Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- LegalizeTypes.h - DAG Type Legalizer class definition ---*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the DAGTypeLegalizer class.  This is a private interface
     11 // shared between the code that implements the SelectionDAG::LegalizeTypes
     12 // method.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H
     17 #define LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H
     18 
     19 #include "llvm/ADT/DenseMap.h"
     20 #include "llvm/ADT/DenseSet.h"
     21 #include "llvm/CodeGen/SelectionDAG.h"
     22 #include "llvm/Support/Compiler.h"
     23 #include "llvm/Support/Debug.h"
     24 #include "llvm/Target/TargetLowering.h"
     25 
     26 namespace llvm {
     27 
     28 //===----------------------------------------------------------------------===//
     29 /// DAGTypeLegalizer - This takes an arbitrary SelectionDAG as input and hacks
     30 /// on it until only value types the target machine can handle are left.  This
     31 /// involves promoting small sizes to large sizes or splitting up large values
     32 /// into small values.
     33 ///
     34 class LLVM_LIBRARY_VISIBILITY DAGTypeLegalizer {
     35   const TargetLowering &TLI;
     36   SelectionDAG &DAG;
     37 public:
     38   // NodeIdFlags - This pass uses the NodeId on the SDNodes to hold information
     39   // about the state of the node.  The enum has all the values.
     40   enum NodeIdFlags {
     41     /// ReadyToProcess - All operands have been processed, so this node is ready
     42     /// to be handled.
     43     ReadyToProcess = 0,
     44 
     45     /// NewNode - This is a new node, not before seen, that was created in the
     46     /// process of legalizing some other node.
     47     NewNode = -1,
     48 
     49     /// Unanalyzed - This node's ID needs to be set to the number of its
     50     /// unprocessed operands.
     51     Unanalyzed = -2,
     52 
     53     /// Processed - This is a node that has already been processed.
     54     Processed = -3
     55 
     56     // 1+ - This is a node which has this many unprocessed operands.
     57   };
     58 private:
     59 
     60   /// ValueTypeActions - This is a bitvector that contains two bits for each
     61   /// simple value type, where the two bits correspond to the LegalizeAction
     62   /// enum from TargetLowering.  This can be queried with "getTypeAction(VT)".
     63   TargetLowering::ValueTypeActionImpl ValueTypeActions;
     64 
     65   /// getTypeAction - Return how we should legalize values of this type.
     66   TargetLowering::LegalizeTypeAction getTypeAction(EVT VT) const {
     67     return TLI.getTypeAction(*DAG.getContext(), VT);
     68   }
     69 
     70   /// isTypeLegal - Return true if this type is legal on this target.
     71   bool isTypeLegal(EVT VT) const {
     72     return TLI.getTypeAction(*DAG.getContext(), VT) == TargetLowering::TypeLegal;
     73   }
     74 
     75   /// isSimpleLegalType - Return true if this is a simple legal type.
     76   bool isSimpleLegalType(EVT VT) const {
     77     return VT.isSimple() && TLI.isTypeLegal(VT);
     78   }
     79 
     80   /// isLegalInHWReg - Return true if this type can be passed in registers.
     81   /// For example, x86_64's f128, should to be legally in registers
     82   /// and only some operations converted to library calls or integer
     83   /// bitwise operations.
     84   bool isLegalInHWReg(EVT VT) const {
     85     EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
     86     return VT == NVT && isSimpleLegalType(VT);
     87   }
     88 
     89   EVT getSetCCResultType(EVT VT) const {
     90     return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
     91   }
     92 
     93   /// IgnoreNodeResults - Pretend all of this node's results are legal.
     94   bool IgnoreNodeResults(SDNode *N) const {
     95     return N->getOpcode() == ISD::TargetConstant;
     96   }
     97 
     98   /// PromotedIntegers - For integer nodes that are below legal width, this map
     99   /// indicates what promoted value to use.
    100   SmallDenseMap<SDValue, SDValue, 8> PromotedIntegers;
    101 
    102   /// ExpandedIntegers - For integer nodes that need to be expanded this map
    103   /// indicates which operands are the expanded version of the input.
    104   SmallDenseMap<SDValue, std::pair<SDValue, SDValue>, 8> ExpandedIntegers;
    105 
    106   /// SoftenedFloats - For floating point nodes converted to integers of
    107   /// the same size, this map indicates the converted value to use.
    108   SmallDenseMap<SDValue, SDValue, 8> SoftenedFloats;
    109 
    110   /// PromotedFloats - For floating point nodes that have a smaller precision
    111   /// than the smallest supported precision, this map indicates what promoted
    112   /// value to use.
    113   SmallDenseMap<SDValue, SDValue, 8> PromotedFloats;
    114 
    115   /// ExpandedFloats - For float nodes that need to be expanded this map
    116   /// indicates which operands are the expanded version of the input.
    117   SmallDenseMap<SDValue, std::pair<SDValue, SDValue>, 8> ExpandedFloats;
    118 
    119   /// ScalarizedVectors - For nodes that are <1 x ty>, this map indicates the
    120   /// scalar value of type 'ty' to use.
    121   SmallDenseMap<SDValue, SDValue, 8> ScalarizedVectors;
    122 
    123   /// SplitVectors - For nodes that need to be split this map indicates
    124   /// which operands are the expanded version of the input.
    125   SmallDenseMap<SDValue, std::pair<SDValue, SDValue>, 8> SplitVectors;
    126 
    127   /// WidenedVectors - For vector nodes that need to be widened, indicates
    128   /// the widened value to use.
    129   SmallDenseMap<SDValue, SDValue, 8> WidenedVectors;
    130 
    131   /// ReplacedValues - For values that have been replaced with another,
    132   /// indicates the replacement value to use.
    133   SmallDenseMap<SDValue, SDValue, 8> ReplacedValues;
    134 
    135   /// Worklist - This defines a worklist of nodes to process.  In order to be
    136   /// pushed onto this worklist, all operands of a node must have already been
    137   /// processed.
    138   SmallVector<SDNode*, 128> Worklist;
    139 
    140 public:
    141   explicit DAGTypeLegalizer(SelectionDAG &dag)
    142     : TLI(dag.getTargetLoweringInfo()), DAG(dag),
    143     ValueTypeActions(TLI.getValueTypeActions()) {
    144     static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
    145                   "Too many value types for ValueTypeActions to hold!");
    146   }
    147 
    148   /// run - This is the main entry point for the type legalizer.  This does a
    149   /// top-down traversal of the dag, legalizing types as it goes.  Returns
    150   /// "true" if it made any changes.
