1 //===----- LegalizeIntegerTypes.cpp - Legalization of integer types -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements integer type expansion and promotion for LegalizeTypes. 11 // Promotion is the act of changing a computation in an illegal type into a 12 // computation in a larger type. For example, implementing i8 arithmetic in an 13 // i32 register (often needed on powerpc). 14 // Expansion is the act of changing a computation in an illegal type into a 15 // computation in two identical registers of a smaller type. For example, 16 // implementing i64 arithmetic in two i32 registers (often needed on 32-bit 17 // targets). 18 // 19 //===----------------------------------------------------------------------===// 20 21 #include "LegalizeTypes.h" 22 #include "llvm/IR/DerivedTypes.h" 23 #include "llvm/Support/ErrorHandling.h" 24 #include "llvm/Support/raw_ostream.h" 25 using namespace llvm; 26 27 #define DEBUG_TYPE "legalize-types" 28 29 //===----------------------------------------------------------------------===// 30 // Integer Result Promotion 31 //===----------------------------------------------------------------------===// 32 33 /// PromoteIntegerResult - This method is called when a result of a node is 34 /// found to be in need of promotion to a larger type. At this point, the node 35 /// may also have invalid operands or may have other results that need 36 /// expansion, we just know that (at least) one result needs promotion. 37 void DAGTypeLegalizer::PromoteIntegerResult(SDNode *N, unsigned ResNo) { 38 DEBUG(dbgs() << "Promote integer result: "; N->dump(&DAG); dbgs() << "\n"); 39 SDValue Res = SDValue(); 40 41 // See if the target wants to custom expand this node. 42 if (CustomLowerNode(N, N->getValueType(ResNo), true)) 43 return; 44 45 switch (N->getOpcode()) { 46 default: 47 #ifndef NDEBUG 48 dbgs() << "PromoteIntegerResult #" << ResNo << ": "; 49 N->dump(&DAG); dbgs() << "\n"; 50 #endif 51 llvm_unreachable("Do not know how to promote this operator!"); 52 case ISD::MERGE_VALUES:Res = PromoteIntRes_MERGE_VALUES(N, ResNo); break; 53 case ISD::AssertSext: Res = PromoteIntRes_AssertSext(N); break; 54 case ISD::AssertZext: Res = PromoteIntRes_AssertZext(N); break; 55 case ISD::BITCAST: Res = PromoteIntRes_BITCAST(N); break; 56 case ISD::BITREVERSE: Res = PromoteIntRes_BITREVERSE(N); break; 57 case ISD::BSWAP: Res = PromoteIntRes_BSWAP(N); break; 58 case ISD::BUILD_PAIR: Res = PromoteIntRes_BUILD_PAIR(N); break; 59 case ISD::Constant: Res = PromoteIntRes_Constant(N); break; 60 case ISD::CONVERT_RNDSAT: 61 Res = PromoteIntRes_CONVERT_RNDSAT(N); break; 62 case ISD::CTLZ_ZERO_UNDEF: 63 case ISD::CTLZ: Res = PromoteIntRes_CTLZ(N); break; 64 case ISD::CTPOP: Res = PromoteIntRes_CTPOP(N); break; 65 case ISD::CTTZ_ZERO_UNDEF: 66 case ISD::CTTZ: Res = PromoteIntRes_CTTZ(N); break; 67 case ISD::EXTRACT_VECTOR_ELT: 68 Res = PromoteIntRes_EXTRACT_VECTOR_ELT(N); break; 69 case ISD::LOAD: Res = PromoteIntRes_LOAD(cast<LoadSDNode>(N)); break; 70 case ISD::MLOAD: Res = PromoteIntRes_MLOAD(cast<MaskedLoadSDNode>(N)); 71 break; 72 case ISD::MGATHER: Res = PromoteIntRes_MGATHER(cast<MaskedGatherSDNode>(N)); 73 break; 74 case ISD::SELECT: Res = PromoteIntRes_SELECT(N); break; 75 case ISD::VSELECT: Res = PromoteIntRes_VSELECT(N); break; 76 case ISD::SELECT_CC: Res = PromoteIntRes_SELECT_CC(N); break; 77 case ISD::SETCC: Res = PromoteIntRes_SETCC(N); break; 78 case ISD::SMIN: 79 case ISD::SMAX: Res = PromoteIntRes_SExtIntBinOp(N); break; 80 case ISD::UMIN: 81 case ISD::UMAX: Res = PromoteIntRes_ZExtIntBinOp(N); break; 82 83 case ISD::SHL: Res = PromoteIntRes_SHL(N); break; 84 case ISD::SIGN_EXTEND_INREG: 85 Res = PromoteIntRes_SIGN_EXTEND_INREG(N); break; 86 case ISD::SRA: Res = PromoteIntRes_SRA(N); break; 87 case ISD::SRL: Res = PromoteIntRes_SRL(N); break; 88 case ISD::TRUNCATE: Res = PromoteIntRes_TRUNCATE(N); break; 89 case ISD::UNDEF: Res = PromoteIntRes_UNDEF(N); break; 90 case ISD::VAARG: Res = PromoteIntRes_VAARG(N); break; 91 92 case ISD::EXTRACT_SUBVECTOR: 93 Res = PromoteIntRes_EXTRACT_SUBVECTOR(N); break; 94 case ISD::VECTOR_SHUFFLE: 95 Res = PromoteIntRes_VECTOR_SHUFFLE(N); break; 96 case ISD::INSERT_VECTOR_ELT: 97 Res = PromoteIntRes_INSERT_VECTOR_ELT(N); break; 98 case ISD::BUILD_VECTOR: 99 Res = PromoteIntRes_BUILD_VECTOR(N); break; 100 case ISD::SCALAR_TO_VECTOR: 101 Res = PromoteIntRes_SCALAR_TO_VECTOR(N); break; 102 case ISD::CONCAT_VECTORS: 103 Res = PromoteIntRes_CONCAT_VECTORS(N); break; 104 105 case ISD::SIGN_EXTEND: 106 case ISD::ZERO_EXTEND: 107 case ISD::ANY_EXTEND: Res = PromoteIntRes_INT_EXTEND(N); break; 108 109 case ISD::FP_TO_SINT: 110 case ISD::FP_TO_UINT: Res = PromoteIntRes_FP_TO_XINT(N); break; 111 112 case ISD::FP_TO_FP16: Res = PromoteIntRes_FP_TO_FP16(N); break; 113 114 case ISD::AND: 115 case ISD::OR: 116 case ISD::XOR: 117 case ISD::ADD: 118 case ISD::SUB: 