Home | History | Annotate | Download | only in Target
      1 //===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 ///
     10 /// \file
     11 /// This file describes how to lower LLVM code to machine code.  This has two
     12 /// main components:
     13 ///
     14 ///  1. Which ValueTypes are natively supported by the target.
     15 ///  2. Which operations are supported for supported ValueTypes.
     16 ///  3. Cost thresholds for alternative implementations of certain operations.
     17 ///
     18 /// In addition it has a few other components, like information about FP
     19 /// immediates.
     20 ///
     21 //===----------------------------------------------------------------------===//
     22 
     23 #ifndef LLVM_TARGET_TARGETLOWERING_H
     24 #define LLVM_TARGET_TARGETLOWERING_H
     25 
     26 #include "llvm/ADT/DenseMap.h"
     27 #include "llvm/CodeGen/DAGCombine.h"
     28 #include "llvm/CodeGen/RuntimeLibcalls.h"
     29 #include "llvm/CodeGen/SelectionDAGNodes.h"
     30 #include "llvm/IR/Attributes.h"
     31 #include "llvm/IR/CallSite.h"
     32 #include "llvm/IR/CallingConv.h"
     33 #include "llvm/IR/IRBuilder.h"
     34 #include "llvm/IR/InlineAsm.h"
     35 #include "llvm/IR/Instructions.h"
     36 #include "llvm/MC/MCRegisterInfo.h"
     37 #include "llvm/Target/TargetCallingConv.h"
     38 #include "llvm/Target/TargetMachine.h"
     39 #include <climits>
     40 #include <map>
     41 #include <vector>
     42 
     43 namespace llvm {
     44   class CallInst;
     45   class CCState;
     46   class FastISel;
     47   class FunctionLoweringInfo;
     48   class ImmutableCallSite;
     49   class IntrinsicInst;
     50   class MachineBasicBlock;
     51   class MachineFunction;
     52   class MachineInstr;
     53   class MachineJumpTableInfo;
     54   class MachineLoop;
     55   class Mangler;
     56   class MCContext;
     57   class MCExpr;
     58   class MCSymbol;
     59   template<typename T> class SmallVectorImpl;
     60   class DataLayout;
     61   class TargetRegisterClass;
     62   class TargetLibraryInfo;
     63   class TargetLoweringObjectFile;
     64   class Value;
     65 
     66   namespace Sched {
     67     enum Preference {
     68       None,             // No preference
     69       Source,           // Follow source order.
     70       RegPressure,      // Scheduling for lowest register pressure.
     71       Hybrid,           // Scheduling for both latency and register pressure.
     72       ILP,              // Scheduling for ILP in low register pressure mode.
     73       VLIW              // Scheduling for VLIW targets.
     74     };
     75   }
     76 
     77 /// This base class for TargetLowering contains the SelectionDAG-independent
     78 /// parts that can be used from the rest of CodeGen.
     79 class TargetLoweringBase {
     80   TargetLoweringBase(const TargetLoweringBase&) = delete;
     81   void operator=(const TargetLoweringBase&) = delete;
     82 
     83 public:
     84   /// This enum indicates whether operations are valid for a target, and if not,
     85   /// what action should be used to make them valid.
     86   enum LegalizeAction : uint8_t {
     87     Legal,      // The target natively supports this operation.
     88     Promote,    // This operation should be executed in a larger type.
     89     Expand,     // Try to expand this to other ops, otherwise use a libcall.
     90     LibCall,    // Don't try to expand this to other ops, always use a libcall.
     91     Custom      // Use the LowerOperation hook to implement custom lowering.
     92   };
     93 
     94   /// This enum indicates whether a types are legal for a target, and if not,
     95   /// what action should be used to make them valid.
     96   enum LegalizeTypeAction : uint8_t {
     97     TypeLegal,           // The target natively supports this type.
     98     TypePromoteInteger,  // Replace this integer with a larger one.
     99     TypeExpandInteger,   // Split this integer into two of half the size.
    100     TypeSoftenFloat,     // Convert this float to a same size integer type,
    101                          // if an operation is not supported in target HW.
    102     TypeExpandFloat,     // Split this float into two of half the size.
    103     TypeScalarizeVector, // Replace this one-element vector with its element.
    104     TypeSplitVector,     // Split this vector into two of half the size.
    105     TypeWidenVector,     // This vector should be widened into a larger vector.
    106     TypePromoteFloat     // Replace this float with a larger one.
    107   };
    108 
    109   /// LegalizeKind holds the legalization kind that needs to happen to EVT
    110   /// in order to type-legalize it.
    111   typedef std::pair<LegalizeTypeAction, EVT> LegalizeKind;
    112 
    113   /// Enum that describes how the target represents true/false values.
    114   enum BooleanContent {
    115     UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
    116     ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
    117     ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
    118   };
    119 
    120   /// Enum that describes what type of support for selects the target has.
    121   enum SelectSupportKind {
    122     ScalarValSelect,      // The target supports scalar selects (ex: cmov).
    123     ScalarCondVectorVal,  // The target supports selects with a scalar condition
    124                           // and vector values (ex: cmov).
    125     VectorMaskSelect      // The target supports vector selects with a vector
    126                           // mask (ex: x86 blends).
    127   };
    128 
    129   /// Enum that specifies what an atomic load/AtomicRMWInst is expanded
    130   /// to, if at all. Exists because different targets have different levels of
    131   /// support for these atomic instructions, and also have different options
    132   /// w.r.t. what they should expand to.
    133   enum class AtomicExpansionKind {
    134     None,    // Don't expand the instruction.
    135     LLSC,    // Expand the instruction into loadlinked/storeconditional; used
    136              // by ARM/AArch64.
    137     LLOnly,  // Expand the (load) instruction into just a load-linked, which has
    138              // greater atomic guarantees than a normal load.
    139     CmpXChg, // Expand the instruction into cmpxchg; used by at least X86.
    140   };
    141 
    142   static ISD::NodeType getExtendForContent(BooleanContent Content) {
    143     switch (Content) {
    144     case UndefinedBooleanContent:
    145       // Extend by adding rubbish bits.
    146       return ISD::ANY_EXTEND;
    147     case ZeroOrOneBooleanContent:
    148       // Extend by adding zero bits.
    149       return ISD::ZERO_EXTEND;
    150     case ZeroOrNegativeOneBooleanContent:
    151       // Extend by copying the sign bit.
    152       return ISD::SIGN_EXTEND;
    153     }
    154     llvm_unreachable("Invalid content kind");
    155   }
    156 
    157   /// NOTE: The TargetMachine owns TLOF.
    158   explicit TargetLoweringBase(const TargetMachine &TM);
    159   virtual ~TargetLoweringBase() {}
    160 
    161 protected:
    162   /// \brief Initialize all of the actions to default values.
    163   void initActions();
    164 
    165 public:
    166   const TargetMachine &getTargetMachine() const { return TM; }
    167 
    168   virtual bool useSoftFloat() const { return false; }
    169 
    170   /// Return the pointer type for the given address space, defaults to
    171   /// the pointer type from the data layout.
    172   /// FIXME: The default needs to be removed once all the code is updated.
    173   MVT getPointerTy(const DataLayout &DL, uint32_t AS = 0) const {
    174     return MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
    175   }
    176 
    177   /// EVT is not used in-tree, but is used by out-of-tree target.
    178   /// A documentation for this function would be nice...
    179   virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const;
    180 
    181   EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const;
    182 
    183   /// Returns the type to be used for the index operand of:
    184   /// ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT,
    185   /// ISD::INSERT_SUBVECTOR, and ISD::EXTRACT_SUBVECTOR
    186   virtual MVT getVectorIdxTy(const DataLayout &DL) const {
    187     return getPointerTy(DL);
    188   }
    189 
    190   /// Return true if the select operation is expensive for this target.
    191   bool isSelectExpensive() const { return SelectIsExpensive; }
    192 
    193   virtual bool isSelectSupported(SelectSupportKind /*kind*/) const {
    194     return true;
    195   }
    196 
    197   /// Return true if multiple condition registers are available.
    198   bool hasMultipleConditionRegisters() const {
    199     return HasMultipleConditionRegisters;
    200   }
    201 
    202   /// Return true if the target has BitExtract instructions.
    203   bool hasExtractBitsInsn() const { return HasExtractBitsInsn; }
    204 
    205   /// Return the preferred vector type legalization action.
    206   virtual TargetLoweringBase::LegalizeTypeAction
    207   getPreferredVectorAction(EVT VT) const {
    208     // The default action for one element vectors is to scalarize
    209     if (VT.getVectorNumElements() == 1)
    210       return TypeScalarizeVector;
    211     // The default action for other vectors is to promote
    212     return TypePromoteInteger;
    213   }
    214 
    215   // There are two general methods for expanding a BUILD_VECTOR node:
    216   //  1. Use SCALAR_TO_VECTOR on the defined scalar values and then shuffle
    217   //     them together.
    218   //  2. Build the vector on the stack and then load it.
    219   // If this function returns true, then method (1) will be used, subject to
    220   // the constraint that all of the necessary shuffles are legal (as determined
    221   // by isShuffleMaskLegal). If this function returns false, then method (2) is
    222   // always used. The vector type, and the number of defined values, are
    223   // provided.
    224   virtual bool
    225   shouldExpandBuildVectorWithShuffles(EVT /* VT */,
    226                                       unsigned DefinedValues) const {
    227     return DefinedValues < 3;
    228   }
    229 
    230   /// Return true if integer divide is usually cheaper than a sequence of
    231   /// several shifts, adds, and multiplies for this target.
    232   /// The definition of "cheaper" may depend on whether we're optimizing
    233   /// for speed or for size.
    234   virtual bool isIntDivCheap(EVT VT, AttributeSet Attr) const {
    235     return false;
    236   }
    237 
    238   /// Return true if sqrt(x) is as cheap or cheaper than 1 / rsqrt(x)
    239   bool isFsqrtCheap() const {
    240     return FsqrtIsCheap;
    241   }
    242 
    243   /// Returns true if target has indicated at least one type should be bypassed.
    244   bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); }
    245 
    246   /// Returns map of slow types for division or remainder with corresponding
    247   /// fast types
    248   const DenseMap<unsigned int, unsigned int> &getBypassSlowDivWidths() const {
    249     return BypassSlowDivWidths;
    250   }
    251 
    252   /// Return true if Flow Control is an expensive operation that should be
    253   /// avoided.
    254   bool isJumpExpensive() const { return JumpIsExpensive; }
    255 
    256   /// Return true if selects are only cheaper than branches if the branch is
    257   /// unlikely to be predicted right.
    258   bool isPredictableSelectExpensive() const {
    259     return PredictableSelectIsExpensive;
    260   }
    261 
    262   /// isLoadBitCastBeneficial() - Return true if the following transform
    263   /// is beneficial.
    264   /// fold (conv (load x)) -> (load (conv*)x)
    265   /// On architectures that don't natively support some vector loads
    266   /// efficiently, casting the load to a smaller vector of larger types and
    267   /// loading is more efficient, however, this can be undone by optimizations in
    268   /// dag combiner.
    269   virtual bool isLoadBitCastBeneficial(EVT /* Load */,
    270                                        EVT /* Bitcast */) const {
    271     return true;
    272   }
    273 
    274   /// Return true if it is expected to be cheaper to do a store of a non-zero
    275   /// vector constant with the given size and type for the address space than to
    276   /// store the individual scalar element constants.
    277   virtual bool storeOfVectorConstantIsCheap(EVT MemVT,
    278                                             unsigned NumElem,
    279                                             unsigned AddrSpace) const {
    280     return false;
    281   }
    282 
    283   /// \brief Return true if it is cheap to speculate a call to intrinsic cttz.
    284   virtual bool isCheapToSpeculateCttz() const {
    285     return false;
    286   }
    287 
    288   /// \brief Return true if it is cheap to speculate a call to intrinsic ctlz.
    289   virtual bool isCheapToSpeculateCtlz() const {
    290     return false;
    291   }
    292 
    293   /// \brief Return if the target supports combining a
    294   /// chain like:
    295   /// \code
    296   ///   %andResult = and %val1, #imm-with-one-bit-set;
    297   ///   %icmpResult = icmp %andResult, 0
    298   ///   br i1 %icmpResult, label %dest1, label %dest2
    299   /// \endcode
    300   /// into a single machine instruction of a form like:
    301   /// \code
    302   ///   brOnBitSet %register, #bitNumber, dest
    303   /// \endcode
    304   bool isMaskAndBranchFoldingLegal() const {
    305     return MaskAndBranchFoldingIsLegal;
    306   }
    307 
    308   /// \brief Return true if the target wants to use the optimization that
    309   /// turns ext(promotableInst1(...(promotableInstN(load)))) into
    310   /// promotedInst1(...(promotedInstN(ext(load)))).
    311   bool enableExtLdPromotion() const { return EnableExtLdPromotion; }
    312 
    313   /// Return true if the target can combine store(extractelement VectorTy,
    314   /// Idx).
    315   /// \p Cost[out] gives the cost of that transformation when this is true.
    316   virtual bool canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
    317                                          unsigned &Cost) const {
    318     return false;
    319   }
    320 
    321   /// Return true if target supports floating point exceptions.
    322   bool hasFloatingPointExceptions() const {
    323     return HasFloatingPointExceptions;
    324   }
    325 
    326   /// Return true if target always beneficiates from combining into FMA for a
    327   /// given value type. This must typically return false on targets where FMA
    328   /// takes more cycles to execute than FADD.
    329   virtual bool enableAggressiveFMAFusion(EVT VT) const {
    330     return false;
    331   }
    332 
    333   /// Return the ValueType of the result of SETCC operations.
    334   virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
    335                                  EVT VT) const;
    336 
    337   /// Return the ValueType for comparison libcalls. Comparions libcalls include
    338   /// floating point comparion calls, and Ordered/Unordered check calls on
    339   /// floating point numbers.
    340   virtual
    341   MVT::SimpleValueType getCmpLibcallReturnType() const;
    342 
    343   /// For targets without i1 registers, this gives the nature of the high-bits
    344   /// of boolean values held in types wider than i1.
    345   ///
    346   /// "Boolean values" are special true/false values produced by nodes like
    347   /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
    348   /// Not to be confused with general values promoted from i1.  Some cpus
    349   /// distinguish between vectors of boolean and scalars; the isVec parameter
    350   /// selects between the two kinds.  For example on X86 a scalar boolean should
    351   /// be zero extended from i1, while the elements of a vector of booleans
    352   /// should be sign extended from i1.
    353   ///
    354   /// Some cpus also treat floating point types the same way as they treat
    355   /// vectors instead of the way they treat scalars.
    356   BooleanContent getBooleanContents(bool isVec, bool isFloat) const {
    357     if (isVec)
    358       return BooleanVectorContents;
    359     return isFloat ? BooleanFloatContents : BooleanContents;
    360   }
    361 
    362   BooleanContent getBooleanContents(EVT Type) const {
    363     return getBooleanContents(Type.isVector(), Type.isFloatingPoint());
    364   }
    365 
    366   /// Return target scheduling preference.
    367   Sched::Preference getSchedulingPreference() const {
    368     return SchedPreferenceInfo;
    369   }
    370 
    371   /// Some scheduler, e.g. hybrid, can switch to different scheduling heuristics
    372   /// for different nodes. This function returns the preference (or none) for
    373   /// the given node.
    374   virtual Sched::Preference getSchedulingPreference(SDNode *) const {
    375     return Sched::None;
    376   }
    377 
    378   /// Return the register class that should be used for the specified value
    379   /// type.
    380   virtual const TargetRegisterClass *getRegClassFor(MVT VT) const {
    381     const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
    382     assert(RC && "This value type is not natively supported!");
    383     return RC;
    384   }
    385 
    386   /// Return the 'representative' register class for the specified value
    387   /// type.