    151   bool run();
    152 
    153   void NoteDeletion(SDNode *Old, SDNode *New) {
    154     ExpungeNode(Old);
    155     ExpungeNode(New);
    156     for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i)
    157       ReplacedValues[SDValue(Old, i)] = SDValue(New, i);
    158   }
    159 
    160   SelectionDAG &getDAG() const { return DAG; }
    161 
    162 private:
    163   SDNode *AnalyzeNewNode(SDNode *N);
    164   void AnalyzeNewValue(SDValue &Val);
    165   void ExpungeNode(SDNode *N);
    166   void PerformExpensiveChecks();
    167   void RemapValue(SDValue &N);
    168 
    169   // Common routines.
    170   SDValue BitConvertToInteger(SDValue Op);
    171   SDValue BitConvertVectorToIntegerVector(SDValue Op);
    172   SDValue CreateStackStoreLoad(SDValue Op, EVT DestVT);
    173   bool CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult);
    174   bool CustomWidenLowerNode(SDNode *N, EVT VT);
    175 
    176   /// DisintegrateMERGE_VALUES - Replace each result of the given MERGE_VALUES
    177   /// node with the corresponding input operand, except for the result 'ResNo',
    178   /// for which the corresponding input operand is returned.
    179   SDValue DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo);
    180 
    181   SDValue GetVectorElementPointer(SDValue VecPtr, EVT EltVT, SDValue Index);
    182   SDValue JoinIntegers(SDValue Lo, SDValue Hi);
    183   SDValue LibCallify(RTLIB::Libcall LC, SDNode *N, bool isSigned);
    184 
    185   std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
    186                                                  SDNode *Node, bool isSigned);
    187   std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
    188 
    189   SDValue PromoteTargetBoolean(SDValue Bool, EVT ValVT);
    190 
    191   /// Modify Bit Vector to match SetCC result type of ValVT.
    192   /// The bit vector is widened with zeroes when WithZeroes is true.
    193   SDValue WidenTargetBoolean(SDValue Bool, EVT ValVT, bool WithZeroes = false);
    194 
    195   void ReplaceValueWith(SDValue From, SDValue To);
    196   void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
    197   void SplitInteger(SDValue Op, EVT LoVT, EVT HiVT,
    198                     SDValue &Lo, SDValue &Hi);
    199 
    200   //===--------------------------------------------------------------------===//
    201   // Integer Promotion Support: LegalizeIntegerTypes.cpp
    202   //===--------------------------------------------------------------------===//
    203 
    204   /// GetPromotedInteger - Given a processed operand Op which was promoted to a
    205   /// larger integer type, this returns the promoted value.  The low bits of the
    206   /// promoted value corresponding to the original type are exactly equal to Op.
    207   /// The extra bits contain rubbish, so the promoted value may need to be zero-
    208   /// or sign-extended from the original type before it is usable (the helpers
    209   /// SExtPromotedInteger and ZExtPromotedInteger can do this for you).
    210   /// For example, if Op is an i16 and was promoted to an i32, then this method
    211   /// returns an i32, the lower 16 bits of which coincide with Op, and the upper
    212   /// 16 bits of which contain rubbish.
    213   SDValue GetPromotedInteger(SDValue Op) {
    214     SDValue &PromotedOp = PromotedIntegers[Op];
    215     RemapValue(PromotedOp);
    216     assert(PromotedOp.getNode() && "Operand wasn't promoted?");
    217     return PromotedOp;
    218   }
    219   void SetPromotedInteger(SDValue Op, SDValue Result);
    220 
    221   /// SExtPromotedInteger - Get a promoted operand and sign extend it to the
    222   /// final size.
    223   SDValue SExtPromotedInteger(SDValue Op) {
    224     EVT OldVT = Op.getValueType();
    225     SDLoc dl(Op);
    226     Op = GetPromotedInteger(Op);
    227     return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(), Op,
    228                        DAG.getValueType(OldVT));
    229   }
    230 
    231   /// ZExtPromotedInteger - Get a promoted operand and zero extend it to the
    232   /// final size.
    233   SDValue ZExtPromotedInteger(SDValue Op) {
    234     EVT OldVT = Op.getValueType();
    235     SDLoc dl(Op);
    236     Op = GetPromotedInteger(Op);
    237     return DAG.getZeroExtendInReg(Op, dl, OldVT.getScalarType());
    238   }
    239 
    240   // Integer Result Promotion.
    241   void PromoteIntegerResult(SDNode *N, unsigned ResNo);
    242   SDValue PromoteIntRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
    243   SDValue PromoteIntRes_AssertSext(SDNode *N);
    244   SDValue PromoteIntRes_AssertZext(SDNode *N);
    245   SDValue PromoteIntRes_Atomic0(AtomicSDNode *N);
    246   SDValue PromoteIntRes_Atomic1(AtomicSDNode *N);
    247   SDValue PromoteIntRes_AtomicCmpSwap(AtomicSDNode *N, unsigned ResNo);
    248   SDValue PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N);
    249   SDValue PromoteIntRes_VECTOR_SHUFFLE(SDNode *N);
    250   SDValue PromoteIntRes_BUILD_VECTOR(SDNode *N);
    251   SDValue PromoteIntRes_SCALAR_TO_VECTOR(SDNode *N);
    252   SDValue PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N);
    253   SDValue PromoteIntRes_CONCAT_VECTORS(SDNode *N);
    254   SDValue PromoteIntRes_BITCAST(SDNode *N);
    255   SDValue PromoteIntRes_BSWAP(SDNode *N);
    256   SDValue PromoteIntRes_BITREVERSE(SDNode *N);
    257   SDValue PromoteIntRes_BUILD_PAIR(SDNode *N);
    258   SDValue PromoteIntRes_Constant(SDNode *N);
    259   SDValue PromoteIntRes_CONVERT_RNDSAT(SDNode *N);
    260   SDValue PromoteIntRes_CTLZ(SDNode *N);
    261   SDValue PromoteIntRes_CTPOP(SDNode *N);
    262   SDValue PromoteIntRes_CTTZ(SDNode *N);
    263   SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N);
    264   SDValue PromoteIntRes_FP_TO_XINT(SDNode *N);
    265   SDValue PromoteIntRes_FP_TO_FP16(SDNode *N);
    266   SDValue PromoteIntRes_INT_EXTEND(SDNode *N);
    267   SDValue PromoteIntRes_LOAD(LoadSDNode *N);
    268   SDValue PromoteIntRes_MLOAD(MaskedLoadSDNode *N);
    269   SDValue PromoteIntRes_MGATHER(MaskedGatherSDNode *N);
    270   SDValue PromoteIntRes_Overflow(SDNode *N);
    271   SDValue PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo);
    272   SDValue PromoteIntRes_SELECT(SDNode *N);
    273   SDValue PromoteIntRes_VSELECT(SDNode *N);
    274   SDValue PromoteIntRes_SELECT_CC(SDNode *N);
    275   SDValue PromoteIntRes_SETCC(SDNode *N);
    276   SDValue PromoteIntRes_SHL(SDNode *N);
    277   SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N);
    278   SDValue PromoteIntRes_ZExtIntBinOp(SDNode *N);
    279   SDValue PromoteIntRes_SExtIntBinOp(SDNode *N);
    280   SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N);
    281   SDValue PromoteIntRes_SRA(SDNode *N);
    282   SDValue PromoteIntRes_SRL(SDNode *N);
    283   SDValue PromoteIntRes_TRUNCATE(SDNode *N);
    284   SDValue PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo);
    285   SDValue PromoteIntRes_UNDEF(SDNode *N);
    286   SDValue PromoteIntRes_VAARG(SDNode *N);
    287   SDValue PromoteIntRes_XMULO(SDNode *N, unsigned ResNo);
    288 
    289   // Integer Operand Promotion.
