < innermost_start) continue;
   10980       innermost_handler = handler_offset;
   10981       innermost_start = start_offset;
   10982       *stack_depth_out = stack_depth;
   10983       if (prediction_out) *prediction_out = prediction;
   10984     }
   10985   }
   10986   return innermost_handler;
   10987 }
   10988 
   10989 
   10990 // TODO(turbofan): Make sure table is sorted and use binary search.
   10991 int HandlerTable::LookupReturn(int pc_offset, CatchPrediction* prediction_out) {
   10992   for (int i = 0; i < length(); i += kReturnEntrySize) {
   10993     int return_offset = Smi::cast(get(i + kReturnOffsetIndex))->value();
   10994     int handler_field = Smi::cast(get(i + kReturnHandlerIndex))->value();
   10995     if (pc_offset == return_offset) {
   10996       if (prediction_out) {
   10997         *prediction_out = HandlerPredictionField::decode(handler_field);
   10998       }
   10999       return HandlerOffsetField::decode(handler_field);
   11000     }
   11001   }
   11002   return -1;
   11003 }
   11004 
   11005 
   11006 #ifdef DEBUG
   11007 bool DescriptorArray::IsEqualTo(DescriptorArray* other) {
   11008   if (IsEmpty()) return other->IsEmpty();
   11009   if (other->IsEmpty()) return false;
   11010   if (length() != other->length()) return false;
   11011   for (int i = 0; i < length(); ++i) {
   11012     if (get(i) != other->get(i)) return false;
   11013   }
   11014   return true;
   11015 }
   11016 #endif
   11017 
   11018 
   11019 bool String::LooksValid() {
   11020   if (!GetIsolate()->heap()->Contains(this)) return false;
   11021   return true;
   11022 }
   11023 
   11024 
   11025 // static
   11026 MaybeHandle<String> Name::ToFunctionName(Handle<Name> name) {
   11027   if (name->IsString()) return Handle<String>::cast(name);
   11028   // ES6 section 9.2.11 SetFunctionName, step 4.
   11029   Isolate* const isolate = name->GetIsolate();
   11030   Handle<Object> description(Handle<Symbol>::cast(name)->name(), isolate);
   11031   if (description->IsUndefined()) return isolate->factory()->empty_string();
   11032   IncrementalStringBuilder builder(isolate);
   11033   builder.AppendCharacter('[');
   11034   builder.AppendString(Handle<String>::cast(description));
   11035   builder.AppendCharacter(']');
   11036   return builder.Finish();
   11037 }
   11038 
   11039 
   11040 namespace {
   11041 
   11042 bool AreDigits(const uint8_t* s, int from, int to) {
   11043   for (int i = from; i < to; i++) {
   11044     if (s[i] < '0' || s[i] > '9') return false;
   11045   }
   11046 
   11047   return true;
   11048 }
   11049 
   11050 
   11051 int ParseDecimalInteger(const uint8_t* s, int from, int to) {
   11052   DCHECK(to - from < 10);  // Overflow is not possible.
   11053   DCHECK(from < to);
   11054   int d = s[from] - '0';
   11055 
   11056   for (int i = from + 1; i < to; i++) {
   11057     d = 10 * d + (s[i] - '0');
   11058   }
   11059 
   11060   return d;
   11061 }
   11062 
   11063 }  // namespace
   11064 
   11065 
   11066 // static
   11067 Handle<Object> String::ToNumber(Handle<String> subject) {
   11068   Isolate* const isolate = subject->GetIsolate();
   11069 
   11070   // Flatten {subject} string first.
   11071   subject = String::Flatten(subject);
   11072 
   11073   // Fast array index case.
   11074   uint32_t index;
   11075   if (subject->AsArrayIndex(&index)) {
   11076     return isolate->factory()->NewNumberFromUint(index);
   11077   }
   11078 
   11079   // Fast case: short integer or some sorts of junk values.
   11080   if (subject->IsSeqOneByteString()) {
   11081     int len = subject->length();
   11082     if (len == 0) return handle(Smi::FromInt(0), isolate);
   11083 
   11084     DisallowHeapAllocation no_gc;
   11085     uint8_t const* data = Handle<SeqOneByteString>::cast(subject)->GetChars();
   11086     bool minus = (data[0] == '-');
   11087     int start_pos = (minus ? 1 : 0);
   11088 
   11089     if (start_pos == len) {
   11090       return isolate->factory()->nan_value();
   11091     } else if (data[start_pos] > '9') {
   11092       // Fast check for a junk value. A valid string may start from a
   11093       // whitespace, a sign ('+' or '-'), the decimal point, a decimal digit
   11094       // or the 'I' character ('Infinity'). All of that have codes not greater
   11095       // than '9' except 'I' and &nbsp;.
   11096       if (data[start_pos] != 'I' && data[start_pos] != 0xa0) {
   11097         return isolate->factory()->nan_value();
   11098       }
   11099     } else if (len - start_pos < 10 && AreDigits(data, start_pos, len)) {
   11100       // The maximal/minimal smi has 10 digits. If the string has less digits
   11101       // we know it will fit into the smi-data type.
   11102       int d = ParseDecimalInteger(data, start_pos, len);
   11103       if (minus) {
   11104         if (d == 0) return isolate->factory()->minus_zero_value();
   11105         d = -d;
   11106       } else if (!subject->HasHashCode() && len <= String::kMaxArrayIndexSize &&
   11107                  (len == 1 || data[0] != '0')) {
   11108         // String hash is not calculated yet but all the data are present.
   11109         // Update the hash field to speed up sequential convertions.
   11110         uint32_t hash = StringHasher::MakeArrayIndexHash(d, len);
   11111 #ifdef DEBUG
   11112         subject->Hash();  // Force hash calculation.
   11113         DCHECK_EQ(static_cast<int>(subject->hash_field()),
   11114                   static_cast<int>(hash));
   11115 #endif
   11116         subject->set_hash_field(hash);
   11117       }
   11118       return handle(Smi::FromInt(d), isolate);
   11119     }
   11120   }
   11121 
   11122   // Slower case.
   11123   int flags = ALLOW_HEX | ALLOW_OCTAL | ALLOW_BINARY;
   11124   return isolate->factory()->NewNumber(
   11125       StringToDouble(isolate->unicode_cache(), subject, flags));
   11126 }
   11127 
   11128 
   11129 String::FlatContent String::GetFlatContent() {
   11130   DCHECK(!AllowHeapAllocation::IsAllowed());
   11131   int length = this->length();
   11132   StringShape shape(this);
   11133   String* string = this;
   11134   int offset = 0;
   11135   if (shape.representation_tag() == kConsStringTag) {
   11136     ConsString* cons = ConsString::cast(string);
   11137     if (cons->second()->length() != 0) {
   11138       return FlatContent();
   11139     }
   11140     string = cons->first();
   11141     shape = StringShape(string);
   11142   }
   11143   if (shape.representation_tag() == kSlicedStringTag) {
   11144     SlicedString* slice = SlicedString::cast(string);
   11145     offset = slice->offset();
   11146     string = slice->parent();
   11147     shape = StringShape(string);
   11148     DCHECK(shape.representation_tag() != kConsStringTag &&
   11149            shape.representation_tag() != kSlicedStringTag);
   11150   }
   11151   if (shape.encoding_tag() == kOneByteStringTag) {
   11152     const uint8_t* start;
   11153     if (shape.representation_tag() == kSeqStringTag) {
   11154       start = SeqOneByteString::cast(string)->GetChars();
   11155     } else {
   11156       start = ExternalOneByteString::cast(string)->GetChars();
   11157     }
   11158     return FlatContent(start + offset, length);
   11159   } else {
   11160     DCHECK(shape.encoding_tag() == kTwoByteStringTag);
   11161     const uc16* start;
   11162     if (shape.representation_tag() == kSeqStringTag) {
   11163       start = SeqTwoByteString::cast(string)->GetChars();
   11164     } else {
   11165       start = ExternalTwoByteString::cast(string)->GetChars();
   11166     }
   11167     return FlatContent(start + offset, length);
   11168   }
   11169 }
   11170 
   11171 
   11172 base::SmartArrayPointer<char> String::ToCString(AllowNullsFlag allow_nulls,
   11173                                                 RobustnessFlag robust_flag,
   11174                                                 int offset, int length,
   11175                                                 int* length_return) {
   11176   if (robust_flag == ROBUST_STRING_TRAVERSAL && !LooksValid()) {
   11177     return base::SmartArrayPointer<char>(NULL);
   11178   }
   11179   // Negative length means the to the end of the string.
   11180   if (length < 0) length = kMaxInt - offset;
   11181 
   11182   // Compute the size of the UTF-8 string. Start at the specified offset.
   11183   StringCharacterStream stream(this, offset);
   11184   int character_position = offset;
   11185   int utf8_bytes = 0;
   11186   int last = unibrow::Utf16::kNoPreviousCharacter;
   11187   while (stream.HasMore() && character_position++ < offset + length) {
   11188     uint16_t character = stream.GetNext();
   11189     utf8_bytes += unibrow::Utf8::Length(character, last);
   11190     last = character;
   11191   }
   11192 
   11193   if (length_return) {
   11194     *length_return = utf8_bytes;
   11195   }
   11196 
   11197   char* result = NewArray<char>(utf8_bytes + 1);
   11198 
   11199   // Convert the UTF-16 string to a UTF-8 buffer. Start at the specified offset.
   11200   stream.Reset(this, offset);
   11201   character_position = offset;
   11202   int utf8_byte_position = 0;
   11203   last = unibrow::Utf16::kNoPreviousCharacter;
   11204   while (stream.HasMore() && character_position++ < offset + length) {
   11205     uint16_t character = stream.GetNext();
   11206     if (allow_nulls == DISALLOW_NULLS && character == 0) {
   11207       character = ' ';
   11208     }
   11209     utf8_byte_position +=
   11210         unibrow::Utf8::Encode(result + utf8_byte_position, character, last);
   11211     last = character;
   11212   }
   11213   result[utf8_byte_position] = 0;
   11214   return base::SmartArrayPointer<char>(result);
   11215 }
   11216 
   11217 
   11218 base::SmartArrayPointer<char> String::ToCString(AllowNullsFlag allow_nulls,
   11219                                                 RobustnessFlag robust_flag,
   11220                                                 int* length_return) {
   11221   return ToCString(allow_nulls, robust_flag, 0, -1, length_return);
   11222 }
   11223 
   11224 
   11225 const uc16* String::GetTwoByteData(unsigned start) {
   11226   DCHECK(!IsOneByteRepresentationUnderneath());
   11227   switch (StringShape(this).representation_tag()) {
   11228     case kSeqStringTag:
   11229       return SeqTwoByteString::cast(this)->SeqTwoByteStringGetData(start);
   11230     case kExternalStringTag:
   11231       return ExternalTwoByteString::cast(this)->
   11232         ExternalTwoByteStringGetData(start);
   11233     case kSlicedStringTag: {
   11234       SlicedString* slice = SlicedString::cast(this);
   11235       return slice->parent()->GetTwoByteData(start + slice->offset());
   11236     }
   11237     case kConsStringTag:
   11238       UNREACHABLE();
   11239       return NULL;
   11240   }
   11241   UNREACHABLE();
   11242   return NULL;
   11243 }
   11244 
   11245 
   11246 base::SmartArrayPointer<uc16> String::ToWideCString(
   11247     RobustnessFlag robust_flag) {
   11248   if (robust_flag == ROBUST_STRING_TRAVERSAL && !LooksValid()) {
   11249     return base::SmartArrayPointer<uc16>();
   11250   }
   11251   StringCharacterStream stream(this);
   11252 
   11253   uc16* result = NewArray<uc16>(length() + 1);
   11254 
   11255   int i = 0;
   11256   while (stream.HasMore()) {
   11257     uint16_t character = stream.GetNext();
   11258     result[i++] = character;
   11259   }
   11260   result[i] = 0;
   11261   return base::SmartArrayPointer<uc16>(result);
   11262 }
   11263 
   11264 
   11265 const uc16* SeqTwoByteString::SeqTwoByteStringGetData(unsigned start) {
   11266   return reinterpret_cast<uc16*>(
   11267       reinterpret_cast<char*>(this) - kHeapObjectTag + kHeaderSize) + start;
   11268 }
   11269 
   11270 
   11271 void Relocatable::PostGarbageCollectionProcessing(Isolate* isolate) {
   11272   Relocatable* current = isolate->relocatable_top();
   11273   while (current != NULL) {
   11274     current->PostGarbageCollection();
   11275     current = current->prev_;
   11276   }
   11277 }
   11278 
   11279 
   11280 // Reserve space for statics needing saving and restoring.
   11281 int Relocatable::ArchiveSpacePerThread() {
   11282   return sizeof(Relocatable*);  // NOLINT
   11283 }
   11284 
   11285 
   11286 // Archive statics that are thread-local.
   11287 char* Relocatable::ArchiveState(Isolate* isolate, char* to) {
   11288   *reinterpret_cast<Relocatable**>(to) = isolate->relocatable_top();
   11289   isolate->set_relocatable_top(NULL);
   11290   return to + ArchiveSpacePerThread();
   11291 }
   11292 
   11293 
   11294 // Restore statics that are thread-local.
   11295 char* Relocatable::RestoreState(Isolate* isolate, char* from) {
   11296   isolate->set_relocatable_top(*reinterpret_cast<Relocatable**>(from));
   11297   return from + ArchiveSpacePerThread();
   11298 }
   11299 
   11300 
   11301 char* Relocatable::Iterate(ObjectVisitor* v, char* thread_storage) {
   11302   Relocatable* top = *reinterpret_cast<Relocatable**>(thread_storage);
   11303   Iterate(v, top);
   11304   return thread_storage + ArchiveSpacePerThread();
   11305 }
   11306 
   11307 
   11308 void Relocatable::Iterate(Isolate* isolate, ObjectVisitor* v) {
   11309   Iterate(v, isolate->relocatable_top());
   11310 }
   11311 
   11312 
   11313 void Relocatable::Iterate(ObjectVisitor* v, Relocatable* top) {
   11314   Relocatable* current = top;
   11315   while (current != NULL) {
   11316     current->IterateInstance(v);
   11317     current = current->prev_;
   11318   }
   11319 }
   11320 
   11321 
   11322 FlatStringReader::FlatStringReader(Isolate* isolate, Handle<String> str)
   11323     : Relocatable(isolate),
   11324       str_(str.location()),
   11325       length_(str->length()) {
   11326   PostGarbageCollection();
   11327 }
   11328 
   11329 
   11330 FlatStringReader::FlatStringReader(Isolate* isolate, Vector<const char> input)
   11331     : Relocatable(isolate),
   11332       str_(0),
   11333       is_one_byte_(true),
   11334       length_(input.length()),
   11335       start_(input.start()) {}
   11336 
   11337 
   11338 void FlatStringReader::PostGarbageCollection() {
   11339   if (str_ == NULL) return;
   11340   Handle<String> str(str_);
   11341   DCHECK(str->IsFlat());
   11342   DisallowHeapAllocation no_gc;
   11343   // This does not actually prevent the vector from being relocated later.
   11344   String::FlatContent content = str->GetFlatContent();
   11345   DCHECK(content.IsFlat());
   11346   is_one_byte_ = content.IsOneByte();
   11347   if (is_one_byte_) {
   11348     start_ = content.ToOneByteVector().start();
   11349   } else {
   11350     start_ = content.ToUC16Vector().start();
   11351   }
   11352 }
   11353 
   11354 
   11355 void ConsStringIterator::Initialize(ConsString* cons_string, int offset) {
   11356   DCHECK(cons_string != NULL);
   11357   root_ = cons_string;
   11358   consumed_ = offset;
   11359   // Force stack blown condition to trigger restart.
   11360   depth_ = 1;
   11361   maximum_depth_ = kStackSize + depth_;
   11362   DCHECK(StackBlown());
   11363 }
   11364 
   11365 
   11366 String* ConsStringIterator::Continue(int* offset_out) {
   11367   DCHECK(depth_ != 0);
   11368   DCHECK_EQ(0, *offset_out);
   11369   bool blew_stack = StackBlown();
   11370   String* string = NULL;
   11371   // Get the next leaf if there is one.
   11372   if (!blew_stack) string = NextLeaf(&blew_stack);
   11373   // Restart search from root.
   11374   if (blew_stack) {
   11375     DCHECK(string == NULL);
   11376     string = Search(offset_out);
   11377   }
   11378   // Ensure future calls return null immediately.
   11379   if (string == NULL) Reset(NULL);
   11380   return string;
   11381 }
   11382 
   11383 
   11384 String* ConsStringIterator::Search(int* offset_out) {
   11385   ConsString* cons_string = root_;
   11386   // Reset the stack, pushing the root string.
   11387   depth_ = 1;
   11388   maximum_depth_ = 1;
   11389   frames_[0] = cons_string;
   11390   const int consumed = consumed_;
   11391   int offset = 0;
   11392   while (true) {
   11393     // Loop until the string is found which contains the target offset.
   11394     String* string = cons_string->first();
   11395     int length = string->length();
   11396     int32_t type;
   11397     if (consumed < offset + length) {
   11398       // Target offset is in the left branch.
   11399       // Keep going if we're still in a ConString.
   11400       type = string->map()->instance_type();
   11401       if ((type & kStringRepresentationMask) == kConsStringTag) {
   11402         cons_string = ConsString::cast(string);
   11403         PushLeft(cons_string);
   11404         continue;
   11405       }
   11406       // Tell the stack we're done descending.
   11407       AdjustMaximumDepth();
   11408     } else {
   11409       // Descend right.
   11410       // Update progress through the string.
   11411       offset += length;
   11412       // Keep going if we're still in a ConString.
   11413       string = cons_string->second();
   11414       type = string->map()->instance_type();
   11415       if ((type & kStringRepresentationMask) == kConsStringTag) {
   11416         cons_string = ConsString::cast(string);
   11417         PushRight(cons_string);
   11418         continue;
   11419       }
   11420       // Need this to be updated for the current string.
   11421       length = string->length();
   11422       // Account for the possibility of an empty right leaf.
   11423       // This happens only if we have asked for an offset outside the string.
   11424       if (length == 0) {
   11425         // Reset so future operations will return null immediately.
   11426         Reset(NULL);
   11427         return NULL;
   11428       }
   11429       // Tell the stack we're done descending.
   11430       AdjustMaximumDepth();
   11431       // Pop stack so next iteration is in correct place.
   11432       Pop();
   11433     }
   11434     DCHECK(length != 0);
   11435     // Adjust return values and exit.
   11436     consumed_ = offset + length;
   11437     *offset_out = consumed - offset;
   11438     return string;
   11439   }
   11440   UNREACHABLE();
   11441   return NULL;
   11442 }
   11443 
   11444 
   11445 String* ConsStringIterator::NextLeaf(bool* blew_stack) {
   11446   while (true) {
   11447     // Tree traversal complete.
   11448     if (depth_ == 0) {
   11449       *blew_stack = false;
   11450       return NULL;
   11451     }
   11452     // We've lost track of higher nodes.
   11453     if (StackBlown()) {
   11454       *blew_stack = true;
   11455       return NULL;
   11456     }
   11457     // Go right.
   11458     ConsString* cons_string = frames_[OffsetForDepth(depth_ - 1)];
   11459     String* string = cons_string->second();
   11460     int32_t type = string->map()->instance_type();
   11461     if ((type & kStringRepresentationMask) != kConsStringTag) {
   11462       // Pop stack so next iteration is in correct place.
   11463       Pop();
   11464       int length = string->length();
   11465       // Could be a flattened ConsString.
   11466       if (length == 0) continue;
   11467       consumed_ += length;
   11468       return string;
   11469     }
   11470     cons_string = ConsString::cast(string);
   11471     PushRight(cons_string);
   11472     // Need to traverse all the way left.
   11473     while (true) {
   11474       // Continue left.
   11475       string = cons_string->first();
   11476       type = string->map()->instance_type();
   11477       if ((type & kStringRepresentationMask) != kConsStringTag) {
   11478         AdjustMaximumDepth();
   11479         int length = string->length();
   11480         DCHECK(length != 0);
   11481         consumed_ += length;
   11482         return string;
   11483       }
   11484       cons_string = ConsString::cast(string);
   11485       PushLeft(cons_string);
   11486     }
   11487   }
   11488   UNREACHABLE();
   11489   return NULL;
   11490 }
   11491 
   11492 
   11493 uint16_t ConsString::ConsStringGet(int index) {
   11494   DCHECK(index >= 0 && index < this->length());
   11495 
   11496   // Check for a flattened cons string
   11497   if (second()->length() == 0) {
   11498     String* left = first();
   11499     return left->Get(index);
   11500   }
   11501 
   11502   String* string = String::cast(this);
   11503 
   11504   while (true) {
   11505     if (StringShape(string).IsCons()) {
   11506       ConsString* cons_string = ConsString::cast(string);
   11507       String* left = cons_string->first();
   11508       if (left->length() > index) {
   11509         string = left;
   11510       } else {
   11511         index -= left->length();
   11512         string = cons_string->second();
   11513       }
   11514     } else {
   11515       return string->Get(index);
   11516     }
   11517   }
   11518 
   11519   UNREACHABLE();
   11520   return 0;
   11521 }
   11522 
   11523 
   11524 uint16_t SlicedString::SlicedStringGet(int index) {
   11525   return parent()->Get(offset() + index);
   11526 }
   11527 
   11528 
   11529 template <typename sinkchar>
   11530 void String::WriteToFlat(String* src,
   11531                          sinkchar* sink,
   11532                          int f,
   11533                          int t) {
   11534   String* source = src;
   11535   int from = f;
   11536   int to = t;
   11537   while (true) {
   11538     DCHECK(0 <= from && from <= to && to <= source->length());
   11539     switch (StringShape(source).full_representation_tag()) {
   11540       case kOneByteStringTag | kExternalStringTag: {
   11541         CopyChars(sink, ExternalOneByteString::cast(source)->GetChars() + from,
   11542                   to - from);
   11543         return;
   11544       }
   11545       case kTwoByteStringTag | kExternalStringTag: {
   11546         const uc16* data =
   11547             ExternalTwoByteString::cast(source)->GetChars();
   11548         CopyChars(sink,
   11549                   data + from,
   11550                   to - from);
   11551         return;
   11552       }
   11553       case kOneByteStringTag | kSeqStringTag: {
   11554         CopyChars(sink,
   11555                   SeqOneByteString::cast(source)->GetChars() + from,
   11556                   to - from);
   11557         return;
   11558       }
   11559       case kTwoByteStringTag | kSeqStringTag: {
   11560         CopyChars(sink,
   11561                   SeqTwoByteString::cast(source)->GetChars() + from,
   11562                   to - from);
   11563         return;
   11564       }
   11565       case kOneByteStringTag | kConsStringTag:
   11566       case kTwoByteStringTag | kConsStringTag: {
   11567         ConsString* cons_string = ConsString::cast(source);
   11568         String* first = cons_string->first();
   11569         int boundary = first->length();
   11570         if (to - boundary >= boundary - from) {
   11571           // Right hand side is longer.  Recurse over left.
   11572           if (from < boundary) {
   11573             WriteToFlat(first, sink, from, boundary);
   11574             sink += boundary - from;
   11575             from = 0;
   11576           } else {
   11577             from -= boundary;
   11578           }
   11579           to -= boundary;
   11580           source = cons_string->second();
   11581         } else {
   11582           // Left hand side is longer.  Recurse over right.
   11583           if (to > boundary) {
   11584             String* second = cons_string->second();
   11585             // When repeatedly appending to a string, we get a cons string that
   11586             // is unbalanced to the left, a list, essentially.  We inline the
   11587             // common case of sequential one-byte right child.
   11588             if (to - boundary == 1) {
   11589               sink[boundary - from] = static_cast<sinkchar>(second->Get(0));
   11590             } else if (second->IsSeqOneByteString()) {
   11591               CopyChars(sink + boundary - from,
   11592                         SeqOneByteString::cast(second)->GetChars(),
   11593                         to - boundary);
   11594             } else {
   11595               WriteToFlat(second,
   11596                           sink + boundary - from,
   11597                           0,
   11598                           to - boundary);
   11599             }
   11600             to = boundary;
   11601           }
   11602           source = first;
   11603         }
   11604         break;
   11605       }
   11606       case kOneByteStringTag | kSlicedStringTag:
   11607       case kTwoByteStringTag | kSlicedStringTag: {
   11608         SlicedString* slice = SlicedString::cast(source);
   11609         unsigned offset = slice->offset();
   11610         WriteToFlat(slice->parent(), sink, from + offset, to + offset);
   11611         return;
   11612       }
   11613     }
   11614   }
   11615 }
   11616 
   11617 
   11618 
   11619 template <typename SourceChar>
   11620 static void CalculateLineEndsImpl(Isolate* isolate,
   11621                                   List<int>* line_ends,
   11622                                   Vector<const SourceChar> src,
   11623                                   bool include_ending_line) {
   11624   const int src_len = src.length();
   11625   UnicodeCache* cache = isolate->unicode_cache();
   11626   for (int i = 0; i < src_len - 1; i++) {
   11627     SourceChar current = src[i];
   11628     SourceChar next = src[i + 1];
   11629     if (cache->IsLineTerminatorSequence(current, next)) line_ends->Add(i);
   11630   }
   11631 
   11632   if (src_len > 0 && cache->IsLineTerminatorSequence(src[src_len - 1], 0)) {
   11633     line_ends->Add(src_len - 1);
   11634   }
   11635   if (include_ending_line) {
   11636     // Include one character beyond the end of script. The rewriter uses that
   11637     // position for the implicit return statement.
   11638     line_ends->Add(src_len);
   11639   }
   11640 }
   11641 
   11642 
   11643 Handle<FixedArray> String::CalculateLineEnds(Handle<String> src,
   11644                                              bool include_ending_line) {
   11645   src = Flatten(src);
   11646   // Rough estimate of line count based on a roughly estimated average
   11647   // length of (unpacked) code.
   11648   int line_count_estimate = src->length() >> 4;
   11649   List<int> line_ends(line_count_estimate);
   11650   Isolate* isolate = src->GetIsolate();
   11651   { DisallowHeapAllocation no_allocation;  // ensure vectors stay valid.
   11652     // Dispatch on type of strings.
   11653     String::FlatContent content = src->GetFlatContent();
   11654     DCHECK(content.IsFlat());
   11655     if (content.IsOneByte()) {
   11656       CalculateLineEndsImpl(isolate,
   11657                             &line_ends,
   11658                             content.ToOneByteVector(),
   11659                             include_ending_line);
   11660     } else {
   11661       CalculateLineEndsImpl(isolate,
   11662                             &line_ends,
   11663                             content.ToUC16Vector(),
   11664                             include_ending_line);
   11665     }
   11666   }
   11667   int line_count = line_ends.length();
   11668   Handle<FixedArray> array = isolate->factory()->NewFixedArray(line_count);
   11669   for (int i = 0; i < line_count; i++) {
   11670     array->set(i, Smi::FromInt(line_ends[i]));
   11671   }
   11672   return array;
   11673 }
   11674 
   11675 
   11676 // Compares the contents of two strings by reading and comparing
   11677 // int-sized blocks of characters.
   11678 template <typename Char>
   11679 static inline bool CompareRawStringContents(const Char* const a,
   11680                                             const Char* const b,
   11681                                             int length) {
   11682   return CompareChars(a, b, length) == 0;
   11683 }
   11684 
   11685 
   11686 template<typename Chars1, typename Chars2>
   11687 class RawStringComparator : public AllStatic {
   11688  public:
   11689   static inline bool compare(const Chars1* a, const Chars2* b, int len) {
   11690     DCHECK(sizeof(Chars1) != sizeof(Chars2));
   11691     for (int i = 0; i < len; i++) {
   11692       if (a[i] != b[i]) {
   11693         return false;
   11694       }
   11695     }
   11696     return true;
   11697   }
   11698 };
   11699 
   11700 
   11701 template<>
   11702 class RawStringComparator<uint16_t, uint16_t> {
   11703  public:
   11704   static inline bool compare(const uint16_t* a, const uint16_t* b, int len) {
   11705     return CompareRawStringContents(a, b, len);
   11706   }
   11707 };
   11708 
   11709 
   11710 template<>
   11711 class RawStringComparator<uint8_t, uint8_t> {
   11712  public:
   11713   static inline bool compare(const uint8_t* a, const uint8_t* b, int len) {
   11714     return CompareRawStringContents(a, b, len);
   11715   }
   11716 };
   11717 
   11718 
   11719 class StringComparator {
   11720   class State {
   11721    public:
   11722     State() : is_one_byte_(true), length_(0), buffer8_(NULL) {}
   11723 
   11724     void Init(String* string) {
   11725       ConsString* cons_string = String::VisitFlat(this, string);
   11726       iter_.Reset(cons_string);
   11727       if (cons_string != NULL) {
   11728         int offset;
   11729         string = iter_.Next(&offset);
   11730         String::VisitFlat(this, string, offset);
   11731       }
   11732     }
   11733 
   11734     inline void VisitOneByteString(const uint8_t* chars, int length) {
   11735       is_one_byte_ = true;
   11736       buffer8_ = chars;
   11737       length_ = length;
   11738     }
   11739 
   11740     inline void VisitTwoByteString(const uint16_t* chars, int length) {
   11741       is_one_byte_ = false;
   11742       buffer16_ = chars;
   11743       length_ = length;
   11744     }
   11745 
   11746     void Advance(int consumed) {
   11747       DCHECK(consumed <= length_);
   11748       // Still in buffer.
   11749       if (length_ != consumed) {
   11750         if (is_one_byte_) {
   11751           buffer8_ += consumed;
   11752         } else {
   11753           buffer16_ += consumed;
   11754         }
   11755         length_ -= consumed;
   11756         return;
   11757       }
   11758       // Advance state.
   11759       int offset;
   11760       String* next = iter_.Next(&offset);
   11761       DCHECK_EQ(0, offset);
   11762       DCHECK(next != NULL);
   11763       String::VisitFlat(this, next);
   11764     }
   11765 
   11766     ConsStringIterator iter_;
   11767     bool is_one_byte_;
   11768     int length_;
   11769     union {
   11770       const uint8_t* buffer8_;
   11771       const uint16_t* buffer16_;
   11772     };
   11773 
   11774    private:
   11775     DISALLOW_COPY_AND_ASSIGN(State);
   11776   };
   11777 
   11778  public:
   11779   inline StringComparator() {}
   11780 
   11781   template<typename Chars1, typename Chars2>
   11782   static inline bool Equals(State* state_1, State* state_2, int to_check) {
   11783     const Chars1* a = reinterpret_cast<const Chars1*>(state_1->buffer8_);
   11784     const Chars2* b = reinterpret_cast<const Chars2*>(state_2->buffer8_);
   11785     return RawStringComparator<Chars1, Chars2>::compare(a, b, to_check);
   11786   }
   11787 
   11788   bool Equals(String* string_1, String* string_2) {
   11789     int length = string_1->length();
   11790     state_1_.Init(string_1);
   11791     state_2_.Init(string_2);
   11792     while (true) {
   11793       int to_check = Min(state_1_.length_, state_2_.length_);
   11794       DCHECK(to_check > 0 && to_check <= length);
   11795       bool is_equal;
   11796       if (state_1_.is_one_byte_) {
   11797         if (state_2_.is_one_byte_) {
   11798           is_equal = Equals<uint8_t, uint8_t>(&state_1_, &state_2_, to_check);
   11799         } else {
   11800           is_equal = Equals<uint8_t, uint16_t>(&state_1_, &state_2_, to_check);
   11801         }
   11802       } else {
   11803         if (state_2_.is_one_byte_) {
   11804           is_equal = Equals<uint16_t, uint8_t>(&state_1_, &state_2_, to_check);
   11805         } else {
   11806           is_equal = Equals<uint16_t, uint16_t>(&state_1_, &state_2_, to_check);
   11807         }
   11808       }
   11809       // Looping done.
   11810       if (!is_equal) return false;
   11811       length -= to_check;
   11812       // Exit condition. Strings are equal.
   11813       if (length == 0) return true;
   11814       state_1_.Advance(to_check);
   11815       state_2_.Advance(to_check);
   11816     }
   11817   }
   11818 
   11819  private:
   11820   State state_1_;
   11821   State state_2_;
   11822 
   11823   DISALLOW_COPY_AND_ASSIGN(StringComparator);
   11824 };
   11825 
   11826 
   11827 bool String::SlowEquals(String* other) {
   11828   DisallowHeapAllocation no_gc;
   11829   // Fast check: negative check with lengths.
   11830   int len = length();
   11831   if (len != other->length()) return false;
   11832   if (len == 0) return true;
   11833 
   11834   // Fast check: if hash code is computed for both strings
   11835   // a fast negative check can be performed.
   11836   if (HasHashCode() && other->HasHashCode()) {
   11837 #ifdef ENABLE_SLOW_DCHECKS
   11838     if (FLAG_enable_slow_asserts) {
   11839       if (Hash() != other->Hash()) {
   11840         bool found_difference = false;
   11841         for (int i = 0; i < len; i++) {
   11842           if (Get(i) != other->Get(i)) {
   11843             found_difference = true;
   11844             break;
   11845           }
   11846         }
   11847         DCHECK(found_difference);
   11848       }
   11849     }
   11850 #endif
   11851     if (Hash() != other->Hash()) return false;
   11852   }
   11853 
   11854   // We know the strings are both non-empty. Compare the first chars
   11855   // before we try to flatten the strings.
   11856   if (this->Get(0) != other->Get(0)) return false;
   11857 
   11858   if (IsSeqOneByteString() && other->IsSeqOneByteString()) {
   11859     const uint8_t* str1 = SeqOneByteString::cast(this)->GetChars();
   11860     const uint8_t* str2 = SeqOneByteString::cast(other)->GetChars();
   11861     return CompareRawStringContents(str1, str2, len);
   11862   }
   11863 
   11864   StringComparator comparator;
   11865   return comparator.Equals(this, other);
   11866 }
   11867 
   11868 
   11869 bool String::SlowEquals(Handle<String> one, Handle<String> two) {
   11870   // Fast check: negative check with lengths.
   11871   int one_length = one->length();
   11872   if (one_length != two->length()) return false;
   11873   if (one_length == 0) return true;
   11874 
   11875   // Fast check: if hash code is computed for both strings
   11876   // a fast negative check can be performed.
   11877   if (one->HasHashCode() && two->HasHashCode()) {
   11878 #ifdef ENABLE_SLOW_DCHECKS
   11879     if (FLAG_enable_slow_asserts) {
   11880       if (one->Hash() != two->Hash()) {
   11881         bool found_difference = false;
   11882         for (int i = 0; i < one_length; i++) {
   11883           if (one->Get(i) != two->Get(i)) {
   11884             found_difference = true;
   11885             break;
   11886           }
   11887         }
   11888         DCHECK(found_difference);
   11889       }
   11890     }
   11891 #endif
   11892     if (one->Hash() != two->Hash()) return false;
   11893   }
   11894 
   11895   // We know the strings are both non-empty. Compare the first chars
   11896   // before we try to flatten the strings.
   11897   if (one->Get(0) != two->Get(0)) return false;
   11898 
   11899   one = String::Flatten(one);
   11900   two = String::Flatten(two);
   11901 
   11902   DisallowHeapAllocation no_gc;
   11903   String::FlatContent flat1 = one->GetFlatContent();
   11904   String::FlatContent flat2 = two->GetFlatContent();
   11905 
   11906   if (flat1.IsOneByte() && flat2.IsOneByte()) {
   11907       return CompareRawStringContents(flat1.ToOneByteVector().start(),
   11908                                       flat2.ToOneByteVector().start(),
   11909                                       one_length);
   11910   } else {
   11911     for (int i = 0; i < one_length; i++) {
   11912       if (flat1.Get(i) != flat2.Get(i)) return false;
   11913     }
   11914     return true;
   11915   }
   11916 }
   11917 
   11918 
   11919 // static
   11920 ComparisonResult String::Compare(Handle<String> x, Handle<String> y) {
   11921   // A few fast case tests before we flatten.
   11922   if (x.is_identical_to(y)) {
   11923     return ComparisonResult::kEqual;
   11924   } else if (y->length() == 0) {
   11925     return x->length() == 0 ? ComparisonResult::kEqual
   11926                             : ComparisonResult::kGreaterThan;
   11927   } else if (x->length() == 0) {
   11928     return ComparisonResult::kLessThan;
   11929   }
   11930 
   11931   int const d = x->Get(0) - y->Get(0);
   11932   if (d < 0) {
   11933     return ComparisonResult::kLessThan;
   11934   } else if (d > 0) {
   11935     return ComparisonResult::kGreaterThan;
   11936   }
   11937 
   11938   // Slow case.
   11939   x = String::Flatten(x);
   11940   y = String::Flatten(y);
   11941 
   11942   DisallowHeapAllocation no_gc;
   11943   ComparisonResult result = ComparisonResult::kEqual;
   11944   int prefix_length = x->length();
   11945   if (y->length() < prefix_length) {
   11946     prefix_length = y->length();
   11947     result = ComparisonResult::kGreaterThan;
   11948   } else if (y->length() > prefix_length) {
   11949     result = ComparisonResult::kLessThan;
   11950   }
   11951   int r;
   11952   String::FlatContent x_content = x->GetFlatContent();
   11953   String::FlatContent y_content = y->GetFlatContent();
   11954   if (x_content.IsOneByte()) {
   11955     Vector<const uint8_t> x_chars = x_content.ToOneByteVector();
   11956     if (y_content.IsOneByte()) {
   11957       Vector<const uint8_t> y_chars = y_content.ToOneByteVector();
   11958       r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
   11959     } else {
   11960       Vector<const uc16> y_chars = y_content.ToUC16Vector();
   11961       r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
   11962     }
   11963   } else {
   11964     Vector<const uc16> x_chars = x_content.ToUC16Vector();
   11965     if (y_content.IsOneByte()) {
   11966       Vector<const uint8_t> y_chars = y_content.ToOneByteVector();
   11967       r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
   11968     } else {
   11969       Vector<const uc16> y_chars = y_content.ToUC16Vector();
   11970       r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
   11971     }
   11972   }
   11973   if (r < 0) {
   11974     result = ComparisonResult::kLessThan;
   11975   } else if (r > 0) {
   11976     result = ComparisonResult::kGreaterThan;
   11977   }
   11978   return result;
   11979 }
   11980 
   11981 
   11982 bool String::IsUtf8EqualTo(Vector<const char> str, bool allow_prefix_match) {
   11983   int slen = length();
   11984   // Can't check exact length equality, but we can check bounds.
   11985   int str_len = str.length();
   11986   if (!allow_prefix_match &&
   11987       (str_len < slen ||
   11988           str_len > slen*static_cast<int>(unibrow::Utf8::kMaxEncodedSize))) {
   11989     return false;
   11990   }
   11991   int i;
   11992   size_t remaining_in_str = static_cast<size_t>(str_len);
   11993   const uint8_t* utf8_data = reinterpret_cast<const uint8_t*>(str.start());
   11994   for (i = 0; i < slen && remaining_in_str > 0; i++) {
   11995     size_t cursor = 0;
   11996     uint32_t r = unibrow::Utf8::ValueOf(utf8_data, remaining_in_str, &cursor);
   11997     DCHECK(cursor > 0 && cursor <= remaining_in_str);
   11998     if (r > unibrow::Utf16::kMaxNonSurrogateCharCode) {
   11999       if (i > slen - 1) return false;
   12000       if (Get(i++) != unibrow::Utf16::LeadSurrogate(r)) return false;
   12001       if (Get(i) != unibrow::Utf16::TrailSurrogate(r)) return false;
   12002     } else {
   12003       if (Get(i) != r) return false;
   12004     }
   12005     utf8_data += cursor;
   12006     remaining_in_str -= cursor;
   12007   }
   12008   return (allow_prefix_match || i == slen) && remaining_in_str == 0;
   12009 }
   12010 
   12011 
   12012 bool String::IsOneByteEqualTo(Vector<const uint8_t> str) {
   12013   int slen = length();
   12014   if (str.length() != slen) return false;
   12015   DisallowHeapAllocation no_gc;
   12016   FlatContent content = GetFlatContent();
   12017   if (content.IsOneByte()) {
   12018     return CompareChars(content.ToOneByteVector().start(),
   12019                         str.start(), slen) == 0;
   12020   }
   12021   for (int i = 0; i < slen; i++) {
   12022     if (Get(i) != static_cast<uint16_t>(str[i])) return false;
   12023   }
   12024   return true;
   12025 }
   12026 
   12027 
   12028 bool String::IsTwoByteEqualTo(Vector<const uc16> str) {
   12029   int slen = length();
   12030   if (str.length() != slen) return false;
   12031   DisallowHeapAllocation no_gc;
   12032   FlatContent content = GetFlatContent();
   12033   if (content.IsTwoByte()) {
   12034     return CompareChars(content.ToUC16Vector().start(), str.start(), slen) == 0;
   12035   }
   12036   for (int i = 0; i < slen; i++) {
   12037     if (Get(i) != str[i]) return false;
   12038   }
   12039   return true;
   12040 }
   12041 
   12042 
   12043 uint32_t String::ComputeAndSetHash() {
   12044   // Should only be called if hash code has not yet been computed.
   12045   DCHECK(!HasHashCode());
   12046 
   12047   // Store the hash code in the object.
   12048   uint32_t field = IteratingStringHasher::Hash(this, GetHeap()->HashSeed());
   12049   set_hash_field(field);
   12050 
   12051   // Check the hash code is there.
   12052   DCHECK(HasHashCode());
   12053   uint32_t result = field >> kHashShift;
   12054   DCHECK(result != 0);  // Ensure that the hash value of 0 is never computed.
   12055   return result;
   12056 }
   12057 
   12058 
   12059 bool String::ComputeArrayIndex(uint32_t* index) {
   12060   int length = this->length();
   12061   if (length == 0 || length > kMaxArrayIndexSize) return false;
   12062   StringCharacterStream stream(this);
   12063   return StringToArrayIndex(&stream, index);
   12064 }
   12065 
   12066 
   12067 bool String::SlowAsArrayIndex(uint32_t* index) {
   12068   if (length() <= kMaxCachedArrayIndexLength) {
   12069     Hash();  // force computation of hash code
   12070     uint32_t field = hash_field();
   12071     if ((field & kIsNotArrayIndexMask) != 0) return false;
   12072     // Isolate the array index form the full hash field.
   12073     *index = ArrayIndexValueBits::decode(field);
   12074     return true;
   12075   } else {
   12076     return ComputeArrayIndex(index);
   12077   }
   12078 }
   12079 
   12080 
   12081 Handle<String> SeqString::Truncate(Handle<SeqString> string, int new_length) {
   12082   int new_size, old_size;
   12083   int old_length = string->length();
   12084   if (old_length <= new_length) return string;
   12085 
   12086   if (string->IsSeqOneByteString()) {
   12087     old_size = SeqOneByteString::SizeFor(old_length);
   12088     new_size = SeqOneByteString::SizeFor(new_length);
   12089   } else {
   12090     DCHECK(string->IsSeqTwoByteString());
   12091     old_size = SeqTwoByteString::SizeFor(old_length);
   12092     new_size = SeqTwoByteString::SizeFor(new_length);
   12093   }
   12094 
   12095   int delta = old_size - new_size;
   12096 
   12097   Address start_of_string = string->address();
   12098   DCHECK_OBJECT_ALIGNED(start_of_string);
   12099   DCHECK_OBJECT_ALIGNED(start_of_string + new_size);
   12100 
   12101   Heap* heap = string->GetHeap();
   12102   // Sizes are pointer size aligned, so that we can use filler objects
   12103   // that are a multiple of pointer size.
   12104   heap->CreateFillerObjectAt(start_of_string + new_size, delta);
   12105   heap->AdjustLiveBytes(*string, -delta, Heap::CONCURRENT_TO_SWEEPER);
   12106 
   12107   // We are storing the new length using release store after creating a filler
   12108   // for the left-over space to avoid races with the sweeper thread.
   12109   string->synchronized_set_length(new_length);
   12110 
   12111   if (new_length == 0) return heap->isolate()->factory()->empty_string();
   12112   return string;
   12113 }
   12114 
   12115 
   12116 uint32_t StringHasher::MakeArrayIndexHash(uint32_t value, int length) {
   12117   // For array indexes mix the length into the hash as an array index could
   12118   // be zero.
   12119   DCHECK(length > 0);
   12120   DCHECK(length <= String::kMaxArrayIndexSize);
   12121   DCHECK(TenToThe(String::kMaxCachedArrayIndexLength) <
   12122          (1 << String::kArrayIndexValueBits));
   12123 
   12124   value <<= String::ArrayIndexValueBits::kShift;
   12125   value |= length << String::ArrayIndexLengthBits::kShift;
   12126 
   12127   DCHECK((value & String::kIsNotArrayIndexMask) == 0);
   12128   DCHECK((length > String::kMaxCachedArrayIndexLength) ||
   12129          (value & String::kContainsCachedArrayIndexMask) == 0);
   12130   return value;
   12131 }
   12132 
   12133 
   12134 uint32_t StringHasher::GetHashField() {
   12135   if (length_ <= String::kMaxHashCalcLength) {
   12136     if (is_array_index_) {
   12137       return MakeArrayIndexHash(array_index_, length_);
   12138     }
   12139     return (GetHashCore(raw_running_hash_) << String::kHashShift) |
   12140            String::kIsNotArrayIndexMask;
   12141   } else {
   12142     return (length_ << String::kHashShift) | String::kIsNotArrayIndexMask;
   12143   }
   12144 }
   12145 
   12146 
   12147 uint32_t StringHasher::ComputeUtf8Hash(Vector<const char> chars,
   12148                                        uint32_t seed,
   12149                                        int* utf16_length_out) {
   12150   int vector_length = chars.length();
   12151   // Handle some edge cases
   12152   if (vector_length <= 1) {
   12153     DCHECK(vector_length == 0 ||
   12154            static_cast<uint8_t>(chars.start()[0]) <=
   12155                unibrow::Utf8::kMaxOneByteChar);
   12156     *utf16_length_out = vector_length;
   12157     return HashSequentialString(chars.start(), vector_length, seed);
   12158   }
   12159   // Start with a fake length which won't affect computation.
   12160   // It will be updated later.
   12161   StringHasher hasher(String::kMaxArrayIndexSize, seed);
   12162   size_t remaining = static_cast<size_t>(vector_length);
   12163   const uint8_t* stream = reinterpret_cast<const uint8_t*>(chars.start());
   12164   int utf16_length = 0;
   12165   bool is_index = true;
   12166   DCHECK(hasher.is_array_index_);
   12167   while (remaining > 0) {
   12168     size_t consumed = 0;
   12169     uint32_t c = unibrow::Utf8::ValueOf(stream, remaining, &consumed);
   12170     DCHECK(consumed > 0 && consumed <= remaining);
   12171     stream += consumed;
   12172     remaining -= consumed;
   12173     bool is_two_characters = c > unibrow::Utf16::kMaxNonSurrogateCharCode;
   12174     utf16_length += is_two_characters ? 2 : 1;
   12175     // No need to keep hashing. But we do need to calculate utf16_length.
   12176     if (utf16_length > String::kMaxHashCalcLength) continue;
   12177     if (is_two_characters) {
   12178       uint16_t c1 = unibrow::Utf16::LeadSurrogate(c);
   12179       uint16_t c2 = unibrow::Utf16::TrailSurrogate(c);
   12180       hasher.AddCharacter(c1);
   12181       hasher.AddCharacter(c2);
   12182       if (is_index) is_index = hasher.UpdateIndex(c1);
   12183       if (is_index) is_index = hasher.UpdateIndex(c2);
   12184     } else {
   12185       hasher.AddCharacter(c);
   12186       if (is_index) is_index = hasher.UpdateIndex(c);
   12187     }
   12188   }
   12189   *utf16_length_out = static_cast<int>(utf16_length);
   12190   // Must set length here so that hash computation is correct.
   12191   hasher.length_ = utf16_length;
   12192   return hasher.GetHashField();
   12193 }
   12194 
   12195 
   12196 void IteratingStringHasher::VisitConsString(ConsString* cons_string) {
   12197   // Run small ConsStrings through ConsStringIterator.
   12198   if (cons_string->length() < 64) {
   12199     ConsStringIterator iter(cons_string);
   12200     int offset;
   12201     String* string;
   12202     while (nullptr != (string = iter.Next(&offset))) {
   12203       DCHECK_EQ(0, offset);
   12204       String::VisitFlat(this, string, 0);
   12205     }
   12206     return;
   12207   }
   12208   // Slow case.