119 case ISD::MUL: Res = PromoteIntRes_SimpleIntBinOp(N); break; 120 121 case ISD::SDIV: 122 case ISD::SREM: Res = PromoteIntRes_SExtIntBinOp(N); break; 123 124 case ISD::UDIV: 125 case ISD::UREM: Res = PromoteIntRes_ZExtIntBinOp(N); break; 126 127 case ISD::SADDO: 128 case ISD::SSUBO: Res = PromoteIntRes_SADDSUBO(N, ResNo); break; 129 case ISD::UADDO: 130 case ISD::USUBO: Res = PromoteIntRes_UADDSUBO(N, ResNo); break; 131 case ISD::SMULO: 132 case ISD::UMULO: Res = PromoteIntRes_XMULO(N, ResNo); break; 133 134 case ISD::ATOMIC_LOAD: 135 Res = PromoteIntRes_Atomic0(cast<AtomicSDNode>(N)); break; 136 137 case ISD::ATOMIC_LOAD_ADD: 138 case ISD::ATOMIC_LOAD_SUB: 139 case ISD::ATOMIC_LOAD_AND: 140 case ISD::ATOMIC_LOAD_OR: 141 case ISD::ATOMIC_LOAD_XOR: 142 case ISD::ATOMIC_LOAD_NAND: 143 case ISD::ATOMIC_LOAD_MIN: 144 case ISD::ATOMIC_LOAD_MAX: 145 case ISD::ATOMIC_LOAD_UMIN: 146 case ISD::ATOMIC_LOAD_UMAX: 147 case ISD::ATOMIC_SWAP: 148 Res = PromoteIntRes_Atomic1(cast<AtomicSDNode>(N)); break; 149 150 case ISD::ATOMIC_CMP_SWAP: 151 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 152 Res = PromoteIntRes_AtomicCmpSwap(cast<AtomicSDNode>(N), ResNo); 153 break; 154 } 155 156 // If the result is null then the sub-method took care of registering it. 157 if (Res.getNode()) 158 SetPromotedInteger(SDValue(N, ResNo), Res); 159 } 160 161 SDValue DAGTypeLegalizer::PromoteIntRes_MERGE_VALUES(SDNode *N, 162 unsigned ResNo) { 163 SDValue Op = DisintegrateMERGE_VALUES(N, ResNo); 164 return GetPromotedInteger(Op); 165 } 166 167 SDValue DAGTypeLegalizer::PromoteIntRes_AssertSext(SDNode *N) { 168 // Sign-extend the new bits, and continue the assertion. 169 SDValue Op = SExtPromotedInteger(N->getOperand(0)); 170 return DAG.getNode(ISD::AssertSext, SDLoc(N), 171 Op.getValueType(), Op, N->getOperand(1)); 172 } 173 174 SDValue DAGTypeLegalizer::PromoteIntRes_AssertZext(SDNode *N) { 175 // Zero the new bits, and continue the assertion. 176 SDValue Op = ZExtPromotedInteger(N->getOperand(0)); 177 return DAG.getNode(ISD::AssertZext, SDLoc(N), 178 Op.getValueType(), Op, N->getOperand(1)); 179 } 180 181 SDValue DAGTypeLegalizer::PromoteIntRes_Atomic0(AtomicSDNode *N) { 182 EVT ResVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); 183 SDValue Res = DAG.getAtomic(N->getOpcode(), SDLoc(N), 184 N->getMemoryVT(), ResVT, 185 N->getChain(), N->getBasePtr(), 186 N->getMemOperand(), N->getOrdering(), 187 N->getSynchScope()); 188 // Legalize the chain result - switch anything that used the old chain to 189 // use the new one. 190 ReplaceValueWith(SDValue(N, 1), Res.getValue(1)); 191 return Res; 192 } 193 194 SDValue DAGTypeLegalizer::PromoteIntRes_Atomic1(AtomicSDNode *N) { 195 SDValue Op2 = GetPromotedInteger(N->getOperand(2)); 196 SDValue Res = DAG.getAtomic(N->getOpcode(), SDLoc(N), 197 N->getMemoryVT(), 198 N->getChain(), N->getBasePtr(), 199 Op2, N->getMemOperand(), N->getOrdering(), 200 N->getSynchScope()); 201 // Legalize the chain result - switch anything that used the old chain to 202 // use the new one. 203 ReplaceValueWith(SDValue(N, 1), Res.getValue(1)); 204 return Res; 205 } 206 207 SDValue DAGTypeLegalizer::PromoteIntRes_AtomicCmpSwap(AtomicSDNode *N, 208 unsigned ResNo) { 209 if (ResNo == 1) { 210 assert(N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 211 EVT SVT = getSetCCResultType(N->getOperand(2).getValueType()); 212 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(1)); 213 214 // Only use the result of getSetCCResultType if it is legal, 215 // otherwise just use the promoted result type (NVT). 216 if (!TLI.isTypeLegal(SVT)) 217 SVT = NVT; 218 219 SDVTList VTs = DAG.getVTList(N->getValueType(0), SVT, MVT::Other); 220 SDValue Res = DAG.getAtomicCmpSwap( 221 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, SDLoc(N), N->getMemoryVT(), VTs, 222 N->getChain(), N->getBasePtr(), N->getOperand(2), N->getOperand(3), 223 N->getMemOperand(), N->getSuccessOrdering(), N->getFailureOrdering(), 224 N->getSynchScope()); 225 ReplaceValueWith(SDValue(N, 0), Res.getValue(0)); 226 ReplaceValueWith(SDValue(N, 2), Res.getValue(2)); 227 return Res.getValue(1); 228 } 229 230 SDValue Op2 = GetPromotedInteger(N->getOperand(2)); 231 SDValue Op3 = GetPromotedInteger(N->getOperand(3)); 232 SDVTList VTs = 233 DAG.getVTList(Op2.getValueType(), N->getValueType(1), MVT::Other); 234 SDValue Res = DAG.getAtomicCmpSwap( 235 N->getOpcode(), SDLoc(N), N->getMemoryVT(), VTs, N->getChain(), 236 N->getBasePtr(), Op2, Op3, N->getMemOperand(), N->getSuccessOrdering(), 237 N->getFailureOrdering(), N->getSynchScope()); 238 // Update the use to N with the newly created Res. 239 for (unsigned i = 1, NumResults = N->getNumValues(); i < NumResults; ++i) 240 ReplaceValueWith(SDValue(N, i), Res.getValue(i)); 241 return Res; 242 } 243 244 SDValue DAGTypeLegalizer::PromoteIntRes_BITCAST(SDNode *N) { 245 SDValue InOp = N->getOperand(0); 246 EVT InVT = InOp.getValueType(); 247 EVT NInVT = TLI.getTypeToTransformTo(*DAG.getContext(), InVT); 248 EVT OutVT = N->getValueType(0); 249 EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT); 250 SDLoc dl(N); 251 252 switch (getTypeAction(InVT)) { 253 case TargetLowering::TypeLegal: 254 break; 255 case TargetLowering::TypePromoteInteger: 256 if (NOutVT.bitsEq(NInVT) && !NOutVT.isVector() && !NInVT.isVector()) 257 // The input promotes to the same size. Convert the promoted value. 