    290   bool PromoteIntegerOperand(SDNode *N, unsigned OperandNo);
    291   SDValue PromoteIntOp_ANY_EXTEND(SDNode *N);
    292   SDValue PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N);
    293   SDValue PromoteIntOp_BITCAST(SDNode *N);
    294   SDValue PromoteIntOp_BUILD_PAIR(SDNode *N);
    295   SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo);
    296   SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo);
    297   SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N);
    298   SDValue PromoteIntOp_CONVERT_RNDSAT(SDNode *N);
    299   SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo);
    300   SDValue PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N);
    301   SDValue PromoteIntOp_EXTRACT_SUBVECTOR(SDNode *N);
    302   SDValue PromoteIntOp_CONCAT_VECTORS(SDNode *N);
    303   SDValue PromoteIntOp_SCALAR_TO_VECTOR(SDNode *N);
    304   SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo);
    305   SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo);
    306   SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo);
    307   SDValue PromoteIntOp_Shift(SDNode *N);
    308   SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N);
    309   SDValue PromoteIntOp_SINT_TO_FP(SDNode *N);
    310   SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo);
    311   SDValue PromoteIntOp_TRUNCATE(SDNode *N);
    312   SDValue PromoteIntOp_UINT_TO_FP(SDNode *N);
    313   SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N);
    314   SDValue PromoteIntOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo);
    315   SDValue PromoteIntOp_MLOAD(MaskedLoadSDNode *N, unsigned OpNo);
    316   SDValue PromoteIntOp_MSCATTER(MaskedScatterSDNode *N, unsigned OpNo);
    317   SDValue PromoteIntOp_MGATHER(MaskedGatherSDNode *N, unsigned OpNo);
    318 
    319   void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code);
    320 
    321   //===--------------------------------------------------------------------===//
    322   // Integer Expansion Support: LegalizeIntegerTypes.cpp
    323   //===--------------------------------------------------------------------===//
    324 
    325   /// GetExpandedInteger - Given a processed operand Op which was expanded into
    326   /// two integers of half the size, this returns the two halves.  The low bits
    327   /// of Op are exactly equal to the bits of Lo; the high bits exactly equal Hi.
    328   /// For example, if Op is an i64 which was expanded into two i32's, then this
    329   /// method returns the two i32's, with Lo being equal to the lower 32 bits of
    330   /// Op, and Hi being equal to the upper 32 bits.
    331   void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
    332   void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi);
    333 
    334   // Integer Result Expansion.
    335   void ExpandIntegerResult(SDNode *N, unsigned ResNo);
    336   void ExpandIntRes_ANY_EXTEND        (SDNode *N, SDValue &Lo, SDValue &Hi);
    337   void ExpandIntRes_AssertSext        (SDNode *N, SDValue &Lo, SDValue &Hi);
    338   void ExpandIntRes_AssertZext        (SDNode *N, SDValue &Lo, SDValue &Hi);
    339   void ExpandIntRes_Constant          (SDNode *N, SDValue &Lo, SDValue &Hi);
    340   void ExpandIntRes_CTLZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
    341   void ExpandIntRes_CTPOP             (SDNode *N, SDValue &Lo, SDValue &Hi);
    342   void ExpandIntRes_CTTZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
    343   void ExpandIntRes_LOAD          (LoadSDNode *N, SDValue &Lo, SDValue &Hi);
    344   void ExpandIntRes_READCYCLECOUNTER  (SDNode *N, SDValue &Lo, SDValue &Hi);
    345   void ExpandIntRes_SIGN_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
    346   void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi);
    347   void ExpandIntRes_TRUNCATE          (SDNode *N, SDValue &Lo, SDValue &Hi);
    348   void ExpandIntRes_ZERO_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
    349   void ExpandIntRes_FP_TO_SINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
    350   void ExpandIntRes_FP_TO_UINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
    351 
    352   void ExpandIntRes_Logical           (SDNode *N, SDValue &Lo, SDValue &Hi);
    353   void ExpandIntRes_ADDSUB            (SDNode *N, SDValue &Lo, SDValue &Hi);
    354   void ExpandIntRes_ADDSUBC           (SDNode *N, SDValue &Lo, SDValue &Hi);
    355   void ExpandIntRes_ADDSUBE           (SDNode *N, SDValue &Lo, SDValue &Hi);
    356   void ExpandIntRes_BITREVERSE        (SDNode *N, SDValue &Lo, SDValue &Hi);
    357   void ExpandIntRes_BSWAP             (SDNode *N, SDValue &Lo, SDValue &Hi);
    358   void ExpandIntRes_MUL               (SDNode *N, SDValue &Lo, SDValue &Hi);
    359   void ExpandIntRes_SDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
    360   void ExpandIntRes_SREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
    361   void ExpandIntRes_UDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
    362   void ExpandIntRes_UREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
    363   void ExpandIntRes_Shift             (SDNode *N, SDValue &Lo, SDValue &Hi);
    364 
    365   void ExpandIntRes_SADDSUBO          (SDNode *N, SDValue &Lo, SDValue &Hi);
    366   void ExpandIntRes_UADDSUBO          (SDNode *N, SDValue &Lo, SDValue &Hi);
    367   void ExpandIntRes_XMULO             (SDNode *N, SDValue &Lo, SDValue &Hi);
    368 
    369   void ExpandIntRes_ATOMIC_LOAD       (SDNode *N, SDValue &Lo, SDValue &Hi);
    370 
    371   void ExpandShiftByConstant(SDNode *N, const APInt &Amt,
    372                              SDValue &Lo, SDValue &Hi);
    373   bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
    374   bool ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
    375 
    376   // Integer Operand Expansion.