   12209   const int max_length = String::kMaxHashCalcLength;
   12210   int length = std::min(cons_string->length(), max_length);
   12211   if (cons_string->HasOnlyOneByteChars()) {
   12212     uint8_t* buffer = new uint8_t[length];
   12213     String::WriteToFlat(cons_string, buffer, 0, length);
   12214     AddCharacters(buffer, length);
   12215     delete[] buffer;
   12216   } else {
   12217     uint16_t* buffer = new uint16_t[length];
   12218     String::WriteToFlat(cons_string, buffer, 0, length);
   12219     AddCharacters(buffer, length);
   12220     delete[] buffer;
   12221   }
   12222 }
   12223 
   12224 
   12225 void String::PrintOn(FILE* file) {
   12226   int length = this->length();
   12227   for (int i = 0; i < length; i++) {
   12228     PrintF(file, "%c", Get(i));
   12229   }
   12230 }
   12231 
   12232 
   12233 int Map::Hash() {
   12234   // For performance reasons we only hash the 3 most variable fields of a map:
   12235   // constructor, prototype and bit_field2. For predictability reasons we
   12236   // use objects' offsets in respective pages for hashing instead of raw
   12237   // addresses.
   12238 
   12239   // Shift away the tag.
   12240   int hash = ObjectAddressForHashing(GetConstructor()) >> 2;
   12241 
   12242   // XOR-ing the prototype and constructor directly yields too many zero bits
   12243   // when the two pointers are close (which is fairly common).
   12244   // To avoid this we shift the prototype bits relatively to the constructor.
   12245   hash ^= ObjectAddressForHashing(prototype()) << (32 - kPageSizeBits);
   12246 
   12247   return hash ^ (hash >> 16) ^ bit_field2();
   12248 }
   12249 
   12250 
   12251 namespace {
   12252 
   12253 bool CheckEquivalent(Map* first, Map* second) {
   12254   return first->GetConstructor() == second->GetConstructor() &&
   12255          first->prototype() == second->prototype() &&
   12256          first->instance_type() == second->instance_type() &&
   12257          first->bit_field() == second->bit_field() &&
   12258          first->is_extensible() == second->is_extensible() &&
   12259          first->is_strong() == second->is_strong() &&
   12260          first->is_hidden_prototype() == second->is_hidden_prototype();
   12261 }
   12262 
   12263 }  // namespace
   12264 
   12265 
   12266 bool Map::EquivalentToForTransition(Map* other) {
   12267   if (!CheckEquivalent(this, other)) return false;
   12268   if (instance_type() == JS_FUNCTION_TYPE) {
   12269     // JSFunctions require more checks to ensure that sloppy function is
   12270     // not equvalent to strict function.
   12271     int nof = Min(NumberOfOwnDescriptors(), other->NumberOfOwnDescriptors());
   12272     return instance_descriptors()->IsEqualUpTo(other->instance_descriptors(),
   12273                                                nof);
   12274   }
   12275   return true;
   12276 }
   12277 
   12278 
   12279 bool Map::EquivalentToForNormalization(Map* other,
   12280                                        PropertyNormalizationMode mode) {
   12281   int properties =
   12282       mode == CLEAR_INOBJECT_PROPERTIES ? 0 : other->GetInObjectProperties();
   12283   return CheckEquivalent(this, other) && bit_field2() == other->bit_field2() &&
   12284          GetInObjectProperties() == properties;
   12285 }
   12286 
   12287 
   12288 bool JSFunction::Inlines(SharedFunctionInfo* candidate) {
   12289   DisallowHeapAllocation no_gc;
   12290   if (shared() == candidate) return true;
   12291   if (code()->kind() != Code::OPTIMIZED_FUNCTION) return false;
   12292   DeoptimizationInputData* const data =
   12293       DeoptimizationInputData::cast(code()->deoptimization_data());
   12294   if (data->length() == 0) return false;
   12295   FixedArray* const literals = data->LiteralArray();
   12296   int const inlined_count = data->InlinedFunctionCount()->value();
   12297   for (int i = 0; i < inlined_count; ++i) {
   12298     if (SharedFunctionInfo::cast(literals->get(i)) == candidate) {
   12299       return true;
   12300     }
   12301   }
   12302   return false;
   12303 }
   12304 
   12305 
   12306 void JSFunction::MarkForOptimization() {
   12307   Isolate* isolate = GetIsolate();
   12308   // Do not optimize if function contains break points.
   12309   if (shared()->HasDebugInfo()) return;
   12310   DCHECK(!IsOptimized());
   12311   DCHECK(shared()->allows_lazy_compilation() ||
   12312          !shared()->optimization_disabled());
   12313   DCHECK(!shared()->HasDebugInfo());
   12314   set_code_no_write_barrier(
   12315       isolate->builtins()->builtin(Builtins::kCompileOptimized));
   12316   // No write barrier required, since the builtin is part of the root set.
   12317 }
   12318 
   12319 
   12320 void JSFunction::AttemptConcurrentOptimization() {
   12321   Isolate* isolate = GetIsolate();
   12322   if (!isolate->concurrent_recompilation_enabled() ||
   12323       isolate->bootstrapper()->IsActive()) {
   12324     MarkForOptimization();
   12325     return;
   12326   }
   12327   if (isolate->concurrent_osr_enabled() &&
   12328       isolate->optimizing_compile_dispatcher()->IsQueuedForOSR(this)) {
   12329     // Do not attempt regular recompilation if we already queued this for OSR.
   12330     // TODO(yangguo): This is necessary so that we don't install optimized
   12331     // code on a function that is already optimized, since OSR and regular
   12332     // recompilation race.  This goes away as soon as OSR becomes one-shot.
   12333     return;
   12334   }
   12335   DCHECK(!IsInOptimizationQueue());
   12336   DCHECK(!IsOptimized());
   12337   DCHECK(shared()->allows_lazy_compilation() ||
   12338          !shared()->optimization_disabled());
   12339   DCHECK(isolate->concurrent_recompilation_enabled());
   12340   if (FLAG_trace_concurrent_recompilation) {
   12341     PrintF("  ** Marking ");
   12342     ShortPrint();
   12343     PrintF(" for concurrent recompilation.\n");
   12344   }
   12345   set_code_no_write_barrier(
   12346       isolate->builtins()->builtin(Builtins::kCompileOptimizedConcurrent));
   12347   // No write barrier required, since the builtin is part of the root set.
   12348 }
   12349 
   12350 
   12351 void SharedFunctionInfo::AddSharedCodeToOptimizedCodeMap(
   12352     Handle<SharedFunctionInfo> shared, Handle<Code> code) {
   12353   Isolate* isolate = shared->GetIsolate();
   12354   if (isolate->serializer_enabled()) return;
   12355   DCHECK(code->kind() == Code::OPTIMIZED_FUNCTION);
   12356   // Empty code maps are unsupported.
   12357   if (!shared->OptimizedCodeMapIsCleared()) {
   12358     Handle<WeakCell> cell = isolate->factory()->NewWeakCell(code);
   12359     // A collection may have occured and cleared the optimized code map in the
   12360     // allocation above.
   12361     if (!shared->OptimizedCodeMapIsCleared()) {
   12362       shared->optimized_code_map()->set(kSharedCodeIndex, *cell);
   12363     }
   12364   }
   12365 }
   12366 
   12367 
   12368 void SharedFunctionInfo::AddToOptimizedCodeMapInternal(
   12369     Handle<SharedFunctionInfo> shared, Handle<Context> native_context,
   12370     Handle<HeapObject> code, Handle<LiteralsArray> literals,
   12371     BailoutId osr_ast_id) {
   12372   Isolate* isolate = shared->GetIsolate();
   12373   if (isolate->serializer_enabled()) return;
   12374   DCHECK(*code == isolate->heap()->undefined_value() ||
   12375          !shared->SearchOptimizedCodeMap(*native_context, osr_ast_id).code);
   12376   DCHECK(*code == isolate->heap()->undefined_value() ||
   12377          Code::cast(*code)->kind() == Code::OPTIMIZED_FUNCTION);
   12378   DCHECK(native_context->IsNativeContext());
   12379   STATIC_ASSERT(kEntryLength == 4);
   12380   Handle<FixedArray> new_code_map;
   12381   int entry;
   12382 
   12383   if (shared->OptimizedCodeMapIsCleared()) {
   12384     new_code_map = isolate->factory()->NewFixedArray(kInitialLength, TENURED);
   12385     new_code_map->set(kSharedCodeIndex, *isolate->factory()->empty_weak_cell(),
   12386                       SKIP_WRITE_BARRIER);
   12387     entry = kEntriesStart;
   12388   } else {
   12389     Handle<FixedArray> old_code_map(shared->optimized_code_map(), isolate);
   12390     entry = shared->SearchOptimizedCodeMapEntry(*native_context, osr_ast_id);
   12391     if (entry > kSharedCodeIndex) {
   12392       // Found an existing context-specific entry. If the user provided valid
   12393       // code, it must not contain any code.
   12394       DCHECK(code->IsUndefined() ||
   12395              WeakCell::cast(old_code_map->get(entry + kCachedCodeOffset))
   12396                  ->cleared());
   12397 
   12398       // Just set the code and literals to the entry.
   12399       if (!code->IsUndefined()) {
   12400         Handle<WeakCell> code_cell = isolate->factory()->NewWeakCell(code);
   12401         old_code_map->set(entry + kCachedCodeOffset, *code_cell);
   12402       }
   12403       Handle<WeakCell> literals_cell =
   12404           isolate->factory()->NewWeakCell(literals);
   12405       old_code_map->set(entry + kLiteralsOffset, *literals_cell);
   12406       return;
   12407     }
   12408 
   12409     // Can we reuse an entry?
   12410     DCHECK(entry < kEntriesStart);
   12411     int length = old_code_map->length();
   12412     for (int i = kEntriesStart; i < length; i += kEntryLength) {
   12413       if (WeakCell::cast(old_code_map->get(i + kContextOffset))->cleared()) {
   12414         new_code_map = old_code_map;
   12415         entry = i;
   12416         break;
   12417       }
   12418     }
   12419 
   12420     if (entry < kEntriesStart) {
   12421       // Copy old optimized code map and append one new entry.
   12422       new_code_map = isolate->factory()->CopyFixedArrayAndGrow(
   12423           old_code_map, kEntryLength, TENURED);
   12424       // TODO(mstarzinger): Temporary workaround. The allocation above might
   12425       // have flushed the optimized code map and the copy we created is full of
   12426       // holes. For now we just give up on adding the entry and pretend it got
   12427       // flushed.
   12428       if (shared->OptimizedCodeMapIsCleared()) return;
   12429       entry = old_code_map->length();
   12430     }
   12431   }
   12432 
   12433   Handle<WeakCell> code_cell = code->IsUndefined()
   12434                                    ? isolate->factory()->empty_weak_cell()
   12435                                    : isolate->factory()->NewWeakCell(code);
   12436   Handle<WeakCell> literals_cell = isolate->factory()->NewWeakCell(literals);
   12437   WeakCell* context_cell = native_context->self_weak_cell();
   12438 
   12439   new_code_map->set(entry + kContextOffset, context_cell);
   12440   new_code_map->set(entry + kCachedCodeOffset, *code_cell);
   12441   new_code_map->set(entry + kLiteralsOffset, *literals_cell);
   12442   new_code_map->set(entry + kOsrAstIdOffset, Smi::FromInt(osr_ast_id.ToInt()));
   12443 
   12444 #ifdef DEBUG
   12445   for (int i = kEntriesStart; i < new_code_map->length(); i += kEntryLength) {
   12446     WeakCell* cell = WeakCell::cast(new_code_map->get(i + kContextOffset));
   12447     DCHECK(cell->cleared() || cell->value()->IsNativeContext());
   12448     cell = WeakCell::cast(new_code_map->get(i + kCachedCodeOffset));
   12449     DCHECK(cell->cleared() ||
   12450            (cell->value()->IsCode() &&
   12451             Code::cast(cell->value())->kind() == Code::OPTIMIZED_FUNCTION));
   12452     cell = WeakCell::cast(new_code_map->get(i + kLiteralsOffset));
   12453     DCHECK(cell->cleared() || cell->value()->IsFixedArray());
   12454     DCHECK(new_code_map->get(i + kOsrAstIdOffset)->IsSmi());
   12455   }
   12456 #endif
   12457 
   12458   FixedArray* old_code_map = shared->optimized_code_map();
   12459   if (old_code_map != *new_code_map) {
   12460     shared->set_optimized_code_map(*new_code_map);
   12461   }
   12462 }
   12463 
   12464 
   12465 void SharedFunctionInfo::ClearOptimizedCodeMap() {
   12466   FixedArray* cleared_map = GetHeap()->cleared_optimized_code_map();
   12467   set_optimized_code_map(cleared_map, SKIP_WRITE_BARRIER);
   12468 }
   12469 
   12470 
   12471 void SharedFunctionInfo::EvictFromOptimizedCodeMap(Code* optimized_code,
   12472                                                    const char* reason) {
   12473   DisallowHeapAllocation no_gc;
   12474   if (OptimizedCodeMapIsCleared()) return;
   12475 
   12476   Heap* heap = GetHeap();
   12477   FixedArray* code_map = optimized_code_map();
   12478   int dst = kEntriesStart;
   12479   int length = code_map->length();
   12480   for (int src = kEntriesStart; src < length; src += kEntryLength) {
   12481     DCHECK(WeakCell::cast(code_map->get(src))->cleared() ||
   12482            WeakCell::cast(code_map->get(src))->value()->IsNativeContext());
   12483     if (WeakCell::cast(code_map->get(src + kCachedCodeOffset))->value() ==
   12484         optimized_code) {
   12485       BailoutId osr(Smi::cast(code_map->get(src + kOsrAstIdOffset))->value());
   12486       if (FLAG_trace_opt) {
   12487         PrintF("[evicting entry from optimizing code map (%s) for ", reason);
   12488         ShortPrint();
   12489         if (osr.IsNone()) {
   12490           PrintF("]\n");
   12491         } else {
   12492           PrintF(" (osr ast id %d)]\n", osr.ToInt());
   12493         }
   12494       }
   12495       if (!osr.IsNone()) {
   12496         // Evict the src entry by not copying it to the dst entry.
   12497         continue;
   12498       }
   12499       // In case of non-OSR entry just clear the code in order to proceed
   12500       // sharing literals.
   12501       code_map->set(src + kCachedCodeOffset, heap->empty_weak_cell(),
   12502                     SKIP_WRITE_BARRIER);
   12503     }
   12504 
   12505     // Keep the src entry by copying it to the dst entry.
   12506     if (dst != src) {
   12507       code_map->set(dst + kContextOffset, code_map->get(src + kContextOffset));
   12508       code_map->set(dst + kCachedCodeOffset,
   12509                     code_map->get(src + kCachedCodeOffset));
   12510       code_map->set(dst + kLiteralsOffset,
   12511                     code_map->get(src + kLiteralsOffset));
   12512       code_map->set(dst + kOsrAstIdOffset,
   12513                     code_map->get(src + kOsrAstIdOffset));
   12514     }
   12515     dst += kEntryLength;
   12516   }
   12517   if (WeakCell::cast(code_map->get(kSharedCodeIndex))->value() ==
   12518       optimized_code) {
   12519     // Evict context-independent code as well.
   12520     code_map->set(kSharedCodeIndex, heap->empty_weak_cell(),
   12521                   SKIP_WRITE_BARRIER);
   12522     if (FLAG_trace_opt) {
   12523       PrintF("[evicting entry from optimizing code map (%s) for ", reason);
   12524       ShortPrint();
   12525       PrintF(" (context-independent code)]\n");
   12526     }
   12527   }
   12528   if (dst != length) {
   12529     // Always trim even when array is cleared because of heap verifier.
   12530     heap->RightTrimFixedArray<Heap::CONCURRENT_TO_SWEEPER>(code_map,
   12531                                                            length - dst);
   12532     if (code_map->length() == kEntriesStart &&
   12533         WeakCell::cast(code_map->get(kSharedCodeIndex))->cleared()) {
   12534       ClearOptimizedCodeMap();
   12535     }
   12536   }
   12537 }
   12538 
   12539 
   12540 void SharedFunctionInfo::TrimOptimizedCodeMap(int shrink_by) {
   12541   FixedArray* code_map = optimized_code_map();
   12542   DCHECK(shrink_by % kEntryLength == 0);
   12543   DCHECK(shrink_by <= code_map->length() - kEntriesStart);
   12544   // Always trim even when array is cleared because of heap verifier.
   12545   GetHeap()->RightTrimFixedArray<Heap::SEQUENTIAL_TO_SWEEPER>(code_map,
   12546                                                               shrink_by);
   12547   if (code_map->length() == kEntriesStart &&
   12548       WeakCell::cast(code_map->get(kSharedCodeIndex))->cleared()) {
   12549     ClearOptimizedCodeMap();
   12550   }
   12551 }
   12552 
   12553 
   12554 static void GetMinInobjectSlack(Map* map, void* data) {
   12555   int slack = map->unused_property_fields();
   12556   if (*reinterpret_cast<int*>(data) > slack) {
   12557     *reinterpret_cast<int*>(data) = slack;
   12558   }
   12559 }
   12560 
   12561 
   12562 static void ShrinkInstanceSize(Map* map, void* data) {
   12563   int slack = *reinterpret_cast<int*>(data);
   12564   map->SetInObjectProperties(map->GetInObjectProperties() - slack);
   12565   map->set_unused_property_fields(map->unused_property_fields() - slack);
   12566   map->set_instance_size(map->instance_size() - slack * kPointerSize);
   12567 
   12568   // Visitor id might depend on the instance size, recalculate it.
   12569   map->set_visitor_id(Heap::GetStaticVisitorIdForMap(map));
   12570 }
   12571 
   12572 
   12573 void Map::CompleteInobjectSlackTracking() {
   12574   // Has to be an initial map.
   12575   DCHECK(GetBackPointer()->IsUndefined());
   12576 
   12577   set_construction_counter(kNoSlackTracking);
   12578 
   12579   int slack = unused_property_fields();
   12580   TransitionArray::TraverseTransitionTree(this, &GetMinInobjectSlack, &slack);
   12581   if (slack != 0) {
   12582     // Resize the initial map and all maps in its transition tree.
   12583     TransitionArray::TraverseTransitionTree(this, &ShrinkInstanceSize, &slack);
   12584   }
   12585 }
   12586 
   12587 
   12588 static bool PrototypeBenefitsFromNormalization(Handle<JSObject> object) {
   12589   DisallowHeapAllocation no_gc;
   12590   if (!object->HasFastProperties()) return false;
   12591   Map* map = object->map();
   12592   if (map->is_prototype_map()) return false;
   12593   DescriptorArray* descriptors = map->instance_descriptors();
   12594   for (int i = 0; i < map->NumberOfOwnDescriptors(); i++) {
   12595     PropertyDetails details = descriptors->GetDetails(i);
   12596     if (details.location() == kDescriptor) continue;
   12597     if (details.representation().IsHeapObject() ||
   12598         details.representation().IsTagged()) {
   12599       FieldIndex index = FieldIndex::ForDescriptor(map, i);
   12600       if (object->RawFastPropertyAt(index)->IsJSFunction()) return true;
   12601     }
   12602   }
   12603   return false;
   12604 }
   12605 
   12606 
   12607 // static
   12608 void JSObject::OptimizeAsPrototype(Handle<JSObject> object,
   12609                                    PrototypeOptimizationMode mode) {
   12610   if (object->IsJSGlobalObject()) return;
   12611   if (mode == FAST_PROTOTYPE && PrototypeBenefitsFromNormalization(object)) {
   12612     // First normalize to ensure all JSFunctions are DATA_CONSTANT.
   12613     JSObject::NormalizeProperties(object, KEEP_INOBJECT_PROPERTIES, 0,
   12614                                   "NormalizeAsPrototype");
   12615   }
   12616   Handle<Map> previous_map(object->map());
   12617   if (!object->HasFastProperties()) {
   12618     JSObject::MigrateSlowToFast(object, 0, "OptimizeAsPrototype");
   12619   }
   12620   if (!object->map()->is_prototype_map()) {
   12621     if (object->map() == *previous_map) {
   12622       Handle<Map> new_map = Map::Copy(handle(object->map()), "CopyAsPrototype");
   12623       JSObject::MigrateToMap(object, new_map);
   12624     }
   12625     object->map()->set_is_prototype_map(true);
   12626 
   12627     // Replace the pointer to the exact constructor with the Object function
   12628     // from the same context if undetectable from JS. This is to avoid keeping
   12629     // memory alive unnecessarily.
   12630     Object* maybe_constructor = object->map()->GetConstructor();
   12631     if (maybe_constructor->IsJSFunction()) {
   12632       JSFunction* constructor = JSFunction::cast(maybe_constructor);
   12633       Isolate* isolate = object->GetIsolate();
   12634       if (!constructor->shared()->IsApiFunction() &&
   12635           object->class_name() == isolate->heap()->Object_string()) {
   12636         Context* context = constructor->context()->native_context();
   12637         JSFunction* object_function = context->object_function();
   12638         object->map()->SetConstructor(object_function);
   12639       }
   12640     }
   12641   }
   12642 }
   12643 
   12644 
   12645 // static
   12646 void JSObject::ReoptimizeIfPrototype(Handle<JSObject> object) {
   12647   if (!object->map()->is_prototype_map()) return;
   12648   OptimizeAsPrototype(object, FAST_PROTOTYPE);
   12649 }
   12650 
   12651 
   12652 // static
   12653 void JSObject::LazyRegisterPrototypeUser(Handle<Map> user, Isolate* isolate) {
   12654   DCHECK(FLAG_track_prototype_users);
   12655   // Contract: In line with InvalidatePrototypeChains()'s requirements,
   12656   // leaf maps don't need to register as users, only prototypes do.
   12657   DCHECK(user->is_prototype_map());
   12658 
   12659   Handle<Map> current_user = user;
   12660   Handle<PrototypeInfo> current_user_info =
   12661       Map::GetOrCreatePrototypeInfo(user, isolate);
   12662   for (PrototypeIterator iter(user); !iter.IsAtEnd(); iter.Advance()) {
   12663     // Walk up the prototype chain as far as links haven't been registered yet.
   12664     if (current_user_info->registry_slot() != PrototypeInfo::UNREGISTERED) {
   12665       break;
   12666     }
   12667     Handle<Object> maybe_proto = PrototypeIterator::GetCurrent(iter);
   12668     // Proxies on the prototype chain are not supported. They make it
   12669     // impossible to make any assumptions about the prototype chain anyway.
   12670     if (maybe_proto->IsJSProxy()) return;
   12671     Handle<JSObject> proto = Handle<JSObject>::cast(maybe_proto);
   12672     Handle<PrototypeInfo> proto_info =
   12673         Map::GetOrCreatePrototypeInfo(proto, isolate);
   12674     Handle<Object> maybe_registry(proto_info->prototype_users(), isolate);
   12675     int slot = 0;
   12676     Handle<WeakFixedArray> new_array =
   12677         WeakFixedArray::Add(maybe_registry, current_user, &slot);
   12678     current_user_info->set_registry_slot(slot);
   12679     if (!maybe_registry.is_identical_to(new_array)) {
   12680       proto_info->set_prototype_users(*new_array);
   12681     }
   12682     if (FLAG_trace_prototype_users) {
   12683       PrintF("Registering %p as a user of prototype %p (map=%p).\n",
   12684              reinterpret_cast<void*>(*current_user),
   12685              reinterpret_cast<void*>(*proto),
   12686              reinterpret_cast<void*>(proto->map()));
   12687     }
   12688 
   12689     current_user = handle(proto->map(), isolate);
   12690     current_user_info = proto_info;
   12691   }
   12692 }
   12693 
   12694 
   12695 // Can be called regardless of whether |user| was actually registered with
   12696 // |prototype|. Returns true when there was a registration.
   12697 // static
   12698 bool JSObject::UnregisterPrototypeUser(Handle<Map> user, Isolate* isolate) {
   12699   DCHECK(user->is_prototype_map());
   12700   // If it doesn't have a PrototypeInfo, it was never registered.
   12701   if (!user->prototype_info()->IsPrototypeInfo()) return false;
   12702   // If it had no prototype before, see if it had users that might expect
   12703   // registration.
   12704   if (!user->prototype()->IsJSObject()) {
   12705     Object* users =
   12706         PrototypeInfo::cast(user->prototype_info())->prototype_users();
   12707     return users->IsWeakFixedArray();
   12708   }
   12709   Handle<JSObject> prototype(JSObject::cast(user->prototype()), isolate);
   12710   Handle<PrototypeInfo> user_info =
   12711       Map::GetOrCreatePrototypeInfo(user, isolate);
   12712   int slot = user_info->registry_slot();
   12713   if (slot == PrototypeInfo::UNREGISTERED) return false;
   12714   DCHECK(prototype->map()->is_prototype_map());
   12715   Object* maybe_proto_info = prototype->map()->prototype_info();
   12716   // User knows its registry slot, prototype info and user registry must exist.
   12717   DCHECK(maybe_proto_info->IsPrototypeInfo());
   12718   Handle<PrototypeInfo> proto_info(PrototypeInfo::cast(maybe_proto_info),
   12719                                    isolate);
   12720   Object* maybe_registry = proto_info->prototype_users();
   12721   DCHECK(maybe_registry->IsWeakFixedArray());
   12722   DCHECK(WeakFixedArray::cast(maybe_registry)->Get(slot) == *user);
   12723   WeakFixedArray::cast(maybe_registry)->Clear(slot);
   12724   if (FLAG_trace_prototype_users) {
   12725     PrintF("Unregistering %p as a user of prototype %p.\n",
   12726            reinterpret_cast<void*>(*user), reinterpret_cast<void*>(*prototype));
   12727   }
   12728   return true;
   12729 }
   12730 
   12731 
   12732 static void InvalidatePrototypeChainsInternal(Map* map) {
   12733   if (!map->is_prototype_map()) return;
   12734   if (FLAG_trace_prototype_users) {
   12735     PrintF("Invalidating prototype map %p 's cell\n",
   12736            reinterpret_cast<void*>(map));
   12737   }
   12738   Object* maybe_proto_info = map->prototype_info();
   12739   if (!maybe_proto_info->IsPrototypeInfo()) return;
   12740   PrototypeInfo* proto_info = PrototypeInfo::cast(maybe_proto_info);
   12741   Object* maybe_cell = proto_info->validity_cell();
   12742   if (maybe_cell->IsCell()) {
   12743     // Just set the value; the cell will be replaced lazily.
   12744     Cell* cell = Cell::cast(maybe_cell);
   12745     cell->set_value(Smi::FromInt(Map::kPrototypeChainInvalid));
   12746   }
   12747 
   12748   WeakFixedArray::Iterator iterator(proto_info->prototype_users());
   12749   // For now, only maps register themselves as users.
   12750   Map* user;
   12751   while ((user = iterator.Next<Map>())) {
   12752     // Walk the prototype chain (backwards, towards leaf objects) if necessary.
   12753     InvalidatePrototypeChainsInternal(user);
   12754   }
   12755 }
   12756 
   12757 
   12758 // static
   12759 void JSObject::InvalidatePrototypeChains(Map* map) {
   12760   if (!FLAG_eliminate_prototype_chain_checks) return;
   12761   DisallowHeapAllocation no_gc;
   12762   InvalidatePrototypeChainsInternal(map);
   12763 }
   12764 
   12765 
   12766 // static
   12767 Handle<PrototypeInfo> Map::GetOrCreatePrototypeInfo(Handle<JSObject> prototype,
   12768                                                     Isolate* isolate) {
   12769   Object* maybe_proto_info = prototype->map()->prototype_info();
   12770   if (maybe_proto_info->IsPrototypeInfo()) {
   12771     return handle(PrototypeInfo::cast(maybe_proto_info), isolate);
   12772   }
   12773   Handle<PrototypeInfo> proto_info = isolate->factory()->NewPrototypeInfo();
   12774   prototype->map()->set_prototype_info(*proto_info);
   12775   return proto_info;
   12776 }
   12777 
   12778 
   12779 // static
   12780 Handle<PrototypeInfo> Map::GetOrCreatePrototypeInfo(Handle<Map> prototype_map,
   12781                                                     Isolate* isolate) {
   12782   Object* maybe_proto_info = prototype_map->prototype_info();
   12783   if (maybe_proto_info->IsPrototypeInfo()) {
   12784     return handle(PrototypeInfo::cast(maybe_proto_info), isolate);
   12785   }
   12786   Handle<PrototypeInfo> proto_info = isolate->factory()->NewPrototypeInfo();
   12787   prototype_map->set_prototype_info(*proto_info);
   12788   return proto_info;
   12789 }
   12790 
   12791 
   12792 // static
   12793 Handle<Cell> Map::GetOrCreatePrototypeChainValidityCell(Handle<Map> map,
   12794                                                         Isolate* isolate) {
   12795   Handle<Object> maybe_prototype(map->prototype(), isolate);
   12796   if (!maybe_prototype->IsJSObject()) return Handle<Cell>::null();
   12797   Handle<JSObject> prototype = Handle<JSObject>::cast(maybe_prototype);
   12798   // Ensure the prototype is registered with its own prototypes so its cell
   12799   // will be invalidated when necessary.
   12800   JSObject::LazyRegisterPrototypeUser(handle(prototype->map(), isolate),
   12801                                       isolate);
   12802   Handle<PrototypeInfo> proto_info =
   12803       GetOrCreatePrototypeInfo(prototype, isolate);
   12804   Object* maybe_cell = proto_info->validity_cell();
   12805   // Return existing cell if it's still valid.
   12806   if (maybe_cell->IsCell()) {
   12807     Handle<Cell> cell(Cell::cast(maybe_cell), isolate);
   12808     if (cell->value() == Smi::FromInt(Map::kPrototypeChainValid)) {
   12809       return cell;
   12810     }
   12811   }
   12812   // Otherwise create a new cell.
   12813   Handle<Cell> cell = isolate->factory()->NewCell(
   12814       handle(Smi::FromInt(Map::kPrototypeChainValid), isolate));
   12815   proto_info->set_validity_cell(*cell);
   12816   return cell;
   12817 }
   12818 
   12819 
   12820 // static
   12821 void Map::SetPrototype(Handle<Map> map, Handle<Object> prototype,
   12822                        PrototypeOptimizationMode proto_mode) {
   12823   if (prototype->IsJSObject()) {
   12824     Handle<JSObject> prototype_jsobj = Handle<JSObject>::cast(prototype);
   12825     JSObject::OptimizeAsPrototype(prototype_jsobj, proto_mode);
   12826   }
   12827   WriteBarrierMode wb_mode =
   12828       prototype->IsNull() ? SKIP_WRITE_BARRIER : UPDATE_WRITE_BARRIER;
   12829   map->set_prototype(*prototype, wb_mode);
   12830 }
   12831 
   12832 
   12833 Handle<Object> CacheInitialJSArrayMaps(
   12834     Handle<Context> native_context, Handle<Map> initial_map) {
   12835   // Replace all of the cached initial array maps in the native context with
   12836   // the appropriate transitioned elements kind maps.
   12837   Strength strength =
   12838       initial_map->is_strong() ? Strength::STRONG : Strength::WEAK;
   12839   Handle<Map> current_map = initial_map;
   12840   ElementsKind kind = current_map->elements_kind();
   12841   DCHECK_EQ(GetInitialFastElementsKind(), kind);
   12842   native_context->set(Context::ArrayMapIndex(kind, strength), *current_map);
   12843   for (int i = GetSequenceIndexFromFastElementsKind(kind) + 1;
   12844        i < kFastElementsKindCount; ++i) {
   12845     Handle<Map> new_map;
   12846     ElementsKind next_kind = GetFastElementsKindFromSequenceIndex(i);
   12847     if (Map* maybe_elements_transition = current_map->ElementsTransitionMap()) {
   12848       new_map = handle(maybe_elements_transition);
   12849     } else {
   12850       new_map = Map::CopyAsElementsKind(
   12851           current_map, next_kind, INSERT_TRANSITION);
   12852     }
   12853     DCHECK_EQ(next_kind, new_map->elements_kind());
   12854     native_context->set(Context::ArrayMapIndex(next_kind, strength), *new_map);
   12855     current_map = new_map;
   12856   }
   12857   return initial_map;
   12858 }
   12859 
   12860 
   12861 void JSFunction::SetInstancePrototype(Handle<JSFunction> function,
   12862                                       Handle<Object> value) {
   12863   Isolate* isolate = function->GetIsolate();
   12864 
   12865   DCHECK(value->IsJSReceiver());
   12866 
   12867   // Now some logic for the maps of the objects that are created by using this
   12868   // function as a constructor.
   12869   if (function->has_initial_map()) {
   12870     // If the function has allocated the initial map replace it with a
   12871     // copy containing the new prototype.  Also complete any in-object
   12872     // slack tracking that is in progress at this point because it is
   12873     // still tracking the old copy.
   12874     function->CompleteInobjectSlackTrackingIfActive();
   12875 
   12876     Handle<Map> initial_map(function->initial_map(), isolate);
   12877 
   12878     if (!initial_map->GetIsolate()->bootstrapper()->IsActive() &&
   12879         initial_map->instance_type() == JS_OBJECT_TYPE) {
   12880       // Put the value in the initial map field until an initial map is needed.
   12881       // At that point, a new initial map is created and the prototype is put
   12882       // into the initial map where it belongs.
   12883       function->set_prototype_or_initial_map(*value);
   12884     } else {
   12885       Handle<Map> new_map = Map::Copy(initial_map, "SetInstancePrototype");
   12886       if (function->map()->is_strong()) {
   12887         new_map->set_is_strong();
   12888       }
   12889       JSFunction::SetInitialMap(function, new_map, value);
   12890 
   12891       // If the function is used as the global Array function, cache the
   12892       // updated initial maps (and transitioned versions) in the native context.
   12893       Handle<Context> native_context(function->context()->native_context(),
   12894                                      isolate);
   12895       Handle<Object> array_function(
   12896           native_context->get(Context::ARRAY_FUNCTION_INDEX), isolate);
   12897       if (array_function->IsJSFunction() &&
   12898           *function == JSFunction::cast(*array_function)) {
   12899         CacheInitialJSArrayMaps(native_context, new_map);
   12900         Handle<Map> new_strong_map = Map::Copy(new_map, "SetInstancePrototype");
   12901         new_strong_map->set_is_strong();
   12902         CacheInitialJSArrayMaps(native_context, new_strong_map);
   12903       }
   12904     }
   12905 
   12906     // Deoptimize all code that embeds the previous initial map.
   12907     initial_map->dependent_code()->DeoptimizeDependentCodeGroup(
   12908         isolate, DependentCode::kInitialMapChangedGroup);
   12909   } else {
   12910     // Put the value in the initial map field until an initial map is
   12911     // needed.  At that point, a new initial map is created and the
   12912     // prototype is put into the initial map where it belongs.
   12913     function->set_prototype_or_initial_map(*value);
   12914     if (value->IsJSObject()) {
   12915       // Optimize as prototype to detach it from its transition tree.
   12916       JSObject::OptimizeAsPrototype(Handle<JSObject>::cast(value),
   12917                                     FAST_PROTOTYPE);
   12918     }
   12919   }
   12920   isolate->heap()->ClearInstanceofCache();
   12921 }
   12922 
   12923 
   12924 void JSFunction::SetPrototype(Handle<JSFunction> function,
   12925                               Handle<Object> value) {
   12926   DCHECK(function->IsConstructor());
   12927   Handle<Object> construct_prototype = value;
   12928 
   12929   // If the value is not a JSReceiver, store the value in the map's
   12930   // constructor field so it can be accessed.  Also, set the prototype
   12931   // used for constructing objects to the original object prototype.
   12932   // See ECMA-262 13.2.2.
   12933   if (!value->IsJSReceiver()) {
   12934     // Copy the map so this does not affect unrelated functions.
   12935     // Remove map transitions because they point to maps with a
   12936     // different prototype.
   12937     Handle<Map> new_map = Map::Copy(handle(function->map()), "SetPrototype");
   12938 
   12939     JSObject::MigrateToMap(function, new_map);
   12940     new_map->SetConstructor(*value);
   12941     new_map->set_non_instance_prototype(true);
   12942     Isolate* isolate = new_map->GetIsolate();
   12943     construct_prototype = handle(
   12944         function->context()->native_context()->initial_object_prototype(),
   12945         isolate);
   12946   } else {
   12947     function->map()->set_non_instance_prototype(false);
   12948   }
   12949 
   12950   return SetInstancePrototype(function, construct_prototype);
   12951 }
   12952 
   12953 
   12954 bool JSFunction::RemovePrototype() {
   12955   Context* native_context = context()->native_context();
   12956   Map* no_prototype_map =
   12957       is_strict(shared()->language_mode())
   12958           ? native_context->strict_function_without_prototype_map()
   12959           : native_context->sloppy_function_without_prototype_map();
   12960 
   12961   if (map() == no_prototype_map) return true;
   12962 
   12963 #ifdef DEBUG
   12964   if (map() != (is_strict(shared()->language_mode())
   12965                     ? native_context->strict_function_map()
   12966                     : native_context->sloppy_function_map())) {
   12967     return false;
   12968   }
   12969 #endif
   12970 
   12971   set_map(no_prototype_map);
   12972   set_prototype_or_initial_map(no_prototype_map->GetHeap()->the_hole_value());
   12973   return true;
   12974 }
   12975 
   12976 
   12977 void JSFunction::SetInitialMap(Handle<JSFunction> function, Handle<Map> map,
   12978                                Handle<Object> prototype) {
   12979   if (map->prototype() != *prototype) {
   12980     Map::SetPrototype(map, prototype, FAST_PROTOTYPE);
   12981   }
   12982   function->set_prototype_or_initial_map(*map);
   12983   map->SetConstructor(*function);
   12984 #if TRACE_MAPS
   12985   if (FLAG_trace_maps) {
   12986     PrintF("[TraceMaps: InitialMap map= %p SFI= %d_%s ]\n",
   12987            reinterpret_cast<void*>(*map), function->shared()->unique_id(),
   12988            function->shared()->DebugName()->ToCString().get());
   12989   }
   12990 #endif
   12991 }
   12992 
   12993 
   12994 #ifdef DEBUG
   12995 namespace {
   12996 
   12997 bool CanSubclassHaveInobjectProperties(InstanceType instance_type) {
   12998   switch (instance_type) {
   12999     case JS_OBJECT_TYPE:
   13000     case JS_CONTEXT_EXTENSION_OBJECT_TYPE:
   13001     case JS_GENERATOR_OBJECT_TYPE:
   13002     case JS_MODULE_TYPE:
   13003     case JS_VALUE_TYPE:
   13004     case JS_DATE_TYPE:
   13005     case JS_ARRAY_TYPE:
   13006     case JS_MESSAGE_OBJECT_TYPE:
   13007     case JS_ARRAY_BUFFER_TYPE:
   13008     case JS_TYPED_ARRAY_TYPE:
   13009     case JS_DATA_VIEW_TYPE:
   13010     case JS_SET_TYPE:
   13011     case JS_MAP_TYPE:
   13012     case JS_SET_ITERATOR_TYPE:
   13013     case JS_MAP_ITERATOR_TYPE:
   13014     case JS_ITERATOR_RESULT_TYPE:
   13015     case JS_WEAK_MAP_TYPE:
   13016     case JS_WEAK_SET_TYPE:
   13017     case JS_PROMISE_TYPE:
   13018     case JS_REGEXP_TYPE:
   13019     case JS_FUNCTION_TYPE:
   13020       return true;
   13021 
   13022     case JS_BOUND_FUNCTION_TYPE:
   13023     case JS_PROXY_TYPE:
   13024     case JS_GLOBAL_PROXY_TYPE:
   13025     case JS_GLOBAL_OBJECT_TYPE:
   13026     case FIXED_ARRAY_TYPE:
   13027     case FIXED_DOUBLE_ARRAY_TYPE:
   13028     case ODDBALL_TYPE:
   13029     case FOREIGN_TYPE:
   13030     case MAP_TYPE:
   13031     case CODE_TYPE:
   13032     case CELL_TYPE:
   13033     case PROPERTY_CELL_TYPE:
   13034     case WEAK_CELL_TYPE:
   13035     case SYMBOL_TYPE:
   13036     case BYTECODE_ARRAY_TYPE:
   13037     case HEAP_NUMBER_TYPE:
   13038     case MUTABLE_HEAP_NUMBER_TYPE:
   13039     case SIMD128_VALUE_TYPE:
   13040     case FILLER_TYPE:
   13041     case BYTE_ARRAY_TYPE:
   13042     case FREE_SPACE_TYPE:
   13043     case SHARED_FUNCTION_INFO_TYPE:
   13044 
   13045 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
   13046   case FIXED_##TYPE##_ARRAY_TYPE:
   13047 #undef TYPED_ARRAY_CASE
   13048 
   13049 #define MAKE_STRUCT_CASE(NAME, Name, name) case NAME##_TYPE:
   13050       STRUCT_LIST(MAKE_STRUCT_CASE)
   13051 #undef MAKE_STRUCT_CASE
   13052       // We must not end up here for these instance types at all.
   13053       UNREACHABLE();
   13054     // Fall through.
   13055     default:
   13056       return false;
   13057   }
   13058 }
   13059 
   13060 }  // namespace
   13061 #endif
   13062 
   13063 
   13064 void JSFunction::EnsureHasInitialMap(Handle<JSFunction> function) {
   13065   DCHECK(function->IsConstructor() || function->shared()->is_generator());
   13066   if (function->has_initial_map()) return;
   13067   Isolate* isolate = function->GetIsolate();
   13068 
   13069   // The constructor should be compiled for the optimization hints to be
   13070   // available.
   13071   Compiler::Compile(function, CLEAR_EXCEPTION);
   13072 
   13073   // First create a new map with the size and number of in-object properties
   13074   // suggested by the function.
   13075   InstanceType instance_type;
   13076   if (function->shared()->is_generator()) {
   13077     instance_type = JS_GENERATOR_OBJECT_TYPE;
   13078   } else {
   13079     instance_type = JS_OBJECT_TYPE;
   13080   }
   13081   int instance_size;
   13082   int in_object_properties;
   13083   function->CalculateInstanceSize(instance_type, 0, &instance_size,
   13084                                   &in_object_properties);
   13085 
   13086   Handle<Map> map = isolate->factory()->NewMap(instance_type, instance_size);
   13087   if (function->map()->is_strong()) {
   13088     map->set_is_strong();
   13089   }
   13090 
   13091   // Fetch or allocate prototype.
   13092   Handle<Object> prototype;
   13093   if (function->has_instance_prototype()) {
   13094     prototype = handle(function->instance_prototype(), isolate);
   13095   } else {
   13096     prototype = isolate->factory()->NewFunctionPrototype(function);
   13097   }
   13098   map->SetInObjectProperties(in_object_properties);
   13099   map->set_unused_property_fields(in_object_properties);
   13100   DCHECK(map->has_fast_object_elements());
   13101 
   13102   // Finally link initial map and constructor function.
   13103   DCHECK(prototype->IsJSReceiver());
   13104   JSFunction::SetInitialMap(function, map, prototype);
   13105   map->StartInobjectSlackTracking();
   13106 }
   13107 
   13108 
   13109 // static
   13110 MaybeHandle<Map> JSFunction::GetDerivedMap(Isolate* isolate,
   13111                                            Handle<JSFunction> constructor,
   13112                                            Handle<JSReceiver> new_target) {
   13113   EnsureHasInitialMap(constructor);
   13114 
   13115   Handle<Map> constructor_initial_map(constructor->initial_map(), isolate);
   13116   if (*new_target == *constructor) return constructor_initial_map;
   13117 
   13118   // Fast case, new.target is a subclass of constructor. The map is cacheable
   13119   // (and may already have been cached). new.target.prototype is guaranteed to
   13120   // be a JSReceiver.
   13121   if (new_target->IsJSFunction()) {
   13122     Handle<JSFunction> function = Handle<JSFunction>::cast(new_target);
   13123 
   13124     // Check that |function|'s initial map still in sync with the |constructor|,
   13125     // otherwise we must create a new initial map for |function|.
   13126     if (function->has_initial_map() &&
   13127         function->initial_map()->GetConstructor() == *constructor) {
   13128       return handle(function->initial_map(), isolate);
   13129     }
   13130 
   13131     // Create a new map with the size and number of in-object properties
   13132     // suggested by |function|.
   13133 
   13134     // Link initial map and constructor function if the new.target is actually a
   13135     // subclass constructor.
   13136     if (IsSubclassConstructor(function->shared()->kind())) {
   13137       Handle<Object> prototype(function->instance_prototype(), isolate);
   13138       InstanceType instance_type = constructor_initial_map->instance_type();
   13139       DCHECK(CanSubclassHaveInobjectProperties(instance_type));
   13140       int internal_fields =
   13141           JSObject::GetInternalFieldCount(*constructor_initial_map);
   13142       int pre_allocated = constructor_initial_map->GetInObjectProperties() -
   13143                           constructor_initial_map->unused_property_fields();
   13144       int instance_size;
   13145       int in_object_properties;
   13146       function->CalculateInstanceSizeForDerivedClass(
   13147           instance_type, internal_fields, &instance_size,
   13148           &in_object_properties);
   13149 
   13150       int unused_property_fields = in_object_properties - pre_allocated;
   13151       Handle<Map> map =
   13152           Map::CopyInitialMap(constructor_initial_map, instance_size,
   13153                               in_object_properties, unused_property_fields);
   13154       map->set_new_target_is_base(false);
   13155 
   13156       JSFunction::SetInitialMap(function, map, prototype);
   13157       map->SetConstructor(*constructor);
   13158       map->StartInobjectSlackTracking();
   13159       return map;
   13160     }
   13161   }
   13162 
   13163   // Slow path, new.target is either a proxy or can't cache the map.
   13164   // new.target.prototype is not guaranteed to be a JSReceiver, and may need to
   13165   // fall back to the intrinsicDefaultProto.
   13166   Handle<Object> prototype;
   13167   if (new_target->IsJSFunction()) {
   13168     Handle<JSFunction> function = Handle<JSFunction>::cast(new_target);
   13169     // Make sure the new.target.prototype is cached.
   13170     EnsureHasInitialMap(function);
   13171     prototype = handle(function->prototype(), isolate);
   13172   } else {
   13173     Handle<String> prototype_string = isolate->factory()->prototype_string();
   13174     ASSIGN_RETURN_ON_EXCEPTION(
   13175         isolate, prototype,
   13176         JSReceiver::GetProperty(new_target, prototype_string), Map);
   13177     // The above prototype lookup might change the constructor and its
   13178     // prototype, hence we have to reload the initial map.
   13179     EnsureHasInitialMap(constructor);
   13180     constructor_initial_map = handle(constructor->initial_map(), isolate);
   13181   }
   13182 
   13183   // If prototype is not a JSReceiver, fetch the intrinsicDefaultProto from the
   13184   // correct realm. Rather than directly fetching the .prototype, we fetch the
   13185   // constructor that points to the .prototype. This relies on
   13186   // constructor.prototype being FROZEN for those constructors.
   13187   if (!prototype->IsJSReceiver()) {
   13188     Handle<Context> context;
   13189     ASSIGN_RETURN_ON_EXCEPTION(isolate, context,
   13190                                JSReceiver::GetFunctionRealm(new_target), Map);
   13191     DCHECK(context->IsNativeContext());
   13192     Handle<Object> maybe_index = JSReceiver::GetDataProperty(
   13193         constructor, isolate->factory()->native_context_index_symbol());
   13194     int index = maybe_index->IsSmi() ? Smi::cast(*maybe_index)->value()
   13195                                      : Context::OBJECT_FUNCTION_INDEX;
   13196     Handle<JSFunction> realm_constructor(JSFunction::cast(context->get(index)));
   13197     prototype = handle(realm_constructor->prototype(), isolate);
   13198   }
   13199 
   13200   Handle<Map> map = Map::CopyInitialMap(constructor_initial_map);
   13201   map->set_new_target_is_base(false);
   13202   DCHECK(prototype->IsJSReceiver());
   13203   if (map->prototype() != *prototype) {
   13204     Map::SetPrototype(map, prototype, FAST_PROTOTYPE);
   13205   }
   13206   map->SetConstructor(*constructor);
   13207   return map;
   13208 }
   13209 
   13210 
   13211 void JSFunction::PrintName(FILE* out) {
   13212   base::SmartArrayPointer<char> name = shared()->DebugName()->ToCString();
   13213   PrintF(out, "%s", name.get());
   13214 }
   13215 
   13216 
   13217 // The filter is a pattern that matches function names in this way:
   13218 //   "*"      all; the default
   13219 //   "-"      all but the top-level function
   13220 //   "-name"  all but the function "name"
   13221 //   ""       only the top-level function
   13222 //   "name"   only the function "name"
   13223 //   "name*"  only functions starting with "name"
   13224 //   "~"      none; the tilde is not an identifier
   13225 bool JSFunction::PassesFilter(const char* raw_filter) {
   13226   if (*raw_filter == '*') return true;
   13227   String* name = shared()->DebugName();
   13228   Vector<const char> filter = CStrVector(raw_filter);
   13229   if (filter.length() == 0) return name->length() == 0;
   13230   if (filter[0] == '-') {
   13231     // Negative filter.
