Home | History | Annotate | Download | only in SelectionDAG
      1 //===----- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler --===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements bottom-up and top-down register pressure reduction list
     11 // schedulers, using standard algorithms.  The basic approach uses a priority
     12 // queue of available nodes to schedule.  One at a time, nodes are taken from
     13 // the priority queue (thus in priority order), checked for legality to
     14 // schedule, and emitted if legal.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 
     18 #include "llvm/CodeGen/SchedulerRegistry.h"
     19 #include "ScheduleDAGSDNodes.h"
     20 #include "llvm/ADT/STLExtras.h"
     21 #include "llvm/ADT/SmallSet.h"
     22 #include "llvm/ADT/Statistic.h"
     23 #include "llvm/CodeGen/MachineRegisterInfo.h"
     24 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
     25 #include "llvm/CodeGen/SelectionDAGISel.h"
     26 #include "llvm/IR/DataLayout.h"
     27 #include "llvm/IR/InlineAsm.h"
     28 #include "llvm/Support/Debug.h"
     29 #include "llvm/Support/ErrorHandling.h"
     30 #include "llvm/Support/raw_ostream.h"
     31 #include "llvm/Target/TargetInstrInfo.h"
     32 #include "llvm/Target/TargetLowering.h"
     33 #include "llvm/Target/TargetRegisterInfo.h"
     34 #include "llvm/Target/TargetSubtargetInfo.h"
     35 #include <climits>
     36 using namespace llvm;
     37 
     38 #define DEBUG_TYPE "pre-RA-sched"
     39 
     40 STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
     41 STATISTIC(NumUnfolds,    "Number of nodes unfolded");
     42 STATISTIC(NumDups,       "Number of duplicated nodes");
     43 STATISTIC(NumPRCopies,   "Number of physical register copies");
     44 
     45 static RegisterScheduler
     46   burrListDAGScheduler("list-burr",
     47                        "Bottom-up register reduction list scheduling",
     48                        createBURRListDAGScheduler);
     49 static RegisterScheduler
     50   sourceListDAGScheduler("source",
     51                          "Similar to list-burr but schedules in source "
     52                          "order when possible",
     53                          createSourceListDAGScheduler);
     54 
     55 static RegisterScheduler
     56   hybridListDAGScheduler("list-hybrid",
     57                          "Bottom-up register pressure aware list scheduling "
     58                          "which tries to balance latency and register pressure",
     59                          createHybridListDAGScheduler);
     60 
     61 static RegisterScheduler
     62   ILPListDAGScheduler("list-ilp",
     63                       "Bottom-up register pressure aware list scheduling "
     64                       "which tries to balance ILP and register pressure",
     65                       createILPListDAGScheduler);
     66 
     67 static cl::opt<bool> DisableSchedCycles(
     68   "disable-sched-cycles", cl::Hidden, cl::init(false),
     69   cl::desc("Disable cycle-level precision during preRA scheduling"));
     70 
     71 // Temporary sched=list-ilp flags until the heuristics are robust.
     72 // Some options are also available under sched=list-hybrid.
     73 static cl::opt<bool> DisableSchedRegPressure(
     74   "disable-sched-reg-pressure", cl::Hidden, cl::init(false),
     75   cl::desc("Disable regpressure priority in sched=list-ilp"));
     76 static cl::opt<bool> DisableSchedLiveUses(
     77   "disable-sched-live-uses", cl::Hidden, cl::init(true),
     78   cl::desc("Disable live use priority in sched=list-ilp"));
     79 static cl::opt<bool> DisableSchedVRegCycle(
     80   "disable-sched-vrcycle", cl::Hidden, cl::init(false),
     81   cl::desc("Disable virtual register cycle interference checks"));
     82 static cl::opt<bool> DisableSchedPhysRegJoin(
     83   "disable-sched-physreg-join", cl::Hidden, cl::init(false),
     84   cl::desc("Disable physreg def-use affinity"));
     85 static cl::opt<bool> DisableSchedStalls(
     86   "disable-sched-stalls", cl::Hidden, cl::init(true),
     87   cl::desc("Disable no-stall priority in sched=list-ilp"));
     88 static cl::opt<bool> DisableSchedCriticalPath(
     89   "disable-sched-critical-path", cl::Hidden, cl::init(false),
     90   cl::desc("Disable critical path priority in sched=list-ilp"));
     91 static cl::opt<bool> DisableSchedHeight(
     92   "disable-sched-height", cl::Hidden, cl::init(false),
     93   cl::desc("Disable scheduled-height priority in sched=list-ilp"));
     94 static cl::opt<bool> Disable2AddrHack(
     95   "disable-2addr-hack", cl::Hidden, cl::init(true),
     96   cl::desc("Disable scheduler's two-address hack"));
     97 
     98 static cl::opt<int> MaxReorderWindow(
     99   "max-sched-reorder", cl::Hidden, cl::init(6),
    100   cl::desc("Number of instructions to allow ahead of the critical path "
    101            "in sched=list-ilp"));
    102 
    103 static cl::opt<unsigned> AvgIPC(
    104   "sched-avg-ipc", cl::Hidden, cl::init(1),
    105   cl::desc("Average inst/cycle whan no target itinerary exists."));
    106 
    107 namespace {
    108 //===----------------------------------------------------------------------===//
    109 /// ScheduleDAGRRList - The actual register reduction list scheduler
    110 /// implementation.  This supports both top-down and bottom-up scheduling.
    111 ///
    112 class ScheduleDAGRRList : public ScheduleDAGSDNodes {
    113 private:
    114   /// NeedLatency - True if the scheduler will make use of latency information.
    115   ///
    116   bool NeedLatency;
    117 
    118   /// AvailableQueue - The priority queue to use for the available SUnits.
    119   SchedulingPriorityQueue *AvailableQueue;
    120 
    121   /// PendingQueue - This contains all of the instructions whose operands have
    122   /// been issued, but their results are not ready yet (due to the latency of
    123   /// the operation).  Once the operands becomes available, the instruction is
    124   /// added to the AvailableQueue.
    125   std::vector<SUnit*> PendingQueue;
    126 
    127   /// HazardRec - The hazard recognizer to use.
    128   ScheduleHazardRecognizer *HazardRec;
    129 
    130   /// CurCycle - The current scheduler state corresponds to this cycle.
    131   unsigned CurCycle;
    132 
    133   /// MinAvailableCycle - Cycle of the soonest available instruction.
    134   unsigned MinAvailableCycle;
    135 
    136   /// IssueCount - Count instructions issued in this cycle
    137   /// Currently valid only for bottom-up scheduling.
    138   unsigned IssueCount;
    139 
    140   /// LiveRegDefs - A set of physical registers and their definition
    141   /// that are "live". These nodes must be scheduled before any other nodes that
    142   /// modifies the registers can be scheduled.
    143   unsigned NumLiveRegs;
    144   std::unique_ptr<SUnit*[]> LiveRegDefs;
    145   std::unique_ptr<SUnit*[]> LiveRegGens;
    146 
    147   // Collect interferences between physical register use/defs.
    148   // Each interference is an SUnit and set of physical registers.
    149   SmallVector<SUnit*, 4> Interferences;
    150   typedef DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMapT;
    151   LRegsMapT LRegsMap;
    152 
    153   /// Topo - A topological ordering for SUnits which permits fast IsReachable
    154   /// and similar queries.
    155   ScheduleDAGTopologicalSort Topo;
    156 
    157   // Hack to keep track of the inverse of FindCallSeqStart without more crazy
    158   // DAG crawling.
    159   DenseMap<SUnit*, SUnit*> CallSeqEndForStart;
    160 
    161 public:
    162   ScheduleDAGRRList(MachineFunction &mf, bool needlatency,
    163                     SchedulingPriorityQueue *availqueue,
    164                     CodeGenOpt::Level OptLevel)
    165     : ScheduleDAGSDNodes(mf),
    166       NeedLatency(needlatency), AvailableQueue(availqueue), CurCycle(0),
    167       Topo(SUnits, nullptr) {
    168 
    169     const TargetSubtargetInfo &STI = mf.getSubtarget();
    170     if (DisableSchedCycles || !NeedLatency)
    171       HazardRec = new ScheduleHazardRecognizer();
    172     else
    173       HazardRec = STI.getInstrInfo()->CreateTargetHazardRecognizer(&STI, this);
    174   }
    175 
    176   ~ScheduleDAGRRList() override {
    177     delete HazardRec;
    178     delete AvailableQueue;
    179   }
    180 
    181   void Schedule() override;
    182 
    183   ScheduleHazardRecognizer *getHazardRec() { return HazardRec; }
    184 
    185   /// IsReachable - Checks if SU is reachable from TargetSU.
    186   bool IsReachable(const SUnit *SU, const SUnit *TargetSU) {
    187     return Topo.IsReachable(SU, TargetSU);
    188   }
    189 
    190   /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
    191   /// create a cycle.
    192   bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
    193     return Topo.WillCreateCycle(SU, TargetSU);
    194   }
    195 
    196   /// AddPred - adds a predecessor edge to SUnit SU.
    197   /// This returns true if this is a new predecessor.
    198   /// Updates the topological ordering if required.
    199   void AddPred(SUnit *SU, const SDep &D) {
    200     Topo.AddPred(SU, D.getSUnit());
    201     SU->addPred(D);
    202   }
    203 
    204   /// RemovePred - removes a predecessor edge from SUnit SU.
    205   /// This returns true if an edge was removed.
    206   /// Updates the topological ordering if required.
    207   void RemovePred(SUnit *SU, const SDep &D) {
    208     Topo.RemovePred(SU, D.getSUnit());
    209     SU->removePred(D);
    210   }
    211 
    212 private:
    213   bool isReady(SUnit *SU) {
    214     return DisableSchedCycles || !AvailableQueue->hasReadyFilter() ||
    215       AvailableQueue->isReady(SU);
    216   }
    217 
    218   void ReleasePred(SUnit *SU, const SDep *PredEdge);
    219   void ReleasePredecessors(SUnit *SU);
    220   void ReleasePending();
    221   void AdvanceToCycle(unsigned NextCycle);
    222   void AdvancePastStalls(SUnit *SU);
    223   void EmitNode(SUnit *SU);
    224   void ScheduleNodeBottomUp(SUnit*);
    225   void CapturePred(SDep *PredEdge);
    226   void UnscheduleNodeBottomUp(SUnit*);
    227   void RestoreHazardCheckerBottomUp();
    228   void BacktrackBottomUp(SUnit*, SUnit*);
    229   SUnit *CopyAndMoveSuccessors(SUnit*);
    230   void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
    231                                 const TargetRegisterClass*,
    232                                 const TargetRegisterClass*,
    233                                 SmallVectorImpl<SUnit*>&);
    234   bool DelayForLiveRegsBottomUp(SUnit*, SmallVectorImpl<unsigned>&);
    235 
    236   void releaseInterferences(unsigned Reg = 0);
    237 
    238   SUnit *PickNodeToScheduleBottomUp();
    239   void ListScheduleBottomUp();
    240 
    241   /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
    242   /// Updates the topological ordering if required.
    243   SUnit *CreateNewSUnit(SDNode *N) {
    244     unsigned NumSUnits = SUnits.size();
    245     SUnit *NewNode = newSUnit(N);
    246     // Update the topological ordering.
    247     if (NewNode->NodeNum >= NumSUnits)
    248       Topo.InitDAGTopologicalSorting();
    249     return NewNode;
    250   }
    251 
    252   /// CreateClone - Creates a new SUnit from an existing one.
    253   /// Updates the topological ordering if required.
    254   SUnit *CreateClone(SUnit *N) {
    255     unsigned NumSUnits = SUnits.size();
    256     SUnit *NewNode = Clone(N);
    257     // Update the topological ordering.
    258     if (NewNode->NodeNum >= NumSUnits)
    259       Topo.InitDAGTopologicalSorting();
    260     return NewNode;
    261   }
    262 
    263   /// forceUnitLatencies - Register-pressure-reducing scheduling doesn't
    264   /// need actual latency information but the hybrid scheduler does.
    265   bool forceUnitLatencies() const override {
    266     return !NeedLatency;
    267   }
    268 };
    269 }  // end anonymous namespace
    270 
    271 /// GetCostForDef - Looks up the register class and cost for a given definition.
    272 /// Typically this just means looking up the representative register class,
    273 /// but for untyped values (MVT::Untyped) it means inspecting the node's
    274 /// opcode to determine what register class is being generated.
    275 static void GetCostForDef(const ScheduleDAGSDNodes::RegDefIter &RegDefPos,
    276                           const TargetLowering *TLI,
    277                           const TargetInstrInfo *TII,
    278                           const TargetRegisterInfo *TRI,
    279                           unsigned &RegClass, unsigned &Cost,
    280                           const MachineFunction &MF) {
    281   MVT VT = RegDefPos.GetValue();
    282 
    283   // Special handling for untyped values.  These values can only come from
    284   // the expansion of custom DAG-to-DAG patterns.
    285   if (VT == MVT::Untyped) {
    286     const SDNode *Node = RegDefPos.GetNode();
    287 
    288     // Special handling for CopyFromReg of untyped values.
    289     if (!Node->isMachineOpcode() && Node->getOpcode() == ISD::CopyFromReg) {
    290       unsigned Reg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
    291       const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(Reg);
    292       RegClass = RC->getID();
    293       Cost = 1;
    294       return;
    295     }
    296 
    297     unsigned Opcode = Node->getMachineOpcode();
    298     if (Opcode == TargetOpcode::REG_SEQUENCE) {
    299       unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
    300       const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
    301       RegClass = RC->getID();
    302       Cost = 1;
    303       return;
    304     }
    305 
    306     unsigned Idx = RegDefPos.GetIdx();
    307     const MCInstrDesc Desc = TII->get(Opcode);
    308     const TargetRegisterClass *RC = TII->getRegClass(Desc, Idx, TRI, MF);
    309     RegClass = RC->getID();
    310     // FIXME: Cost arbitrarily set to 1 because there doesn't seem to be a
    311     // better way to determine it.
    312     Cost = 1;
    313   } else {
    314     RegClass = TLI->getRepRegClassFor(VT)->getID();
    315     Cost = TLI->getRepRegClassCostFor(VT);
    316   }
    317 }
    318 
    319 /// Schedule - Schedule the DAG using list scheduling.
    320 void ScheduleDAGRRList::Schedule() {
    321   DEBUG(dbgs()
    322         << "********** List Scheduling BB#" << BB->getNumber()
    323         << " '" << BB->getName() << "' **********\n");
    324 
    325   CurCycle = 0;
    326   IssueCount = 0;
    327   MinAvailableCycle = DisableSchedCycles ? 0 : UINT_MAX;
    328   NumLiveRegs = 0;
    329   // Allocate slots for each physical register, plus one for a special register
    330   // to track the virtual resource of a calling sequence.
    331   LiveRegDefs.reset(new SUnit*[TRI->getNumRegs() + 1]());
    332   LiveRegGens.reset(new SUnit*[TRI->getNumRegs() + 1]());
    333   CallSeqEndForStart.clear();
    334   assert(Interferences.empty() && LRegsMap.empty() && "stale Interferences");
    335 
    336   // Build the scheduling graph.
    337   BuildSchedGraph(nullptr);
    338 
    339   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
    340           SUnits[su].dumpAll(this));
    341   Topo.InitDAGTopologicalSorting();
    342 
    343   AvailableQueue->initNodes(SUnits);
    344 
    345   HazardRec->Reset();
    346 
    347   // Execute the actual scheduling loop.
    348   ListScheduleBottomUp();
    349 
    350   AvailableQueue->releaseState();
    351 
    352   DEBUG({
    353       dbgs() << "*** Final schedule ***\n";
    354       dumpSchedule();
    355       dbgs() << '\n';
    356     });
    357 }
    358 
    359 //===----------------------------------------------------------------------===//
    360 //  Bottom-Up Scheduling
    361 //===----------------------------------------------------------------------===//
    362 
    363 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
    364 /// the AvailableQueue if the count reaches zero. Also update its cycle bound.
    365 void ScheduleDAGRRList::ReleasePred(SUnit *SU, const SDep *PredEdge) {
    366   SUnit *PredSU = PredEdge->getSUnit();
    367 
    368 #ifndef NDEBUG
    369   if (PredSU->NumSuccsLeft == 0) {
    370     dbgs() << "*** Scheduling failed! ***\n";
    371     PredSU->dump(this);
    372     dbgs() << " has been released too many times!\n";
    373     llvm_unreachable(nullptr);
    374   }
    375 #endif
    376   --PredSU->NumSuccsLeft;
    377 
    378   if (!forceUnitLatencies()) {
    379     // Updating predecessor's height. This is now the cycle when the
    380     // predecessor can be scheduled without causing a pipeline stall.