258 return DAG.getNode(ISD::BITCAST, dl, NOutVT, GetPromotedInteger(InOp)); 259 break; 260 case TargetLowering::TypeSoftenFloat: 261 // Promote the integer operand by hand. 262 return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT, GetSoftenedFloat(InOp)); 263 case TargetLowering::TypePromoteFloat: { 264 // Convert the promoted float by hand. 265 SDValue PromotedOp = GetPromotedFloat(InOp); 266 return DAG.getNode(ISD::FP_TO_FP16, dl, NOutVT, PromotedOp); 267 break; 268 } 269 case TargetLowering::TypeExpandInteger: 270 case TargetLowering::TypeExpandFloat: 271 break; 272 case TargetLowering::TypeScalarizeVector: 273 // Convert the element to an integer and promote it by hand. 274 if (!NOutVT.isVector()) 275 return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT, 276 BitConvertToInteger(GetScalarizedVector(InOp))); 277 break; 278 case TargetLowering::TypeSplitVector: { 279 // For example, i32 = BITCAST v2i16 on alpha. Convert the split 280 // pieces of the input into integers and reassemble in the final type. 281 SDValue Lo, Hi; 282 GetSplitVector(N->getOperand(0), Lo, Hi); 283 Lo = BitConvertToInteger(Lo); 284 Hi = BitConvertToInteger(Hi); 285 286 if (DAG.getDataLayout().isBigEndian()) 287 std::swap(Lo, Hi); 288 289 InOp = DAG.getNode(ISD::ANY_EXTEND, dl, 290 EVT::getIntegerVT(*DAG.getContext(), 291 NOutVT.getSizeInBits()), 292 JoinIntegers(Lo, Hi)); 293 return DAG.getNode(ISD::BITCAST, dl, NOutVT, InOp); 294 } 295 case TargetLowering::TypeWidenVector: 296 // The input is widened to the same size. Convert to the widened value. 297 // Make sure that the outgoing value is not a vector, because this would 298 // make us bitcast between two vectors which are legalized in different ways. 299 if (NOutVT.bitsEq(NInVT) && !NOutVT.isVector()) 300 return DAG.getNode(ISD::BITCAST, dl, NOutVT, GetWidenedVector(InOp)); 301 } 302 303 return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT, 304 CreateStackStoreLoad(InOp, OutVT)); 305 } 306 307 SDValue DAGTypeLegalizer::PromoteIntRes_BSWAP(SDNode *N) { 308 SDValue Op = GetPromotedInteger(N->getOperand(0)); 309 EVT OVT = N->getValueType(0); 310 EVT NVT = Op.getValueType(); 311 SDLoc dl(N); 312 313 unsigned DiffBits = NVT.getScalarSizeInBits() - OVT.getScalarSizeInBits(); 314 return DAG.getNode( 315 ISD::SRL, dl, NVT, DAG.getNode(ISD::BSWAP, dl, NVT, Op), 316 DAG.getConstant(DiffBits, dl, 317 TLI.getShiftAmountTy(NVT, DAG.getDataLayout()))); 318 } 319 320 SDValue DAGTypeLegalizer::PromoteIntRes_BITREVERSE(SDNode *N) { 321 SDValue Op = GetPromotedInteger(N->getOperand(0)); 322 EVT OVT = N->getValueType(0); 323 EVT NVT = Op.getValueType(); 324 SDLoc dl(N); 325 326 unsigned DiffBits = NVT.getScalarSizeInBits() - OVT.getScalarSizeInBits(); 327 return DAG.getNode( 328 ISD::SRL, dl, NVT, DAG.getNode(ISD::BITREVERSE, dl, NVT, Op), 329 DAG.getConstant(DiffBits, dl, 330 TLI.getShiftAmountTy(NVT, DAG.getDataLayout()))); 331 } 332 333 SDValue DAGTypeLegalizer::PromoteIntRes_BUILD_PAIR(SDNode *N) { 334 // The pair element type may be legal, or may not promote to the same type as 335 // the result, for example i14 = BUILD_PAIR (i7, i7). Handle all cases. 336 return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), 337 TLI.getTypeToTransformTo(*DAG.getContext(), 338 N->getValueType(0)), JoinIntegers(N->getOperand(0), 339 N->getOperand(1))); 340 } 341 342 SDValue DAGTypeLegalizer::PromoteIntRes_Constant(SDNode *N) { 343 EVT VT = N->getValueType(0); 344 // FIXME there is no actual debug info here 345 SDLoc dl(N); 346 // Zero extend things like i1, sign extend everything else. It shouldn't 347 // matter in theory which one we pick, but this tends to give better code? 348 unsigned Opc = VT.isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 349 SDValue Result = DAG.getNode(Opc, dl, 350 TLI.getTypeToTransformTo(*DAG.getContext(), VT), 351 SDValue(N, 0)); 352 assert(isa<ConstantSDNode>(Result) && "Didn't constant fold ext?"); 353 return Result; 354 } 355 356 SDValue DAGTypeLegalizer::PromoteIntRes_CONVERT_RNDSAT(SDNode *N) { 357 ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode(); 358 assert ((CvtCode == ISD::CVT_SS || CvtCode == ISD::CVT_SU || 359 CvtCode == ISD::CVT_US || CvtCode == ISD::CVT_UU || 360 CvtCode == ISD::CVT_SF || CvtCode == ISD::CVT_UF) && 361 "can only promote integers"); 362 EVT OutVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); 363 return DAG.getConvertRndSat(OutVT, SDLoc(N), N->getOperand(0), 364 N->getOperand(1), N->getOperand(2), 365 N->getOperand(3), N->getOperand(4), CvtCode); 366 } 367 368 SDValue DAGTypeLegalizer::PromoteIntRes_CTLZ(SDNode *N) { 369 // Zero extend to the promoted type and do the count there. 