   13232     if (filter.length() == 1) {
   13233       return (name->length() != 0);
   13234     } else if (name->IsUtf8EqualTo(filter.SubVector(1, filter.length()))) {
   13235       return false;
   13236     }
   13237     if (filter[filter.length() - 1] == '*' &&
   13238         name->IsUtf8EqualTo(filter.SubVector(1, filter.length() - 1), true)) {
   13239       return false;
   13240     }
   13241     return true;
   13242 
   13243   } else if (name->IsUtf8EqualTo(filter)) {
   13244     return true;
   13245   }
   13246   if (filter[filter.length() - 1] == '*' &&
   13247       name->IsUtf8EqualTo(filter.SubVector(0, filter.length() - 1), true)) {
   13248     return true;
   13249   }
   13250   return false;
   13251 }
   13252 
   13253 
   13254 Handle<String> JSFunction::GetName(Handle<JSFunction> function) {
   13255   Isolate* isolate = function->GetIsolate();
   13256   Handle<Object> name =
   13257       JSReceiver::GetDataProperty(function, isolate->factory()->name_string());
   13258   if (name->IsString()) return Handle<String>::cast(name);
   13259   return handle(function->shared()->DebugName(), isolate);
   13260 }
   13261 
   13262 
   13263 Handle<String> JSFunction::GetDebugName(Handle<JSFunction> function) {
   13264   Isolate* isolate = function->GetIsolate();
   13265   Handle<Object> name = JSReceiver::GetDataProperty(
   13266       function, isolate->factory()->display_name_string());
   13267   if (name->IsString()) return Handle<String>::cast(name);
   13268   return JSFunction::GetName(function);
   13269 }
   13270 
   13271 
   13272 namespace {
   13273 
   13274 char const kNativeCodeSource[] = "function () { [native code] }";
   13275 
   13276 
   13277 Handle<String> NativeCodeFunctionSourceString(
   13278     Handle<SharedFunctionInfo> shared_info) {
   13279   Isolate* const isolate = shared_info->GetIsolate();
   13280   if (shared_info->name()->IsString()) {
   13281     IncrementalStringBuilder builder(isolate);
   13282     builder.AppendCString("function ");
   13283     builder.AppendString(handle(String::cast(shared_info->name()), isolate));
   13284     builder.AppendCString("() { [native code] }");
   13285     return builder.Finish().ToHandleChecked();
   13286   }
   13287   return isolate->factory()->NewStringFromAsciiChecked(kNativeCodeSource);
   13288 }
   13289 
   13290 }  // namespace
   13291 
   13292 
   13293 // static
   13294 Handle<String> JSBoundFunction::ToString(Handle<JSBoundFunction> function) {
   13295   Isolate* const isolate = function->GetIsolate();
   13296   return isolate->factory()->NewStringFromAsciiChecked(kNativeCodeSource);
   13297 }
   13298 
   13299 
   13300 // static
   13301 Handle<String> JSFunction::ToString(Handle<JSFunction> function) {
   13302   Isolate* const isolate = function->GetIsolate();
   13303   Handle<SharedFunctionInfo> shared_info(function->shared(), isolate);
   13304 
   13305   // Check if {function} should hide its source code.
   13306   if (!shared_info->script()->IsScript() ||
   13307       Script::cast(shared_info->script())->hide_source()) {
   13308     return NativeCodeFunctionSourceString(shared_info);
   13309   }
   13310 
   13311   // Check if we should print {function} as a class.
   13312   Handle<Object> class_start_position = JSReceiver::GetDataProperty(
   13313       function, isolate->factory()->class_start_position_symbol());
   13314   if (class_start_position->IsSmi()) {
   13315     Handle<Object> class_end_position = JSReceiver::GetDataProperty(
   13316         function, isolate->factory()->class_end_position_symbol());
   13317     Handle<String> script_source(
   13318         String::cast(Script::cast(shared_info->script())->source()), isolate);
   13319     return isolate->factory()->NewSubString(
   13320         script_source, Handle<Smi>::cast(class_start_position)->value(),
   13321         Handle<Smi>::cast(class_end_position)->value());
   13322   }
   13323 
   13324   // Check if we have source code for the {function}.
   13325   if (!shared_info->HasSourceCode()) {
   13326     return NativeCodeFunctionSourceString(shared_info);
   13327   }
   13328 
   13329   IncrementalStringBuilder builder(isolate);
   13330   if (!shared_info->is_arrow()) {
   13331     if (shared_info->is_concise_method()) {
   13332       if (shared_info->is_generator()) builder.AppendCharacter('*');
   13333     } else {
   13334       if (shared_info->is_generator()) {
   13335         builder.AppendCString("function* ");
   13336       } else {
   13337         builder.AppendCString("function ");
   13338       }
   13339     }
   13340     if (shared_info->name_should_print_as_anonymous()) {
   13341       builder.AppendCString("anonymous");
   13342     } else {
   13343       builder.AppendString(handle(String::cast(shared_info->name()), isolate));
   13344     }
   13345   }
   13346   builder.AppendString(Handle<String>::cast(shared_info->GetSourceCode()));
   13347   return builder.Finish().ToHandleChecked();
   13348 }
   13349 
   13350 
   13351 void Oddball::Initialize(Isolate* isolate, Handle<Oddball> oddball,
   13352                          const char* to_string, Handle<Object> to_number,
   13353                          const char* type_of, byte kind) {
   13354   Handle<String> internalized_to_string =
   13355       isolate->factory()->InternalizeUtf8String(to_string);
   13356   Handle<String> internalized_type_of =
   13357       isolate->factory()->InternalizeUtf8String(type_of);
   13358   oddball->set_to_number(*to_number);
   13359   oddball->set_to_string(*internalized_to_string);
   13360   oddball->set_type_of(*internalized_type_of);
   13361   oddball->set_kind(kind);
   13362 }
   13363 
   13364 
   13365 void Script::InitLineEnds(Handle<Script> script) {
   13366   if (!script->line_ends()->IsUndefined()) return;
   13367 
   13368   Isolate* isolate = script->GetIsolate();
   13369 
   13370   if (!script->source()->IsString()) {
   13371     DCHECK(script->source()->IsUndefined());
   13372     Handle<FixedArray> empty = isolate->factory()->NewFixedArray(0);
   13373     script->set_line_ends(*empty);
   13374     DCHECK(script->line_ends()->IsFixedArray());
   13375     return;
   13376   }
   13377 
   13378   Handle<String> src(String::cast(script->source()), isolate);
   13379 
   13380   Handle<FixedArray> array = String::CalculateLineEnds(src, true);
   13381 
   13382   if (*array != isolate->heap()->empty_fixed_array()) {
   13383     array->set_map(isolate->heap()->fixed_cow_array_map());
   13384   }
   13385 
   13386   script->set_line_ends(*array);
   13387   DCHECK(script->line_ends()->IsFixedArray());
   13388 }
   13389 
   13390 
   13391 int Script::GetColumnNumber(Handle<Script> script, int code_pos) {
   13392   int line_number = GetLineNumber(script, code_pos);
   13393   if (line_number == -1) return -1;
   13394 
   13395   DisallowHeapAllocation no_allocation;
   13396   FixedArray* line_ends_array = FixedArray::cast(script->line_ends());
   13397   line_number = line_number - script->line_offset();
   13398   if (line_number == 0) return code_pos + script->column_offset();
   13399   int prev_line_end_pos =
   13400       Smi::cast(line_ends_array->get(line_number - 1))->value();
   13401   return code_pos - (prev_line_end_pos + 1);
   13402 }
   13403 
   13404 
   13405 int Script::GetLineNumberWithArray(int code_pos) {
   13406   DisallowHeapAllocation no_allocation;
   13407   DCHECK(line_ends()->IsFixedArray());
   13408   FixedArray* line_ends_array = FixedArray::cast(line_ends());
   13409   int line_ends_len = line_ends_array->length();
   13410   if (line_ends_len == 0) return -1;
   13411 
   13412   if ((Smi::cast(line_ends_array->get(0)))->value() >= code_pos) {
   13413     return line_offset();
   13414   }
   13415 
   13416   int left = 0;
   13417   int right = line_ends_len;
   13418   while (int half = (right - left) / 2) {
   13419     if ((Smi::cast(line_ends_array->get(left + half)))->value() > code_pos) {
   13420       right -= half;
   13421     } else {
   13422       left += half;
   13423     }
   13424   }
   13425   return right + line_offset();
   13426 }
   13427 
   13428 
   13429 int Script::GetLineNumber(Handle<Script> script, int code_pos) {
   13430   InitLineEnds(script);
   13431   return script->GetLineNumberWithArray(code_pos);
   13432 }
   13433 
   13434 
   13435 int Script::GetLineNumber(int code_pos) {
   13436   DisallowHeapAllocation no_allocation;
   13437   if (!line_ends()->IsUndefined()) return GetLineNumberWithArray(code_pos);
   13438 
   13439   // Slow mode: we do not have line_ends. We have to iterate through source.
   13440   if (!source()->IsString()) return -1;
   13441 
   13442   String* source_string = String::cast(source());
   13443   int line = 0;
   13444   int len = source_string->length();
   13445   for (int pos = 0; pos < len; pos++) {
   13446     if (pos == code_pos) break;
   13447     if (source_string->Get(pos) == '\n') line++;
   13448   }
   13449   return line;
   13450 }
   13451 
   13452 
   13453 Handle<Object> Script::GetNameOrSourceURL(Handle<Script> script) {
   13454   Isolate* isolate = script->GetIsolate();
   13455   Handle<String> name_or_source_url_key =
   13456       isolate->factory()->InternalizeOneByteString(
   13457           STATIC_CHAR_VECTOR("nameOrSourceURL"));
   13458   Handle<JSObject> script_wrapper = Script::GetWrapper(script);
   13459   Handle<Object> property = Object::GetProperty(
   13460       script_wrapper, name_or_source_url_key).ToHandleChecked();
   13461   DCHECK(property->IsJSFunction());
   13462   Handle<Object> result;
   13463   // Do not check against pending exception, since this function may be called
   13464   // when an exception has already been pending.
   13465   if (!Execution::TryCall(isolate, property, script_wrapper, 0, NULL)
   13466            .ToHandle(&result)) {
   13467     return isolate->factory()->undefined_value();
   13468   }
   13469   return result;
   13470 }
   13471 
   13472 
   13473 Handle<JSObject> Script::GetWrapper(Handle<Script> script) {
   13474   Isolate* isolate = script->GetIsolate();
   13475   if (!script->wrapper()->IsUndefined()) {
   13476     DCHECK(script->wrapper()->IsWeakCell());
   13477     Handle<WeakCell> cell(WeakCell::cast(script->wrapper()));
   13478     if (!cell->cleared()) {
   13479       // Return a handle for the existing script wrapper from the cache.
   13480       return handle(JSObject::cast(cell->value()));
   13481     }
   13482     // If we found an empty WeakCell, that means the script wrapper was
   13483     // GCed.  We are not notified directly of that, so we decrement here
   13484     // so that we at least don't count double for any given script.
   13485     isolate->counters()->script_wrappers()->Decrement();
   13486   }
   13487   // Construct a new script wrapper.
   13488   isolate->counters()->script_wrappers()->Increment();
   13489   Handle<JSFunction> constructor = isolate->script_function();
   13490   Handle<JSValue> result =
   13491       Handle<JSValue>::cast(isolate->factory()->NewJSObject(constructor));
   13492   result->set_value(*script);
   13493   Handle<WeakCell> cell = isolate->factory()->NewWeakCell(result);
   13494   script->set_wrapper(*cell);
   13495   return result;
   13496 }
   13497 
   13498 
   13499 MaybeHandle<SharedFunctionInfo> Script::FindSharedFunctionInfo(
   13500     FunctionLiteral* fun) {
   13501   WeakFixedArray::Iterator iterator(shared_function_infos());
   13502   SharedFunctionInfo* shared;
   13503   while ((shared = iterator.Next<SharedFunctionInfo>())) {
   13504     if (fun->function_token_position() == shared->function_token_position() &&
   13505         fun->start_position() == shared->start_position()) {
   13506       return Handle<SharedFunctionInfo>(shared);
   13507     }
   13508   }
   13509   return MaybeHandle<SharedFunctionInfo>();
   13510 }
   13511 
   13512 
   13513 Script::Iterator::Iterator(Isolate* isolate)
   13514     : iterator_(isolate->heap()->script_list()) {}
   13515 
   13516 
   13517 Script* Script::Iterator::Next() { return iterator_.Next<Script>(); }
   13518 
   13519 
   13520 SharedFunctionInfo::Iterator::Iterator(Isolate* isolate)
   13521     : script_iterator_(isolate),
   13522       sfi_iterator_(isolate->heap()->noscript_shared_function_infos()) {}
   13523 
   13524 
   13525 bool SharedFunctionInfo::Iterator::NextScript() {
   13526   Script* script = script_iterator_.Next();
   13527   if (script == NULL) return false;
   13528   sfi_iterator_.Reset(script->shared_function_infos());
   13529   return true;
   13530 }
   13531 
   13532 
   13533 SharedFunctionInfo* SharedFunctionInfo::Iterator::Next() {
   13534   do {
   13535     SharedFunctionInfo* next = sfi_iterator_.Next<SharedFunctionInfo>();
   13536     if (next != NULL) return next;
   13537   } while (NextScript());
   13538   return NULL;
   13539 }
   13540 
   13541 
   13542 void SharedFunctionInfo::SetScript(Handle<SharedFunctionInfo> shared,
   13543                                    Handle<Object> script_object) {
   13544   if (shared->script() == *script_object) return;
   13545   Isolate* isolate = shared->GetIsolate();
   13546 
   13547   // Add shared function info to new script's list. If a collection occurs,
   13548   // the shared function info may be temporarily in two lists.
   13549   // This is okay because the gc-time processing of these lists can tolerate
   13550   // duplicates.
   13551   Handle<Object> list;
   13552   if (script_object->IsScript()) {
   13553     Handle<Script> script = Handle<Script>::cast(script_object);
   13554     list = handle(script->shared_function_infos(), isolate);
   13555   } else {
   13556     list = isolate->factory()->noscript_shared_function_infos();
   13557   }
   13558 
   13559 #ifdef DEBUG
   13560   {
   13561     WeakFixedArray::Iterator iterator(*list);
   13562     SharedFunctionInfo* next;
   13563     while ((next = iterator.Next<SharedFunctionInfo>())) {
   13564       DCHECK_NE(next, *shared);
   13565     }
   13566   }
   13567 #endif  // DEBUG
   13568   list = WeakFixedArray::Add(list, shared);
   13569 
   13570   if (script_object->IsScript()) {
   13571     Handle<Script> script = Handle<Script>::cast(script_object);
   13572     script->set_shared_function_infos(*list);
   13573   } else {
   13574     isolate->heap()->SetRootNoScriptSharedFunctionInfos(*list);
   13575   }
   13576 
   13577   // Remove shared function info from old script's list.
   13578   if (shared->script()->IsScript()) {
   13579     Script* old_script = Script::cast(shared->script());
   13580     if (old_script->shared_function_infos()->IsWeakFixedArray()) {
   13581       WeakFixedArray* list =
   13582           WeakFixedArray::cast(old_script->shared_function_infos());
   13583       list->Remove(shared);
   13584     }
   13585   } else {
   13586     // Remove shared function info from root array.
   13587     Object* list = isolate->heap()->noscript_shared_function_infos();
   13588     CHECK(WeakFixedArray::cast(list)->Remove(shared));
   13589   }
   13590 
   13591   // Finally set new script.
   13592   shared->set_script(*script_object);
   13593 }
   13594 
   13595 
   13596 String* SharedFunctionInfo::DebugName() {
   13597   Object* n = name();
   13598   if (!n->IsString() || String::cast(n)->length() == 0) return inferred_name();
   13599   return String::cast(n);
   13600 }
   13601 
   13602 
   13603 bool SharedFunctionInfo::HasSourceCode() const {
   13604   return !script()->IsUndefined() &&
   13605          !reinterpret_cast<Script*>(script())->source()->IsUndefined();
   13606 }
   13607 
   13608 
   13609 Handle<Object> SharedFunctionInfo::GetSourceCode() {
   13610   if (!HasSourceCode()) return GetIsolate()->factory()->undefined_value();
   13611   Handle<String> source(String::cast(Script::cast(script())->source()));
   13612   return GetIsolate()->factory()->NewSubString(
   13613       source, start_position(), end_position());
   13614 }
   13615 
   13616 
   13617 bool SharedFunctionInfo::IsInlineable() {
   13618   // Check that the function has a script associated with it.
   13619   if (!script()->IsScript()) return false;
   13620   return !optimization_disabled();
   13621 }
   13622 
   13623 
   13624 int SharedFunctionInfo::SourceSize() {
   13625   return end_position() - start_position();
   13626 }
   13627 
   13628 
   13629 namespace {
   13630 
   13631 void CalculateInstanceSizeHelper(InstanceType instance_type,
   13632                                  int requested_internal_fields,
   13633                                  int requested_in_object_properties,
   13634                                  int* instance_size,
   13635                                  int* in_object_properties) {
   13636   int header_size = JSObject::GetHeaderSize(instance_type);
   13637   DCHECK_LE(requested_internal_fields,
   13638             (JSObject::kMaxInstanceSize - header_size) >> kPointerSizeLog2);
   13639   *instance_size =
   13640       Min(header_size +
   13641               ((requested_internal_fields + requested_in_object_properties)
   13642                << kPointerSizeLog2),
   13643           JSObject::kMaxInstanceSize);
   13644   *in_object_properties = ((*instance_size - header_size) >> kPointerSizeLog2) -
   13645                           requested_internal_fields;
   13646 }
   13647 
   13648 }  // namespace
   13649 
   13650 
   13651 void JSFunction::CalculateInstanceSize(InstanceType instance_type,
   13652                                        int requested_internal_fields,
   13653                                        int* instance_size,
   13654                                        int* in_object_properties) {
   13655   CalculateInstanceSizeHelper(instance_type, requested_internal_fields,
   13656                               shared()->expected_nof_properties(),
   13657                               instance_size, in_object_properties);
   13658 }
   13659 
   13660 
   13661 void JSFunction::CalculateInstanceSizeForDerivedClass(
   13662     InstanceType instance_type, int requested_internal_fields,
   13663     int* instance_size, int* in_object_properties) {
   13664   Isolate* isolate = GetIsolate();
   13665   int expected_nof_properties = 0;
   13666   for (PrototypeIterator iter(isolate, this,
   13667                               PrototypeIterator::START_AT_RECEIVER);
   13668        !iter.IsAtEnd(); iter.Advance()) {
   13669     JSFunction* func = iter.GetCurrent<JSFunction>();
   13670     SharedFunctionInfo* shared = func->shared();
   13671     expected_nof_properties += shared->expected_nof_properties();
   13672     if (!IsSubclassConstructor(shared->kind())) {
   13673       break;
   13674     }
   13675   }
   13676   CalculateInstanceSizeHelper(instance_type, requested_internal_fields,
   13677                               expected_nof_properties, instance_size,
   13678                               in_object_properties);
   13679 }
   13680 
   13681 
   13682 // Output the source code without any allocation in the heap.
   13683 std::ostream& operator<<(std::ostream& os, const SourceCodeOf& v) {
   13684   const SharedFunctionInfo* s = v.value;
   13685   // For some native functions there is no source.
   13686   if (!s->HasSourceCode()) return os << "<No Source>";
   13687 
   13688   // Get the source for the script which this function came from.
   13689   // Don't use String::cast because we don't want more assertion errors while
   13690   // we are already creating a stack dump.
   13691   String* script_source =
   13692       reinterpret_cast<String*>(Script::cast(s->script())->source());
   13693 
   13694   if (!script_source->LooksValid()) return os << "<Invalid Source>";
   13695 
   13696   if (!s->is_toplevel()) {
   13697     os << "function ";
   13698     Object* name = s->name();
   13699     if (name->IsString() && String::cast(name)->length() > 0) {
   13700       String::cast(name)->PrintUC16(os);
   13701     }
   13702   }
   13703 
   13704   int len = s->end_position() - s->start_position();
   13705   if (len <= v.max_length || v.max_length < 0) {
   13706     script_source->PrintUC16(os, s->start_position(), s->end_position());
   13707     return os;
   13708   } else {
   13709     script_source->PrintUC16(os, s->start_position(),
   13710                              s->start_position() + v.max_length);
   13711     return os << "...\n";
   13712   }
   13713 }
   13714 
   13715 
   13716 static bool IsCodeEquivalent(Code* code, Code* recompiled) {
   13717   if (code->instruction_size() != recompiled->instruction_size()) return false;
   13718   ByteArray* code_relocation = code->relocation_info();
   13719   ByteArray* recompiled_relocation = recompiled->relocation_info();
   13720   int length = code_relocation->length();
   13721   if (length != recompiled_relocation->length()) return false;
   13722   int compare = memcmp(code_relocation->GetDataStartAddress(),
   13723                        recompiled_relocation->GetDataStartAddress(),
   13724                        length);
   13725   return compare == 0;
   13726 }
   13727 
   13728 
   13729 void SharedFunctionInfo::EnableDeoptimizationSupport(Code* recompiled) {
   13730   DCHECK(!has_deoptimization_support());
   13731   DisallowHeapAllocation no_allocation;
   13732   Code* code = this->code();
   13733   if (IsCodeEquivalent(code, recompiled)) {
   13734     // Copy the deoptimization data from the recompiled code.
   13735     code->set_deoptimization_data(recompiled->deoptimization_data());
   13736     code->set_has_deoptimization_support(true);
   13737   } else {
   13738     // TODO(3025757): In case the recompiled isn't equivalent to the
   13739     // old code, we have to replace it. We should try to avoid this
   13740     // altogether because it flushes valuable type feedback by
   13741     // effectively resetting all IC state.
   13742     ReplaceCode(recompiled);
   13743   }
   13744   DCHECK(has_deoptimization_support());
   13745 }
   13746 
   13747 
   13748 void SharedFunctionInfo::DisableOptimization(BailoutReason reason) {
   13749   // Disable optimization for the shared function info and mark the
   13750   // code as non-optimizable. The marker on the shared function info
   13751   // is there because we flush non-optimized code thereby loosing the
   13752   // non-optimizable information for the code. When the code is
   13753   // regenerated and set on the shared function info it is marked as
   13754   // non-optimizable if optimization is disabled for the shared
   13755   // function info.
   13756   DCHECK(reason != kNoReason);
   13757   set_optimization_disabled(true);
   13758   set_disable_optimization_reason(reason);
   13759   // Code should be the lazy compilation stub or else unoptimized.
   13760   DCHECK(code()->kind() == Code::FUNCTION || code()->kind() == Code::BUILTIN);
   13761   PROFILE(GetIsolate(), CodeDisableOptEvent(code(), this));
   13762   if (FLAG_trace_opt) {
   13763     PrintF("[disabled optimization for ");
   13764     ShortPrint();
   13765     PrintF(", reason: %s]\n", GetBailoutReason(reason));
   13766   }
   13767 }
   13768 
   13769 
   13770 void SharedFunctionInfo::InitFromFunctionLiteral(
   13771     Handle<SharedFunctionInfo> shared_info, FunctionLiteral* lit) {
   13772   shared_info->set_length(lit->scope()->default_function_length());
   13773   shared_info->set_internal_formal_parameter_count(lit->parameter_count());
   13774   shared_info->set_function_token_position(lit->function_token_position());
   13775   shared_info->set_start_position(lit->start_position());
   13776   shared_info->set_end_position(lit->end_position());
   13777   shared_info->set_is_expression(lit->is_expression());
   13778   shared_info->set_is_anonymous(lit->is_anonymous());
   13779   shared_info->set_inferred_name(*lit->inferred_name());
   13780   shared_info->set_allows_lazy_compilation(lit->AllowsLazyCompilation());
   13781   shared_info->set_allows_lazy_compilation_without_context(
   13782       lit->AllowsLazyCompilationWithoutContext());
   13783   shared_info->set_language_mode(lit->language_mode());
   13784   shared_info->set_uses_arguments(lit->scope()->arguments() != NULL);
   13785   shared_info->set_has_duplicate_parameters(lit->has_duplicate_parameters());
   13786   shared_info->set_ast_node_count(lit->ast_node_count());
   13787   shared_info->set_is_function(lit->is_function());
   13788   if (lit->dont_optimize_reason() != kNoReason) {
   13789     shared_info->DisableOptimization(lit->dont_optimize_reason());
   13790   }
   13791   shared_info->set_dont_crankshaft(lit->flags() &
   13792                                    AstProperties::kDontCrankshaft);
   13793   shared_info->set_kind(lit->kind());
   13794   if (!IsConstructable(lit->kind(), lit->language_mode())) {
   13795     shared_info->set_construct_stub(
   13796         *shared_info->GetIsolate()->builtins()->ConstructedNonConstructable());
   13797   }
   13798   shared_info->set_needs_home_object(lit->scope()->NeedsHomeObject());
   13799   shared_info->set_asm_function(lit->scope()->asm_function());
   13800 }
   13801 
   13802 
   13803 bool SharedFunctionInfo::VerifyBailoutId(BailoutId id) {
   13804   DCHECK(!id.IsNone());
   13805   Code* unoptimized = code();
   13806   DeoptimizationOutputData* data =
   13807       DeoptimizationOutputData::cast(unoptimized->deoptimization_data());
   13808   unsigned ignore = Deoptimizer::GetOutputInfo(data, id, this);
   13809   USE(ignore);
   13810   return true;  // Return true if there was no DCHECK.
   13811 }
   13812 
   13813 
   13814 void Map::StartInobjectSlackTracking() {
   13815   DCHECK(!IsInobjectSlackTrackingInProgress());
   13816 
   13817   // No tracking during the snapshot construction phase.
   13818   Isolate* isolate = GetIsolate();
   13819   if (isolate->serializer_enabled()) return;
   13820 
   13821   if (unused_property_fields() == 0) return;
   13822 
   13823   set_construction_counter(Map::kSlackTrackingCounterStart);
   13824 }
   13825 
   13826 
   13827 void SharedFunctionInfo::ResetForNewContext(int new_ic_age) {
   13828   code()->ClearInlineCaches();
   13829   // If we clear ICs, we need to clear the type feedback vector too, since
   13830   // CallICs are synced with a feedback vector slot.
   13831   ClearTypeFeedbackInfo();
   13832   set_ic_age(new_ic_age);
   13833   if (code()->kind() == Code::FUNCTION) {
   13834     code()->set_profiler_ticks(0);
   13835     if (optimization_disabled() &&
   13836         opt_count() >= FLAG_max_opt_count) {
   13837       // Re-enable optimizations if they were disabled due to opt_count limit.
   13838       set_optimization_disabled(false);
   13839     }
   13840     set_opt_count(0);
   13841     set_deopt_count(0);
   13842   }
   13843 }
   13844 
   13845 
   13846 int SharedFunctionInfo::SearchOptimizedCodeMapEntry(Context* native_context,
   13847                                                     BailoutId osr_ast_id) {
   13848   DisallowHeapAllocation no_gc;
   13849   DCHECK(native_context->IsNativeContext());
   13850   if (!OptimizedCodeMapIsCleared()) {
   13851     FixedArray* optimized_code_map = this->optimized_code_map();
   13852     int length = optimized_code_map->length();
   13853     Smi* osr_ast_id_smi = Smi::FromInt(osr_ast_id.ToInt());
   13854     for (int i = kEntriesStart; i < length; i += kEntryLength) {
   13855       if (WeakCell::cast(optimized_code_map->get(i + kContextOffset))
   13856                   ->value() == native_context &&
   13857           optimized_code_map->get(i + kOsrAstIdOffset) == osr_ast_id_smi) {
   13858         return i;
   13859       }
   13860     }
   13861     Object* shared_code =
   13862         WeakCell::cast(optimized_code_map->get(kSharedCodeIndex))->value();
   13863     if (shared_code->IsCode() && osr_ast_id.IsNone()) {
   13864       return kSharedCodeIndex;
   13865     }
   13866   }
   13867   return -1;
   13868 }
   13869 
   13870 
   13871 CodeAndLiterals SharedFunctionInfo::SearchOptimizedCodeMap(
   13872     Context* native_context, BailoutId osr_ast_id) {
   13873   CodeAndLiterals result = {nullptr, nullptr};
   13874   int entry = SearchOptimizedCodeMapEntry(native_context, osr_ast_id);
   13875   if (entry != kNotFound) {
   13876     FixedArray* code_map = optimized_code_map();
   13877     if (entry == kSharedCodeIndex) {
   13878       // We know the weak cell isn't cleared because we made sure of it in
   13879       // SearchOptimizedCodeMapEntry and performed no allocations since that
   13880       // call.
   13881       result = {
   13882           Code::cast(WeakCell::cast(code_map->get(kSharedCodeIndex))->value()),
   13883           nullptr};
   13884     } else {
   13885       DCHECK_LE(entry + kEntryLength, code_map->length());
   13886       WeakCell* cell = WeakCell::cast(code_map->get(entry + kCachedCodeOffset));
   13887       WeakCell* literals_cell =
   13888           WeakCell::cast(code_map->get(entry + kLiteralsOffset));
   13889 
   13890       result = {cell->cleared() ? nullptr : Code::cast(cell->value()),
   13891                 literals_cell->cleared()
   13892                     ? nullptr
   13893                     : LiteralsArray::cast(literals_cell->value())};
   13894     }
   13895   }
   13896   if (FLAG_trace_opt && !OptimizedCodeMapIsCleared() &&
   13897       result.code == nullptr) {
   13898     PrintF("[didn't find optimized code in optimized code map for ");
   13899     ShortPrint();
   13900     PrintF("]\n");
   13901   }
   13902   return result;
   13903 }
   13904 
   13905 
   13906 #define DECLARE_TAG(ignore1, name, ignore2) name,
   13907 const char* const VisitorSynchronization::kTags[
   13908     VisitorSynchronization::kNumberOfSyncTags] = {
   13909   VISITOR_SYNCHRONIZATION_TAGS_LIST(DECLARE_TAG)
   13910 };
   13911 #undef DECLARE_TAG
   13912 
   13913 
   13914 #define DECLARE_TAG(ignore1, ignore2, name) name,
   13915 const char* const VisitorSynchronization::kTagNames[
   13916     VisitorSynchronization::kNumberOfSyncTags] = {
   13917   VISITOR_SYNCHRONIZATION_TAGS_LIST(DECLARE_TAG)
   13918 };
   13919 #undef DECLARE_TAG
   13920 
   13921 
   13922 void ObjectVisitor::VisitCodeTarget(RelocInfo* rinfo) {
   13923   DCHECK(RelocInfo::IsCodeTarget(rinfo->rmode()));
   13924   Object* target = Code::GetCodeFromTargetAddress(rinfo->target_address());
   13925   Object* old_target = target;
   13926   VisitPointer(&target);
   13927   CHECK_EQ(target, old_target);  // VisitPointer doesn't change Code* *target.
   13928 }
   13929 
   13930 
   13931 void ObjectVisitor::VisitCodeAgeSequence(RelocInfo* rinfo) {
   13932   DCHECK(RelocInfo::IsCodeAgeSequence(rinfo->rmode()));
   13933   Object* stub = rinfo->code_age_stub();
   13934   if (stub) {
   13935     VisitPointer(&stub);
   13936   }
   13937 }
   13938 
   13939 
   13940 void ObjectVisitor::VisitCodeEntry(Address entry_address) {
   13941   Object* code = Code::GetObjectFromEntryAddress(entry_address);
   13942   Object* old_code = code;
   13943   VisitPointer(&code);
   13944   if (code != old_code) {
   13945     Memory::Address_at(entry_address) = reinterpret_cast<Code*>(code)->entry();
   13946   }
   13947 }
   13948 
   13949 
   13950 void ObjectVisitor::VisitCell(RelocInfo* rinfo) {
   13951   DCHECK(rinfo->rmode() == RelocInfo::CELL);
   13952   Object* cell = rinfo->target_cell();
   13953   Object* old_cell = cell;
   13954   VisitPointer(&cell);
   13955   if (cell != old_cell) {
   13956     rinfo->set_target_cell(reinterpret_cast<Cell*>(cell));
   13957   }
   13958 }
   13959 
   13960 
   13961 void ObjectVisitor::VisitDebugTarget(RelocInfo* rinfo) {
   13962   DCHECK(RelocInfo::IsDebugBreakSlot(rinfo->rmode()) &&
   13963          rinfo->IsPatchedDebugBreakSlotSequence());
   13964   Object* target = Code::GetCodeFromTargetAddress(rinfo->debug_call_address());
   13965   Object* old_target = target;
   13966   VisitPointer(&target);
   13967   CHECK_EQ(target, old_target);  // VisitPointer doesn't change Code* *target.
   13968 }
   13969 
   13970 
   13971 void ObjectVisitor::VisitEmbeddedPointer(RelocInfo* rinfo) {
   13972   DCHECK(rinfo->rmode() == RelocInfo::EMBEDDED_OBJECT);
   13973   Object* p = rinfo->target_object();
   13974   VisitPointer(&p);
   13975 }
   13976 
   13977 
   13978 void ObjectVisitor::VisitExternalReference(RelocInfo* rinfo) {
   13979   Address p = rinfo->target_external_reference();
   13980   VisitExternalReference(&p);
   13981 }
   13982 
   13983 
   13984 void Code::InvalidateRelocation() {
   13985   InvalidateEmbeddedObjects();
   13986   set_relocation_info(GetHeap()->empty_byte_array());
   13987 }
   13988 
   13989 
   13990 void Code::InvalidateEmbeddedObjects() {
   13991   Object* undefined = GetHeap()->undefined_value();
   13992   Cell* undefined_cell = GetHeap()->undefined_cell();
   13993   int mode_mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) |
   13994                   RelocInfo::ModeMask(RelocInfo::CELL);
   13995   for (RelocIterator it(this, mode_mask); !it.done(); it.next()) {
   13996     RelocInfo::Mode mode = it.rinfo()->rmode();
   13997     if (mode == RelocInfo::EMBEDDED_OBJECT) {
   13998       it.rinfo()->set_target_object(undefined, SKIP_WRITE_BARRIER);
   13999     } else if (mode == RelocInfo::CELL) {
   14000       it.rinfo()->set_target_cell(undefined_cell, SKIP_WRITE_BARRIER);
   14001     }
   14002   }
   14003 }
   14004 
   14005 
   14006 void Code::Relocate(intptr_t delta) {
   14007   for (RelocIterator it(this, RelocInfo::kApplyMask); !it.done(); it.next()) {
   14008     it.rinfo()->apply(delta);
   14009   }
   14010   Assembler::FlushICache(GetIsolate(), instruction_start(), instruction_size());
   14011 }
   14012 
   14013 
   14014 void Code::CopyFrom(const CodeDesc& desc) {
   14015   DCHECK(Marking::Color(this) == Marking::WHITE_OBJECT);
   14016 
   14017   // copy code
   14018   CopyBytes(instruction_start(), desc.buffer,
   14019             static_cast<size_t>(desc.instr_size));
   14020 
   14021   // copy reloc info
   14022   CopyBytes(relocation_start(),
   14023             desc.buffer + desc.buffer_size - desc.reloc_size,
   14024             static_cast<size_t>(desc.reloc_size));
   14025 
   14026   // unbox handles and relocate
   14027   intptr_t delta = instruction_start() - desc.buffer;
   14028   int mode_mask = RelocInfo::kCodeTargetMask |
   14029                   RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) |
   14030                   RelocInfo::ModeMask(RelocInfo::CELL) |
   14031                   RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY) |
   14032                   RelocInfo::kApplyMask;
   14033   // Needed to find target_object and runtime_entry on X64
   14034   Assembler* origin = desc.origin;
   14035   AllowDeferredHandleDereference embedding_raw_address;
   14036   for (RelocIterator it(this, mode_mask); !it.done(); it.next()) {
   14037     RelocInfo::Mode mode = it.rinfo()->rmode();
   14038     if (mode == RelocInfo::EMBEDDED_OBJECT) {
   14039       Handle<Object> p = it.rinfo()->target_object_handle(origin);
   14040       it.rinfo()->set_target_object(*p, SKIP_WRITE_BARRIER, SKIP_ICACHE_FLUSH);
   14041     } else if (mode == RelocInfo::CELL) {
   14042       Handle<Cell> cell  = it.rinfo()->target_cell_handle();
   14043       it.rinfo()->set_target_cell(*cell, SKIP_WRITE_BARRIER, SKIP_ICACHE_FLUSH);
   14044     } else if (RelocInfo::IsCodeTarget(mode)) {
   14045       // rewrite code handles in inline cache targets to direct
   14046       // pointers to the first instruction in the code object
   14047       Handle<Object> p = it.rinfo()->target_object_handle(origin);
   14048       Code* code = Code::cast(*p);
   14049       it.rinfo()->set_target_address(code->instruction_start(),
   14050                                      SKIP_WRITE_BARRIER,
   14051                                      SKIP_ICACHE_FLUSH);
   14052     } else if (RelocInfo::IsRuntimeEntry(mode)) {
   14053       Address p = it.rinfo()->target_runtime_entry(origin);
   14054       it.rinfo()->set_target_runtime_entry(p, SKIP_WRITE_BARRIER,
   14055                                            SKIP_ICACHE_FLUSH);
   14056     } else if (mode == RelocInfo::CODE_AGE_SEQUENCE) {
   14057       Handle<Object> p = it.rinfo()->code_age_stub_handle(origin);
   14058       Code* code = Code::cast(*p);
   14059       it.rinfo()->set_code_age_stub(code, SKIP_ICACHE_FLUSH);
   14060     } else {
   14061       it.rinfo()->apply(delta);
   14062     }
   14063   }
   14064   Assembler::FlushICache(GetIsolate(), instruction_start(), instruction_size());
   14065 }
   14066 
   14067 
   14068 // Locate the source position which is closest to the address in the code. This
   14069 // is using the source position information embedded in the relocation info.
   14070 // The position returned is relative to the beginning of the script where the
   14071 // source for this function is found.
   14072 int Code::SourcePosition(Address pc) {
   14073   int distance = kMaxInt;
   14074   int position = RelocInfo::kNoPosition;  // Initially no position found.
   14075   // Run through all the relocation info to find the best matching source
   14076   // position. All the code needs to be considered as the sequence of the
   14077   // instructions in the code does not necessarily follow the same order as the
   14078   // source.
   14079   RelocIterator it(this, RelocInfo::kPositionMask);
   14080   while (!it.done()) {
   14081     // Only look at positions after the current pc.
   14082     if (it.rinfo()->pc() < pc) {
   14083       // Get position and distance.
   14084 
   14085       int dist = static_cast<int>(pc - it.rinfo()->pc());
   14086       int pos = static_cast<int>(it.rinfo()->data());
   14087       // If this position is closer than the current candidate or if it has the
   14088       // same distance as the current candidate and the position is higher then
   14089       // this position is the new candidate.
   14090       if ((dist < distance) ||
   14091           (dist == distance && pos > position)) {
   14092         position = pos;
   14093         distance = dist;
   14094       }
   14095     }
   14096     it.next();
   14097   }
   14098   return position;
   14099 }
   14100 
   14101 
   14102 // Same as Code::SourcePosition above except it only looks for statement
   14103 // positions.
   14104 int Code::SourceStatementPosition(Address pc) {
   14105   // First find the position as close as possible using all position
   14106   // information.
   14107   int position = SourcePosition(pc);
   14108   // Now find the closest statement position before the position.
   14109   int statement_position = 0;
   14110   RelocIterator it(this, RelocInfo::kPositionMask);
   14111   while (!it.done()) {
   14112     if (RelocInfo::IsStatementPosition(it.rinfo()->rmode())) {
   14113       int p = static_cast<int>(it.rinfo()->data());
   14114       if (statement_position < p && p <= position) {
   14115         statement_position = p;
   14116       }
   14117     }
   14118     it.next();
   14119   }
   14120   return statement_position;
   14121 }
   14122 
   14123 
   14124 SafepointEntry Code::GetSafepointEntry(Address pc) {
   14125   SafepointTable table(this);
   14126   return table.FindEntry(pc);
   14127 }
   14128 
   14129 
   14130 Object* Code::FindNthObject(int n, Map* match_map) {
   14131   DCHECK(is_inline_cache_stub());
   14132   DisallowHeapAllocation no_allocation;
   14133   int mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT);
   14134   for (RelocIterator it(this, mask); !it.done(); it.next()) {
   14135     RelocInfo* info = it.rinfo();
   14136     Object* object = info->target_object();
   14137     if (object->IsWeakCell()) object = WeakCell::cast(object)->value();
   14138     if (object->IsHeapObject()) {
   14139       if (HeapObject::cast(object)->map() == match_map) {
   14140         if (--n == 0) return object;
   14141       }
   14142     }
   14143   }
   14144   return NULL;
   14145 }
   14146 
   14147 
   14148 AllocationSite* Code::FindFirstAllocationSite() {
   14149   Object* result = FindNthObject(1, GetHeap()->allocation_site_map());
   14150   return (result != NULL) ? AllocationSite::cast(result) : NULL;
   14151 }
   14152 
   14153 
   14154 Map* Code::FindFirstMap() {
   14155   Object* result = FindNthObject(1, GetHeap()->meta_map());
   14156   return (result != NULL) ? Map::cast(result) : NULL;
   14157 }
   14158 
   14159 
   14160 void Code::FindAndReplace(const FindAndReplacePattern& pattern) {
   14161   DCHECK(is_inline_cache_stub() || is_handler());
   14162   DisallowHeapAllocation no_allocation;
   14163   int mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT);
   14164   STATIC_ASSERT(FindAndReplacePattern::kMaxCount < 32);
   14165   int current_pattern = 0;
   14166   for (RelocIterator it(this, mask); !it.done(); it.next()) {
   14167     RelocInfo* info = it.rinfo();
   14168     Object* object = info->target_object();
   14169     if (object->IsHeapObject()) {
   14170       if (object->IsWeakCell()) {
   14171         object = HeapObject::cast(WeakCell::cast(object)->value());
   14172       }
   14173       Map* map = HeapObject::cast(object)->map();
   14174       if (map == *pattern.find_[current_pattern]) {
   14175         info->set_target_object(*pattern.replace_[current_pattern]);
   14176         if (++current_pattern == pattern.count_) return;
   14177       }
   14178     }
   14179   }
   14180   UNREACHABLE();
   14181 }
   14182 
   14183 
   14184 void Code::FindAllMaps(MapHandleList* maps) {
   14185   DCHECK(is_inline_cache_stub());
   14186   DisallowHeapAllocation no_allocation;
   14187   int mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT);
   14188   for (RelocIterator it(this, mask); !it.done(); it.next()) {
   14189     RelocInfo* info = it.rinfo();
   14190     Object* object = info->target_object();
   14191     if (object->IsWeakCell()) object = WeakCell::cast(object)->value();
   14192     if (object->IsMap()) maps->Add(handle(Map::cast(object)));
   14193   }
   14194 }
   14195 
   14196 
   14197 Code* Code::FindFirstHandler() {
   14198   DCHECK(is_inline_cache_stub());
   14199   DisallowHeapAllocation no_allocation;
   14200   int mask = RelocInfo::ModeMask(RelocInfo::CODE_TARGET) |
   14201              RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT);
   14202   bool skip_next_handler = false;
   14203   for (RelocIterator it(this, mask); !it.done(); it.next()) {
   14204     RelocInfo* info = it.rinfo();
   14205     if (info->rmode() == RelocInfo::EMBEDDED_OBJECT) {
   14206       Object* obj = info->target_object();
   14207       skip_next_handler |= obj->IsWeakCell() && WeakCell::cast(obj)->cleared();
   14208     } else {
   14209       Code* code = Code::GetCodeFromTargetAddress(info->target_address());
   14210       if (code->kind() == Code::HANDLER) {
   14211         if (!skip_next_handler) return code;
   14212         skip_next_handler = false;
   14213       }
   14214     }
   14215   }
   14216   return NULL;
   14217 }
   14218 
   14219 
   14220 bool Code::FindHandlers(CodeHandleList* code_list, int length) {
   14221   DCHECK(is_inline_cache_stub());
   14222   DisallowHeapAllocation no_allocation;
   14223   int mask = RelocInfo::ModeMask(RelocInfo::CODE_TARGET) |
   14224              RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT);
   14225   bool skip_next_handler = false;
   14226   int i = 0;
   14227   for (RelocIterator it(this, mask); !it.done(); it.next()) {
   14228     if (i == length) return true;
   14229     RelocInfo* info = it.rinfo();
   14230     if (info->rmode() == RelocInfo::EMBEDDED_OBJECT) {
   14231       Object* obj = info->target_object();
   14232       skip_next_handler |= obj->IsWeakCell() && WeakCell::cast(obj)->cleared();
   14233     } else {
   14234       Code* code = Code::GetCodeFromTargetAddress(info->target_address());
   14235       // IC stubs with handlers never contain non-handler code objects before
   14236       // handler targets.
   14237       if (code->kind() != Code::HANDLER) break;
   14238       if (!skip_next_handler) {
   14239         code_list->Add(Handle<Code>(code));
   14240         i++;
   14241       }
   14242       skip_next_handler = false;
   14243     }
   14244   }
   14245   return i == length;
   14246 }
   14247 
   14248 
   14249 MaybeHandle<Code> Code::FindHandlerForMap(Map* map) {
   14250   DCHECK(is_inline_cache_stub());
   14251   int mask = RelocInfo::ModeMask(RelocInfo::CODE_TARGET) |
   14252              RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT);
   14253   bool return_next = false;
   14254   for (RelocIterator it(this, mask); !it.done(); it.next()) {
   14255     RelocInfo* info = it.rinfo();
   14256     if (info->rmode() == RelocInfo::EMBEDDED_OBJECT) {
   14257       Object* object = info->target_object();
   14258       if (object->IsWeakCell()) object = WeakCell::cast(object)->value();
   14259       if (object == map) return_next = true;
   14260     } else if (return_next) {
   14261       Code* code = Code::GetCodeFromTargetAddress(info->target_address());
   14262       DCHECK(code->kind() == Code::HANDLER);
   14263       return handle(code);
   14264     }
   14265   }
   14266   return MaybeHandle<Code>();
   14267 }
   14268 
   14269 
   14270 Name* Code::FindFirstName() {
   14271   DCHECK(is_inline_cache_stub());
   14272   DisallowHeapAllocation no_allocation;
   14273   int mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT);
   14274   for (RelocIterator it(this, mask); !it.done(); it.next()) {
   14275     RelocInfo* info = it.rinfo();
   14276     Object* object = info->target_object();
   14277     if (object->IsName()) return Name::cast(object);
   14278   }
   14279   return NULL;
   14280 }
   14281 
   14282 
   14283 void Code::ClearInlineCaches() {
   14284   ClearInlineCaches(NULL);
   14285 }
   14286 
   14287 
   14288 void Code::ClearInlineCaches(Code::Kind kind) {
   14289   ClearInlineCaches(&kind);
   14290 }
   14291 
   14292 
   14293 void Code::ClearInlineCaches(Code::Kind* kind) {
   14294   int mask = RelocInfo::ModeMask(RelocInfo::CODE_TARGET) |
   14295              RelocInfo::ModeMask(RelocInfo::CODE_TARGET_WITH_ID);
   14296   for (RelocIterator it(this, mask); !it.done(); it.next()) {
   14297     RelocInfo* info = it.rinfo();
   14298     Code* target(Code::GetCodeFromTargetAddress(info->target_address()));
   14299     if (target->is_inline_cache_stub()) {
   14300       if (kind == NULL || *kind == target->kind()) {
   14301         IC::Clear(this->GetIsolate(), info->pc(),
   14302                   info->host()->constant_pool());
   14303       }
   14304     }
   14305   }
   14306 }
   14307 
   14308 
   14309 void SharedFunctionInfo::ClearTypeFeedbackInfo() {
   14310   feedback_vector()->ClearSlots(this);
   14311 }
   14312 
   14313 
   14314 void SharedFunctionInfo::ClearTypeFeedbackInfoAtGCTime() {
   14315   feedback_vector()->ClearSlotsAtGCTime(this);
   14316 }
   14317 
   14318 
   14319 BailoutId Code::TranslatePcOffsetToAstId(uint32_t pc_offset) {
   14320   DisallowHeapAllocation no_gc;
   14321   DCHECK(kind() == FUNCTION);
   14322   BackEdgeTable back_edges(this, &no_gc);
   14323   for (uint32_t i = 0; i < back_edges.length(); i++) {
   14324     if (back_edges.pc_offset(i) == pc_offset) return back_edges.ast_id(i);
   14325   }
   14326   return BailoutId::None();
   14327 }
   14328 
   14329 
   14330 uint32_t Code::TranslateAstIdToPcOffset(BailoutId ast_id) {
   14331   DisallowHeapAllocation no_gc;
   14332   DCHECK(kind() == FUNCTION);
   14333   BackEdgeTable back_edges(this, &no_gc);
   14334   for (uint32_t i = 0; i < back_edges.length(); i++) {
   14335     if (back_edges.ast_id(i) == ast_id) return back_edges.pc_offset(i);
   14336   }
   14337   UNREACHABLE();  // We expect to find the back edge.
   14338   return 0;
   14339 }
   14340 
   14341 
   14342 void Code::MakeCodeAgeSequenceYoung(byte* sequence, Isolate* isolate) {
   14343   PatchPlatformCodeAge(isolate, sequence, kNoAgeCodeAge, NO_MARKING_PARITY);
   14344 }
   14345 
   14346 
   14347 void Code::MarkCodeAsExecuted(byte* sequence, Isolate* isolate) {
   14348   PatchPlatformCodeAge(isolate, sequence, kExecutedOnceCodeAge,
   14349       NO_MARKING_PARITY);
   14350 }
   14351 
   14352 
   14353 // NextAge defines the Code::Age state transitions during a GC cycle.