    388   ///
    389   /// The 'representative' register class is the largest legal super-reg
    390   /// register class for the register class of the value type.  For example, on
    391   /// i386 the rep register class for i8, i16, and i32 are GR32; while the rep
    392   /// register class is GR64 on x86_64.
    393   virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const {
    394     const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy];
    395     return RC;
    396   }
    397 
    398   /// Return the cost of the 'representative' register class for the specified
    399   /// value type.
    400   virtual uint8_t getRepRegClassCostFor(MVT VT) const {
    401     return RepRegClassCostForVT[VT.SimpleTy];
    402   }
    403 
    404   /// Return true if the target has native support for the specified value type.
    405   /// This means that it has a register that directly holds it without
    406   /// promotions or expansions.
    407   bool isTypeLegal(EVT VT) const {
    408     assert(!VT.isSimple() ||
    409            (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
    410     return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != nullptr;
    411   }
    412 
    413   class ValueTypeActionImpl {
    414     /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
    415     /// that indicates how instruction selection should deal with the type.
    416     LegalizeTypeAction ValueTypeActions[MVT::LAST_VALUETYPE];
    417 
    418   public:
    419     ValueTypeActionImpl() {
    420       std::fill(std::begin(ValueTypeActions), std::end(ValueTypeActions),
    421                 TypeLegal);
    422     }
    423 
    424     LegalizeTypeAction getTypeAction(MVT VT) const {
    425       return ValueTypeActions[VT.SimpleTy];
    426     }
    427 
    428     void setTypeAction(MVT VT, LegalizeTypeAction Action) {
    429       ValueTypeActions[VT.SimpleTy] = Action;
    430     }
    431   };
    432 
    433   const ValueTypeActionImpl &getValueTypeActions() const {
    434     return ValueTypeActions;
    435   }
    436 
    437   /// Return how we should legalize values of this type, either it is already
    438   /// legal (return 'Legal') or we need to promote it to a larger type (return
    439   /// 'Promote'), or we need to expand it into multiple registers of smaller
    440   /// integer type (return 'Expand').  'Custom' is not an option.
    441   LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
    442     return getTypeConversion(Context, VT).first;
    443   }
    444   LegalizeTypeAction getTypeAction(MVT VT) const {
    445     return ValueTypeActions.getTypeAction(VT);
    446   }
    447 
    448   /// For types supported by the target, this is an identity function.  For
    449   /// types that must be promoted to larger types, this returns the larger type
    450   /// to promote to.  For integer types that are larger than the largest integer
    451   /// register, this contains one step in the expansion to get to the smaller
    452   /// register. For illegal floating point types, this returns the integer type
    453   /// to transform to.
    454   EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
    455     return getTypeConversion(Context, VT).second;
    456   }
    457 
    458   /// For types supported by the target, this is an identity function.  For
    459   /// types that must be expanded (i.e. integer types that are larger than the
    460   /// largest integer register or illegal floating point types), this returns
    461   /// the largest legal type it will be expanded to.
    462   EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
    463     assert(!VT.isVector());
    464     while (true) {
    465       switch (getTypeAction(Context, VT)) {
    466       case TypeLegal:
    467         return VT;
    468       case TypeExpandInteger:
    469         VT = getTypeToTransformTo(Context, VT);
    470         break;
    471       default:
    472         llvm_unreachable("Type is not legal nor is it to be expanded!");
    473       }
    474     }
    475   }
    476 
    477   /// Vector types are broken down into some number of legal first class types.
    478   /// For example, EVT::v8f32 maps to 2 EVT::v4f32 with Altivec or SSE1, or 8
    479   /// promoted EVT::f64 values with the X86 FP stack.  Similarly, EVT::v2i64
    480   /// turns into 4 EVT::i32 values with both PPC and X86.
    481   ///
    482   /// This method returns the number of registers needed, and the VT for each
    483   /// register.  It also returns the VT and quantity of the intermediate values
    484   /// before they are promoted/expanded.
    485   unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
    486                                   EVT &IntermediateVT,
    487                                   unsigned &NumIntermediates,
    488                                   MVT &RegisterVT) const;
    489 
    490   struct IntrinsicInfo {
    491     unsigned     opc;         // target opcode
    492     EVT          memVT;       // memory VT
    493     const Value* ptrVal;      // value representing memory location
    494     int          offset;      // offset off of ptrVal
    495     unsigned     size;        // the size of the memory location
    496                               // (taken from memVT if zero)
    497     unsigned     align;       // alignment
    498     bool         vol;         // is volatile?
    499     bool         readMem;     // reads memory?
    500     bool         writeMem;    // writes memory?
    501 
    502     IntrinsicInfo() : opc(0), ptrVal(nullptr), offset(0), size(0), align(1),
    503                       vol(false), readMem(false), writeMem(false) {}
    504   };
    505 
    506   /// Given an intrinsic, checks if on the target the intrinsic will need to map
    507   /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
    508   /// true and store the intrinsic information into the IntrinsicInfo that was
    509   /// passed to the function.
    510   virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
    511                                   unsigned /*Intrinsic*/) const {
    512     return false;
    513   }
    514 
    515   /// Returns true if the target can instruction select the specified FP
    516   /// immediate natively. If false, the legalizer will materialize the FP
    517   /// immediate as a load from a constant pool.
    518   virtual bool isFPImmLegal(const APFloat &/*Imm*/, EVT /*VT*/) const {
    519     return false;
    520   }
    521 
    522   /// Targets can use this to indicate that they only support *some*
    523   /// VECTOR_SHUFFLE operations, those with specific masks.  By default, if a
    524   /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to be
    525   /// legal.
    526   virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
    527                                   EVT /*VT*/) const {
    528     return true;
    529   }
    530 
    531   /// Returns true if the operation can trap for the value type.
    532   ///
    533   /// VT must be a legal type. By default, we optimistically assume most
    534   /// operations don't trap except for divide and remainder.
    535   virtual bool canOpTrap(unsigned Op, EVT VT) const;
    536 
    537   /// Similar to isShuffleMaskLegal. This is used by Targets can use this to
    538   /// indicate if there is a suitable VECTOR_SHUFFLE that can be used to replace
    539   /// a VAND with a constant pool entry.
    540   virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
    541                                       EVT /*VT*/) const {
    542     return false;
    543   }
    544 
    545   /// Return how this operation should be treated: either it is legal, needs to
    546   /// be promoted to a larger size, needs to be expanded to some other code
    547   /// sequence, or the target has a custom expander for it.
    548   LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
    549     if (VT.isExtended()) return Expand;
    550     // If a target-specific SDNode requires legalization, require the target
    551     // to provide custom legalization for it.
    552     if (Op > array_lengthof(OpActions[0])) return Custom;
    553     return OpActions[(unsigned)VT.getSimpleVT().SimpleTy][Op];
    554   }
    555 
    556   /// Return true if the specified operation is legal on this target or can be
    557   /// made legal with custom lowering. This is used to help guide high-level
    558   /// lowering decisions.
    559   bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
    560     return (VT == MVT::Other || isTypeLegal(VT)) &&
    561       (getOperationAction(Op, VT) == Legal ||
    562        getOperationAction(Op, VT) == Custom);
    563   }
    564 
    565   /// Return true if the specified operation is legal on this target or can be
    566   /// made legal using promotion. This is used to help guide high-level lowering
    567   /// decisions.
    568   bool isOperationLegalOrPromote(unsigned Op, EVT VT) const {
    569     return (VT == MVT::Other || isTypeLegal(VT)) &&
    570       (getOperationAction(Op, VT) == Legal ||
    571        getOperationAction(Op, VT) == Promote);
    572   }
    573 
    574   /// Return true if the specified operation is illegal on this target or
    575   /// unlikely to be made legal with custom lowering. This is used to help guide
    576   /// high-level lowering decisions.
    577   bool isOperationExpand(unsigned Op, EVT VT) const {
    578     return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand);
    579   }
    580 
    581   /// Return true if the specified operation is legal on this target.
    582   bool isOperationLegal(unsigned Op, EVT VT) const {
    583     return (VT == MVT::Other || isTypeLegal(VT)) &&
    584            getOperationAction(Op, VT) == Legal;
    585   }
    586 
    587   /// Return how this load with extension should be treated: either it is legal,
    588   /// needs to be promoted to a larger size, needs to be expanded to some other
    589   /// code sequence, or the target has a custom expander for it.
    590   LegalizeAction getLoadExtAction(unsigned ExtType, EVT ValVT,
    591                                   EVT MemVT) const {
    592     if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
    593     unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
    594     unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
    595     assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValI < MVT::LAST_VALUETYPE &&
    596            MemI < MVT::LAST_VALUETYPE && "Table isn't big enough!");
    597     return LoadExtActions[ValI][MemI][ExtType];
    598   }
    599 
    600   /// Return true if the specified load with extension is legal on this target.
    601   bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const {
    602     return ValVT.isSimple() && MemVT.isSimple() &&
    603       getLoadExtAction(ExtType, ValVT, MemVT) == Legal;
    604   }
    605 
    606   /// Return true if the specified load with extension is legal or custom
    607   /// on this target.
    608   bool isLoadExtLegalOrCustom(unsigned ExtType, EVT ValVT, EVT MemVT) const {
    609     return ValVT.isSimple() && MemVT.isSimple() &&
    610       (getLoadExtAction(ExtType, ValVT, MemVT) == Legal ||
    611        getLoadExtAction(ExtType, ValVT, MemVT) == Custom);
    612   }
    613 
    614   /// Return how this store with truncation should be treated: either it is
    615   /// legal, needs to be promoted to a larger size, needs to be expanded to some
    616   /// other code sequence, or the target has a custom expander for it.
    617   LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
    618     if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
    619     unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
    620     unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
    621     assert(ValI < MVT::LAST_VALUETYPE && MemI < MVT::LAST_VALUETYPE &&
    622            "Table isn't big enough!");
    623     return TruncStoreActions[ValI][MemI];
    624   }
    625 
    626   /// Return true if the specified store with truncation is legal on this
    627   /// target.
    628   bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
    629     return isTypeLegal(ValVT) && MemVT.isSimple() &&
    630       getTruncStoreAction(ValVT.getSimpleVT(), MemVT.getSimpleVT()) == Legal;
    631   }
    632 
    633   /// Return how the indexed load should be treated: either it is legal, needs
    634   /// to be promoted to a larger size, needs to be expanded to some other code
    635   /// sequence, or the target has a custom expander for it.
    636   LegalizeAction
    637   getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
    638     assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() &&
    639            "Table isn't big enough!");
    640     unsigned Ty = (unsigned)VT.SimpleTy;
    641     return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
    642   }
    643 
    644   /// Return true if the specified indexed load is legal on this target.
    645   bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
    646     return VT.isSimple() &&
    647       (getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
    648        getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
    649   }
    650 
    651   /// Return how the indexed store should be treated: either it is legal, needs
    652   /// to be promoted to a larger size, needs to be expanded to some other code
    653   /// sequence, or the target has a custom expander for it.
    654   LegalizeAction
    655   getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
    656     assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() &&
    657            "Table isn't big enough!");
    658     unsigned Ty = (unsigned)VT.SimpleTy;
    659     return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
    660   }
    661 
    662   /// Return true if the specified indexed load is legal on this target.
    663   bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
    664     return VT.isSimple() &&
    665       (getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
    666        getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
    667   }
    668 
    669   /// Return how the condition code should be treated: either it is legal, needs
    670   /// to be expanded to some other code sequence, or the target has a custom
    671   /// expander for it.
    672   LegalizeAction
    673   getCondCodeAction(ISD::CondCode CC, MVT VT) const {
    674     assert((unsigned)CC < array_lengthof(CondCodeActions) &&
    675            ((unsigned)VT.SimpleTy >> 4) < array_lengthof(CondCodeActions[0]) &&
    676            "Table isn't big enough!");
    677     // See setCondCodeAction for how this is encoded.
    678     uint32_t Shift = 4 * (VT.SimpleTy & 0x7);
    679     uint32_t Value = CondCodeActions[CC][VT.SimpleTy >> 3];
    680     LegalizeAction Action = (LegalizeAction) ((Value >> Shift) & 0xF);
    681     assert(Action != Promote && "Can't promote condition code!");
    682     return Action;
    683   }
    684 
    685   /// Return true if the specified condition code is legal on this target.
    686   bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
    687     return
    688       getCondCodeAction(CC, VT) == Legal ||
    689       getCondCodeAction(CC, VT) == Custom;
    690   }
    691 
    692 
    693   /// If the action for this operation is to promote, this method returns the
    694   /// ValueType to promote to.
    695   MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
    696     assert(getOperationAction(Op, VT) == Promote &&
    697            "This operation isn't promoted!");
    698 
    699     // See if this has an explicit type specified.
    700     std::map<std::pair<unsigned, MVT::SimpleValueType>,
    701              MVT::SimpleValueType>::const_iterator PTTI =
    702       PromoteToType.find(std::make_pair(Op, VT.SimpleTy));
    703     if (PTTI != PromoteToType.end()) return PTTI->second;
    704 
    705     assert((VT.isInteger() || VT.isFloatingPoint()) &&
    706            "Cannot autopromote this type, add it with AddPromotedToType.");
    707 
    708     MVT NVT = VT;
    709     do {
    710       NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1);
    711       assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
    712              "Didn't find type to promote to!");
    713     } while (!isTypeLegal(NVT) ||
    714               getOperationAction(Op, NVT) == Promote);
    715     return NVT;
    716   }
    717 
    718   /// Return the EVT corresponding to this LLVM type.  This is fixed by the LLVM
    719   /// operations except for the pointer size.  If AllowUnknown is true, this
    720   /// will return MVT::Other for types with no EVT counterpart (e.g. structs),
    721   /// otherwise it will assert.
    722   EVT getValueType(const DataLayout &DL, Type *Ty,
    723                    bool AllowUnknown = false) const {
    724     // Lower scalar pointers to native pointer types.
    725     if (PointerType *PTy = dyn_cast<PointerType>(Ty))
    726       return getPointerTy(DL, PTy->getAddressSpace());
    727 
    728     if (Ty->isVectorTy()) {
    729       VectorType *VTy = cast<VectorType>(Ty);
    730       Type *Elm = VTy->getElementType();
    731       // Lower vectors of pointers to native pointer types.
    732       if (PointerType *PT = dyn_cast<PointerType>(Elm)) {
    733         EVT PointerTy(getPointerTy(DL, PT->getAddressSpace()));
    734         Elm = PointerTy.getTypeForEVT(Ty->getContext());
    735       }
    736 
    737       return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false),
    738                        VTy->getNumElements());
    739     }
    740     return EVT::getEVT(Ty, AllowUnknown);
    741   }
    742 
    743   /// Return the MVT corresponding to this LLVM type. See getValueType.
    744   MVT getSimpleValueType(const DataLayout &DL, Type *Ty,
    745                          bool AllowUnknown = false) const {
    746     return getValueType(DL, Ty, AllowUnknown).getSimpleVT();
    747   }
    748 
    749   /// Return the desired alignment for ByVal or InAlloca aggregate function
    750   /// arguments in the caller parameter area.  This is the actual alignment, not
    751   /// its logarithm.
    752   virtual unsigned getByValTypeAlignment(Type *Ty, const DataLayout &DL) const;
    753 
    754   /// Return the type of registers that this ValueType will eventually require.
    755   MVT getRegisterType(MVT VT) const {
    756     assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
    757     return RegisterTypeForVT[VT.SimpleTy];
    758   }
    759 
    760   /// Return the type of registers that this ValueType will eventually require.