370 SDValue Op = ZExtPromotedInteger(N->getOperand(0)); 371 SDLoc dl(N); 372 EVT OVT = N->getValueType(0); 373 EVT NVT = Op.getValueType(); 374 Op = DAG.getNode(N->getOpcode(), dl, NVT, Op); 375 // Subtract off the extra leading bits in the bigger type. 376 return DAG.getNode( 377 ISD::SUB, dl, NVT, Op, 378 DAG.getConstant(NVT.getScalarSizeInBits() - OVT.getScalarSizeInBits(), dl, 379 NVT)); 380 } 381 382 SDValue DAGTypeLegalizer::PromoteIntRes_CTPOP(SDNode *N) { 383 // Zero extend to the promoted type and do the count there. 384 SDValue Op = ZExtPromotedInteger(N->getOperand(0)); 385 return DAG.getNode(ISD::CTPOP, SDLoc(N), Op.getValueType(), Op); 386 } 387 388 SDValue DAGTypeLegalizer::PromoteIntRes_CTTZ(SDNode *N) { 389 SDValue Op = GetPromotedInteger(N->getOperand(0)); 390 EVT OVT = N->getValueType(0); 391 EVT NVT = Op.getValueType(); 392 SDLoc dl(N); 393 if (N->getOpcode() == ISD::CTTZ) { 394 // The count is the same in the promoted type except if the original 395 // value was zero. This can be handled by setting the bit just off 396 // the top of the original type. 397 auto TopBit = APInt::getOneBitSet(NVT.getScalarSizeInBits(), 398 OVT.getScalarSizeInBits()); 399 Op = DAG.getNode(ISD::OR, dl, NVT, Op, DAG.getConstant(TopBit, dl, NVT)); 400 } 401 return DAG.getNode(N->getOpcode(), dl, NVT, Op); 402 } 403 404 SDValue DAGTypeLegalizer::PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N) { 405 SDLoc dl(N); 406 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); 407 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NVT, N->getOperand(0), 408 N->getOperand(1)); 409 } 410 411 SDValue DAGTypeLegalizer::PromoteIntRes_FP_TO_XINT(SDNode *N) { 412 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); 413 unsigned NewOpc = N->getOpcode(); 414 SDLoc dl(N); 415 416 // If we're promoting a UINT to a larger size and the larger FP_TO_UINT is 417 // not Legal, check to see if we can use FP_TO_SINT instead. (If both UINT 418 // and SINT conversions are Custom, there is no way to tell which is 419 // preferable. We choose SINT because that's the right thing on PPC.) 420 if (N->getOpcode() == ISD::FP_TO_UINT && 421 !TLI.isOperationLegal(ISD::FP_TO_UINT, NVT) && 422 TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT)) 423 NewOpc = ISD::FP_TO_SINT; 424 425 SDValue Res = DAG.getNode(NewOpc, dl, NVT, N->getOperand(0)); 426 427 // Assert that the converted value fits in the original type. If it doesn't 428 // (eg: because the value being converted is too big), then the result of the 429 // original operation was undefined anyway, so the assert is still correct. 430 return DAG.getNode(N->getOpcode() == ISD::FP_TO_UINT ? 431 ISD::AssertZext : ISD::AssertSext, dl, NVT, Res, 432 DAG.getValueType(N->getValueType(0).getScalarType())); 433 } 434 435 SDValue DAGTypeLegalizer::PromoteIntRes_FP_TO_FP16(SDNode *N) { 436 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); 437 SDLoc dl(N); 438 439 return DAG.getNode(N->getOpcode(), dl, NVT, N->getOperand(0)); 440 } 441 442 SDValue DAGTypeLegalizer::PromoteIntRes_INT_EXTEND(SDNode *N) { 443 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); 444 SDLoc dl(N); 445 446 if (getTypeAction(N->getOperand(0).getValueType()) 447 == TargetLowering::TypePromoteInteger) { 448 SDValue Res = GetPromotedInteger(N->getOperand(0)); 449 assert(Res.getValueType().bitsLE(NVT) && "Extension doesn't make sense!"); 450 451 // If the result and operand types are the same after promotion, simplify 452 // to an in-register extension. 453 if (NVT == Res.getValueType()) { 454 // The high bits are not guaranteed to be anything. Insert an extend. 455 if (N->getOpcode() == ISD::SIGN_EXTEND) 456 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Res, 457 DAG.getValueType(N->getOperand(0).getValueType())); 458 if (N->getOpcode() == ISD::ZERO_EXTEND) 459 return DAG.getZeroExtendInReg(Res, dl, 460 N->getOperand(0).getValueType().getScalarType()); 461 assert(N->getOpcode() == ISD::ANY_EXTEND && "Unknown integer extension!"); 462 return Res; 463 } 464 } 465 466 // Otherwise, just extend the original operand all the way to the larger type. 467 return DAG.getNode(N->getOpcode(), dl, NVT, N->getOperand(0)); 468 } 469 470 SDValue DAGTypeLegalizer::PromoteIntRes_LOAD(LoadSDNode *N) { 471 assert(ISD::isUNINDEXEDLoad(N) && "Indexed load during type legalization!"); 472 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); 473 ISD::LoadExtType ExtType = 474 ISD::isNON_EXTLoad(N) ? ISD::EXTLOAD : N->getExtensionType(); 475 SDLoc dl(N); 476 SDValue Res = DAG.getExtLoad(ExtType, dl, NVT, N->getChain(), N->getBasePtr(), 