    381     PredSU->setHeightToAtLeast(SU->getHeight() + PredEdge->getLatency());
    382   }
    383 
    384   // If all the node's successors are scheduled, this node is ready
    385   // to be scheduled. Ignore the special EntrySU node.
    386   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
    387     PredSU->isAvailable = true;
    388 
    389     unsigned Height = PredSU->getHeight();
    390     if (Height < MinAvailableCycle)
    391       MinAvailableCycle = Height;
    392 
    393     if (isReady(PredSU)) {
    394       AvailableQueue->push(PredSU);
    395     }
    396     // CapturePred and others may have left the node in the pending queue, avoid
    397     // adding it twice.
    398     else if (!PredSU->isPending) {
    399       PredSU->isPending = true;
    400       PendingQueue.push_back(PredSU);
    401     }
    402   }
    403 }
    404 
    405 /// IsChainDependent - Test if Outer is reachable from Inner through
    406 /// chain dependencies.
    407 static bool IsChainDependent(SDNode *Outer, SDNode *Inner,
    408                              unsigned NestLevel,
    409                              const TargetInstrInfo *TII) {
    410   SDNode *N = Outer;
    411   for (;;) {
    412     if (N == Inner)
    413       return true;
    414     // For a TokenFactor, examine each operand. There may be multiple ways
    415     // to get to the CALLSEQ_BEGIN, but we need to find the path with the
    416     // most nesting in order to ensure that we find the corresponding match.
    417     if (N->getOpcode() == ISD::TokenFactor) {
    418       for (const SDValue &Op : N->op_values())
    419         if (IsChainDependent(Op.getNode(), Inner, NestLevel, TII))
    420           return true;
    421       return false;
    422     }
    423     // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
    424     if (N->isMachineOpcode()) {
    425       if (N->getMachineOpcode() ==
    426           (unsigned)TII->getCallFrameDestroyOpcode()) {
    427         ++NestLevel;
    428       } else if (N->getMachineOpcode() ==
    429                  (unsigned)TII->getCallFrameSetupOpcode()) {
    430         if (NestLevel == 0)
    431           return false;
    432         --NestLevel;
    433       }
    434     }
    435     // Otherwise, find the chain and continue climbing.
    436     for (const SDValue &Op : N->op_values())
    437       if (Op.getValueType() == MVT::Other) {
    438         N = Op.getNode();
    439         goto found_chain_operand;
    440       }
    441     return false;
    442   found_chain_operand:;
    443     if (N->getOpcode() == ISD::EntryToken)
    444       return false;
    445   }
    446 }
    447 
    448 /// FindCallSeqStart - Starting from the (lowered) CALLSEQ_END node, locate
    449 /// the corresponding (lowered) CALLSEQ_BEGIN node.
    450 ///
    451 /// NestLevel and MaxNested are used in recursion to indcate the current level
    452 /// of nesting of CALLSEQ_BEGIN and CALLSEQ_END pairs, as well as the maximum
    453 /// level seen so far.
    454 ///
    455 /// TODO: It would be better to give CALLSEQ_END an explicit operand to point
    456 /// to the corresponding CALLSEQ_BEGIN to avoid needing to search for it.
    457 static SDNode *
    458 FindCallSeqStart(SDNode *N, unsigned &NestLevel, unsigned &MaxNest,
    459                  const TargetInstrInfo *TII) {
    460   for (;;) {
    461     // For a TokenFactor, examine each operand. There may be multiple ways
    462     // to get to the CALLSEQ_BEGIN, but we need to find the path with the
    463     // most nesting in order to ensure that we find the corresponding match.
    464     if (N->getOpcode() == ISD::TokenFactor) {
    465       SDNode *Best = nullptr;
    466       unsigned BestMaxNest = MaxNest;
    467       for (const SDValue &Op : N->op_values()) {
    468         unsigned MyNestLevel = NestLevel;
    469         unsigned MyMaxNest = MaxNest;
    470         if (SDNode *New = FindCallSeqStart(Op.getNode(),
    471                                            MyNestLevel, MyMaxNest, TII))
    472           if (!Best || (MyMaxNest > BestMaxNest)) {
    473             Best = New;
    474             BestMaxNest = MyMaxNest;
    475           }
    476       }
    477       assert(Best);
    478       MaxNest = BestMaxNest;
    479       return Best;
    480     }
    481     // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
    482     if (N->isMachineOpcode()) {
    483       if (N->getMachineOpcode() ==
    484           (unsigned)TII->getCallFrameDestroyOpcode()) {
    485         ++NestLevel;
    486         MaxNest = std::max(MaxNest, NestLevel);
    487       } else if (N->getMachineOpcode() ==
    488                  (unsigned)TII->getCallFrameSetupOpcode()) {
    489         assert(NestLevel != 0);
    490         --NestLevel;
    491         if (NestLevel == 0)
    492           return N;
    493       }
    494     }
    495     // Otherwise, find the chain and continue climbing.
    496     for (const SDValue &Op : N->op_values())
    497       if (Op.getValueType() == MVT::Other) {
    498         N = Op.getNode();
    499         goto found_chain_operand;
    500       }
    501     return nullptr;
    502   found_chain_operand:;
    503     if (N->getOpcode() == ISD::EntryToken)
    504       return nullptr;
    505   }
    506 }
    507 
    508 /// Call ReleasePred for each predecessor, then update register live def/gen.
    509 /// Always update LiveRegDefs for a register dependence even if the current SU
    510 /// also defines the register. This effectively create one large live range
    511 /// across a sequence of two-address node. This is important because the
    512 /// entire chain must be scheduled together. Example:
    513 ///
    514 /// flags = (3) add
    515 /// flags = (2) addc flags
    516 /// flags = (1) addc flags
    517 ///
    518 /// results in
    519 ///
    520 /// LiveRegDefs[flags] = 3
    521 /// LiveRegGens[flags] = 1
    522 ///
    523 /// If (2) addc is unscheduled, then (1) addc must also be unscheduled to avoid
    524 /// interference on flags.
    525 void ScheduleDAGRRList::ReleasePredecessors(SUnit *SU) {
    526   // Bottom up: release predecessors
    527   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    528        I != E; ++I) {
    529     ReleasePred(SU, &*I);
    530     if (I->isAssignedRegDep()) {
    531       // This is a physical register dependency and it's impossible or
    532       // expensive to copy the register. Make sure nothing that can
    533       // clobber the register is scheduled between the predecessor and
    534       // this node.
    535       SUnit *RegDef = LiveRegDefs[I->getReg()]; (void)RegDef;
    536       assert((!RegDef || RegDef == SU || RegDef == I->getSUnit()) &&
    537              "interference on register dependence");
    538       LiveRegDefs[I->getReg()] = I->getSUnit();
    539       if (!LiveRegGens[I->getReg()]) {
    540         ++NumLiveRegs;
    541         LiveRegGens[I->getReg()] = SU;
    542       }
    543     }
    544   }
    545 
    546   // If we're scheduling a lowered CALLSEQ_END, find the corresponding
    547   // CALLSEQ_BEGIN. Inject an artificial physical register dependence between
    548   // these nodes, to prevent other calls from being interscheduled with them.
    549   unsigned CallResource = TRI->getNumRegs();
    550   if (!LiveRegDefs[CallResource])
    551     for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode())
    552       if (Node->isMachineOpcode() &&
    553           Node->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
    554         unsigned NestLevel = 0;
    555         unsigned MaxNest = 0;
    556         SDNode *N = FindCallSeqStart(Node, NestLevel, MaxNest, TII);
    557 
    558         SUnit *Def = &SUnits[N->getNodeId()];
    559         CallSeqEndForStart[Def] = SU;
    560 
    561         ++NumLiveRegs;
    562         LiveRegDefs[CallResource] = Def;
    563         LiveRegGens[CallResource] = SU;
    564         break;
    565       }
    566 }
    567 
    568 /// Check to see if any of the pending instructions are ready to issue.  If
    569 /// so, add them to the available queue.
    570 void ScheduleDAGRRList::ReleasePending() {
    571   if (DisableSchedCycles) {
    572     assert(PendingQueue.empty() && "pending instrs not allowed in this mode");
    573     return;
    574   }
    575 
    576   // If the available queue is empty, it is safe to reset MinAvailableCycle.
    577   if (AvailableQueue->empty())
    578     MinAvailableCycle = UINT_MAX;
    579 
    580   // Check to see if any of the pending instructions are ready to issue.  If
    581   // so, add them to the available queue.
    582   for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
    583     unsigned ReadyCycle = PendingQueue[i]->getHeight();
    584     if (ReadyCycle < MinAvailableCycle)
    585       MinAvailableCycle = ReadyCycle;
    586 
    587     if (PendingQueue[i]->isAvailable) {
    588       if (!isReady(PendingQueue[i]))
    589           continue;
    590       AvailableQueue->push(PendingQueue[i]);
    591     }
    592     PendingQueue[i]->isPending = false;
    593     PendingQueue[i] = PendingQueue.back();
    594     PendingQueue.pop_back();
    595     --i; --e;
    596   }
    597 }
    598 
    599 /// Move the scheduler state forward by the specified number of Cycles.
    600 void ScheduleDAGRRList::AdvanceToCycle(unsigned NextCycle) {
    601   if (NextCycle <= CurCycle)
    602     return;
    603 
    604   IssueCount = 0;
    605   AvailableQueue->setCurCycle(NextCycle);
    606   if (!HazardRec->isEnabled()) {
    607     // Bypass lots of virtual calls in case of long latency.
    608     CurCycle = NextCycle;
    609   }
    610   else {
    611     for (; CurCycle != NextCycle; ++CurCycle) {
    612       HazardRec->RecedeCycle();
    613     }
    614   }
    615   // FIXME: Instead of visiting the pending Q each time, set a dirty flag on the
    616   // available Q to release pending nodes at least once before popping.
    617   ReleasePending();
    618 }
    619 
    620 /// Move the scheduler state forward until the specified node's dependents are
    621 /// ready and can be scheduled with no resource conflicts.
    622 void ScheduleDAGRRList::AdvancePastStalls(SUnit *SU) {
    623   if (DisableSchedCycles)
    624     return;
    625 
    626   // FIXME: Nodes such as CopyFromReg probably should not advance the current
    627   // cycle. Otherwise, we can wrongly mask real stalls. If the non-machine node
    628   // has predecessors the cycle will be advanced when they are scheduled.
    629   // But given the crude nature of modeling latency though such nodes, we
    630   // currently need to treat these nodes like real instructions.
    631   // if (!SU->getNode() || !SU->getNode()->isMachineOpcode()) return;
    632 
    633   unsigned ReadyCycle = SU->getHeight();
    634 
    635   // Bump CurCycle to account for latency. We assume the latency of other
    636   // available instructions may be hidden by the stall (not a full pipe stall).
    637   // This updates the hazard recognizer's cycle before reserving resources for
    638   // this instruction.
    639   AdvanceToCycle(ReadyCycle);
    640 
    641   // Calls are scheduled in their preceding cycle, so don't conflict with
    642   // hazards from instructions after the call. EmitNode will reset the
    643   // scoreboard state before emitting the call.
    644   if (SU->isCall)
    645     return;
    646 
    647   // FIXME: For resource conflicts in very long non-pipelined stages, we
    648   // should probably skip ahead here to avoid useless scoreboard checks.
    649   int Stalls = 0;
    650   while (true) {
    651     ScheduleHazardRecognizer::HazardType HT =
    652       HazardRec->getHazardType(SU, -Stalls);
    653 
    654     if (HT == ScheduleHazardRecognizer::NoHazard)
    655       break;
    656 
    657     ++Stalls;
    658   }
    659   AdvanceToCycle(CurCycle + Stalls);
    660 }
    661 
    662 /// Record this SUnit in the HazardRecognizer.
    663 /// Does not update CurCycle.
    664 void ScheduleDAGRRList::EmitNode(SUnit *SU) {
    665   if (!HazardRec->isEnabled())
    666     return;
    667 
    668   // Check for phys reg copy.
    669   if (!SU->getNode())
    670     return;
    671 
    672   switch (SU->getNode()->getOpcode()) {
    673   default:
    674     assert(SU->getNode()->isMachineOpcode() &&
    675            "This target-independent node should not be scheduled.");
    676     break;
    677   case ISD::MERGE_VALUES:
    678   case ISD::TokenFactor:
    679   case ISD::LIFETIME_START:
    680   case ISD::LIFETIME_END:
    681   case ISD::CopyToReg:
    682   case ISD::CopyFromReg:
    683   case ISD::EH_LABEL:
    684     // Noops don't affect the scoreboard state. Copies are likely to be
    685     // removed.
    686     return;
    687   case ISD::INLINEASM:
    688     // For inline asm, clear the pipeline state.
    689     HazardRec->Reset();
    690     return;
    691   }
    692   if (SU->isCall) {
    693     // Calls are scheduled with their preceding instructions. For bottom-up
    694     // scheduling, clear the pipeline state before emitting.
    695     HazardRec->Reset();
    696   }
    697 
    698   HazardRec->EmitInstruction(SU);
    699 }
    700 
    701 static void resetVRegCycle(SUnit *SU);
    702 
    703 /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
    704 /// count of its predecessors. If a predecessor pending count is zero, add it to
    705 /// the Available queue.
    706 void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU) {
    707   DEBUG(dbgs() << "\n*** Scheduling [" << CurCycle << "]: ");
    708   DEBUG(SU->dump(this));
    709 
    710 #ifndef NDEBUG
    711   if (CurCycle < SU->getHeight())
    712     DEBUG(dbgs() << "   Height [" << SU->getHeight()
    713           << "] pipeline stall!\n");
    714 #endif
    715 
    716   // FIXME: Do not modify node height. It may interfere with
    717   // backtracking. Instead add a "ready cycle" to SUnit. Before scheduling the
    718   // node its ready cycle can aid heuristics, and after scheduling it can
    719   // indicate the scheduled cycle.
    720   SU->setHeightToAtLeast(CurCycle);
    721 
    722   // Reserve resources for the scheduled instruction.
    723   EmitNode(SU);
    724 
    725   Sequence.push_back(SU);
    726 
    727   AvailableQueue->scheduledNode(SU);
    728 
    729   // If HazardRec is disabled, and each inst counts as one cycle, then
    730   // advance CurCycle before ReleasePredecessors to avoid useless pushes to
    731   // PendingQueue for schedulers that implement HasReadyFilter.
    732   if (!HazardRec->isEnabled() && AvgIPC < 2)
    733     AdvanceToCycle(CurCycle + 1);
    734 
    735   // Update liveness of predecessors before successors to avoid treating a
    736   // two-address node as a live range def.
    737   ReleasePredecessors(SU);
    738 
    739   // Release all the implicit physical register defs that are live.
    740   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
    741        I != E; ++I) {
    742     // LiveRegDegs[I->getReg()] != SU when SU is a two-address node.
    743     if (I->isAssignedRegDep() && LiveRegDefs[I->getReg()] == SU) {
    744       assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
    745       --NumLiveRegs;
    746       LiveRegDefs[I->getReg()] = nullptr;
    747       LiveRegGens[I->getReg()] = nullptr;
    748       releaseInterferences(I->getReg());
    749     }
    750   }
    751   // Release the special call resource dependence, if this is the beginning
    752   // of a call.
    753   unsigned CallResource = TRI->getNumRegs();
    754   if (LiveRegDefs[CallResource] == SU)
    755     for (const SDNode *SUNode = SU->getNode(); SUNode;
    756          SUNode = SUNode->getGluedNode()) {
    757       if (SUNode->isMachineOpcode() &&
    758           SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameSetupOpcode()) {
    759         assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
    760         --NumLiveRegs;
    761         LiveRegDefs[CallResource] = nullptr;
    762         LiveRegGens[CallResource] = nullptr;
    763         releaseInterferences(CallResource);
    764       }
    765     }
    766 
    767   resetVRegCycle(SU);
    768 
    769   SU->isScheduled = true;
    770 
    771   // Conditions under which the scheduler should eagerly advance the cycle:
    772   // (1) No available instructions
    773   // (2) All pipelines full, so available instructions must have hazards.
    774   //
    775   // If HazardRec is disabled, the cycle was pre-advanced before calling
    776   // ReleasePredecessors. In that case, IssueCount should remain 0.
    777   //
    778   // Check AvailableQueue after ReleasePredecessors in case of zero latency.