    761   MVT getRegisterType(LLVMContext &Context, EVT VT) const {
    762     if (VT.isSimple()) {
    763       assert((unsigned)VT.getSimpleVT().SimpleTy <
    764                 array_lengthof(RegisterTypeForVT));
    765       return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
    766     }
    767     if (VT.isVector()) {
    768       EVT VT1;
    769       MVT RegisterVT;
    770       unsigned NumIntermediates;
    771       (void)getVectorTypeBreakdown(Context, VT, VT1,
    772                                    NumIntermediates, RegisterVT);
    773       return RegisterVT;
    774     }
    775     if (VT.isInteger()) {
    776       return getRegisterType(Context, getTypeToTransformTo(Context, VT));
    777     }
    778     llvm_unreachable("Unsupported extended type!");
    779   }
    780 
    781   /// Return the number of registers that this ValueType will eventually
    782   /// require.
    783   ///
    784   /// This is one for any types promoted to live in larger registers, but may be
    785   /// more than one for types (like i64) that are split into pieces.  For types
    786   /// like i140, which are first promoted then expanded, it is the number of
    787   /// registers needed to hold all the bits of the original type.  For an i140
    788   /// on a 32 bit machine this means 5 registers.
    789   unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
    790     if (VT.isSimple()) {
    791       assert((unsigned)VT.getSimpleVT().SimpleTy <
    792                 array_lengthof(NumRegistersForVT));
    793       return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
    794     }
    795     if (VT.isVector()) {
    796       EVT VT1;
    797       MVT VT2;
    798       unsigned NumIntermediates;
    799       return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
    800     }
    801     if (VT.isInteger()) {
    802       unsigned BitWidth = VT.getSizeInBits();
    803       unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
    804       return (BitWidth + RegWidth - 1) / RegWidth;
    805     }
    806     llvm_unreachable("Unsupported extended type!");
    807   }
    808 
    809   /// If true, then instruction selection should seek to shrink the FP constant
    810   /// of the specified type to a smaller type in order to save space and / or
    811   /// reduce runtime.
    812   virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
    813 
    814   // Return true if it is profitable to reduce the given load node to a smaller
    815   // type.
    816   //
    817   // e.g. (i16 (trunc (i32 (load x))) -> i16 load x should be performed
    818   virtual bool shouldReduceLoadWidth(SDNode *Load,
    819                                      ISD::LoadExtType ExtTy,
    820                                      EVT NewVT) const {
    821     return true;
    822   }
    823 
    824   /// When splitting a value of the specified type into parts, does the Lo
    825   /// or Hi part come first?  This usually follows the endianness, except
    826   /// for ppcf128, where the Hi part always comes first.
    827   bool hasBigEndianPartOrdering(EVT VT, const DataLayout &DL) const {
    828     return DL.isBigEndian() || VT == MVT::ppcf128;
    829   }
    830 
    831   /// If true, the target has custom DAG combine transformations that it can
    832   /// perform for the specified node.
    833   bool hasTargetDAGCombine(ISD::NodeType NT) const {
    834     assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
    835     return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
    836   }
    837 
    838   unsigned getGatherAllAliasesMaxDepth() const {
    839     return GatherAllAliasesMaxDepth;
    840   }
    841 
    842   /// \brief Get maximum # of store operations permitted for llvm.memset
    843   ///
    844   /// This function returns the maximum number of store operations permitted
    845   /// to replace a call to llvm.memset. The value is set by the target at the
    846   /// performance threshold for such a replacement. If OptSize is true,
    847   /// return the limit for functions that have OptSize attribute.
    848   unsigned getMaxStoresPerMemset(bool OptSize) const {
    849     return OptSize ? MaxStoresPerMemsetOptSize : MaxStoresPerMemset;
    850   }
    851 
    852   /// \brief Get maximum # of store operations permitted for llvm.memcpy
    853   ///
    854   /// This function returns the maximum number of store operations permitted
    855   /// to replace a call to llvm.memcpy. The value is set by the target at the
    856   /// performance threshold for such a replacement. If OptSize is true,
    857   /// return the limit for functions that have OptSize attribute.
    858   unsigned getMaxStoresPerMemcpy(bool OptSize) const {
    859     return OptSize ? MaxStoresPerMemcpyOptSize : MaxStoresPerMemcpy;
    860   }
    861 
    862   /// \brief Get maximum # of store operations permitted for llvm.memmove
    863   ///
    864   /// This function returns the maximum number of store operations permitted
    865   /// to replace a call to llvm.memmove. The value is set by the target at the
    866   /// performance threshold for such a replacement. If OptSize is true,
    867   /// return the limit for functions that have OptSize attribute.
    868   unsigned getMaxStoresPerMemmove(bool OptSize) const {
    869     return OptSize ? MaxStoresPerMemmoveOptSize : MaxStoresPerMemmove;
    870   }
    871 
    872   /// \brief Determine if the target supports unaligned memory accesses.
    873   ///
    874   /// This function returns true if the target allows unaligned memory accesses
    875   /// of the specified type in the given address space. If true, it also returns
    876   /// whether the unaligned memory access is "fast" in the last argument by
    877   /// reference. This is used, for example, in situations where an array
    878   /// copy/move/set is converted to a sequence of store operations. Its use
    879   /// helps to ensure that such replacements don't generate code that causes an
    880   /// alignment error (trap) on the target machine.
    881   virtual bool allowsMisalignedMemoryAccesses(EVT,
    882                                               unsigned AddrSpace = 0,
    883                                               unsigned Align = 1,
    884                                               bool * /*Fast*/ = nullptr) const {
    885     return false;
    886   }
    887 
    888   /// Return true if the target supports a memory access of this type for the
    889   /// given address space and alignment. If the access is allowed, the optional
    890   /// final parameter returns if the access is also fast (as defined by the
    891   /// target).
    892   bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT,
    893                           unsigned AddrSpace = 0, unsigned Alignment = 1,
    894                           bool *Fast = nullptr) const;
    895 
    896   /// Returns the target specific optimal type for load and store operations as
    897   /// a result of memset, memcpy, and memmove lowering.
    898   ///
    899   /// If DstAlign is zero that means it's safe to destination alignment can
    900   /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't
    901   /// a need to check it against alignment requirement, probably because the
    902   /// source does not need to be loaded. If 'IsMemset' is true, that means it's
    903   /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of
    904   /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it
    905   /// does not need to be loaded.  It returns EVT::Other if the type should be
    906   /// determined using generic target-independent logic.
    907   virtual EVT getOptimalMemOpType(uint64_t /*Size*/,
    908                                   unsigned /*DstAlign*/, unsigned /*SrcAlign*/,
    909                                   bool /*IsMemset*/,
    910                                   bool /*ZeroMemset*/,
    911                                   bool /*MemcpyStrSrc*/,
    912                                   MachineFunction &/*MF*/) const {
    913     return MVT::Other;
    914   }
    915 
    916   /// Returns true if it's safe to use load / store of the specified type to
    917   /// expand memcpy / memset inline.
    918   ///
    919   /// This is mostly true for all types except for some special cases. For
    920   /// example, on X86 targets without SSE2 f64 load / store are done with fldl /
    921   /// fstpl which also does type conversion. Note the specified type doesn't
    922   /// have to be legal as the hook is used before type legalization.
    923   virtual bool isSafeMemOpType(MVT /*VT*/) const { return true; }
    924 
    925   /// Determine if we should use _setjmp or setjmp to implement llvm.setjmp.
    926   bool usesUnderscoreSetJmp() const {
    927     return UseUnderscoreSetJmp;
    928   }
    929 
    930   /// Determine if we should use _longjmp or longjmp to implement llvm.longjmp.
    931   bool usesUnderscoreLongJmp() const {
    932     return UseUnderscoreLongJmp;
    933   }
    934 
    935   /// Return integer threshold on number of blocks to use jump tables rather
    936   /// than if sequence.
    937   int getMinimumJumpTableEntries() const {
    938     return MinimumJumpTableEntries;
    939   }
    940 
    941   /// If a physical register, this specifies the register that
    942   /// llvm.savestack/llvm.restorestack should save and restore.
    943   unsigned getStackPointerRegisterToSaveRestore() const {
    944     return StackPointerRegisterToSaveRestore;
    945   }
    946 
    947   /// If a physical register, this returns the register that receives the
    948   /// exception address on entry to an EH pad.
    949   virtual unsigned
    950   getExceptionPointerRegister(const Constant *PersonalityFn) const {
    951     // 0 is guaranteed to be the NoRegister value on all targets
    952     return 0;
    953   }
    954 
    955   /// If a physical register, this returns the register that receives the
    956   /// exception typeid on entry to a landing pad.
    957   virtual unsigned
    958   getExceptionSelectorRegister(const Constant *PersonalityFn) const {
    959     // 0 is guaranteed to be the NoRegister value on all targets
    960     return 0;
    961   }
    962 
    963   /// Returns the target's jmp_buf size in bytes (if never set, the default is
    964   /// 200)
    965   unsigned getJumpBufSize() const {
    966     return JumpBufSize;
    967   }
    968 
    969   /// Returns the target's jmp_buf alignment in bytes (if never set, the default
    970   /// is 0)
    971   unsigned getJumpBufAlignment() const {
    972     return JumpBufAlignment;
    973   }
    974 
    975   /// Return the minimum stack alignment of an argument.
    976   unsigned getMinStackArgumentAlignment() const {
    977     return MinStackArgumentAlignment;
    978   }
    979 
    980   /// Return the minimum function alignment.
    981   unsigned getMinFunctionAlignment() const {
    982     return MinFunctionAlignment;
    983   }
    984 
    985   /// Return the preferred function alignment.
    986   unsigned getPrefFunctionAlignment() const {
    987     return PrefFunctionAlignment;
    988   }
    989 
    990   /// Return the preferred loop alignment.
    991   virtual unsigned getPrefLoopAlignment(MachineLoop *ML = nullptr) const {
    992     return PrefLoopAlignment;
    993   }
    994 
    995   /// Return whether the DAG builder should automatically insert fences and
    996   /// reduce ordering for atomics.
    997   bool getInsertFencesForAtomic() const {
    998     return InsertFencesForAtomic;
    999   }
   1000 
   1001   /// Return true if the target stores stack protector cookies at a fixed offset
   1002   /// in some non-standard address space, and populates the address space and
   1003   /// offset as appropriate.
   1004   virtual bool getStackCookieLocation(unsigned &/*AddressSpace*/,
   1005                                       unsigned &/*Offset*/) const {
   1006     return false;
   1007   }
   1008 
   1009   /// If the target has a standard location for the unsafe stack pointer,
   1010   /// returns the address of that location. Otherwise, returns nullptr.
   1011   virtual Value *getSafeStackPointerLocation(IRBuilder<> &IRB) const;
   1012 
   1013   /// Returns true if a cast between SrcAS and DestAS is a noop.
   1014   virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const {
   1015     return false;
   1016   }
   1017 
   1018   /// Return true if the pointer arguments to CI should be aligned by aligning
   1019   /// the object whose address is being passed. If so then MinSize is set to the
   1020   /// minimum size the object must be to be aligned and PrefAlign is set to the
   1021   /// preferred alignment.
   1022   virtual bool shouldAlignPointerArgs(CallInst * /*CI*/, unsigned & /*MinSize*/,
   1023                                       unsigned & /*PrefAlign*/) const {
   1024     return false;
   1025   }
   1026 
   1027   //===--------------------------------------------------------------------===//
   1028   /// \name Helpers for TargetTransformInfo implementations
   1029   /// @{
   1030 
   1031   /// Get the ISD node that corresponds to the Instruction class opcode.
   1032   int InstructionOpcodeToISD(unsigned Opcode) const;
   1033 
   1034   /// Estimate the cost of type-legalization and the legalized type.
   1035   std::pair<int, MVT> getTypeLegalizationCost(const DataLayout &DL,
   1036                                               Type *Ty) const;
   1037 
   1038   /// @}
   1039 
   1040   //===--------------------------------------------------------------------===//
   1041   /// \name Helpers for atomic expansion.
   1042   /// @{
   1043 
   1044   /// Perform a load-linked operation on Addr, returning a "Value *" with the
   1045   /// corresponding pointee type. This may entail some non-trivial operations to
   1046   /// truncate or reconstruct types that will be illegal in the backend. See
   1047   /// ARMISelLowering for an example implementation.
   1048   virtual Value *emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
   1049                                 AtomicOrdering Ord) const {
   1050     llvm_unreachable("Load linked unimplemented on this target");
   1051   }
   1052 
   1053   /// Perform a store-conditional operation to Addr. Return the status of the
   1054   /// store. This should be 0 if the store succeeded, non-zero otherwise.
   1055   virtual Value *emitStoreConditional(IRBuilder<> &Builder, Value *Val,
   1056                                       Value *Addr, AtomicOrdering Ord) const {
   1057     llvm_unreachable("Store conditional unimplemented on this target");
   1058   }
   1059 
   1060   /// Inserts in the IR a target-specific intrinsic specifying a fence.
   1061   /// It is called by AtomicExpandPass before expanding an
   1062   ///   AtomicRMW/AtomicCmpXchg/AtomicStore/AtomicLoad.
   1063   /// RMW and CmpXchg set both IsStore and IsLoad to true.
   1064   /// This function should either return a nullptr, or a pointer to an IR-level
   1065   ///   Instruction*. Even complex fence sequences can be represented by a
   1066   ///   single Instruction* through an intrinsic to be lowered later.
   1067   /// Backends with !getInsertFencesForAtomic() should keep a no-op here.
   1068   /// Backends should override this method to produce target-specific intrinsic
   1069   ///   for their fences.
   1070   /// FIXME: Please note that the default implementation here in terms of
   1071   ///   IR-level fences exists for historical/compatibility reasons and is
   1072   ///   *unsound* ! Fences cannot, in general, be used to restore sequential
   1073   ///   consistency. For example, consider the following example:
   1074   /// atomic<int> x = y = 0;
   1075   /// int r1, r2, r3, r4;
   1076   /// Thread 0:
   1077   ///   x.store(1);
   1078   /// Thread 1:
   1079   ///   y.store(1);
   1080   /// Thread 2:
   1081   ///   r1 = x.load();
   1082   ///   r2 = y.load();
   1083   /// Thread 3:
   1084   ///   r3 = y.load();
   1085   ///   r4 = x.load();
   1086   ///  r1 = r3 = 1 and r2 = r4 = 0 is impossible as long as the accesses are all
   1087   ///  seq_cst. But if they are lowered to monotonic accesses, no amount of
   1088   ///  IR-level fences can prevent it.
   1089   /// @{
   1090   virtual Instruction *emitLeadingFence(IRBuilder<> &Builder,
   1091                                         AtomicOrdering Ord, bool IsStore,
   1092                                         bool IsLoad) const {
   1093     if (!getInsertFencesForAtomic())
   1094       return nullptr;
   1095 
   1096     if (isAtLeastRelease(Ord) && IsStore)
   1097       return Builder.CreateFence(Ord);
   1098     else
   1099       return nullptr;
   1100   }
   1101 
   1102   virtual Instruction *emitTrailingFence(IRBuilder<> &Builder,
   1103                                          AtomicOrdering Ord, bool IsStore,
   1104                                          bool IsLoad) const {
   1105     if (!getInsertFencesForAtomic())
   1106       return nullptr;
   1107 
   1108     if (isAtLeastAcquire(Ord))
   1109       return Builder.CreateFence(Ord);
   1110     else
   1111       return nullptr;
   1112   }
   1113   /// @}
   1114 
   1115   // Emits code that executes when the comparison result in the ll/sc
   1116   // expansion of a cmpxchg instruction is such that the store-conditional will
   1117   // not execute.  This makes it possible to balance out the load-linked with
   1118   // a dedicated instruction, if desired.
   1119   // E.g., on ARM, if ldrex isn't followed by strex, the exclusive monitor would
   1120   // be unnecessarily held, except if clrex, inserted by this hook, is executed.