477 N->getMemoryVT(), N->getMemOperand()); 478 479 // Legalize the chain result - switch anything that used the old chain to 480 // use the new one. 481 ReplaceValueWith(SDValue(N, 1), Res.getValue(1)); 482 return Res; 483 } 484 485 SDValue DAGTypeLegalizer::PromoteIntRes_MLOAD(MaskedLoadSDNode *N) { 486 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); 487 SDValue ExtSrc0 = GetPromotedInteger(N->getSrc0()); 488 489 SDLoc dl(N); 490 SDValue Res = DAG.getMaskedLoad(NVT, dl, N->getChain(), N->getBasePtr(), 491 N->getMask(), ExtSrc0, N->getMemoryVT(), 492 N->getMemOperand(), ISD::SEXTLOAD); 493 // Legalize the chain result - switch anything that used the old chain to 494 // use the new one. 495 ReplaceValueWith(SDValue(N, 1), Res.getValue(1)); 496 return Res; 497 } 498 499 SDValue DAGTypeLegalizer::PromoteIntRes_MGATHER(MaskedGatherSDNode *N) { 500 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); 501 SDValue ExtSrc0 = GetPromotedInteger(N->getValue()); 502 assert(NVT == ExtSrc0.getValueType() && 503 "Gather result type and the passThru agrument type should be the same"); 504 505 SDLoc dl(N); 506 SDValue Ops[] = {N->getChain(), ExtSrc0, N->getMask(), N->getBasePtr(), 507 N->getIndex()}; 508 SDValue Res = DAG.getMaskedGather(DAG.getVTList(NVT, MVT::Other), 509 N->getMemoryVT(), dl, Ops, 510 N->getMemOperand()); 511 // Legalize the chain result - switch anything that used the old chain to 512 // use the new one. 513 ReplaceValueWith(SDValue(N, 1), Res.getValue(1)); 514 return Res; 515 } 516 517 /// Promote the overflow flag of an overflowing arithmetic node. 518 SDValue DAGTypeLegalizer::PromoteIntRes_Overflow(SDNode *N) { 519 // Simply change the return type of the boolean result. 520 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(1)); 521 EVT ValueVTs[] = { N->getValueType(0), NVT }; 522 SDValue Ops[] = { N->getOperand(0), N->getOperand(1) }; 523 SDValue Res = DAG.getNode(N->getOpcode(), SDLoc(N), 524 DAG.getVTList(ValueVTs), Ops); 525 526 // Modified the sum result - switch anything that used the old sum to use 527 // the new one. 528 ReplaceValueWith(SDValue(N, 0), Res); 529 530 return SDValue(Res.getNode(), 1); 531 } 532 533 SDValue DAGTypeLegalizer::PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo) { 534 if (ResNo == 1) 535 return PromoteIntRes_Overflow(N); 536 537 // The operation overflowed iff the result in the larger type is not the 538 // sign extension of its truncation to the original type. 539 SDValue LHS = SExtPromotedInteger(N->getOperand(0)); 540 SDValue RHS = SExtPromotedInteger(N->getOperand(1)); 541 EVT OVT = N->getOperand(0).getValueType(); 542 EVT NVT = LHS.getValueType(); 543 SDLoc dl(N); 544 545 // Do the arithmetic in the larger type. 546 unsigned Opcode = N->getOpcode() == ISD::SADDO ? ISD::ADD : ISD::SUB; 547 SDValue Res = DAG.getNode(Opcode, dl, NVT, LHS, RHS); 548 549 // Calculate the overflow flag: sign extend the arithmetic result from 550 // the original type. 551 SDValue Ofl = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Res, 552 DAG.getValueType(OVT)); 553 // Overflowed if and only if this is not equal to Res. 554 Ofl = DAG.getSetCC(dl, N->getValueType(1), Ofl, Res, ISD::SETNE); 555 556 // Use the calculated overflow everywhere. 557 ReplaceValueWith(SDValue(N, 1), Ofl); 558 559 return Res; 560 } 561 562 SDValue DAGTypeLegalizer::PromoteIntRes_SELECT(SDNode *N) { 563 SDValue LHS = GetPromotedInteger(N->getOperand(1)); 564 SDValue RHS = GetPromotedInteger(N->getOperand(2)); 565 return DAG.getSelect(SDLoc(N), 566 LHS.getValueType(), N->getOperand(0), LHS, RHS); 567 } 568 569 SDValue DAGTypeLegalizer::PromoteIntRes_VSELECT(SDNode *N) { 570 SDValue Mask = N->getOperand(0); 571 EVT OpTy = N->getOperand(1).getValueType(); 572 573 // Promote all the way up to the canonical SetCC type. 574 Mask = PromoteTargetBoolean(Mask, OpTy); 575 SDValue LHS = GetPromotedInteger(N->getOperand(1)); 576 SDValue RHS = GetPromotedInteger(N->getOperand(2)); 577 return DAG.getNode(ISD::VSELECT, SDLoc(N), 578 LHS.getValueType(), Mask, LHS, RHS); 579 } 580 581 SDValue DAGTypeLegalizer::PromoteIntRes_SELECT_CC(SDNode *N) { 582 SDValue LHS = GetPromotedInteger(N->getOperand(2)); 583 SDValue RHS = GetPromotedInteger(N->getOperand(3)); 584 return DAG.getNode(ISD::SELECT_CC, SDLoc(N), 585 LHS.getValueType(), N->getOperand(0), 586 N->getOperand(1), LHS, RHS, N->getOperand(4)); 587 } 588 589 SDValue DAGTypeLegalizer::PromoteIntRes_SETCC(SDNode *N) { 590 EVT SVT = getSetCCResultType(N->getOperand(0).getValueType()); 591 592 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); 593 594 // Only use the result of getSetCCResultType if it is legal, 595 // otherwise just use the promoted result type (NVT). 