   14354 static Code::Age NextAge(Code::Age age) {
   14355   switch (age) {
   14356     case Code::kNotExecutedCodeAge:  // Keep, until we've been executed.
   14357     case Code::kToBeExecutedOnceCodeAge:  // Keep, until we've been executed.
   14358     case Code::kLastCodeAge:  // Clamp at last Code::Age value.
   14359       return age;
   14360     case Code::kExecutedOnceCodeAge:
   14361       // Pre-age code that has only been executed once.
   14362       return static_cast<Code::Age>(Code::kPreAgedCodeAge + 1);
   14363     default:
   14364       return static_cast<Code::Age>(age + 1);  // Default case: Increase age.
   14365   }
   14366 }
   14367 
   14368 
   14369 // IsOldAge defines the collection criteria for a Code object.
   14370 static bool IsOldAge(Code::Age age) {
   14371   return age >= Code::kIsOldCodeAge || age == Code::kNotExecutedCodeAge;
   14372 }
   14373 
   14374 
   14375 void Code::MakeYoung(Isolate* isolate) {
   14376   byte* sequence = FindCodeAgeSequence();
   14377   if (sequence != NULL) MakeCodeAgeSequenceYoung(sequence, isolate);
   14378 }
   14379 
   14380 
   14381 void Code::MarkToBeExecutedOnce(Isolate* isolate) {
   14382   byte* sequence = FindCodeAgeSequence();
   14383   if (sequence != NULL) {
   14384     PatchPlatformCodeAge(isolate, sequence, kToBeExecutedOnceCodeAge,
   14385                          NO_MARKING_PARITY);
   14386   }
   14387 }
   14388 
   14389 
   14390 void Code::MakeOlder(MarkingParity current_parity) {
   14391   byte* sequence = FindCodeAgeSequence();
   14392   if (sequence != NULL) {
   14393     Age age;
   14394     MarkingParity code_parity;
   14395     Isolate* isolate = GetIsolate();
   14396     GetCodeAgeAndParity(isolate, sequence, &age, &code_parity);
   14397     Age next_age = NextAge(age);
   14398     if (age != next_age && code_parity != current_parity) {
   14399       PatchPlatformCodeAge(isolate, sequence, next_age, current_parity);
   14400     }
   14401   }
   14402 }
   14403 
   14404 
   14405 bool Code::IsOld() {
   14406   return IsOldAge(GetAge());
   14407 }
   14408 
   14409 
   14410 byte* Code::FindCodeAgeSequence() {
   14411   return FLAG_age_code &&
   14412       prologue_offset() != Code::kPrologueOffsetNotSet &&
   14413       (kind() == OPTIMIZED_FUNCTION ||
   14414        (kind() == FUNCTION && !has_debug_break_slots()))
   14415       ? instruction_start() + prologue_offset()
   14416       : NULL;
   14417 }
   14418 
   14419 
   14420 Code::Age Code::GetAge() {
   14421   byte* sequence = FindCodeAgeSequence();
   14422   if (sequence == NULL) {
   14423     return kNoAgeCodeAge;
   14424   }
   14425   Age age;
   14426   MarkingParity parity;
   14427   GetCodeAgeAndParity(GetIsolate(), sequence, &age, &parity);
   14428   return age;
   14429 }
   14430 
   14431 
   14432 void Code::GetCodeAgeAndParity(Code* code, Age* age,
   14433                                MarkingParity* parity) {
   14434   Isolate* isolate = code->GetIsolate();
   14435   Builtins* builtins = isolate->builtins();
   14436   Code* stub = NULL;
   14437 #define HANDLE_CODE_AGE(AGE)                                            \
   14438   stub = *builtins->Make##AGE##CodeYoungAgainEvenMarking();             \
   14439   if (code == stub) {                                                   \
   14440     *age = k##AGE##CodeAge;                                             \
   14441     *parity = EVEN_MARKING_PARITY;                                      \
   14442     return;                                                             \
   14443   }                                                                     \
   14444   stub = *builtins->Make##AGE##CodeYoungAgainOddMarking();              \
   14445   if (code == stub) {                                                   \
   14446     *age = k##AGE##CodeAge;                                             \
   14447     *parity = ODD_MARKING_PARITY;                                       \
   14448     return;                                                             \
   14449   }
   14450   CODE_AGE_LIST(HANDLE_CODE_AGE)
   14451 #undef HANDLE_CODE_AGE
   14452   stub = *builtins->MarkCodeAsExecutedOnce();
   14453   if (code == stub) {
   14454     *age = kNotExecutedCodeAge;
   14455     *parity = NO_MARKING_PARITY;
   14456     return;
   14457   }
   14458   stub = *builtins->MarkCodeAsExecutedTwice();
   14459   if (code == stub) {
   14460     *age = kExecutedOnceCodeAge;
   14461     *parity = NO_MARKING_PARITY;
   14462     return;
   14463   }
   14464   stub = *builtins->MarkCodeAsToBeExecutedOnce();
   14465   if (code == stub) {
   14466     *age = kToBeExecutedOnceCodeAge;
   14467     *parity = NO_MARKING_PARITY;
   14468     return;
   14469   }
   14470   UNREACHABLE();
   14471 }
   14472 
   14473 
   14474 Code* Code::GetCodeAgeStub(Isolate* isolate, Age age, MarkingParity parity) {
   14475   Builtins* builtins = isolate->builtins();
   14476   switch (age) {
   14477 #define HANDLE_CODE_AGE(AGE)                                            \
   14478     case k##AGE##CodeAge: {                                             \
   14479       Code* stub = parity == EVEN_MARKING_PARITY                        \
   14480           ? *builtins->Make##AGE##CodeYoungAgainEvenMarking()           \
   14481           : *builtins->Make##AGE##CodeYoungAgainOddMarking();           \
   14482       return stub;                                                      \
   14483     }
   14484     CODE_AGE_LIST(HANDLE_CODE_AGE)
   14485 #undef HANDLE_CODE_AGE
   14486     case kNotExecutedCodeAge: {
   14487       DCHECK(parity == NO_MARKING_PARITY);
   14488       return *builtins->MarkCodeAsExecutedOnce();
   14489     }
   14490     case kExecutedOnceCodeAge: {
   14491       DCHECK(parity == NO_MARKING_PARITY);
   14492       return *builtins->MarkCodeAsExecutedTwice();
   14493     }
   14494     case kToBeExecutedOnceCodeAge: {
   14495       DCHECK(parity == NO_MARKING_PARITY);
   14496       return *builtins->MarkCodeAsToBeExecutedOnce();
   14497     }
   14498     default:
   14499       UNREACHABLE();
   14500       break;
   14501   }
   14502   return NULL;
   14503 }
   14504 
   14505 
   14506 void Code::PrintDeoptLocation(FILE* out, Address pc) {
   14507   Deoptimizer::DeoptInfo info = Deoptimizer::GetDeoptInfo(this, pc);
   14508   class SourcePosition pos = info.position;
   14509   if (info.deopt_reason != Deoptimizer::kNoReason || !pos.IsUnknown()) {
   14510     if (FLAG_hydrogen_track_positions) {
   14511       PrintF(out, "            ;;; deoptimize at %d_%d: %s\n",
   14512              pos.inlining_id(), pos.position(),
   14513              Deoptimizer::GetDeoptReason(info.deopt_reason));
   14514     } else {
   14515       PrintF(out, "            ;;; deoptimize at %d: %s\n", pos.raw(),
   14516              Deoptimizer::GetDeoptReason(info.deopt_reason));
   14517     }
   14518   }
   14519 }
   14520 
   14521 
   14522 bool Code::CanDeoptAt(Address pc) {
   14523   DeoptimizationInputData* deopt_data =
   14524       DeoptimizationInputData::cast(deoptimization_data());
   14525   Address code_start_address = instruction_start();
   14526   for (int i = 0; i < deopt_data->DeoptCount(); i++) {
   14527     if (deopt_data->Pc(i)->value() == -1) continue;
   14528     Address address = code_start_address + deopt_data->Pc(i)->value();
   14529     if (address == pc) return true;
   14530   }
   14531   return false;
   14532 }
   14533 
   14534 
   14535 // Identify kind of code.
   14536 const char* Code::Kind2String(Kind kind) {
   14537   switch (kind) {
   14538 #define CASE(name) case name: return #name;
   14539     CODE_KIND_LIST(CASE)
   14540 #undef CASE
   14541     case NUMBER_OF_KINDS: break;
   14542   }
   14543   UNREACHABLE();
   14544   return NULL;
   14545 }
   14546 
   14547 
   14548 Handle<WeakCell> Code::WeakCellFor(Handle<Code> code) {
   14549   DCHECK(code->kind() == OPTIMIZED_FUNCTION);
   14550   WeakCell* raw_cell = code->CachedWeakCell();
   14551   if (raw_cell != NULL) return Handle<WeakCell>(raw_cell);
   14552   Handle<WeakCell> cell = code->GetIsolate()->factory()->NewWeakCell(code);
   14553   DeoptimizationInputData::cast(code->deoptimization_data())
   14554       ->SetWeakCellCache(*cell);
   14555   return cell;
   14556 }
   14557 
   14558 
   14559 WeakCell* Code::CachedWeakCell() {
   14560   DCHECK(kind() == OPTIMIZED_FUNCTION);
   14561   Object* weak_cell_cache =
   14562       DeoptimizationInputData::cast(deoptimization_data())->WeakCellCache();
   14563   if (weak_cell_cache->IsWeakCell()) {
   14564     DCHECK(this == WeakCell::cast(weak_cell_cache)->value());
   14565     return WeakCell::cast(weak_cell_cache);
   14566   }
   14567   return NULL;
   14568 }
   14569 
   14570 
   14571 #ifdef ENABLE_DISASSEMBLER
   14572 
   14573 void DeoptimizationInputData::DeoptimizationInputDataPrint(
   14574     std::ostream& os) {  // NOLINT
   14575   disasm::NameConverter converter;
   14576   int const inlined_function_count = InlinedFunctionCount()->value();
   14577   os << "Inlined functions (count = " << inlined_function_count << ")\n";
   14578   for (int id = 0; id < inlined_function_count; ++id) {
   14579     Object* info = LiteralArray()->get(id);
   14580     os << " " << Brief(SharedFunctionInfo::cast(info)) << "\n";
   14581   }
   14582   os << "\n";
   14583   int deopt_count = DeoptCount();
   14584   os << "Deoptimization Input Data (deopt points = " << deopt_count << ")\n";
   14585   if (0 != deopt_count) {
   14586     os << " index  ast id    argc     pc";
   14587     if (FLAG_print_code_verbose) os << "  commands";
   14588     os << "\n";
   14589   }
   14590   for (int i = 0; i < deopt_count; i++) {
   14591     os << std::setw(6) << i << "  " << std::setw(6) << AstId(i).ToInt() << "  "
   14592        << std::setw(6) << ArgumentsStackHeight(i)->value() << " "
   14593        << std::setw(6) << Pc(i)->value();
   14594 
   14595     if (!FLAG_print_code_verbose) {
   14596       os << "\n";
   14597       continue;
   14598     }
   14599     // Print details of the frame translation.
   14600     int translation_index = TranslationIndex(i)->value();
   14601     TranslationIterator iterator(TranslationByteArray(), translation_index);
   14602     Translation::Opcode opcode =
   14603         static_cast<Translation::Opcode>(iterator.Next());
   14604     DCHECK(Translation::BEGIN == opcode);
   14605     int frame_count = iterator.Next();
   14606     int jsframe_count = iterator.Next();
   14607     os << "  " << Translation::StringFor(opcode)
   14608        << " {frame count=" << frame_count
   14609        << ", js frame count=" << jsframe_count << "}\n";
   14610 
   14611     while (iterator.HasNext() &&
   14612            Translation::BEGIN !=
   14613            (opcode = static_cast<Translation::Opcode>(iterator.Next()))) {
   14614       os << std::setw(31) << "    " << Translation::StringFor(opcode) << " ";
   14615 
   14616       switch (opcode) {
   14617         case Translation::BEGIN:
   14618           UNREACHABLE();
   14619           break;
   14620 
   14621         case Translation::JS_FRAME: {
   14622           int ast_id = iterator.Next();
   14623           int shared_info_id = iterator.Next();
   14624           unsigned height = iterator.Next();
   14625           Object* shared_info = LiteralArray()->get(shared_info_id);
   14626           os << "{ast_id=" << ast_id << ", function="
   14627              << Brief(SharedFunctionInfo::cast(shared_info)->DebugName())
   14628              << ", height=" << height << "}";
   14629           break;
   14630         }
   14631 
   14632         case Translation::INTERPRETED_FRAME: {
   14633           int bytecode_offset = iterator.Next();
   14634           int shared_info_id = iterator.Next();
   14635           unsigned height = iterator.Next();
   14636           Object* shared_info = LiteralArray()->get(shared_info_id);
   14637           os << "{bytecode_offset=" << bytecode_offset << ", function="
   14638              << Brief(SharedFunctionInfo::cast(shared_info)->DebugName())
   14639              << ", height=" << height << "}";
   14640           break;
   14641         }
   14642 
   14643         case Translation::JS_FRAME_FUNCTION: {
   14644           os << "{function}";
   14645           break;
   14646         }
   14647 
   14648         case Translation::COMPILED_STUB_FRAME: {
   14649           Code::Kind stub_kind = static_cast<Code::Kind>(iterator.Next());
   14650           os << "{kind=" << stub_kind << "}";
   14651           break;
   14652         }
   14653 
   14654         case Translation::ARGUMENTS_ADAPTOR_FRAME:
   14655         case Translation::CONSTRUCT_STUB_FRAME: {
   14656           int shared_info_id = iterator.Next();
   14657           Object* shared_info = LiteralArray()->get(shared_info_id);
   14658           unsigned height = iterator.Next();
   14659           os << "{function="
   14660              << Brief(SharedFunctionInfo::cast(shared_info)->DebugName())
   14661              << ", height=" << height << "}";
   14662           break;
   14663         }
   14664 
   14665         case Translation::GETTER_STUB_FRAME:
   14666         case Translation::SETTER_STUB_FRAME: {
   14667           int shared_info_id = iterator.Next();
   14668           Object* shared_info = LiteralArray()->get(shared_info_id);
   14669           os << "{function=" << Brief(SharedFunctionInfo::cast(shared_info)
   14670                                           ->DebugName()) << "}";
   14671           break;
   14672         }
   14673 
   14674         case Translation::REGISTER: {
   14675           int reg_code = iterator.Next();
   14676           os << "{input=" << converter.NameOfCPURegister(reg_code) << "}";
   14677           break;
   14678         }
   14679 
   14680         case Translation::INT32_REGISTER: {
   14681           int reg_code = iterator.Next();
   14682           os << "{input=" << converter.NameOfCPURegister(reg_code) << "}";
   14683           break;
   14684         }
   14685 
   14686         case Translation::UINT32_REGISTER: {
   14687           int reg_code = iterator.Next();
   14688           os << "{input=" << converter.NameOfCPURegister(reg_code)
   14689              << " (unsigned)}";
   14690           break;
   14691         }
   14692 
   14693         case Translation::BOOL_REGISTER: {
   14694           int reg_code = iterator.Next();
   14695           os << "{input=" << converter.NameOfCPURegister(reg_code)
   14696              << " (bool)}";
   14697           break;
   14698         }
   14699 
   14700         case Translation::DOUBLE_REGISTER: {
   14701           int reg_code = iterator.Next();
   14702           os << "{input=" << DoubleRegister::from_code(reg_code).ToString()
   14703              << "}";
   14704           break;
   14705         }
   14706 
   14707         case Translation::STACK_SLOT: {
   14708           int input_slot_index = iterator.Next();
   14709           os << "{input=" << input_slot_index << "}";
   14710           break;
   14711         }
   14712 
   14713         case Translation::INT32_STACK_SLOT: {
   14714           int input_slot_index = iterator.Next();
   14715           os << "{input=" << input_slot_index << "}";
   14716           break;
   14717         }
   14718 
   14719         case Translation::UINT32_STACK_SLOT: {
   14720           int input_slot_index = iterator.Next();
   14721           os << "{input=" << input_slot_index << " (unsigned)}";
   14722           break;
   14723         }
   14724 
   14725         case Translation::BOOL_STACK_SLOT: {
   14726           int input_slot_index = iterator.Next();
   14727           os << "{input=" << input_slot_index << " (bool)}";
   14728           break;
   14729         }
   14730 
   14731         case Translation::DOUBLE_STACK_SLOT: {
   14732           int input_slot_index = iterator.Next();
   14733           os << "{input=" << input_slot_index << "}";
   14734           break;
   14735         }
   14736 
   14737         case Translation::LITERAL: {
   14738           int literal_index = iterator.Next();
   14739           Object* literal_value = LiteralArray()->get(literal_index);
   14740           os << "{literal_id=" << literal_index << " (" << Brief(literal_value)
   14741              << ")}";
   14742           break;
   14743         }
   14744 
   14745         case Translation::DUPLICATED_OBJECT: {
   14746           int object_index = iterator.Next();
   14747           os << "{object_index=" << object_index << "}";
   14748           break;
   14749         }
   14750 
   14751         case Translation::ARGUMENTS_OBJECT:
   14752         case Translation::CAPTURED_OBJECT: {
   14753           int args_length = iterator.Next();
   14754           os << "{length=" << args_length << "}";
   14755           break;
   14756         }
   14757       }
   14758       os << "\n";
   14759     }
   14760   }
   14761 }
   14762 
   14763 
   14764 void DeoptimizationOutputData::DeoptimizationOutputDataPrint(
   14765     std::ostream& os) {  // NOLINT
   14766   os << "Deoptimization Output Data (deopt points = " << this->DeoptPoints()
   14767      << ")\n";
   14768   if (this->DeoptPoints() == 0) return;
   14769 
   14770   os << "ast id        pc  state\n";
   14771   for (int i = 0; i < this->DeoptPoints(); i++) {
   14772     int pc_and_state = this->PcAndState(i)->value();
   14773     os << std::setw(6) << this->AstId(i).ToInt() << "  " << std::setw(8)
   14774        << FullCodeGenerator::PcField::decode(pc_and_state) << "  "
   14775        << FullCodeGenerator::State2String(
   14776               FullCodeGenerator::StateField::decode(pc_and_state)) << "\n";
   14777   }
   14778 }
   14779 
   14780 
   14781 void HandlerTable::HandlerTableRangePrint(std::ostream& os) {
   14782   os << "   from   to       hdlr\n";
   14783   for (int i = 0; i < length(); i += kRangeEntrySize) {
   14784     int pc_start = Smi::cast(get(i + kRangeStartIndex))->value();
   14785     int pc_end = Smi::cast(get(i + kRangeEndIndex))->value();
   14786     int handler_field = Smi::cast(get(i + kRangeHandlerIndex))->value();
   14787     int handler_offset = HandlerOffsetField::decode(handler_field);
   14788     CatchPrediction prediction = HandlerPredictionField::decode(handler_field);
   14789     int depth = Smi::cast(get(i + kRangeDepthIndex))->value();
   14790     os << "  (" << std::setw(4) << pc_start << "," << std::setw(4) << pc_end
   14791        << ")  ->  " << std::setw(4) << handler_offset
   14792        << " (prediction=" << prediction << ", depth=" << depth << ")\n";
   14793   }
   14794 }
   14795 
   14796 
   14797 void HandlerTable::HandlerTableReturnPrint(std::ostream& os) {
   14798   os << "   off      hdlr (c)\n";
   14799   for (int i = 0; i < length(); i += kReturnEntrySize) {
   14800     int pc_offset = Smi::cast(get(i + kReturnOffsetIndex))->value();
   14801     int handler_field = Smi::cast(get(i + kReturnHandlerIndex))->value();
   14802     int handler_offset = HandlerOffsetField::decode(handler_field);
   14803     CatchPrediction prediction = HandlerPredictionField::decode(handler_field);
   14804     os << "  " << std::setw(4) << pc_offset << "  ->  " << std::setw(4)
   14805        << handler_offset << " (prediction=" << prediction << ")\n";
   14806   }
   14807 }
   14808 
   14809 
   14810 const char* Code::ICState2String(InlineCacheState state) {
   14811   switch (state) {
   14812     case UNINITIALIZED: return "UNINITIALIZED";
   14813     case PREMONOMORPHIC: return "PREMONOMORPHIC";
   14814     case MONOMORPHIC: return "MONOMORPHIC";
   14815     case PROTOTYPE_FAILURE:
   14816       return "PROTOTYPE_FAILURE";
   14817     case POLYMORPHIC: return "POLYMORPHIC";
   14818     case MEGAMORPHIC: return "MEGAMORPHIC";
   14819     case GENERIC: return "GENERIC";
   14820     case DEBUG_STUB: return "DEBUG_STUB";
   14821   }
   14822   UNREACHABLE();
   14823   return NULL;
   14824 }
   14825 
   14826 
   14827 const char* Code::StubType2String(StubType type) {
   14828   switch (type) {
   14829     case NORMAL: return "NORMAL";
   14830     case FAST: return "FAST";
   14831   }
   14832   UNREACHABLE();  // keep the compiler happy
   14833   return NULL;
   14834 }
   14835 
   14836 
   14837 void Code::PrintExtraICState(std::ostream& os,  // NOLINT
   14838                              Kind kind, ExtraICState extra) {
   14839   os << "extra_ic_state = ";
   14840   if ((kind == STORE_IC || kind == KEYED_STORE_IC) &&
   14841       is_strict(static_cast<LanguageMode>(extra))) {
   14842     os << "STRICT\n";
   14843   } else {
   14844     os << extra << "\n";
   14845   }
   14846 }
   14847 
   14848 
   14849 void Code::Disassemble(const char* name, std::ostream& os) {  // NOLINT
   14850   os << "kind = " << Kind2String(kind()) << "\n";
   14851   if (IsCodeStubOrIC()) {
   14852     const char* n = CodeStub::MajorName(CodeStub::GetMajorKey(this));
   14853     os << "major_key = " << (n == NULL ? "null" : n) << "\n";
   14854   }
   14855   if (is_inline_cache_stub()) {
   14856     os << "ic_state = " << ICState2String(ic_state()) << "\n";
   14857     PrintExtraICState(os, kind(), extra_ic_state());
   14858     if (ic_state() == MONOMORPHIC) {
   14859       os << "type = " << StubType2String(type()) << "\n";
   14860     }
   14861     if (is_compare_ic_stub()) {
   14862       DCHECK(CodeStub::GetMajorKey(this) == CodeStub::CompareIC);
   14863       CompareICStub stub(stub_key(), GetIsolate());
   14864       os << "compare_state = " << CompareICState::GetStateName(stub.left())
   14865          << "*" << CompareICState::GetStateName(stub.right()) << " -> "
   14866          << CompareICState::GetStateName(stub.state()) << "\n";
   14867       os << "compare_operation = " << Token::Name(stub.op()) << "\n";
   14868     }
   14869   }
   14870   if ((name != NULL) && (name[0] != '\0')) {
   14871     os << "name = " << name << "\n";
   14872   } else if (kind() == BUILTIN) {
   14873     name = GetIsolate()->builtins()->Lookup(instruction_start());
   14874     if (name != NULL) {
   14875       os << "name = " << name << "\n";
   14876     }
   14877   }
   14878   if (kind() == OPTIMIZED_FUNCTION) {
   14879     os << "stack_slots = " << stack_slots() << "\n";
   14880   }
   14881   os << "compiler = " << (is_turbofanned()
   14882                               ? "turbofan"
   14883                               : is_crankshafted() ? "crankshaft"
   14884                                                   : kind() == Code::FUNCTION
   14885                                                         ? "full-codegen"
   14886                                                         : "unknown") << "\n";
   14887 
   14888   os << "Instructions (size = " << instruction_size() << ")\n";
   14889   {
   14890     Isolate* isolate = GetIsolate();
   14891     int size = instruction_size();
   14892     int safepoint_offset =
   14893         is_crankshafted() ? static_cast<int>(safepoint_table_offset()) : size;
   14894     int back_edge_offset = (kind() == Code::FUNCTION)
   14895                                ? static_cast<int>(back_edge_table_offset())
   14896                                : size;
   14897     int constant_pool_offset = FLAG_enable_embedded_constant_pool
   14898                                    ? this->constant_pool_offset()
   14899                                    : size;
   14900 
   14901     // Stop before reaching any embedded tables
   14902     int code_size = Min(safepoint_offset, back_edge_offset);
   14903     code_size = Min(code_size, constant_pool_offset);
   14904     byte* begin = instruction_start();
   14905     byte* end = begin + code_size;
   14906     Disassembler::Decode(isolate, &os, begin, end, this);
   14907 
   14908     if (constant_pool_offset < size) {
   14909       int constant_pool_size = size - constant_pool_offset;
   14910       DCHECK((constant_pool_size & kPointerAlignmentMask) == 0);
   14911       os << "\nConstant Pool (size = " << constant_pool_size << ")\n";
   14912       Vector<char> buf = Vector<char>::New(50);
   14913       intptr_t* ptr = reinterpret_cast<intptr_t*>(begin + constant_pool_offset);
   14914       for (int i = 0; i < constant_pool_size; i += kPointerSize, ptr++) {
   14915         SNPrintF(buf, "%4d %08" V8PRIxPTR, i, *ptr);
   14916         os << static_cast<const void*>(ptr) << "  " << buf.start() << "\n";
   14917       }
   14918     }
   14919   }
   14920   os << "\n";
   14921 
   14922   if (kind() == FUNCTION) {
   14923     DeoptimizationOutputData* data =
   14924         DeoptimizationOutputData::cast(this->deoptimization_data());
   14925     data->DeoptimizationOutputDataPrint(os);
   14926   } else if (kind() == OPTIMIZED_FUNCTION) {
   14927     DeoptimizationInputData* data =
   14928         DeoptimizationInputData::cast(this->deoptimization_data());
   14929     data->DeoptimizationInputDataPrint(os);
   14930   }
   14931   os << "\n";
   14932 
   14933   if (is_crankshafted()) {
   14934     SafepointTable table(this);
   14935     os << "Safepoints (size = " << table.size() << ")\n";
   14936     for (unsigned i = 0; i < table.length(); i++) {
   14937       unsigned pc_offset = table.GetPcOffset(i);
   14938       os << static_cast<const void*>(instruction_start() + pc_offset) << "  ";
   14939       os << std::setw(4) << pc_offset << "  ";
   14940       table.PrintEntry(i, os);
   14941       os << " (sp -> fp)  ";
   14942       SafepointEntry entry = table.GetEntry(i);
   14943       if (entry.deoptimization_index() != Safepoint::kNoDeoptimizationIndex) {
   14944         os << std::setw(6) << entry.deoptimization_index();
   14945       } else {
   14946         os << "<none>";
   14947       }
   14948       if (entry.argument_count() > 0) {
   14949         os << " argc: " << entry.argument_count();
   14950       }
   14951       os << "\n";
   14952     }
   14953     os << "\n";
   14954   } else if (kind() == FUNCTION) {
   14955     unsigned offset = back_edge_table_offset();
   14956     // If there is no back edge table, the "table start" will be at or after
   14957     // (due to alignment) the end of the instruction stream.
   14958     if (static_cast<int>(offset) < instruction_size()) {
   14959       DisallowHeapAllocation no_gc;
   14960       BackEdgeTable back_edges(this, &no_gc);
   14961 
   14962       os << "Back edges (size = " << back_edges.length() << ")\n";
   14963       os << "ast_id  pc_offset  loop_depth\n";
   14964 
   14965       for (uint32_t i = 0; i < back_edges.length(); i++) {
   14966         os << std::setw(6) << back_edges.ast_id(i).ToInt() << "  "
   14967            << std::setw(9) << back_edges.pc_offset(i) << "  " << std::setw(10)
   14968            << back_edges.loop_depth(i) << "\n";
   14969       }
   14970 
   14971       os << "\n";
   14972     }
   14973 #ifdef OBJECT_PRINT
   14974     if (!type_feedback_info()->IsUndefined()) {
   14975       OFStream os(stdout);
   14976       TypeFeedbackInfo::cast(type_feedback_info())->TypeFeedbackInfoPrint(os);
   14977       os << "\n";
   14978     }
   14979 #endif
   14980   }
   14981 
   14982   if (handler_table()->length() > 0) {
   14983     os << "Handler Table (size = " << handler_table()->Size() << ")\n";
   14984     if (kind() == FUNCTION) {
   14985       HandlerTable::cast(handler_table())->HandlerTableRangePrint(os);
   14986     } else if (kind() == OPTIMIZED_FUNCTION) {
   14987       HandlerTable::cast(handler_table())->HandlerTableReturnPrint(os);
   14988     }
   14989     os << "\n";
   14990   }
   14991 
   14992   os << "RelocInfo (size = " << relocation_size() << ")\n";
   14993   for (RelocIterator it(this); !it.done(); it.next()) {
   14994     it.rinfo()->Print(GetIsolate(), os);
   14995   }
   14996   os << "\n";
   14997 }
   14998 #endif  // ENABLE_DISASSEMBLER
   14999 
   15000 
   15001 void BytecodeArray::Disassemble(std::ostream& os) {
   15002   os << "Parameter count " << parameter_count() << "\n";
   15003   os << "Frame size " << frame_size() << "\n";
   15004   Vector<char> buf = Vector<char>::New(50);
   15005 
   15006   const uint8_t* first_bytecode_address = GetFirstBytecodeAddress();
   15007   int bytecode_size = 0;
   15008   for (int i = 0; i < this->length(); i += bytecode_size) {
   15009     const uint8_t* bytecode_start = &first_bytecode_address[i];
   15010     interpreter::Bytecode bytecode =
   15011         interpreter::Bytecodes::FromByte(bytecode_start[0]);
   15012     bytecode_size = interpreter::Bytecodes::Size(bytecode);
   15013 
   15014     SNPrintF(buf, "%p", bytecode_start);
   15015     os << buf.start() << " : ";
   15016     interpreter::Bytecodes::Decode(os, bytecode_start, parameter_count());
   15017 
   15018     if (interpreter::Bytecodes::IsJumpConstantWide(bytecode)) {
   15019       DCHECK_EQ(bytecode_size, 3);
   15020       int index = static_cast<int>(ReadUnalignedUInt16(bytecode_start + 1));
   15021       int offset = Smi::cast(constant_pool()->get(index))->value();
   15022       SNPrintF(buf, " (%p)", bytecode_start + offset);
   15023       os << buf.start();
   15024     } else if (interpreter::Bytecodes::IsJumpConstant(bytecode)) {
   15025       DCHECK_EQ(bytecode_size, 2);
   15026       int index = static_cast<int>(bytecode_start[1]);
   15027       int offset = Smi::cast(constant_pool()->get(index))->value();
   15028       SNPrintF(buf, " (%p)", bytecode_start + offset);
   15029       os << buf.start();
   15030     } else if (interpreter::Bytecodes::IsJump(bytecode)) {
   15031       DCHECK_EQ(bytecode_size, 2);
   15032       int offset = static_cast<int8_t>(bytecode_start[1]);
   15033       SNPrintF(buf, " (%p)", bytecode_start + offset);
   15034       os << buf.start();
   15035     }
   15036     os << "\n";
   15037   }
   15038 
   15039   os << "Constant pool (size = " << constant_pool()->length() << ")\n";
   15040   constant_pool()->Print();
   15041 }
   15042 
   15043 
   15044 // static
   15045 void JSArray::Initialize(Handle<JSArray> array, int capacity, int length) {
   15046   DCHECK(capacity >= 0);
   15047   array->GetIsolate()->factory()->NewJSArrayStorage(
   15048       array, length, capacity, INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
   15049 }
   15050 
   15051 
   15052 // Returns false if the passed-in index is marked non-configurable, which will
   15053 // cause the truncation operation to halt, and thus no further old values need
   15054 // be collected.
   15055 static bool GetOldValue(Isolate* isolate,
   15056                         Handle<JSObject> object,
   15057                         uint32_t index,
   15058                         List<Handle<Object> >* old_values,
   15059                         List<uint32_t>* indices) {
   15060   LookupIterator it(isolate, object, index, LookupIterator::HIDDEN);
   15061   CHECK(JSReceiver::GetPropertyAttributes(&it).IsJust());
   15062   DCHECK(it.IsFound());
   15063   if (!it.IsConfigurable()) return false;
   15064   Handle<Object> value =
   15065       it.state() == LookupIterator::ACCESSOR
   15066           ? Handle<Object>::cast(isolate->factory()->the_hole_value())
   15067           : JSReceiver::GetDataProperty(&it);
   15068   old_values->Add(value);
   15069   indices->Add(index);
   15070   return true;
   15071 }
   15072 
   15073 
   15074 void JSArray::SetLength(Handle<JSArray> array, uint32_t new_length) {
   15075   // We should never end in here with a pixel or external array.
   15076   DCHECK(array->AllowsSetLength());
   15077   if (array->SetLengthWouldNormalize(new_length)) {
   15078     JSObject::NormalizeElements(array);
   15079   }
   15080   array->GetElementsAccessor()->SetLength(array, new_length);
   15081 }
   15082 
   15083 
   15084 MaybeHandle<Object> JSArray::ObservableSetLength(Handle<JSArray> array,
   15085                                                  uint32_t new_length) {
   15086   if (!array->map()->is_observed()) {
   15087     SetLength(array, new_length);
   15088     return array;
   15089   }
   15090 
   15091   Isolate* isolate = array->GetIsolate();
   15092   List<uint32_t> indices;
   15093   List<Handle<Object> > old_values;
   15094   Handle<Object> old_length_handle(array->length(), isolate);
   15095   uint32_t old_length = 0;
   15096   CHECK(old_length_handle->ToArrayLength(&old_length));
   15097 
   15098   int num_elements = array->NumberOfOwnElements(ALL_PROPERTIES);
   15099   if (num_elements > 0) {
   15100     if (old_length == static_cast<uint32_t>(num_elements)) {
   15101       // Simple case for arrays without holes.
   15102       for (uint32_t i = old_length - 1; i + 1 > new_length; --i) {
   15103         if (!GetOldValue(isolate, array, i, &old_values, &indices)) break;
   15104       }
   15105     } else {
   15106       // For sparse arrays, only iterate over existing elements.
   15107       // TODO(rafaelw): For fast, sparse arrays, we can avoid iterating over
   15108       // the to-be-removed indices twice.
   15109       Handle<FixedArray> keys = isolate->factory()->NewFixedArray(num_elements);
   15110       array->GetOwnElementKeys(*keys, ALL_PROPERTIES);
   15111       while (num_elements-- > 0) {
   15112         uint32_t index = NumberToUint32(keys->get(num_elements));
   15113         if (index < new_length) break;
   15114         if (!GetOldValue(isolate, array, index, &old_values, &indices)) break;
   15115       }
   15116     }
   15117   }
   15118 
   15119   SetLength(array, new_length);
   15120 
   15121   CHECK(array->length()->ToArrayLength(&new_length));
   15122   if (old_length == new_length) return array;
   15123 
   15124   RETURN_ON_EXCEPTION(isolate, BeginPerformSplice(array), Object);
   15125 
   15126   for (int i = 0; i < indices.length(); ++i) {
   15127     // For deletions where the property was an accessor, old_values[i]
   15128     // will be the hole, which instructs EnqueueChangeRecord to elide
   15129     // the "oldValue" property.
   15130     RETURN_ON_EXCEPTION(
   15131         isolate,
   15132         JSObject::EnqueueChangeRecord(
   15133             array, "delete", isolate->factory()->Uint32ToString(indices[i]),
   15134             old_values[i]),
   15135         Object);
   15136   }
   15137 
   15138   RETURN_ON_EXCEPTION(isolate,
   15139                       JSObject::EnqueueChangeRecord(
   15140                           array, "update", isolate->factory()->length_string(),
   15141                           old_length_handle),
   15142                       Object);
   15143 
   15144   RETURN_ON_EXCEPTION(isolate, EndPerformSplice(array), Object);
   15145 
   15146   uint32_t index = Min(old_length, new_length);
   15147   uint32_t add_count = new_length > old_length ? new_length - old_length : 0;
   15148   uint32_t delete_count = new_length < old_length ? old_length - new_length : 0;
   15149   Handle<JSArray> deleted = isolate->factory()->NewJSArray(0);
   15150   if (delete_count > 0) {
   15151     for (int i = indices.length() - 1; i >= 0; i--) {
   15152       // Skip deletions where the property was an accessor, leaving holes
   15153       // in the array of old values.
   15154       if (old_values[i]->IsTheHole()) continue;
   15155       JSObject::AddDataElement(deleted, indices[i] - index, old_values[i], NONE)
   15156           .Assert();
   15157     }
   15158 
   15159     JSArray::SetLength(deleted, delete_count);
   15160   }
   15161 
   15162   RETURN_ON_EXCEPTION(
   15163       isolate, EnqueueSpliceRecord(array, index, deleted, add_count), Object);
   15164 
   15165   return array;
   15166 }
   15167 
   15168 
   15169 // static
   15170 void Map::AddDependentCode(Handle<Map> map,
   15171                            DependentCode::DependencyGroup group,
   15172                            Handle<Code> code) {
   15173   Handle<WeakCell> cell = Code::WeakCellFor(code);
   15174   Handle<DependentCode> codes = DependentCode::InsertWeakCode(
   15175       Handle<DependentCode>(map->dependent_code()), group, cell);
   15176   if (*codes != map->dependent_code()) map->set_dependent_code(*codes);
   15177 }
   15178 
   15179 
   15180 Handle<DependentCode> DependentCode::InsertCompilationDependencies(
   15181     Handle<DependentCode> entries, DependencyGroup group,
   15182     Handle<Foreign> info) {
   15183   return Insert(entries, group, info);
   15184 }
   15185 
   15186 
   15187 Handle<DependentCode> DependentCode::InsertWeakCode(
   15188     Handle<DependentCode> entries, DependencyGroup group,
   15189     Handle<WeakCell> code_cell) {
   15190   return Insert(entries, group, code_cell);
   15191 }
   15192 
   15193 
   15194 Handle<DependentCode> DependentCode::Insert(Handle<DependentCode> entries,
   15195                                             DependencyGroup group,
   15196                                             Handle<Object> object) {
   15197   if (entries->length() == 0 || entries->group() > group) {
   15198     // There is no such group.
   15199     return DependentCode::New(group, object, entries);
   15200   }
   15201   if (entries->group() < group) {
   15202     // The group comes later in the list.
   15203     Handle<DependentCode> old_next(entries->next_link());
   15204     Handle<DependentCode> new_next = Insert(old_next, group, object);
   15205     if (!old_next.is_identical_to(new_next)) {
   15206       entries->set_next_link(*new_next);
   15207     }
   15208     return entries;
   15209   }
   15210   DCHECK_EQ(group, entries->group());
   15211   int count = entries->count();
   15212   // Check for existing entry to avoid duplicates.
   15213   for (int i = 0; i < count; i++) {
   15214     if (entries->object_at(i) == *object) return entries;
   15215   }
   15216   if (entries->length() < kCodesStartIndex + count + 1) {
   15217     entries = EnsureSpace(entries);
   15218     // Count could have changed, reload it.
   15219     count = entries->count();
   15220   }
   15221   entries->set_object_at(count, *object);
   15222   entries->set_count(count + 1);
   15223   return entries;
   15224 }
   15225 
   15226 
   15227 Handle<DependentCode> DependentCode::New(DependencyGroup group,
   15228                                          Handle<Object> object,
   15229                                          Handle<DependentCode> next) {
   15230   Isolate* isolate = next->GetIsolate();
   15231   Handle<DependentCode> result = Handle<DependentCode>::cast(
   15232       isolate->factory()->NewFixedArray(kCodesStartIndex + 1, TENURED));
   15233   result->set_next_link(*next);
   15234   result->set_flags(GroupField::encode(group) | CountField::encode(1));
   15235   result->set_object_at(0, *object);
   15236   return result;
   15237 }
   15238 
   15239 
   15240 Handle<DependentCode> DependentCode::EnsureSpace(
   15241     Handle<DependentCode> entries) {
   15242   if (entries->Compact()) return entries;
   15243   Isolate* isolate = entries->GetIsolate();
   15244   int capacity = kCodesStartIndex + DependentCode::Grow(entries->count());
   15245   int grow_by = capacity - entries->length();
   15246   return Handle<DependentCode>::cast(
   15247       isolate->factory()->CopyFixedArrayAndGrow(entries, grow_by, TENURED));
   15248 }
   15249 
   15250 
   15251 bool DependentCode::Compact() {
   15252   int old_count = count();
   15253   int new_count = 0;
   15254   for (int i = 0; i < old_count; i++) {
   15255     Object* obj = object_at(i);
   15256     if (!obj->IsWeakCell() || !WeakCell::cast(obj)->cleared()) {
   15257       if (i != new_count) {
   15258         copy(i, new_count);
   15259       }
   15260       new_count++;
   15261     }
   15262   }
   15263   set_count(new_count);
   15264   for (int i = new_count; i < old_count; i++) {
   15265     clear_at(i);
   15266   }
   15267   return new_count < old_count;
   15268 }
   15269 
   15270 
   15271 void DependentCode::UpdateToFinishedCode(DependencyGroup group, Foreign* info,
   15272                                          WeakCell* code_cell) {
   15273   if (this->length() == 0 || this->group() > group) {
   15274     // There is no such group.
   15275     return;
   15276   }
   15277   if (this->group() < group) {
   15278     // The group comes later in the list.
   15279     next_link()->UpdateToFinishedCode(group, info, code_cell);
   15280     return;
   15281   }
   15282   DCHECK_EQ(group, this->group());
   15283   DisallowHeapAllocation no_gc;
   15284   int count = this->count();
   15285   for (int i = 0; i < count; i++) {
   15286     if (object_at(i) == info) {
   15287       set_object_at(i, code_cell);
   15288       break;
   15289     }
   15290   }
   15291 #ifdef DEBUG
   15292   for (int i = 0; i < count; i++) {
   15293     DCHECK(object_at(i) != info);
   15294   }
   15295 #endif
   15296 }
   15297 
   15298 
   15299 void DependentCode::RemoveCompilationDependencies(
   15300     DependentCode::DependencyGroup group, Foreign* info) {
   15301   if (this->length() == 0 || this->group() > group) {
   15302     // There is no such group.
   15303     return;
   15304   }
   15305   if (this->group() < group) {
   15306     // The group comes later in the list.
   15307     next_link()->RemoveCompilationDependencies(group, info);
   15308     return;
   15309   }
   15310   DCHECK_EQ(group, this->group());
   15311   DisallowHeapAllocation no_allocation;
   15312   int old_count = count();
   15313   // Find compilation info wrapper.
   15314   int info_pos = -1;
   15315   for (int i = 0; i < old_count; i++) {
   15316     if (object_at(i) == info) {
   15317       info_pos = i;
   15318       break;
   15319     }
   15320   }
   15321   if (info_pos == -1) return;  // Not found.
   15322   // Use the last code to fill the gap.
   15323   if (info_pos < old_count - 1) {
   15324     copy(old_count - 1, info_pos);
   15325   }
   15326   clear_at(old_count - 1);
   15327   set_count(old_count - 1);
   15328 
   15329 #ifdef DEBUG
   15330   for (int i = 0; i < old_count - 1; i++) {
   15331     DCHECK(object_at(i) != info);
   15332   }
   15333 #endif
   15334 }
   15335 
   15336 
   15337 bool DependentCode::Contains(DependencyGroup group, WeakCell* code_cell) {
   15338   if (this->length() == 0 || this->group() > group) {
   15339     // There is no such group.
   15340     return false;
   15341   }
   15342   if (this->group() < group) {
   15343     // The group comes later in the list.
   15344     return next_link()->Contains(group, code_cell);
   15345   }
   15346   DCHECK_EQ(group, this->group());
   15347   int count = this->count();
   15348   for (int i = 0; i < count; i++) {
   15349     if (object_at(i) == code_cell) return true;
   15350   }
   15351   return false;
   15352 }
   15353 
   15354 
   15355 bool DependentCode::IsEmpty(DependencyGroup group) {
   15356   if (this->length() == 0 || this->group() > group) {
   15357     // There is no such group.
   15358     return true;
   15359   }
   15360   if (this->group() < group) {
   15361     // The group comes later in the list.
   15362     return next_link()->IsEmpty(group);
   15363   }
   15364   DCHECK_EQ(group, this->group());
   15365   return count() == 0;
   15366 }
   15367 
   15368 
   15369 bool DependentCode::MarkCodeForDeoptimization(
   15370     Isolate* isolate,
   15371     DependentCode::DependencyGroup group) {
   15372   if (this->length() == 0 || this->group() > group) {
   15373     // There is no such group.
   15374     return false;
   15375   }
   15376   if (this->group() < group) {
   15377     // The group comes later in the list.
   15378     return next_link()->MarkCodeForDeoptimization(isolate, group);
   15379   }
   15380   DCHECK_EQ(group, this->group());
   15381   DisallowHeapAllocation no_allocation_scope;
   15382   // Mark all the code that needs to be deoptimized.