   1121   virtual void emitAtomicCmpXchgNoStoreLLBalance(IRBuilder<> &Builder) const {}
   1122 
   1123   /// Returns true if the given (atomic) store should be expanded by the
   1124   /// IR-level AtomicExpand pass into an "atomic xchg" which ignores its input.
   1125   virtual bool shouldExpandAtomicStoreInIR(StoreInst *SI) const {
   1126     return false;
   1127   }
   1128 
   1129   /// Returns true if arguments should be sign-extended in lib calls.
   1130   virtual bool shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
   1131     return IsSigned;
   1132   }
   1133 
   1134   /// Returns how the given (atomic) load should be expanded by the
   1135   /// IR-level AtomicExpand pass.
   1136   virtual AtomicExpansionKind shouldExpandAtomicLoadInIR(LoadInst *LI) const {
   1137     return AtomicExpansionKind::None;
   1138   }
   1139 
   1140   /// Returns true if the given atomic cmpxchg should be expanded by the
   1141   /// IR-level AtomicExpand pass into a load-linked/store-conditional sequence
   1142   /// (through emitLoadLinked() and emitStoreConditional()).
   1143   virtual bool shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
   1144     return false;
   1145   }
   1146 
   1147   /// Returns how the IR-level AtomicExpand pass should expand the given
   1148   /// AtomicRMW, if at all. Default is to never expand.
   1149   virtual AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *) const {
   1150     return AtomicExpansionKind::None;
   1151   }
   1152 
   1153   /// On some platforms, an AtomicRMW that never actually modifies the value
   1154   /// (such as fetch_add of 0) can be turned into a fence followed by an
   1155   /// atomic load. This may sound useless, but it makes it possible for the
   1156   /// processor to keep the cacheline shared, dramatically improving
   1157   /// performance. And such idempotent RMWs are useful for implementing some
   1158   /// kinds of locks, see for example (justification + benchmarks):
   1159   /// http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf
   1160   /// This method tries doing that transformation, returning the atomic load if
   1161   /// it succeeds, and nullptr otherwise.
   1162   /// If shouldExpandAtomicLoadInIR returns true on that load, it will undergo
   1163   /// another round of expansion.
   1164   virtual LoadInst *
   1165   lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *RMWI) const {
   1166     return nullptr;
   1167   }
   1168 
   1169   /// Returns true if we should normalize
   1170   /// select(N0&N1, X, Y) => select(N0, select(N1, X, Y), Y) and
   1171   /// select(N0|N1, X, Y) => select(N0, select(N1, X, Y, Y)) if it is likely
   1172   /// that it saves us from materializing N0 and N1 in an integer register.
   1173   /// Targets that are able to perform and/or on flags should return false here.
   1174   virtual bool shouldNormalizeToSelectSequence(LLVMContext &Context,
   1175                                                EVT VT) const {
   1176     // If a target has multiple condition registers, then it likely has logical
   1177     // operations on those registers.
   1178     if (hasMultipleConditionRegisters())
   1179       return false;
   1180     // Only do the transform if the value won't be split into multiple
   1181     // registers.
   1182     LegalizeTypeAction Action = getTypeAction(Context, VT);
   1183     return Action != TypeExpandInteger && Action != TypeExpandFloat &&
   1184       Action != TypeSplitVector;
   1185   }
   1186 
   1187   //===--------------------------------------------------------------------===//
   1188   // TargetLowering Configuration Methods - These methods should be invoked by
   1189   // the derived class constructor to configure this object for the target.
   1190   //
   1191 protected:
   1192   /// Specify how the target extends the result of integer and floating point
   1193   /// boolean values from i1 to a wider type.  See getBooleanContents.
   1194   void setBooleanContents(BooleanContent Ty) {
   1195     BooleanContents = Ty;
   1196     BooleanFloatContents = Ty;
   1197   }
   1198 
   1199   /// Specify how the target extends the result of integer and floating point
   1200   /// boolean values from i1 to a wider type.  See getBooleanContents.
   1201   void setBooleanContents(BooleanContent IntTy, BooleanContent FloatTy) {
   1202     BooleanContents = IntTy;
   1203     BooleanFloatContents = FloatTy;
   1204   }
   1205 
   1206   /// Specify how the target extends the result of a vector boolean value from a
   1207   /// vector of i1 to a wider type.  See getBooleanContents.
   1208   void setBooleanVectorContents(BooleanContent Ty) {
   1209     BooleanVectorContents = Ty;
   1210   }
   1211 
   1212   /// Specify the target scheduling preference.
   1213   void setSchedulingPreference(Sched::Preference Pref) {
   1214     SchedPreferenceInfo = Pref;
   1215   }
   1216 
   1217   /// Indicate whether this target prefers to use _setjmp to implement
   1218   /// llvm.setjmp or the version without _.  Defaults to false.
   1219   void setUseUnderscoreSetJmp(bool Val) {
   1220     UseUnderscoreSetJmp = Val;
   1221   }
   1222 
   1223   /// Indicate whether this target prefers to use _longjmp to implement
   1224   /// llvm.longjmp or the version without _.  Defaults to false.
   1225   void setUseUnderscoreLongJmp(bool Val) {
   1226     UseUnderscoreLongJmp = Val;
   1227   }
   1228 
   1229   /// Indicate the number of blocks to generate jump tables rather than if
   1230   /// sequence.
   1231   void setMinimumJumpTableEntries(int Val) {
   1232     MinimumJumpTableEntries = Val;
   1233   }
   1234 
   1235   /// If set to a physical register, this specifies the register that
   1236   /// llvm.savestack/llvm.restorestack should save and restore.
   1237   void setStackPointerRegisterToSaveRestore(unsigned R) {
   1238     StackPointerRegisterToSaveRestore = R;
   1239   }
   1240 
   1241   /// Tells the code generator not to expand operations into sequences that use
   1242   /// the select operations if possible.
   1243   void setSelectIsExpensive(bool isExpensive = true) {
   1244     SelectIsExpensive = isExpensive;
   1245   }
   1246 
   1247   /// Tells the code generator that the target has multiple (allocatable)
   1248   /// condition registers that can be used to store the results of comparisons
   1249   /// for use by selects and conditional branches. With multiple condition
   1250   /// registers, the code generator will not aggressively sink comparisons into
   1251   /// the blocks of their users.
   1252   void setHasMultipleConditionRegisters(bool hasManyRegs = true) {
   1253     HasMultipleConditionRegisters = hasManyRegs;
   1254   }
   1255 
   1256   /// Tells the code generator that the target has BitExtract instructions.
   1257   /// The code generator will aggressively sink "shift"s into the blocks of
   1258   /// their users if the users will generate "and" instructions which can be
   1259   /// combined with "shift" to BitExtract instructions.
   1260   void setHasExtractBitsInsn(bool hasExtractInsn = true) {
   1261     HasExtractBitsInsn = hasExtractInsn;
   1262   }
   1263 
   1264   /// Tells the code generator not to expand logic operations on comparison
   1265   /// predicates into separate sequences that increase the amount of flow
   1266   /// control.
   1267   void setJumpIsExpensive(bool isExpensive = true);
   1268 
   1269   /// Tells the code generator that fsqrt is cheap, and should not be replaced
   1270   /// with an alternative sequence of instructions.
   1271   void setFsqrtIsCheap(bool isCheap = true) { FsqrtIsCheap = isCheap; }
   1272 
   1273   /// Tells the code generator that this target supports floating point
   1274   /// exceptions and cares about preserving floating point exception behavior.
   1275   void setHasFloatingPointExceptions(bool FPExceptions = true) {
   1276     HasFloatingPointExceptions = FPExceptions;
   1277   }
   1278 
   1279   /// Tells the code generator which bitwidths to bypass.
   1280   void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) {
   1281     BypassSlowDivWidths[SlowBitWidth] = FastBitWidth;
   1282   }
   1283 
   1284   /// Add the specified register class as an available regclass for the
   1285   /// specified value type. This indicates the selector can handle values of
   1286   /// that class natively.
   1287   void addRegisterClass(MVT VT, const TargetRegisterClass *RC) {
   1288     assert((unsigned)VT.SimpleTy < array_lengthof(RegClassForVT));
   1289     AvailableRegClasses.push_back(std::make_pair(VT, RC));
   1290     RegClassForVT[VT.SimpleTy] = RC;
   1291   }
   1292 
   1293   /// Remove all register classes.
   1294   void clearRegisterClasses() {
   1295     std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
   1296 
   1297     AvailableRegClasses.clear();
   1298   }
   1299 
   1300   /// \brief Remove all operation actions.
   1301   void clearOperationActions() {
   1302   }
   1303 
   1304   /// Return the largest legal super-reg register class of the register class
   1305   /// for the specified type and its associated "cost".
   1306   virtual std::pair<const TargetRegisterClass *, uint8_t>
   1307   findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const;
   1308 
   1309   /// Once all of the register classes are added, this allows us to compute
   1310   /// derived properties we expose.
   1311   void computeRegisterProperties(const TargetRegisterInfo *TRI);
   1312 
   1313   /// Indicate that the specified operation does not work with the specified
   1314   /// type and indicate what to do about it.
   1315   void setOperationAction(unsigned Op, MVT VT,
   1316                           LegalizeAction Action) {
   1317     assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
   1318     OpActions[(unsigned)VT.SimpleTy][Op] = Action;
   1319   }
   1320 
   1321   /// Indicate that the specified load with extension does not work with the
   1322   /// specified type and indicate what to do about it.
   1323   void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT,
   1324                         LegalizeAction Action) {
   1325     assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValVT.isValid() &&
   1326            MemVT.isValid() && "Table isn't big enough!");
   1327     LoadExtActions[(unsigned)ValVT.SimpleTy][MemVT.SimpleTy][ExtType] = Action;
   1328   }
   1329 
   1330   /// Indicate that the specified truncating store does not work with the
   1331   /// specified type and indicate what to do about it.
   1332   void setTruncStoreAction(MVT ValVT, MVT MemVT,
   1333                            LegalizeAction Action) {
   1334     assert(ValVT.isValid() && MemVT.isValid() && "Table isn't big enough!");
   1335     TruncStoreActions[(unsigned)ValVT.SimpleTy][MemVT.SimpleTy] = Action;
   1336   }
   1337 
   1338   /// Indicate that the specified indexed load does or does not work with the
   1339   /// specified type and indicate what to do abort it.
   1340   ///
   1341   /// NOTE: All indexed mode loads are initialized to Expand in
   1342   /// TargetLowering.cpp
   1343   void setIndexedLoadAction(unsigned IdxMode, MVT VT,
   1344                             LegalizeAction Action) {
   1345     assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE &&
   1346            (unsigned)Action < 0xf && "Table isn't big enough!");
   1347     // Load action are kept in the upper half.
   1348     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
   1349     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
   1350   }
   1351 
   1352   /// Indicate that the specified indexed store does or does not work with the
   1353   /// specified type and indicate what to do about it.
   1354   ///
   1355   /// NOTE: All indexed mode stores are initialized to Expand in
   1356   /// TargetLowering.cpp
   1357   void setIndexedStoreAction(unsigned IdxMode, MVT VT,
   1358                              LegalizeAction Action) {
   1359     assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE &&
   1360            (unsigned)Action < 0xf && "Table isn't big enough!");
   1361     // Store action are kept in the lower half.
   1362     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
   1363     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
   1364   }
   1365 
   1366   /// Indicate that the specified condition code is or isn't supported on the
   1367   /// target and indicate what to do about it.
   1368   void setCondCodeAction(ISD::CondCode CC, MVT VT,
   1369                          LegalizeAction Action) {
   1370     assert(VT.isValid() && (unsigned)CC < array_lengthof(CondCodeActions) &&
   1371            "Table isn't big enough!");
   1372     assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
   1373     /// The lower 3 bits of the SimpleTy index into Nth 4bit set from the 32-bit
   1374     /// value and the upper 29 bits index into the second dimension of the array
   1375     /// to select what 32-bit value to use.
   1376     uint32_t Shift = 4 * (VT.SimpleTy & 0x7);
   1377     CondCodeActions[CC][VT.SimpleTy >> 3] &= ~((uint32_t)0xF << Shift);
   1378     CondCodeActions[CC][VT.SimpleTy >> 3] |= (uint32_t)Action << Shift;
   1379   }
   1380 
   1381   /// If Opc/OrigVT is specified as being promoted, the promotion code defaults
   1382   /// to trying a larger integer/fp until it can find one that works. If that
   1383   /// default is insufficient, this method can be used by the target to override
   1384   /// the default.
   1385   void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
   1386     PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
   1387   }
   1388 
   1389   /// Targets should invoke this method for each target independent node that
   1390   /// they want to provide a custom DAG combiner for by implementing the
   1391   /// PerformDAGCombine virtual method.
   1392   void setTargetDAGCombine(ISD::NodeType NT) {
   1393     assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
   1394     TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
   1395   }
   1396 
   1397   /// Set the target's required jmp_buf buffer size (in bytes); default is 200
   1398   void setJumpBufSize(unsigned Size) {
   1399     JumpBufSize = Size;
   1400   }
   1401 
   1402   /// Set the target's required jmp_buf buffer alignment (in bytes); default is
   1403   /// 0
   1404   void setJumpBufAlignment(unsigned Align) {
   1405     JumpBufAlignment = Align;
   1406   }
   1407 
   1408   /// Set the target's minimum function alignment (in log2(bytes))
   1409   void setMinFunctionAlignment(unsigned Align) {
   1410     MinFunctionAlignment = Align;
   1411   }
   1412 
   1413   /// Set the target's preferred function alignment.  This should be set if
   1414   /// there is a performance benefit to higher-than-minimum alignment (in
   1415   /// log2(bytes))
   1416   void setPrefFunctionAlignment(unsigned Align) {
   1417     PrefFunctionAlignment = Align;
   1418   }
   1419 
   1420   /// Set the target's preferred loop alignment. Default alignment is zero, it
   1421   /// means the target does not care about loop alignment.  The alignment is
   1422   /// specified in log2(bytes). The target may also override
   1423   /// getPrefLoopAlignment to provide per-loop values.
   1424   void setPrefLoopAlignment(unsigned Align) {
   1425     PrefLoopAlignment = Align;
   1426   }
   1427 
   1428   /// Set the minimum stack alignment of an argument (in log2(bytes)).
   1429   void setMinStackArgumentAlignment(unsigned Align) {
   1430     MinStackArgumentAlignment = Align;
   1431   }
   1432 
   1433   /// Set if the DAG builder should automatically insert fences and reduce the
   1434   /// order of atomic memory operations to Monotonic.
   1435   void setInsertFencesForAtomic(bool fence) {
   1436     InsertFencesForAtomic = fence;
   1437   }
   1438 
   1439 public:
   1440   //===--------------------------------------------------------------------===//
   1441   // Addressing mode description hooks (used by LSR etc).
   1442   //
   1443 
   1444   /// CodeGenPrepare sinks address calculations into the same BB as Load/Store
   1445   /// instructions reading the address. This allows as much computation as
   1446   /// possible to be done in the address mode for that operand. This hook lets
   1447   /// targets also pass back when this should be done on intrinsics which
   1448   /// load/store.
   1449   virtual bool GetAddrModeArguments(IntrinsicInst * /*I*/,
   1450                                     SmallVectorImpl<Value*> &/*Ops*/,
   1451                                     Type *&/*AccessTy*/,
   1452                                     unsigned AddrSpace = 0) const {
   1453     return false;
   1454   }
   1455 
   1456   /// This represents an addressing mode of:
   1457   ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
   1458   /// If BaseGV is null,  there is no BaseGV.
   1459   /// If BaseOffs is zero, there is no base offset.
   1460   /// If HasBaseReg is false, there is no base register.
   1461   /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
   1462   /// no scale.