    377   bool ExpandIntegerOperand(SDNode *N, unsigned OperandNo);
    378   SDValue ExpandIntOp_BR_CC(SDNode *N);
    379   SDValue ExpandIntOp_SELECT_CC(SDNode *N);
    380   SDValue ExpandIntOp_SETCC(SDNode *N);
    381   SDValue ExpandIntOp_SETCCE(SDNode *N);
    382   SDValue ExpandIntOp_Shift(SDNode *N);
    383   SDValue ExpandIntOp_SINT_TO_FP(SDNode *N);
    384   SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo);
    385   SDValue ExpandIntOp_TRUNCATE(SDNode *N);
    386   SDValue ExpandIntOp_UINT_TO_FP(SDNode *N);
    387   SDValue ExpandIntOp_RETURNADDR(SDNode *N);
    388   SDValue ExpandIntOp_ATOMIC_STORE(SDNode *N);
    389 
    390   void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
    391                                   ISD::CondCode &CCCode, SDLoc dl);
    392 
    393   //===--------------------------------------------------------------------===//
    394   // Float to Integer Conversion Support: LegalizeFloatTypes.cpp
    395   //===--------------------------------------------------------------------===//
    396 
    397   /// GetSoftenedFloat - Given an operand Op of Float type, returns the integer
    398   /// if the Op is not supported in target HW and converted to the integer.
    399   /// The integer contains exactly the same bits as Op - only the type changed.
    400   /// For example, if Op is an f32 which was softened to an i32, then this method
    401   /// returns an i32, the bits of which coincide with those of Op.
    402   /// If the Op can be efficiently supported in target HW or the operand must
    403   /// stay in a register, the Op is not converted to an integer.
    404   /// In that case, the given op is returned.
    405   SDValue GetSoftenedFloat(SDValue Op) {
    406     SDValue &SoftenedOp = SoftenedFloats[Op];
    407     if (!SoftenedOp.getNode() &&
    408         isSimpleLegalType(Op.getValueType()))
    409       return Op;
    410     RemapValue(SoftenedOp);
    411     assert(SoftenedOp.getNode() && "Operand wasn't converted to integer?");
    412     return SoftenedOp;
    413   }
    414   void SetSoftenedFloat(SDValue Op, SDValue Result);
    415 
    416   // Call ReplaceValueWith(SDValue(N, ResNo), Res) if necessary.
    417   void ReplaceSoftenFloatResult(SDNode *N, unsigned ResNo, SDValue &NewRes) {
    418     // When the result type can be kept in HW registers, the converted
    419     // NewRes node could have the same type. We can save the effort in
    420     // cloning every user of N in SoftenFloatOperand or other legalization functions,
    421     // by calling ReplaceValueWith here to update all users.
    422     if (NewRes.getNode() != N && isLegalInHWReg(N->getValueType(ResNo)))
    423       ReplaceValueWith(SDValue(N, ResNo), NewRes);
    424   }
    425 
    426   // Convert Float Results to Integer for Non-HW-supported Operations.
    427   bool SoftenFloatResult(SDNode *N, unsigned ResNo);
    428   SDValue SoftenFloatRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
    429   SDValue SoftenFloatRes_BITCAST(SDNode *N, unsigned ResNo);
    430   SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N);
    431   SDValue SoftenFloatRes_ConstantFP(SDNode *N, unsigned ResNo);
    432   SDValue SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N);
    433   SDValue SoftenFloatRes_FABS(SDNode *N, unsigned ResNo);
    434   SDValue SoftenFloatRes_FMINNUM(SDNode *N);
    435   SDValue SoftenFloatRes_FMAXNUM(SDNode *N);
    436   SDValue SoftenFloatRes_FADD(SDNode *N);
    437   SDValue SoftenFloatRes_FCEIL(SDNode *N);
    438   SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N, unsigned ResNo);
    439   SDValue SoftenFloatRes_FCOS(SDNode *N);
    440   SDValue SoftenFloatRes_FDIV(SDNode *N);
    441   SDValue SoftenFloatRes_FEXP(SDNode *N);
    442   SDValue SoftenFloatRes_FEXP2(SDNode *N);
    443   SDValue SoftenFloatRes_FFLOOR(SDNode *N);
    444   SDValue SoftenFloatRes_FLOG(SDNode *N);
    445   SDValue SoftenFloatRes_FLOG2(SDNode *N);
    446   SDValue SoftenFloatRes_FLOG10(SDNode *N);
    447   SDValue SoftenFloatRes_FMA(SDNode *N);
    448   SDValue SoftenFloatRes_FMUL(SDNode *N);
    449   SDValue SoftenFloatRes_FNEARBYINT(SDNode *N);
    450   SDValue SoftenFloatRes_FNEG(SDNode *N, unsigned ResNo);
    451   SDValue SoftenFloatRes_FP_EXTEND(SDNode *N);
    452   SDValue SoftenFloatRes_FP16_TO_FP(SDNode *N);
    453   SDValue SoftenFloatRes_FP_ROUND(SDNode *N);
    454   SDValue SoftenFloatRes_FPOW(SDNode *N);
    455   SDValue SoftenFloatRes_FPOWI(SDNode *N);
    456   SDValue SoftenFloatRes_FREM(SDNode *N);
    457   SDValue SoftenFloatRes_FRINT(SDNode *N);
    458   SDValue SoftenFloatRes_FROUND(SDNode *N);
    459   SDValue SoftenFloatRes_FSIN(SDNode *N);
    460   SDValue SoftenFloatRes_FSQRT(SDNode *N);
    461   SDValue SoftenFloatRes_FSUB(SDNode *N);
    462   SDValue SoftenFloatRes_FTRUNC(SDNode *N);
    463   SDValue SoftenFloatRes_LOAD(SDNode *N, unsigned ResNo);
    464   SDValue SoftenFloatRes_SELECT(SDNode *N, unsigned ResNo);
    465   SDValue SoftenFloatRes_SELECT_CC(SDNode *N, unsigned ResNo);
    466   SDValue SoftenFloatRes_UNDEF(SDNode *N);
    467   SDValue SoftenFloatRes_VAARG(SDNode *N);
    468   SDValue SoftenFloatRes_XINT_TO_FP(SDNode *N);
    469 
    470   // Return true if we can skip softening the given operand or SDNode because
    471   // it was soften before by SoftenFloatResult and references to the operand
    472   // were replaced by ReplaceValueWith.