596 if (!TLI.isTypeLegal(SVT)) 597 SVT = NVT; 598 599 SDLoc dl(N); 600 assert(SVT.isVector() == N->getOperand(0).getValueType().isVector() && 601 "Vector compare must return a vector result!"); 602 603 SDValue LHS = N->getOperand(0); 604 SDValue RHS = N->getOperand(1); 605 if (LHS.getValueType() != RHS.getValueType()) { 606 if (getTypeAction(LHS.getValueType()) == TargetLowering::TypePromoteInteger && 607 !LHS.getValueType().isVector()) 608 LHS = GetPromotedInteger(LHS); 609 if (getTypeAction(RHS.getValueType()) == TargetLowering::TypePromoteInteger && 610 !RHS.getValueType().isVector()) 611 RHS = GetPromotedInteger(RHS); 612 } 613 614 // Get the SETCC result using the canonical SETCC type. 615 SDValue SetCC = DAG.getNode(N->getOpcode(), dl, SVT, LHS, RHS, 616 N->getOperand(2)); 617 618 assert(NVT.bitsLE(SVT) && "Integer type overpromoted?"); 619 // Convert to the expected type. 620 return DAG.getNode(ISD::TRUNCATE, dl, NVT, SetCC); 621 } 622 623 SDValue DAGTypeLegalizer::PromoteIntRes_SHL(SDNode *N) { 624 SDValue LHS = N->getOperand(0); 625 SDValue RHS = N->getOperand(1); 626 if (getTypeAction(LHS.getValueType()) == TargetLowering::TypePromoteInteger) 627 LHS = GetPromotedInteger(LHS); 628 if (getTypeAction(RHS.getValueType()) == TargetLowering::TypePromoteInteger) 629 RHS = ZExtPromotedInteger(RHS); 630 return DAG.getNode(ISD::SHL, SDLoc(N), LHS.getValueType(), LHS, RHS); 631 } 632 633 SDValue DAGTypeLegalizer::PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N) { 634 SDValue Op = GetPromotedInteger(N->getOperand(0)); 635 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), 636 Op.getValueType(), Op, N->getOperand(1)); 637 } 638 639 SDValue DAGTypeLegalizer::PromoteIntRes_SimpleIntBinOp(SDNode *N) { 640 // The input may have strange things in the top bits of the registers, but 641 // these operations don't care. They may have weird bits going out, but 642 // that too is okay if they are integer operations. 643 SDValue LHS = GetPromotedInteger(N->getOperand(0)); 644 SDValue RHS = GetPromotedInteger(N->getOperand(1)); 645 return DAG.getNode(N->getOpcode(), SDLoc(N), 646 LHS.getValueType(), LHS, RHS); 647 } 648 649 SDValue DAGTypeLegalizer::PromoteIntRes_SExtIntBinOp(SDNode *N) { 650 // Sign extend the input. 651 SDValue LHS = SExtPromotedInteger(N->getOperand(0)); 652 SDValue RHS = SExtPromotedInteger(N->getOperand(1)); 653 return DAG.getNode(N->getOpcode(), SDLoc(N), 654 LHS.getValueType(), LHS, RHS); 655 } 656 657 SDValue DAGTypeLegalizer::PromoteIntRes_ZExtIntBinOp(SDNode *N) { 658 // Zero extend the input. 659 SDValue LHS = ZExtPromotedInteger(N->getOperand(0)); 660 SDValue RHS = ZExtPromotedInteger(N->getOperand(1)); 661 return DAG.getNode(N->getOpcode(), SDLoc(N), 662 LHS.getValueType(), LHS, RHS); 663 } 664 665 SDValue DAGTypeLegalizer::PromoteIntRes_SRA(SDNode *N) { 666 SDValue LHS = N->getOperand(0); 667 SDValue RHS = N->getOperand(1); 668 // The input value must be properly sign extended. 669 if (getTypeAction(LHS.getValueType()) == TargetLowering::TypePromoteInteger) 670 LHS = SExtPromotedInteger(LHS); 671 if (getTypeAction(RHS.getValueType()) == TargetLowering::TypePromoteInteger) 672 RHS = ZExtPromotedInteger(RHS); 673 return DAG.getNode(ISD::SRA, SDLoc(N), LHS.getValueType(), LHS, RHS); 674 } 675 676 SDValue DAGTypeLegalizer::PromoteIntRes_SRL(SDNode *N) { 677 SDValue LHS = N->getOperand(0); 678 SDValue RHS = N->getOperand(1); 679 // The input value must be properly zero extended. 680 if (getTypeAction(LHS.getValueType()) == TargetLowering::TypePromoteInteger) 681 LHS = ZExtPromotedInteger(LHS); 682 if (getTypeAction(RHS.getValueType()) == TargetLowering::TypePromoteInteger) 683 RHS = ZExtPromotedInteger(RHS); 684 return DAG.getNode(ISD::SRL, SDLoc(N), LHS.getValueType(), LHS, RHS); 685 } 686 687 SDValue DAGTypeLegalizer::PromoteIntRes_TRUNCATE(SDNode *N) { 688 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); 689 SDValue Res; 690 SDValue InOp = N->getOperand(0); 691 SDLoc dl(N); 692 693 switch (getTypeAction(InOp.getValueType())) { 694 default: llvm_unreachable("Unknown type action!"); 695 case TargetLowering::TypeLegal: 696 case TargetLowering::TypeExpandInteger: 697 Res = InOp; 698 break; 699 case TargetLowering::TypePromoteInteger: 700 Res = GetPromotedInteger(InOp); 701 break; 702 case TargetLowering::TypeSplitVector: 703 EVT InVT = InOp.getValueType(); 704 assert(InVT.isVector() && "Cannot split scalar types"); 705 unsigned NumElts = InVT.getVectorNumElements(); 706 assert(NumElts == NVT.getVectorNumElements() && 707 "Dst and Src must have the same number of elements"); 708 assert(isPowerOf2_32(NumElts) && 709 "Promoted vector type must be a power of two"); 710 711 SDValue EOp1, EOp2; 712 GetSplitVector(InOp, EOp1, EOp2); 713 714 EVT HalfNVT = EVT::getVectorVT(*DAG.getContext(), NVT.getScalarType(), 715 NumElts/2); 716 EOp1 = DAG.getNode(ISD::TRUNCATE, dl, HalfNVT, EOp1); 717 EOp2 = DAG.getNode(ISD::TRUNCATE, dl, HalfNVT, EOp2); 718 719 return DAG.getNode(ISD::CONCAT_VECTORS, dl, NVT, EOp1, EOp2); 