   15383   bool marked = false;
   15384   bool invalidate_embedded_objects = group == kWeakCodeGroup;
   15385   int count = this->count();
   15386   for (int i = 0; i < count; i++) {
   15387     Object* obj = object_at(i);
   15388     if (obj->IsWeakCell()) {
   15389       WeakCell* cell = WeakCell::cast(obj);
   15390       if (cell->cleared()) continue;
   15391       Code* code = Code::cast(cell->value());
   15392       if (!code->marked_for_deoptimization()) {
   15393         SetMarkedForDeoptimization(code, group);
   15394         if (invalidate_embedded_objects) {
   15395           code->InvalidateEmbeddedObjects();
   15396         }
   15397         marked = true;
   15398       }
   15399     } else {
   15400       DCHECK(obj->IsForeign());
   15401       CompilationDependencies* info =
   15402           reinterpret_cast<CompilationDependencies*>(
   15403               Foreign::cast(obj)->foreign_address());
   15404       info->Abort();
   15405     }
   15406   }
   15407   for (int i = 0; i < count; i++) {
   15408     clear_at(i);
   15409   }
   15410   set_count(0);
   15411   return marked;
   15412 }
   15413 
   15414 
   15415 void DependentCode::DeoptimizeDependentCodeGroup(
   15416     Isolate* isolate,
   15417     DependentCode::DependencyGroup group) {
   15418   DCHECK(AllowCodeDependencyChange::IsAllowed());
   15419   DisallowHeapAllocation no_allocation_scope;
   15420   bool marked = MarkCodeForDeoptimization(isolate, group);
   15421   if (marked) Deoptimizer::DeoptimizeMarkedCode(isolate);
   15422 }
   15423 
   15424 
   15425 void DependentCode::SetMarkedForDeoptimization(Code* code,
   15426                                                DependencyGroup group) {
   15427   code->set_marked_for_deoptimization(true);
   15428   if (FLAG_trace_deopt &&
   15429       (code->deoptimization_data() != code->GetHeap()->empty_fixed_array())) {
   15430     DeoptimizationInputData* deopt_data =
   15431         DeoptimizationInputData::cast(code->deoptimization_data());
   15432     CodeTracer::Scope scope(code->GetHeap()->isolate()->GetCodeTracer());
   15433     PrintF(scope.file(), "[marking dependent code 0x%08" V8PRIxPTR
   15434                          " (opt #%d) for deoptimization, reason: %s]\n",
   15435            reinterpret_cast<intptr_t>(code),
   15436            deopt_data->OptimizationId()->value(), DependencyGroupName(group));
   15437   }
   15438 }
   15439 
   15440 
   15441 const char* DependentCode::DependencyGroupName(DependencyGroup group) {
   15442   switch (group) {
   15443     case kWeakCodeGroup:
   15444       return "weak-code";
   15445     case kTransitionGroup:
   15446       return "transition";
   15447     case kPrototypeCheckGroup:
   15448       return "prototype-check";
   15449     case kPropertyCellChangedGroup:
   15450       return "property-cell-changed";
   15451     case kFieldTypeGroup:
   15452       return "field-type";
   15453     case kInitialMapChangedGroup:
   15454       return "initial-map-changed";
   15455     case kAllocationSiteTenuringChangedGroup:
   15456       return "allocation-site-tenuring-changed";
   15457     case kAllocationSiteTransitionChangedGroup:
   15458       return "allocation-site-transition-changed";
   15459   }
   15460   UNREACHABLE();
   15461   return "?";
   15462 }
   15463 
   15464 
   15465 Handle<Map> Map::TransitionToPrototype(Handle<Map> map,
   15466                                        Handle<Object> prototype,
   15467                                        PrototypeOptimizationMode mode) {
   15468   Handle<Map> new_map = TransitionArray::GetPrototypeTransition(map, prototype);
   15469   if (new_map.is_null()) {
   15470     new_map = Copy(map, "TransitionToPrototype");
   15471     TransitionArray::PutPrototypeTransition(map, prototype, new_map);
   15472     Map::SetPrototype(new_map, prototype, mode);
   15473   }
   15474   return new_map;
   15475 }
   15476 
   15477 
   15478 Maybe<bool> JSReceiver::SetPrototype(Handle<JSReceiver> object,
   15479                                      Handle<Object> value, bool from_javascript,
   15480                                      ShouldThrow should_throw) {
   15481   if (object->IsJSProxy()) {
   15482     return JSProxy::SetPrototype(Handle<JSProxy>::cast(object), value,
   15483                                  from_javascript, should_throw);
   15484   }
   15485   return JSObject::SetPrototype(Handle<JSObject>::cast(object), value,
   15486                                 from_javascript, should_throw);
   15487 }
   15488 
   15489 
   15490 // ES6: 9.5.2 [[SetPrototypeOf]] (V)
   15491 // static
   15492 Maybe<bool> JSProxy::SetPrototype(Handle<JSProxy> proxy, Handle<Object> value,
   15493                                   bool from_javascript,
   15494                                   ShouldThrow should_throw) {
   15495   Isolate* isolate = proxy->GetIsolate();
   15496   STACK_CHECK(Nothing<bool>());
   15497   Handle<Name> trap_name = isolate->factory()->setPrototypeOf_string();
   15498   // 1. Assert: Either Type(V) is Object or Type(V) is Null.
   15499   DCHECK(value->IsJSReceiver() || value->IsNull());
   15500   // 2. Let handler be the value of the [[ProxyHandler]] internal slot of O.
   15501   Handle<Object> handler(proxy->handler(), isolate);
   15502   // 3. If handler is null, throw a TypeError exception.
   15503   // 4. Assert: Type(handler) is Object.
   15504   if (proxy->IsRevoked()) {
   15505     isolate->Throw(*isolate->factory()->NewTypeError(
   15506         MessageTemplate::kProxyRevoked, trap_name));
   15507     return Nothing<bool>();
   15508   }
   15509   // 5. Let target be the value of the [[ProxyTarget]] internal slot.
   15510   Handle<JSReceiver> target(proxy->target(), isolate);
   15511   // 6. Let trap be ? GetMethod(handler, "getPrototypeOf").
   15512   Handle<Object> trap;
   15513   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   15514       isolate, trap,
   15515       Object::GetMethod(Handle<JSReceiver>::cast(handler), trap_name),
   15516       Nothing<bool>());
   15517   // 7. If trap is undefined, then return target.[[SetPrototypeOf]]().
   15518   if (trap->IsUndefined()) {
   15519     return JSReceiver::SetPrototype(target, value, from_javascript,
   15520                                     should_throw);
   15521   }
   15522   // 8. Let booleanTrapResult be ToBoolean(? Call(trap, handler, target, V)).
   15523   Handle<Object> argv[] = {target, value};
   15524   Handle<Object> trap_result;
   15525   ASSIGN_RETURN_ON_EXCEPTION_VALUE(
   15526       isolate, trap_result,
   15527       Execution::Call(isolate, trap, handler, arraysize(argv), argv),
   15528       Nothing<bool>());
   15529   bool bool_trap_result = trap_result->BooleanValue();
   15530   // 9. Let extensibleTarget be ? IsExtensible(target).
   15531   Maybe<bool> is_extensible = JSReceiver::IsExtensible(target);
   15532   if (is_extensible.IsNothing()) return Nothing<bool>();
   15533   // 10. If extensibleTarget is true, return booleanTrapResult.
   15534   if (is_extensible.FromJust()) {
   15535     if (bool_trap_result) return Just(true);
   15536     RETURN_FAILURE(
   15537         isolate, should_throw,
   15538         NewTypeError(MessageTemplate::kProxyTrapReturnedFalsish, trap_name));
   15539   }
   15540   // 11. Let targetProto be ? target.[[GetPrototypeOf]]().
   15541   Handle<Object> target_proto;
   15542   ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, target_proto,
   15543                                    Object::GetPrototype(isolate, target),
   15544                                    Nothing<bool>());
   15545   // 12. If booleanTrapResult is true and SameValue(V, targetProto) is false,
   15546   // throw a TypeError exception.
   15547   if (bool_trap_result && !value->SameValue(*target_proto)) {
   15548     isolate->Throw(*isolate->factory()->NewTypeError(
   15549         MessageTemplate::kProxySetPrototypeOfNonExtensible));
   15550     return Nothing<bool>();
   15551   }
   15552   // 13. Return booleanTrapResult.
   15553   if (bool_trap_result) return Just(true);
   15554   RETURN_FAILURE(
   15555       isolate, should_throw,
   15556       NewTypeError(MessageTemplate::kProxyTrapReturnedFalsish, trap_name));
   15557 }
   15558 
   15559 
   15560 Maybe<bool> JSObject::SetPrototype(Handle<JSObject> object,
   15561                                    Handle<Object> value, bool from_javascript,
   15562                                    ShouldThrow should_throw) {
   15563   Isolate* isolate = object->GetIsolate();
   15564 
   15565   const bool observed = from_javascript && object->map()->is_observed();
   15566   Handle<Object> old_value;
   15567   if (observed) {
   15568     ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, old_value,
   15569                                      Object::GetPrototype(isolate, object),
   15570                                      Nothing<bool>());
   15571   }
   15572 
   15573   Maybe<bool> result =
   15574       SetPrototypeUnobserved(object, value, from_javascript, should_throw);
   15575   MAYBE_RETURN(result, Nothing<bool>());
   15576 
   15577   if (result.FromJust() && observed) {
   15578     Handle<Object> new_value;
   15579     ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, new_value,
   15580                                      Object::GetPrototype(isolate, object),
   15581                                      Nothing<bool>());
   15582     if (!new_value->SameValue(*old_value)) {
   15583       RETURN_ON_EXCEPTION_VALUE(
   15584           isolate, JSObject::EnqueueChangeRecord(
   15585                        object, "setPrototype",
   15586                        isolate->factory()->proto_string(), old_value),
   15587           Nothing<bool>());
   15588     }
   15589   }
   15590 
   15591   return result;
   15592 }
   15593 
   15594 
   15595 Maybe<bool> JSObject::SetPrototypeUnobserved(Handle<JSObject> object,
   15596                                              Handle<Object> value,
   15597                                              bool from_javascript,
   15598                                              ShouldThrow should_throw) {
   15599 #ifdef DEBUG
   15600   int size = object->Size();
   15601 #endif
   15602 
   15603   Isolate* isolate = object->GetIsolate();
   15604 
   15605   if (from_javascript) {
   15606     if (object->IsAccessCheckNeeded() &&
   15607         !isolate->MayAccess(handle(isolate->context()), object)) {
   15608       isolate->ReportFailedAccessCheck(object);
   15609       RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>());
   15610       RETURN_FAILURE(isolate, should_throw,
   15611                      NewTypeError(MessageTemplate::kNoAccess));
   15612     }
   15613   } else {
   15614     DCHECK(!object->IsAccessCheckNeeded());
   15615   }
   15616 
   15617   // Strong objects may not have their prototype set via __proto__ or
   15618   // setPrototypeOf.
   15619   if (from_javascript && object->map()->is_strong()) {
   15620     RETURN_FAILURE(isolate, should_throw,
   15621                    NewTypeError(MessageTemplate::kStrongSetProto, object));
   15622   }
   15623   Heap* heap = isolate->heap();
   15624   // Silently ignore the change if value is not a JSObject or null.
   15625   // SpiderMonkey behaves this way.
   15626   if (!value->IsJSReceiver() && !value->IsNull()) return Just(true);
   15627 
   15628   bool dictionary_elements_in_chain =
   15629       object->map()->DictionaryElementsInPrototypeChainOnly();
   15630 
   15631   bool all_extensible = object->map()->is_extensible();
   15632   Handle<JSObject> real_receiver = object;
   15633   if (from_javascript) {
   15634     // Find the first object in the chain whose prototype object is not
   15635     // hidden.
   15636     PrototypeIterator iter(isolate, real_receiver);
   15637     while (!iter.IsAtEnd(PrototypeIterator::END_AT_NON_HIDDEN)) {
   15638       // Casting to JSObject is fine because hidden prototypes are never
   15639       // JSProxies.
   15640       real_receiver = PrototypeIterator::GetCurrent<JSObject>(iter);
   15641       iter.Advance();
   15642       all_extensible = all_extensible && real_receiver->map()->is_extensible();
   15643     }
   15644   }
   15645   Handle<Map> map(real_receiver->map());
   15646 
   15647   // Nothing to do if prototype is already set.
   15648   if (map->prototype() == *value) return Just(true);
   15649 
   15650   // From 8.6.2 Object Internal Methods
   15651   // ...
   15652   // In addition, if [[Extensible]] is false the value of the [[Class]] and
   15653   // [[Prototype]] internal properties of the object may not be modified.
   15654   // ...
   15655   // Implementation specific extensions that modify [[Class]], [[Prototype]]
   15656   // or [[Extensible]] must not violate the invariants defined in the preceding
   15657   // paragraph.
   15658   if (!all_extensible) {
   15659     RETURN_FAILURE(isolate, should_throw,
   15660                    NewTypeError(MessageTemplate::kNonExtensibleProto, object));
   15661   }
   15662 
   15663   // Before we can set the prototype we need to be sure prototype cycles are
   15664   // prevented.  It is sufficient to validate that the receiver is not in the
   15665   // new prototype chain.
   15666   for (PrototypeIterator iter(isolate, *value,
   15667                               PrototypeIterator::START_AT_RECEIVER);
   15668        !iter.IsAtEnd(); iter.Advance()) {
   15669     if (iter.GetCurrent<JSReceiver>() == *object) {
   15670       // Cycle detected.
   15671       RETURN_FAILURE(isolate, should_throw,
   15672                      NewTypeError(MessageTemplate::kCyclicProto));
   15673     }
   15674   }
   15675 
   15676   // Set the new prototype of the object.
   15677 
   15678   isolate->UpdateArrayProtectorOnSetPrototype(real_receiver);
   15679 
   15680   PrototypeOptimizationMode mode =
   15681       from_javascript ? REGULAR_PROTOTYPE : FAST_PROTOTYPE;
   15682   Handle<Map> new_map = Map::TransitionToPrototype(map, value, mode);
   15683   DCHECK(new_map->prototype() == *value);
   15684   JSObject::MigrateToMap(real_receiver, new_map);
   15685 
   15686   if (from_javascript && !dictionary_elements_in_chain &&
   15687       new_map->DictionaryElementsInPrototypeChainOnly()) {
   15688     // If the prototype chain didn't previously have element callbacks, then
   15689     // KeyedStoreICs need to be cleared to ensure any that involve this
   15690     // map go generic.
   15691     TypeFeedbackVector::ClearAllKeyedStoreICs(isolate);
   15692   }
   15693 
   15694   heap->ClearInstanceofCache();
   15695   DCHECK(size == object->Size());
   15696   return Just(true);
   15697 }
   15698 
   15699 
   15700 void JSObject::EnsureCanContainElements(Handle<JSObject> object,
   15701                                         Arguments* args,
   15702                                         uint32_t first_arg,
   15703                                         uint32_t arg_count,
   15704                                         EnsureElementsMode mode) {
   15705   // Elements in |Arguments| are ordered backwards (because they're on the
   15706   // stack), but the method that's called here iterates over them in forward
   15707   // direction.
   15708   return EnsureCanContainElements(
   15709       object, args->arguments() - first_arg - (arg_count - 1), arg_count, mode);
   15710 }
   15711 
   15712 
   15713 ElementsAccessor* JSObject::GetElementsAccessor() {
   15714   return ElementsAccessor::ForKind(GetElementsKind());
   15715 }
   15716 
   15717 
   15718 void JSObject::ValidateElements(Handle<JSObject> object) {
   15719 #ifdef ENABLE_SLOW_DCHECKS
   15720   if (FLAG_enable_slow_asserts) {
   15721     ElementsAccessor* accessor = object->GetElementsAccessor();
   15722     accessor->Validate(object);
   15723   }
   15724 #endif
   15725 }
   15726 
   15727 
   15728 static bool ShouldConvertToSlowElements(JSObject* object, uint32_t capacity,
   15729                                         uint32_t index,
   15730                                         uint32_t* new_capacity) {
   15731   STATIC_ASSERT(JSObject::kMaxUncheckedOldFastElementsLength <=
   15732                 JSObject::kMaxUncheckedFastElementsLength);
   15733   if (index < capacity) {
   15734     *new_capacity = capacity;
   15735     return false;
   15736   }
   15737   if (index - capacity >= JSObject::kMaxGap) return true;
   15738   *new_capacity = JSObject::NewElementsCapacity(index + 1);
   15739   DCHECK_LT(index, *new_capacity);
   15740   if (*new_capacity <= JSObject::kMaxUncheckedOldFastElementsLength ||
   15741       (*new_capacity <= JSObject::kMaxUncheckedFastElementsLength &&
   15742        object->GetHeap()->InNewSpace(object))) {
   15743     return false;
   15744   }
   15745   // If the fast-case backing storage takes up roughly three times as
   15746   // much space (in machine words) as a dictionary backing storage
   15747   // would, the object should have slow elements.
   15748   int used_elements = object->GetFastElementsUsage();
   15749   int dictionary_size = SeededNumberDictionary::ComputeCapacity(used_elements) *
   15750                         SeededNumberDictionary::kEntrySize;
   15751   return 3 * static_cast<uint32_t>(dictionary_size) <= *new_capacity;
   15752 }
   15753 
   15754 
   15755 bool JSObject::WouldConvertToSlowElements(uint32_t index) {
   15756   if (HasFastElements()) {
   15757     Handle<FixedArrayBase> backing_store(FixedArrayBase::cast(elements()));
   15758     uint32_t capacity = static_cast<uint32_t>(backing_store->length());
   15759     uint32_t new_capacity;
   15760     return ShouldConvertToSlowElements(this, capacity, index, &new_capacity);
   15761   }
   15762   return false;
   15763 }
   15764 
   15765 
   15766 static ElementsKind BestFittingFastElementsKind(JSObject* object) {
   15767   if (object->HasSloppyArgumentsElements()) {
   15768     return FAST_SLOPPY_ARGUMENTS_ELEMENTS;
   15769   }
   15770   DCHECK(object->HasDictionaryElements());
   15771   SeededNumberDictionary* dictionary = object->element_dictionary();
   15772   ElementsKind kind = FAST_HOLEY_SMI_ELEMENTS;
   15773   for (int i = 0; i < dictionary->Capacity(); i++) {
   15774     Object* key = dictionary->KeyAt(i);
   15775     if (key->IsNumber()) {
   15776       Object* value = dictionary->ValueAt(i);
   15777       if (!value->IsNumber()) return FAST_HOLEY_ELEMENTS;
   15778       if (!value->IsSmi()) {
   15779         if (!FLAG_unbox_double_arrays) return FAST_HOLEY_ELEMENTS;
   15780         kind = FAST_HOLEY_DOUBLE_ELEMENTS;
   15781       }
   15782     }
   15783   }
   15784   return kind;
   15785 }
   15786 
   15787 
   15788 static bool ShouldConvertToFastElements(JSObject* object,
   15789                                         SeededNumberDictionary* dictionary,
   15790                                         uint32_t index,
   15791                                         uint32_t* new_capacity) {
   15792   // If properties with non-standard attributes or accessors were added, we
   15793   // cannot go back to fast elements.
   15794   if (dictionary->requires_slow_elements()) return false;
   15795 
   15796   // Adding a property with this index will require slow elements.
   15797   if (index >= static_cast<uint32_t>(Smi::kMaxValue)) return false;
   15798 
   15799   if (object->IsJSArray()) {
   15800     Object* length = JSArray::cast(object)->length();
   15801     if (!length->IsSmi()) return false;
   15802     *new_capacity = static_cast<uint32_t>(Smi::cast(length)->value());
   15803   } else {
   15804     *new_capacity = dictionary->max_number_key() + 1;
   15805   }
   15806   *new_capacity = Max(index + 1, *new_capacity);
   15807 
   15808   uint32_t dictionary_size = static_cast<uint32_t>(dictionary->Capacity()) *
   15809                              SeededNumberDictionary::kEntrySize;
   15810 
   15811   // Turn fast if the dictionary only saves 50% space.
   15812   return 2 * dictionary_size >= *new_capacity;
   15813 }
   15814 
   15815 
   15816 // static
   15817 MaybeHandle<Object> JSObject::AddDataElement(Handle<JSObject> object,
   15818                                              uint32_t index,
   15819                                              Handle<Object> value,
   15820                                              PropertyAttributes attributes) {
   15821   MAYBE_RETURN_NULL(
   15822       AddDataElement(object, index, value, attributes, THROW_ON_ERROR));
   15823   return value;
   15824 }
   15825 
   15826 
   15827 // static
   15828 Maybe<bool> JSObject::AddDataElement(Handle<JSObject> object, uint32_t index,
   15829                                      Handle<Object> value,
   15830                                      PropertyAttributes attributes,
   15831                                      ShouldThrow should_throw) {
   15832   DCHECK(object->map()->is_extensible());
   15833 
   15834   Isolate* isolate = object->GetIsolate();
   15835 
   15836   uint32_t old_length = 0;
   15837   uint32_t new_capacity = 0;
   15838 
   15839   Handle<Object> old_length_handle;
   15840   if (object->IsJSArray()) {
   15841     CHECK(JSArray::cast(*object)->length()->ToArrayLength(&old_length));
   15842     if (object->map()->is_observed()) {
   15843       old_length_handle = handle(JSArray::cast(*object)->length(), isolate);
   15844     }
   15845   }
   15846 
   15847   ElementsKind kind = object->GetElementsKind();
   15848   FixedArrayBase* elements = object->elements();
   15849   ElementsKind dictionary_kind = DICTIONARY_ELEMENTS;
   15850   if (IsSloppyArgumentsElements(kind)) {
   15851     elements = FixedArrayBase::cast(FixedArray::cast(elements)->get(1));
   15852     dictionary_kind = SLOW_SLOPPY_ARGUMENTS_ELEMENTS;
   15853   }
   15854 
   15855   if (attributes != NONE) {
   15856     kind = dictionary_kind;
   15857   } else if (elements->IsSeededNumberDictionary()) {
   15858     kind = ShouldConvertToFastElements(*object,
   15859                                        SeededNumberDictionary::cast(elements),
   15860                                        index, &new_capacity)
   15861                ? BestFittingFastElementsKind(*object)
   15862                : dictionary_kind;  // Overwrite in case of arguments.
   15863   } else if (ShouldConvertToSlowElements(
   15864                  *object, static_cast<uint32_t>(elements->length()), index,
   15865                  &new_capacity)) {
   15866     kind = dictionary_kind;
   15867   }
   15868 
   15869   ElementsKind to = value->OptimalElementsKind();
   15870   if (IsHoleyElementsKind(kind) || !object->IsJSArray() || index > old_length) {
   15871     to = GetHoleyElementsKind(to);
   15872     kind = GetHoleyElementsKind(kind);
   15873   }
   15874   to = GetMoreGeneralElementsKind(kind, to);
   15875   ElementsAccessor* accessor = ElementsAccessor::ForKind(to);
   15876   accessor->Add(object, index, value, attributes, new_capacity);
   15877 
   15878   uint32_t new_length = old_length;
   15879   Handle<Object> new_length_handle;
   15880   if (object->IsJSArray() && index >= old_length) {
   15881     new_length = index + 1;
   15882     new_length_handle = isolate->factory()->NewNumberFromUint(new_length);
   15883     JSArray::cast(*object)->set_length(*new_length_handle);
   15884   }
   15885 
   15886   if (!old_length_handle.is_null() && new_length != old_length) {
   15887     // |old_length_handle| is kept null above unless the object is observed.
   15888     DCHECK(object->map()->is_observed());
   15889     Handle<JSArray> array = Handle<JSArray>::cast(object);
   15890     Handle<String> name = isolate->factory()->Uint32ToString(index);
   15891 
   15892     RETURN_ON_EXCEPTION_VALUE(isolate, BeginPerformSplice(array),
   15893                               Nothing<bool>());
   15894     RETURN_ON_EXCEPTION_VALUE(
   15895         isolate, EnqueueChangeRecord(array, "add", name,
   15896                                      isolate->factory()->the_hole_value()),
   15897         Nothing<bool>());
   15898     RETURN_ON_EXCEPTION_VALUE(
   15899         isolate, EnqueueChangeRecord(array, "update",
   15900                                      isolate->factory()->length_string(),
   15901                                      old_length_handle),
   15902         Nothing<bool>());
   15903     RETURN_ON_EXCEPTION_VALUE(isolate, EndPerformSplice(array),
   15904                               Nothing<bool>());
   15905     Handle<JSArray> deleted = isolate->factory()->NewJSArray(0);
   15906     RETURN_ON_EXCEPTION_VALUE(isolate,
   15907                               EnqueueSpliceRecord(array, old_length, deleted,
   15908                                                   new_length - old_length),
   15909                               Nothing<bool>());
   15910   } else if (object->map()->is_observed()) {
   15911     Handle<String> name = isolate->factory()->Uint32ToString(index);
   15912     RETURN_ON_EXCEPTION_VALUE(
   15913         isolate, EnqueueChangeRecord(object, "add", name,
   15914                                      isolate->factory()->the_hole_value()),
   15915         Nothing<bool>());
   15916   }
   15917 
   15918   return Just(true);
   15919 }
   15920 
   15921 
   15922 bool JSArray::SetLengthWouldNormalize(uint32_t new_length) {
   15923   if (!HasFastElements()) return false;
   15924   uint32_t capacity = static_cast<uint32_t>(elements()->length());
   15925   uint32_t new_capacity;
   15926   return JSArray::SetLengthWouldNormalize(GetHeap(), new_length) &&
   15927          ShouldConvertToSlowElements(this, capacity, new_length - 1,
   15928                                      &new_capacity);
   15929 }
   15930 
   15931 
   15932 const double AllocationSite::kPretenureRatio = 0.85;
   15933 
   15934 
   15935 void AllocationSite::ResetPretenureDecision() {
   15936   set_pretenure_decision(kUndecided);
   15937   set_memento_found_count(0);
   15938   set_memento_create_count(0);
   15939 }
   15940 
   15941 
   15942 PretenureFlag AllocationSite::GetPretenureMode() {
   15943   PretenureDecision mode = pretenure_decision();
   15944   // Zombie objects "decide" to be untenured.
   15945   return mode == kTenure ? TENURED : NOT_TENURED;
   15946 }
   15947 
   15948 
   15949 bool AllocationSite::IsNestedSite() {
   15950   DCHECK(FLAG_trace_track_allocation_sites);
   15951   Object* current = GetHeap()->allocation_sites_list();
   15952   while (current->IsAllocationSite()) {
   15953     AllocationSite* current_site = AllocationSite::cast(current);
   15954     if (current_site->nested_site() == this) {
   15955       return true;
   15956     }
   15957     current = current_site->weak_next();
   15958   }
   15959   return false;
   15960 }
   15961 
   15962 
   15963 void AllocationSite::DigestTransitionFeedback(Handle<AllocationSite> site,
   15964                                               ElementsKind to_kind) {
   15965   Isolate* isolate = site->GetIsolate();
   15966 
   15967   if (site->SitePointsToLiteral() && site->transition_info()->IsJSArray()) {
   15968     Handle<JSArray> transition_info =
   15969         handle(JSArray::cast(site->transition_info()));
   15970     ElementsKind kind = transition_info->GetElementsKind();
   15971     // if kind is holey ensure that to_kind is as well.
   15972     if (IsHoleyElementsKind(kind)) {
   15973       to_kind = GetHoleyElementsKind(to_kind);
   15974     }
   15975     if (IsMoreGeneralElementsKindTransition(kind, to_kind)) {
   15976       // If the array is huge, it's not likely to be defined in a local
   15977       // function, so we shouldn't make new instances of it very often.
   15978       uint32_t length = 0;
   15979       CHECK(transition_info->length()->ToArrayLength(&length));
   15980       if (length <= kMaximumArrayBytesToPretransition) {
   15981         if (FLAG_trace_track_allocation_sites) {
   15982           bool is_nested = site->IsNestedSite();
   15983           PrintF(
   15984               "AllocationSite: JSArray %p boilerplate %s updated %s->%s\n",
   15985               reinterpret_cast<void*>(*site),
   15986               is_nested ? "(nested)" : "",
   15987               ElementsKindToString(kind),
   15988               ElementsKindToString(to_kind));
   15989         }
   15990         JSObject::TransitionElementsKind(transition_info, to_kind);
   15991         site->dependent_code()->DeoptimizeDependentCodeGroup(
   15992             isolate, DependentCode::kAllocationSiteTransitionChangedGroup);
   15993       }
   15994     }
   15995   } else {
   15996     ElementsKind kind = site->GetElementsKind();
   15997     // if kind is holey ensure that to_kind is as well.
   15998     if (IsHoleyElementsKind(kind)) {
   15999       to_kind = GetHoleyElementsKind(to_kind);
   16000     }
   16001     if (IsMoreGeneralElementsKindTransition(kind, to_kind)) {
   16002       if (FLAG_trace_track_allocation_sites) {
   16003         PrintF("AllocationSite: JSArray %p site updated %s->%s\n",
   16004                reinterpret_cast<void*>(*site),
   16005                ElementsKindToString(kind),
   16006                ElementsKindToString(to_kind));
   16007       }
   16008       site->SetElementsKind(to_kind);
   16009       site->dependent_code()->DeoptimizeDependentCodeGroup(
   16010           isolate, DependentCode::kAllocationSiteTransitionChangedGroup);
   16011     }
   16012   }
   16013 }
   16014 
   16015 
   16016 const char* AllocationSite::PretenureDecisionName(PretenureDecision decision) {
   16017   switch (decision) {
   16018     case kUndecided: return "undecided";
   16019     case kDontTenure: return "don't tenure";
   16020     case kMaybeTenure: return "maybe tenure";
   16021     case kTenure: return "tenure";
   16022     case kZombie: return "zombie";
   16023     default: UNREACHABLE();
   16024   }
   16025   return NULL;
   16026 }
   16027 
   16028 
   16029 void JSObject::UpdateAllocationSite(Handle<JSObject> object,
   16030                                     ElementsKind to_kind) {
   16031   if (!object->IsJSArray()) return;
   16032 
   16033   Heap* heap = object->GetHeap();
   16034   if (!heap->InNewSpace(*object)) return;
   16035 
   16036   Handle<AllocationSite> site;
   16037   {
   16038     DisallowHeapAllocation no_allocation;
   16039 
   16040     AllocationMemento* memento = heap->FindAllocationMemento(*object);
   16041     if (memento == NULL) return;
   16042 
   16043     // Walk through to the Allocation Site
   16044     site = handle(memento->GetAllocationSite());
   16045   }
   16046   AllocationSite::DigestTransitionFeedback(site, to_kind);
   16047 }
   16048 
   16049 
   16050 void JSObject::TransitionElementsKind(Handle<JSObject> object,
   16051                                       ElementsKind to_kind) {
   16052   ElementsKind from_kind = object->GetElementsKind();
   16053 
   16054   if (IsFastHoleyElementsKind(from_kind)) {
   16055     to_kind = GetHoleyElementsKind(to_kind);
   16056   }
   16057 
   16058   if (from_kind == to_kind) return;
   16059 
   16060   // This method should never be called for any other case.
   16061   DCHECK(IsFastElementsKind(from_kind));
   16062   DCHECK(IsFastElementsKind(to_kind));
   16063   DCHECK_NE(TERMINAL_FAST_ELEMENTS_KIND, from_kind);
   16064 
   16065   UpdateAllocationSite(object, to_kind);
   16066   if (object->elements() == object->GetHeap()->empty_fixed_array() ||
   16067       IsFastDoubleElementsKind(from_kind) ==
   16068           IsFastDoubleElementsKind(to_kind)) {
   16069     // No change is needed to the elements() buffer, the transition
   16070     // only requires a map change.
   16071     Handle<Map> new_map = GetElementsTransitionMap(object, to_kind);
   16072     MigrateToMap(object, new_map);
   16073     if (FLAG_trace_elements_transitions) {
   16074       Handle<FixedArrayBase> elms(object->elements());
   16075       PrintElementsTransition(stdout, object, from_kind, elms, to_kind, elms);
   16076     }
   16077   } else {
   16078     DCHECK((IsFastSmiElementsKind(from_kind) &&
   16079             IsFastDoubleElementsKind(to_kind)) ||
   16080            (IsFastDoubleElementsKind(from_kind) &&
   16081             IsFastObjectElementsKind(to_kind)));
   16082     uint32_t c = static_cast<uint32_t>(object->elements()->length());
   16083     ElementsAccessor::ForKind(to_kind)->GrowCapacityAndConvert(object, c);
   16084   }
   16085 }
   16086 
   16087 
   16088 // static
   16089 bool Map::IsValidElementsTransition(ElementsKind from_kind,
   16090                                     ElementsKind to_kind) {
   16091   // Transitions can't go backwards.
   16092   if (!IsMoreGeneralElementsKindTransition(from_kind, to_kind)) {
   16093     return false;
   16094   }
   16095 
   16096   // Transitions from HOLEY -> PACKED are not allowed.
   16097   return !IsFastHoleyElementsKind(from_kind) ||
   16098       IsFastHoleyElementsKind(to_kind);
   16099 }
   16100 
   16101 
   16102 bool JSArray::HasReadOnlyLength(Handle<JSArray> array) {
   16103   LookupIterator it(array, array->GetIsolate()->factory()->length_string(),
   16104                     LookupIterator::OWN_SKIP_INTERCEPTOR);
   16105   CHECK_NE(LookupIterator::ACCESS_CHECK, it.state());
   16106   CHECK(it.IsFound());
   16107   CHECK_EQ(LookupIterator::ACCESSOR, it.state());
   16108   return it.IsReadOnly();
   16109 }
   16110 
   16111 
   16112 bool JSArray::WouldChangeReadOnlyLength(Handle<JSArray> array,
   16113                                         uint32_t index) {
   16114   uint32_t length = 0;
   16115   CHECK(array->length()->ToArrayLength(&length));
   16116   if (length <= index) return HasReadOnlyLength(array);
   16117   return false;
   16118 }
   16119 
   16120 
   16121 template <typename BackingStore>
   16122 static int FastHoleyElementsUsage(JSObject* object, BackingStore* store) {
   16123   int limit = object->IsJSArray()
   16124                   ? Smi::cast(JSArray::cast(object)->length())->value()
   16125                   : store->length();
   16126   int used = 0;
   16127   for (int i = 0; i < limit; ++i) {
   16128     if (!store->is_the_hole(i)) ++used;
   16129   }
   16130   return used;
   16131 }
   16132 
   16133 
   16134 int JSObject::GetFastElementsUsage() {
   16135   FixedArrayBase* store = elements();
   16136   switch (GetElementsKind()) {
   16137     case FAST_SMI_ELEMENTS:
   16138     case FAST_DOUBLE_ELEMENTS:
   16139     case FAST_ELEMENTS:
   16140       return IsJSArray() ? Smi::cast(JSArray::cast(this)->length())->value()
   16141                          : store->length();
   16142     case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
   16143       store = FixedArray::cast(FixedArray::cast(store)->get(1));
   16144     // Fall through.
   16145     case FAST_HOLEY_SMI_ELEMENTS:
   16146     case FAST_HOLEY_ELEMENTS:
   16147       return FastHoleyElementsUsage(this, FixedArray::cast(store));
   16148     case FAST_HOLEY_DOUBLE_ELEMENTS:
   16149       if (elements()->length() == 0) return 0;
   16150       return FastHoleyElementsUsage(this, FixedDoubleArray::cast(store));
   16151 
   16152     case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
   16153     case DICTIONARY_ELEMENTS:
   16154 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size)                      \
   16155     case TYPE##_ELEMENTS:                                                    \
   16156 
   16157     TYPED_ARRAYS(TYPED_ARRAY_CASE)
   16158 #undef TYPED_ARRAY_CASE
   16159     UNREACHABLE();
   16160   }
   16161   return 0;
   16162 }
   16163 
   16164 
   16165 // Certain compilers request function template instantiation when they
   16166 // see the definition of the other template functions in the
   16167 // class. This requires us to have the template functions put
   16168 // together, so even though this function belongs in objects-debug.cc,
   16169 // we keep it here instead to satisfy certain compilers.
   16170 #ifdef OBJECT_PRINT
   16171 template <typename Derived, typename Shape, typename Key>
   16172 void Dictionary<Derived, Shape, Key>::Print(std::ostream& os) {  // NOLINT
   16173   int capacity = this->Capacity();
   16174   for (int i = 0; i < capacity; i++) {
   16175     Object* k = this->KeyAt(i);
   16176     if (this->IsKey(k)) {
   16177       os << "\n   ";
   16178       if (k->IsString()) {
   16179         String::cast(k)->StringPrint(os);
   16180       } else {
   16181         os << Brief(k);
   16182       }
   16183       os << ": " << Brief(this->ValueAt(i)) << " " << this->DetailsAt(i);
   16184     }
   16185   }
   16186 }
   16187 #endif
   16188 
   16189 
   16190 template<typename Derived, typename Shape, typename Key>
   16191 void Dictionary<Derived, Shape, Key>::CopyValuesTo(FixedArray* elements) {
   16192   int pos = 0;
   16193   int capacity = this->Capacity();
   16194   DisallowHeapAllocation no_gc;
   16195   WriteBarrierMode mode = elements->GetWriteBarrierMode(no_gc);
   16196   for (int i = 0; i < capacity; i++) {
   16197     Object* k = this->KeyAt(i);
   16198     if (this->IsKey(k)) {
   16199       elements->set(pos++, this->ValueAt(i), mode);
   16200     }
   16201   }
   16202   DCHECK(pos == elements->length());
   16203 }
   16204 
   16205 
   16206 InterceptorInfo* JSObject::GetNamedInterceptor() {
   16207   DCHECK(map()->has_named_interceptor());
   16208   JSFunction* constructor = JSFunction::cast(map()->GetConstructor());
   16209   DCHECK(constructor->shared()->IsApiFunction());
   16210   Object* result =
   16211       constructor->shared()->get_api_func_data()->named_property_handler();
   16212   return InterceptorInfo::cast(result);
   16213 }
   16214 
   16215 
   16216 MaybeHandle<Object> JSObject::GetPropertyWithInterceptor(LookupIterator* it,
   16217                                                          bool* done) {
   16218   *done = false;
   16219   Isolate* isolate = it->isolate();
   16220   // Make sure that the top context does not change when doing callbacks or
   16221   // interceptor calls.
   16222   AssertNoContextChange ncc(isolate);
   16223 
   16224   DCHECK_EQ(LookupIterator::INTERCEPTOR, it->state());
   16225   Handle<InterceptorInfo> interceptor = it->GetInterceptor();
   16226   if (interceptor->getter()->IsUndefined()) {
   16227     return isolate->factory()->undefined_value();
   16228   }
   16229 
   16230   Handle<JSObject> holder = it->GetHolder<JSObject>();
   16231   v8::Local<v8::Value> result;
   16232   PropertyCallbackArguments args(isolate, interceptor->data(),
   16233                                  *it->GetReceiver(), *holder);
   16234 
   16235   if (it->IsElement()) {
   16236     uint32_t index = it->index();
   16237     v8::IndexedPropertyGetterCallback getter =
   16238         v8::ToCData<v8::IndexedPropertyGetterCallback>(interceptor->getter());
   16239     LOG(isolate,
   16240         ApiIndexedPropertyAccess("interceptor-indexed-get", *holder, index));
   16241     result = args.Call(getter, index);
   16242   } else {
   16243     Handle<Name> name = it->name();
   16244     DCHECK(!name->IsPrivate());
   16245 
   16246     if (name->IsSymbol() && !interceptor->can_intercept_symbols()) {
   16247       return isolate->factory()->undefined_value();
   16248     }
   16249 
   16250     v8::GenericNamedPropertyGetterCallback getter =
   16251         v8::ToCData<v8::GenericNamedPropertyGetterCallback>(
   16252             interceptor->getter());
   16253     LOG(isolate,
   16254         ApiNamedPropertyAccess("interceptor-named-get", *holder, *name));
   16255     result = args.Call(getter, v8::Utils::ToLocal(name));
   16256   }
   16257 
   16258   RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object);
   16259   if (result.IsEmpty()) return isolate->factory()->undefined_value();
   16260   Handle<Object> result_internal = v8::Utils::OpenHandle(*result);
   16261   result_internal->VerifyApiCallResultType();
   16262   *done = true;
   16263   // Rebox handle before return
   16264   return handle(*result_internal, isolate);
   16265 }
   16266 
   16267 
   16268 Maybe<bool> JSObject::HasRealNamedProperty(Handle<JSObject> object,
   16269                                            Handle<Name> name) {
   16270   LookupIterator it = LookupIterator::PropertyOrElement(
   16271       name->GetIsolate(), object, name, LookupIterator::OWN_SKIP_INTERCEPTOR);
   16272   return HasProperty(&it);
   16273 }
   16274 
   16275 
   16276 Maybe<bool> JSObject::HasRealElementProperty(Handle<JSObject> object,
   16277                                              uint32_t index) {
   16278   Isolate* isolate = object->GetIsolate();
   16279   LookupIterator it(isolate, object, index,
   16280                     LookupIterator::OWN_SKIP_INTERCEPTOR);
   16281   return HasProperty(&it);
   16282 }
   16283 
   16284 
   16285 Maybe<bool> JSObject::HasRealNamedCallbackProperty(Handle<JSObject> object,
   16286                                                    Handle<Name> name) {
   16287   LookupIterator it = LookupIterator::PropertyOrElement(
   16288       name->GetIsolate(), object, name, LookupIterator::OWN_SKIP_INTERCEPTOR);
   16289   Maybe<PropertyAttributes> maybe_result = GetPropertyAttributes(&it);
   16290   return maybe_result.IsJust() ? Just(it.state() == LookupIterator::ACCESSOR)
   16291                                : Nothing<bool>();
   16292 }
   16293 
   16294 
   16295 void FixedArray::SwapPairs(FixedArray* numbers, int i, int j) {
   16296   Object* temp = get(i);
   16297   set(i, get(j));
   16298   set(j, temp);
   16299   if (this != numbers) {
   16300     temp = numbers->get(i);
   16301     numbers->set(i, Smi::cast(numbers->get(j)));
   16302     numbers->set(j, Smi::cast(temp));
   16303   }
   16304 }
   16305 
   16306 
   16307 static void InsertionSortPairs(FixedArray* content,
   16308                                FixedArray* numbers,
   16309                                int len) {
   16310   for (int i = 1; i < len; i++) {
   16311     int j = i;
   16312     while (j > 0 &&
   16313            (NumberToUint32(numbers->get(j - 1)) >
   16314             NumberToUint32(numbers->get(j)))) {
   16315       content->SwapPairs(numbers, j - 1, j);
   16316       j--;
   16317     }
   16318   }
   16319 }
   16320 
   16321 
   16322 void HeapSortPairs(FixedArray* content, FixedArray* numbers, int len) {
   16323   // In-place heap sort.
   16324   DCHECK(content->length() == numbers->length());
   16325 
   16326   // Bottom-up max-heap construction.
   16327   for (int i = 1; i < len; ++i) {
   16328     int child_index = i;
   16329     while (child_index > 0) {
   16330       int parent_index = ((child_index + 1) >> 1) - 1;
   16331       uint32_t parent_value = NumberToUint32(numbers->get(parent_index));
   16332       uint32_t child_value = NumberToUint32(numbers->get(child_index));
   16333       if (parent_value < child_value) {
   16334         content->SwapPairs(numbers, parent_index, child_index);
   16335       } else {
   16336         break;
   16337       }
   16338       child_index = parent_index;
   16339     }
   16340   }
   16341 
   16342   // Extract elements and create sorted array.
   16343   for (int i = len - 1; i > 0; --i) {
   16344     // Put max element at the back of the array.
   16345     content->SwapPairs(numbers, 0, i);
   16346     // Sift down the new top element.
   16347     int parent_index = 0;
   16348     while (true) {
   16349       int child_index = ((parent_index + 1) << 1) - 1;
   16350       if (child_index >= i) break;
   16351       uint32_t child1_value = NumberToUint32(numbers->get(child_index));
   16352       uint32_t child2_value = NumberToUint32(numbers->get(child_index + 1));
   16353       uint32_t parent_value = NumberToUint32(numbers->get(parent_index));
   16354       if (child_index + 1 >= i || child1_value > child2_value) {
   16355         if (parent_value > child1_value) break;
   16356         content->SwapPairs(numbers, parent_index, child_index);
   16357         parent_index = child_index;
   16358       } else {
   16359         if (parent_value > child2_value) break;
   16360         content->SwapPairs(numbers, parent_index, child_index + 1);
   16361         parent_index = child_index + 1;
   16362       }
   16363     }
   16364   }
   16365 }
   16366 
   16367 
   16368 // Sort this array and the numbers as pairs wrt. the (distinct) numbers.
   16369 void FixedArray::SortPairs(FixedArray* numbers, uint32_t len) {
   16370   DCHECK(this->length() == numbers->length());
   16371   // For small arrays, simply use insertion sort.
   16372   if (len <= 10) {
   16373     InsertionSortPairs(this, numbers, len);
   16374     return;
   16375   }
   16376   // Check the range of indices.
   16377   uint32_t min_index = NumberToUint32(numbers->get(0));
   16378   uint32_t max_index = min_index;
   16379   uint32_t i;
   16380   for (i = 1; i < len; i++) {
   16381     if (NumberToUint32(numbers->get(i)) < min_index) {
   16382       min_index = NumberToUint32(numbers->get(i));
   16383     } else if (NumberToUint32(numbers->get(i)) > max_index) {
   16384       max_index = NumberToUint32(numbers->get(i));
   16385     }
   16386   }
   16387   if (max_index - min_index + 1 == len) {
   16388     // Indices form a contiguous range, unless there are duplicates.
   16389     // Do an in-place linear time sort assuming distinct numbers, but
   16390     // avoid hanging in case they are not.
   16391     for (i = 0; i < len; i++) {
   16392       uint32_t p;
   16393       uint32_t j = 0;
   16394       // While the current element at i is not at its correct position p,
   16395       // swap the elements at these two positions.
   16396       while ((p = NumberToUint32(numbers->get(i)) - min_index) != i &&
   16397              j++ < len) {
   16398         SwapPairs(numbers, i, p);
   16399       }
   16400     }
   16401   } else {
   16402     HeapSortPairs(this, numbers, len);
   16403     return;
   16404   }
   16405 }
   16406 
   16407 
   16408 void JSObject::CollectOwnPropertyNames(KeyAccumulator* keys,
   16409                                        PropertyFilter filter) {
   16410   if (HasFastProperties()) {
   16411     int real_size = map()->NumberOfOwnDescriptors();
   16412     Handle<DescriptorArray> descs(map()->instance_descriptors());
   16413     for (int i = 0; i < real_size; i++) {
   16414       PropertyDetails details = descs->GetDetails(i);
   16415       if ((details.attributes() & filter) != 0) continue;
   16416       if (filter & ONLY_ALL_CAN_READ) {
   16417         if (details.kind() != kAccessor) continue;
   16418         Object* accessors = descs->GetValue(i);
   16419         if (!accessors->IsAccessorInfo()) continue;
   16420         if (!AccessorInfo::cast(accessors)->all_can_read()) continue;
   16421       }
   16422       Name* key = descs->GetKey(i);
   16423       if (key->FilterKey(filter)) continue;
   16424       keys->AddKey(key);
   16425     }
   16426   } else if (IsJSGlobalObject()) {
   16427     GlobalDictionary::CollectKeysTo(handle(global_dictionary()), keys, filter);
   16428   } else {
   16429     NameDictionary::CollectKeysTo(handle(property_dictionary()), keys, filter);
   16430   }
   16431 }
   16432 
   16433 
   16434 int JSObject::NumberOfOwnElements(PropertyFilter filter) {
   16435   // Fast case for objects with no elements.
   16436   if (!IsJSValue() && HasFastElements()) {
   16437     uint32_t length =
   16438         IsJSArray()
   16439             ? static_cast<uint32_t>(
   16440                   Smi::cast(JSArray::cast(this)->length())->value())
   16441             : static_cast<uint32_t>(FixedArrayBase::cast(elements())->length());
   16442     if (length == 0) return 0;
   16443   }
   16444   // Compute the number of enumerable elements.
   16445   return GetOwnElementKeys(NULL, filter);
   16446 }
   16447 
   16448 
   16449 void JSObject::CollectOwnElementKeys(Handle<JSObject> object,
   16450                                      KeyAccumulator* keys,
   16451                                      PropertyFilter filter) {
   16452   if (filter & SKIP_STRINGS) return;
   16453   uint32_t string_keys = 0;
   16454 
   16455   // If this is a String wrapper, add the string indices first,
   16456   // as they're guaranteed to precede the elements in numerical order
   16457   // and ascending order is required by ECMA-262, 6th, 9.1.12.
   16458   if (object->IsJSValue()) {
   16459     Object* val = JSValue::cast(*object)->value();
   16460     if (val->IsString() && (filter & ONLY_ALL_CAN_READ) == 0) {
   16461       String* str = String::cast(val);
   16462       string_keys = str->length();
   16463       for (uint32_t i = 0; i < string_keys; i++) {
   16464         keys->AddKey(i);
   16465       }
   16466     }
   16467   }
   16468   ElementsAccessor* accessor = object->GetElementsAccessor();
   16469   accessor->CollectElementIndices(object, keys, kMaxUInt32, filter, 0);
   16470 }
   16471 
   16472 
   16473 int JSObject::GetOwnElementKeys(FixedArray* storage, PropertyFilter filter) {
   16474   int counter = 0;
   16475 
   16476   // If this is a String wrapper, add the string indices first,
   16477   // as they're guaranteed to precede the elements in numerical order
   16478   // and ascending order is required by ECMA-262, 6th, 9.1.12.