    473   bool CanSkipSoftenFloatOperand(SDNode *N, unsigned OpNo);
    474 
    475   // Convert Float Operand to Integer for Non-HW-supported Operations.
    476   bool SoftenFloatOperand(SDNode *N, unsigned OpNo);
    477   SDValue SoftenFloatOp_BITCAST(SDNode *N);
    478   SDValue SoftenFloatOp_BR_CC(SDNode *N);
    479   SDValue SoftenFloatOp_FP_EXTEND(SDNode *N);
    480   SDValue SoftenFloatOp_FP_ROUND(SDNode *N);
    481   SDValue SoftenFloatOp_FP_TO_XINT(SDNode *N);
    482   SDValue SoftenFloatOp_SELECT_CC(SDNode *N);
    483   SDValue SoftenFloatOp_SETCC(SDNode *N);
    484   SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo);
    485 
    486   //===--------------------------------------------------------------------===//
    487   // Float Expansion Support: LegalizeFloatTypes.cpp
    488   //===--------------------------------------------------------------------===//
    489 
    490   /// GetExpandedFloat - Given a processed operand Op which was expanded into
    491   /// two floating point values of half the size, this returns the two halves.
    492   /// The low bits of Op are exactly equal to the bits of Lo; the high bits
    493   /// exactly equal Hi.  For example, if Op is a ppcf128 which was expanded
    494   /// into two f64's, then this method returns the two f64's, with Lo being
    495   /// equal to the lower 64 bits of Op, and Hi to the upper 64 bits.
    496   void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi);
    497   void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi);
    498 
    499   // Float Result Expansion.
    500   void ExpandFloatResult(SDNode *N, unsigned ResNo);
    501   void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi);
    502   void ExpandFloatRes_FABS      (SDNode *N, SDValue &Lo, SDValue &Hi);
    503   void ExpandFloatRes_FMINNUM   (SDNode *N, SDValue &Lo, SDValue &Hi);
    504   void ExpandFloatRes_FMAXNUM   (SDNode *N, SDValue &Lo, SDValue &Hi);
    505   void ExpandFloatRes_FADD      (SDNode *N, SDValue &Lo, SDValue &Hi);
    506   void ExpandFloatRes_FCEIL     (SDNode *N, SDValue &Lo, SDValue &Hi);
    507   void ExpandFloatRes_FCOPYSIGN (SDNode *N, SDValue &Lo, SDValue &Hi);
    508   void ExpandFloatRes_FCOS      (SDNode *N, SDValue &Lo, SDValue &Hi);
    509   void ExpandFloatRes_FDIV      (SDNode *N, SDValue &Lo, SDValue &Hi);
    510   void ExpandFloatRes_FEXP      (SDNode *N, SDValue &Lo, SDValue &Hi);
    511   void ExpandFloatRes_FEXP2     (SDNode *N, SDValue &Lo, SDValue &Hi);
    512   void ExpandFloatRes_FFLOOR    (SDNode *N, SDValue &Lo, SDValue &Hi);
    513   void ExpandFloatRes_FLOG      (SDNode *N, SDValue &Lo, SDValue &Hi);
    514   void ExpandFloatRes_FLOG2     (SDNode *N, SDValue &Lo, SDValue &Hi);
    515   void ExpandFloatRes_FLOG10    (SDNode *N, SDValue &Lo, SDValue &Hi);
    516   void ExpandFloatRes_FMA       (SDNode *N, SDValue &Lo, SDValue &Hi);
    517   void ExpandFloatRes_FMUL      (SDNode *N, SDValue &Lo, SDValue &Hi);
    518   void ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi);
    519   void ExpandFloatRes_FNEG      (SDNode *N, SDValue &Lo, SDValue &Hi);
    520   void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
    521   void ExpandFloatRes_FPOW      (SDNode *N, SDValue &Lo, SDValue &Hi);
    522   void ExpandFloatRes_FPOWI     (SDNode *N, SDValue &Lo, SDValue &Hi);
    523   void ExpandFloatRes_FREM      (SDNode *N, SDValue &Lo, SDValue &Hi);
    524   void ExpandFloatRes_FRINT     (SDNode *N, SDValue &Lo, SDValue &Hi);
    525   void ExpandFloatRes_FROUND    (SDNode *N, SDValue &Lo, SDValue &Hi);
    526   void ExpandFloatRes_FSIN      (SDNode *N, SDValue &Lo, SDValue &Hi);
    527   void ExpandFloatRes_FSQRT     (SDNode *N, SDValue &Lo, SDValue &Hi);
    528   void ExpandFloatRes_FSUB      (SDNode *N, SDValue &Lo, SDValue &Hi);
    529   void ExpandFloatRes_FTRUNC    (SDNode *N, SDValue &Lo, SDValue &Hi);
    530   void ExpandFloatRes_LOAD      (SDNode *N, SDValue &Lo, SDValue &Hi);
    531   void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi);
    532 
    533   // Float Operand Expansion.