    779   if (HazardRec->isEnabled() || AvgIPC > 1) {
    780     if (SU->getNode() && SU->getNode()->isMachineOpcode())
    781       ++IssueCount;
    782     if ((HazardRec->isEnabled() && HazardRec->atIssueLimit())
    783         || (!HazardRec->isEnabled() && IssueCount == AvgIPC))
    784       AdvanceToCycle(CurCycle + 1);
    785   }
    786 }
    787 
    788 /// CapturePred - This does the opposite of ReleasePred. Since SU is being
    789 /// unscheduled, incrcease the succ left count of its predecessors. Remove
    790 /// them from AvailableQueue if necessary.
    791 void ScheduleDAGRRList::CapturePred(SDep *PredEdge) {
    792   SUnit *PredSU = PredEdge->getSUnit();
    793   if (PredSU->isAvailable) {
    794     PredSU->isAvailable = false;
    795     if (!PredSU->isPending)
    796       AvailableQueue->remove(PredSU);
    797   }
    798 
    799   assert(PredSU->NumSuccsLeft < UINT_MAX && "NumSuccsLeft will overflow!");
    800   ++PredSU->NumSuccsLeft;
    801 }
    802 
    803 /// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
    804 /// its predecessor states to reflect the change.
    805 void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
    806   DEBUG(dbgs() << "*** Unscheduling [" << SU->getHeight() << "]: ");
    807   DEBUG(SU->dump(this));
    808 
    809   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    810        I != E; ++I) {
    811     CapturePred(&*I);
    812     if (I->isAssignedRegDep() && SU == LiveRegGens[I->getReg()]){
    813       assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
    814       assert(LiveRegDefs[I->getReg()] == I->getSUnit() &&
    815              "Physical register dependency violated?");
    816       --NumLiveRegs;
    817       LiveRegDefs[I->getReg()] = nullptr;
    818       LiveRegGens[I->getReg()] = nullptr;
    819       releaseInterferences(I->getReg());
    820     }
    821   }
    822 
    823   // Reclaim the special call resource dependence, if this is the beginning
    824   // of a call.
    825   unsigned CallResource = TRI->getNumRegs();
    826   for (const SDNode *SUNode = SU->getNode(); SUNode;
    827        SUNode = SUNode->getGluedNode()) {
    828     if (SUNode->isMachineOpcode() &&
    829         SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameSetupOpcode()) {
    830       ++NumLiveRegs;
    831       LiveRegDefs[CallResource] = SU;
    832       LiveRegGens[CallResource] = CallSeqEndForStart[SU];
    833     }
    834   }
    835 
    836   // Release the special call resource dependence, if this is the end
    837   // of a call.
    838   if (LiveRegGens[CallResource] == SU)
    839     for (const SDNode *SUNode = SU->getNode(); SUNode;
    840          SUNode = SUNode->getGluedNode()) {
    841       if (SUNode->isMachineOpcode() &&
    842           SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
    843         assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
    844         --NumLiveRegs;
    845         LiveRegDefs[CallResource] = nullptr;
    846         LiveRegGens[CallResource] = nullptr;
    847         releaseInterferences(CallResource);
    848       }
    849     }
    850 
    851   for (auto &Succ : SU->Succs) {
    852     if (Succ.isAssignedRegDep()) {
    853       auto Reg = Succ.getReg();
    854       if (!LiveRegDefs[Reg])
    855         ++NumLiveRegs;
    856       // This becomes the nearest def. Note that an earlier def may still be
    857       // pending if this is a two-address node.
    858       LiveRegDefs[Reg] = SU;
    859 
    860       // Update LiveRegGen only if was empty before this unscheduling.
    861       // This is to avoid incorrect updating LiveRegGen set in previous run.
    862       if (!LiveRegGens[Reg]) {
    863         // Find the successor with the lowest height.
    864         LiveRegGens[Reg] = Succ.getSUnit();
    865         for (auto &Succ2 : SU->Succs) {
    866           if (Succ2.isAssignedRegDep() && Succ2.getReg() == Reg &&
    867               Succ2.getSUnit()->getHeight() < LiveRegGens[Reg]->getHeight())
    868             LiveRegGens[Reg] = Succ2.getSUnit();
    869         }
    870       }
    871     }
    872   }
    873   if (SU->getHeight() < MinAvailableCycle)
    874     MinAvailableCycle = SU->getHeight();
    875 
    876   SU->setHeightDirty();
    877   SU->isScheduled = false;
    878   SU->isAvailable = true;
    879   if (!DisableSchedCycles && AvailableQueue->hasReadyFilter()) {
    880     // Don't make available until backtracking is complete.
    881     SU->isPending = true;
    882     PendingQueue.push_back(SU);
    883   }
    884   else {
    885     AvailableQueue->push(SU);
    886   }
    887   AvailableQueue->unscheduledNode(SU);
    888 }
    889 
    890 /// After backtracking, the hazard checker needs to be restored to a state
    891 /// corresponding the current cycle.
    892 void ScheduleDAGRRList::RestoreHazardCheckerBottomUp() {
    893   HazardRec->Reset();
    894 
    895   unsigned LookAhead = std::min((unsigned)Sequence.size(),
    896                                 HazardRec->getMaxLookAhead());
    897   if (LookAhead == 0)
    898     return;
    899 
    900   std::vector<SUnit*>::const_iterator I = (Sequence.end() - LookAhead);
    901   unsigned HazardCycle = (*I)->getHeight();
    902   for (std::vector<SUnit*>::const_iterator E = Sequence.end(); I != E; ++I) {
    903     SUnit *SU = *I;
    904     for (; SU->getHeight() > HazardCycle; ++HazardCycle) {
    905       HazardRec->RecedeCycle();
    906     }
    907     EmitNode(SU);
    908   }
    909 }
    910 
    911 /// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
    912 /// BTCycle in order to schedule a specific node.
    913 void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, SUnit *BtSU) {
    914   SUnit *OldSU = Sequence.back();
    915   while (true) {
    916     Sequence.pop_back();
    917     // FIXME: use ready cycle instead of height
    918     CurCycle = OldSU->getHeight();
    919     UnscheduleNodeBottomUp(OldSU);
    920     AvailableQueue->setCurCycle(CurCycle);
    921     if (OldSU == BtSU)
    922       break;
    923     OldSU = Sequence.back();
    924   }
    925 
    926   assert(!SU->isSucc(OldSU) && "Something is wrong!");
    927 
    928   RestoreHazardCheckerBottomUp();
    929 
    930   ReleasePending();
    931 
    932   ++NumBacktracks;
    933 }
    934 
    935 static bool isOperandOf(const SUnit *SU, SDNode *N) {
    936   for (const SDNode *SUNode = SU->getNode(); SUNode;
    937        SUNode = SUNode->getGluedNode()) {
    938     if (SUNode->isOperandOf(N))
    939       return true;
    940   }
    941   return false;
    942 }
    943 
    944 /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
    945 /// successors to the newly created node.
    946 SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
    947   SDNode *N = SU->getNode();
    948   if (!N)
    949     return nullptr;
    950 
    951   if (SU->getNode()->getGluedNode())
    952     return nullptr;
    953 
    954   SUnit *NewSU;
    955   bool TryUnfold = false;
    956   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
    957     MVT VT = N->getSimpleValueType(i);
    958     if (VT == MVT::Glue)
    959       return nullptr;
    960     else if (VT == MVT::Other)
    961       TryUnfold = true;
    962   }
    963   for (const SDValue &Op : N->op_values()) {
    964     MVT VT = Op.getNode()->getSimpleValueType(Op.getResNo());
    965     if (VT == MVT::Glue)
    966       return nullptr;
    967   }
    968 
    969   if (TryUnfold) {
    970     SmallVector<SDNode*, 2> NewNodes;
    971     if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
    972       return nullptr;
    973 
    974     // unfolding an x86 DEC64m operation results in store, dec, load which
    975     // can't be handled here so quit
    976     if (NewNodes.size() == 3)
    977       return nullptr;
    978 
    979     DEBUG(dbgs() << "Unfolding SU #" << SU->NodeNum << "\n");
    980     assert(NewNodes.size() == 2 && "Expected a load folding node!");
    981 
    982     N = NewNodes[1];
    983     SDNode *LoadNode = NewNodes[0];
    984     unsigned NumVals = N->getNumValues();
    985     unsigned OldNumVals = SU->getNode()->getNumValues();
    986     for (unsigned i = 0; i != NumVals; ++i)
    987       DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
    988     DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
    989                                    SDValue(LoadNode, 1));
    990 
    991     // LoadNode may already exist. This can happen when there is another
    992     // load from the same location and producing the same type of value
    993     // but it has different alignment or volatileness.
    994     bool isNewLoad = true;
    995     SUnit *LoadSU;
    996     if (LoadNode->getNodeId() != -1) {
    997       LoadSU = &SUnits[LoadNode->getNodeId()];
    998       isNewLoad = false;
    999     } else {
   1000       LoadSU = CreateNewSUnit(LoadNode);
   1001       LoadNode->setNodeId(LoadSU->NodeNum);
   1002 
   1003       InitNumRegDefsLeft(LoadSU);
   1004       computeLatency(LoadSU);
   1005     }
   1006 
   1007     SUnit *NewSU = CreateNewSUnit(N);
   1008     assert(N->getNodeId() == -1 && "Node already inserted!");
   1009     N->setNodeId(NewSU->NodeNum);
   1010 
   1011     const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
   1012     for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
   1013       if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
   1014         NewSU->isTwoAddress = true;
   1015         break;
   1016       }
   1017     }
   1018     if (MCID.isCommutable())
   1019       NewSU->isCommutable = true;
   1020 
   1021     InitNumRegDefsLeft(NewSU);
   1022     computeLatency(NewSU);
   1023 
   1024     // Record all the edges to and from the old SU, by category.
   1025     SmallVector<SDep, 4> ChainPreds;
   1026     SmallVector<SDep, 4> ChainSuccs;
   1027     SmallVector<SDep, 4> LoadPreds;
   1028     SmallVector<SDep, 4> NodePreds;
   1029     SmallVector<SDep, 4> NodeSuccs;
   1030     for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
   1031          I != E; ++I) {
   1032       if (I->isCtrl())
   1033         ChainPreds.push_back(*I);
   1034       else if (isOperandOf(I->getSUnit(), LoadNode))
   1035         LoadPreds.push_back(*I);
   1036       else
   1037         NodePreds.push_back(*I);
   1038     }
   1039     for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
   1040          I != E; ++I) {
   1041       if (I->isCtrl())
   1042         ChainSuccs.push_back(*I);
   1043       else
   1044         NodeSuccs.push_back(*I);
   1045     }
   1046 
   1047     // Now assign edges to the newly-created nodes.
   1048     for (unsigned i = 0, e = ChainPreds.size(); i != e; ++i) {
   1049       const SDep &Pred = ChainPreds[i];
   1050       RemovePred(SU, Pred);
   1051       if (isNewLoad)
   1052         AddPred(LoadSU, Pred);
   1053     }
   1054     for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
   1055       const SDep &Pred = LoadPreds[i];
   1056       RemovePred(SU, Pred);
   1057       if (isNewLoad)
   1058         AddPred(LoadSU, Pred);
   1059     }
   1060     for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
   1061       const SDep &Pred = NodePreds[i];
   1062       RemovePred(SU, Pred);
   1063       AddPred(NewSU, Pred);
   1064     }
   1065     for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
   1066       SDep D = NodeSuccs[i];
   1067       SUnit *SuccDep = D.getSUnit();
   1068       D.setSUnit(SU);
   1069       RemovePred(SuccDep, D);
   1070       D.setSUnit(NewSU);
   1071       AddPred(SuccDep, D);
   1072       // Balance register pressure.
   1073       if (AvailableQueue->tracksRegPressure() && SuccDep->isScheduled
   1074           && !D.isCtrl() && NewSU->NumRegDefsLeft > 0)
   1075         --NewSU->NumRegDefsLeft;
   1076     }
   1077     for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
   1078       SDep D = ChainSuccs[i];
   1079       SUnit *SuccDep = D.getSUnit();
   1080       D.setSUnit(SU);
   1081       RemovePred(SuccDep, D);
   1082       if (isNewLoad) {
   1083         D.setSUnit(LoadSU);
   1084         AddPred(SuccDep, D);
   1085       }
   1086     }
   1087 
   1088     // Add a data dependency to reflect that NewSU reads the value defined
   1089     // by LoadSU.
   1090     SDep D(LoadSU, SDep::Data, 0);
   1091     D.setLatency(LoadSU->Latency);
   1092     AddPred(NewSU, D);
   1093 
   1094     if (isNewLoad)
   1095       AvailableQueue->addNode(LoadSU);
   1096     AvailableQueue->addNode(NewSU);
   1097 
   1098     ++NumUnfolds;
   1099 
   1100     if (NewSU->NumSuccsLeft == 0) {
   1101       NewSU->isAvailable = true;
   1102       return NewSU;
   1103     }
   1104     SU = NewSU;
   1105   }
   1106 
   1107   DEBUG(dbgs() << "    Duplicating SU #" << SU->NodeNum << "\n");
   1108   NewSU = CreateClone(SU);
   1109 
   1110   // New SUnit has the exact same predecessors.
   1111   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
   1112        I != E; ++I)
   1113     if (!I->isArtificial())
   1114       AddPred(NewSU, *I);
   1115 
   1116   // Only copy scheduled successors. Cut them from old node's successor
   1117   // list and move them over.
   1118   SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
   1119   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
   1120        I != E; ++I) {
   1121     if (I->isArtificial())
   1122       continue;
   1123     SUnit *SuccSU = I->getSUnit();
   1124     if (SuccSU->isScheduled) {
   1125       SDep D = *I;
   1126       D.setSUnit(NewSU);
   1127       AddPred(SuccSU, D);
   1128       D.setSUnit(SU);
   1129       DelDeps.push_back(std::make_pair(SuccSU, D));
   1130     }
   1131   }
   1132   for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
   1133     RemovePred(DelDeps[i].first, DelDeps[i].second);
   1134 
   1135   AvailableQueue->updateNode(SU);
   1136   AvailableQueue->addNode(NewSU);
   1137 
   1138   ++NumDups;
   1139   return NewSU;
   1140 }
   1141 
   1142 /// InsertCopiesAndMoveSuccs - Insert register copies and move all
   1143 /// scheduled successors of the given SUnit to the last copy.
   1144 void ScheduleDAGRRList::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
   1145                                               const TargetRegisterClass *DestRC,
   1146                                               const TargetRegisterClass *SrcRC,
   1147                                               SmallVectorImpl<SUnit*> &Copies) {
   1148   SUnit *CopyFromSU = CreateNewSUnit(nullptr);
   1149   CopyFromSU->CopySrcRC = SrcRC;
   1150   CopyFromSU->CopyDstRC = DestRC;
   1151 
   1152   SUnit *CopyToSU = CreateNewSUnit(nullptr);
   1153   CopyToSU->CopySrcRC = DestRC;
   1154   CopyToSU->CopyDstRC = SrcRC;
   1155 
   1156   // Only copy scheduled successors. Cut them from old node's successor
   1157   // list and move them over.
   1158   SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
   1159   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
   1160        I != E; ++I) {
   1161     if (I->isArtificial())
   1162       continue;
   1163     SUnit *SuccSU = I->getSUnit();
   1164     if (SuccSU->isScheduled) {
   1165       SDep D = *I;
   1166       D.setSUnit(CopyToSU);
   1167       AddPred(SuccSU, D);
   1168       DelDeps.push_back(std::make_pair(SuccSU, *I));
   1169     }
   1170     else {
   1171       // Avoid scheduling the def-side copy before other successors. Otherwise
   1172       // we could introduce another physreg interference on the copy and
   1173       // continue inserting copies indefinitely.
   1174       AddPred(SuccSU, SDep(CopyFromSU, SDep::Artificial));
   1175     }
   1176   }
   1177   for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
   1178     RemovePred(DelDeps[i].first, DelDeps[i].second);
   1179 
   1180   SDep FromDep(SU, SDep::Data, Reg);
   1181   FromDep.setLatency(SU->Latency);
   1182   AddPred(CopyFromSU, FromDep);
   1183   SDep ToDep(CopyFromSU, SDep::Data, 0);
   1184   ToDep.setLatency(CopyFromSU->Latency);
   1185   AddPred(CopyToSU, ToDep);
   1186 
   1187   AvailableQueue->updateNode(SU);
   1188   AvailableQueue->addNode(CopyFromSU);
   1189   AvailableQueue->addNode(CopyToSU);
   1190   Copies.push_back(CopyFromSU);
   1191   Copies.push_back(CopyToSU);
   1192 
   1193   ++NumPRCopies;
   1194 }
   1195 
   1196 /// getPhysicalRegisterVT - Returns the ValueType of the physical register
   1197 /// definition of the specified node.