720 } 721 722 // Truncate to NVT instead of VT 723 return DAG.getNode(ISD::TRUNCATE, dl, NVT, Res); 724 } 725 726 SDValue DAGTypeLegalizer::PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo) { 727 if (ResNo == 1) 728 return PromoteIntRes_Overflow(N); 729 730 // The operation overflowed iff the result in the larger type is not the 731 // zero extension of its truncation to the original type. 732 SDValue LHS = ZExtPromotedInteger(N->getOperand(0)); 733 SDValue RHS = ZExtPromotedInteger(N->getOperand(1)); 734 EVT OVT = N->getOperand(0).getValueType(); 735 EVT NVT = LHS.getValueType(); 736 SDLoc dl(N); 737 738 // Do the arithmetic in the larger type. 739 unsigned Opcode = N->getOpcode() == ISD::UADDO ? ISD::ADD : ISD::SUB; 740 SDValue Res = DAG.getNode(Opcode, dl, NVT, LHS, RHS); 741 742 // Calculate the overflow flag: zero extend the arithmetic result from 743 // the original type. 744 SDValue Ofl = DAG.getZeroExtendInReg(Res, dl, OVT); 745 // Overflowed if and only if this is not equal to Res. 746 Ofl = DAG.getSetCC(dl, N->getValueType(1), Ofl, Res, ISD::SETNE); 747 748 // Use the calculated overflow everywhere. 749 ReplaceValueWith(SDValue(N, 1), Ofl); 750 751 return Res; 752 } 753 754 SDValue DAGTypeLegalizer::PromoteIntRes_XMULO(SDNode *N, unsigned ResNo) { 755 // Promote the overflow bit trivially. 756 if (ResNo == 1) 757 return PromoteIntRes_Overflow(N); 758 759 SDValue LHS = N->getOperand(0), RHS = N->getOperand(1); 760 SDLoc DL(N); 761 EVT SmallVT = LHS.getValueType(); 762 763 // To determine if the result overflowed in a larger type, we extend the 764 // input to the larger type, do the multiply (checking if it overflows), 765 // then also check the high bits of the result to see if overflow happened 766 // there. 767 if (N->getOpcode() == ISD::SMULO) { 768 LHS = SExtPromotedInteger(LHS); 769 RHS = SExtPromotedInteger(RHS); 770 } else { 771 LHS = ZExtPromotedInteger(LHS); 772 RHS = ZExtPromotedInteger(RHS); 773 } 774 SDVTList VTs = DAG.getVTList(LHS.getValueType(), N->getValueType(1)); 775 SDValue Mul = DAG.getNode(N->getOpcode(), DL, VTs, LHS, RHS); 776 777 // Overflow occurred if it occurred in the larger type, or if the high part 778 // of the result does not zero/sign-extend the low part. Check this second 779 // possibility first. 780 SDValue Overflow; 781 if (N->getOpcode() == ISD::UMULO) { 782 // Unsigned overflow occurred if the high part is non-zero. 783 SDValue Hi = DAG.getNode(ISD::SRL, DL, Mul.getValueType(), Mul, 784 DAG.getIntPtrConstant(SmallVT.getSizeInBits(), 785 DL)); 786 Overflow = DAG.getSetCC(DL, N->getValueType(1), Hi, 787 DAG.getConstant(0, DL, Hi.getValueType()), 788 ISD::SETNE); 789 } else { 790 // Signed overflow occurred if the high part does not sign extend the low. 791 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Mul.getValueType(), 792 Mul, DAG.getValueType(SmallVT)); 793 Overflow = DAG.getSetCC(DL, N->getValueType(1), SExt, Mul, ISD::SETNE); 794 } 795 796 // The only other way for overflow to occur is if the multiplication in the 797 // larger type itself overflowed. 798 Overflow = DAG.getNode(ISD::OR, DL, N->getValueType(1), Overflow, 799 SDValue(Mul.getNode(), 1)); 800 801 // Use the calculated overflow everywhere. 802 ReplaceValueWith(SDValue(N, 1), Overflow); 803 return Mul; 804 } 805 806 SDValue DAGTypeLegalizer::PromoteIntRes_UNDEF(SDNode *N) { 807 return DAG.getUNDEF(TLI.getTypeToTransformTo(*DAG.getContext(), 808 N->getValueType(0))); 809 } 810 811 SDValue DAGTypeLegalizer::PromoteIntRes_VAARG(SDNode *N) { 812 SDValue Chain = N->getOperand(0); // Get the chain. 813 SDValue Ptr = N->getOperand(1); // Get the pointer. 814 EVT VT = N->getValueType(0); 815 SDLoc dl(N); 816 817 MVT RegVT = TLI.getRegisterType(*DAG.getContext(), VT); 818 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), VT); 819 // The argument is passed as NumRegs registers of type RegVT. 820 821 SmallVector<SDValue, 8> Parts(NumRegs); 822 for (unsigned i = 0; i < NumRegs; ++i) { 823 Parts[i] = DAG.getVAArg(RegVT, dl, Chain, Ptr, N->getOperand(2), 824 N->getConstantOperandVal(3)); 825 Chain = Parts[i].getValue(1); 826 } 827 828 // Handle endianness of the load. 829 if (DAG.getDataLayout().isBigEndian()) 830 std::reverse(Parts.begin(), Parts.end()); 831 832 // Assemble the parts in the promoted type. 833 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); 834 SDValue Res = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Parts[0]); 835 for (unsigned i = 1; i < NumRegs; ++i) { 836 SDValue Part = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Parts[i]); 837 // Shift it to the right position and "or" it in. 838 Part = DAG.getNode(ISD::SHL, dl, NVT, Part, 839 DAG.getConstant(i * RegVT.getSizeInBits(), dl, 840 TLI.getPointerTy(DAG.getDataLayout()))); 841 Res = DAG.getNode(ISD::OR, dl, NVT, Res, Part); 842 } 843 844 // Modified the chain result - switch