    534   bool ExpandFloatOperand(SDNode *N, unsigned OperandNo);
    535   SDValue ExpandFloatOp_BR_CC(SDNode *N);
    536   SDValue ExpandFloatOp_FCOPYSIGN(SDNode *N);
    537   SDValue ExpandFloatOp_FP_ROUND(SDNode *N);
    538   SDValue ExpandFloatOp_FP_TO_SINT(SDNode *N);
    539   SDValue ExpandFloatOp_FP_TO_UINT(SDNode *N);
    540   SDValue ExpandFloatOp_SELECT_CC(SDNode *N);
    541   SDValue ExpandFloatOp_SETCC(SDNode *N);
    542   SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo);
    543 
    544   void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
    545                                 ISD::CondCode &CCCode, SDLoc dl);
    546 
    547 
    548   //===--------------------------------------------------------------------===//
    549   // Float promotion support: LegalizeFloatTypes.cpp
    550   //===--------------------------------------------------------------------===//
    551 
    552   SDValue GetPromotedFloat(SDValue Op) {
    553     SDValue &PromotedOp = PromotedFloats[Op];
    554     RemapValue(PromotedOp);
    555     assert(PromotedOp.getNode() && "Operand wasn't promoted?");
    556     return PromotedOp;
    557   }
    558   void SetPromotedFloat(SDValue Op, SDValue Result);
    559 
    560   void PromoteFloatResult(SDNode *N, unsigned ResNo);
    561   SDValue PromoteFloatRes_BITCAST(SDNode *N);
    562   SDValue PromoteFloatRes_BinOp(SDNode *N);
    563   SDValue PromoteFloatRes_ConstantFP(SDNode *N);
    564   SDValue PromoteFloatRes_EXTRACT_VECTOR_ELT(SDNode *N);
    565   SDValue PromoteFloatRes_FCOPYSIGN(SDNode *N);
    566   SDValue PromoteFloatRes_FMAD(SDNode *N);
    567   SDValue PromoteFloatRes_FPOWI(SDNode *N);
    568   SDValue PromoteFloatRes_FP_ROUND(SDNode *N);
    569   SDValue PromoteFloatRes_LOAD(SDNode *N);
    570   SDValue PromoteFloatRes_SELECT(SDNode *N);
    571   SDValue PromoteFloatRes_SELECT_CC(SDNode *N);
    572   SDValue PromoteFloatRes_UnaryOp(SDNode *N);
    573   SDValue PromoteFloatRes_UNDEF(SDNode *N);
    574   SDValue PromoteFloatRes_XINT_TO_FP(SDNode *N);
    575 
    576   bool PromoteFloatOperand(SDNode *N, unsigned ResNo);
    577   SDValue PromoteFloatOp_BITCAST(SDNode *N, unsigned OpNo);
    578   SDValue PromoteFloatOp_FCOPYSIGN(SDNode *N, unsigned OpNo);
    579   SDValue PromoteFloatOp_FP_EXTEND(SDNode *N, unsigned OpNo);
    580   SDValue PromoteFloatOp_FP_TO_XINT(SDNode *N, unsigned OpNo);
    581   SDValue PromoteFloatOp_STORE(SDNode *N, unsigned OpNo);
    582   SDValue PromoteFloatOp_SELECT_CC(SDNode *N, unsigned OpNo);
    583   SDValue PromoteFloatOp_SETCC(SDNode *N, unsigned OpNo);
    584 
    585   //===--------------------------------------------------------------------===//
    586   // Scalarization Support: LegalizeVectorTypes.cpp
    587   //===--------------------------------------------------------------------===//
    588 
    589   /// GetScalarizedVector - Given a processed one-element vector Op which was
    590   /// scalarized to its element type, this returns the element.  For example,
    591   /// if Op is a v1i32, Op = < i32 val >, this method returns val, an i32.
    592   SDValue GetScalarizedVector(SDValue Op) {
    593     SDValue &ScalarizedOp = ScalarizedVectors[Op];
    594     RemapValue(ScalarizedOp);
    595     assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?");
    596     return ScalarizedOp;
    597   }
    598   void SetScalarizedVector(SDValue Op, SDValue Result);
    599 
    600   // Vector Result Scalarization: <1 x ty> -> ty.
    601   void ScalarizeVectorResult(SDNode *N, unsigned OpNo);
    602   SDValue ScalarizeVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
    603   SDValue ScalarizeVecRes_BinOp(SDNode *N);
    604   SDValue ScalarizeVecRes_TernaryOp(SDNode *N);
    605   SDValue ScalarizeVecRes_UnaryOp(SDNode *N);
    606   SDValue ScalarizeVecRes_InregOp(SDNode *N);
    607 
    608   SDValue ScalarizeVecRes_BITCAST(SDNode *N);
    609   SDValue ScalarizeVecRes_BUILD_VECTOR(SDNode *N);
    610   SDValue ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N);
    611   SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N);
    612   SDValue ScalarizeVecRes_FP_ROUND(SDNode *N);
    613   SDValue ScalarizeVecRes_FPOWI(SDNode *N);
    614   SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N);
    615   SDValue ScalarizeVecRes_LOAD(LoadSDNode *N);
    616   SDValue ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N);
    617   SDValue ScalarizeVecRes_VSELECT(SDNode *N);
    618   SDValue ScalarizeVecRes_SELECT(SDNode *N);
    619   SDValue ScalarizeVecRes_SELECT_CC(SDNode *N);
    620   SDValue ScalarizeVecRes_SETCC(SDNode *N);
    621   SDValue ScalarizeVecRes_UNDEF(SDNode *N);
    622   SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N);
    623   SDValue ScalarizeVecRes_VSETCC(SDNode *N);
    624 
    625   // Vector Operand Scalarization: <1 x ty> -> ty.
    626   bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo);
    627   SDValue ScalarizeVecOp_BITCAST(SDNode *N);
    628   SDValue ScalarizeVecOp_UnaryOp(SDNode *N);
    629   SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N);
    630   SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
    631   SDValue ScalarizeVecOp_VSELECT(SDNode *N);
    632   SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo);
    633   SDValue ScalarizeVecOp_FP_ROUND(SDNode *N, unsigned OpNo);
    634 
    635   //===--------------------------------------------------------------------===//
    636   // Vector Splitting Support: LegalizeVectorTypes.cpp
    637   //===--------------------------------------------------------------------===//
    638 
    639   /// GetSplitVector - Given a processed vector Op which was split into vectors
    640   /// of half the size, this method returns the halves.  The first elements of
    641   /// Op coincide with the elements of Lo; the remaining elements of Op coincide
    642   /// with the elements of Hi: Op is what you would get by concatenating Lo and
    643   /// Hi.  For example, if Op is a v8i32 that was split into two v4i32's, then
    644   /// this method returns the two v4i32's, with Lo corresponding to the first 4
    645   /// elements of Op, and Hi to the last 4 elements.