   1198 /// FIXME: Move to SelectionDAG?
   1199 static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
   1200                                  const TargetInstrInfo *TII) {
   1201   unsigned NumRes;
   1202   if (N->getOpcode() == ISD::CopyFromReg) {
   1203     // CopyFromReg has: "chain, Val, glue" so operand 1 gives the type.
   1204     NumRes = 1;
   1205   } else {
   1206     const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
   1207     assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
   1208     NumRes = MCID.getNumDefs();
   1209     for (const MCPhysReg *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
   1210       if (Reg == *ImpDef)
   1211         break;
   1212       ++NumRes;
   1213     }
   1214   }
   1215   return N->getSimpleValueType(NumRes);
   1216 }
   1217 
   1218 /// CheckForLiveRegDef - Return true and update live register vector if the
   1219 /// specified register def of the specified SUnit clobbers any "live" registers.
   1220 static void CheckForLiveRegDef(SUnit *SU, unsigned Reg,
   1221                                SUnit **LiveRegDefs,
   1222                                SmallSet<unsigned, 4> &RegAdded,
   1223                                SmallVectorImpl<unsigned> &LRegs,
   1224                                const TargetRegisterInfo *TRI) {
   1225   for (MCRegAliasIterator AliasI(Reg, TRI, true); AliasI.isValid(); ++AliasI) {
   1226 
   1227     // Check if Ref is live.
   1228     if (!LiveRegDefs[*AliasI]) continue;
   1229 
   1230     // Allow multiple uses of the same def.
   1231     if (LiveRegDefs[*AliasI] == SU) continue;
   1232 
   1233     // Add Reg to the set of interfering live regs.
   1234     if (RegAdded.insert(*AliasI).second) {
   1235       LRegs.push_back(*AliasI);
   1236     }
   1237   }
   1238 }
   1239 
   1240 /// CheckForLiveRegDefMasked - Check for any live physregs that are clobbered
   1241 /// by RegMask, and add them to LRegs.
   1242 static void CheckForLiveRegDefMasked(SUnit *SU, const uint32_t *RegMask,
   1243                                      ArrayRef<SUnit*> LiveRegDefs,
   1244                                      SmallSet<unsigned, 4> &RegAdded,
   1245                                      SmallVectorImpl<unsigned> &LRegs) {
   1246   // Look at all live registers. Skip Reg0 and the special CallResource.
   1247   for (unsigned i = 1, e = LiveRegDefs.size()-1; i != e; ++i) {
   1248     if (!LiveRegDefs[i]) continue;
   1249     if (LiveRegDefs[i] == SU) continue;
   1250     if (!MachineOperand::clobbersPhysReg(RegMask, i)) continue;
   1251     if (RegAdded.insert(i).second)
   1252       LRegs.push_back(i);
   1253   }
   1254 }
   1255 
   1256 /// getNodeRegMask - Returns the register mask attached to an SDNode, if any.
   1257 static const uint32_t *getNodeRegMask(const SDNode *N) {
   1258   for (const SDValue &Op : N->op_values())
   1259     if (const auto *RegOp = dyn_cast<RegisterMaskSDNode>(Op.getNode()))
   1260       return RegOp->getRegMask();
   1261   return nullptr;
   1262 }
   1263 
   1264 /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
   1265 /// scheduling of the given node to satisfy live physical register dependencies.
   1266 /// If the specific node is the last one that's available to schedule, do
   1267 /// whatever is necessary (i.e. backtracking or cloning) to make it possible.
   1268 bool ScheduleDAGRRList::
   1269 DelayForLiveRegsBottomUp(SUnit *SU, SmallVectorImpl<unsigned> &LRegs) {
   1270   if (NumLiveRegs == 0)
   1271     return false;
   1272 
   1273   SmallSet<unsigned, 4> RegAdded;
   1274   // If this node would clobber any "live" register, then it's not ready.
   1275   //
   1276   // If SU is the currently live definition of the same register that it uses,
   1277   // then we are free to schedule it.
   1278   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
   1279        I != E; ++I) {
   1280     if (I->isAssignedRegDep() && LiveRegDefs[I->getReg()] != SU)
   1281       CheckForLiveRegDef(I->getSUnit(), I->getReg(), LiveRegDefs.get(),
   1282                          RegAdded, LRegs, TRI);
   1283   }
   1284 
   1285   for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
   1286     if (Node->getOpcode() == ISD::INLINEASM) {
   1287       // Inline asm can clobber physical defs.
   1288       unsigned NumOps = Node->getNumOperands();
   1289       if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
   1290         --NumOps;  // Ignore the glue operand.
   1291 
   1292       for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
   1293         unsigned Flags =
   1294           cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
   1295         unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
   1296 
   1297         ++i; // Skip the ID value.
   1298         if (InlineAsm::isRegDefKind(Flags) ||
   1299             InlineAsm::isRegDefEarlyClobberKind(Flags) ||
   1300             InlineAsm::isClobberKind(Flags)) {
   1301           // Check for def of register or earlyclobber register.
   1302           for (; NumVals; --NumVals, ++i) {
   1303             unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
   1304             if (TargetRegisterInfo::isPhysicalRegister(Reg))
   1305               CheckForLiveRegDef(SU, Reg, LiveRegDefs.get(), RegAdded, LRegs, TRI);
   1306           }
   1307         } else
   1308           i += NumVals;
   1309       }
   1310       continue;
   1311     }
   1312 
   1313     if (!Node->isMachineOpcode())
   1314       continue;
   1315     // If we're in the middle of scheduling a call, don't begin scheduling
   1316     // another call. Also, don't allow any physical registers to be live across
   1317     // the call.
   1318     if (Node->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
   1319       // Check the special calling-sequence resource.
   1320       unsigned CallResource = TRI->getNumRegs();
   1321       if (LiveRegDefs[CallResource]) {
   1322         SDNode *Gen = LiveRegGens[CallResource]->getNode();
   1323         while (SDNode *Glued = Gen->getGluedNode())
   1324           Gen = Glued;
   1325         if (!IsChainDependent(Gen, Node, 0, TII) &&
   1326             RegAdded.insert(CallResource).second)
   1327           LRegs.push_back(CallResource);
   1328       }
   1329     }
   1330     if (const uint32_t *RegMask = getNodeRegMask(Node))
   1331       CheckForLiveRegDefMasked(SU, RegMask,
   1332                                makeArrayRef(LiveRegDefs.get(), TRI->getNumRegs()),
   1333                                RegAdded, LRegs);
   1334 
   1335     const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
   1336     if (!MCID.ImplicitDefs)
   1337       continue;
   1338     for (const MCPhysReg *Reg = MCID.getImplicitDefs(); *Reg; ++Reg)
   1339       CheckForLiveRegDef(SU, *Reg, LiveRegDefs.get(), RegAdded, LRegs, TRI);
   1340   }
   1341 
   1342   return !LRegs.empty();
   1343 }
   1344 
   1345 void ScheduleDAGRRList::releaseInterferences(unsigned Reg) {
   1346   // Add the nodes that aren't ready back onto the available list.
   1347   for (unsigned i = Interferences.size(); i > 0; --i) {
   1348     SUnit *SU = Interferences[i-1];
   1349     LRegsMapT::iterator LRegsPos = LRegsMap.find(SU);
   1350     if (Reg) {
   1351       SmallVectorImpl<unsigned> &LRegs = LRegsPos->second;
   1352       if (std::find(LRegs.begin(), LRegs.end(), Reg) == LRegs.end())
   1353         continue;
   1354     }
   1355     SU->isPending = false;
   1356     // The interfering node may no longer be available due to backtracking.
   1357     // Furthermore, it may have been made available again, in which case it is
   1358     // now already in the AvailableQueue.
   1359     if (SU->isAvailable && !SU->NodeQueueId) {
   1360       DEBUG(dbgs() << "    Repushing SU #" << SU->NodeNum << '\n');
   1361       AvailableQueue->push(SU);
   1362     }
   1363     if (i < Interferences.size())
   1364       Interferences[i-1] = Interferences.back();
   1365     Interferences.pop_back();
   1366     LRegsMap.erase(LRegsPos);
   1367   }
   1368 }
   1369 
   1370 /// Return a node that can be scheduled in this cycle. Requirements:
   1371 /// (1) Ready: latency has been satisfied
   1372 /// (2) No Hazards: resources are available
   1373 /// (3) No Interferences: may unschedule to break register interferences.
   1374 SUnit *ScheduleDAGRRList::PickNodeToScheduleBottomUp() {
   1375   SUnit *CurSU = AvailableQueue->empty() ? nullptr : AvailableQueue->pop();
   1376   while (CurSU) {
   1377     SmallVector<unsigned, 4> LRegs;
   1378     if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
   1379       break;
   1380     DEBUG(dbgs() << "    Interfering reg " <<
   1381           (LRegs[0] == TRI->getNumRegs() ? "CallResource"
   1382            : TRI->getName(LRegs[0]))
   1383            << " SU #" << CurSU->NodeNum << '\n');
   1384     std::pair<LRegsMapT::iterator, bool> LRegsPair =
   1385       LRegsMap.insert(std::make_pair(CurSU, LRegs));
   1386     if (LRegsPair.second) {
   1387       CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
   1388       Interferences.push_back(CurSU);
   1389     }
   1390     else {
   1391       assert(CurSU->isPending && "Interferences are pending");
   1392       // Update the interference with current live regs.
   1393       LRegsPair.first->second = LRegs;
   1394     }
   1395     CurSU = AvailableQueue->pop();
   1396   }
   1397   if (CurSU)
   1398     return CurSU;
   1399 
   1400   // All candidates are delayed due to live physical reg dependencies.
   1401   // Try backtracking, code duplication, or inserting cross class copies
   1402   // to resolve it.
   1403   for (unsigned i = 0, e = Interferences.size(); i != e; ++i) {
   1404     SUnit *TrySU = Interferences[i];
   1405     SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
   1406 
   1407     // Try unscheduling up to the point where it's safe to schedule
   1408     // this node.
   1409     SUnit *BtSU = nullptr;
   1410     unsigned LiveCycle = UINT_MAX;
   1411     for (unsigned j = 0, ee = LRegs.size(); j != ee; ++j) {
   1412       unsigned Reg = LRegs[j];
   1413       if (LiveRegGens[Reg]->getHeight() < LiveCycle) {
   1414         BtSU = LiveRegGens[Reg];
   1415         LiveCycle = BtSU->getHeight();
   1416       }
   1417     }
   1418     if (!WillCreateCycle(TrySU, BtSU))  {
   1419       // BacktrackBottomUp mutates Interferences!
   1420       BacktrackBottomUp(TrySU, BtSU);
   1421 
   1422       // Force the current node to be scheduled before the node that
   1423       // requires the physical reg dep.
   1424       if (BtSU->isAvailable) {
   1425         BtSU->isAvailable = false;
   1426         if (!BtSU->isPending)
   1427           AvailableQueue->remove(BtSU);
   1428       }
   1429       DEBUG(dbgs() << "ARTIFICIAL edge from SU(" << BtSU->NodeNum << ") to SU("
   1430             << TrySU->NodeNum << ")\n");
   1431       AddPred(TrySU, SDep(BtSU, SDep::Artificial));
   1432 
   1433       // If one or more successors has been unscheduled, then the current
   1434       // node is no longer available.
   1435       if (!TrySU->isAvailable || !TrySU->NodeQueueId)
   1436         CurSU = AvailableQueue->pop();
   1437       else {
   1438         // Available and in AvailableQueue
   1439         AvailableQueue->remove(TrySU);
   1440         CurSU = TrySU;
   1441       }
   1442       // Interferences has been mutated. We must break.
   1443       break;
   1444     }
   1445   }
   1446 
   1447   if (!CurSU) {
   1448     // Can't backtrack. If it's too expensive to copy the value, then try
   1449     // duplicate the nodes that produces these "too expensive to copy"
   1450     // values to break the dependency. In case even that doesn't work,
   1451     // insert cross class copies.
   1452     // If it's not too expensive, i.e. cost != -1, issue copies.
   1453     SUnit *TrySU = Interferences[0];
   1454     SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
   1455     assert(LRegs.size() == 1 && "Can't handle this yet!");
   1456     unsigned Reg = LRegs[0];
   1457     SUnit *LRDef = LiveRegDefs[Reg];
   1458     MVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
   1459     const TargetRegisterClass *RC =
   1460       TRI->getMinimalPhysRegClass(Reg, VT);
   1461     const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
   1462 
   1463     // If cross copy register class is the same as RC, then it must be possible
   1464     // copy the value directly. Do not try duplicate the def.
   1465     // If cross copy register class is not the same as RC, then it's possible to
   1466     // copy the value but it require cross register class copies and it is
   1467     // expensive.
   1468     // If cross copy register class is null, then it's not possible to copy
   1469     // the value at all.
   1470     SUnit *NewDef = nullptr;
   1471     if (DestRC != RC) {
   1472       NewDef = CopyAndMoveSuccessors(LRDef);
   1473       if (!DestRC && !NewDef)
   1474         report_fatal_error("Can't handle live physical register dependency!");
   1475     }
   1476     if (!NewDef) {
   1477       // Issue copies, these can be expensive cross register class copies.
   1478       SmallVector<SUnit*, 2> Copies;
   1479       InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
   1480       DEBUG(dbgs() << "    Adding an edge from SU #" << TrySU->NodeNum
   1481             << " to SU #" << Copies.front()->NodeNum << "\n");
   1482       AddPred(TrySU, SDep(Copies.front(), SDep::Artificial));
   1483       NewDef = Copies.back();
   1484     }
   1485 
   1486     DEBUG(dbgs() << "    Adding an edge from SU #" << NewDef->NodeNum
   1487           << " to SU #" << TrySU->NodeNum << "\n");
   1488     LiveRegDefs[Reg] = NewDef;
   1489     AddPred(NewDef, SDep(TrySU, SDep::Artificial));
   1490     TrySU->isAvailable = false;
   1491     CurSU = NewDef;
   1492   }
   1493   assert(CurSU && "Unable to resolve live physical register dependencies!");
   1494   return CurSU;
   1495 }
   1496 
   1497 /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
   1498 /// schedulers.
   1499 void ScheduleDAGRRList::ListScheduleBottomUp() {
   1500   // Release any predecessors of the special Exit node.
   1501   ReleasePredecessors(&ExitSU);
   1502 
   1503   // Add root to Available queue.
   1504   if (!SUnits.empty()) {
   1505     SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
   1506     assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
   1507     RootSU->isAvailable = true;
   1508     AvailableQueue->push(RootSU);
   1509   }
   1510 
   1511   // While Available queue is not empty, grab the node with the highest
   1512   // priority. If it is not ready put it back.  Schedule the node.
   1513   Sequence.reserve(SUnits.size());
   1514   while (!AvailableQueue->empty() || !Interferences.empty()) {
   1515     DEBUG(dbgs() << "\nExamining Available:\n";
   1516           AvailableQueue->dump(this));
   1517 
   1518     // Pick the best node to schedule taking all constraints into
   1519     // consideration.
   1520     SUnit *SU = PickNodeToScheduleBottomUp();
   1521 
   1522     AdvancePastStalls(SU);
   1523 
   1524     ScheduleNodeBottomUp(SU);
   1525 
   1526     while (AvailableQueue->empty() && !PendingQueue.empty()) {
   1527       // Advance the cycle to free resources. Skip ahead to the next ready SU.
   1528       assert(MinAvailableCycle < UINT_MAX && "MinAvailableCycle uninitialized");
   1529       AdvanceToCycle(std::max(CurCycle + 1, MinAvailableCycle));
   1530     }
   1531   }
   1532 
   1533   // Reverse the order if it is bottom up.
   1534   std::reverse(Sequence.begin(), Sequence.end());
   1535 
   1536 #ifndef NDEBUG
   1537   VerifyScheduledSequence(/*isBottomUp=*/true);
   1538 #endif
   1539 }
   1540 
   1541 //===----------------------------------------------------------------------===//
   1542 //                RegReductionPriorityQueue Definition
   1543 //===----------------------------------------------------------------------===//
   1544 //
   1545 // This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
   1546 // to reduce register pressure.