   16479   if (IsJSValue()) {
   16480     Object* val = JSValue::cast(this)->value();
   16481     if (val->IsString()) {
   16482       String* str = String::cast(val);
   16483       if (storage) {
   16484         for (int i = 0; i < str->length(); i++) {
   16485           storage->set(counter + i, Smi::FromInt(i));
   16486         }
   16487       }
   16488       counter += str->length();
   16489     }
   16490   }
   16491 
   16492   switch (GetElementsKind()) {
   16493     case FAST_SMI_ELEMENTS:
   16494     case FAST_ELEMENTS:
   16495     case FAST_HOLEY_SMI_ELEMENTS:
   16496     case FAST_HOLEY_ELEMENTS: {
   16497       int length = IsJSArray() ?
   16498           Smi::cast(JSArray::cast(this)->length())->value() :
   16499           FixedArray::cast(elements())->length();
   16500       for (int i = 0; i < length; i++) {
   16501         if (!FixedArray::cast(elements())->get(i)->IsTheHole()) {
   16502           if (storage != NULL) {
   16503             storage->set(counter, Smi::FromInt(i));
   16504           }
   16505           counter++;
   16506         }
   16507       }
   16508       DCHECK(!storage || storage->length() >= counter);
   16509       break;
   16510     }
   16511     case FAST_DOUBLE_ELEMENTS:
   16512     case FAST_HOLEY_DOUBLE_ELEMENTS: {
   16513       int length = IsJSArray() ?
   16514           Smi::cast(JSArray::cast(this)->length())->value() :
   16515           FixedArrayBase::cast(elements())->length();
   16516       for (int i = 0; i < length; i++) {
   16517         if (!FixedDoubleArray::cast(elements())->is_the_hole(i)) {
   16518           if (storage != NULL) {
   16519             storage->set(counter, Smi::FromInt(i));
   16520           }
   16521           counter++;
   16522         }
   16523       }
   16524       DCHECK(!storage || storage->length() >= counter);
   16525       break;
   16526     }
   16527 
   16528 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size)                      \
   16529     case TYPE##_ELEMENTS:                                                    \
   16530 
   16531     TYPED_ARRAYS(TYPED_ARRAY_CASE)
   16532 #undef TYPED_ARRAY_CASE
   16533     {
   16534       int length = FixedArrayBase::cast(elements())->length();
   16535       while (counter < length) {
   16536         if (storage != NULL) {
   16537           storage->set(counter, Smi::FromInt(counter));
   16538         }
   16539         counter++;
   16540       }
   16541       DCHECK(!storage || storage->length() >= counter);
   16542       break;
   16543     }
   16544 
   16545     case DICTIONARY_ELEMENTS: {
   16546       if (storage != NULL) {
   16547         element_dictionary()->CopyKeysTo(storage, counter, filter,
   16548                                          SeededNumberDictionary::SORTED);
   16549       }
   16550       counter += element_dictionary()->NumberOfElementsFilterAttributes(filter);
   16551       break;
   16552     }
   16553     case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
   16554     case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: {
   16555       FixedArray* parameter_map = FixedArray::cast(elements());
   16556       int mapped_length = parameter_map->length() - 2;
   16557       FixedArray* arguments = FixedArray::cast(parameter_map->get(1));
   16558       if (arguments->IsDictionary()) {
   16559         // Copy the keys from arguments first, because Dictionary::CopyKeysTo
   16560         // will insert in storage starting at index 0.
   16561         SeededNumberDictionary* dictionary =
   16562             SeededNumberDictionary::cast(arguments);
   16563         if (storage != NULL) {
   16564           dictionary->CopyKeysTo(storage, counter, filter,
   16565                                  SeededNumberDictionary::UNSORTED);
   16566         }
   16567         counter += dictionary->NumberOfElementsFilterAttributes(filter);
   16568         for (int i = 0; i < mapped_length; ++i) {
   16569           if (!parameter_map->get(i + 2)->IsTheHole()) {
   16570             if (storage != NULL) storage->set(counter, Smi::FromInt(i));
   16571             ++counter;
   16572           }
   16573         }
   16574         if (storage != NULL) storage->SortPairs(storage, counter);
   16575 
   16576       } else {
   16577         int backing_length = arguments->length();
   16578         int i = 0;
   16579         for (; i < mapped_length; ++i) {
   16580           if (!parameter_map->get(i + 2)->IsTheHole()) {
   16581             if (storage != NULL) storage->set(counter, Smi::FromInt(i));
   16582             ++counter;
   16583           } else if (i < backing_length && !arguments->get(i)->IsTheHole()) {
   16584             if (storage != NULL) storage->set(counter, Smi::FromInt(i));
   16585             ++counter;
   16586           }
   16587         }
   16588         for (; i < backing_length; ++i) {
   16589           if (storage != NULL) storage->set(counter, Smi::FromInt(i));
   16590           ++counter;
   16591         }
   16592       }
   16593       break;
   16594     }
   16595   }
   16596 
   16597   DCHECK(!storage || storage->length() == counter);
   16598   return counter;
   16599 }
   16600 
   16601 
   16602 MaybeHandle<String> Object::ObjectProtoToString(Isolate* isolate,
   16603                                                 Handle<Object> object) {
   16604   if (object->IsUndefined()) return isolate->factory()->undefined_to_string();
   16605   if (object->IsNull()) return isolate->factory()->null_to_string();
   16606 
   16607   Handle<JSReceiver> receiver;
   16608   CHECK(Object::ToObject(isolate, object).ToHandle(&receiver));
   16609 
   16610   Handle<String> tag;
   16611   if (FLAG_harmony_tostring) {
   16612     Handle<Object> to_string_tag;
   16613     ASSIGN_RETURN_ON_EXCEPTION(
   16614         isolate, to_string_tag,
   16615         GetProperty(receiver, isolate->factory()->to_string_tag_symbol()),
   16616         String);
   16617     if (to_string_tag->IsString()) {
   16618       tag = Handle<String>::cast(to_string_tag);
   16619     }
   16620   }
   16621 
   16622   if (tag.is_null()) {
   16623     ASSIGN_RETURN_ON_EXCEPTION(isolate, tag,
   16624                                JSReceiver::BuiltinStringTag(receiver), String);
   16625   }
   16626 
   16627   IncrementalStringBuilder builder(isolate);
   16628   builder.AppendCString("[object ");
   16629   builder.AppendString(tag);
   16630   builder.AppendCharacter(']');
   16631   return builder.Finish();
   16632 }
   16633 
   16634 
   16635 const char* Symbol::PrivateSymbolToName() const {
   16636   Heap* heap = GetIsolate()->heap();
   16637 #define SYMBOL_CHECK_AND_PRINT(name) \
   16638   if (this == heap->name()) return #name;
   16639   PRIVATE_SYMBOL_LIST(SYMBOL_CHECK_AND_PRINT)
   16640 #undef SYMBOL_CHECK_AND_PRINT
   16641   return "UNKNOWN";
   16642 }
   16643 
   16644 
   16645 void Symbol::SymbolShortPrint(std::ostream& os) {
   16646   os << "<Symbol: " << Hash();
   16647   if (!name()->IsUndefined()) {
   16648     os << " ";
   16649     HeapStringAllocator allocator;
   16650     StringStream accumulator(&allocator);
   16651     String::cast(name())->StringShortPrint(&accumulator);
   16652     os << accumulator.ToCString().get();
   16653   } else {
   16654     os << " (" << PrivateSymbolToName() << ")";
   16655   }
   16656   os << ">";
   16657 }
   16658 
   16659 
   16660 // StringSharedKeys are used as keys in the eval cache.
   16661 class StringSharedKey : public HashTableKey {
   16662  public:
   16663   StringSharedKey(Handle<String> source, Handle<SharedFunctionInfo> shared,
   16664                   LanguageMode language_mode, int scope_position)
   16665       : source_(source),
   16666         shared_(shared),
   16667         language_mode_(language_mode),
   16668         scope_position_(scope_position) {}
   16669 
   16670   bool IsMatch(Object* other) override {
   16671     DisallowHeapAllocation no_allocation;
   16672     if (!other->IsFixedArray()) {
   16673       if (!other->IsNumber()) return false;
   16674       uint32_t other_hash = static_cast<uint32_t>(other->Number());
   16675       return Hash() == other_hash;
   16676     }
   16677     FixedArray* other_array = FixedArray::cast(other);
   16678     SharedFunctionInfo* shared = SharedFunctionInfo::cast(other_array->get(0));
   16679     if (shared != *shared_) return false;
   16680     int language_unchecked = Smi::cast(other_array->get(2))->value();
   16681     DCHECK(is_valid_language_mode(language_unchecked));
   16682     LanguageMode language_mode = static_cast<LanguageMode>(language_unchecked);
   16683     if (language_mode != language_mode_) return false;
   16684     int scope_position = Smi::cast(other_array->get(3))->value();
   16685     if (scope_position != scope_position_) return false;
   16686     String* source = String::cast(other_array->get(1));
   16687     return source->Equals(*source_);
   16688   }
   16689 
   16690   static uint32_t StringSharedHashHelper(String* source,
   16691                                          SharedFunctionInfo* shared,
   16692                                          LanguageMode language_mode,
   16693                                          int scope_position) {
   16694     uint32_t hash = source->Hash();
   16695     if (shared->HasSourceCode()) {
   16696       // Instead of using the SharedFunctionInfo pointer in the hash
   16697       // code computation, we use a combination of the hash of the
   16698       // script source code and the start position of the calling scope.
   16699       // We do this to ensure that the cache entries can survive garbage
   16700       // collection.
   16701       Script* script(Script::cast(shared->script()));
   16702       hash ^= String::cast(script->source())->Hash();
   16703       STATIC_ASSERT(LANGUAGE_END == 3);
   16704       if (is_strict(language_mode)) hash ^= 0x8000;
   16705       if (is_strong(language_mode)) hash ^= 0x10000;
   16706       hash += scope_position;
   16707     }
   16708     return hash;
   16709   }
   16710 
   16711   uint32_t Hash() override {
   16712     return StringSharedHashHelper(*source_, *shared_, language_mode_,
   16713                                   scope_position_);
   16714   }
   16715 
   16716   uint32_t HashForObject(Object* obj) override {
   16717     DisallowHeapAllocation no_allocation;
   16718     if (obj->IsNumber()) {
   16719       return static_cast<uint32_t>(obj->Number());
   16720     }
   16721     FixedArray* other_array = FixedArray::cast(obj);
   16722     SharedFunctionInfo* shared = SharedFunctionInfo::cast(other_array->get(0));
   16723     String* source = String::cast(other_array->get(1));
   16724     int language_unchecked = Smi::cast(other_array->get(2))->value();
   16725     DCHECK(is_valid_language_mode(language_unchecked));
   16726     LanguageMode language_mode = static_cast<LanguageMode>(language_unchecked);
   16727     int scope_position = Smi::cast(other_array->get(3))->value();
   16728     return StringSharedHashHelper(source, shared, language_mode,
   16729                                   scope_position);
   16730   }
   16731 
   16732 
   16733   Handle<Object> AsHandle(Isolate* isolate) override {
   16734     Handle<FixedArray> array = isolate->factory()->NewFixedArray(4);
   16735     array->set(0, *shared_);
   16736     array->set(1, *source_);
   16737     array->set(2, Smi::FromInt(language_mode_));
   16738     array->set(3, Smi::FromInt(scope_position_));
   16739     return array;
   16740   }
   16741 
   16742  private:
   16743   Handle<String> source_;
   16744   Handle<SharedFunctionInfo> shared_;
   16745   LanguageMode language_mode_;
   16746   int scope_position_;
   16747 };
   16748 
   16749 
   16750 namespace {
   16751 
   16752 JSRegExp::Flags RegExpFlagsFromString(Handle<String> flags, bool* success) {
   16753   JSRegExp::Flags value = JSRegExp::kNone;
   16754   int length = flags->length();
   16755   // A longer flags string cannot be valid.
   16756   if (length > 5) return JSRegExp::Flags(0);
   16757   for (int i = 0; i < length; i++) {
   16758     JSRegExp::Flag flag = JSRegExp::kNone;
   16759     switch (flags->Get(i)) {
   16760       case 'g':
   16761         flag = JSRegExp::kGlobal;
   16762         break;
   16763       case 'i':
   16764         flag = JSRegExp::kIgnoreCase;
   16765         break;
   16766       case 'm':
   16767         flag = JSRegExp::kMultiline;
   16768         break;
   16769       case 'u':
   16770         if (!FLAG_harmony_unicode_regexps) return JSRegExp::Flags(0);
   16771         flag = JSRegExp::kUnicode;
   16772         break;
   16773       case 'y':
   16774         if (!FLAG_harmony_regexps) return JSRegExp::Flags(0);
   16775         flag = JSRegExp::kSticky;
   16776         break;
   16777       default:
   16778         return JSRegExp::Flags(0);
   16779     }
   16780     // Duplicate flag.
   16781     if (value & flag) return JSRegExp::Flags(0);
   16782     value |= flag;
   16783   }
   16784   *success = true;
   16785   return value;
   16786 }
   16787 
   16788 }  // namespace
   16789 
   16790 
   16791 // static
   16792 MaybeHandle<JSRegExp> JSRegExp::New(Handle<String> pattern, Flags flags) {
   16793   Isolate* isolate = pattern->GetIsolate();
   16794   Handle<JSFunction> constructor = isolate->regexp_function();
   16795   Handle<JSRegExp> regexp =
   16796       Handle<JSRegExp>::cast(isolate->factory()->NewJSObject(constructor));
   16797 
   16798   return JSRegExp::Initialize(regexp, pattern, flags);
   16799 }
   16800 
   16801 
   16802 // static
   16803 MaybeHandle<JSRegExp> JSRegExp::New(Handle<String> pattern,
   16804                                     Handle<String> flags_string) {
   16805   Isolate* isolate = pattern->GetIsolate();
   16806   bool success = false;
   16807   Flags flags = RegExpFlagsFromString(flags_string, &success);
   16808   if (!success) {
   16809     THROW_NEW_ERROR(
   16810         isolate,
   16811         NewSyntaxError(MessageTemplate::kInvalidRegExpFlags, flags_string),
   16812         JSRegExp);
   16813   }
   16814   return New(pattern, flags);
   16815 }
   16816 
   16817 
   16818 // static
   16819 Handle<JSRegExp> JSRegExp::Copy(Handle<JSRegExp> regexp) {
   16820   Isolate* const isolate = regexp->GetIsolate();
   16821   return Handle<JSRegExp>::cast(isolate->factory()->CopyJSObject(regexp));
   16822 }
   16823 
   16824 
   16825 template <typename Char>
   16826 inline int CountRequiredEscapes(Handle<String> source) {
   16827   DisallowHeapAllocation no_gc;
   16828   int escapes = 0;
   16829   Vector<const Char> src = source->GetCharVector<Char>();
   16830   for (int i = 0; i < src.length(); i++) {
   16831     if (src[i] == '/' && (i == 0 || src[i - 1] != '\\')) escapes++;
   16832   }
   16833   return escapes;
   16834 }
   16835 
   16836 
   16837 template <typename Char, typename StringType>
   16838 inline Handle<StringType> WriteEscapedRegExpSource(Handle<String> source,
   16839                                                    Handle<StringType> result) {
   16840   DisallowHeapAllocation no_gc;
   16841   Vector<const Char> src = source->GetCharVector<Char>();
   16842   Vector<Char> dst(result->GetChars(), result->length());
   16843   int s = 0;
   16844   int d = 0;
   16845   while (s < src.length()) {
   16846     if (src[s] == '/' && (s == 0 || src[s - 1] != '\\')) dst[d++] = '\\';
   16847     dst[d++] = src[s++];
   16848   }
   16849   DCHECK_EQ(result->length(), d);
   16850   return result;
   16851 }
   16852 
   16853 
   16854 MaybeHandle<String> EscapeRegExpSource(Isolate* isolate,
   16855                                        Handle<String> source) {
   16856   String::Flatten(source);
   16857   if (source->length() == 0) return isolate->factory()->query_colon_string();
   16858   bool one_byte = source->IsOneByteRepresentationUnderneath();
   16859   int escapes = one_byte ? CountRequiredEscapes<uint8_t>(source)
   16860                          : CountRequiredEscapes<uc16>(source);
   16861   if (escapes == 0) return source;
   16862   int length = source->length() + escapes;
   16863   if (one_byte) {
   16864     Handle<SeqOneByteString> result;
   16865     ASSIGN_RETURN_ON_EXCEPTION(isolate, result,
   16866                                isolate->factory()->NewRawOneByteString(length),
   16867                                String);
   16868     return WriteEscapedRegExpSource<uint8_t>(source, result);
   16869   } else {
   16870     Handle<SeqTwoByteString> result;
   16871     ASSIGN_RETURN_ON_EXCEPTION(isolate, result,
   16872                                isolate->factory()->NewRawTwoByteString(length),
   16873                                String);
   16874     return WriteEscapedRegExpSource<uc16>(source, result);
   16875   }
   16876 }
   16877 
   16878 
   16879 // static
   16880 MaybeHandle<JSRegExp> JSRegExp::Initialize(Handle<JSRegExp> regexp,
   16881                                            Handle<String> source,
   16882                                            Handle<String> flags_string) {
   16883   Isolate* isolate = source->GetIsolate();
   16884   bool success = false;
   16885   Flags flags = RegExpFlagsFromString(flags_string, &success);
   16886   if (!success) {
   16887     THROW_NEW_ERROR(
   16888         isolate,
   16889         NewSyntaxError(MessageTemplate::kInvalidRegExpFlags, flags_string),
   16890         JSRegExp);
   16891   }
   16892   return Initialize(regexp, source, flags);
   16893 }
   16894 
   16895 
   16896 // static
   16897 MaybeHandle<JSRegExp> JSRegExp::Initialize(Handle<JSRegExp> regexp,
   16898                                            Handle<String> source, Flags flags) {
   16899   Isolate* isolate = regexp->GetIsolate();
   16900   Factory* factory = isolate->factory();
   16901   // If source is the empty string we set it to "(?:)" instead as
   16902   // suggested by ECMA-262, 5th, section 15.10.4.1.
   16903   if (source->length() == 0) source = factory->query_colon_string();
   16904 
   16905   Handle<String> escaped_source;
   16906   ASSIGN_RETURN_ON_EXCEPTION(isolate, escaped_source,
   16907                              EscapeRegExpSource(isolate, source), JSRegExp);
   16908 
   16909   regexp->set_source(*escaped_source);
   16910   regexp->set_flags(Smi::FromInt(flags));
   16911 
   16912   Map* map = regexp->map();
   16913   Object* constructor = map->GetConstructor();
   16914   if (constructor->IsJSFunction() &&
   16915       JSFunction::cast(constructor)->initial_map() == map) {
   16916     // If we still have the original map, set in-object properties directly.
   16917     regexp->InObjectPropertyAtPut(JSRegExp::kLastIndexFieldIndex,
   16918                                   Smi::FromInt(0), SKIP_WRITE_BARRIER);
   16919   } else {
   16920     // Map has changed, so use generic, but slower, method.
   16921     PropertyAttributes writable =
   16922         static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE);
   16923     JSObject::SetOwnPropertyIgnoreAttributes(
   16924         regexp, factory->last_index_string(),
   16925         Handle<Smi>(Smi::FromInt(0), isolate), writable)
   16926         .Check();
   16927   }
   16928 
   16929   RETURN_ON_EXCEPTION(isolate, RegExpImpl::Compile(regexp, source, flags),
   16930                       JSRegExp);
   16931 
   16932   return regexp;
   16933 }
   16934 
   16935 
   16936 // RegExpKey carries the source and flags of a regular expression as key.
   16937 class RegExpKey : public HashTableKey {
   16938  public:
   16939   RegExpKey(Handle<String> string, JSRegExp::Flags flags)
   16940       : string_(string), flags_(Smi::FromInt(flags)) {}
   16941 
   16942   // Rather than storing the key in the hash table, a pointer to the
   16943   // stored value is stored where the key should be.  IsMatch then
   16944   // compares the search key to the found object, rather than comparing
   16945   // a key to a key.
   16946   bool IsMatch(Object* obj) override {
   16947     FixedArray* val = FixedArray::cast(obj);
   16948     return string_->Equals(String::cast(val->get(JSRegExp::kSourceIndex)))
   16949         && (flags_ == val->get(JSRegExp::kFlagsIndex));
   16950   }
   16951 
   16952   uint32_t Hash() override { return RegExpHash(*string_, flags_); }
   16953 
   16954   Handle<Object> AsHandle(Isolate* isolate) override {
   16955     // Plain hash maps, which is where regexp keys are used, don't
   16956     // use this function.
   16957     UNREACHABLE();
   16958     return MaybeHandle<Object>().ToHandleChecked();
   16959   }
   16960 
   16961   uint32_t HashForObject(Object* obj) override {
   16962     FixedArray* val = FixedArray::cast(obj);
   16963     return RegExpHash(String::cast(val->get(JSRegExp::kSourceIndex)),
   16964                       Smi::cast(val->get(JSRegExp::kFlagsIndex)));
   16965   }
   16966 
   16967   static uint32_t RegExpHash(String* string, Smi* flags) {
   16968     return string->Hash() + flags->value();
   16969   }
   16970 
   16971   Handle<String> string_;
   16972   Smi* flags_;
   16973 };
   16974 
   16975 
   16976 Handle<Object> OneByteStringKey::AsHandle(Isolate* isolate) {
   16977   if (hash_field_ == 0) Hash();
   16978   return isolate->factory()->NewOneByteInternalizedString(string_, hash_field_);
   16979 }
   16980 
   16981 
   16982 Handle<Object> TwoByteStringKey::AsHandle(Isolate* isolate) {
   16983   if (hash_field_ == 0) Hash();
   16984   return isolate->factory()->NewTwoByteInternalizedString(string_, hash_field_);
   16985 }
   16986 
   16987 
   16988 Handle<Object> SeqOneByteSubStringKey::AsHandle(Isolate* isolate) {
   16989   if (hash_field_ == 0) Hash();
   16990   return isolate->factory()->NewOneByteInternalizedSubString(
   16991       string_, from_, length_, hash_field_);
   16992 }
   16993 
   16994 
   16995 bool SeqOneByteSubStringKey::IsMatch(Object* string) {
   16996   Vector<const uint8_t> chars(string_->GetChars() + from_, length_);
   16997   return String::cast(string)->IsOneByteEqualTo(chars);
   16998 }
   16999 
   17000 
   17001 // InternalizedStringKey carries a string/internalized-string object as key.
   17002 class InternalizedStringKey : public HashTableKey {
   17003  public:
   17004   explicit InternalizedStringKey(Handle<String> string)
   17005       : string_(string) { }
   17006 
   17007   bool IsMatch(Object* string) override {
   17008     return String::cast(string)->Equals(*string_);
   17009   }
   17010 
   17011   uint32_t Hash() override { return string_->Hash(); }
   17012 
   17013   uint32_t HashForObject(Object* other) override {
   17014     return String::cast(other)->Hash();
   17015   }
   17016 
   17017   Handle<Object> AsHandle(Isolate* isolate) override {
   17018     // Internalize the string if possible.
   17019     MaybeHandle<Map> maybe_map =
   17020         isolate->factory()->InternalizedStringMapForString(string_);
   17021     Handle<Map> map;
   17022     if (maybe_map.ToHandle(&map)) {
   17023       string_->set_map_no_write_barrier(*map);
   17024       DCHECK(string_->IsInternalizedString());
   17025       return string_;
   17026     }
   17027     // Otherwise allocate a new internalized string.
   17028     return isolate->factory()->NewInternalizedStringImpl(
   17029         string_, string_->length(), string_->hash_field());
   17030   }
   17031 
   17032   static uint32_t StringHash(Object* obj) {
   17033     return String::cast(obj)->Hash();
   17034   }
   17035 
   17036   Handle<String> string_;
   17037 };
   17038 
   17039 
   17040 template<typename Derived, typename Shape, typename Key>
   17041 void HashTable<Derived, Shape, Key>::IteratePrefix(ObjectVisitor* v) {
   17042   BodyDescriptorBase::IteratePointers(this, 0, kElementsStartOffset, v);
   17043 }
   17044 
   17045 
   17046 template<typename Derived, typename Shape, typename Key>
   17047 void HashTable<Derived, Shape, Key>::IterateElements(ObjectVisitor* v) {
   17048   BodyDescriptorBase::IteratePointers(this, kElementsStartOffset,
   17049                                       kHeaderSize + length() * kPointerSize, v);
   17050 }
   17051 
   17052 
   17053 template<typename Derived, typename Shape, typename Key>
   17054 Handle<Derived> HashTable<Derived, Shape, Key>::New(
   17055     Isolate* isolate,
   17056     int at_least_space_for,
   17057     MinimumCapacity capacity_option,
   17058     PretenureFlag pretenure) {
   17059   DCHECK(0 <= at_least_space_for);
   17060   DCHECK(!capacity_option || base::bits::IsPowerOfTwo32(at_least_space_for));
   17061 
   17062   int capacity = (capacity_option == USE_CUSTOM_MINIMUM_CAPACITY)
   17063                      ? at_least_space_for
   17064                      : ComputeCapacity(at_least_space_for);
   17065   if (capacity > HashTable::kMaxCapacity) {
   17066     v8::internal::Heap::FatalProcessOutOfMemory("invalid table size", true);
   17067   }
   17068 
   17069   Factory* factory = isolate->factory();
   17070   int length = EntryToIndex(capacity);
   17071   Handle<FixedArray> array = factory->NewFixedArray(length, pretenure);
   17072   array->set_map_no_write_barrier(*factory->hash_table_map());
   17073   Handle<Derived> table = Handle<Derived>::cast(array);
   17074 
   17075   table->SetNumberOfElements(0);
   17076   table->SetNumberOfDeletedElements(0);
   17077   table->SetCapacity(capacity);
   17078   return table;
   17079 }
   17080 
   17081 
   17082 // Find entry for key otherwise return kNotFound.
   17083 template <typename Derived, typename Shape>
   17084 int NameDictionaryBase<Derived, Shape>::FindEntry(Handle<Name> key) {
   17085   if (!key->IsUniqueName()) {
   17086     return DerivedDictionary::FindEntry(key);
   17087   }
   17088 
   17089   // Optimized for unique names. Knowledge of the key type allows:
   17090   // 1. Move the check if the key is unique out of the loop.
   17091   // 2. Avoid comparing hash codes in unique-to-unique comparison.
   17092   // 3. Detect a case when a dictionary key is not unique but the key is.
   17093   //    In case of positive result the dictionary key may be replaced by the
   17094   //    internalized string with minimal performance penalty. It gives a chance
   17095   //    to perform further lookups in code stubs (and significant performance
   17096   //    boost a certain style of code).
   17097 
   17098   // EnsureCapacity will guarantee the hash table is never full.
   17099   uint32_t capacity = this->Capacity();
   17100   uint32_t entry = Derived::FirstProbe(key->Hash(), capacity);
   17101   uint32_t count = 1;
   17102 
   17103   while (true) {
   17104     int index = Derived::EntryToIndex(entry);
   17105     Object* element = this->get(index);
   17106     if (element->IsUndefined()) break;  // Empty entry.
   17107     if (*key == element) return entry;
   17108     if (!element->IsUniqueName() &&
   17109         !element->IsTheHole() &&
   17110         Name::cast(element)->Equals(*key)) {
   17111       // Replace a key that is a non-internalized string by the equivalent
   17112       // internalized string for faster further lookups.
   17113       this->set(index, *key);
   17114       return entry;
   17115     }
   17116     DCHECK(element->IsTheHole() || !Name::cast(element)->Equals(*key));
   17117     entry = Derived::NextProbe(entry, count++, capacity);
   17118   }
   17119   return Derived::kNotFound;
   17120 }
   17121 
   17122 
   17123 template<typename Derived, typename Shape, typename Key>
   17124 void HashTable<Derived, Shape, Key>::Rehash(
   17125     Handle<Derived> new_table,
   17126     Key key) {
   17127   DCHECK(NumberOfElements() < new_table->Capacity());
   17128 
   17129   DisallowHeapAllocation no_gc;
   17130   WriteBarrierMode mode = new_table->GetWriteBarrierMode(no_gc);
   17131 
   17132   // Copy prefix to new array.
   17133   for (int i = kPrefixStartIndex;
   17134        i < kPrefixStartIndex + Shape::kPrefixSize;
   17135        i++) {
   17136     new_table->set(i, get(i), mode);
   17137   }
   17138 
   17139   // Rehash the elements.
   17140   int capacity = this->Capacity();
   17141   for (int i = 0; i < capacity; i++) {
   17142     uint32_t from_index = EntryToIndex(i);
   17143     Object* k = this->get(from_index);
   17144     if (IsKey(k)) {
   17145       uint32_t hash = this->HashForObject(key, k);
   17146       uint32_t insertion_index =
   17147           EntryToIndex(new_table->FindInsertionEntry(hash));
   17148       for (int j = 0; j < Shape::kEntrySize; j++) {
   17149         new_table->set(insertion_index + j, get(from_index + j), mode);
   17150       }
   17151     }
   17152   }
   17153   new_table->SetNumberOfElements(NumberOfElements());
   17154   new_table->SetNumberOfDeletedElements(0);
   17155 }
   17156 
   17157 
   17158 template<typename Derived, typename Shape, typename Key>
   17159 uint32_t HashTable<Derived, Shape, Key>::EntryForProbe(
   17160     Key key,
   17161     Object* k,
   17162     int probe,
   17163     uint32_t expected) {
   17164   uint32_t hash = this->HashForObject(key, k);
   17165   uint32_t capacity = this->Capacity();
   17166   uint32_t entry = FirstProbe(hash, capacity);
   17167   for (int i = 1; i < probe; i++) {
   17168     if (entry == expected) return expected;
   17169     entry = NextProbe(entry, i, capacity);
   17170   }
   17171   return entry;
   17172 }
   17173 
   17174 
   17175 template<typename Derived, typename Shape, typename Key>
   17176 void HashTable<Derived, Shape, Key>::Swap(uint32_t entry1,
   17177                                           uint32_t entry2,
   17178                                           WriteBarrierMode mode) {
   17179   int index1 = EntryToIndex(entry1);
   17180   int index2 = EntryToIndex(entry2);
   17181   Object* temp[Shape::kEntrySize];
   17182   for (int j = 0; j < Shape::kEntrySize; j++) {
   17183     temp[j] = get(index1 + j);
   17184   }
   17185   for (int j = 0; j < Shape::kEntrySize; j++) {
   17186     set(index1 + j, get(index2 + j), mode);
   17187   }
   17188   for (int j = 0; j < Shape::kEntrySize; j++) {
   17189     set(index2 + j, temp[j], mode);
   17190   }
   17191 }
   17192 
   17193 
   17194 template<typename Derived, typename Shape, typename Key>
   17195 void HashTable<Derived, Shape, Key>::Rehash(Key key) {
   17196   DisallowHeapAllocation no_gc;
   17197   WriteBarrierMode mode = GetWriteBarrierMode(no_gc);
   17198   uint32_t capacity = Capacity();
   17199   bool done = false;
   17200   for (int probe = 1; !done; probe++) {
   17201     // All elements at entries given by one of the first _probe_ probes
   17202     // are placed correctly. Other elements might need to be moved.
   17203     done = true;
   17204     for (uint32_t current = 0; current < capacity; current++) {
   17205       Object* current_key = get(EntryToIndex(current));
   17206       if (IsKey(current_key)) {
   17207         uint32_t target = EntryForProbe(key, current_key, probe, current);
   17208         if (current == target) continue;
   17209         Object* target_key = get(EntryToIndex(target));
   17210         if (!IsKey(target_key) ||
   17211             EntryForProbe(key, target_key, probe, target) != target) {
   17212           // Put the current element into the correct position.
   17213           Swap(current, target, mode);
   17214           // The other element will be processed on the next iteration.
   17215           current--;
   17216         } else {
   17217           // The place for the current element is occupied. Leave the element
   17218           // for the next probe.
   17219           done = false;
   17220         }
   17221       }
   17222     }
   17223   }
   17224 }
   17225 
   17226 
   17227 template<typename Derived, typename Shape, typename Key>
   17228 Handle<Derived> HashTable<Derived, Shape, Key>::EnsureCapacity(
   17229     Handle<Derived> table,
   17230     int n,
   17231     Key key,
   17232     PretenureFlag pretenure) {
   17233   Isolate* isolate = table->GetIsolate();
   17234   int capacity = table->Capacity();
   17235   int nof = table->NumberOfElements() + n;
   17236 
   17237   if (table->HasSufficientCapacity(n)) return table;
   17238 
   17239   const int kMinCapacityForPretenure = 256;
   17240   bool should_pretenure = pretenure == TENURED ||
   17241       ((capacity > kMinCapacityForPretenure) &&
   17242           !isolate->heap()->InNewSpace(*table));
   17243   Handle<Derived> new_table = HashTable::New(
   17244       isolate,
   17245       nof * 2,
   17246       USE_DEFAULT_MINIMUM_CAPACITY,
   17247       should_pretenure ? TENURED : NOT_TENURED);
   17248 
   17249   table->Rehash(new_table, key);
   17250   return new_table;
   17251 }
   17252 
   17253 
   17254 template <typename Derived, typename Shape, typename Key>
   17255 bool HashTable<Derived, Shape, Key>::HasSufficientCapacity(int n) {
   17256   int capacity = Capacity();
   17257   int nof = NumberOfElements() + n;
   17258   int nod = NumberOfDeletedElements();
   17259   // Return true if:
   17260   //   50% is still free after adding n elements and
   17261   //   at most 50% of the free elements are deleted elements.
   17262   if (nod <= (capacity - nof) >> 1) {
   17263     int needed_free = nof >> 1;
   17264     if (nof + needed_free <= capacity) return true;
   17265   }
   17266   return false;
   17267 }
   17268 
   17269 
   17270 template<typename Derived, typename Shape, typename Key>
   17271 Handle<Derived> HashTable<Derived, Shape, Key>::Shrink(Handle<Derived> table,
   17272                                                        Key key) {
   17273   int capacity = table->Capacity();
   17274   int nof = table->NumberOfElements();
   17275 
   17276   // Shrink to fit the number of elements if only a quarter of the
   17277   // capacity is filled with elements.
   17278   if (nof > (capacity >> 2)) return table;
   17279   // Allocate a new dictionary with room for at least the current
   17280   // number of elements. The allocation method will make sure that
   17281   // there is extra room in the dictionary for additions. Don't go
   17282   // lower than room for 16 elements.
   17283   int at_least_room_for = nof;
   17284   if (at_least_room_for < 16) return table;
   17285 
   17286   Isolate* isolate = table->GetIsolate();
   17287   const int kMinCapacityForPretenure = 256;
   17288   bool pretenure =
   17289       (at_least_room_for > kMinCapacityForPretenure) &&
   17290       !isolate->heap()->InNewSpace(*table);
   17291   Handle<Derived> new_table = HashTable::New(
   17292       isolate,
   17293       at_least_room_for,
   17294       USE_DEFAULT_MINIMUM_CAPACITY,
   17295       pretenure ? TENURED : NOT_TENURED);
   17296 
   17297   table->Rehash(new_table, key);
   17298   return new_table;
   17299 }
   17300 
   17301 
   17302 template<typename Derived, typename Shape, typename Key>
   17303 uint32_t HashTable<Derived, Shape, Key>::FindInsertionEntry(uint32_t hash) {
   17304   uint32_t capacity = Capacity();
   17305   uint32_t entry = FirstProbe(hash, capacity);
   17306   uint32_t count = 1;
   17307   // EnsureCapacity will guarantee the hash table is never full.
   17308   while (true) {
   17309     Object* element = KeyAt(entry);
   17310     if (element->IsUndefined() || element->IsTheHole()) break;
   17311     entry = NextProbe(entry, count++, capacity);
   17312   }
   17313   return entry;
   17314 }
   17315 
   17316 
   17317 // Force instantiation of template instances class.
   17318 // Please note this list is compiler dependent.
   17319 
   17320 template class HashTable<StringTable, StringTableShape, HashTableKey*>;
   17321 
   17322 template class HashTable<CompilationCacheTable,
   17323                          CompilationCacheShape,
   17324                          HashTableKey*>;
   17325 
   17326 template class HashTable<ObjectHashTable,
   17327                          ObjectHashTableShape,
   17328                          Handle<Object> >;
   17329 
   17330 template class HashTable<WeakHashTable, WeakHashTableShape<2>, Handle<Object> >;
   17331 
   17332 template class Dictionary<NameDictionary, NameDictionaryShape, Handle<Name> >;
   17333 
   17334 template class Dictionary<GlobalDictionary, GlobalDictionaryShape,
   17335                           Handle<Name> >;
   17336 
   17337 template class Dictionary<SeededNumberDictionary,
   17338                           SeededNumberDictionaryShape,
   17339                           uint32_t>;
   17340 
   17341 template class Dictionary<UnseededNumberDictionary,
   17342                           UnseededNumberDictionaryShape,
   17343                           uint32_t>;
   17344 
   17345 template Handle<SeededNumberDictionary>
   17346 Dictionary<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>::
   17347     New(Isolate*, int at_least_space_for, PretenureFlag pretenure);
   17348 
   17349 template Handle<UnseededNumberDictionary>
   17350 Dictionary<UnseededNumberDictionary, UnseededNumberDictionaryShape, uint32_t>::
   17351     New(Isolate*, int at_least_space_for, PretenureFlag pretenure);
   17352 
   17353 template Handle<NameDictionary>
   17354 Dictionary<NameDictionary, NameDictionaryShape, Handle<Name> >::
   17355     New(Isolate*, int n, PretenureFlag pretenure);
   17356 
   17357 template Handle<GlobalDictionary>
   17358 Dictionary<GlobalDictionary, GlobalDictionaryShape, Handle<Name> >::New(
   17359     Isolate*, int n, PretenureFlag pretenure);
   17360 
   17361 template Handle<SeededNumberDictionary>
   17362 Dictionary<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>::
   17363     AtPut(Handle<SeededNumberDictionary>, uint32_t, Handle<Object>);
   17364 
   17365 template Handle<UnseededNumberDictionary>
   17366 Dictionary<UnseededNumberDictionary, UnseededNumberDictionaryShape, uint32_t>::
   17367     AtPut(Handle<UnseededNumberDictionary>, uint32_t, Handle<Object>);
   17368 
   17369 template Object*
   17370 Dictionary<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>::
   17371     SlowReverseLookup(Object* value);
   17372 
   17373 template Object*
   17374 Dictionary<NameDictionary, NameDictionaryShape, Handle<Name> >::
   17375     SlowReverseLookup(Object* value);
   17376 
   17377 template Handle<Object>
   17378 Dictionary<NameDictionary, NameDictionaryShape, Handle<Name> >::DeleteProperty(
   17379     Handle<NameDictionary>, int);
   17380 
   17381 template Handle<Object>
   17382 Dictionary<SeededNumberDictionary, SeededNumberDictionaryShape,
   17383            uint32_t>::DeleteProperty(Handle<SeededNumberDictionary>, int);
   17384 
   17385 template Handle<NameDictionary>
   17386 HashTable<NameDictionary, NameDictionaryShape, Handle<Name> >::
   17387     New(Isolate*, int, MinimumCapacity, PretenureFlag);
   17388 
   17389 template Handle<NameDictionary>
   17390 HashTable<NameDictionary, NameDictionaryShape, Handle<Name> >::
   17391     Shrink(Handle<NameDictionary>, Handle<Name>);
   17392 
   17393 template Handle<SeededNumberDictionary>
   17394 HashTable<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>::
   17395     Shrink(Handle<SeededNumberDictionary>, uint32_t);
   17396 
   17397 template Handle<NameDictionary>
   17398 Dictionary<NameDictionary, NameDictionaryShape, Handle<Name> >::Add(
   17399     Handle<NameDictionary>, Handle<Name>, Handle<Object>, PropertyDetails);
   17400 
   17401 template Handle<GlobalDictionary>
   17402     Dictionary<GlobalDictionary, GlobalDictionaryShape, Handle<Name> >::Add(
   17403         Handle<GlobalDictionary>, Handle<Name>, Handle<Object>,
   17404         PropertyDetails);
   17405 
   17406 template Handle<FixedArray> Dictionary<
   17407     NameDictionary, NameDictionaryShape,
   17408     Handle<Name> >::BuildIterationIndicesArray(Handle<NameDictionary>);
   17409 
   17410 template Handle<FixedArray> Dictionary<
   17411     NameDictionary, NameDictionaryShape,
   17412     Handle<Name> >::GenerateNewEnumerationIndices(Handle<NameDictionary>);
   17413 
   17414 template Handle<SeededNumberDictionary>
   17415 Dictionary<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>::
   17416     Add(Handle<SeededNumberDictionary>,
   17417         uint32_t,
   17418         Handle<Object>,
   17419         PropertyDetails);
   17420 
   17421 template Handle<UnseededNumberDictionary>
   17422 Dictionary<UnseededNumberDictionary, UnseededNumberDictionaryShape, uint32_t>::
   17423     Add(Handle<UnseededNumberDictionary>,
   17424         uint32_t,
   17425         Handle<Object>,
   17426         PropertyDetails);
   17427 
   17428 template Handle<SeededNumberDictionary>
   17429 Dictionary<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>::
   17430     EnsureCapacity(Handle<SeededNumberDictionary>, int, uint32_t);
   17431 
   17432 template Handle<UnseededNumberDictionary>
   17433 Dictionary<UnseededNumberDictionary, UnseededNumberDictionaryShape, uint32_t>::
   17434     EnsureCapacity(Handle<UnseededNumberDictionary>, int, uint32_t);
   17435 
   17436 template void Dictionary<NameDictionary, NameDictionaryShape,
   17437                          Handle<Name> >::SetRequiresCopyOnCapacityChange();
   17438 
   17439 template Handle<NameDictionary>
   17440 Dictionary<NameDictionary, NameDictionaryShape, Handle<Name> >::
   17441     EnsureCapacity(Handle<NameDictionary>, int, Handle<Name>);
   17442 
   17443 template bool Dictionary<SeededNumberDictionary, SeededNumberDictionaryShape,
   17444                          uint32_t>::HasComplexElements();
   17445 
   17446 template int HashTable<SeededNumberDictionary, SeededNumberDictionaryShape,
   17447                        uint32_t>::FindEntry(uint32_t);
   17448 
   17449 template int NameDictionaryBase<NameDictionary, NameDictionaryShape>::FindEntry(
   17450     Handle<Name>);
   17451 
   17452 
   17453 Handle<Object> JSObject::PrepareSlowElementsForSort(
   17454     Handle<JSObject> object, uint32_t limit) {
   17455   DCHECK(object->HasDictionaryElements());
   17456   Isolate* isolate = object->GetIsolate();
   17457   // Must stay in dictionary mode, either because of requires_slow_elements,
   17458   // or because we are not going to sort (and therefore compact) all of the
   17459   // elements.
   17460   Handle<SeededNumberDictionary> dict(object->element_dictionary(), isolate);
   17461   Handle<SeededNumberDictionary> new_dict =
   17462       SeededNumberDictionary::New(isolate, dict->NumberOfElements());
   17463 
   17464   uint32_t pos = 0;
   17465   uint32_t undefs = 0;
   17466   int capacity = dict->Capacity();
   17467   Handle<Smi> bailout(Smi::FromInt(-1), isolate);
   17468   // Entry to the new dictionary does not cause it to grow, as we have
   17469   // allocated one that is large enough for all entries.
   17470   DisallowHeapAllocation no_gc;
   17471   for (int i = 0; i < capacity; i++) {
   17472     Object* k = dict->KeyAt(i);
   17473     if (!dict->IsKey(k)) continue;
   17474 
   17475     DCHECK(k->IsNumber());
   17476     DCHECK(!k->IsSmi() || Smi::cast(k)->value() >= 0);
   17477     DCHECK(!k->IsHeapNumber() || HeapNumber::cast(k)->value() >= 0);
   17478     DCHECK(!k->IsHeapNumber() || HeapNumber::cast(k)->value() <= kMaxUInt32);
   17479 
   17480     HandleScope scope(isolate);
   17481     Handle<Object> value(dict->ValueAt(i), isolate);
   17482     PropertyDetails details = dict->DetailsAt(i);
   17483     if (details.type() == ACCESSOR_CONSTANT || details.IsReadOnly()) {
   17484       // Bail out and do the sorting of undefineds and array holes in JS.
   17485       // Also bail out if the element is not supposed to be moved.
   17486       return bailout;
   17487     }
   17488 
   17489     uint32_t key = NumberToUint32(k);
   17490     if (key < limit) {
   17491       if (value->IsUndefined()) {
   17492         undefs++;
   17493       } else if (pos > static_cast<uint32_t>(Smi::kMaxValue)) {
   17494         // Adding an entry with the key beyond smi-range requires
   17495         // allocation. Bailout.
   17496         return bailout;
   17497       } else {
   17498         Handle<Object> result = SeededNumberDictionary::AddNumberEntry(
   17499             new_dict, pos, value, details, object->map()->is_prototype_map());
   17500         DCHECK(result.is_identical_to(new_dict));
   17501         USE(result);
   17502         pos++;
   17503       }
   17504     } else if (key > static_cast<uint32_t>(Smi::kMaxValue)) {
   17505       // Adding an entry with the key beyond smi-range requires
   17506       // allocation. Bailout.
   17507       return bailout;
   17508     } else {
   17509       Handle<Object> result = SeededNumberDictionary::AddNumberEntry(
   17510           new_dict, key, value, details, object->map()->is_prototype_map());
   17511       DCHECK(result.is_identical_to(new_dict));
   17512       USE(result);
   17513     }
   17514   }
   17515 
   17516   uint32_t result = pos;
   17517   PropertyDetails no_details = PropertyDetails::Empty();
   17518   while (undefs > 0) {
   17519     if (pos > static_cast<uint32_t>(Smi::kMaxValue)) {
   17520       // Adding an entry with the key beyond smi-range requires
   17521       // allocation. Bailout.
   17522       return bailout;
   17523     }
   17524     HandleScope scope(isolate);
   17525     Handle<Object> result = SeededNumberDictionary::AddNumberEntry(
   17526         new_dict, pos, isolate->factory()->undefined_value(), no_details,
   17527         object->map()->is_prototype_map());
   17528     DCHECK(result.is_identical_to(new_dict));
   17529     USE(result);
   17530     pos++;
   17531     undefs--;
   17532   }
   17533 
   17534   object->set_elements(*new_dict);
   17535 
   17536   AllowHeapAllocation allocate_return_value;
   17537   return isolate->factory()->NewNumberFromUint(result);
   17538 }
   17539 
   17540 
   17541 // Collects all defined (non-hole) and non-undefined (array) elements at
   17542 // the start of the elements array.
   17543 // If the object is in dictionary mode, it is converted to fast elements
   17544 // mode.
   17545 Handle<Object> JSObject::PrepareElementsForSort(Handle<JSObject> object,
   17546                                                 uint32_t limit) {
   17547   Isolate* isolate = object->GetIsolate();
   17548   if (object->HasSloppyArgumentsElements() ||
   17549       object->map()->is_observed()) {
   17550     return handle(Smi::FromInt(-1), isolate);
   17551   }
   17552 
   17553   if (object->HasDictionaryElements()) {
   17554     // Convert to fast elements containing only the existing properties.
   17555     // Ordering is irrelevant, since we are going to sort anyway.
   17556     Handle<SeededNumberDictionary> dict(object->element_dictionary());
   17557     if (object->IsJSArray() || dict->requires_slow_elements() ||
   17558         dict->max_number_key() >= limit) {
   17559       return JSObject::PrepareSlowElementsForSort(object, limit);
   17560     }
   17561     // Convert to fast elements.
   17562 
   17563     Handle<Map> new_map =
   17564         JSObject::GetElementsTransitionMap(object, FAST_HOLEY_ELEMENTS);
   17565 
   17566     PretenureFlag tenure = isolate->heap()->InNewSpace(*object) ?
   17567         NOT_TENURED: TENURED;
   17568     Handle<FixedArray> fast_elements =
   17569         isolate->factory()->NewFixedArray(dict->NumberOfElements(), tenure);
   17570     dict->CopyValuesTo(*fast_elements);
   17571     JSObject::ValidateElements(object);
   17572 
   17573     JSObject::SetMapAndElements(object, new_map, fast_elements);
   17574   } else if (object->HasFixedTypedArrayElements()) {
   17575     // Typed arrays cannot have holes or undefined elements.
   17576     return handle(Smi::FromInt(
   17577         FixedArrayBase::cast(object->elements())->length()), isolate);
   17578   } else if (!object->HasFastDoubleElements()) {
   17579     EnsureWritableFastElements(object);
   17580   }
   17581   DCHECK(object->HasFastSmiOrObjectElements() ||
   17582          object->HasFastDoubleElements());
   17583 
   17584   // Collect holes at the end, undefined before that and the rest at the
   17585   // start, and return the number of non-hole, non-undefined values.