    646   void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi);
    647   void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi);
    648 
    649   // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>.
    650   void SplitVectorResult(SDNode *N, unsigned OpNo);
    651   void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi);
    652   void SplitVecRes_TernaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
    653   void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
    654   void SplitVecRes_ExtendOp(SDNode *N, SDValue &Lo, SDValue &Hi);
    655   void SplitVecRes_InregOp(SDNode *N, SDValue &Lo, SDValue &Hi);
    656 
    657   void SplitVecRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi);
    658   void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
    659   void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi);
    660   void SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
    661   void SplitVecRes_INSERT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
    662   void SplitVecRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi);
    663   void SplitVecRes_FCOPYSIGN(SDNode *N, SDValue &Lo, SDValue &Hi);
    664   void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
    665   void SplitVecRes_LOAD(LoadSDNode *N, SDValue &Lo, SDValue &Hi);
    666   void SplitVecRes_MLOAD(MaskedLoadSDNode *N, SDValue &Lo, SDValue &Hi);
    667   void SplitVecRes_MGATHER(MaskedGatherSDNode *N, SDValue &Lo, SDValue &Hi);
    668   void SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
    669   void SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi);
    670   void SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N, SDValue &Lo,
    671                                   SDValue &Hi);
    672 
    673   // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>.
    674   bool SplitVectorOperand(SDNode *N, unsigned OpNo);
    675   SDValue SplitVecOp_VSELECT(SDNode *N, unsigned OpNo);
    676   SDValue SplitVecOp_UnaryOp(SDNode *N);
    677   SDValue SplitVecOp_TruncateHelper(SDNode *N);
    678 
    679   SDValue SplitVecOp_BITCAST(SDNode *N);
    680   SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N);
    681   SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
    682   SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo);
    683   SDValue SplitVecOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo);
    684   SDValue SplitVecOp_MSCATTER(MaskedScatterSDNode *N, unsigned OpNo);
    685   SDValue SplitVecOp_MGATHER(MaskedGatherSDNode *N, unsigned OpNo);
    686   SDValue SplitVecOp_CONCAT_VECTORS(SDNode *N);
    687   SDValue SplitVecOp_VSETCC(SDNode *N);
    688   SDValue SplitVecOp_FP_ROUND(SDNode *N);
    689   SDValue SplitVecOp_FCOPYSIGN(SDNode *N);
    690 
    691   //===--------------------------------------------------------------------===//
    692   // Vector Widening Support: LegalizeVectorTypes.cpp
    693   //===--------------------------------------------------------------------===//
    694 
    695   /// GetWidenedVector - Given a processed vector Op which was widened into a
    696   /// larger vector, this method returns the larger vector.  The elements of
    697   /// the returned vector consist of the elements of Op followed by elements
    698   /// containing rubbish.  For example, if Op is a v2i32 that was widened to a
    699   /// v4i32, then this method returns a v4i32 for which the first two elements
    700   /// are the same as those of Op, while the last two elements contain rubbish.
    701   SDValue GetWidenedVector(SDValue Op) {
    702     SDValue &WidenedOp = WidenedVectors[Op];
    703     RemapValue(WidenedOp);
    704     assert(WidenedOp.getNode() && "Operand wasn't widened?");
    705     return WidenedOp;
    706   }
    707   void SetWidenedVector(SDValue Op, SDValue Result);
    708 
    709   // Widen Vector Result Promotion.
    710   void WidenVectorResult(SDNode *N, unsigned ResNo);
    711   SDValue WidenVecRes_MERGE_VALUES(SDNode* N, unsigned ResNo);
    712   SDValue WidenVecRes_BITCAST(SDNode* N);
    713   SDValue WidenVecRes_BUILD_VECTOR(SDNode* N);
    714   SDValue WidenVecRes_CONCAT_VECTORS(SDNode* N);
    715   SDValue WidenVecRes_CONVERT_RNDSAT(SDNode* N);
    716   SDValue WidenVecRes_EXTRACT_SUBVECTOR(SDNode* N);
    717   SDValue WidenVecRes_INSERT_VECTOR_ELT(SDNode* N);
    718   SDValue WidenVecRes_LOAD(SDNode* N);
    719   SDValue WidenVecRes_MLOAD(MaskedLoadSDNode* N);
    720   SDValue WidenVecRes_MGATHER(MaskedGatherSDNode* N);
    721   SDValue WidenVecRes_SCALAR_TO_VECTOR(SDNode* N);
    722   SDValue WidenVecRes_SELECT(SDNode* N);
    723   SDValue WidenVecRes_SELECT_CC(SDNode* N);
    724   SDValue WidenVecRes_SETCC(SDNode* N);
    725   SDValue WidenVecRes_UNDEF(SDNode *N);
    726   SDValue WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N);
    727   SDValue WidenVecRes_VSETCC(SDNode* N);
    728 
    729   SDValue WidenVecRes_Ternary(SDNode *N);
    730   SDValue WidenVecRes_Binary(SDNode *N);
    731   SDValue WidenVecRes_BinaryCanTrap(SDNode *N);
    732   SDValue WidenVecRes_Convert(SDNode *N);
    733   SDValue WidenVecRes_FCOPYSIGN(SDNode *N);
    734   SDValue WidenVecRes_POWI(SDNode *N);
    735   SDValue WidenVecRes_Shift(SDNode *N);
    736   SDValue WidenVecRes_Unary(SDNode *N);
    737   SDValue WidenVecRes_InregOp(SDNode *N);
    738 
    739   // Widen Vector Operand.