   1547 //
   1548 namespace {
   1549 class RegReductionPQBase;
   1550 
   1551 struct queue_sort : public std::binary_function<SUnit*, SUnit*, bool> {
   1552   bool isReady(SUnit* SU, unsigned CurCycle) const { return true; }
   1553 };
   1554 
   1555 #ifndef NDEBUG
   1556 template<class SF>
   1557 struct reverse_sort : public queue_sort {
   1558   SF &SortFunc;
   1559   reverse_sort(SF &sf) : SortFunc(sf) {}
   1560 
   1561   bool operator()(SUnit* left, SUnit* right) const {
   1562     // reverse left/right rather than simply !SortFunc(left, right)
   1563     // to expose different paths in the comparison logic.
   1564     return SortFunc(right, left);
   1565   }
   1566 };
   1567 #endif // NDEBUG
   1568 
   1569 /// bu_ls_rr_sort - Priority function for bottom up register pressure
   1570 // reduction scheduler.
   1571 struct bu_ls_rr_sort : public queue_sort {
   1572   enum {
   1573     IsBottomUp = true,
   1574     HasReadyFilter = false
   1575   };
   1576 
   1577   RegReductionPQBase *SPQ;
   1578   bu_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
   1579 
   1580   bool operator()(SUnit* left, SUnit* right) const;
   1581 };
   1582 
   1583 // src_ls_rr_sort - Priority function for source order scheduler.
   1584 struct src_ls_rr_sort : public queue_sort {
   1585   enum {
   1586     IsBottomUp = true,
   1587     HasReadyFilter = false
   1588   };
   1589 
   1590   RegReductionPQBase *SPQ;
   1591   src_ls_rr_sort(RegReductionPQBase *spq)
   1592     : SPQ(spq) {}
   1593 
   1594   bool operator()(SUnit* left, SUnit* right) const;
   1595 };
   1596 
   1597 // hybrid_ls_rr_sort - Priority function for hybrid scheduler.
   1598 struct hybrid_ls_rr_sort : public queue_sort {
   1599   enum {
   1600     IsBottomUp = true,
   1601     HasReadyFilter = false
   1602   };
   1603 
   1604   RegReductionPQBase *SPQ;
   1605   hybrid_ls_rr_sort(RegReductionPQBase *spq)
   1606     : SPQ(spq) {}
   1607 
   1608   bool isReady(SUnit *SU, unsigned CurCycle) const;
   1609 
   1610   bool operator()(SUnit* left, SUnit* right) const;
   1611 };
   1612 
   1613 // ilp_ls_rr_sort - Priority function for ILP (instruction level parallelism)
   1614 // scheduler.
   1615 struct ilp_ls_rr_sort : public queue_sort {
   1616   enum {
   1617     IsBottomUp = true,
   1618     HasReadyFilter = false
   1619   };
   1620 
   1621   RegReductionPQBase *SPQ;
   1622   ilp_ls_rr_sort(RegReductionPQBase *spq)
   1623     : SPQ(spq) {}
   1624 
   1625   bool isReady(SUnit *SU, unsigned CurCycle) const;
   1626 
   1627   bool operator()(SUnit* left, SUnit* right) const;
   1628 };
   1629 
   1630 class RegReductionPQBase : public SchedulingPriorityQueue {
   1631 protected:
   1632   std::vector<SUnit*> Queue;
   1633   unsigned CurQueueId;
   1634   bool TracksRegPressure;
   1635   bool SrcOrder;
   1636 
   1637   // SUnits - The SUnits for the current graph.
   1638   std::vector<SUnit> *SUnits;
   1639 
   1640   MachineFunction &MF;
   1641   const TargetInstrInfo *TII;
   1642   const TargetRegisterInfo *TRI;
   1643   const TargetLowering *TLI;
   1644   ScheduleDAGRRList *scheduleDAG;
   1645 
   1646   // SethiUllmanNumbers - The SethiUllman number for each node.
   1647   std::vector<unsigned> SethiUllmanNumbers;
   1648 
   1649   /// RegPressure - Tracking current reg pressure per register class.
   1650   ///
   1651   std::vector<unsigned> RegPressure;
   1652 
   1653   /// RegLimit - Tracking the number of allocatable registers per register
   1654   /// class.
   1655   std::vector<unsigned> RegLimit;
   1656 
   1657 public:
   1658   RegReductionPQBase(MachineFunction &mf,
   1659                      bool hasReadyFilter,
   1660                      bool tracksrp,
   1661                      bool srcorder,
   1662                      const TargetInstrInfo *tii,
   1663                      const TargetRegisterInfo *tri,
   1664                      const TargetLowering *tli)
   1665     : SchedulingPriorityQueue(hasReadyFilter),
   1666       CurQueueId(0), TracksRegPressure(tracksrp), SrcOrder(srcorder),
   1667       MF(mf), TII(tii), TRI(tri), TLI(tli), scheduleDAG(nullptr) {
   1668     if (TracksRegPressure) {
   1669       unsigned NumRC = TRI->getNumRegClasses();
   1670       RegLimit.resize(NumRC);
   1671       RegPressure.resize(NumRC);
   1672       std::fill(RegLimit.begin(), RegLimit.end(), 0);
   1673       std::fill(RegPressure.begin(), RegPressure.end(), 0);
   1674       for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
   1675              E = TRI->regclass_end(); I != E; ++I)
   1676         RegLimit[(*I)->getID()] = tri->getRegPressureLimit(*I, MF);
   1677     }
   1678   }
   1679 
   1680   void setScheduleDAG(ScheduleDAGRRList *scheduleDag) {
   1681     scheduleDAG = scheduleDag;
   1682   }
   1683 
   1684   ScheduleHazardRecognizer* getHazardRec() {
   1685     return scheduleDAG->getHazardRec();
   1686   }
   1687 
   1688   void initNodes(std::vector<SUnit> &sunits) override;
   1689 
   1690   void addNode(const SUnit *SU) override;
   1691 
   1692   void updateNode(const SUnit *SU) override;
   1693 
   1694   void releaseState() override {
   1695     SUnits = nullptr;
   1696     SethiUllmanNumbers.clear();
   1697     std::fill(RegPressure.begin(), RegPressure.end(), 0);
   1698   }
   1699 
   1700   unsigned getNodePriority(const SUnit *SU) const;
   1701 
   1702   unsigned getNodeOrdering(const SUnit *SU) const {
   1703     if (!SU->getNode()) return 0;
   1704 
   1705     return SU->getNode()->getIROrder();
   1706   }
   1707 
   1708   bool empty() const override { return Queue.empty(); }
   1709 
   1710   void push(SUnit *U) override {
   1711     assert(!U->NodeQueueId && "Node in the queue already");
   1712     U->NodeQueueId = ++CurQueueId;
   1713     Queue.push_back(U);
   1714   }
   1715 
   1716   void remove(SUnit *SU) override {
   1717     assert(!Queue.empty() && "Queue is empty!");
   1718     assert(SU->NodeQueueId != 0 && "Not in queue!");
   1719     std::vector<SUnit *>::iterator I = std::find(Queue.begin(), Queue.end(),
   1720                                                  SU);
   1721     if (I != std::prev(Queue.end()))
   1722       std::swap(*I, Queue.back());
   1723     Queue.pop_back();
   1724     SU->NodeQueueId = 0;
   1725   }
   1726 
   1727   bool tracksRegPressure() const override { return TracksRegPressure; }
   1728 
   1729   void dumpRegPressure() const;
   1730 
   1731   bool HighRegPressure(const SUnit *SU) const;
   1732 
   1733   bool MayReduceRegPressure(SUnit *SU) const;
   1734 
   1735   int RegPressureDiff(SUnit *SU, unsigned &LiveUses) const;
   1736 
   1737   void scheduledNode(SUnit *SU) override;
   1738 
   1739   void unscheduledNode(SUnit *SU) override;
   1740 
   1741 protected:
   1742   bool canClobber(const SUnit *SU, const SUnit *Op);
   1743   void AddPseudoTwoAddrDeps();
   1744   void PrescheduleNodesWithMultipleUses();
   1745   void CalculateSethiUllmanNumbers();
   1746 };
   1747 
   1748 template<class SF>
   1749 static SUnit *popFromQueueImpl(std::vector<SUnit*> &Q, SF &Picker) {
   1750   std::vector<SUnit *>::iterator Best = Q.begin();
   1751   for (std::vector<SUnit *>::iterator I = std::next(Q.begin()),
   1752          E = Q.end(); I != E; ++I)
   1753     if (Picker(*Best, *I))
   1754       Best = I;
   1755   SUnit *V = *Best;
   1756   if (Best != std::prev(Q.end()))
   1757     std::swap(*Best, Q.back());
   1758   Q.pop_back();
   1759   return V;
   1760 }
   1761 
   1762 template<class SF>
   1763 SUnit *popFromQueue(std::vector<SUnit*> &Q, SF &Picker, ScheduleDAG *DAG) {
   1764 #ifndef NDEBUG
   1765   if (DAG->StressSched) {
   1766     reverse_sort<SF> RPicker(Picker);
   1767     return popFromQueueImpl(Q, RPicker);
   1768   }
   1769 #endif
   1770   (void)DAG;
   1771   return popFromQueueImpl(Q, Picker);
   1772 }
   1773 
   1774 template<class SF>
   1775 class RegReductionPriorityQueue : public RegReductionPQBase {
   1776   SF Picker;
   1777 
   1778 public:
   1779   RegReductionPriorityQueue(MachineFunction &mf,
   1780                             bool tracksrp,
   1781                             bool srcorder,
   1782                             const TargetInstrInfo *tii,
   1783                             const TargetRegisterInfo *tri,
   1784                             const TargetLowering *tli)
   1785     : RegReductionPQBase(mf, SF::HasReadyFilter, tracksrp, srcorder,
   1786                          tii, tri, tli),
   1787       Picker(this) {}
   1788 
   1789   bool isBottomUp() const override { return SF::IsBottomUp; }
   1790 
   1791   bool isReady(SUnit *U) const override {
   1792     return Picker.HasReadyFilter && Picker.isReady(U, getCurCycle());
   1793   }
   1794 
   1795   SUnit *pop() override {
   1796     if (Queue.empty()) return nullptr;
   1797 
   1798     SUnit *V = popFromQueue(Queue, Picker, scheduleDAG);
   1799     V->NodeQueueId = 0;
   1800     return V;
   1801   }
   1802 
   1803 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
   1804   void dump(ScheduleDAG *DAG) const override {
   1805     // Emulate pop() without clobbering NodeQueueIds.
   1806     std::vector<SUnit*> DumpQueue = Queue;
   1807     SF DumpPicker = Picker;
   1808     while (!DumpQueue.empty()) {
   1809       SUnit *SU = popFromQueue(DumpQueue, DumpPicker, scheduleDAG);
   1810       dbgs() << "Height " << SU->getHeight() << ": ";
   1811       SU->dump(DAG);
   1812     }
   1813   }
   1814 #endif
   1815 };
   1816 
   1817 typedef RegReductionPriorityQueue<bu_ls_rr_sort>
   1818 BURegReductionPriorityQueue;
   1819 
   1820 typedef RegReductionPriorityQueue<src_ls_rr_sort>
   1821 SrcRegReductionPriorityQueue;
   1822 
   1823 typedef RegReductionPriorityQueue<hybrid_ls_rr_sort>
   1824 HybridBURRPriorityQueue;
   1825 
   1826 typedef RegReductionPriorityQueue<ilp_ls_rr_sort>
   1827 ILPBURRPriorityQueue;
   1828 } // end anonymous namespace
   1829 
   1830 //===----------------------------------------------------------------------===//
   1831 //           Static Node Priority for Register Pressure Reduction
   1832 //===----------------------------------------------------------------------===//
   1833 
   1834 // Check for special nodes that bypass scheduling heuristics.
   1835 // Currently this pushes TokenFactor nodes down, but may be used for other
   1836 // pseudo-ops as well.
   1837 //
   1838 // Return -1 to schedule right above left, 1 for left above right.
   1839 // Return 0 if no bias exists.
   1840 static int checkSpecialNodes(const SUnit *left, const SUnit *right) {
   1841   bool LSchedLow = left->isScheduleLow;
   1842   bool RSchedLow = right->isScheduleLow;
   1843   if (LSchedLow != RSchedLow)
   1844     return LSchedLow < RSchedLow ? 1 : -1;
   1845   return 0;
   1846 }
   1847 
   1848 /// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number.
   1849 /// Smaller number is the higher priority.
   1850 static unsigned
   1851 CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
   1852   unsigned &SethiUllmanNumber = SUNumbers[SU->NodeNum];
   1853   if (SethiUllmanNumber != 0)
   1854     return SethiUllmanNumber;
   1855 
   1856   unsigned Extra = 0;
   1857   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
   1858        I != E; ++I) {
   1859     if (I->isCtrl()) continue;  // ignore chain preds
   1860     SUnit *PredSU = I->getSUnit();
   1861     unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU, SUNumbers);
   1862     if (PredSethiUllman > SethiUllmanNumber) {
   1863       SethiUllmanNumber = PredSethiUllman;
   1864       Extra = 0;
   1865     } else if (PredSethiUllman == SethiUllmanNumber)
   1866       ++Extra;
   1867   }
   1868 
   1869   SethiUllmanNumber += Extra;
   1870 
   1871   if (SethiUllmanNumber == 0)
   1872     SethiUllmanNumber = 1;
   1873 
   1874   return SethiUllmanNumber;
   1875 }
   1876 
   1877 /// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
   1878 /// scheduling units.
   1879 void RegReductionPQBase::CalculateSethiUllmanNumbers() {
   1880   SethiUllmanNumbers.assign(SUnits->size(), 0);
   1881 
   1882   for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
   1883     CalcNodeSethiUllmanNumber(&(*SUnits)[i], SethiUllmanNumbers);
   1884 }
   1885 
   1886 void RegReductionPQBase::addNode(const SUnit *SU) {
   1887   unsigned SUSize = SethiUllmanNumbers.size();
   1888   if (SUnits->size() > SUSize)
   1889     SethiUllmanNumbers.resize(SUSize*2, 0);
   1890   CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
   1891 }
   1892 
   1893 void RegReductionPQBase::updateNode(const SUnit *SU) {
   1894   SethiUllmanNumbers[SU->NodeNum] = 0;
   1895   CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
   1896 }
   1897 
   1898 // Lower priority means schedule further down. For bottom-up scheduling, lower
   1899 // priority SUs are scheduled before higher priority SUs.
   1900 unsigned RegReductionPQBase::getNodePriority(const SUnit *SU) const {
   1901   assert(SU->NodeNum < SethiUllmanNumbers.size());
   1902   unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
   1903   if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
   1904     // CopyToReg should be close to its uses to facilitate coalescing and
   1905     // avoid spilling.
   1906     return 0;
   1907   if (Opc == TargetOpcode::EXTRACT_SUBREG ||
   1908       Opc == TargetOpcode::SUBREG_TO_REG ||
   1909       Opc == TargetOpcode::INSERT_SUBREG)
   1910     // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
   1911     // close to their uses to facilitate coalescing.
   1912     return 0;
   1913   if (SU->NumSuccs == 0 && SU->NumPreds != 0)
   1914     // If SU does not have a register use, i.e. it doesn't produce a value
   1915     // that would be consumed (e.g. store), then it terminates a chain of
   1916     // computation.  Give it a large SethiUllman number so it will be
   1917     // scheduled right before its predecessors that it doesn't lengthen
   1918     // their live ranges.
   1919     return 0xffff;
   1920   if (SU->NumPreds == 0 && SU->NumSuccs != 0)
   1921     // If SU does not have a register def, schedule it close to its uses
   1922     // because it does not lengthen any live ranges.
   1923     return 0;
   1924 #if 1
   1925   return SethiUllmanNumbers[SU->NodeNum];
   1926 #else
   1927   unsigned Priority = SethiUllmanNumbers[SU->NodeNum];
   1928   if (SU->isCallOp) {
   1929     // FIXME: This assumes all of the defs are used as call operands.
   1930     int NP = (int)Priority - SU->getNode()->getNumValues();
   1931     return (NP > 0) ? NP : 0;
   1932   }
   1933   return Priority;
   1934 #endif
   1935 }
   1936 
   1937 //===----------------------------------------------------------------------===//
   1938 //                     Register Pressure Tracking
   1939 //===----------------------------------------------------------------------===//
   1940 
   1941 void RegReductionPQBase::dumpRegPressure() const {
   1942 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
   1943   for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
   1944          E = TRI->regclass_end(); I != E; ++I) {
   1945     const TargetRegisterClass *RC = *I;
   1946     unsigned Id = RC->getID();
   1947     unsigned RP = RegPressure[Id];
   1948     if (!RP) continue;
   1949     DEBUG(dbgs() << TRI->getRegClassName(RC) << ": " << RP << " / "
   1950           << RegLimit[Id] << '\n');
   1951   }
   1952 #endif
   1953 }
   1954 
   1955 bool RegReductionPQBase::HighRegPressure(const SUnit *SU) const {
   1956   if (!TLI)
   1957     return false;
   1958 
   1959   for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
   1960        I != E; ++I) {
   1961     if (I->isCtrl())
   1962       continue;
   1963     SUnit *PredSU = I->getSUnit();
   1964     // NumRegDefsLeft is zero when enough uses of this node have been scheduled
   1965     // to cover the number of registers defined (they are all live).