   1463   struct AddrMode {
   1464     GlobalValue *BaseGV;
   1465     int64_t      BaseOffs;
   1466     bool         HasBaseReg;
   1467     int64_t      Scale;
   1468     AddrMode() : BaseGV(nullptr), BaseOffs(0), HasBaseReg(false), Scale(0) {}
   1469   };
   1470 
   1471   /// Return true if the addressing mode represented by AM is legal for this
   1472   /// target, for a load/store of the specified type.
   1473   ///
   1474   /// The type may be VoidTy, in which case only return true if the addressing
   1475   /// mode is legal for a load/store of any legal type.  TODO: Handle
   1476   /// pre/postinc as well.
   1477   ///
   1478   /// If the address space cannot be determined, it will be -1.
   1479   ///
   1480   /// TODO: Remove default argument
   1481   virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
   1482                                      Type *Ty, unsigned AddrSpace) const;
   1483 
   1484   /// \brief Return the cost of the scaling factor used in the addressing mode
   1485   /// represented by AM for this target, for a load/store of the specified type.
   1486   ///
   1487   /// If the AM is supported, the return value must be >= 0.
   1488   /// If the AM is not supported, it returns a negative value.
   1489   /// TODO: Handle pre/postinc as well.
   1490   /// TODO: Remove default argument
   1491   virtual int getScalingFactorCost(const DataLayout &DL, const AddrMode &AM,
   1492                                    Type *Ty, unsigned AS = 0) const {
   1493     // Default: assume that any scaling factor used in a legal AM is free.
   1494     if (isLegalAddressingMode(DL, AM, Ty, AS))
   1495       return 0;
   1496     return -1;
   1497   }
   1498 
   1499   /// Return true if the specified immediate is legal icmp immediate, that is
   1500   /// the target has icmp instructions which can compare a register against the
   1501   /// immediate without having to materialize the immediate into a register.
   1502   virtual bool isLegalICmpImmediate(int64_t) const {
   1503     return true;
   1504   }
   1505 
   1506   /// Return true if the specified immediate is legal add immediate, that is the
   1507   /// target has add instructions which can add a register with the immediate
   1508   /// without having to materialize the immediate into a register.
   1509   virtual bool isLegalAddImmediate(int64_t) const {
   1510     return true;
   1511   }
   1512 
   1513   /// Return true if it's significantly cheaper to shift a vector by a uniform
   1514   /// scalar than by an amount which will vary across each lane. On x86, for
   1515   /// example, there is a "psllw" instruction for the former case, but no simple
   1516   /// instruction for a general "a << b" operation on vectors.
   1517   virtual bool isVectorShiftByScalarCheap(Type *Ty) const {
   1518     return false;
   1519   }
   1520 
   1521   /// Return true if it's free to truncate a value of type FromTy to type
   1522   /// ToTy. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
   1523   /// by referencing its sub-register AX.
   1524   /// Targets must return false when FromTy <= ToTy.
   1525   virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const {
   1526     return false;
   1527   }
   1528 
   1529   /// Return true if a truncation from FromTy to ToTy is permitted when deciding
   1530   /// whether a call is in tail position. Typically this means that both results
   1531   /// would be assigned to the same register or stack slot, but it could mean
   1532   /// the target performs adequate checks of its own before proceeding with the
   1533   /// tail call.  Targets must return false when FromTy <= ToTy.
   1534   virtual bool allowTruncateForTailCall(Type *FromTy, Type *ToTy) const {
   1535     return false;
   1536   }
   1537 
   1538   virtual bool isTruncateFree(EVT FromVT, EVT ToVT) const {
   1539     return false;
   1540   }
   1541 
   1542   virtual bool isProfitableToHoist(Instruction *I) const { return true; }
   1543 
   1544   /// Return true if the extension represented by \p I is free.
   1545   /// Unlikely the is[Z|FP]ExtFree family which is based on types,
   1546   /// this method can use the context provided by \p I to decide
   1547   /// whether or not \p I is free.
   1548   /// This method extends the behavior of the is[Z|FP]ExtFree family.
   1549   /// In other words, if is[Z|FP]Free returns true, then this method
   1550   /// returns true as well. The converse is not true.
   1551   /// The target can perform the adequate checks by overriding isExtFreeImpl.
   1552   /// \pre \p I must be a sign, zero, or fp extension.
   1553   bool isExtFree(const Instruction *I) const {
   1554     switch (I->getOpcode()) {
   1555     case Instruction::FPExt:
   1556       if (isFPExtFree(EVT::getEVT(I->getType())))
   1557         return true;
   1558       break;
   1559     case Instruction::ZExt:
   1560       if (isZExtFree(I->getOperand(0)->getType(), I->getType()))
   1561         return true;
   1562       break;
   1563     case Instruction::SExt:
   1564       break;
   1565     default:
   1566       llvm_unreachable("Instruction is not an extension");
   1567     }
   1568     return isExtFreeImpl(I);
   1569   }
   1570 
   1571   /// Return true if any actual instruction that defines a value of type FromTy
   1572   /// implicitly zero-extends the value to ToTy in the result register.
   1573   ///
   1574   /// The function should return true when it is likely that the truncate can
   1575   /// be freely folded with an instruction defining a value of FromTy. If
   1576   /// the defining instruction is unknown (because you're looking at a
   1577   /// function argument, PHI, etc.) then the target may require an
   1578   /// explicit truncate, which is not necessarily free, but this function
   1579   /// does not deal with those cases.
   1580   /// Targets must return false when FromTy >= ToTy.
   1581   virtual bool isZExtFree(Type *FromTy, Type *ToTy) const {
   1582     return false;
   1583   }
   1584 
   1585   virtual bool isZExtFree(EVT FromTy, EVT ToTy) const {
   1586     return false;
   1587   }
   1588 
   1589   /// Return true if the target supplies and combines to a paired load
   1590   /// two loaded values of type LoadedType next to each other in memory.
   1591   /// RequiredAlignment gives the minimal alignment constraints that must be met
   1592   /// to be able to select this paired load.
   1593   ///
   1594   /// This information is *not* used to generate actual paired loads, but it is
   1595   /// used to generate a sequence of loads that is easier to combine into a
   1596   /// paired load.
   1597   /// For instance, something like this:
   1598   /// a = load i64* addr
   1599   /// b = trunc i64 a to i32
   1600   /// c = lshr i64 a, 32
   1601   /// d = trunc i64 c to i32
   1602   /// will be optimized into:
   1603   /// b = load i32* addr1
   1604   /// d = load i32* addr2
   1605   /// Where addr1 = addr2 +/- sizeof(i32).
   1606   ///
   1607   /// In other words, unless the target performs a post-isel load combining,
   1608   /// this information should not be provided because it will generate more
   1609   /// loads.
   1610   virtual bool hasPairedLoad(Type * /*LoadedType*/,
   1611                              unsigned & /*RequiredAligment*/) const {
   1612     return false;
   1613   }
   1614 
   1615   virtual bool hasPairedLoad(EVT /*LoadedType*/,
   1616                              unsigned & /*RequiredAligment*/) const {
   1617     return false;
   1618   }
   1619 
   1620   /// \brief Get the maximum supported factor for interleaved memory accesses.
   1621   /// Default to be the minimum interleave factor: 2.
   1622   virtual unsigned getMaxSupportedInterleaveFactor() const { return 2; }
   1623 
   1624   /// \brief Lower an interleaved load to target specific intrinsics. Return
   1625   /// true on success.
   1626   ///
   1627   /// \p LI is the vector load instruction.
   1628   /// \p Shuffles is the shufflevector list to DE-interleave the loaded vector.
   1629   /// \p Indices is the corresponding indices for each shufflevector.
   1630   /// \p Factor is the interleave factor.
   1631   virtual bool lowerInterleavedLoad(LoadInst *LI,
   1632                                     ArrayRef<ShuffleVectorInst *> Shuffles,
   1633                                     ArrayRef<unsigned> Indices,
   1634                                     unsigned Factor) const {
   1635     return false;
   1636   }
   1637 
   1638   /// \brief Lower an interleaved store to target specific intrinsics. Return
   1639   /// true on success.
   1640   ///
   1641   /// \p SI is the vector store instruction.
   1642   /// \p SVI is the shufflevector to RE-interleave the stored vector.
   1643   /// \p Factor is the interleave factor.
   1644   virtual bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI,
   1645                                      unsigned Factor) const {
   1646     return false;
   1647   }
   1648 
   1649   /// Return true if zero-extending the specific node Val to type VT2 is free
   1650   /// (either because it's implicitly zero-extended such as ARM ldrb / ldrh or
   1651   /// because it's folded such as X86 zero-extending loads).
   1652   virtual bool isZExtFree(SDValue Val, EVT VT2) const {
   1653     return isZExtFree(Val.getValueType(), VT2);
   1654   }
   1655 
   1656   /// Return true if an fpext operation is free (for instance, because
   1657   /// single-precision floating-point numbers are implicitly extended to
   1658   /// double-precision).
   1659   virtual bool isFPExtFree(EVT VT) const {
   1660     assert(VT.isFloatingPoint());
   1661     return false;
   1662   }
   1663 
   1664   /// Return true if folding a vector load into ExtVal (a sign, zero, or any
   1665   /// extend node) is profitable.
   1666   virtual bool isVectorLoadExtDesirable(SDValue ExtVal) const { return false; }
   1667 
   1668   /// Return true if an fneg operation is free to the point where it is never
   1669   /// worthwhile to replace it with a bitwise operation.
   1670   virtual bool isFNegFree(EVT VT) const {
   1671     assert(VT.isFloatingPoint());
   1672     return false;
   1673   }
   1674 
   1675   /// Return true if an fabs operation is free to the point where it is never
   1676   /// worthwhile to replace it with a bitwise operation.
   1677   virtual bool isFAbsFree(EVT VT) const {
   1678     assert(VT.isFloatingPoint());
   1679     return false;
   1680   }
   1681 
   1682   /// Return true if an FMA operation is faster than a pair of fmul and fadd
   1683   /// instructions. fmuladd intrinsics will be expanded to FMAs when this method
   1684   /// returns true, otherwise fmuladd is expanded to fmul + fadd.
   1685   ///
   1686   /// NOTE: This may be called before legalization on types for which FMAs are
   1687   /// not legal, but should return true if those types will eventually legalize
   1688   /// to types that support FMAs. After legalization, it will only be called on
   1689   /// types that support FMAs (via Legal or Custom actions)
   1690   virtual bool isFMAFasterThanFMulAndFAdd(EVT) const {
   1691     return false;
   1692   }
   1693 
   1694   /// Return true if it's profitable to narrow operations of type VT1 to
   1695   /// VT2. e.g. on x86, it's profitable to narrow from i32 to i8 but not from
   1696   /// i32 to i16.
   1697   virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
   1698     return false;
   1699   }
   1700 
   1701   /// \brief Return true if it is beneficial to convert a load of a constant to
   1702   /// just the constant itself.
   1703   /// On some targets it might be more efficient to use a combination of
   1704   /// arithmetic instructions to materialize the constant instead of loading it
   1705   /// from a constant pool.
   1706   virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
   1707                                                  Type *Ty) const {
   1708     return false;
   1709   }
   1710 
   1711   /// Return true if EXTRACT_SUBVECTOR is cheap for this result type
   1712   /// with this index. This is needed because EXTRACT_SUBVECTOR usually
   1713   /// has custom lowering that depends on the index of the first element,
   1714   /// and only the target knows which lowering is cheap.
   1715   virtual bool isExtractSubvectorCheap(EVT ResVT, unsigned Index) const {
   1716     return false;
   1717   }
   1718 
   1719   // Return true if it is profitable to use a scalar input to a BUILD_VECTOR
   1720   // even if the vector itself has multiple uses.
   1721   virtual bool aggressivelyPreferBuildVectorSources(EVT VecVT) const {
   1722     return false;
   1723   }
   1724 
   1725   //===--------------------------------------------------------------------===//
   1726   // Runtime Library hooks
   1727   //
   1728 
   1729   /// Rename the default libcall routine name for the specified libcall.
   1730   void setLibcallName(RTLIB::Libcall Call, const char *Name) {
   1731     LibcallRoutineNames[Call] = Name;
   1732   }
   1733 
   1734   /// Get the libcall routine name for the specified libcall.
   1735   const char *getLibcallName(RTLIB::Libcall Call) const {
   1736     return LibcallRoutineNames[Call];
   1737   }
   1738 
   1739   /// Override the default CondCode to be used to test the result of the
   1740   /// comparison libcall against zero.
   1741   void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
   1742     CmpLibcallCCs[Call] = CC;
   1743   }
   1744 
   1745   /// Get the CondCode that's to be used to test the result of the comparison
   1746   /// libcall against zero.
   1747   ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
   1748     return CmpLibcallCCs[Call];
   1749   }
   1750 
   1751   /// Set the CallingConv that should be used for the specified libcall.
   1752   void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
   1753     LibcallCallingConvs[Call] = CC;
   1754   }
   1755 
   1756   /// Get the CallingConv that should be used for the specified libcall.
   1757   CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
   1758     return LibcallCallingConvs[Call];
   1759   }
   1760 
   1761 private:
   1762   const TargetMachine &TM;
   1763 
   1764   /// Tells the code generator not to expand operations into sequences that use
   1765   /// the select operations if possible.
   1766   bool SelectIsExpensive;
   1767 
   1768   /// Tells the code generator that the target has multiple (allocatable)
   1769   /// condition registers that can be used to store the results of comparisons
   1770   /// for use by selects and conditional branches. With multiple condition
   1771   /// registers, the code generator will not aggressively sink comparisons into
   1772   /// the blocks of their users.
   1773   bool HasMultipleConditionRegisters;
   1774 
   1775   /// Tells the code generator that the target has BitExtract instructions.
   1776   /// The code generator will aggressively sink "shift"s into the blocks of
   1777   /// their users if the users will generate "and" instructions which can be
   1778   /// combined with "shift" to BitExtract instructions.
   1779   bool HasExtractBitsInsn;
   1780 
   1781   // Don't expand fsqrt with an approximation based on the inverse sqrt.
   1782   bool FsqrtIsCheap;
   1783 
   1784   /// Tells the code generator to bypass slow divide or remainder
   1785   /// instructions. For example, BypassSlowDivWidths[32,8] tells the code
   1786   /// generator to bypass 32-bit integer div/rem with an 8-bit unsigned integer
   1787   /// div/rem when the operands are positive and less than 256.
   1788   DenseMap <unsigned int, unsigned int> BypassSlowDivWidths;
   1789 
   1790   /// Tells the code generator that it shouldn't generate extra flow control
   1791   /// instructions and should attempt to combine flow control instructions via
   1792   /// predication.
   1793   bool JumpIsExpensive;
   1794 
   1795   /// Whether the target supports or cares about preserving floating point
   1796   /// exception behavior.
   1797   bool HasFloatingPointExceptions;
   1798 
   1799   /// This target prefers to use _setjmp to implement llvm.setjmp.
   1800   ///
   1801   /// Defaults to false.
   1802   bool UseUnderscoreSetJmp;
   1803 
   1804   /// This target prefers to use _longjmp to implement llvm.longjmp.
   1805   ///
   1806   /// Defaults to false.
   1807   bool UseUnderscoreLongJmp;
   1808 
   1809   /// Number of blocks threshold to use jump tables.
   1810   int MinimumJumpTableEntries;
   1811 
   1812   /// Information about the contents of the high-bits in boolean values held in
   1813   /// a type wider than i1. See getBooleanContents.
   1814   BooleanContent BooleanContents;
   1815 
   1816   /// Information about the contents of the high-bits in boolean values held in
   1817   /// a type wider than i1. See getBooleanContents.
   1818   BooleanContent BooleanFloatContents;
   1819 
   1820   /// Information about the contents of the high-bits in boolean vector values
   1821   /// when the element type is wider than i1. See getBooleanContents.