    740   bool WidenVectorOperand(SDNode *N, unsigned OpNo);
    741   SDValue WidenVecOp_BITCAST(SDNode *N);
    742   SDValue WidenVecOp_CONCAT_VECTORS(SDNode *N);
    743   SDValue WidenVecOp_EXTEND(SDNode *N);
    744   SDValue WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
    745   SDValue WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N);
    746   SDValue WidenVecOp_STORE(SDNode* N);
    747   SDValue WidenVecOp_MSTORE(SDNode* N, unsigned OpNo);
    748   SDValue WidenVecOp_MSCATTER(SDNode* N, unsigned OpNo);
    749   SDValue WidenVecOp_SETCC(SDNode* N);
    750 
    751   SDValue WidenVecOp_Convert(SDNode *N);
    752   SDValue WidenVecOp_FCOPYSIGN(SDNode *N);
    753 
    754   //===--------------------------------------------------------------------===//
    755   // Vector Widening Utilities Support: LegalizeVectorTypes.cpp
    756   //===--------------------------------------------------------------------===//
    757 
    758   /// Helper GenWidenVectorLoads - Helper function to generate a set of
    759   /// loads to load a vector with a resulting wider type. It takes
    760   ///   LdChain: list of chains for the load to be generated.
    761   ///   Ld:      load to widen
    762   SDValue GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain,
    763                               LoadSDNode *LD);
    764 
    765   /// GenWidenVectorExtLoads - Helper function to generate a set of extension
    766   /// loads to load a ector with a resulting wider type.  It takes
    767   ///   LdChain: list of chains for the load to be generated.
    768   ///   Ld:      load to widen
    769   ///   ExtType: extension element type
    770   SDValue GenWidenVectorExtLoads(SmallVectorImpl<SDValue> &LdChain,
    771                                  LoadSDNode *LD, ISD::LoadExtType ExtType);
    772 
    773   /// Helper genWidenVectorStores - Helper function to generate a set of
    774   /// stores to store a widen vector into non-widen memory
    775   ///   StChain: list of chains for the stores we have generated
    776   ///   ST:      store of a widen value
    777   void GenWidenVectorStores(SmallVectorImpl<SDValue> &StChain, StoreSDNode *ST);
    778 
    779   /// Helper genWidenVectorTruncStores - Helper function to generate a set of
    780   /// stores to store a truncate widen vector into non-widen memory
    781   ///   StChain: list of chains for the stores we have generated
    782   ///   ST:      store of a widen value
    783   void GenWidenVectorTruncStores(SmallVectorImpl<SDValue> &StChain,
    784                                  StoreSDNode *ST);
    785 
    786   /// Modifies a vector input (widen or narrows) to a vector of NVT.  The
    787   /// input vector must have the same element type as NVT.
    788   /// When FillWithZeroes is "on" the vector will be widened with
    789   /// zeroes.
    790   /// By default, the vector will be widened with undefined values.
    791   SDValue ModifyToType(SDValue InOp, EVT NVT, bool FillWithZeroes = false);
    792 
    793   //===--------------------------------------------------------------------===//
    794   // Generic Splitting: LegalizeTypesGeneric.cpp
    795   //===--------------------------------------------------------------------===//
    796 
    797   // Legalization methods which only use that the illegal type is split into two
    798   // not necessarily identical types.  As such they can be used for splitting
    799   // vectors and expanding integers and floats.
    800 
    801   void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
    802     if (Op.getValueType().isVector())
    803       GetSplitVector(Op, Lo, Hi);
    804     else if (Op.getValueType().isInteger())
    805       GetExpandedInteger(Op, Lo, Hi);
    806     else
    807       GetExpandedFloat(Op, Lo, Hi);
    808   }
    809 
    810   /// GetPairElements - Use ISD::EXTRACT_ELEMENT nodes to extract the low and
    811   /// high parts of the given value.
    812   void GetPairElements(SDValue Pair, SDValue &Lo, SDValue &Hi);
    813 
    814   // Generic Result Splitting.
    815   void SplitRes_MERGE_VALUES(SDNode *N, unsigned ResNo,
    816                              SDValue &Lo, SDValue &Hi);
    817   void SplitRes_SELECT      (SDNode *N, SDValue &Lo, SDValue &Hi);
    818   void SplitRes_SELECT_CC   (SDNode *N, SDValue &Lo, SDValue &Hi);
    819   void SplitRes_UNDEF       (SDNode *N, SDValue &Lo, SDValue &Hi);
    820 
    821   //===--------------------------------------------------------------------===//
    822   // Generic Expansion: LegalizeTypesGeneric.cpp
    823   //===--------------------------------------------------------------------===//
    824 
    825   // Legalization methods which only use that the illegal type is split into two
    826   // identical types of half the size, and that the Lo/Hi part is stored first
    827   // in memory on little/big-endian machines, followed by the Hi/Lo part.  As
    828   // such they can be used for expanding integers and floats.
    829 
    830   void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
    831     if (Op.getValueType().isInteger())
    832       GetExpandedInteger(Op, Lo, Hi);
    833     else
    834       GetExpandedFloat(Op, Lo, Hi);
    835   }
    836 
    837 
    838   /// This function will split the integer \p Op into \p NumElements
    839   /// operations of type \p EltVT and store them in \p Ops.
    840   void IntegerToVector(SDValue Op, unsigned NumElements,
    841                        SmallVectorImpl<SDValue> &Ops, EVT EltVT);
    842 
    843   // Generic Result Expansion.
    844   void ExpandRes_MERGE_VALUES      (SDNode *N, unsigned ResNo,
    845                                     SDValue &Lo, SDValue &Hi);
    846   void ExpandRes_BITCAST           (SDNode *N, SDValue &Lo, SDValue &Hi);
    847   void ExpandRes_BUILD_PAIR        (SDNode *N, SDValue &Lo, SDValue &Hi);
    848   void ExpandRes_EXTRACT_ELEMENT   (SDNode *N, SDValue &Lo, SDValue &Hi);
    849   void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
    850   void ExpandRes_NormalLoad        (SDNode *N, SDValue &Lo, SDValue &Hi);
    851   void ExpandRes_VAARG             (SDNode *N, SDValue &Lo, SDValue &Hi);
    852 
    853   // Generic Operand Expansion.
    854   SDValue ExpandOp_BITCAST          (SDNode *N);
    855   SDValue ExpandOp_BUILD_VECTOR     (SDNode *N);
    856   SDValue ExpandOp_EXTRACT_ELEMENT  (SDNode *N);
    857   SDValue ExpandOp_INSERT_VECTOR_ELT(SDNode *N);
    858   SDValue ExpandOp_SCALAR_TO_VECTOR (SDNode *N);
    859   SDValue ExpandOp_NormalStore      (SDNode *N, unsigned OpNo);
    860 };
    861 
    862 } // end namespace llvm.
    863 
    864 #endif
    865