   1966     if (PredSU->NumRegDefsLeft == 0) {
   1967       continue;
   1968     }
   1969     for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
   1970          RegDefPos.IsValid(); RegDefPos.Advance()) {
   1971       unsigned RCId, Cost;
   1972       GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
   1973 
   1974       if ((RegPressure[RCId] + Cost) >= RegLimit[RCId])
   1975         return true;
   1976     }
   1977   }
   1978   return false;
   1979 }
   1980 
   1981 bool RegReductionPQBase::MayReduceRegPressure(SUnit *SU) const {
   1982   const SDNode *N = SU->getNode();
   1983 
   1984   if (!N->isMachineOpcode() || !SU->NumSuccs)
   1985     return false;
   1986 
   1987   unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
   1988   for (unsigned i = 0; i != NumDefs; ++i) {
   1989     MVT VT = N->getSimpleValueType(i);
   1990     if (!N->hasAnyUseOfValue(i))
   1991       continue;
   1992     unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
   1993     if (RegPressure[RCId] >= RegLimit[RCId])
   1994       return true;
   1995   }
   1996   return false;
   1997 }
   1998 
   1999 // Compute the register pressure contribution by this instruction by count up
   2000 // for uses that are not live and down for defs. Only count register classes
   2001 // that are already under high pressure. As a side effect, compute the number of
   2002 // uses of registers that are already live.
   2003 //
   2004 // FIXME: This encompasses the logic in HighRegPressure and MayReduceRegPressure
   2005 // so could probably be factored.
   2006 int RegReductionPQBase::RegPressureDiff(SUnit *SU, unsigned &LiveUses) const {
   2007   LiveUses = 0;
   2008   int PDiff = 0;
   2009   for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
   2010        I != E; ++I) {
   2011     if (I->isCtrl())
   2012       continue;
   2013     SUnit *PredSU = I->getSUnit();
   2014     // NumRegDefsLeft is zero when enough uses of this node have been scheduled
   2015     // to cover the number of registers defined (they are all live).
   2016     if (PredSU->NumRegDefsLeft == 0) {
   2017       if (PredSU->getNode()->isMachineOpcode())
   2018         ++LiveUses;
   2019       continue;
   2020     }
   2021     for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
   2022          RegDefPos.IsValid(); RegDefPos.Advance()) {
   2023       MVT VT = RegDefPos.GetValue();
   2024       unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
   2025       if (RegPressure[RCId] >= RegLimit[RCId])
   2026         ++PDiff;
   2027     }
   2028   }
   2029   const SDNode *N = SU->getNode();
   2030 
   2031   if (!N || !N->isMachineOpcode() || !SU->NumSuccs)
   2032     return PDiff;
   2033 
   2034   unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
   2035   for (unsigned i = 0; i != NumDefs; ++i) {
   2036     MVT VT = N->getSimpleValueType(i);
   2037     if (!N->hasAnyUseOfValue(i))
   2038       continue;
   2039     unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
   2040     if (RegPressure[RCId] >= RegLimit[RCId])
   2041       --PDiff;
   2042   }
   2043   return PDiff;
   2044 }
   2045 
   2046 void RegReductionPQBase::scheduledNode(SUnit *SU) {
   2047   if (!TracksRegPressure)
   2048     return;
   2049 
   2050   if (!SU->getNode())
   2051     return;
   2052 
   2053   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
   2054        I != E; ++I) {
   2055     if (I->isCtrl())
   2056       continue;
   2057     SUnit *PredSU = I->getSUnit();
   2058     // NumRegDefsLeft is zero when enough uses of this node have been scheduled
   2059     // to cover the number of registers defined (they are all live).
   2060     if (PredSU->NumRegDefsLeft == 0) {
   2061       continue;
   2062     }
   2063     // FIXME: The ScheduleDAG currently loses information about which of a
   2064     // node's values is consumed by each dependence. Consequently, if the node
   2065     // defines multiple register classes, we don't know which to pressurize
   2066     // here. Instead the following loop consumes the register defs in an
   2067     // arbitrary order. At least it handles the common case of clustered loads
   2068     // to the same class. For precise liveness, each SDep needs to indicate the
   2069     // result number. But that tightly couples the ScheduleDAG with the
   2070     // SelectionDAG making updates tricky. A simpler hack would be to attach a
   2071     // value type or register class to SDep.
   2072     //
   2073     // The most important aspect of register tracking is balancing the increase
   2074     // here with the reduction further below. Note that this SU may use multiple
   2075     // defs in PredSU. The can't be determined here, but we've already
   2076     // compensated by reducing NumRegDefsLeft in PredSU during
   2077     // ScheduleDAGSDNodes::AddSchedEdges.
   2078     --PredSU->NumRegDefsLeft;
   2079     unsigned SkipRegDefs = PredSU->NumRegDefsLeft;
   2080     for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
   2081          RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
   2082       if (SkipRegDefs)
   2083         continue;
   2084 
   2085       unsigned RCId, Cost;
   2086       GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
   2087       RegPressure[RCId] += Cost;
   2088       break;
   2089     }
   2090   }
   2091 
   2092   // We should have this assert, but there may be dead SDNodes that never
   2093   // materialize as SUnits, so they don't appear to generate liveness.
   2094   //assert(SU->NumRegDefsLeft == 0 && "not all regdefs have scheduled uses");
   2095   int SkipRegDefs = (int)SU->NumRegDefsLeft;
   2096   for (ScheduleDAGSDNodes::RegDefIter RegDefPos(SU, scheduleDAG);
   2097        RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
   2098     if (SkipRegDefs > 0)
   2099       continue;
   2100     unsigned RCId, Cost;
   2101     GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
   2102     if (RegPressure[RCId] < Cost) {
   2103       // Register pressure tracking is imprecise. This can happen. But we try
   2104       // hard not to let it happen because it likely results in poor scheduling.
   2105       DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") has too many regdefs\n");
   2106       RegPressure[RCId] = 0;
   2107     }
   2108     else {
   2109       RegPressure[RCId] -= Cost;
   2110     }
   2111   }
   2112   dumpRegPressure();
   2113 }
   2114 
   2115 void RegReductionPQBase::unscheduledNode(SUnit *SU) {
   2116   if (!TracksRegPressure)
   2117     return;
   2118 
   2119   const SDNode *N = SU->getNode();
   2120   if (!N) return;
   2121 
   2122   if (!N->isMachineOpcode()) {
   2123     if (N->getOpcode() != ISD::CopyToReg)
   2124       return;
   2125   } else {
   2126     unsigned Opc = N->getMachineOpcode();
   2127     if (Opc == TargetOpcode::EXTRACT_SUBREG ||
   2128         Opc == TargetOpcode::INSERT_SUBREG ||
   2129         Opc == TargetOpcode::SUBREG_TO_REG ||
   2130         Opc == TargetOpcode::REG_SEQUENCE ||
   2131         Opc == TargetOpcode::IMPLICIT_DEF)
   2132       return;
   2133   }
   2134 
   2135   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
   2136        I != E; ++I) {
   2137     if (I->isCtrl())
   2138       continue;
   2139     SUnit *PredSU = I->getSUnit();
   2140     // NumSuccsLeft counts all deps. Don't compare it with NumSuccs which only
   2141     // counts data deps.
   2142     if (PredSU->NumSuccsLeft != PredSU->Succs.size())
   2143       continue;
   2144     const SDNode *PN = PredSU->getNode();
   2145     if (!PN->isMachineOpcode()) {
   2146       if (PN->getOpcode() == ISD::CopyFromReg) {
   2147         MVT VT = PN->getSimpleValueType(0);
   2148         unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
   2149         RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
   2150       }
   2151       continue;
   2152     }
   2153     unsigned POpc = PN->getMachineOpcode();
   2154     if (POpc == TargetOpcode::IMPLICIT_DEF)
   2155       continue;
   2156     if (POpc == TargetOpcode::EXTRACT_SUBREG ||
   2157         POpc == TargetOpcode::INSERT_SUBREG ||
   2158         POpc == TargetOpcode::SUBREG_TO_REG) {
   2159       MVT VT = PN->getSimpleValueType(0);
   2160       unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
   2161       RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
   2162       continue;
   2163     }
   2164     unsigned NumDefs = TII->get(PN->getMachineOpcode()).getNumDefs();
   2165     for (unsigned i = 0; i != NumDefs; ++i) {
   2166       MVT VT = PN->getSimpleValueType(i);
   2167       if (!PN->hasAnyUseOfValue(i))
   2168         continue;
   2169       unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
   2170       if (RegPressure[RCId] < TLI->getRepRegClassCostFor(VT))
   2171         // Register pressure tracking is imprecise. This can happen.
   2172         RegPressure[RCId] = 0;
   2173       else
   2174         RegPressure[RCId] -= TLI->getRepRegClassCostFor(VT);
   2175     }
   2176   }
   2177 
   2178   // Check for isMachineOpcode() as PrescheduleNodesWithMultipleUses()
   2179   // may transfer data dependencies to CopyToReg.
   2180   if (SU->NumSuccs && N->isMachineOpcode()) {
   2181     unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
   2182     for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
   2183       MVT VT = N->getSimpleValueType(i);
   2184       if (VT == MVT::Glue || VT == MVT::Other)
   2185         continue;
   2186       if (!N->hasAnyUseOfValue(i))
   2187         continue;
   2188       unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
   2189       RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
   2190     }
   2191   }
   2192 
   2193   dumpRegPressure();
   2194 }
   2195 
   2196 //===----------------------------------------------------------------------===//
   2197 //           Dynamic Node Priority for Register Pressure Reduction
   2198 //===----------------------------------------------------------------------===//
   2199 
   2200 /// closestSucc - Returns the scheduled cycle of the successor which is
   2201 /// closest to the current cycle.
   2202 static unsigned closestSucc(const SUnit *SU) {
   2203   unsigned MaxHeight = 0;
   2204   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
   2205        I != E; ++I) {
   2206     if (I->isCtrl()) continue;  // ignore chain succs
   2207     unsigned Height = I->getSUnit()->getHeight();
   2208     // If there are bunch of CopyToRegs stacked up, they should be considered
   2209     // to be at the same position.
   2210     if (I->getSUnit()->getNode() &&
   2211         I->getSUnit()->getNode()->getOpcode() == ISD::CopyToReg)
   2212       Height = closestSucc(I->getSUnit())+1;
   2213     if (Height > MaxHeight)
   2214       MaxHeight = Height;
   2215   }
   2216   return MaxHeight;
   2217 }
   2218 
   2219 /// calcMaxScratches - Returns an cost estimate of the worse case requirement
   2220 /// for scratch registers, i.e. number of data dependencies.
   2221 static unsigned calcMaxScratches(const SUnit *SU) {
   2222   unsigned Scratches = 0;
   2223   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
   2224        I != E; ++I) {
   2225     if (I->isCtrl()) continue;  // ignore chain preds
   2226     Scratches++;
   2227   }
   2228   return Scratches;
   2229 }
   2230 
   2231 /// hasOnlyLiveInOpers - Return true if SU has only value predecessors that are
   2232 /// CopyFromReg from a virtual register.
   2233 static bool hasOnlyLiveInOpers(const SUnit *SU) {
   2234   bool RetVal = false;
   2235   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
   2236        I != E; ++I) {
   2237     if (I->isCtrl()) continue;
   2238     const SUnit *PredSU = I->getSUnit();
   2239     if (PredSU->getNode() &&
   2240         PredSU->getNode()->getOpcode() == ISD::CopyFromReg) {
   2241       unsigned Reg =
   2242         cast<RegisterSDNode>(PredSU->getNode()->getOperand(1))->getReg();
   2243       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
   2244         RetVal = true;
   2245         continue;
   2246       }
   2247     }
   2248     return false;
   2249   }
   2250   return RetVal;
   2251 }
   2252 
   2253 /// hasOnlyLiveOutUses - Return true if SU has only value successors that are
   2254 /// CopyToReg to a virtual register. This SU def is probably a liveout and
   2255 /// it has no other use. It should be scheduled closer to the terminator.
   2256 static bool hasOnlyLiveOutUses(const SUnit *SU) {
   2257   bool RetVal = false;
   2258   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
   2259        I != E; ++I) {
   2260     if (I->isCtrl()) continue;
   2261     const SUnit *SuccSU = I->getSUnit();
   2262     if (SuccSU->getNode() && SuccSU->getNode()->getOpcode() == ISD::CopyToReg) {
   2263       unsigned Reg =
   2264         cast<RegisterSDNode>(SuccSU->getNode()->getOperand(1))->getReg();
   2265       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
   2266         RetVal = true;
   2267         continue;
   2268       }
   2269     }
   2270     return false;
   2271   }
   2272   return RetVal;
   2273 }
   2274 
   2275 // Set isVRegCycle for a node with only live in opers and live out uses. Also
   2276 // set isVRegCycle for its CopyFromReg operands.
   2277 //
   2278 // This is only relevant for single-block loops, in which case the VRegCycle
   2279 // node is likely an induction variable in which the operand and target virtual
   2280 // registers should be coalesced (e.g. pre/post increment values). Setting the
   2281 // isVRegCycle flag helps the scheduler prioritize other uses of the same
   2282 // CopyFromReg so that this node becomes the virtual register "kill". This
   2283 // avoids interference between the values live in and out of the block and
   2284 // eliminates a copy inside the loop.
   2285 static void initVRegCycle(SUnit *SU) {
   2286   if (DisableSchedVRegCycle)
   2287     return;
   2288 
   2289   if (!hasOnlyLiveInOpers(SU) || !hasOnlyLiveOutUses(SU))
   2290     return;
   2291 
   2292   DEBUG(dbgs() << "VRegCycle: SU(" << SU->NodeNum << ")\n");
   2293 
   2294   SU->isVRegCycle = true;
   2295 
   2296   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
   2297        I != E; ++I) {
   2298     if (I->isCtrl()) continue;
   2299     I->getSUnit()->isVRegCycle = true;
   2300   }
   2301 }
   2302 
   2303 // After scheduling the definition of a VRegCycle, clear the isVRegCycle flag of
   2304 // CopyFromReg operands. We should no longer penalize other uses of this VReg.
   2305 static void resetVRegCycle(SUnit *SU) {
   2306   if (!SU->isVRegCycle)
   2307     return;
   2308 
   2309   for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
   2310        I != E; ++I) {
   2311     if (I->isCtrl()) continue;  // ignore chain preds
   2312     SUnit *PredSU = I->getSUnit();
   2313     if (PredSU->isVRegCycle) {
   2314       assert(PredSU->getNode()->getOpcode() == ISD::CopyFromReg &&
   2315              "VRegCycle def must be CopyFromReg");
   2316       I->getSUnit()->isVRegCycle = 0;
   2317     }
   2318   }
   2319 }
   2320 
   2321 // Return true if this SUnit uses a CopyFromReg node marked as a VRegCycle. This
   2322 // means a node that defines the VRegCycle has not been scheduled yet.
   2323 static bool hasVRegCycleUse(const SUnit *SU) {
   2324   // If this SU also defines the VReg, don't hoist it as a "use".
   2325   if (SU->isVRegCycle)
   2326     return false;
   2327 
   2328   for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
   2329        I != E; ++I) {
   2330     if (I->isCtrl()) continue;  // ignore chain preds
   2331     if (I->getSUnit()->isVRegCycle &&
   2332         I->getSUnit()->getNode()->getOpcode() == ISD::CopyFromReg) {
   2333       DEBUG(dbgs() << "  VReg cycle use: SU (" << SU->NodeNum << ")\n");
   2334       return true;
   2335     }
   2336   }
   2337   return false;
   2338 }
   2339 
   2340 // Check for either a dependence (latency) or resource (hazard) stall.
   2341 //
   2342 // Note: The ScheduleHazardRecognizer interface requires a non-const SU.