   1822   BooleanContent BooleanVectorContents;
   1823 
   1824   /// The target scheduling preference: shortest possible total cycles or lowest
   1825   /// register usage.
   1826   Sched::Preference SchedPreferenceInfo;
   1827 
   1828   /// The size, in bytes, of the target's jmp_buf buffers
   1829   unsigned JumpBufSize;
   1830 
   1831   /// The alignment, in bytes, of the target's jmp_buf buffers
   1832   unsigned JumpBufAlignment;
   1833 
   1834   /// The minimum alignment that any argument on the stack needs to have.
   1835   unsigned MinStackArgumentAlignment;
   1836 
   1837   /// The minimum function alignment (used when optimizing for size, and to
   1838   /// prevent explicitly provided alignment from leading to incorrect code).
   1839   unsigned MinFunctionAlignment;
   1840 
   1841   /// The preferred function alignment (used when alignment unspecified and
   1842   /// optimizing for speed).
   1843   unsigned PrefFunctionAlignment;
   1844 
   1845   /// The preferred loop alignment.
   1846   unsigned PrefLoopAlignment;
   1847 
   1848   /// Whether the DAG builder should automatically insert fences and reduce
   1849   /// ordering for atomics.  (This will be set for for most architectures with
   1850   /// weak memory ordering.)
   1851   bool InsertFencesForAtomic;
   1852 
   1853   /// If set to a physical register, this specifies the register that
   1854   /// llvm.savestack/llvm.restorestack should save and restore.
   1855   unsigned StackPointerRegisterToSaveRestore;
   1856 
   1857   /// This indicates the default register class to use for each ValueType the
   1858   /// target supports natively.
   1859   const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
   1860   unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
   1861   MVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
   1862 
   1863   /// This indicates the "representative" register class to use for each
   1864   /// ValueType the target supports natively. This information is used by the
   1865   /// scheduler to track register pressure. By default, the representative
   1866   /// register class is the largest legal super-reg register class of the
   1867   /// register class of the specified type. e.g. On x86, i8, i16, and i32's
   1868   /// representative class would be GR32.
   1869   const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
   1870 
   1871   /// This indicates the "cost" of the "representative" register class for each
   1872   /// ValueType. The cost is used by the scheduler to approximate register
   1873   /// pressure.
   1874   uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
   1875 
   1876   /// For any value types we are promoting or expanding, this contains the value
   1877   /// type that we are changing to.  For Expanded types, this contains one step
   1878   /// of the expand (e.g. i64 -> i32), even if there are multiple steps required
   1879   /// (e.g. i64 -> i16).  For types natively supported by the system, this holds
   1880   /// the same type (e.g. i32 -> i32).
   1881   MVT TransformToType[MVT::LAST_VALUETYPE];
   1882 
   1883   /// For each operation and each value type, keep a LegalizeAction that
   1884   /// indicates how instruction selection should deal with the operation.  Most
   1885   /// operations are Legal (aka, supported natively by the target), but
   1886   /// operations that are not should be described.  Note that operations on
   1887   /// non-legal value types are not described here.
   1888   LegalizeAction OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
   1889 
   1890   /// For each load extension type and each value type, keep a LegalizeAction
   1891   /// that indicates how instruction selection should deal with a load of a
   1892   /// specific value type and extension type.
   1893   LegalizeAction LoadExtActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE]
   1894                                [ISD::LAST_LOADEXT_TYPE];
   1895 
   1896   /// For each value type pair keep a LegalizeAction that indicates whether a
   1897   /// truncating store of a specific value type and truncating type is legal.
   1898   LegalizeAction TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
   1899 
   1900   /// For each indexed mode and each value type, keep a pair of LegalizeAction
   1901   /// that indicates how instruction selection should deal with the load /
   1902   /// store.
   1903   ///
   1904   /// The first dimension is the value_type for the reference. The second
   1905   /// dimension represents the various modes for load store.
   1906   uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
   1907 
   1908   /// For each condition code (ISD::CondCode) keep a LegalizeAction that
   1909   /// indicates how instruction selection should deal with the condition code.
   1910   ///
   1911   /// Because each CC action takes up 4 bits, we need to have the array size be
   1912   /// large enough to fit all of the value types. This can be done by rounding
   1913   /// up the MVT::LAST_VALUETYPE value to the next multiple of 8.
   1914   uint32_t CondCodeActions[ISD::SETCC_INVALID][(MVT::LAST_VALUETYPE + 7) / 8];
   1915 
   1916 protected:
   1917   ValueTypeActionImpl ValueTypeActions;
   1918 
   1919 private:
   1920   LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const;
   1921 
   1922 private:
   1923   std::vector<std::pair<MVT, const TargetRegisterClass*> > AvailableRegClasses;
   1924 
   1925   /// Targets can specify ISD nodes that they would like PerformDAGCombine
   1926   /// callbacks for by calling setTargetDAGCombine(), which sets a bit in this
   1927   /// array.
   1928   unsigned char
   1929   TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
   1930 
   1931   /// For operations that must be promoted to a specific type, this holds the
   1932   /// destination type.  This map should be sparse, so don't hold it as an
   1933   /// array.
   1934   ///
   1935   /// Targets add entries to this map with AddPromotedToType(..), clients access
   1936   /// this with getTypeToPromoteTo(..).
   1937   std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
   1938     PromoteToType;
   1939 
   1940   /// Stores the name each libcall.
   1941   const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
   1942 
   1943   /// The ISD::CondCode that should be used to test the result of each of the
   1944   /// comparison libcall against zero.
   1945   ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
   1946 
   1947   /// Stores the CallingConv that should be used for each libcall.
   1948   CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
   1949 
   1950 protected:
   1951   /// Return true if the extension represented by \p I is free.
   1952   /// \pre \p I is a sign, zero, or fp extension and
   1953   ///      is[Z|FP]ExtFree of the related types is not true.
   1954   virtual bool isExtFreeImpl(const Instruction *I) const { return false; }
   1955 
   1956   /// Depth that GatherAllAliases should should continue looking for chain
   1957   /// dependencies when trying to find a more preferrable chain. As an
   1958   /// approximation, this should be more than the number of consecutive stores
   1959   /// expected to be merged.
   1960   unsigned GatherAllAliasesMaxDepth;
   1961 
   1962   /// \brief Specify maximum number of store instructions per memset call.
   1963   ///
   1964   /// When lowering \@llvm.memset this field specifies the maximum number of
   1965   /// store operations that may be substituted for the call to memset. Targets
   1966   /// must set this value based on the cost threshold for that target. Targets
   1967   /// should assume that the memset will be done using as many of the largest
   1968   /// store operations first, followed by smaller ones, if necessary, per
   1969   /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
   1970   /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
   1971   /// store.  This only applies to setting a constant array of a constant size.
   1972   unsigned MaxStoresPerMemset;
   1973 
   1974   /// Maximum number of stores operations that may be substituted for the call
   1975   /// to memset, used for functions with OptSize attribute.
   1976   unsigned MaxStoresPerMemsetOptSize;
   1977 
   1978   /// \brief Specify maximum bytes of store instructions per memcpy call.
   1979   ///
   1980   /// When lowering \@llvm.memcpy this field specifies the maximum number of
   1981   /// store operations that may be substituted for a call to memcpy. Targets
   1982   /// must set this value based on the cost threshold for that target. Targets
   1983   /// should assume that the memcpy will be done using as many of the largest
   1984   /// store operations first, followed by smaller ones, if necessary, per
   1985   /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
   1986   /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
   1987   /// and one 1-byte store. This only applies to copying a constant array of
   1988   /// constant size.
   1989   unsigned MaxStoresPerMemcpy;
   1990 
   1991   /// Maximum number of store operations that may be substituted for a call to
   1992   /// memcpy, used for functions with OptSize attribute.
   1993   unsigned MaxStoresPerMemcpyOptSize;
   1994 
   1995   /// \brief Specify maximum bytes of store instructions per memmove call.
   1996   ///
   1997   /// When lowering \@llvm.memmove this field specifies the maximum number of
   1998   /// store instructions that may be substituted for a call to memmove. Targets
   1999   /// must set this value based on the cost threshold for that target. Targets
   2000   /// should assume that the memmove will be done using as many of the largest
   2001   /// store operations first, followed by smaller ones, if necessary, per
   2002   /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
   2003   /// with 8-bit alignment would result in nine 1-byte stores.  This only
   2004   /// applies to copying a constant array of constant size.
   2005   unsigned MaxStoresPerMemmove;
   2006 
   2007   /// Maximum number of store instructions that may be substituted for a call to
   2008   /// memmove, used for functions with OptSize attribute.
   2009   unsigned MaxStoresPerMemmoveOptSize;
   2010 
   2011   /// Tells the code generator that select is more expensive than a branch if
   2012   /// the branch is usually predicted right.
   2013   bool PredictableSelectIsExpensive;
   2014 
   2015   /// MaskAndBranchFoldingIsLegal - Indicates if the target supports folding
   2016   /// a mask of a single bit, a compare, and a branch into a single instruction.
   2017   bool MaskAndBranchFoldingIsLegal;
   2018 
   2019   /// \see enableExtLdPromotion.
   2020   bool EnableExtLdPromotion;
   2021 
   2022 protected:
   2023   /// Return true if the value types that can be represented by the specified
   2024   /// register class are all legal.
   2025   bool isLegalRC(const TargetRegisterClass *RC) const;
   2026 
   2027   /// Replace/modify any TargetFrameIndex operands with a targte-dependent
   2028   /// sequence of memory operands that is recognized by PrologEpilogInserter.
   2029   MachineBasicBlock *emitPatchPoint(MachineInstr *MI,
   2030                                     MachineBasicBlock *MBB) const;
   2031 };
   2032 
   2033 /// This class defines information used to lower LLVM code to legal SelectionDAG
   2034 /// operators that the target instruction selector can accept natively.
   2035 ///
   2036 /// This class also defines callbacks that targets must implement to lower
   2037 /// target-specific constructs to SelectionDAG operators.
   2038 class TargetLowering : public TargetLoweringBase {
   2039   TargetLowering(const TargetLowering&) = delete;
   2040   void operator=(const TargetLowering&) = delete;
   2041 
   2042 public:
   2043   /// NOTE: The TargetMachine owns TLOF.
   2044   explicit TargetLowering(const TargetMachine &TM);
   2045 
   2046   /// Returns true by value, base pointer and offset pointer and addressing mode
   2047   /// by reference if the node's address can be legally represented as
   2048   /// pre-indexed load / store address.
   2049   virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
   2050                                          SDValue &/*Offset*/,
   2051                                          ISD::MemIndexedMode &/*AM*/,
   2052                                          SelectionDAG &/*DAG*/) const {
   2053     return false;
   2054   }
   2055 
   2056   /// Returns true by value, base pointer and offset pointer and addressing mode
   2057   /// by reference if this node can be combined with a load / store to form a
   2058   /// post-indexed load / store.
   2059   virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
   2060                                           SDValue &/*Base*/,
   2061                                           SDValue &/*Offset*/,
   2062                                           ISD::MemIndexedMode &/*AM*/,
   2063                                           SelectionDAG &/*DAG*/) const {
   2064     return false;
   2065   }
   2066 
   2067   /// Return the entry encoding for a jump table in the current function.  The
   2068   /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
   2069   virtual unsigned getJumpTableEncoding() const;
   2070 
   2071   virtual const MCExpr *
   2072   LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
   2073                             const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
   2074                             MCContext &/*Ctx*/) const {
   2075     llvm_unreachable("Need to implement this hook if target has custom JTIs");
   2076   }
   2077 
   2078   /// Returns relocation base for the given PIC jumptable.
   2079   virtual SDValue getPICJumpTableRelocBase(SDValue Table,
   2080                                            SelectionDAG &DAG) const;
   2081 
   2082   /// This returns the relocation base for the given PIC jumptable, the same as
   2083   /// getPICJumpTableRelocBase, but as an MCExpr.
   2084   virtual const MCExpr *
   2085   getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
   2086                                unsigned JTI, MCContext &Ctx) const;
   2087 
   2088   /// Return true if folding a constant offset with the given GlobalAddress is
   2089   /// legal.  It is frequently not legal in PIC relocation models.
   2090   virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
   2091 
   2092   bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
   2093                             SDValue &Chain) const;
   2094 
   2095   void softenSetCCOperands(SelectionDAG &DAG, EVT VT,
   2096                            SDValue &NewLHS, SDValue &NewRHS,
   2097                            ISD::CondCode &CCCode, SDLoc DL) const;
   2098 
   2099   /// Returns a pair of (return value, chain).
   2100   /// It is an error to pass RTLIB::UNKNOWN_LIBCALL as \p LC.
   2101   std::pair<SDValue, SDValue> makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC,
   2102                                           EVT RetVT, ArrayRef<SDValue> Ops,
   2103                                           bool isSigned, SDLoc dl,
   2104                                           bool doesNotReturn = false,
   2105                                           bool isReturnValueUsed = true) const;
   2106 
   2107   //===--------------------------------------------------------------------===//
   2108   // TargetLowering Optimization Methods
   2109   //
   2110 
   2111   /// A convenience struct that encapsulates a DAG, and two SDValues for
   2112   /// returning information from TargetLowering to its clients that want to
   2113   /// combine.
   2114   struct TargetLoweringOpt {
   2115     SelectionDAG &DAG;
   2116     bool LegalTys;
   2117     bool LegalOps;
   2118     SDValue Old;
   2119     SDValue New;
   2120 
   2121     explicit TargetLoweringOpt(SelectionDAG &InDAG,
   2122                                bool LT, bool LO) :
   2123       DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
   2124 
   2125     bool LegalTypes() const { return LegalTys; }
   2126     bool LegalOperations() const { return LegalOps; }
   2127 
   2128     bool CombineTo(SDValue O, SDValue N) {
   2129       Old = O;
   2130       New = N;
   2131       return true;
   2132     }
   2133 
   2134     /// Check to see if the specified operand of the specified instruction is a
   2135     /// constant integer.  If so, check to see if there are any bits set in the
   2136     /// constant that are not demanded.  If so, shrink the constant and return
   2137     /// true.
   2138     bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
   2139 
   2140     /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.  This
   2141     /// uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
   2142     /// generalized for targets with other types of implicit widening casts.
   2143     bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
   2144                           SDLoc dl);
   2145   };
   2146 
   2147   /// Look at Op.  At this point, we know that only the DemandedMask bits of the
   2148   /// result of Op are ever used downstream.  If we can use this information to
   2149   /// simplify Op, create a new simplified DAG node and return true, returning
   2150   /// the original and new nodes in Old and New.  Otherwise, analyze the
   2151   /// expression and return a mask of KnownOne and KnownZero bits for the
   2152   /// expression (used to simplify the caller).  The KnownZero/One bits may only
   2153   /// be accurate for those bits in the DemandedMask.
   2154   bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
   2155                             APInt &KnownZero, APInt &KnownOne,
   2156                             TargetLoweringOpt &TLO, unsigned Depth = 0) const;
   2157 
   2158   /// Determine which of the bits specified in Mask are known to be either zero
   2159   /// or one and return them in the KnownZero/KnownOne bitsets.
   2160   virtual void computeKnownBitsForTargetNode(const SDValue Op,
   2161                                              APInt &KnownZero,
   2162                                              APInt &KnownOne,
   2163                                              const SelectionDAG &DAG,
   2164                                              unsigned Depth = 0) const;
   2165 
   2166   /// This method can be implemented by targets that want to expose additional
   2167   /// information about sign bits to the DAG Combiner.
   2168   virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
   2169                                                    const SelectionDAG &DAG,
   2170                                                    unsigned Depth = 0) const;
   2171 
   2172   struct DAGCombinerInfo {
   2173     void *DC;  // The DAG Combiner object.