   17586 
   17587   Handle<FixedArrayBase> elements_base(object->elements());
   17588   uint32_t elements_length = static_cast<uint32_t>(elements_base->length());
   17589   if (limit > elements_length) {
   17590     limit = elements_length;
   17591   }
   17592   if (limit == 0) {
   17593     return handle(Smi::FromInt(0), isolate);
   17594   }
   17595 
   17596   uint32_t result = 0;
   17597   if (elements_base->map() == isolate->heap()->fixed_double_array_map()) {
   17598     FixedDoubleArray* elements = FixedDoubleArray::cast(*elements_base);
   17599     // Split elements into defined and the_hole, in that order.
   17600     unsigned int holes = limit;
   17601     // Assume most arrays contain no holes and undefined values, so minimize the
   17602     // number of stores of non-undefined, non-the-hole values.
   17603     for (unsigned int i = 0; i < holes; i++) {
   17604       if (elements->is_the_hole(i)) {
   17605         holes--;
   17606       } else {
   17607         continue;
   17608       }
   17609       // Position i needs to be filled.
   17610       while (holes > i) {
   17611         if (elements->is_the_hole(holes)) {
   17612           holes--;
   17613         } else {
   17614           elements->set(i, elements->get_scalar(holes));
   17615           break;
   17616         }
   17617       }
   17618     }
   17619     result = holes;
   17620     while (holes < limit) {
   17621       elements->set_the_hole(holes);
   17622       holes++;
   17623     }
   17624   } else {
   17625     FixedArray* elements = FixedArray::cast(*elements_base);
   17626     DisallowHeapAllocation no_gc;
   17627 
   17628     // Split elements into defined, undefined and the_hole, in that order.  Only
   17629     // count locations for undefined and the hole, and fill them afterwards.
   17630     WriteBarrierMode write_barrier = elements->GetWriteBarrierMode(no_gc);
   17631     unsigned int undefs = limit;
   17632     unsigned int holes = limit;
   17633     // Assume most arrays contain no holes and undefined values, so minimize the
   17634     // number of stores of non-undefined, non-the-hole values.
   17635     for (unsigned int i = 0; i < undefs; i++) {
   17636       Object* current = elements->get(i);
   17637       if (current->IsTheHole()) {
   17638         holes--;
   17639         undefs--;
   17640       } else if (current->IsUndefined()) {
   17641         undefs--;
   17642       } else {
   17643         continue;
   17644       }
   17645       // Position i needs to be filled.
   17646       while (undefs > i) {
   17647         current = elements->get(undefs);
   17648         if (current->IsTheHole()) {
   17649           holes--;
   17650           undefs--;
   17651         } else if (current->IsUndefined()) {
   17652           undefs--;
   17653         } else {
   17654           elements->set(i, current, write_barrier);
   17655           break;
   17656         }
   17657       }
   17658     }
   17659     result = undefs;
   17660     while (undefs < holes) {
   17661       elements->set_undefined(undefs);
   17662       undefs++;
   17663     }
   17664     while (holes < limit) {
   17665       elements->set_the_hole(holes);
   17666       holes++;
   17667     }
   17668   }
   17669 
   17670   return isolate->factory()->NewNumberFromUint(result);
   17671 }
   17672 
   17673 
   17674 ExternalArrayType JSTypedArray::type() {
   17675   switch (elements()->map()->instance_type()) {
   17676 #define INSTANCE_TYPE_TO_ARRAY_TYPE(Type, type, TYPE, ctype, size)            \
   17677     case FIXED_##TYPE##_ARRAY_TYPE:                                           \
   17678       return kExternal##Type##Array;
   17679 
   17680     TYPED_ARRAYS(INSTANCE_TYPE_TO_ARRAY_TYPE)
   17681 #undef INSTANCE_TYPE_TO_ARRAY_TYPE
   17682 
   17683     default:
   17684       UNREACHABLE();
   17685       return static_cast<ExternalArrayType>(-1);
   17686   }
   17687 }
   17688 
   17689 
   17690 size_t JSTypedArray::element_size() {
   17691   switch (elements()->map()->instance_type()) {
   17692 #define INSTANCE_TYPE_TO_ELEMENT_SIZE(Type, type, TYPE, ctype, size) \
   17693   case FIXED_##TYPE##_ARRAY_TYPE:                                    \
   17694     return size;
   17695 
   17696     TYPED_ARRAYS(INSTANCE_TYPE_TO_ELEMENT_SIZE)
   17697 #undef INSTANCE_TYPE_TO_ELEMENT_SIZE
   17698 
   17699     default:
   17700       UNREACHABLE();
   17701       return 0;
   17702   }
   17703 }
   17704 
   17705 
   17706 void JSGlobalObject::InvalidatePropertyCell(Handle<JSGlobalObject> global,
   17707                                             Handle<Name> name) {
   17708   DCHECK(!global->HasFastProperties());
   17709   auto dictionary = handle(global->global_dictionary());
   17710   int entry = dictionary->FindEntry(name);
   17711   if (entry == GlobalDictionary::kNotFound) return;
   17712   PropertyCell::InvalidateEntry(dictionary, entry);
   17713 }
   17714 
   17715 
   17716 // TODO(ishell): rename to EnsureEmptyPropertyCell or something.
   17717 Handle<PropertyCell> JSGlobalObject::EnsurePropertyCell(
   17718     Handle<JSGlobalObject> global, Handle<Name> name) {
   17719   DCHECK(!global->HasFastProperties());
   17720   auto dictionary = handle(global->global_dictionary());
   17721   int entry = dictionary->FindEntry(name);
   17722   Handle<PropertyCell> cell;
   17723   if (entry != GlobalDictionary::kNotFound) {
   17724     // This call should be idempotent.
   17725     DCHECK(dictionary->ValueAt(entry)->IsPropertyCell());
   17726     cell = handle(PropertyCell::cast(dictionary->ValueAt(entry)));
   17727     DCHECK(cell->property_details().cell_type() ==
   17728                PropertyCellType::kUninitialized ||
   17729            cell->property_details().cell_type() ==
   17730                PropertyCellType::kInvalidated);
   17731     DCHECK(cell->value()->IsTheHole());
   17732     return cell;
   17733   }
   17734   Isolate* isolate = global->GetIsolate();
   17735   cell = isolate->factory()->NewPropertyCell();
   17736   PropertyDetails details(NONE, DATA, 0, PropertyCellType::kUninitialized);
   17737   dictionary = GlobalDictionary::Add(dictionary, name, cell, details);
   17738   global->set_properties(*dictionary);
   17739   return cell;
   17740 }
   17741 
   17742 
   17743 // This class is used for looking up two character strings in the string table.
   17744 // If we don't have a hit we don't want to waste much time so we unroll the
   17745 // string hash calculation loop here for speed.  Doesn't work if the two
   17746 // characters form a decimal integer, since such strings have a different hash
   17747 // algorithm.
   17748 class TwoCharHashTableKey : public HashTableKey {
   17749  public:
   17750   TwoCharHashTableKey(uint16_t c1, uint16_t c2, uint32_t seed)
   17751     : c1_(c1), c2_(c2) {
   17752     // Char 1.
   17753     uint32_t hash = seed;
   17754     hash += c1;
   17755     hash += hash << 10;
   17756     hash ^= hash >> 6;
   17757     // Char 2.
   17758     hash += c2;
   17759     hash += hash << 10;
   17760     hash ^= hash >> 6;
   17761     // GetHash.
   17762     hash += hash << 3;
   17763     hash ^= hash >> 11;
   17764     hash += hash << 15;
   17765     if ((hash & String::kHashBitMask) == 0) hash = StringHasher::kZeroHash;
   17766     hash_ = hash;
   17767 #ifdef DEBUG
   17768     // If this assert fails then we failed to reproduce the two-character
   17769     // version of the string hashing algorithm above.  One reason could be
   17770     // that we were passed two digits as characters, since the hash
   17771     // algorithm is different in that case.
   17772     uint16_t chars[2] = {c1, c2};
   17773     uint32_t check_hash = StringHasher::HashSequentialString(chars, 2, seed);
   17774     hash = (hash << String::kHashShift) | String::kIsNotArrayIndexMask;
   17775     DCHECK_EQ(static_cast<int32_t>(hash), static_cast<int32_t>(check_hash));
   17776 #endif
   17777   }
   17778 
   17779   bool IsMatch(Object* o) override {
   17780     if (!o->IsString()) return false;
   17781     String* other = String::cast(o);
   17782     if (other->length() != 2) return false;
   17783     if (other->Get(0) != c1_) return false;
   17784     return other->Get(1) == c2_;
   17785   }
   17786 
   17787   uint32_t Hash() override { return hash_; }
   17788   uint32_t HashForObject(Object* key) override {
   17789     if (!key->IsString()) return 0;
   17790     return String::cast(key)->Hash();
   17791   }
   17792 
   17793   Handle<Object> AsHandle(Isolate* isolate) override {
   17794     // The TwoCharHashTableKey is only used for looking in the string
   17795     // table, not for adding to it.
   17796     UNREACHABLE();
   17797     return MaybeHandle<Object>().ToHandleChecked();
   17798   }
   17799 
   17800  private:
   17801   uint16_t c1_;
   17802   uint16_t c2_;
   17803   uint32_t hash_;
   17804 };
   17805 
   17806 
   17807 MaybeHandle<String> StringTable::InternalizeStringIfExists(
   17808     Isolate* isolate,
   17809     Handle<String> string) {
   17810   if (string->IsInternalizedString()) {
   17811     return string;
   17812   }
   17813   return LookupStringIfExists(isolate, string);
   17814 }
   17815 
   17816 
   17817 MaybeHandle<String> StringTable::LookupStringIfExists(
   17818     Isolate* isolate,
   17819     Handle<String> string) {
   17820   Handle<StringTable> string_table = isolate->factory()->string_table();
   17821   InternalizedStringKey key(string);
   17822   int entry = string_table->FindEntry(&key);
   17823   if (entry == kNotFound) {
   17824     return MaybeHandle<String>();
   17825   } else {
   17826     Handle<String> result(String::cast(string_table->KeyAt(entry)), isolate);
   17827     DCHECK(StringShape(*result).IsInternalized());
   17828     return result;
   17829   }
   17830 }
   17831 
   17832 
   17833 MaybeHandle<String> StringTable::LookupTwoCharsStringIfExists(
   17834     Isolate* isolate,
   17835     uint16_t c1,
   17836     uint16_t c2) {
   17837   Handle<StringTable> string_table = isolate->factory()->string_table();
   17838   TwoCharHashTableKey key(c1, c2, isolate->heap()->HashSeed());
   17839   int entry = string_table->FindEntry(&key);
   17840   if (entry == kNotFound) {
   17841     return MaybeHandle<String>();
   17842   } else {
   17843     Handle<String> result(String::cast(string_table->KeyAt(entry)), isolate);
   17844     DCHECK(StringShape(*result).IsInternalized());
   17845     return result;
   17846   }
   17847 }
   17848 
   17849 
   17850 void StringTable::EnsureCapacityForDeserialization(Isolate* isolate,
   17851                                                    int expected) {
   17852   Handle<StringTable> table = isolate->factory()->string_table();
   17853   // We need a key instance for the virtual hash function.
   17854   InternalizedStringKey dummy_key(Handle<String>::null());
   17855   table = StringTable::EnsureCapacity(table, expected, &dummy_key);
   17856   isolate->heap()->SetRootStringTable(*table);
   17857 }
   17858 
   17859 
   17860 Handle<String> StringTable::LookupString(Isolate* isolate,
   17861                                          Handle<String> string) {
   17862   InternalizedStringKey key(string);
   17863   return LookupKey(isolate, &key);
   17864 }
   17865 
   17866 
   17867 Handle<String> StringTable::LookupKey(Isolate* isolate, HashTableKey* key) {
   17868   Handle<StringTable> table = isolate->factory()->string_table();
   17869   int entry = table->FindEntry(key);
   17870 
   17871   // String already in table.
   17872   if (entry != kNotFound) {
   17873     return handle(String::cast(table->KeyAt(entry)), isolate);
   17874   }
   17875 
   17876   // Adding new string. Grow table if needed.
   17877   table = StringTable::EnsureCapacity(table, 1, key);
   17878 
   17879   // Create string object.
   17880   Handle<Object> string = key->AsHandle(isolate);
   17881   // There must be no attempts to internalize strings that could throw
   17882   // InvalidStringLength error.
   17883   CHECK(!string.is_null());
   17884 
   17885   // Add the new string and return it along with the string table.
   17886   entry = table->FindInsertionEntry(key->Hash());
   17887   table->set(EntryToIndex(entry), *string);
   17888   table->ElementAdded();
   17889 
   17890   isolate->heap()->SetRootStringTable(*table);
   17891   return Handle<String>::cast(string);
   17892 }
   17893 
   17894 
   17895 String* StringTable::LookupKeyIfExists(Isolate* isolate, HashTableKey* key) {
   17896   Handle<StringTable> table = isolate->factory()->string_table();
   17897   int entry = table->FindEntry(key);
   17898   if (entry != kNotFound) return String::cast(table->KeyAt(entry));
   17899   return NULL;
   17900 }
   17901 
   17902 
   17903 Handle<Object> CompilationCacheTable::Lookup(Handle<String> src,
   17904                                              Handle<Context> context,
   17905                                              LanguageMode language_mode) {
   17906   Isolate* isolate = GetIsolate();
   17907   Handle<SharedFunctionInfo> shared(context->closure()->shared());
   17908   StringSharedKey key(src, shared, language_mode, RelocInfo::kNoPosition);
   17909   int entry = FindEntry(&key);
   17910   if (entry == kNotFound) return isolate->factory()->undefined_value();
   17911   int index = EntryToIndex(entry);
   17912   if (!get(index)->IsFixedArray()) return isolate->factory()->undefined_value();
   17913   return Handle<Object>(get(index + 1), isolate);
   17914 }
   17915 
   17916 
   17917 Handle<Object> CompilationCacheTable::LookupEval(
   17918     Handle<String> src, Handle<SharedFunctionInfo> outer_info,
   17919     LanguageMode language_mode, int scope_position) {
   17920   Isolate* isolate = GetIsolate();
   17921   // Cache key is the tuple (source, outer shared function info, scope position)
   17922   // to unambiguously identify the context chain the cached eval code assumes.
   17923   StringSharedKey key(src, outer_info, language_mode, scope_position);
   17924   int entry = FindEntry(&key);
   17925   if (entry == kNotFound) return isolate->factory()->undefined_value();
   17926   int index = EntryToIndex(entry);
   17927   if (!get(index)->IsFixedArray()) return isolate->factory()->undefined_value();
   17928   return Handle<Object>(get(EntryToIndex(entry) + 1), isolate);
   17929 }
   17930 
   17931 
   17932 Handle<Object> CompilationCacheTable::LookupRegExp(Handle<String> src,
   17933                                                    JSRegExp::Flags flags) {
   17934   Isolate* isolate = GetIsolate();
   17935   DisallowHeapAllocation no_allocation;
   17936   RegExpKey key(src, flags);
   17937   int entry = FindEntry(&key);
   17938   if (entry == kNotFound) return isolate->factory()->undefined_value();
   17939   return Handle<Object>(get(EntryToIndex(entry) + 1), isolate);
   17940 }
   17941 
   17942 
   17943 Handle<CompilationCacheTable> CompilationCacheTable::Put(
   17944     Handle<CompilationCacheTable> cache, Handle<String> src,
   17945     Handle<Context> context, LanguageMode language_mode, Handle<Object> value) {
   17946   Isolate* isolate = cache->GetIsolate();
   17947   Handle<SharedFunctionInfo> shared(context->closure()->shared());
   17948   StringSharedKey key(src, shared, language_mode, RelocInfo::kNoPosition);
   17949   {
   17950     Handle<Object> k = key.AsHandle(isolate);
   17951     DisallowHeapAllocation no_allocation_scope;
   17952     int entry = cache->FindEntry(&key);
   17953     if (entry != kNotFound) {
   17954       cache->set(EntryToIndex(entry), *k);
   17955       cache->set(EntryToIndex(entry) + 1, *value);
   17956       return cache;
   17957     }
   17958   }
   17959 
   17960   cache = EnsureCapacity(cache, 1, &key);
   17961   int entry = cache->FindInsertionEntry(key.Hash());
   17962   Handle<Object> k =
   17963       isolate->factory()->NewNumber(static_cast<double>(key.Hash()));
   17964   cache->set(EntryToIndex(entry), *k);
   17965   cache->set(EntryToIndex(entry) + 1, Smi::FromInt(kHashGenerations));
   17966   cache->ElementAdded();
   17967   return cache;
   17968 }
   17969 
   17970 
   17971 Handle<CompilationCacheTable> CompilationCacheTable::PutEval(
   17972     Handle<CompilationCacheTable> cache, Handle<String> src,
   17973     Handle<SharedFunctionInfo> outer_info, Handle<SharedFunctionInfo> value,
   17974     int scope_position) {
   17975   Isolate* isolate = cache->GetIsolate();
   17976   StringSharedKey key(src, outer_info, value->language_mode(), scope_position);
   17977   {
   17978     Handle<Object> k = key.AsHandle(isolate);
   17979     DisallowHeapAllocation no_allocation_scope;
   17980     int entry = cache->FindEntry(&key);
   17981     if (entry != kNotFound) {
   17982       cache->set(EntryToIndex(entry), *k);
   17983       cache->set(EntryToIndex(entry) + 1, *value);
   17984       return cache;
   17985     }
   17986   }
   17987 
   17988   cache = EnsureCapacity(cache, 1, &key);
   17989   int entry = cache->FindInsertionEntry(key.Hash());
   17990   Handle<Object> k =
   17991       isolate->factory()->NewNumber(static_cast<double>(key.Hash()));
   17992   cache->set(EntryToIndex(entry), *k);
   17993   cache->set(EntryToIndex(entry) + 1, Smi::FromInt(kHashGenerations));
   17994   cache->ElementAdded();
   17995   return cache;
   17996 }
   17997 
   17998 
   17999 Handle<CompilationCacheTable> CompilationCacheTable::PutRegExp(
   18000       Handle<CompilationCacheTable> cache, Handle<String> src,
   18001       JSRegExp::Flags flags, Handle<FixedArray> value) {
   18002   RegExpKey key(src, flags);
   18003   cache = EnsureCapacity(cache, 1, &key);
   18004   int entry = cache->FindInsertionEntry(key.Hash());
   18005   // We store the value in the key slot, and compare the search key
   18006   // to the stored value with a custon IsMatch function during lookups.
   18007   cache->set(EntryToIndex(entry), *value);
   18008   cache->set(EntryToIndex(entry) + 1, *value);
   18009   cache->ElementAdded();
   18010   return cache;
   18011 }
   18012 
   18013 
   18014 void CompilationCacheTable::Age() {
   18015   DisallowHeapAllocation no_allocation;
   18016   Object* the_hole_value = GetHeap()->the_hole_value();
   18017   for (int entry = 0, size = Capacity(); entry < size; entry++) {
   18018     int entry_index = EntryToIndex(entry);
   18019     int value_index = entry_index + 1;
   18020 
   18021     if (get(entry_index)->IsNumber()) {
   18022       Smi* count = Smi::cast(get(value_index));
   18023       count = Smi::FromInt(count->value() - 1);
   18024       if (count->value() == 0) {
   18025         NoWriteBarrierSet(this, entry_index, the_hole_value);
   18026         NoWriteBarrierSet(this, value_index, the_hole_value);
   18027         ElementRemoved();
   18028       } else {
   18029         NoWriteBarrierSet(this, value_index, count);
   18030       }
   18031     } else if (get(entry_index)->IsFixedArray()) {
   18032       SharedFunctionInfo* info = SharedFunctionInfo::cast(get(value_index));
   18033       if (info->code()->kind() != Code::FUNCTION || info->code()->IsOld()) {
   18034         NoWriteBarrierSet(this, entry_index, the_hole_value);
   18035         NoWriteBarrierSet(this, value_index, the_hole_value);
   18036         ElementRemoved();
   18037       }
   18038     }
   18039   }
   18040 }
   18041 
   18042 
   18043 void CompilationCacheTable::Remove(Object* value) {
   18044   DisallowHeapAllocation no_allocation;
   18045   Object* the_hole_value = GetHeap()->the_hole_value();
   18046   for (int entry = 0, size = Capacity(); entry < size; entry++) {
   18047     int entry_index = EntryToIndex(entry);
   18048     int value_index = entry_index + 1;
   18049     if (get(value_index) == value) {
   18050       NoWriteBarrierSet(this, entry_index, the_hole_value);
   18051       NoWriteBarrierSet(this, value_index, the_hole_value);
   18052       ElementRemoved();
   18053     }
   18054   }
   18055   return;
   18056 }
   18057 
   18058 
   18059 // StringsKey used for HashTable where key is array of internalized strings.
   18060 class StringsKey : public HashTableKey {
   18061  public:
   18062   explicit StringsKey(Handle<FixedArray> strings) : strings_(strings) { }
   18063 
   18064   bool IsMatch(Object* strings) override {
   18065     FixedArray* o = FixedArray::cast(strings);
   18066     int len = strings_->length();
   18067     if (o->length() != len) return false;
   18068     for (int i = 0; i < len; i++) {
   18069       if (o->get(i) != strings_->get(i)) return false;
   18070     }
   18071     return true;
   18072   }
   18073 
   18074   uint32_t Hash() override { return HashForObject(*strings_); }
   18075 
   18076   uint32_t HashForObject(Object* obj) override {
   18077     FixedArray* strings = FixedArray::cast(obj);
   18078     int len = strings->length();
   18079     uint32_t hash = 0;
   18080     for (int i = 0; i < len; i++) {
   18081       hash ^= String::cast(strings->get(i))->Hash();
   18082     }
   18083     return hash;
   18084   }
   18085 
   18086   Handle<Object> AsHandle(Isolate* isolate) override { return strings_; }
   18087 
   18088  private:
   18089   Handle<FixedArray> strings_;
   18090 };
   18091 
   18092 
   18093 template<typename Derived, typename Shape, typename Key>
   18094 Handle<Derived> Dictionary<Derived, Shape, Key>::New(
   18095     Isolate* isolate,
   18096     int at_least_space_for,
   18097     PretenureFlag pretenure) {
   18098   DCHECK(0 <= at_least_space_for);
   18099   Handle<Derived> dict = DerivedHashTable::New(isolate,
   18100                                                at_least_space_for,
   18101                                                USE_DEFAULT_MINIMUM_CAPACITY,
   18102                                                pretenure);
   18103 
   18104   // Initialize the next enumeration index.
   18105   dict->SetNextEnumerationIndex(PropertyDetails::kInitialIndex);
   18106   return dict;
   18107 }
   18108 
   18109 
   18110 template <typename Derived, typename Shape, typename Key>
   18111 Handle<FixedArray> Dictionary<Derived, Shape, Key>::BuildIterationIndicesArray(
   18112     Handle<Derived> dictionary) {
   18113   Factory* factory = dictionary->GetIsolate()->factory();
   18114   int length = dictionary->NumberOfElements();
   18115 
   18116   Handle<FixedArray> iteration_order = factory->NewFixedArray(length);
   18117   Handle<FixedArray> enumeration_order = factory->NewFixedArray(length);
   18118 
   18119   // Fill both the iteration order array and the enumeration order array
   18120   // with property details.
   18121   int capacity = dictionary->Capacity();
   18122   int pos = 0;
   18123   for (int i = 0; i < capacity; i++) {
   18124     if (dictionary->IsKey(dictionary->KeyAt(i))) {
   18125       int index = dictionary->DetailsAt(i).dictionary_index();
   18126       iteration_order->set(pos, Smi::FromInt(i));
   18127       enumeration_order->set(pos, Smi::FromInt(index));
   18128       pos++;
   18129     }
   18130   }
   18131   DCHECK(pos == length);
   18132 
   18133   // Sort the arrays wrt. enumeration order.
   18134   iteration_order->SortPairs(*enumeration_order, enumeration_order->length());
   18135   return iteration_order;
   18136 }
   18137 
   18138 
   18139 template <typename Derived, typename Shape, typename Key>
   18140 Handle<FixedArray>
   18141 Dictionary<Derived, Shape, Key>::GenerateNewEnumerationIndices(
   18142     Handle<Derived> dictionary) {
   18143   int length = dictionary->NumberOfElements();
   18144 
   18145   Handle<FixedArray> iteration_order = BuildIterationIndicesArray(dictionary);
   18146   DCHECK(iteration_order->length() == length);
   18147 
   18148   // Iterate over the dictionary using the enumeration order and update
   18149   // the dictionary with new enumeration indices.
   18150   for (int i = 0; i < length; i++) {
   18151     int index = Smi::cast(iteration_order->get(i))->value();
   18152     DCHECK(dictionary->IsKey(dictionary->KeyAt(index)));
   18153 
   18154     int enum_index = PropertyDetails::kInitialIndex + i;
   18155 
   18156     PropertyDetails details = dictionary->DetailsAt(index);
   18157     PropertyDetails new_details = details.set_index(enum_index);
   18158     dictionary->DetailsAtPut(index, new_details);
   18159   }
   18160 
   18161   // Set the next enumeration index.
   18162   dictionary->SetNextEnumerationIndex(PropertyDetails::kInitialIndex+length);
   18163   return iteration_order;
   18164 }
   18165 
   18166 
   18167 template <typename Derived, typename Shape, typename Key>
   18168 void Dictionary<Derived, Shape, Key>::SetRequiresCopyOnCapacityChange() {
   18169   DCHECK_EQ(0, DerivedHashTable::NumberOfElements());
   18170   DCHECK_EQ(0, DerivedHashTable::NumberOfDeletedElements());
   18171   // Make sure that HashTable::EnsureCapacity will create a copy.
   18172   DerivedHashTable::SetNumberOfDeletedElements(DerivedHashTable::Capacity());
   18173   DCHECK(!DerivedHashTable::HasSufficientCapacity(1));
   18174 }
   18175 
   18176 
   18177 template <typename Derived, typename Shape, typename Key>
   18178 Handle<Derived> Dictionary<Derived, Shape, Key>::EnsureCapacity(
   18179     Handle<Derived> dictionary, int n, Key key) {
   18180   // Check whether there are enough enumeration indices to add n elements.
   18181   if (Shape::kIsEnumerable &&
   18182       !PropertyDetails::IsValidIndex(dictionary->NextEnumerationIndex() + n)) {
   18183     // If not, we generate new indices for the properties.
   18184     GenerateNewEnumerationIndices(dictionary);
   18185   }
   18186   return DerivedHashTable::EnsureCapacity(dictionary, n, key);
   18187 }
   18188 
   18189 
   18190 template <typename Derived, typename Shape, typename Key>
   18191 Handle<Object> Dictionary<Derived, Shape, Key>::DeleteProperty(
   18192     Handle<Derived> dictionary, int entry) {
   18193   Factory* factory = dictionary->GetIsolate()->factory();
   18194   PropertyDetails details = dictionary->DetailsAt(entry);
   18195   if (!details.IsConfigurable()) return factory->false_value();
   18196 
   18197   dictionary->SetEntry(
   18198       entry, factory->the_hole_value(), factory->the_hole_value());
   18199   dictionary->ElementRemoved();
   18200   return factory->true_value();
   18201 }
   18202 
   18203 
   18204 template<typename Derived, typename Shape, typename Key>
   18205 Handle<Derived> Dictionary<Derived, Shape, Key>::AtPut(
   18206     Handle<Derived> dictionary, Key key, Handle<Object> value) {
   18207   int entry = dictionary->FindEntry(key);
   18208 
   18209   // If the entry is present set the value;
   18210   if (entry != Dictionary::kNotFound) {
   18211     dictionary->ValueAtPut(entry, *value);
   18212     return dictionary;
   18213   }
   18214 
   18215   // Check whether the dictionary should be extended.
   18216   dictionary = EnsureCapacity(dictionary, 1, key);
   18217 #ifdef DEBUG
   18218   USE(Shape::AsHandle(dictionary->GetIsolate(), key));
   18219 #endif
   18220   PropertyDetails details = PropertyDetails::Empty();
   18221 
   18222   AddEntry(dictionary, key, value, details, dictionary->Hash(key));
   18223   return dictionary;
   18224 }
   18225 
   18226 
   18227 template<typename Derived, typename Shape, typename Key>
   18228 Handle<Derived> Dictionary<Derived, Shape, Key>::Add(
   18229     Handle<Derived> dictionary,
   18230     Key key,
   18231     Handle<Object> value,
   18232     PropertyDetails details) {
   18233   // Valdate key is absent.
   18234   SLOW_DCHECK((dictionary->FindEntry(key) == Dictionary::kNotFound));
   18235   // Check whether the dictionary should be extended.
   18236   dictionary = EnsureCapacity(dictionary, 1, key);
   18237 
   18238   AddEntry(dictionary, key, value, details, dictionary->Hash(key));
   18239   return dictionary;
   18240 }
   18241 
   18242 
   18243 // Add a key, value pair to the dictionary.
   18244 template<typename Derived, typename Shape, typename Key>
   18245 void Dictionary<Derived, Shape, Key>::AddEntry(
   18246     Handle<Derived> dictionary,
   18247     Key key,
   18248     Handle<Object> value,
   18249     PropertyDetails details,
   18250     uint32_t hash) {
   18251   // Compute the key object.
   18252   Handle<Object> k = Shape::AsHandle(dictionary->GetIsolate(), key);
   18253 
   18254   uint32_t entry = dictionary->FindInsertionEntry(hash);
   18255   // Insert element at empty or deleted entry
   18256   if (details.dictionary_index() == 0 && Shape::kIsEnumerable) {
   18257     // Assign an enumeration index to the property and update
   18258     // SetNextEnumerationIndex.
   18259     int index = dictionary->NextEnumerationIndex();
   18260     details = details.set_index(index);
   18261     dictionary->SetNextEnumerationIndex(index + 1);
   18262   }
   18263   dictionary->SetEntry(entry, k, value, details);
   18264   DCHECK((dictionary->KeyAt(entry)->IsNumber() ||
   18265           dictionary->KeyAt(entry)->IsName()));
   18266   dictionary->ElementAdded();
   18267 }
   18268 
   18269 
   18270 void SeededNumberDictionary::UpdateMaxNumberKey(uint32_t key,
   18271                                                 bool used_as_prototype) {
   18272   DisallowHeapAllocation no_allocation;
   18273   // If the dictionary requires slow elements an element has already
   18274   // been added at a high index.
   18275   if (requires_slow_elements()) return;
   18276   // Check if this index is high enough that we should require slow
   18277   // elements.
   18278   if (key > kRequiresSlowElementsLimit) {
   18279     if (used_as_prototype) {
   18280       // TODO(verwaest): Remove this hack.
   18281       TypeFeedbackVector::ClearAllKeyedStoreICs(GetIsolate());
   18282     }
   18283     set_requires_slow_elements();
   18284     return;
   18285   }
   18286   // Update max key value.
   18287   Object* max_index_object = get(kMaxNumberKeyIndex);
   18288   if (!max_index_object->IsSmi() || max_number_key() < key) {
   18289     FixedArray::set(kMaxNumberKeyIndex,
   18290                     Smi::FromInt(key << kRequiresSlowElementsTagSize));
   18291   }
   18292 }
   18293 
   18294 
   18295 Handle<SeededNumberDictionary> SeededNumberDictionary::AddNumberEntry(
   18296     Handle<SeededNumberDictionary> dictionary, uint32_t key,
   18297     Handle<Object> value, PropertyDetails details, bool used_as_prototype) {
   18298   dictionary->UpdateMaxNumberKey(key, used_as_prototype);
   18299   SLOW_DCHECK(dictionary->FindEntry(key) == kNotFound);
   18300   return Add(dictionary, key, value, details);
   18301 }
   18302 
   18303 
   18304 Handle<UnseededNumberDictionary> UnseededNumberDictionary::AddNumberEntry(
   18305     Handle<UnseededNumberDictionary> dictionary,
   18306     uint32_t key,
   18307     Handle<Object> value) {
   18308   SLOW_DCHECK(dictionary->FindEntry(key) == kNotFound);
   18309   return Add(dictionary, key, value, PropertyDetails::Empty());
   18310 }
   18311 
   18312 
   18313 Handle<SeededNumberDictionary> SeededNumberDictionary::AtNumberPut(
   18314     Handle<SeededNumberDictionary> dictionary, uint32_t key,
   18315     Handle<Object> value, bool used_as_prototype) {
   18316   dictionary->UpdateMaxNumberKey(key, used_as_prototype);
   18317   return AtPut(dictionary, key, value);
   18318 }
   18319 
   18320 
   18321 Handle<UnseededNumberDictionary> UnseededNumberDictionary::AtNumberPut(
   18322     Handle<UnseededNumberDictionary> dictionary,
   18323     uint32_t key,
   18324     Handle<Object> value) {
   18325   return AtPut(dictionary, key, value);
   18326 }
   18327 
   18328 
   18329 Handle<SeededNumberDictionary> SeededNumberDictionary::Set(
   18330     Handle<SeededNumberDictionary> dictionary, uint32_t key,
   18331     Handle<Object> value, PropertyDetails details, bool used_as_prototype) {
   18332   int entry = dictionary->FindEntry(key);
   18333   if (entry == kNotFound) {
   18334     return AddNumberEntry(dictionary, key, value, details, used_as_prototype);
   18335   }
   18336   // Preserve enumeration index.
   18337   details = details.set_index(dictionary->DetailsAt(entry).dictionary_index());
   18338   Handle<Object> object_key =
   18339       SeededNumberDictionaryShape::AsHandle(dictionary->GetIsolate(), key);
   18340   dictionary->SetEntry(entry, object_key, value, details);
   18341   return dictionary;
   18342 }
   18343 
   18344 
   18345 Handle<UnseededNumberDictionary> UnseededNumberDictionary::Set(
   18346     Handle<UnseededNumberDictionary> dictionary,
   18347     uint32_t key,
   18348     Handle<Object> value) {
   18349   int entry = dictionary->FindEntry(key);
   18350   if (entry == kNotFound) return AddNumberEntry(dictionary, key, value);
   18351   Handle<Object> object_key =
   18352       UnseededNumberDictionaryShape::AsHandle(dictionary->GetIsolate(), key);
   18353   dictionary->SetEntry(entry, object_key, value);
   18354   return dictionary;
   18355 }
   18356 
   18357 
   18358 template <typename Derived, typename Shape, typename Key>
   18359 int Dictionary<Derived, Shape, Key>::NumberOfElementsFilterAttributes(
   18360     PropertyFilter filter) {
   18361   int capacity = this->Capacity();
   18362   int result = 0;
   18363   for (int i = 0; i < capacity; i++) {
   18364     Object* k = this->KeyAt(i);
   18365     if (this->IsKey(k) && !k->FilterKey(filter)) {
   18366       if (this->IsDeleted(i)) continue;
   18367       PropertyDetails details = this->DetailsAt(i);
   18368       PropertyAttributes attr = details.attributes();
   18369       if ((attr & filter) == 0) result++;
   18370     }
   18371   }
   18372   return result;
   18373 }
   18374 
   18375 
   18376 template <typename Derived, typename Shape, typename Key>
   18377 bool Dictionary<Derived, Shape, Key>::HasComplexElements() {
   18378   int capacity = this->Capacity();
   18379   for (int i = 0; i < capacity; i++) {
   18380     Object* k = this->KeyAt(i);
   18381     if (this->IsKey(k) && !k->FilterKey(ALL_PROPERTIES)) {
   18382       if (this->IsDeleted(i)) continue;
   18383       PropertyDetails details = this->DetailsAt(i);
   18384       if (details.type() == ACCESSOR_CONSTANT) return true;
   18385       PropertyAttributes attr = details.attributes();
   18386       if (attr & ALL_ATTRIBUTES_MASK) return true;
   18387     }
   18388   }
   18389   return false;
   18390 }
   18391 
   18392 
   18393 template <typename Dictionary>
   18394 struct EnumIndexComparator {
   18395   explicit EnumIndexComparator(Dictionary* dict) : dict(dict) {}
   18396   bool operator() (Smi* a, Smi* b) {
   18397     PropertyDetails da(dict->DetailsAt(a->value()));
   18398     PropertyDetails db(dict->DetailsAt(b->value()));
   18399     return da.dictionary_index() < db.dictionary_index();
   18400   }
   18401   Dictionary* dict;
   18402 };
   18403 
   18404 
   18405 template <typename Derived, typename Shape, typename Key>
   18406 void Dictionary<Derived, Shape, Key>::CopyEnumKeysTo(FixedArray* storage) {
   18407   int length = storage->length();
   18408   int capacity = this->Capacity();
   18409   int properties = 0;
   18410   for (int i = 0; i < capacity; i++) {
   18411     Object* k = this->KeyAt(i);
   18412     if (this->IsKey(k) && !k->IsSymbol()) {
   18413       PropertyDetails details = this->DetailsAt(i);
   18414       if (details.IsDontEnum() || this->IsDeleted(i)) continue;
   18415       storage->set(properties, Smi::FromInt(i));
   18416       properties++;
   18417       if (properties == length) break;
   18418     }
   18419   }
   18420   CHECK_EQ(length, properties);
   18421   EnumIndexComparator<Derived> cmp(static_cast<Derived*>(this));
   18422   Smi** start = reinterpret_cast<Smi**>(storage->GetFirstElementAddress());
   18423   std::sort(start, start + length, cmp);
   18424   for (int i = 0; i < length; i++) {
   18425     int index = Smi::cast(storage->get(i))->value();
   18426     storage->set(i, this->KeyAt(index));
   18427   }
   18428 }
   18429 
   18430 
   18431 template <typename Derived, typename Shape, typename Key>
   18432 int Dictionary<Derived, Shape, Key>::CopyKeysTo(
   18433     FixedArray* storage, int index, PropertyFilter filter,
   18434     typename Dictionary<Derived, Shape, Key>::SortMode sort_mode) {
   18435   DCHECK(storage->length() >= NumberOfElementsFilterAttributes(filter));
   18436   int start_index = index;
   18437   int capacity = this->Capacity();
   18438   for (int i = 0; i < capacity; i++) {
   18439     Object* k = this->KeyAt(i);
   18440     if (!this->IsKey(k) || k->FilterKey(filter)) continue;
   18441     if (this->IsDeleted(i)) continue;
   18442     PropertyDetails details = this->DetailsAt(i);
   18443     PropertyAttributes attr = details.attributes();
   18444     if ((attr & filter) != 0) continue;
   18445     storage->set(index++, k);
   18446   }
   18447   if (sort_mode == Dictionary::SORTED) {
   18448     storage->SortPairs(storage, index);
   18449   }
   18450   DCHECK(storage->length() >= index);
   18451   return index - start_index;
   18452 }
   18453 
   18454 
   18455 template <typename Derived, typename Shape, typename Key>
   18456 void Dictionary<Derived, Shape, Key>::CollectKeysTo(
   18457     Handle<Dictionary<Derived, Shape, Key> > dictionary, KeyAccumulator* keys,
   18458     PropertyFilter filter) {
   18459   int capacity = dictionary->Capacity();
   18460   Handle<FixedArray> array =
   18461       keys->isolate()->factory()->NewFixedArray(dictionary->NumberOfElements());
   18462   int array_size = 0;
   18463 
   18464   {
   18465     DisallowHeapAllocation no_gc;
   18466     Dictionary<Derived, Shape, Key>* raw_dict = *dictionary;
   18467     for (int i = 0; i < capacity; i++) {
   18468       Object* k = raw_dict->KeyAt(i);
   18469       if (!raw_dict->IsKey(k) || k->FilterKey(filter)) continue;
   18470       if (raw_dict->IsDeleted(i)) continue;
   18471       PropertyDetails details = raw_dict->DetailsAt(i);
   18472       if ((details.attributes() & filter) != 0) continue;
   18473       if (filter & ONLY_ALL_CAN_READ) {
   18474         if (details.kind() != kAccessor) continue;
   18475         Object* accessors = raw_dict->ValueAt(i);
   18476         if (accessors->IsPropertyCell()) {
   18477           accessors = PropertyCell::cast(accessors)->value();
   18478         }
   18479         if (!accessors->IsAccessorInfo()) continue;
   18480         if (!AccessorInfo::cast(accessors)->all_can_read()) continue;
   18481       }
   18482       array->set(array_size++, Smi::FromInt(i));
   18483     }
   18484 
   18485     EnumIndexComparator<Derived> cmp(static_cast<Derived*>(raw_dict));
   18486     Smi** start = reinterpret_cast<Smi**>(array->GetFirstElementAddress());
   18487     std::sort(start, start + array_size, cmp);
   18488   }
   18489 
   18490   for (int i = 0; i < array_size; i++) {
   18491     int index = Smi::cast(array->get(i))->value();
   18492     keys->AddKey(dictionary->KeyAt(index));
   18493   }
   18494 }
   18495 
   18496 
   18497 // Backwards lookup (slow).
   18498 template<typename Derived, typename Shape, typename Key>
   18499 Object* Dictionary<Derived, Shape, Key>::SlowReverseLookup(Object* value) {
   18500   int capacity = this->Capacity();
   18501   for (int i = 0; i < capacity; i++) {
   18502     Object* k = this->KeyAt(i);
   18503     if (this->IsKey(k)) {
   18504       Object* e = this->ValueAt(i);
   18505       // TODO(dcarney): this should be templatized.
   18506       if (e->IsPropertyCell()) {
   18507         e = PropertyCell::cast(e)->value();
   18508       }
   18509       if (e == value) return k;
   18510     }
   18511   }
   18512   Heap* heap = Dictionary::GetHeap();
   18513   return heap->undefined_value();
   18514 }
   18515 
   18516 
   18517 Object* ObjectHashTable::Lookup(Isolate* isolate, Handle<Object> key,
   18518                                 int32_t hash) {
   18519   DisallowHeapAllocation no_gc;
   18520   DCHECK(IsKey(*key));
   18521 
   18522   int entry = FindEntry(isolate, key, hash);
   18523   if (entry == kNotFound) return isolate->heap()->the_hole_value();
   18524   return get(EntryToIndex(entry) + 1);
   18525 }
   18526 
   18527 
   18528 Object* ObjectHashTable::Lookup(Handle<Object> key) {
   18529   DisallowHeapAllocation no_gc;
   18530   DCHECK(IsKey(*key));
   18531 
   18532   Isolate* isolate = GetIsolate();
   18533 
   18534   // If the object does not have an identity hash, it was never used as a key.
   18535   Object* hash = key->GetHash();
   18536   if (hash->IsUndefined()) {
   18537     return isolate->heap()->the_hole_value();
   18538   }
   18539   return Lookup(isolate, key, Smi::cast(hash)->value());
   18540 }
   18541 
   18542 
   18543 Object* ObjectHashTable::Lookup(Handle<Object> key, int32_t hash) {
   18544   return Lookup(GetIsolate(), key, hash);
   18545 }
   18546 
   18547 
   18548 Handle<ObjectHashTable> ObjectHashTable::Put(Handle<ObjectHashTable> table,
   18549                                              Handle<Object> key,
   18550                                              Handle<Object> value) {
   18551   DCHECK(table->IsKey(*key));
   18552   DCHECK(!value->IsTheHole());
   18553 
   18554   Isolate* isolate = table->GetIsolate();
   18555   // Make sure the key object has an identity hash code.
   18556   int32_t hash = Object::GetOrCreateHash(isolate, key)->value();
   18557 
   18558   return Put(table, key, value, hash);
   18559 }
   18560 
   18561 
   18562 Handle<ObjectHashTable> ObjectHashTable::Put(Handle<ObjectHashTable> table,
   18563                                              Handle<Object> key,
   18564                                              Handle<Object> value,
   18565                                              int32_t hash) {
   18566   DCHECK(table->IsKey(*key));
   18567   DCHECK(!value->IsTheHole());
   18568 
   18569   Isolate* isolate = table->GetIsolate();
   18570 
   18571   int entry = table->FindEntry(isolate, key, hash);
   18572 
   18573   // Key is already in table, just overwrite value.
   18574   if (entry != kNotFound) {
   18575     table->set(EntryToIndex(entry) + 1, *value);
   18576     return table;
   18577   }
   18578 
   18579   // Check whether the hash table should be extended.
   18580   table = EnsureCapacity(table, 1, key);
   18581   table->AddEntry(table->FindInsertionEntry(hash), *key, *value);
   18582   return table;
   18583 }
   18584 
   18585 
   18586 Handle<ObjectHashTable> ObjectHashTable::Remove(Handle<ObjectHashTable> table,
   18587                                                 Handle<Object> key,
   18588                                                 bool* was_present) {
   18589   DCHECK(table->IsKey(*key));
   18590 
   18591   Object* hash = key->GetHash();
   18592   if (hash->IsUndefined()) {
   18593     *was_present = false;
   18594     return table;
   18595   }
   18596 
   18597   return Remove(table, key, was_present, Smi::cast(hash)->value());
   18598 }
   18599 
   18600 
   18601 Handle<ObjectHashTable> ObjectHashTable::Remove(Handle<ObjectHashTable> table,
   18602                                                 Handle<Object> key,
   18603                                                 bool* was_present,
   18604                                                 int32_t hash) {
   18605   DCHECK(table->IsKey(*key));
   18606 
   18607   int entry = table->FindEntry(table->GetIsolate(), key, hash);
   18608   if (entry == kNotFound) {
   18609     *was_present = false;
   18610     return table;
   18611   }
   18612 
   18613   *was_present = true;
   18614   table->RemoveEntry(entry);
   18615   return Shrink(table, key);
   18616 }
   18617 
   18618 
   18619 void ObjectHashTable::AddEntry(int entry, Object* key, Object* value) {
   18620   set(EntryToIndex(entry), key);
   18621   set(EntryToIndex(entry) + 1, value);
   18622   ElementAdded();
   18623 }
   18624 
   18625 
   18626 void ObjectHashTable::RemoveEntry(int entry) {
   18627   set_the_hole(EntryToIndex(entry));
   18628   set_the_hole(EntryToIndex(entry) + 1);
   18629   ElementRemoved();
   18630 }
   18631 
   18632 
   18633 Object* WeakHashTable::Lookup(Handle<HeapObject> key) {
   18634   DisallowHeapAllocation no_gc;
   18635   DCHECK(IsKey(*key));
   18636   int entry = FindEntry(key);
   18637   if (entry == kNotFound) return GetHeap()->the_hole_value();
   18638   return get(EntryToValueIndex(entry));
   18639 }
   18640 
   18641 
   18642 Handle<WeakHashTable> WeakHashTable::Put(Handle<WeakHashTable> table,
   18643                                          Handle<HeapObject> key,
   18644                                          Handle<HeapObject> value) {
   18645   DCHECK(table->IsKey(*key));
   18646   int entry = table->FindEntry(key);
   18647   // Key is already in table, just overwrite value.
   18648   if (entry != kNotFound) {
   18649     table->set(EntryToValueIndex(entry), *value);
   18650     return table;
   18651   }
   18652 
   18653   Handle<WeakCell> key_cell = key->GetIsolate()->factory()->NewWeakCell(key);
   18654 
   18655   // Check whether the hash table should be extended.
   18656   table = EnsureCapacity(table, 1, key, TENURED);
   18657 
   18658   table->AddEntry(table->FindInsertionEntry(table->Hash(key)), key_cell, value);
   18659   return table;
   18660 }
   18661 
   18662 
   18663 void WeakHashTable::AddEntry(int entry, Handle<WeakCell> key_cell,
   18664                              Handle<HeapObject> value) {
   18665   DisallowHeapAllocation no_allocation;
   18666   set(EntryToIndex(entry), *key_cell);
   18667   set(EntryToValueIndex(entry), *value);
   18668   ElementAdded();
   18669 }
   18670 
   18671 
   18672 template<class Derived, class Iterator, int entrysize>
   18673 Handle<Derived> OrderedHashTable<Derived, Iterator, entrysize>::Allocate(
   18674     Isolate* isolate, int capacity, PretenureFlag pretenure) {
   18675   // Capacity must be a power of two, since we depend on being able
   18676   // to divide and multiple by 2 (kLoadFactor) to derive capacity
   18677   // from number of buckets. If we decide to change kLoadFactor
   18678   // to something other than 2, capacity should be stored as another
   18679   // field of this object.