   2343 static bool BUHasStall(SUnit *SU, int Height, RegReductionPQBase *SPQ) {
   2344   if ((int)SPQ->getCurCycle() < Height) return true;
   2345   if (SPQ->getHazardRec()->getHazardType(SU, 0)
   2346       != ScheduleHazardRecognizer::NoHazard)
   2347     return true;
   2348   return false;
   2349 }
   2350 
   2351 // Return -1 if left has higher priority, 1 if right has higher priority.
   2352 // Return 0 if latency-based priority is equivalent.
   2353 static int BUCompareLatency(SUnit *left, SUnit *right, bool checkPref,
   2354                             RegReductionPQBase *SPQ) {
   2355   // Scheduling an instruction that uses a VReg whose postincrement has not yet
   2356   // been scheduled will induce a copy. Model this as an extra cycle of latency.
   2357   int LPenalty = hasVRegCycleUse(left) ? 1 : 0;
   2358   int RPenalty = hasVRegCycleUse(right) ? 1 : 0;
   2359   int LHeight = (int)left->getHeight() + LPenalty;
   2360   int RHeight = (int)right->getHeight() + RPenalty;
   2361 
   2362   bool LStall = (!checkPref || left->SchedulingPref == Sched::ILP) &&
   2363     BUHasStall(left, LHeight, SPQ);
   2364   bool RStall = (!checkPref || right->SchedulingPref == Sched::ILP) &&
   2365     BUHasStall(right, RHeight, SPQ);
   2366 
   2367   // If scheduling one of the node will cause a pipeline stall, delay it.
   2368   // If scheduling either one of the node will cause a pipeline stall, sort
   2369   // them according to their height.
   2370   if (LStall) {
   2371     if (!RStall)
   2372       return 1;
   2373     if (LHeight != RHeight)
   2374       return LHeight > RHeight ? 1 : -1;
   2375   } else if (RStall)
   2376     return -1;
   2377 
   2378   // If either node is scheduling for latency, sort them by height/depth
   2379   // and latency.
   2380   if (!checkPref || (left->SchedulingPref == Sched::ILP ||
   2381                      right->SchedulingPref == Sched::ILP)) {
   2382     // If neither instruction stalls (!LStall && !RStall) and HazardRecognizer
   2383     // is enabled, grouping instructions by cycle, then its height is already
   2384     // covered so only its depth matters. We also reach this point if both stall
   2385     // but have the same height.
   2386     if (!SPQ->getHazardRec()->isEnabled()) {
   2387       if (LHeight != RHeight)
   2388         return LHeight > RHeight ? 1 : -1;
   2389     }
   2390     int LDepth = left->getDepth() - LPenalty;
   2391     int RDepth = right->getDepth() - RPenalty;
   2392     if (LDepth != RDepth) {
   2393       DEBUG(dbgs() << "  Comparing latency of SU (" << left->NodeNum
   2394             << ") depth " << LDepth << " vs SU (" << right->NodeNum
   2395             << ") depth " << RDepth << "\n");
   2396       return LDepth < RDepth ? 1 : -1;
   2397     }
   2398     if (left->Latency != right->Latency)
   2399       return left->Latency > right->Latency ? 1 : -1;
   2400   }
   2401   return 0;
   2402 }
   2403 
   2404 static bool BURRSort(SUnit *left, SUnit *right, RegReductionPQBase *SPQ) {
   2405   // Schedule physical register definitions close to their use. This is
   2406   // motivated by microarchitectures that can fuse cmp+jump macro-ops. But as
   2407   // long as shortening physreg live ranges is generally good, we can defer
   2408   // creating a subtarget hook.
   2409   if (!DisableSchedPhysRegJoin) {
   2410     bool LHasPhysReg = left->hasPhysRegDefs;
   2411     bool RHasPhysReg = right->hasPhysRegDefs;
   2412     if (LHasPhysReg != RHasPhysReg) {
   2413       #ifndef NDEBUG
   2414       static const char *const PhysRegMsg[] = { " has no physreg",
   2415                                                 " defines a physreg" };
   2416       #endif
   2417       DEBUG(dbgs() << "  SU (" << left->NodeNum << ") "
   2418             << PhysRegMsg[LHasPhysReg] << " SU(" << right->NodeNum << ") "
   2419             << PhysRegMsg[RHasPhysReg] << "\n");
   2420       return LHasPhysReg < RHasPhysReg;
   2421     }
   2422   }
   2423 
   2424   // Prioritize by Sethi-Ulmann number and push CopyToReg nodes down.
   2425   unsigned LPriority = SPQ->getNodePriority(left);
   2426   unsigned RPriority = SPQ->getNodePriority(right);
   2427 
   2428   // Be really careful about hoisting call operands above previous calls.
   2429   // Only allows it if it would reduce register pressure.
   2430   if (left->isCall && right->isCallOp) {
   2431     unsigned RNumVals = right->getNode()->getNumValues();
   2432     RPriority = (RPriority > RNumVals) ? (RPriority - RNumVals) : 0;
   2433   }
   2434   if (right->isCall && left->isCallOp) {
   2435     unsigned LNumVals = left->getNode()->getNumValues();
   2436     LPriority = (LPriority > LNumVals) ? (LPriority - LNumVals) : 0;
   2437   }
   2438 
   2439   if (LPriority != RPriority)
   2440     return LPriority > RPriority;
   2441 
   2442   // One or both of the nodes are calls and their sethi-ullman numbers are the
   2443   // same, then keep source order.
   2444   if (left->isCall || right->isCall) {
   2445     unsigned LOrder = SPQ->getNodeOrdering(left);
   2446     unsigned ROrder = SPQ->getNodeOrdering(right);
   2447 
   2448     // Prefer an ordering where the lower the non-zero order number, the higher
   2449     // the preference.
   2450     if ((LOrder || ROrder) && LOrder != ROrder)
   2451       return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
   2452   }
   2453 
   2454   // Try schedule def + use closer when Sethi-Ullman numbers are the same.
   2455   // e.g.
   2456   // t1 = op t2, c1
   2457   // t3 = op t4, c2
   2458   //
   2459   // and the following instructions are both ready.
   2460   // t2 = op c3
   2461   // t4 = op c4
   2462   //
   2463   // Then schedule t2 = op first.
   2464   // i.e.
   2465   // t4 = op c4
   2466   // t2 = op c3
   2467   // t1 = op t2, c1
   2468   // t3 = op t4, c2
   2469   //
   2470   // This creates more short live intervals.
   2471   unsigned LDist = closestSucc(left);
   2472   unsigned RDist = closestSucc(right);
   2473   if (LDist != RDist)
   2474     return LDist < RDist;
   2475 
   2476   // How many registers becomes live when the node is scheduled.
   2477   unsigned LScratch = calcMaxScratches(left);
   2478   unsigned RScratch = calcMaxScratches(right);
   2479   if (LScratch != RScratch)
   2480     return LScratch > RScratch;
   2481 
   2482   // Comparing latency against a call makes little sense unless the node
   2483   // is register pressure-neutral.
   2484   if ((left->isCall && RPriority > 0) || (right->isCall && LPriority > 0))
   2485     return (left->NodeQueueId > right->NodeQueueId);
   2486 
   2487   // Do not compare latencies when one or both of the nodes are calls.
   2488   if (!DisableSchedCycles &&
   2489       !(left->isCall || right->isCall)) {
   2490     int result = BUCompareLatency(left, right, false /*checkPref*/, SPQ);
   2491     if (result != 0)
   2492       return result > 0;
   2493   }
   2494   else {
   2495     if (left->getHeight() != right->getHeight())
   2496       return left->getHeight() > right->getHeight();
   2497 
   2498     if (left->getDepth() != right->getDepth())
   2499       return left->getDepth() < right->getDepth();
   2500   }
   2501 
   2502   assert(left->NodeQueueId && right->NodeQueueId &&
   2503          "NodeQueueId cannot be zero");
   2504   return (left->NodeQueueId > right->NodeQueueId);
   2505 }
   2506 
   2507 // Bottom up
   2508 bool bu_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
   2509   if (int res = checkSpecialNodes(left, right))
   2510     return res > 0;
   2511 
   2512   return BURRSort(left, right, SPQ);
   2513 }
   2514 
   2515 // Source order, otherwise bottom up.
   2516 bool src_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
   2517   if (int res = checkSpecialNodes(left, right))
   2518     return res > 0;
   2519 
   2520   unsigned LOrder = SPQ->getNodeOrdering(left);
   2521   unsigned ROrder = SPQ->getNodeOrdering(right);
   2522 
   2523   // Prefer an ordering where the lower the non-zero order number, the higher
   2524   // the preference.
   2525   if ((LOrder || ROrder) && LOrder != ROrder)
   2526     return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
   2527 
   2528   return BURRSort(left, right, SPQ);
   2529 }
   2530 
   2531 // If the time between now and when the instruction will be ready can cover
   2532 // the spill code, then avoid adding it to the ready queue. This gives long
   2533 // stalls highest priority and allows hoisting across calls. It should also
   2534 // speed up processing the available queue.
   2535 bool hybrid_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
   2536   static const unsigned ReadyDelay = 3;
   2537 
   2538   if (SPQ->MayReduceRegPressure(SU)) return true;
   2539 
   2540   if (SU->getHeight() > (CurCycle + ReadyDelay)) return false;
   2541 
   2542   if (SPQ->getHazardRec()->getHazardType(SU, -ReadyDelay)
   2543       != ScheduleHazardRecognizer::NoHazard)
   2544     return false;
   2545 
   2546   return true;
   2547 }
   2548 
   2549 // Return true if right should be scheduled with higher priority than left.
   2550 bool hybrid_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
   2551   if (int res = checkSpecialNodes(left, right))
   2552     return res > 0;
   2553 
   2554   if (left->isCall || right->isCall)
   2555     // No way to compute latency of calls.
   2556     return BURRSort(left, right, SPQ);
   2557 
   2558   bool LHigh = SPQ->HighRegPressure(left);
   2559   bool RHigh = SPQ->HighRegPressure(right);
   2560   // Avoid causing spills. If register pressure is high, schedule for
   2561   // register pressure reduction.
   2562   if (LHigh && !RHigh) {
   2563     DEBUG(dbgs() << "  pressure SU(" << left->NodeNum << ") > SU("
   2564           << right->NodeNum << ")\n");
   2565     return true;
   2566   }
   2567   else if (!LHigh && RHigh) {
   2568     DEBUG(dbgs() << "  pressure SU(" << right->NodeNum << ") > SU("
   2569           << left->NodeNum << ")\n");
   2570     return false;
   2571   }
   2572   if (!LHigh && !RHigh) {
   2573     int result = BUCompareLatency(left, right, true /*checkPref*/, SPQ);
   2574     if (result != 0)
   2575       return result > 0;
   2576   }
   2577   return BURRSort(left, right, SPQ);
   2578 }
   2579 
   2580 // Schedule as many instructions in each cycle as possible. So don't make an
   2581 // instruction available unless it is ready in the current cycle.
   2582 bool ilp_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
   2583   if (SU->getHeight() > CurCycle) return false;
   2584 
   2585   if (SPQ->getHazardRec()->getHazardType(SU, 0)
   2586       != ScheduleHazardRecognizer::NoHazard)
   2587     return false;
   2588 
   2589   return true;
   2590 }
   2591 
   2592 static bool canEnableCoalescing(SUnit *SU) {
   2593   unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
   2594   if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
   2595     // CopyToReg should be close to its uses to facilitate coalescing and
   2596     // avoid spilling.
   2597     return true;
   2598 
   2599   if (Opc == TargetOpcode::EXTRACT_SUBREG ||
   2600       Opc == TargetOpcode::SUBREG_TO_REG ||
   2601       Opc == TargetOpcode::INSERT_SUBREG)
   2602     // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
   2603     // close to their uses to facilitate coalescing.
   2604     return true;
   2605 
   2606   if (SU->NumPreds == 0 && SU->NumSuccs != 0)
   2607     // If SU does not have a register def, schedule it close to its uses
   2608     // because it does not lengthen any live ranges.
   2609     return true;
   2610 
   2611   return false;
   2612 }
   2613 
   2614 // list-ilp is currently an experimental scheduler that allows various
   2615 // heuristics to be enabled prior to the normal register reduction logic.
   2616 bool ilp_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
   2617   if (int res = checkSpecialNodes(left, right))
   2618     return res > 0;
   2619 
   2620   if (left->isCall || right->isCall)
   2621     // No way to compute latency of calls.
   2622     return BURRSort(left, right, SPQ);
   2623 
   2624   unsigned LLiveUses = 0, RLiveUses = 0;
   2625   int LPDiff = 0, RPDiff = 0;
   2626   if (!DisableSchedRegPressure || !DisableSchedLiveUses) {
   2627     LPDiff = SPQ->RegPressureDiff(left, LLiveUses);
   2628     RPDiff = SPQ->RegPressureDiff(right, RLiveUses);
   2629   }
   2630   if (!DisableSchedRegPressure && LPDiff != RPDiff) {
   2631     DEBUG(dbgs() << "RegPressureDiff SU(" << left->NodeNum << "): " << LPDiff
   2632           << " != SU(" << right->NodeNum << "): " << RPDiff << "\n");
   2633     return LPDiff > RPDiff;
   2634   }
   2635 
   2636   if (!DisableSchedRegPressure && (LPDiff > 0 || RPDiff > 0)) {
   2637     bool LReduce = canEnableCoalescing(left);
   2638     bool RReduce = canEnableCoalescing(right);
   2639     if (LReduce && !RReduce) return false;
   2640     if (RReduce && !LReduce) return true;
   2641   }
   2642 
   2643   if (!DisableSchedLiveUses && (LLiveUses != RLiveUses)) {
   2644     DEBUG(dbgs() << "Live uses SU(" << left->NodeNum << "): " << LLiveUses
   2645           << " != SU(" << right->NodeNum << "): " << RLiveUses << "\n");
   2646     return LLiveUses < RLiveUses;
   2647   }
   2648 
   2649   if (!DisableSchedStalls) {
   2650     bool LStall = BUHasStall(left, left->getHeight(), SPQ);
   2651     bool RStall = BUHasStall(right, right->getHeight(), SPQ);
   2652     if (LStall != RStall)
   2653       return left->getHeight() > right->getHeight();
   2654   }
   2655 
   2656   if (!DisableSchedCriticalPath) {
   2657     int spread = (int)left->getDepth() - (int)right->getDepth();
   2658     if (std::abs(spread) > MaxReorderWindow) {
   2659       DEBUG(dbgs() << "Depth of SU(" << left->NodeNum << "): "
   2660             << left->getDepth() << " != SU(" << right->NodeNum << "): "
   2661             << right->getDepth() << "\n");
   2662       return left->getDepth() < right->getDepth();
   2663     }
   2664   }
   2665 
   2666   if (!DisableSchedHeight && left->getHeight() != right->getHeight()) {
   2667     int spread = (int)left->getHeight() - (int)right->getHeight();
   2668     if (std::abs(spread) > MaxReorderWindow)
   2669       return left->getHeight() > right->getHeight();
   2670   }
   2671 
   2672   return BURRSort(left, right, SPQ);
   2673 }
   2674 
   2675 void RegReductionPQBase::initNodes(std::vector<SUnit> &sunits) {
   2676   SUnits = &sunits;
   2677   // Add pseudo dependency edges for two-address nodes.
   2678   if (!Disable2AddrHack)
   2679     AddPseudoTwoAddrDeps();
   2680   // Reroute edges to nodes with multiple uses.
   2681   if (!TracksRegPressure && !SrcOrder)
   2682     PrescheduleNodesWithMultipleUses();
   2683   // Calculate node priorities.
   2684   CalculateSethiUllmanNumbers();
   2685 
   2686   // For single block loops, mark nodes that look like canonical IV increments.
   2687   if (scheduleDAG->BB->isSuccessor(scheduleDAG->BB)) {
   2688     for (unsigned i = 0, e = sunits.size(); i != e; ++i) {
   2689       initVRegCycle(&sunits[i]);
   2690     }
   2691   }
   2692 }
   2693 
   2694 //===----------------------------------------------------------------------===//
   2695 //                    Preschedule for Register Pressure
   2696 //===----------------------------------------------------------------------===//
   2697 
   2698 bool RegReductionPQBase::canClobber(const SUnit *SU, const SUnit *Op) {
   2699   if (SU->isTwoAddress) {
   2700     unsigned Opc = SU->getNode()->getMachineOpcode();
   2701     const MCInstrDesc &MCID = TII->get(Opc);
   2702     unsigned NumRes = MCID.getNumDefs();
   2703     unsigned NumOps = MCID.getNumOperands() - NumRes;
   2704     for (unsigned i = 0; i != NumOps; ++i) {
   2705       if (MCID.getOperandConstraint(i+NumRes, MCOI::TIED_TO) != -1) {
   2706         SDNode *DU = SU->getNode()->getOperand(i).getNode();
   2707         if (DU->getNodeId() != -1 &&
   2708             Op->OrigNode == &(*SUnits)[DU->getNodeId()])
   2709           return true;
   2710       }
   2711     }
   2712   }
   2713   return false;
   2714 }
   2715 
   2716 /// canClobberReachingPhysRegUse - True if SU would clobber one of it's
   2717 /// successor's explicit physregs whose definition can reach DepSU.