   2174     CombineLevel Level;
   2175     bool CalledByLegalizer;
   2176   public:
   2177     SelectionDAG &DAG;
   2178 
   2179     DAGCombinerInfo(SelectionDAG &dag, CombineLevel level,  bool cl, void *dc)
   2180       : DC(dc), Level(level), CalledByLegalizer(cl), DAG(dag) {}
   2181 
   2182     bool isBeforeLegalize() const { return Level == BeforeLegalizeTypes; }
   2183     bool isBeforeLegalizeOps() const { return Level < AfterLegalizeVectorOps; }
   2184     bool isAfterLegalizeVectorOps() const {
   2185       return Level == AfterLegalizeDAG;
   2186     }
   2187     CombineLevel getDAGCombineLevel() { return Level; }
   2188     bool isCalledByLegalizer() const { return CalledByLegalizer; }
   2189 
   2190     void AddToWorklist(SDNode *N);
   2191     void RemoveFromWorklist(SDNode *N);
   2192     SDValue CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo = true);
   2193     SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
   2194     SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
   2195 
   2196     void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
   2197   };
   2198 
   2199   /// Return if the N is a constant or constant vector equal to the true value
   2200   /// from getBooleanContents().
   2201   bool isConstTrueVal(const SDNode *N) const;
   2202 
   2203   /// Return if the N is a constant or constant vector equal to the false value
   2204   /// from getBooleanContents().
   2205   bool isConstFalseVal(const SDNode *N) const;
   2206 
   2207   /// Try to simplify a setcc built with the specified operands and cc. If it is
   2208   /// unable to simplify it, return a null SDValue.
   2209   SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
   2210                           ISD::CondCode Cond, bool foldBooleans,
   2211                           DAGCombinerInfo &DCI, SDLoc dl) const;
   2212 
   2213   /// Returns true (and the GlobalValue and the offset) if the node is a
   2214   /// GlobalAddress + offset.
   2215   virtual bool
   2216   isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
   2217 
   2218   /// This method will be invoked for all target nodes and for any
   2219   /// target-independent nodes that the target has registered with invoke it
   2220   /// for.
   2221   ///
   2222   /// The semantics are as follows:
   2223   /// Return Value:
   2224   ///   SDValue.Val == 0   - No change was made
   2225   ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
   2226   ///   otherwise          - N should be replaced by the returned Operand.
   2227   ///
   2228   /// In addition, methods provided by DAGCombinerInfo may be used to perform
   2229   /// more complex transformations.
   2230   ///
   2231   virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
   2232 
   2233   /// Return true if it is profitable to move a following shift through this
   2234   //  node, adjusting any immediate operands as necessary to preserve semantics.
   2235   //  This transformation may not be desirable if it disrupts a particularly
   2236   //  auspicious target-specific tree (e.g. bitfield extraction in AArch64).
   2237   //  By default, it returns true.
   2238   virtual bool isDesirableToCommuteWithShift(const SDNode *N /*Op*/) const {
   2239     return true;
   2240   }
   2241 
   2242   /// Return true if the target has native support for the specified value type
   2243   /// and it is 'desirable' to use the type for the given node type. e.g. On x86
   2244   /// i16 is legal, but undesirable since i16 instruction encodings are longer
   2245   /// and some i16 instructions are slow.
   2246   virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
   2247     // By default, assume all legal types are desirable.
   2248     return isTypeLegal(VT);
   2249   }
   2250 
   2251   /// Return true if it is profitable for dag combiner to transform a floating
   2252   /// point op of specified opcode to a equivalent op of an integer
   2253   /// type. e.g. f32 load -> i32 load can be profitable on ARM.
   2254   virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
   2255                                                  EVT /*VT*/) const {
   2256     return false;
   2257   }
   2258 
   2259   /// This method query the target whether it is beneficial for dag combiner to
   2260   /// promote the specified node. If true, it should return the desired
   2261   /// promotion type by reference.
   2262   virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
   2263     return false;
   2264   }
   2265 
   2266   /// Return true if the target supports that a subset of CSRs for the given
   2267   /// machine function is handled explicitly via copies.
   2268   virtual bool supportSplitCSR(MachineFunction *MF) const {
   2269     return false;
   2270   }
   2271 
   2272   /// Perform necessary initialization to handle a subset of CSRs explicitly
   2273   /// via copies. This function is called at the beginning of instruction
   2274   /// selection.
   2275   virtual void initializeSplitCSR(MachineBasicBlock *Entry) const {
   2276     llvm_unreachable("Not Implemented");
   2277   }
   2278 
   2279   /// Insert explicit copies in entry and exit blocks. We copy a subset of
   2280   /// CSRs to virtual registers in the entry block, and copy them back to
   2281   /// physical registers in the exit blocks. This function is called at the end
   2282   /// of instruction selection.
   2283   virtual void insertCopiesSplitCSR(
   2284       MachineBasicBlock *Entry,
   2285       const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
   2286     llvm_unreachable("Not Implemented");
   2287   }
   2288 
   2289   //===--------------------------------------------------------------------===//
   2290   // Lowering methods - These methods must be implemented by targets so that
   2291   // the SelectionDAGBuilder code knows how to lower these.
   2292   //
   2293 
   2294   /// This hook must be implemented to lower the incoming (formal) arguments,
   2295   /// described by the Ins array, into the specified DAG. The implementation
   2296   /// should fill in the InVals array with legal-type argument values, and
   2297   /// return the resulting token chain value.
   2298   ///
   2299   virtual SDValue
   2300     LowerFormalArguments(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
   2301                          bool /*isVarArg*/,
   2302                          const SmallVectorImpl<ISD::InputArg> &/*Ins*/,
   2303                          SDLoc /*dl*/, SelectionDAG &/*DAG*/,
   2304                          SmallVectorImpl<SDValue> &/*InVals*/) const {
   2305     llvm_unreachable("Not Implemented");
   2306   }
   2307 
   2308   struct ArgListEntry {
   2309     SDValue Node;
   2310     Type* Ty;
   2311     bool isSExt     : 1;
   2312     bool isZExt     : 1;
   2313     bool isInReg    : 1;
   2314     bool isSRet     : 1;
   2315     bool isNest     : 1;
   2316     bool isByVal    : 1;
   2317     bool isInAlloca : 1;
   2318     bool isReturned : 1;
   2319     uint16_t Alignment;
   2320 
   2321     ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
   2322       isSRet(false), isNest(false), isByVal(false), isInAlloca(false),
   2323       isReturned(false), Alignment(0) { }
   2324 
   2325     void setAttributes(ImmutableCallSite *CS, unsigned AttrIdx);
   2326   };
   2327   typedef std::vector<ArgListEntry> ArgListTy;
   2328 
   2329   /// This structure contains all information that is necessary for lowering
   2330   /// calls. It is passed to TLI::LowerCallTo when the SelectionDAG builder
   2331   /// needs to lower a call, and targets will see this struct in their LowerCall
   2332   /// implementation.
   2333   struct CallLoweringInfo {
   2334     SDValue Chain;
   2335     Type *RetTy;
   2336     bool RetSExt           : 1;
   2337     bool RetZExt           : 1;
   2338     bool IsVarArg          : 1;
   2339     bool IsInReg           : 1;
   2340     bool DoesNotReturn     : 1;
   2341     bool IsReturnValueUsed : 1;
   2342 
   2343     // IsTailCall should be modified by implementations of
   2344     // TargetLowering::LowerCall that perform tail call conversions.
   2345     bool IsTailCall;
   2346 
   2347     unsigned NumFixedArgs;
   2348     CallingConv::ID CallConv;
   2349     SDValue Callee;
   2350     ArgListTy Args;
   2351     SelectionDAG &DAG;
   2352     SDLoc DL;
   2353     ImmutableCallSite *CS;
   2354     bool IsPatchPoint;
   2355     SmallVector<ISD::OutputArg, 32> Outs;
   2356     SmallVector<SDValue, 32> OutVals;
   2357     SmallVector<ISD::InputArg, 32> Ins;
   2358 
   2359     CallLoweringInfo(SelectionDAG &DAG)
   2360       : RetTy(nullptr), RetSExt(false), RetZExt(false), IsVarArg(false),
   2361         IsInReg(false), DoesNotReturn(false), IsReturnValueUsed(true),
   2362         IsTailCall(false), NumFixedArgs(-1), CallConv(CallingConv::C),
   2363         DAG(DAG), CS(nullptr), IsPatchPoint(false) {}
   2364 
   2365     CallLoweringInfo &setDebugLoc(SDLoc dl) {
   2366       DL = dl;
   2367       return *this;
   2368     }
   2369 
   2370     CallLoweringInfo &setChain(SDValue InChain) {
   2371       Chain = InChain;
   2372       return *this;
   2373     }
   2374 
   2375     CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultType,
   2376                                 SDValue Target, ArgListTy &&ArgsList,
   2377                                 unsigned FixedArgs = -1) {
   2378       RetTy = ResultType;
   2379       Callee = Target;
   2380       CallConv = CC;
   2381       NumFixedArgs =
   2382         (FixedArgs == static_cast<unsigned>(-1) ? Args.size() : FixedArgs);
   2383       Args = std::move(ArgsList);
   2384       return *this;
   2385     }
   2386 
   2387     CallLoweringInfo &setCallee(Type *ResultType, FunctionType *FTy,
   2388                                 SDValue Target, ArgListTy &&ArgsList,
   2389                                 ImmutableCallSite &Call) {
   2390       RetTy = ResultType;
   2391 
   2392       IsInReg = Call.paramHasAttr(0, Attribute::InReg);
   2393       DoesNotReturn = Call.doesNotReturn();
   2394       IsVarArg = FTy->isVarArg();
   2395       IsReturnValueUsed = !Call.getInstruction()->use_empty();
   2396       RetSExt = Call.paramHasAttr(0, Attribute::SExt);
   2397       RetZExt = Call.paramHasAttr(0, Attribute::ZExt);
   2398 
   2399       Callee = Target;
   2400 
   2401       CallConv = Call.getCallingConv();
   2402       NumFixedArgs = FTy->getNumParams();
   2403       Args = std::move(ArgsList);
   2404 
   2405       CS = &Call;
   2406 
   2407       return *this;
   2408     }
   2409 
   2410     CallLoweringInfo &setInRegister(bool Value = true) {
   2411       IsInReg = Value;
   2412       return *this;
   2413     }
   2414 
   2415     CallLoweringInfo &setNoReturn(bool Value = true) {
   2416       DoesNotReturn = Value;
   2417       return *this;
   2418     }
   2419 
   2420     CallLoweringInfo &setVarArg(bool Value = true) {
   2421       IsVarArg = Value;
   2422       return *this;
   2423     }
   2424 
   2425     CallLoweringInfo &setTailCall(bool Value = true) {
   2426       IsTailCall = Value;
   2427       return *this;
   2428     }
   2429 
   2430     CallLoweringInfo &setDiscardResult(bool Value = true) {
   2431       IsReturnValueUsed = !Value;
   2432       return *this;
   2433     }
   2434 
   2435     CallLoweringInfo &setSExtResult(bool Value = true) {
   2436       RetSExt = Value;
   2437       return *this;
   2438     }
   2439 
   2440     CallLoweringInfo &setZExtResult(bool Value = true) {
   2441       RetZExt = Value;
   2442       return *this;
   2443     }
   2444 
   2445     CallLoweringInfo &setIsPatchPoint(bool Value = true) {
   2446       IsPatchPoint = Value;
   2447       return *this;
   2448     }
   2449 
   2450     ArgListTy &getArgs() {
   2451       return Args;
   2452     }
   2453 
   2454   };
   2455 
   2456   // Mark inreg arguments for lib-calls. For normal calls this is done by
   2457   // the frontend ABI code.
   2458   virtual void markInRegArguments(SelectionDAG &DAG,
   2459                  TargetLowering::ArgListTy &Args) const {
   2460     return;
   2461   }
   2462 
   2463   /// This function lowers an abstract call to a function into an actual call.
   2464   /// This returns a pair of operands.  The first element is the return value
   2465   /// for the function (if RetTy is not VoidTy).  The second element is the
   2466   /// outgoing token chain. It calls LowerCall to do the actual lowering.
   2467   std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
   2468 
   2469   /// This hook must be implemented to lower calls into the specified
   2470   /// DAG. The outgoing arguments to the call are described by the Outs array,
   2471   /// and the values to be returned by the call are described by the Ins
   2472   /// array. The implementation should fill in the InVals array with legal-type
   2473   /// return values from the call, and return the resulting token chain value.
   2474   virtual SDValue
   2475     LowerCall(CallLoweringInfo &/*CLI*/,
   2476               SmallVectorImpl<SDValue> &/*InVals*/) const {
   2477     llvm_unreachable("Not Implemented");
   2478   }
   2479 
   2480   /// Target-specific cleanup for formal ByVal parameters.
   2481   virtual void HandleByVal(CCState *, unsigned &, unsigned) const {}
   2482 
   2483   /// This hook should be implemented to check whether the return values
   2484   /// described by the Outs array can fit into the return registers.  If false
   2485   /// is returned, an sret-demotion is performed.
   2486   virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
   2487                               MachineFunction &/*MF*/, bool /*isVarArg*/,
   2488                const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
   2489                LLVMContext &/*Context*/) const
   2490   {
   2491     // Return true by default to get preexisting behavior.
   2492     return true;
   2493   }
   2494 
   2495   /// This hook must be implemented to lower outgoing return values, described
   2496   /// by the Outs array, into the specified DAG. The implementation should
   2497   /// return the resulting token chain value.
   2498   virtual SDValue
   2499     LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
   2500                 bool /*isVarArg*/,
   2501                 const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
   2502                 const SmallVectorImpl<SDValue> &/*OutVals*/,
   2503                 SDLoc /*dl*/, SelectionDAG &/*DAG*/) const {
   2504     llvm_unreachable("Not Implemented");
   2505   }
   2506 
   2507   /// Return true if result of the specified node is used by a return node
   2508   /// only. It also compute and return the input chain for the tail call.
   2509   ///
   2510   /// This is used to determine whether it is possible to codegen a libcall as
   2511   /// tail call at legalization time.
   2512   virtual bool isUsedByReturnOnly(SDNode *, SDValue &/*Chain*/) const {
   2513     return false;
   2514   }
   2515 
   2516   /// Return true if the target may be able emit the call instruction as a tail
   2517   /// call. This is used by optimization passes to determine if it's profitable
   2518   /// to duplicate return instructions to enable tailcall optimization.
   2519   virtual bool mayBeEmittedAsTailCall(CallInst *) const {
   2520     return false;
   2521   }
   2522 
   2523   /// Return the builtin name for the __builtin___clear_cache intrinsic
   2524   /// Default is to invoke the clear cache library call
   2525   virtual const char * getClearCacheBuiltinName() const {
   2526     return "__clear_cache";
   2527   }
   2528 
   2529   /// Return the register ID of the name passed in. Used by named register
   2530   /// global variables extension. There is no target-independent behaviour
   2531   /// so the default action is to bail.
   2532   virtual unsigned getRegisterByName(const char* RegName, EVT VT,
   2533                                      SelectionDAG &DAG) const {
   2534     report_fatal_error("Named registers not implemented for this target");
   2535   }
   2536 
   2537   /// Return the type that should be used to zero or sign extend a
   2538   /// zeroext/signext integer argument or return value.  FIXME: Most C calling
   2539   /// convention requires the return type to be promoted, but this is not true
   2540   /// all the time, e.g. i1 on x86-64. It is also not necessary for non-C
   2541   /// calling conventions. The frontend should handle this and include all of
   2542   /// the necessary information.
   2543   virtual EVT getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
   2544                                        ISD::NodeType /*ExtendKind*/) const {
   2545     EVT MinVT = getRegisterType(Context, MVT::i32);
   2546     return VT.bitsLT(MinVT) ? MinVT : VT;
   2547   }
   2548 
   2549   /// For some targets, an LLVM struct type must be broken down into multiple
   2550   /// simple types, but the calling convention specifies that the entire struct
   2551   /// must be passed in a block of consecutive registers.