   18680   capacity = base::bits::RoundUpToPowerOfTwo32(Max(kMinCapacity, capacity));
   18681   if (capacity > kMaxCapacity) {
   18682     v8::internal::Heap::FatalProcessOutOfMemory("invalid table size", true);
   18683   }
   18684   int num_buckets = capacity / kLoadFactor;
   18685   Handle<FixedArray> backing_store = isolate->factory()->NewFixedArray(
   18686       kHashTableStartIndex + num_buckets + (capacity * kEntrySize), pretenure);
   18687   backing_store->set_map_no_write_barrier(
   18688       isolate->heap()->ordered_hash_table_map());
   18689   Handle<Derived> table = Handle<Derived>::cast(backing_store);
   18690   for (int i = 0; i < num_buckets; ++i) {
   18691     table->set(kHashTableStartIndex + i, Smi::FromInt(kNotFound));
   18692   }
   18693   table->SetNumberOfBuckets(num_buckets);
   18694   table->SetNumberOfElements(0);
   18695   table->SetNumberOfDeletedElements(0);
   18696   return table;
   18697 }
   18698 
   18699 
   18700 template<class Derived, class Iterator, int entrysize>
   18701 Handle<Derived> OrderedHashTable<Derived, Iterator, entrysize>::EnsureGrowable(
   18702     Handle<Derived> table) {
   18703   DCHECK(!table->IsObsolete());
   18704 
   18705   int nof = table->NumberOfElements();
   18706   int nod = table->NumberOfDeletedElements();
   18707   int capacity = table->Capacity();
   18708   if ((nof + nod) < capacity) return table;
   18709   // Don't need to grow if we can simply clear out deleted entries instead.
   18710   // Note that we can't compact in place, though, so we always allocate
   18711   // a new table.
   18712   return Rehash(table, (nod < (capacity >> 1)) ? capacity << 1 : capacity);
   18713 }
   18714 
   18715 
   18716 template<class Derived, class Iterator, int entrysize>
   18717 Handle<Derived> OrderedHashTable<Derived, Iterator, entrysize>::Shrink(
   18718     Handle<Derived> table) {
   18719   DCHECK(!table->IsObsolete());
   18720 
   18721   int nof = table->NumberOfElements();
   18722   int capacity = table->Capacity();
   18723   if (nof >= (capacity >> 2)) return table;
   18724   return Rehash(table, capacity / 2);
   18725 }
   18726 
   18727 
   18728 template<class Derived, class Iterator, int entrysize>
   18729 Handle<Derived> OrderedHashTable<Derived, Iterator, entrysize>::Clear(
   18730     Handle<Derived> table) {
   18731   DCHECK(!table->IsObsolete());
   18732 
   18733   Handle<Derived> new_table =
   18734       Allocate(table->GetIsolate(),
   18735                kMinCapacity,
   18736                table->GetHeap()->InNewSpace(*table) ? NOT_TENURED : TENURED);
   18737 
   18738   table->SetNextTable(*new_table);
   18739   table->SetNumberOfDeletedElements(kClearedTableSentinel);
   18740 
   18741   return new_table;
   18742 }
   18743 
   18744 template <class Derived, class Iterator, int entrysize>
   18745 bool OrderedHashTable<Derived, Iterator, entrysize>::HasKey(
   18746     Handle<Derived> table, Handle<Object> key) {
   18747   int entry = table->KeyToFirstEntry(*key);
   18748   // Walk the chain in the bucket to find the key.
   18749   while (entry != kNotFound) {
   18750     Object* candidate_key = table->KeyAt(entry);
   18751     if (candidate_key->SameValueZero(*key)) return true;
   18752     entry = table->NextChainEntry(entry);
   18753   }
   18754   return false;
   18755 }
   18756 
   18757 
   18758 Handle<OrderedHashSet> OrderedHashSet::Add(Handle<OrderedHashSet> table,
   18759                                            Handle<Object> key) {
   18760   int hash = Object::GetOrCreateHash(table->GetIsolate(), key)->value();
   18761   int entry = table->HashToEntry(hash);
   18762   // Walk the chain of the bucket and try finding the key.
   18763   while (entry != kNotFound) {
   18764     Object* candidate_key = table->KeyAt(entry);
   18765     // Do not add if we have the key already
   18766     if (candidate_key->SameValueZero(*key)) return table;
   18767     entry = table->NextChainEntry(entry);
   18768   }
   18769 
   18770   table = OrderedHashSet::EnsureGrowable(table);
   18771   // Read the existing bucket values.
   18772   int bucket = table->HashToBucket(hash);
   18773   int previous_entry = table->HashToEntry(hash);
   18774   int nof = table->NumberOfElements();
   18775   // Insert a new entry at the end,
   18776   int new_entry = nof + table->NumberOfDeletedElements();
   18777   int new_index = table->EntryToIndex(new_entry);
   18778   table->set(new_index, *key);
   18779   table->set(new_index + kChainOffset, Smi::FromInt(previous_entry));
   18780   // and point the bucket to the new entry.
   18781   table->set(kHashTableStartIndex + bucket, Smi::FromInt(new_entry));
   18782   table->SetNumberOfElements(nof + 1);
   18783   return table;
   18784 }
   18785 
   18786 
   18787 template<class Derived, class Iterator, int entrysize>
   18788 Handle<Derived> OrderedHashTable<Derived, Iterator, entrysize>::Rehash(
   18789     Handle<Derived> table, int new_capacity) {
   18790   DCHECK(!table->IsObsolete());
   18791 
   18792   Handle<Derived> new_table =
   18793       Allocate(table->GetIsolate(),
   18794                new_capacity,
   18795                table->GetHeap()->InNewSpace(*table) ? NOT_TENURED : TENURED);
   18796   int nof = table->NumberOfElements();
   18797   int nod = table->NumberOfDeletedElements();
   18798   int new_buckets = new_table->NumberOfBuckets();
   18799   int new_entry = 0;
   18800   int removed_holes_index = 0;
   18801 
   18802   for (int old_entry = 0; old_entry < (nof + nod); ++old_entry) {
   18803     Object* key = table->KeyAt(old_entry);
   18804     if (key->IsTheHole()) {
   18805       table->SetRemovedIndexAt(removed_holes_index++, old_entry);
   18806       continue;
   18807     }
   18808 
   18809     Object* hash = key->GetHash();
   18810     int bucket = Smi::cast(hash)->value() & (new_buckets - 1);
   18811     Object* chain_entry = new_table->get(kHashTableStartIndex + bucket);
   18812     new_table->set(kHashTableStartIndex + bucket, Smi::FromInt(new_entry));
   18813     int new_index = new_table->EntryToIndex(new_entry);
   18814     int old_index = table->EntryToIndex(old_entry);
   18815     for (int i = 0; i < entrysize; ++i) {
   18816       Object* value = table->get(old_index + i);
   18817       new_table->set(new_index + i, value);
   18818     }
   18819     new_table->set(new_index + kChainOffset, chain_entry);
   18820     ++new_entry;
   18821   }
   18822 
   18823   DCHECK_EQ(nod, removed_holes_index);
   18824 
   18825   new_table->SetNumberOfElements(nof);
   18826   table->SetNextTable(*new_table);
   18827 
   18828   return new_table;
   18829 }
   18830 
   18831 
   18832 template Handle<OrderedHashSet>
   18833 OrderedHashTable<OrderedHashSet, JSSetIterator, 1>::Allocate(
   18834     Isolate* isolate, int capacity, PretenureFlag pretenure);
   18835 
   18836 template Handle<OrderedHashSet>
   18837 OrderedHashTable<OrderedHashSet, JSSetIterator, 1>::EnsureGrowable(
   18838     Handle<OrderedHashSet> table);
   18839 
   18840 template Handle<OrderedHashSet>
   18841 OrderedHashTable<OrderedHashSet, JSSetIterator, 1>::Shrink(
   18842     Handle<OrderedHashSet> table);
   18843 
   18844 template Handle<OrderedHashSet>
   18845 OrderedHashTable<OrderedHashSet, JSSetIterator, 1>::Clear(
   18846     Handle<OrderedHashSet> table);
   18847 
   18848 template bool OrderedHashTable<OrderedHashSet, JSSetIterator, 1>::HasKey(
   18849     Handle<OrderedHashSet> table, Handle<Object> key);
   18850 
   18851 
   18852 template Handle<OrderedHashMap>
   18853 OrderedHashTable<OrderedHashMap, JSMapIterator, 2>::Allocate(
   18854     Isolate* isolate, int capacity, PretenureFlag pretenure);
   18855 
   18856 template Handle<OrderedHashMap>
   18857 OrderedHashTable<OrderedHashMap, JSMapIterator, 2>::EnsureGrowable(
   18858     Handle<OrderedHashMap> table);
   18859 
   18860 template Handle<OrderedHashMap>
   18861 OrderedHashTable<OrderedHashMap, JSMapIterator, 2>::Shrink(
   18862     Handle<OrderedHashMap> table);
   18863 
   18864 template Handle<OrderedHashMap>
   18865 OrderedHashTable<OrderedHashMap, JSMapIterator, 2>::Clear(
   18866     Handle<OrderedHashMap> table);
   18867 
   18868 template bool OrderedHashTable<OrderedHashMap, JSMapIterator, 2>::HasKey(
   18869     Handle<OrderedHashMap> table, Handle<Object> key);
   18870 
   18871 
   18872 template<class Derived, class TableType>
   18873 void OrderedHashTableIterator<Derived, TableType>::Transition() {
   18874   DisallowHeapAllocation no_allocation;
   18875   TableType* table = TableType::cast(this->table());
   18876   if (!table->IsObsolete()) return;
   18877 
   18878   int index = Smi::cast(this->index())->value();
   18879   while (table->IsObsolete()) {
   18880     TableType* next_table = table->NextTable();
   18881 
   18882     if (index > 0) {
   18883       int nod = table->NumberOfDeletedElements();
   18884 
   18885       if (nod == TableType::kClearedTableSentinel) {
   18886         index = 0;
   18887       } else {
   18888         int old_index = index;
   18889         for (int i = 0; i < nod; ++i) {
   18890           int removed_index = table->RemovedIndexAt(i);
   18891           if (removed_index >= old_index) break;
   18892           --index;
   18893         }
   18894       }
   18895     }
   18896 
   18897     table = next_table;
   18898   }
   18899 
   18900   set_table(table);
   18901   set_index(Smi::FromInt(index));
   18902 }
   18903 
   18904 
   18905 template<class Derived, class TableType>
   18906 bool OrderedHashTableIterator<Derived, TableType>::HasMore() {
   18907   DisallowHeapAllocation no_allocation;
   18908   if (this->table()->IsUndefined()) return false;
   18909 
   18910   Transition();
   18911 
   18912   TableType* table = TableType::cast(this->table());
   18913   int index = Smi::cast(this->index())->value();
   18914   int used_capacity = table->UsedCapacity();
   18915 
   18916   while (index < used_capacity && table->KeyAt(index)->IsTheHole()) {
   18917     index++;
   18918   }
   18919 
   18920   set_index(Smi::FromInt(index));
   18921 
   18922   if (index < used_capacity) return true;
   18923 
   18924   set_table(GetHeap()->undefined_value());
   18925   return false;
   18926 }
   18927 
   18928 
   18929 template<class Derived, class TableType>
   18930 Smi* OrderedHashTableIterator<Derived, TableType>::Next(JSArray* value_array) {
   18931   DisallowHeapAllocation no_allocation;
   18932   if (HasMore()) {
   18933     FixedArray* array = FixedArray::cast(value_array->elements());
   18934     static_cast<Derived*>(this)->PopulateValueArray(array);
   18935     MoveNext();
   18936     return Smi::cast(kind());
   18937   }
   18938   return Smi::FromInt(0);
   18939 }
   18940 
   18941 
   18942 template Smi*
   18943 OrderedHashTableIterator<JSSetIterator, OrderedHashSet>::Next(
   18944     JSArray* value_array);
   18945 
   18946 template bool
   18947 OrderedHashTableIterator<JSSetIterator, OrderedHashSet>::HasMore();
   18948 
   18949 template void
   18950 OrderedHashTableIterator<JSSetIterator, OrderedHashSet>::MoveNext();
   18951 
   18952 template Object*
   18953 OrderedHashTableIterator<JSSetIterator, OrderedHashSet>::CurrentKey();
   18954 
   18955 template void
   18956 OrderedHashTableIterator<JSSetIterator, OrderedHashSet>::Transition();
   18957 
   18958 
   18959 template Smi*
   18960 OrderedHashTableIterator<JSMapIterator, OrderedHashMap>::Next(
   18961     JSArray* value_array);
   18962 
   18963 template bool
   18964 OrderedHashTableIterator<JSMapIterator, OrderedHashMap>::HasMore();
   18965 
   18966 template void
   18967 OrderedHashTableIterator<JSMapIterator, OrderedHashMap>::MoveNext();
   18968 
   18969 template Object*
   18970 OrderedHashTableIterator<JSMapIterator, OrderedHashMap>::CurrentKey();
   18971 
   18972 template void
   18973 OrderedHashTableIterator<JSMapIterator, OrderedHashMap>::Transition();
   18974 
   18975 
   18976 void JSSet::Initialize(Handle<JSSet> set, Isolate* isolate) {
   18977   Handle<OrderedHashSet> table = isolate->factory()->NewOrderedHashSet();
   18978   set->set_table(*table);
   18979 }
   18980 
   18981 
   18982 void JSSet::Clear(Handle<JSSet> set) {
   18983   Handle<OrderedHashSet> table(OrderedHashSet::cast(set->table()));
   18984   table = OrderedHashSet::Clear(table);
   18985   set->set_table(*table);
   18986 }
   18987 
   18988 
   18989 void JSMap::Initialize(Handle<JSMap> map, Isolate* isolate) {
   18990   Handle<OrderedHashMap> table = isolate->factory()->NewOrderedHashMap();
   18991   map->set_table(*table);
   18992 }
   18993 
   18994 
   18995 void JSMap::Clear(Handle<JSMap> map) {
   18996   Handle<OrderedHashMap> table(OrderedHashMap::cast(map->table()));
   18997   table = OrderedHashMap::Clear(table);
   18998   map->set_table(*table);
   18999 }
   19000 
   19001 
   19002 void JSWeakCollection::Initialize(Handle<JSWeakCollection> weak_collection,
   19003                                   Isolate* isolate) {
   19004   Handle<ObjectHashTable> table = ObjectHashTable::New(isolate, 0);
   19005   weak_collection->set_table(*table);
   19006 }
   19007 
   19008 
   19009 void JSWeakCollection::Set(Handle<JSWeakCollection> weak_collection,
   19010                            Handle<Object> key, Handle<Object> value,
   19011                            int32_t hash) {
   19012   DCHECK(key->IsJSReceiver() || key->IsSymbol());
   19013   Handle<ObjectHashTable> table(
   19014       ObjectHashTable::cast(weak_collection->table()));
   19015   DCHECK(table->IsKey(*key));
   19016   Handle<ObjectHashTable> new_table =
   19017       ObjectHashTable::Put(table, key, value, hash);
   19018   weak_collection->set_table(*new_table);
   19019   if (*table != *new_table) {
   19020     // Zap the old table since we didn't record slots for its elements.
   19021     table->FillWithHoles(0, table->length());
   19022   }
   19023 }
   19024 
   19025 
   19026 bool JSWeakCollection::Delete(Handle<JSWeakCollection> weak_collection,
   19027                               Handle<Object> key, int32_t hash) {
   19028   DCHECK(key->IsJSReceiver() || key->IsSymbol());
   19029   Handle<ObjectHashTable> table(
   19030       ObjectHashTable::cast(weak_collection->table()));
   19031   DCHECK(table->IsKey(*key));
   19032   bool was_present = false;
   19033   Handle<ObjectHashTable> new_table =
   19034       ObjectHashTable::Remove(table, key, &was_present, hash);
   19035   weak_collection->set_table(*new_table);
   19036   if (*table != *new_table) {
   19037     // Zap the old table since we didn't record slots for its elements.
   19038     table->FillWithHoles(0, table->length());
   19039   }
   19040   return was_present;
   19041 }
   19042 
   19043 
   19044 // Check if there is a break point at this code position.
   19045 bool DebugInfo::HasBreakPoint(int code_position) {
   19046   // Get the break point info object for this code position.
   19047   Object* break_point_info = GetBreakPointInfo(code_position);
   19048 
   19049   // If there is no break point info object or no break points in the break
   19050   // point info object there is no break point at this code position.
   19051   if (break_point_info->IsUndefined()) return false;
   19052   return BreakPointInfo::cast(break_point_info)->GetBreakPointCount() > 0;
   19053 }
   19054 
   19055 
   19056 // Get the break point info object for this code position.
   19057 Object* DebugInfo::GetBreakPointInfo(int code_position) {
   19058   // Find the index of the break point info object for this code position.
   19059   int index = GetBreakPointInfoIndex(code_position);
   19060 
   19061   // Return the break point info object if any.
   19062   if (index == kNoBreakPointInfo) return GetHeap()->undefined_value();
   19063   return BreakPointInfo::cast(break_points()->get(index));
   19064 }
   19065 
   19066 
   19067 // Clear a break point at the specified code position.
   19068 void DebugInfo::ClearBreakPoint(Handle<DebugInfo> debug_info,
   19069                                 int code_position,
   19070                                 Handle<Object> break_point_object) {
   19071   Handle<Object> break_point_info(debug_info->GetBreakPointInfo(code_position),
   19072                                   debug_info->GetIsolate());
   19073   if (break_point_info->IsUndefined()) return;
   19074   BreakPointInfo::ClearBreakPoint(
   19075       Handle<BreakPointInfo>::cast(break_point_info),
   19076       break_point_object);
   19077 }
   19078 
   19079 
   19080 void DebugInfo::SetBreakPoint(Handle<DebugInfo> debug_info,
   19081                               int code_position,
   19082                               int source_position,
   19083                               int statement_position,
   19084                               Handle<Object> break_point_object) {
   19085   Isolate* isolate = debug_info->GetIsolate();
   19086   Handle<Object> break_point_info(debug_info->GetBreakPointInfo(code_position),
   19087                                   isolate);
   19088   if (!break_point_info->IsUndefined()) {
   19089     BreakPointInfo::SetBreakPoint(
   19090         Handle<BreakPointInfo>::cast(break_point_info),
   19091         break_point_object);
   19092     return;
   19093   }
   19094 
   19095   // Adding a new break point for a code position which did not have any
   19096   // break points before. Try to find a free slot.
   19097   int index = kNoBreakPointInfo;
   19098   for (int i = 0; i < debug_info->break_points()->length(); i++) {
   19099     if (debug_info->break_points()->get(i)->IsUndefined()) {
   19100       index = i;
   19101       break;
   19102     }
   19103   }
   19104   if (index == kNoBreakPointInfo) {
   19105     // No free slot - extend break point info array.
   19106     Handle<FixedArray> old_break_points =
   19107         Handle<FixedArray>(FixedArray::cast(debug_info->break_points()));
   19108     Handle<FixedArray> new_break_points =
   19109         isolate->factory()->NewFixedArray(
   19110             old_break_points->length() +
   19111             DebugInfo::kEstimatedNofBreakPointsInFunction);
   19112 
   19113     debug_info->set_break_points(*new_break_points);
   19114     for (int i = 0; i < old_break_points->length(); i++) {
   19115       new_break_points->set(i, old_break_points->get(i));
   19116     }
   19117     index = old_break_points->length();
   19118   }
   19119   DCHECK(index != kNoBreakPointInfo);
   19120 
   19121   // Allocate new BreakPointInfo object and set the break point.
   19122   Handle<BreakPointInfo> new_break_point_info = Handle<BreakPointInfo>::cast(
   19123       isolate->factory()->NewStruct(BREAK_POINT_INFO_TYPE));
   19124   new_break_point_info->set_code_position(code_position);
   19125   new_break_point_info->set_source_position(source_position);
   19126   new_break_point_info->set_statement_position(statement_position);
   19127   new_break_point_info->set_break_point_objects(
   19128       isolate->heap()->undefined_value());
   19129   BreakPointInfo::SetBreakPoint(new_break_point_info, break_point_object);
   19130   debug_info->break_points()->set(index, *new_break_point_info);
   19131 }
   19132 
   19133 
   19134 // Get the break point objects for a code position.
   19135 Handle<Object> DebugInfo::GetBreakPointObjects(int code_position) {
   19136   Object* break_point_info = GetBreakPointInfo(code_position);
   19137   if (break_point_info->IsUndefined()) {
   19138     return GetIsolate()->factory()->undefined_value();
   19139   }
   19140   return Handle<Object>(
   19141       BreakPointInfo::cast(break_point_info)->break_point_objects(),
   19142       GetIsolate());
   19143 }
   19144 
   19145 
   19146 // Get the total number of break points.
   19147 int DebugInfo::GetBreakPointCount() {
   19148   if (break_points()->IsUndefined()) return 0;
   19149   int count = 0;
   19150   for (int i = 0; i < break_points()->length(); i++) {
   19151     if (!break_points()->get(i)->IsUndefined()) {
   19152       BreakPointInfo* break_point_info =
   19153           BreakPointInfo::cast(break_points()->get(i));
   19154       count += break_point_info->GetBreakPointCount();
   19155     }
   19156   }
   19157   return count;
   19158 }
   19159 
   19160 
   19161 Handle<Object> DebugInfo::FindBreakPointInfo(
   19162     Handle<DebugInfo> debug_info, Handle<Object> break_point_object) {
   19163   Isolate* isolate = debug_info->GetIsolate();
   19164   if (!debug_info->break_points()->IsUndefined()) {
   19165     for (int i = 0; i < debug_info->break_points()->length(); i++) {
   19166       if (!debug_info->break_points()->get(i)->IsUndefined()) {
   19167         Handle<BreakPointInfo> break_point_info = Handle<BreakPointInfo>(
   19168             BreakPointInfo::cast(debug_info->break_points()->get(i)), isolate);
   19169         if (BreakPointInfo::HasBreakPointObject(break_point_info,
   19170                                                 break_point_object)) {
   19171           return break_point_info;
   19172         }
   19173       }
   19174     }
   19175   }
   19176   return isolate->factory()->undefined_value();
   19177 }
   19178 
   19179 
   19180 // Find the index of the break point info object for the specified code
   19181 // position.
   19182 int DebugInfo::GetBreakPointInfoIndex(int code_position) {
   19183   if (break_points()->IsUndefined()) return kNoBreakPointInfo;
   19184   for (int i = 0; i < break_points()->length(); i++) {
   19185     if (!break_points()->get(i)->IsUndefined()) {
   19186       BreakPointInfo* break_point_info =
   19187           BreakPointInfo::cast(break_points()->get(i));
   19188       if (break_point_info->code_position() == code_position) {
   19189         return i;
   19190       }
   19191     }
   19192   }
   19193   return kNoBreakPointInfo;
   19194 }
   19195 
   19196 
   19197 // Remove the specified break point object.
   19198 void BreakPointInfo::ClearBreakPoint(Handle<BreakPointInfo> break_point_info,
   19199                                      Handle<Object> break_point_object) {
   19200   Isolate* isolate = break_point_info->GetIsolate();
   19201   // If there are no break points just ignore.
   19202   if (break_point_info->break_point_objects()->IsUndefined()) return;
   19203   // If there is a single break point clear it if it is the same.
   19204   if (!break_point_info->break_point_objects()->IsFixedArray()) {
   19205     if (break_point_info->break_point_objects() == *break_point_object) {
   19206       break_point_info->set_break_point_objects(
   19207           isolate->heap()->undefined_value());
   19208     }
   19209     return;
   19210   }
   19211   // If there are multiple break points shrink the array
   19212   DCHECK(break_point_info->break_point_objects()->IsFixedArray());
   19213   Handle<FixedArray> old_array =
   19214       Handle<FixedArray>(
   19215           FixedArray::cast(break_point_info->break_point_objects()));
   19216   Handle<FixedArray> new_array =
   19217       isolate->factory()->NewFixedArray(old_array->length() - 1);
   19218   int found_count = 0;
   19219   for (int i = 0; i < old_array->length(); i++) {
   19220     if (old_array->get(i) == *break_point_object) {
   19221       DCHECK(found_count == 0);
   19222       found_count++;
   19223     } else {
   19224       new_array->set(i - found_count, old_array->get(i));
   19225     }
   19226   }
   19227   // If the break point was found in the list change it.
   19228   if (found_count > 0) break_point_info->set_break_point_objects(*new_array);
   19229 }
   19230 
   19231 
   19232 // Add the specified break point object.
   19233 void BreakPointInfo::SetBreakPoint(Handle<BreakPointInfo> break_point_info,
   19234                                    Handle<Object> break_point_object) {
   19235   Isolate* isolate = break_point_info->GetIsolate();
   19236 
   19237   // If there was no break point objects before just set it.
   19238   if (break_point_info->break_point_objects()->IsUndefined()) {
   19239     break_point_info->set_break_point_objects(*break_point_object);
   19240     return;
   19241   }
   19242   // If the break point object is the same as before just ignore.
   19243   if (break_point_info->break_point_objects() == *break_point_object) return;
   19244   // If there was one break point object before replace with array.
   19245   if (!break_point_info->break_point_objects()->IsFixedArray()) {
   19246     Handle<FixedArray> array = isolate->factory()->NewFixedArray(2);
   19247     array->set(0, break_point_info->break_point_objects());
   19248     array->set(1, *break_point_object);
   19249     break_point_info->set_break_point_objects(*array);
   19250     return;
   19251   }
   19252   // If there was more than one break point before extend array.
   19253   Handle<FixedArray> old_array =
   19254       Handle<FixedArray>(
   19255           FixedArray::cast(break_point_info->break_point_objects()));
   19256   Handle<FixedArray> new_array =
   19257       isolate->factory()->NewFixedArray(old_array->length() + 1);
   19258   for (int i = 0; i < old_array->length(); i++) {
   19259     // If the break point was there before just ignore.
   19260     if (old_array->get(i) == *break_point_object) return;
   19261     new_array->set(i, old_array->get(i));
   19262   }
   19263   // Add the new break point.
   19264   new_array->set(old_array->length(), *break_point_object);
   19265   break_point_info->set_break_point_objects(*new_array);
   19266 }
   19267 
   19268 
   19269 bool BreakPointInfo::HasBreakPointObject(
   19270     Handle<BreakPointInfo> break_point_info,
   19271     Handle<Object> break_point_object) {
   19272   // No break point.
   19273   if (break_point_info->break_point_objects()->IsUndefined()) return false;
   19274   // Single break point.
   19275   if (!break_point_info->break_point_objects()->IsFixedArray()) {
   19276     return break_point_info->break_point_objects() == *break_point_object;
   19277   }
   19278   // Multiple break points.
   19279   FixedArray* array = FixedArray::cast(break_point_info->break_point_objects());
   19280   for (int i = 0; i < array->length(); i++) {
   19281     if (array->get(i) == *break_point_object) {
   19282       return true;
   19283     }
   19284   }
   19285   return false;
   19286 }
   19287 
   19288 
   19289 // Get the number of break points.
   19290 int BreakPointInfo::GetBreakPointCount() {
   19291   // No break point.
   19292   if (break_point_objects()->IsUndefined()) return 0;
   19293   // Single break point.
   19294   if (!break_point_objects()->IsFixedArray()) return 1;
   19295   // Multiple break points.
   19296   return FixedArray::cast(break_point_objects())->length();
   19297 }
   19298 
   19299 
   19300 // static
   19301 MaybeHandle<JSDate> JSDate::New(Handle<JSFunction> constructor,
   19302                                 Handle<JSReceiver> new_target, double tv) {
   19303   Isolate* const isolate = constructor->GetIsolate();
   19304   Handle<JSObject> result;
   19305   ASSIGN_RETURN_ON_EXCEPTION(isolate, result,
   19306                              JSObject::New(constructor, new_target), JSDate);
   19307   if (-DateCache::kMaxTimeInMs <= tv && tv <= DateCache::kMaxTimeInMs) {
   19308     tv = DoubleToInteger(tv) + 0.0;
   19309   } else {
   19310     tv = std::numeric_limits<double>::quiet_NaN();
   19311   }
   19312   Handle<Object> value = isolate->factory()->NewNumber(tv);
   19313   Handle<JSDate>::cast(result)->SetValue(*value, std::isnan(tv));
   19314   return Handle<JSDate>::cast(result);
   19315 }
   19316 
   19317 
   19318 // static
   19319 double JSDate::CurrentTimeValue(Isolate* isolate) {
   19320   if (FLAG_log_timer_events || FLAG_prof_cpp) LOG(isolate, CurrentTimeEvent());
   19321 
   19322   // According to ECMA-262, section 15.9.1, page 117, the precision of
   19323   // the number in a Date object representing a particular instant in
   19324   // time is milliseconds. Therefore, we floor the result of getting
   19325   // the OS time.
   19326   return Floor(FLAG_verify_predictable
   19327                    ? isolate->heap()->MonotonicallyIncreasingTimeInMs()
   19328                    : base::OS::TimeCurrentMillis());
   19329 }
   19330 
   19331 
   19332 // static
   19333 Object* JSDate::GetField(Object* object, Smi* index) {
   19334   return JSDate::cast(object)->DoGetField(
   19335       static_cast<FieldIndex>(index->value()));
   19336 }
   19337 
   19338 
   19339 Object* JSDate::DoGetField(FieldIndex index) {
   19340   DCHECK(index != kDateValue);
   19341 
   19342   DateCache* date_cache = GetIsolate()->date_cache();
   19343 
   19344   if (index < kFirstUncachedField) {
   19345     Object* stamp = cache_stamp();
   19346     if (stamp != date_cache->stamp() && stamp->IsSmi()) {
   19347       // Since the stamp is not NaN, the value is also not NaN.
   19348       int64_t local_time_ms =
   19349           date_cache->ToLocal(static_cast<int64_t>(value()->Number()));
   19350       SetCachedFields(local_time_ms, date_cache);
   19351     }
   19352     switch (index) {
   19353       case kYear: return year();
   19354       case kMonth: return month();
   19355       case kDay: return day();
   19356       case kWeekday: return weekday();
   19357       case kHour: return hour();
   19358       case kMinute: return min();
   19359       case kSecond: return sec();
   19360       default: UNREACHABLE();
   19361     }
   19362   }
   19363 
   19364   if (index >= kFirstUTCField) {
   19365     return GetUTCField(index, value()->Number(), date_cache);
   19366   }
   19367 
   19368   double time = value()->Number();
   19369   if (std::isnan(time)) return GetIsolate()->heap()->nan_value();
   19370 
   19371   int64_t local_time_ms = date_cache->ToLocal(static_cast<int64_t>(time));
   19372   int days = DateCache::DaysFromTime(local_time_ms);
   19373 
   19374   if (index == kDays) return Smi::FromInt(days);
   19375 
   19376   int time_in_day_ms = DateCache::TimeInDay(local_time_ms, days);
   19377   if (index == kMillisecond) return Smi::FromInt(time_in_day_ms % 1000);
   19378   DCHECK(index == kTimeInDay);
   19379   return Smi::FromInt(time_in_day_ms);
   19380 }
   19381 
   19382 
   19383 Object* JSDate::GetUTCField(FieldIndex index,
   19384                             double value,
   19385                             DateCache* date_cache) {
   19386   DCHECK(index >= kFirstUTCField);
   19387 
   19388   if (std::isnan(value)) return GetIsolate()->heap()->nan_value();
   19389 
   19390   int64_t time_ms = static_cast<int64_t>(value);
   19391 
   19392   if (index == kTimezoneOffset) {
   19393     return Smi::FromInt(date_cache->TimezoneOffset(time_ms));
   19394   }
   19395 
   19396   int days = DateCache::DaysFromTime(time_ms);
   19397 
   19398   if (index == kWeekdayUTC) return Smi::FromInt(date_cache->Weekday(days));
   19399 
   19400   if (index <= kDayUTC) {
   19401     int year, month, day;
   19402     date_cache->YearMonthDayFromDays(days, &year, &month, &day);
   19403     if (index == kYearUTC) return Smi::FromInt(year);
   19404     if (index == kMonthUTC) return Smi::FromInt(month);
   19405     DCHECK(index == kDayUTC);
   19406     return Smi::FromInt(day);
   19407   }
   19408 
   19409   int time_in_day_ms = DateCache::TimeInDay(time_ms, days);
   19410   switch (index) {
   19411     case kHourUTC: return Smi::FromInt(time_in_day_ms / (60 * 60 * 1000));
   19412     case kMinuteUTC: return Smi::FromInt((time_in_day_ms / (60 * 1000)) % 60);
   19413     case kSecondUTC: return Smi::FromInt((time_in_day_ms / 1000) % 60);
   19414     case kMillisecondUTC: return Smi::FromInt(time_in_day_ms % 1000);
   19415     case kDaysUTC: return Smi::FromInt(days);
   19416     case kTimeInDayUTC: return Smi::FromInt(time_in_day_ms);
   19417     default: UNREACHABLE();
   19418   }
   19419 
   19420   UNREACHABLE();
   19421   return NULL;
   19422 }
   19423 
   19424 
   19425 // static
   19426 Handle<Object> JSDate::SetValue(Handle<JSDate> date, double v) {
   19427   Isolate* const isolate = date->GetIsolate();
   19428   Handle<Object> value = isolate->factory()->NewNumber(v);
   19429   bool value_is_nan = std::isnan(v);
   19430   date->SetValue(*value, value_is_nan);
   19431   return value;
   19432 }
   19433 
   19434 
   19435 void JSDate::SetValue(Object* value, bool is_value_nan) {
   19436   set_value(value);
   19437   if (is_value_nan) {
   19438     HeapNumber* nan = GetIsolate()->heap()->nan_value();
   19439     set_cache_stamp(nan, SKIP_WRITE_BARRIER);
   19440     set_year(nan, SKIP_WRITE_BARRIER);
   19441     set_month(nan, SKIP_WRITE_BARRIER);
   19442     set_day(nan, SKIP_WRITE_BARRIER);
   19443     set_hour(nan, SKIP_WRITE_BARRIER);
   19444     set_min(nan, SKIP_WRITE_BARRIER);
   19445     set_sec(nan, SKIP_WRITE_BARRIER);
   19446     set_weekday(nan, SKIP_WRITE_BARRIER);
   19447   } else {
   19448     set_cache_stamp(Smi::FromInt(DateCache::kInvalidStamp), SKIP_WRITE_BARRIER);
   19449   }
   19450 }
   19451 
   19452 
   19453 // static
   19454 MaybeHandle<Object> JSDate::ToPrimitive(Handle<JSReceiver> receiver,
   19455                                         Handle<Object> hint) {
   19456   Isolate* const isolate = receiver->GetIsolate();
   19457   if (hint->IsString()) {
   19458     Handle<String> hint_string = Handle<String>::cast(hint);
   19459     if (hint_string->Equals(isolate->heap()->number_string())) {
   19460       return JSReceiver::OrdinaryToPrimitive(receiver,
   19461                                              OrdinaryToPrimitiveHint::kNumber);
   19462     }
   19463     if (hint_string->Equals(isolate->heap()->default_string()) ||
   19464         hint_string->Equals(isolate->heap()->string_string())) {
   19465       return JSReceiver::OrdinaryToPrimitive(receiver,
   19466                                              OrdinaryToPrimitiveHint::kString);
   19467     }
   19468   }
   19469   THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kInvalidHint, hint),
   19470                   Object);
   19471 }
   19472 
   19473 
   19474 void JSDate::SetCachedFields(int64_t local_time_ms, DateCache* date_cache) {
   19475   int days = DateCache::DaysFromTime(local_time_ms);
   19476   int time_in_day_ms = DateCache::TimeInDay(local_time_ms, days);
   19477   int year, month, day;
   19478   date_cache->YearMonthDayFromDays(days, &year, &month, &day);
   19479   int weekday = date_cache->Weekday(days);
   19480   int hour = time_in_day_ms / (60 * 60 * 1000);
   19481   int min = (time_in_day_ms / (60 * 1000)) % 60;
   19482   int sec = (time_in_day_ms / 1000) % 60;
   19483   set_cache_stamp(date_cache->stamp());
   19484   set_year(Smi::FromInt(year), SKIP_WRITE_BARRIER);
   19485   set_month(Smi::FromInt(month), SKIP_WRITE_BARRIER);
   19486   set_day(Smi::FromInt(day), SKIP_WRITE_BARRIER);
   19487   set_weekday(Smi::FromInt(weekday), SKIP_WRITE_BARRIER);
   19488   set_hour(Smi::FromInt(hour), SKIP_WRITE_BARRIER);
   19489   set_min(Smi::FromInt(min), SKIP_WRITE_BARRIER);
   19490   set_sec(Smi::FromInt(sec), SKIP_WRITE_BARRIER);
   19491 }
   19492 
   19493 
   19494 void JSArrayBuffer::Neuter() {
   19495   CHECK(is_neuterable());
   19496   CHECK(is_external());
   19497   set_backing_store(NULL);
   19498   set_byte_length(Smi::FromInt(0));
   19499   set_was_neutered(true);
   19500 }
   19501 
   19502 
   19503 void JSArrayBuffer::Setup(Handle<JSArrayBuffer> array_buffer, Isolate* isolate,
   19504                           bool is_external, void* data, size_t allocated_length,
   19505                           SharedFlag shared) {
   19506   DCHECK(array_buffer->GetInternalFieldCount() ==
   19507          v8::ArrayBuffer::kInternalFieldCount);
   19508   for (int i = 0; i < v8::ArrayBuffer::kInternalFieldCount; i++) {
   19509     array_buffer->SetInternalField(i, Smi::FromInt(0));
   19510   }
   19511   array_buffer->set_bit_field(0);
   19512   array_buffer->set_is_external(is_external);
   19513   array_buffer->set_is_neuterable(shared == SharedFlag::kNotShared);
   19514   array_buffer->set_is_shared(shared == SharedFlag::kShared);
   19515 
   19516   Handle<Object> byte_length =
   19517       isolate->factory()->NewNumberFromSize(allocated_length);
   19518   CHECK(byte_length->IsSmi() || byte_length->IsHeapNumber());
   19519   array_buffer->set_byte_length(*byte_length);
   19520   // Initialize backing store at last to avoid handling of |JSArrayBuffers| that
   19521   // are currently being constructed in the |ArrayBufferTracker|. The
   19522   // registration method below handles the case of registering a buffer that has
   19523   // already been promoted.
   19524   array_buffer->set_backing_store(data);
   19525 
   19526   if (data && !is_external) {
   19527     isolate->heap()->RegisterNewArrayBuffer(*array_buffer);
   19528   }
   19529 }
   19530 
   19531 
   19532 bool JSArrayBuffer::SetupAllocatingData(Handle<JSArrayBuffer> array_buffer,
   19533                                         Isolate* isolate,
   19534                                         size_t allocated_length,
   19535                                         bool initialize, SharedFlag shared) {
   19536   void* data;
   19537   CHECK(isolate->array_buffer_allocator() != NULL);
   19538   // Prevent creating array buffers when serializing.
   19539   DCHECK(!isolate->serializer_enabled());
   19540   if (allocated_length != 0) {
   19541     if (initialize) {
   19542       data = isolate->array_buffer_allocator()->Allocate(allocated_length);
   19543     } else {
   19544       data = isolate->array_buffer_allocator()->AllocateUninitialized(
   19545           allocated_length);
   19546     }
   19547     if (data == NULL) return false;
   19548   } else {
   19549     data = NULL;
   19550   }
   19551 
   19552   JSArrayBuffer::Setup(array_buffer, isolate, false, data, allocated_length,
   19553                        shared);
   19554   return true;
   19555 }
   19556 
   19557 
   19558 Handle<JSArrayBuffer> JSTypedArray::MaterializeArrayBuffer(
   19559     Handle<JSTypedArray> typed_array) {
   19560 
   19561   Handle<Map> map(typed_array->map());
   19562   Isolate* isolate = typed_array->GetIsolate();
   19563 
   19564   DCHECK(IsFixedTypedArrayElementsKind(map->elements_kind()));
   19565 
   19566   Handle<FixedTypedArrayBase> fixed_typed_array(
   19567       FixedTypedArrayBase::cast(typed_array->elements()));
   19568 
   19569   Handle<JSArrayBuffer> buffer(JSArrayBuffer::cast(typed_array->buffer()),
   19570                                isolate);
   19571   void* backing_store =
   19572       isolate->array_buffer_allocator()->AllocateUninitialized(
   19573           fixed_typed_array->DataSize());
   19574   buffer->set_is_external(false);
   19575   DCHECK(buffer->byte_length()->IsSmi() ||
   19576          buffer->byte_length()->IsHeapNumber());
   19577   DCHECK(NumberToInt32(buffer->byte_length()) == fixed_typed_array->DataSize());
   19578   // Initialize backing store at last to avoid handling of |JSArrayBuffers| that
   19579   // are currently being constructed in the |ArrayBufferTracker|. The
   19580   // registration method below handles the case of registering a buffer that has
   19581   // already been promoted.
   19582   buffer->set_backing_store(backing_store);
   19583   isolate->heap()->RegisterNewArrayBuffer(*buffer);
   19584   memcpy(buffer->backing_store(),
   19585          fixed_typed_array->DataPtr(),
   19586          fixed_typed_array->DataSize());
   19587   Handle<FixedTypedArrayBase> new_elements =
   19588       isolate->factory()->NewFixedTypedArrayWithExternalPointer(
   19589           fixed_typed_array->length(), typed_array->type(),
   19590           static_cast<uint8_t*>(buffer->backing_store()));
   19591 
   19592   typed_array->set_elements(*new_elements);
   19593 
   19594   return buffer;
   19595 }
   19596 
   19597 
   19598 Handle<JSArrayBuffer> JSTypedArray::GetBuffer() {
   19599   Handle<JSArrayBuffer> array_buffer(JSArrayBuffer::cast(buffer()),
   19600                                      GetIsolate());
   19601   if (array_buffer->was_neutered() ||
   19602       array_buffer->backing_store() != nullptr) {
   19603     return array_buffer;
   19604   }
   19605   Handle<JSTypedArray> self(this);
   19606   return MaterializeArrayBuffer(self);
   19607 }
   19608 
   19609 
   19610 Handle<PropertyCell> PropertyCell::InvalidateEntry(
   19611     Handle<GlobalDictionary> dictionary, int entry) {
   19612   Isolate* isolate = dictionary->GetIsolate();
   19613   // Swap with a copy.
   19614   DCHECK(dictionary->ValueAt(entry)->IsPropertyCell());
   19615   Handle<PropertyCell> cell(PropertyCell::cast(dictionary->ValueAt(entry)));
   19616   auto new_cell = isolate->factory()->NewPropertyCell();
   19617   new_cell->set_value(cell->value());
   19618   dictionary->ValueAtPut(entry, *new_cell);
   19619   bool is_the_hole = cell->value()->IsTheHole();
   19620   // Cell is officially mutable henceforth.
   19621   PropertyDetails details = cell->property_details();
   19622   details = details.set_cell_type(is_the_hole ? PropertyCellType::kInvalidated
   19623                                               : PropertyCellType::kMutable);
   19624   new_cell->set_property_details(details);
   19625   // Old cell is ready for invalidation.
   19626   if (is_the_hole) {
   19627     cell->set_value(isolate->heap()->undefined_value());
   19628   } else {
   19629     cell->set_value(isolate->heap()->the_hole_value());
   19630   }
   19631   details = details.set_cell_type(PropertyCellType::kInvalidated);
   19632   cell->set_property_details(details);
   19633   cell->dependent_code()->DeoptimizeDependentCodeGroup(
   19634       isolate, DependentCode::kPropertyCellChangedGroup);
   19635   return new_cell;
   19636 }
   19637 
   19638 
   19639 PropertyCellConstantType PropertyCell::GetConstantType() {
   19640   if (value()->IsSmi()) return PropertyCellConstantType::kSmi;
   19641   return PropertyCellConstantType::kStableMap;
   19642 }
   19643 
   19644 
   19645 static bool RemainsConstantType(Handle<PropertyCell> cell,
   19646                                 Handle<Object> value) {
   19647   // TODO(dcarney): double->smi and smi->double transition from kConstant
   19648   if (cell->value()->IsSmi() && value->IsSmi()) {
   19649     return true;
   19650   } else if (cell->value()->IsHeapObject() && value->IsHeapObject()) {
   19651     return HeapObject::cast(cell->value())->map() ==
   19652                HeapObject::cast(*value)->map() &&
   19653            HeapObject::cast(*value)->map()->is_stable();
   19654   }
   19655   return false;
   19656 }
   19657 
   19658 
   19659 PropertyCellType PropertyCell::UpdatedType(Handle<PropertyCell> cell,
   19660                                            Handle<Object> value,
   19661                                            PropertyDetails details) {
   19662   PropertyCellType type = details.cell_type();
   19663   DCHECK(!value->IsTheHole());
   19664   if (cell->value()->IsTheHole()) {
   19665     switch (type) {
   19666       // Only allow a cell to transition once into constant state.
   19667       case PropertyCellType::kUninitialized:
   19668         if (value->IsUndefined()) return PropertyCellType::kUndefined;
   19669         return PropertyCellType::kConstant;
   19670       case PropertyCellType::kInvalidated:
   19671         return PropertyCellType::kMutable;
   19672       default:
   19673         UNREACHABLE();
   19674         return PropertyCellType::kMutable;
   19675     }
   19676   }
   19677   switch (type) {
   19678     case PropertyCellType::kUndefined:
   19679       return PropertyCellType::kConstant;
   19680     case PropertyCellType::kConstant:
   19681       if (*value == cell->value()) return PropertyCellType::kConstant;
   19682     // Fall through.
   19683     case PropertyCellType::kConstantType:
   19684       if (RemainsConstantType(cell, value)) {
   19685         return PropertyCellType::kConstantType;
   19686       }
   19687     // Fall through.
   19688     case PropertyCellType::kMutable:
   19689       return PropertyCellType::kMutable;
   19690   }
   19691   UNREACHABLE();
   19692   return PropertyCellType::kMutable;
   19693 }
   19694 
   19695 
   19696 void PropertyCell::UpdateCell(Handle<GlobalDictionary> dictionary, int entry,
   19697                               Handle<Object> value, PropertyDetails details) {
   19698   DCHECK(!value->IsTheHole());
   19699   DCHECK(dictionary->ValueAt(entry)->IsPropertyCell());
   19700   Handle<PropertyCell> cell(PropertyCell::cast(dictionary->ValueAt(entry)));
   19701   const PropertyDetails original_details = cell->property_details();
   19702   // Data accesses could be cached in ics or optimized code.
   19703   bool invalidate =
   19704       original_details.kind() == kData && details.kind() == kAccessor;
   19705   int index = original_details.dictionary_index();
   19706   PropertyCellType old_type = original_details.cell_type();
   19707   // Preserve the enumeration index unless the property was deleted or never
   19708   // initialized.
   19709   if (cell->value()->IsTheHole()) {
   19710     index = dictionary->NextEnumerationIndex();
   19711     dictionary->SetNextEnumerationIndex(index + 1);
   19712     // Negative lookup cells must be invalidated.
   19713     invalidate = true;
   19714   }
   19715   DCHECK(index > 0);
   19716   details = details.set_index(index);
   19717 
   19718   PropertyCellType new_type = UpdatedType(cell, value, original_details);
   19719   if (invalidate) cell = PropertyCell::InvalidateEntry(dictionary, entry);
   19720 
   19721   // Install new property details and cell value.
   19722   details = details.set_cell_type(new_type);
   19723   cell->set_property_details(details);
   19724   cell->set_value(*value);
   19725 
   19726   // Deopt when transitioning from a constant type.
   19727   if (!invalidate && (old_type != new_type ||
   19728                       original_details.IsReadOnly() != details.IsReadOnly())) {
   19729     Isolate* isolate = dictionary->GetIsolate();
   19730     cell->dependent_code()->DeoptimizeDependentCodeGroup(
   19731         isolate, DependentCode::kPropertyCellChangedGroup);
   19732   }
   19733 }
   19734 
   19735 
   19736 // static
   19737 void PropertyCell::SetValueWithInvalidation(Handle<PropertyCell> cell,
   19738                                             Handle<Object> new_value) {
   19739   if (cell->value() != *new_value) {
   19740     cell->set_value(*new_value);
   19741     Isolate* isolate = cell->GetIsolate();
   19742     cell->dependent_code()->DeoptimizeDependentCodeGroup(
   19743         isolate, DependentCode::kPropertyCellChangedGroup);
   19744   }
   19745 }
   19746 
   19747 }  // namespace internal
   19748 }  // namespace v8
   19749