   2718 /// i.e. DepSU should not be scheduled above SU.
   2719 static bool canClobberReachingPhysRegUse(const SUnit *DepSU, const SUnit *SU,
   2720                                          ScheduleDAGRRList *scheduleDAG,
   2721                                          const TargetInstrInfo *TII,
   2722                                          const TargetRegisterInfo *TRI) {
   2723   const MCPhysReg *ImpDefs
   2724     = TII->get(SU->getNode()->getMachineOpcode()).getImplicitDefs();
   2725   const uint32_t *RegMask = getNodeRegMask(SU->getNode());
   2726   if(!ImpDefs && !RegMask)
   2727     return false;
   2728 
   2729   for (SUnit::const_succ_iterator SI = SU->Succs.begin(), SE = SU->Succs.end();
   2730        SI != SE; ++SI) {
   2731     SUnit *SuccSU = SI->getSUnit();
   2732     for (SUnit::const_pred_iterator PI = SuccSU->Preds.begin(),
   2733            PE = SuccSU->Preds.end(); PI != PE; ++PI) {
   2734       if (!PI->isAssignedRegDep())
   2735         continue;
   2736 
   2737       if (RegMask && MachineOperand::clobbersPhysReg(RegMask, PI->getReg()) &&
   2738           scheduleDAG->IsReachable(DepSU, PI->getSUnit()))
   2739         return true;
   2740 
   2741       if (ImpDefs)
   2742         for (const MCPhysReg *ImpDef = ImpDefs; *ImpDef; ++ImpDef)
   2743           // Return true if SU clobbers this physical register use and the
   2744           // definition of the register reaches from DepSU. IsReachable queries
   2745           // a topological forward sort of the DAG (following the successors).
   2746           if (TRI->regsOverlap(*ImpDef, PI->getReg()) &&
   2747               scheduleDAG->IsReachable(DepSU, PI->getSUnit()))
   2748             return true;
   2749     }
   2750   }
   2751   return false;
   2752 }
   2753 
   2754 /// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
   2755 /// physical register defs.
   2756 static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU,
   2757                                   const TargetInstrInfo *TII,
   2758                                   const TargetRegisterInfo *TRI) {
   2759   SDNode *N = SuccSU->getNode();
   2760   unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
   2761   const MCPhysReg *ImpDefs = TII->get(N->getMachineOpcode()).getImplicitDefs();
   2762   assert(ImpDefs && "Caller should check hasPhysRegDefs");
   2763   for (const SDNode *SUNode = SU->getNode(); SUNode;
   2764        SUNode = SUNode->getGluedNode()) {
   2765     if (!SUNode->isMachineOpcode())
   2766       continue;
   2767     const MCPhysReg *SUImpDefs =
   2768       TII->get(SUNode->getMachineOpcode()).getImplicitDefs();
   2769     const uint32_t *SURegMask = getNodeRegMask(SUNode);
   2770     if (!SUImpDefs && !SURegMask)
   2771       continue;
   2772     for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
   2773       MVT VT = N->getSimpleValueType(i);
   2774       if (VT == MVT::Glue || VT == MVT::Other)
   2775         continue;
   2776       if (!N->hasAnyUseOfValue(i))
   2777         continue;
   2778       unsigned Reg = ImpDefs[i - NumDefs];
   2779       if (SURegMask && MachineOperand::clobbersPhysReg(SURegMask, Reg))
   2780         return true;
   2781       if (!SUImpDefs)
   2782         continue;
   2783       for (;*SUImpDefs; ++SUImpDefs) {
   2784         unsigned SUReg = *SUImpDefs;
   2785         if (TRI->regsOverlap(Reg, SUReg))
   2786           return true;
   2787       }
   2788     }
   2789   }
   2790   return false;
   2791 }
   2792 
   2793 /// PrescheduleNodesWithMultipleUses - Nodes with multiple uses
   2794 /// are not handled well by the general register pressure reduction
   2795 /// heuristics. When presented with code like this:
   2796 ///
   2797 ///      N
   2798 ///    / |
   2799 ///   /  |
   2800 ///  U  store
   2801 ///  |
   2802 /// ...
   2803 ///
   2804 /// the heuristics tend to push the store up, but since the
   2805 /// operand of the store has another use (U), this would increase
   2806 /// the length of that other use (the U->N edge).
   2807 ///
   2808 /// This function transforms code like the above to route U's
   2809 /// dependence through the store when possible, like this:
   2810 ///
   2811 ///      N
   2812 ///      ||
   2813 ///      ||
   2814 ///     store
   2815 ///       |
   2816 ///       U
   2817 ///       |
   2818 ///      ...
   2819 ///
   2820 /// This results in the store being scheduled immediately
   2821 /// after N, which shortens the U->N live range, reducing
   2822 /// register pressure.
   2823 ///
   2824 void RegReductionPQBase::PrescheduleNodesWithMultipleUses() {
   2825   // Visit all the nodes in topological order, working top-down.
   2826   for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
   2827     SUnit *SU = &(*SUnits)[i];
   2828     // For now, only look at nodes with no data successors, such as stores.
   2829     // These are especially important, due to the heuristics in
   2830     // getNodePriority for nodes with no data successors.
   2831     if (SU->NumSuccs != 0)
   2832       continue;
   2833     // For now, only look at nodes with exactly one data predecessor.
   2834     if (SU->NumPreds != 1)
   2835       continue;
   2836     // Avoid prescheduling copies to virtual registers, which don't behave
   2837     // like other nodes from the perspective of scheduling heuristics.
   2838     if (SDNode *N = SU->getNode())
   2839       if (N->getOpcode() == ISD::CopyToReg &&
   2840           TargetRegisterInfo::isVirtualRegister
   2841             (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
   2842         continue;
   2843 
   2844     // Locate the single data predecessor.
   2845     SUnit *PredSU = nullptr;
   2846     for (SUnit::const_pred_iterator II = SU->Preds.begin(),
   2847          EE = SU->Preds.end(); II != EE; ++II)
   2848       if (!II->isCtrl()) {
   2849         PredSU = II->getSUnit();
   2850         break;
   2851       }
   2852     assert(PredSU);
   2853 
   2854     // Don't rewrite edges that carry physregs, because that requires additional
   2855     // support infrastructure.
   2856     if (PredSU->hasPhysRegDefs)
   2857       continue;
   2858     // Short-circuit the case where SU is PredSU's only data successor.
   2859     if (PredSU->NumSuccs == 1)
   2860       continue;
   2861     // Avoid prescheduling to copies from virtual registers, which don't behave
   2862     // like other nodes from the perspective of scheduling heuristics.
   2863     if (SDNode *N = SU->getNode())
   2864       if (N->getOpcode() == ISD::CopyFromReg &&
   2865           TargetRegisterInfo::isVirtualRegister
   2866             (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
   2867         continue;
   2868 
   2869     // Perform checks on the successors of PredSU.
   2870     for (SUnit::const_succ_iterator II = PredSU->Succs.begin(),
   2871          EE = PredSU->Succs.end(); II != EE; ++II) {
   2872       SUnit *PredSuccSU = II->getSUnit();
   2873       if (PredSuccSU == SU) continue;
   2874       // If PredSU has another successor with no data successors, for
   2875       // now don't attempt to choose either over the other.
   2876       if (PredSuccSU->NumSuccs == 0)
   2877         goto outer_loop_continue;
   2878       // Don't break physical register dependencies.
   2879       if (SU->hasPhysRegClobbers && PredSuccSU->hasPhysRegDefs)
   2880         if (canClobberPhysRegDefs(PredSuccSU, SU, TII, TRI))
   2881           goto outer_loop_continue;
   2882       // Don't introduce graph cycles.
   2883       if (scheduleDAG->IsReachable(SU, PredSuccSU))
   2884         goto outer_loop_continue;
   2885     }
   2886 
   2887     // Ok, the transformation is safe and the heuristics suggest it is
   2888     // profitable. Update the graph.
   2889     DEBUG(dbgs() << "    Prescheduling SU #" << SU->NodeNum
   2890                  << " next to PredSU #" << PredSU->NodeNum
   2891                  << " to guide scheduling in the presence of multiple uses\n");
   2892     for (unsigned i = 0; i != PredSU->Succs.size(); ++i) {
   2893       SDep Edge = PredSU->Succs[i];
   2894       assert(!Edge.isAssignedRegDep());
   2895       SUnit *SuccSU = Edge.getSUnit();
   2896       if (SuccSU != SU) {
   2897         Edge.setSUnit(PredSU);
   2898         scheduleDAG->RemovePred(SuccSU, Edge);
   2899         scheduleDAG->AddPred(SU, Edge);
   2900         Edge.setSUnit(SU);
   2901         scheduleDAG->AddPred(SuccSU, Edge);
   2902         --i;
   2903       }
   2904     }
   2905   outer_loop_continue:;
   2906   }
   2907 }
   2908 
   2909 /// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
   2910 /// it as a def&use operand. Add a pseudo control edge from it to the other
   2911 /// node (if it won't create a cycle) so the two-address one will be scheduled
   2912 /// first (lower in the schedule). If both nodes are two-address, favor the
   2913 /// one that has a CopyToReg use (more likely to be a loop induction update).
   2914 /// If both are two-address, but one is commutable while the other is not
   2915 /// commutable, favor the one that's not commutable.
   2916 void RegReductionPQBase::AddPseudoTwoAddrDeps() {
   2917   for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
   2918     SUnit *SU = &(*SUnits)[i];
   2919     if (!SU->isTwoAddress)
   2920       continue;
   2921 
   2922     SDNode *Node = SU->getNode();
   2923     if (!Node || !Node->isMachineOpcode() || SU->getNode()->getGluedNode())
   2924       continue;
   2925 
   2926     bool isLiveOut = hasOnlyLiveOutUses(SU);
   2927     unsigned Opc = Node->getMachineOpcode();
   2928     const MCInstrDesc &MCID = TII->get(Opc);
   2929     unsigned NumRes = MCID.getNumDefs();
   2930     unsigned NumOps = MCID.getNumOperands() - NumRes;
   2931     for (unsigned j = 0; j != NumOps; ++j) {
   2932       if (MCID.getOperandConstraint(j+NumRes, MCOI::TIED_TO) == -1)
   2933         continue;
   2934       SDNode *DU = SU->getNode()->getOperand(j).getNode();
   2935       if (DU->getNodeId() == -1)
   2936         continue;
   2937       const SUnit *DUSU = &(*SUnits)[DU->getNodeId()];
   2938       if (!DUSU) continue;
   2939       for (SUnit::const_succ_iterator I = DUSU->Succs.begin(),
   2940            E = DUSU->Succs.end(); I != E; ++I) {
   2941         if (I->isCtrl()) continue;
   2942         SUnit *SuccSU = I->getSUnit();
   2943         if (SuccSU == SU)
   2944           continue;
   2945         // Be conservative. Ignore if nodes aren't at roughly the same
   2946         // depth and height.
   2947         if (SuccSU->getHeight() < SU->getHeight() &&
   2948             (SU->getHeight() - SuccSU->getHeight()) > 1)
   2949           continue;
   2950         // Skip past COPY_TO_REGCLASS nodes, so that the pseudo edge
   2951         // constrains whatever is using the copy, instead of the copy
   2952         // itself. In the case that the copy is coalesced, this
   2953         // preserves the intent of the pseudo two-address heurietics.
   2954         while (SuccSU->Succs.size() == 1 &&
   2955                SuccSU->getNode()->isMachineOpcode() &&
   2956                SuccSU->getNode()->getMachineOpcode() ==
   2957                  TargetOpcode::COPY_TO_REGCLASS)
   2958           SuccSU = SuccSU->Succs.front().getSUnit();
   2959         // Don't constrain non-instruction nodes.
   2960         if (!SuccSU->getNode() || !SuccSU->getNode()->isMachineOpcode())
   2961           continue;
   2962         // Don't constrain nodes with physical register defs if the
   2963         // predecessor can clobber them.
   2964         if (SuccSU->hasPhysRegDefs && SU->hasPhysRegClobbers) {
   2965           if (canClobberPhysRegDefs(SuccSU, SU, TII, TRI))
   2966             continue;
   2967         }
   2968         // Don't constrain EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG;
   2969         // these may be coalesced away. We want them close to their uses.
   2970         unsigned SuccOpc = SuccSU->getNode()->getMachineOpcode();
   2971         if (SuccOpc == TargetOpcode::EXTRACT_SUBREG ||
   2972             SuccOpc == TargetOpcode::INSERT_SUBREG ||
   2973             SuccOpc == TargetOpcode::SUBREG_TO_REG)
   2974           continue;
   2975         if (!canClobberReachingPhysRegUse(SuccSU, SU, scheduleDAG, TII, TRI) &&
   2976             (!canClobber(SuccSU, DUSU) ||
   2977              (isLiveOut && !hasOnlyLiveOutUses(SuccSU)) ||
   2978              (!SU->isCommutable && SuccSU->isCommutable)) &&
   2979             !scheduleDAG->IsReachable(SuccSU, SU)) {
   2980           DEBUG(dbgs() << "    Adding a pseudo-two-addr edge from SU #"
   2981                        << SU->NodeNum << " to SU #" << SuccSU->NodeNum << "\n");
   2982           scheduleDAG->AddPred(SU, SDep(SuccSU, SDep::Artificial));
   2983         }
   2984       }
   2985     }
   2986   }
   2987 }
   2988 
   2989 //===----------------------------------------------------------------------===//
   2990 //                         Public Constructor Functions
   2991 //===----------------------------------------------------------------------===//
   2992 
   2993 llvm::ScheduleDAGSDNodes *
   2994 llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
   2995                                  CodeGenOpt::Level OptLevel) {
   2996   const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
   2997   const TargetInstrInfo *TII = STI.getInstrInfo();
   2998   const TargetRegisterInfo *TRI = STI.getRegisterInfo();
   2999 
   3000   BURegReductionPriorityQueue *PQ =
   3001     new BURegReductionPriorityQueue(*IS->MF, false, false, TII, TRI, nullptr);
   3002   ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
   3003   PQ->setScheduleDAG(SD);
   3004   return SD;
   3005 }
   3006 
   3007 llvm::ScheduleDAGSDNodes *
   3008 llvm::createSourceListDAGScheduler(SelectionDAGISel *IS,
   3009                                    CodeGenOpt::Level OptLevel) {
   3010   const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
   3011   const TargetInstrInfo *TII = STI.getInstrInfo();
   3012   const TargetRegisterInfo *TRI = STI.getRegisterInfo();
   3013 
   3014   SrcRegReductionPriorityQueue *PQ =
   3015     new SrcRegReductionPriorityQueue(*IS->MF, false, true, TII, TRI, nullptr);
   3016   ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
   3017   PQ->setScheduleDAG(SD);
   3018   return SD;
   3019 }
   3020 
   3021 llvm::ScheduleDAGSDNodes *
   3022 llvm::createHybridListDAGScheduler(SelectionDAGISel *IS,
   3023                                    CodeGenOpt::Level OptLevel) {
   3024   const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
   3025   const TargetInstrInfo *TII = STI.getInstrInfo();
   3026   const TargetRegisterInfo *TRI = STI.getRegisterInfo();
   3027   const TargetLowering *TLI = IS->TLI;
   3028 
   3029   HybridBURRPriorityQueue *PQ =
   3030     new HybridBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
   3031 
   3032   ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
   3033   PQ->setScheduleDAG(SD);
   3034   return SD;
   3035 }
   3036 
   3037 llvm::ScheduleDAGSDNodes *
   3038 llvm::createILPListDAGScheduler(SelectionDAGISel *IS,
   3039                                 CodeGenOpt::Level OptLevel) {
   3040   const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
   3041   const TargetInstrInfo *TII = STI.getInstrInfo();
   3042   const TargetRegisterInfo *TRI = STI.getRegisterInfo();
   3043   const TargetLowering *TLI = IS->TLI;
   3044 
   3045   ILPBURRPriorityQueue *PQ =
   3046     new ILPBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
   3047   ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
   3048   PQ->setScheduleDAG(SD);
   3049   return SD;
   3050 }
   3051