   2552   virtual bool
   2553   functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv,
   2554                                             bool isVarArg) const {
   2555     return false;
   2556   }
   2557 
   2558   /// Returns a 0 terminated array of registers that can be safely used as
   2559   /// scratch registers.
   2560   virtual const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const {
   2561     return nullptr;
   2562   }
   2563 
   2564   /// This callback is used to prepare for a volatile or atomic load.
   2565   /// It takes a chain node as input and returns the chain for the load itself.
   2566   ///
   2567   /// Having a callback like this is necessary for targets like SystemZ,
   2568   /// which allows a CPU to reuse the result of a previous load indefinitely,
   2569   /// even if a cache-coherent store is performed by another CPU.  The default
   2570   /// implementation does nothing.
   2571   virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL,
   2572                                               SelectionDAG &DAG) const {
   2573     return Chain;
   2574   }
   2575 
   2576   /// This callback is invoked by the type legalizer to legalize nodes with an
   2577   /// illegal operand type but legal result types.  It replaces the
   2578   /// LowerOperation callback in the type Legalizer.  The reason we can not do
   2579   /// away with LowerOperation entirely is that LegalizeDAG isn't yet ready to
   2580   /// use this callback.
   2581   ///
   2582   /// TODO: Consider merging with ReplaceNodeResults.
   2583   ///
   2584   /// The target places new result values for the node in Results (their number
   2585   /// and types must exactly match those of the original return values of
   2586   /// the node), or leaves Results empty, which indicates that the node is not
   2587   /// to be custom lowered after all.
   2588   /// The default implementation calls LowerOperation.
   2589   virtual void LowerOperationWrapper(SDNode *N,
   2590                                      SmallVectorImpl<SDValue> &Results,
   2591                                      SelectionDAG &DAG) const;
   2592 
   2593   /// This callback is invoked for operations that are unsupported by the
   2594   /// target, which are registered to use 'custom' lowering, and whose defined
   2595   /// values are all legal.  If the target has no operations that require custom
   2596   /// lowering, it need not implement this.  The default implementation of this
   2597   /// aborts.
   2598   virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
   2599 
   2600   /// This callback is invoked when a node result type is illegal for the
   2601   /// target, and the operation was registered to use 'custom' lowering for that
   2602   /// result type.  The target places new result values for the node in Results
   2603   /// (their number and types must exactly match those of the original return
   2604   /// values of the node), or leaves Results empty, which indicates that the
   2605   /// node is not to be custom lowered after all.
   2606   ///
   2607   /// If the target has no operations that require custom lowering, it need not
   2608   /// implement this.  The default implementation aborts.
   2609   virtual void ReplaceNodeResults(SDNode * /*N*/,
   2610                                   SmallVectorImpl<SDValue> &/*Results*/,
   2611                                   SelectionDAG &/*DAG*/) const {
   2612     llvm_unreachable("ReplaceNodeResults not implemented for this target!");
   2613   }
   2614 
   2615   /// This method returns the name of a target specific DAG node.
   2616   virtual const char *getTargetNodeName(unsigned Opcode) const;
   2617 
   2618   /// This method returns a target specific FastISel object, or null if the
   2619   /// target does not support "fast" ISel.
   2620   virtual FastISel *createFastISel(FunctionLoweringInfo &,
   2621                                    const TargetLibraryInfo *) const {
   2622     return nullptr;
   2623   }
   2624 
   2625 
   2626   bool verifyReturnAddressArgumentIsConstant(SDValue Op,
   2627                                              SelectionDAG &DAG) const;
   2628 
   2629   //===--------------------------------------------------------------------===//
   2630   // Inline Asm Support hooks
   2631   //
   2632 
   2633   /// This hook allows the target to expand an inline asm call to be explicit
   2634   /// llvm code if it wants to.  This is useful for turning simple inline asms
   2635   /// into LLVM intrinsics, which gives the compiler more information about the
   2636   /// behavior of the code.
   2637   virtual bool ExpandInlineAsm(CallInst *) const {
   2638     return false;
   2639   }
   2640 
   2641   enum ConstraintType {
   2642     C_Register,            // Constraint represents specific register(s).
   2643     C_RegisterClass,       // Constraint represents any of register(s) in class.
   2644     C_Memory,              // Memory constraint.
   2645     C_Other,               // Something else.
   2646     C_Unknown              // Unsupported constraint.
   2647   };
   2648 
   2649   enum ConstraintWeight {
   2650     // Generic weights.
   2651     CW_Invalid  = -1,     // No match.
   2652     CW_Okay     = 0,      // Acceptable.
   2653     CW_Good     = 1,      // Good weight.
   2654     CW_Better   = 2,      // Better weight.
   2655     CW_Best     = 3,      // Best weight.
   2656 
   2657     // Well-known weights.
   2658     CW_SpecificReg  = CW_Okay,    // Specific register operands.
   2659     CW_Register     = CW_Good,    // Register operands.
   2660     CW_Memory       = CW_Better,  // Memory operands.
   2661     CW_Constant     = CW_Best,    // Constant operand.
   2662     CW_Default      = CW_Okay     // Default or don't know type.
   2663   };
   2664 
   2665   /// This contains information for each constraint that we are lowering.
   2666   struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
   2667     /// This contains the actual string for the code, like "m".  TargetLowering
   2668     /// picks the 'best' code from ConstraintInfo::Codes that most closely
   2669     /// matches the operand.
   2670     std::string ConstraintCode;
   2671 
   2672     /// Information about the constraint code, e.g. Register, RegisterClass,
   2673     /// Memory, Other, Unknown.
   2674     TargetLowering::ConstraintType ConstraintType;
   2675 
   2676     /// If this is the result output operand or a clobber, this is null,
   2677     /// otherwise it is the incoming operand to the CallInst.  This gets
   2678     /// modified as the asm is processed.
   2679     Value *CallOperandVal;
   2680 
   2681     /// The ValueType for the operand value.
   2682     MVT ConstraintVT;
   2683 
   2684     /// Return true of this is an input operand that is a matching constraint
   2685     /// like "4".
   2686     bool isMatchingInputConstraint() const;
   2687 
   2688     /// If this is an input matching constraint, this method returns the output
   2689     /// operand it matches.
   2690     unsigned getMatchedOperand() const;
   2691 
   2692     /// Copy constructor for copying from a ConstraintInfo.
   2693     AsmOperandInfo(InlineAsm::ConstraintInfo Info)
   2694         : InlineAsm::ConstraintInfo(std::move(Info)),
   2695           ConstraintType(TargetLowering::C_Unknown), CallOperandVal(nullptr),
   2696           ConstraintVT(MVT::Other) {}
   2697   };
   2698 
   2699   typedef std::vector<AsmOperandInfo> AsmOperandInfoVector;
   2700 
   2701   /// Split up the constraint string from the inline assembly value into the
   2702   /// specific constraints and their prefixes, and also tie in the associated
   2703   /// operand values.  If this returns an empty vector, and if the constraint
   2704   /// string itself isn't empty, there was an error parsing.
   2705   virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL,
   2706                                                 const TargetRegisterInfo *TRI,
   2707                                                 ImmutableCallSite CS) const;
   2708 
   2709   /// Examine constraint type and operand type and determine a weight value.
   2710   /// The operand object must already have been set up with the operand type.
   2711   virtual ConstraintWeight getMultipleConstraintMatchWeight(
   2712       AsmOperandInfo &info, int maIndex) const;
   2713 
   2714   /// Examine constraint string and operand type and determine a weight value.
   2715   /// The operand object must already have been set up with the operand type.
   2716   virtual ConstraintWeight getSingleConstraintMatchWeight(
   2717       AsmOperandInfo &info, const char *constraint) const;
   2718 
   2719   /// Determines the constraint code and constraint type to use for the specific
   2720   /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
   2721   /// If the actual operand being passed in is available, it can be passed in as
   2722   /// Op, otherwise an empty SDValue can be passed.
   2723   virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
   2724                                       SDValue Op,
   2725                                       SelectionDAG *DAG = nullptr) const;
   2726 
   2727   /// Given a constraint, return the type of constraint it is for this target.
   2728   virtual ConstraintType getConstraintType(StringRef Constraint) const;
   2729 
   2730   /// Given a physical register constraint (e.g.  {edx}), return the register
   2731   /// number and the register class for the register.
   2732   ///
   2733   /// Given a register class constraint, like 'r', if this corresponds directly
   2734   /// to an LLVM register class, return a register of 0 and the register class
   2735   /// pointer.
   2736   ///
   2737   /// This should only be used for C_Register constraints.  On error, this
   2738   /// returns a register number of 0 and a null register class pointer.
   2739   virtual std::pair<unsigned, const TargetRegisterClass *>
   2740   getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
   2741                                StringRef Constraint, MVT VT) const;
   2742 
   2743   virtual unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const {
   2744     if (ConstraintCode == "i")
   2745       return InlineAsm::Constraint_i;
   2746     else if (ConstraintCode == "m")
   2747       return InlineAsm::Constraint_m;
   2748     return InlineAsm::Constraint_Unknown;
   2749   }
   2750 
   2751   /// Try to replace an X constraint, which matches anything, with another that
   2752   /// has more specific requirements based on the type of the corresponding
   2753   /// operand.  This returns null if there is no replacement to make.
   2754   virtual const char *LowerXConstraint(EVT ConstraintVT) const;
   2755 
   2756   /// Lower the specified operand into the Ops vector.  If it is invalid, don't
   2757   /// add anything to Ops.
   2758   virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
   2759                                             std::vector<SDValue> &Ops,
   2760                                             SelectionDAG &DAG) const;
   2761 
   2762   //===--------------------------------------------------------------------===//
   2763   // Div utility functions
   2764   //
   2765   SDValue BuildSDIV(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
   2766                     bool IsAfterLegalization,
   2767                     std::vector<SDNode *> *Created) const;
   2768   SDValue BuildUDIV(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
   2769                     bool IsAfterLegalization,
   2770                     std::vector<SDNode *> *Created) const;
   2771 
   2772   /// Targets may override this function to provide custom SDIV lowering for
   2773   /// power-of-2 denominators.  If the target returns an empty SDValue, LLVM
   2774   /// assumes SDIV is expensive and replaces it with a series of other integer
   2775   /// operations.
   2776   virtual SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor,
   2777                                 SelectionDAG &DAG,
   2778                                 std::vector<SDNode *> *Created) const;
   2779 
   2780   /// Indicate whether this target prefers to combine FDIVs with the same
   2781   /// divisor. If the transform should never be done, return zero. If the
   2782   /// transform should be done, return the minimum number of divisor uses
   2783   /// that must exist.
   2784   virtual unsigned combineRepeatedFPDivisors() const {
   2785     return 0;
   2786   }
   2787 
   2788   /// Hooks for building estimates in place of slower divisions and square
   2789   /// roots.
   2790 
   2791   /// Return a reciprocal square root estimate value for the input operand.
   2792   /// The RefinementSteps output is the number of Newton-Raphson refinement
   2793   /// iterations required to generate a sufficient (though not necessarily
   2794   /// IEEE-754 compliant) estimate for the value type.
   2795   /// The boolean UseOneConstNR output is used to select a Newton-Raphson
   2796   /// algorithm implementation that uses one constant or two constants.
   2797   /// A target may choose to implement its own refinement within this function.
   2798   /// If that's true, then return '0' as the number of RefinementSteps to avoid
   2799   /// any further refinement of the estimate.
   2800   /// An empty SDValue return means no estimate sequence can be created.
   2801   virtual SDValue getRsqrtEstimate(SDValue Operand, DAGCombinerInfo &DCI,
   2802                                    unsigned &RefinementSteps,
   2803                                    bool &UseOneConstNR) const {
   2804     return SDValue();
   2805   }
   2806 
   2807   /// Return a reciprocal estimate value for the input operand.
   2808   /// The RefinementSteps output is the number of Newton-Raphson refinement
   2809   /// iterations required to generate a sufficient (though not necessarily
   2810   /// IEEE-754 compliant) estimate for the value type.
   2811   /// A target may choose to implement its own refinement within this function.
   2812   /// If that's true, then return '0' as the number of RefinementSteps to avoid
   2813   /// any further refinement of the estimate.
   2814   /// An empty SDValue return means no estimate sequence can be created.
   2815   virtual SDValue getRecipEstimate(SDValue Operand, DAGCombinerInfo &DCI,
   2816                                    unsigned &RefinementSteps) const {
   2817     return SDValue();
   2818   }
   2819 
   2820   //===--------------------------------------------------------------------===//
   2821   // Legalization utility functions
   2822   //
   2823 
   2824   /// Expand a MUL into two nodes.  One that computes the high bits of
   2825   /// the result and one that computes the low bits.
   2826   /// \param HiLoVT The value type to use for the Lo and Hi nodes.
   2827   /// \param LL Low bits of the LHS of the MUL.  You can use this parameter
   2828   ///        if you want to control how low bits are extracted from the LHS.
   2829   /// \param LH High bits of the LHS of the MUL.  See LL for meaning.
   2830   /// \param RL Low bits of the RHS of the MUL.  See LL for meaning
   2831   /// \param RH High bits of the RHS of the MUL.  See LL for meaning.
   2832   /// \returns true if the node has been expanded. false if it has not
   2833   bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
   2834                  SelectionDAG &DAG, SDValue LL = SDValue(),
   2835                  SDValue LH = SDValue(), SDValue RL = SDValue(),
   2836                  SDValue RH = SDValue()) const;
   2837 
   2838   /// Expand float(f32) to SINT(i64) conversion
   2839   /// \param N Node to expand
   2840   /// \param Result output after conversion
   2841   /// \returns True, if the expansion was successful, false otherwise
   2842   bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
   2843 
   2844   //===--------------------------------------------------------------------===//
   2845   // Instruction Emitting Hooks
   2846   //
   2847 
   2848   /// This method should be implemented by targets that mark instructions with
   2849   /// the 'usesCustomInserter' flag.  These instructions are special in various
   2850   /// ways, which require special support to insert.  The specified MachineInstr
   2851   /// is created but not inserted into any basic blocks, and this method is
   2852   /// called to expand it into a sequence of instructions, potentially also
   2853   /// creating new basic blocks and control flow.
   2854   /// As long as the returned basic block is different (i.e., we created a new
   2855   /// one), the custom inserter is free to modify the rest of \p MBB.
   2856   virtual MachineBasicBlock *
   2857     EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
   2858 
   2859   /// This method should be implemented by targets that mark instructions with
   2860   /// the 'hasPostISelHook' flag. These instructions must be adjusted after
   2861   /// instruction selection by target hooks.  e.g. To fill in optional defs for
   2862   /// ARM 's' setting instructions.
   2863   virtual void
   2864   AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const;
   2865 
   2866   /// If this function returns true, SelectionDAGBuilder emits a
   2867   /// LOAD_STACK_GUARD node when it is lowering Intrinsic::stackprotector.
   2868   virtual bool useLoadStackGuardNode() const {
   2869     return false;
   2870   }
   2871 
   2872   /// Lower TLS global address SDNode for target independent emulated TLS model.
   2873   virtual SDValue LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
   2874                                           SelectionDAG &DAG) const;
   2875 };
   2876 
   2877 /// Given an LLVM IR type and return type attributes, compute the return value
   2878 /// EVTs and flags, and optionally also the offsets, if the return value is
   2879 /// being lowered to memory.
   2880 void GetReturnInfo(Type *ReturnType, AttributeSet attr,
   2881                    SmallVectorImpl<ISD::OutputArg> &Outs,
   2882                    const TargetLowering &TLI, const DataLayout &DL);
   2883 
   2884 } // end llvm namespace
   2885 
   2886 #endif
   2887