anything that used the old chain to 845 // use the new one. 846 ReplaceValueWith(SDValue(N, 1), Chain); 847 848 return Res; 849 } 850 851 //===----------------------------------------------------------------------===// 852 // Integer Operand Promotion 853 //===----------------------------------------------------------------------===// 854 855 /// PromoteIntegerOperand - This method is called when the specified operand of 856 /// the specified node is found to need promotion. At this point, all of the 857 /// result types of the node are known to be legal, but other operands of the 858 /// node may need promotion or expansion as well as the specified one. 859 bool DAGTypeLegalizer::PromoteIntegerOperand(SDNode *N, unsigned OpNo) { 860 DEBUG(dbgs() << "Promote integer operand: "; N->dump(&DAG); dbgs() << "\n"); 861 SDValue Res = SDValue(); 862 863 if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false)) 864 return false; 865 866 switch (N->getOpcode()) { 867 default: 868 #ifndef NDEBUG 869 dbgs() << "PromoteIntegerOperand Op #" << OpNo << ": "; 870 N->dump(&DAG); dbgs() << "\n"; 871 #endif 872 llvm_unreachable("Do not know how to promote this operator's operand!"); 873 874 case ISD::ANY_EXTEND: Res = PromoteIntOp_ANY_EXTEND(N); break; 875 case ISD::ATOMIC_STORE: 876 Res = PromoteIntOp_ATOMIC_STORE(cast<AtomicSDNode>(N)); 877 break; 878 case ISD::BITCAST: Res = PromoteIntOp_BITCAST(N); break; 879 case ISD::BR_CC: Res = PromoteIntOp_BR_CC(N, OpNo); break; 880 case ISD::BRCOND: Res = PromoteIntOp_BRCOND(N, OpNo); break; 881 case ISD::BUILD_PAIR: Res = PromoteIntOp_BUILD_PAIR(N); break; 882 case ISD::BUILD_VECTOR: Res = PromoteIntOp_BUILD_VECTOR(N); break; 883 case ISD::CONCAT_VECTORS: Res = PromoteIntOp_CONCAT_VECTORS(N); break; 884 case ISD::EXTRACT_VECTOR_ELT: Res = PromoteIntOp_EXTRACT_VECTOR_ELT(N); break; 885 case ISD::CONVERT_RNDSAT: 886 Res = PromoteIntOp_CONVERT_RNDSAT(N); break; 887 case ISD::INSERT_VECTOR_ELT: 888 Res = PromoteIntOp_INSERT_VECTOR_ELT(N, OpNo);break; 889 case ISD::SCALAR_TO_VECTOR: 890 Res = PromoteIntOp_SCALAR_TO_VECTOR(N); break; 891 case ISD::VSELECT: 892 case ISD::SELECT: Res = PromoteIntOp_SELECT(N, OpNo); break; 893 case ISD::SELECT_CC: Res = PromoteIntOp_SELECT_CC(N, OpNo); break; 894 case ISD::SETCC: Res = PromoteIntOp_SETCC(N, OpNo); break; 895 case ISD::SIGN_EXTEND: Res = PromoteIntOp_SIGN_EXTEND(N); break; 896 case ISD::SINT_TO_FP: Res = PromoteIntOp_SINT_TO_FP(N); break; 897 case ISD::STORE: Res = PromoteIntOp_STORE(cast<StoreSDNode>(N), 898 OpNo); break; 899 case ISD::MSTORE: Res = PromoteIntOp_MSTORE(cast<MaskedStoreSDNode>(N), 900 OpNo); break; 901 case ISD::MLOAD: Res = PromoteIntOp_MLOAD(cast<MaskedLoadSDNode>(N), 902 OpNo); break; 903 case ISD::MGATHER: Res = PromoteIntOp_MGATHER(cast<MaskedGatherSDNode>(N), 904 OpNo); break; 905 case ISD::MSCATTER: Res = PromoteIntOp_MSCATTER(cast<MaskedScatterSDNode>(N), 906 OpNo); break; 907 case ISD::TRUNCATE: Res = PromoteIntOp_TRUNCATE(N); break; 908 case ISD::FP16_TO_FP: 909 case ISD::UINT_TO_FP: Res = PromoteIntOp_UINT_TO_FP(N); break; 910 case ISD::ZERO_EXTEND: Res = PromoteIntOp_ZERO_EXTEND(N); break; 911 case ISD::EXTRACT_SUBVECTOR: Res = PromoteIntOp_EXTRACT_SUBVECTOR(N); break; 912 913 case ISD::SHL: 914 case ISD::SRA: 915 case ISD::SRL: 916 case ISD::ROTL: 917 case ISD::ROTR: Res = PromoteIntOp_Shift(N); break; 918 } 919 920 // If the result is null, the sub-method took care of registering results etc. 921 if (!Res.getNode()) return false; 922 923 // If the result is N, the sub-method updated N in place. Tell the legalizer 924 // core about this. 925 if (Res.getNode() == N) 926 return true; 927 928 assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 && 929 "Invalid operand expansion"); 930 931 ReplaceValueWith(SDValue(N, 0), Res); 932 return false; 933 } 934 935 /// PromoteSetCCOperands - Promote the operands of a comparison. This code is 936 /// shared among BR_CC, SELECT_CC, and SETCC handlers. 937 void DAGTypeLegalizer::PromoteSetCCOperands(SDValue &NewLHS,SDValue &NewRHS, 938 ISD::CondCode CCCode) { 939 // We have to insert explicit sign or zero extends. Note that we could 940 // insert sign extends for ALL conditions, but zero extend is cheaper on 941 // many machines (an AND instead of two shifts), so prefer it. 942 switch (CCCode) { 943 default: llvm_unreachable("Unknown integer comparison!"); 944 case ISD::SETEQ: 945 case ISD::SETNE: { 946 SDValue OpL = GetPromotedInteger(NewLHS); 947 SDValue OpR = GetPromotedInteger(NewRHS); 948 949 // We would prefer to promote the comparison operand with sign extension, 950 // if we find the operand is actually to truncate an AssertSext. With this 951 // optimization, we can avoid inserting real truncate instruction, which 952 // is redudant eventually. 953 if (OpL->getOpcode() == ISD::AssertSext && 954 cast<VTSDNode>(OpL->getOperand(1))->getVT() == NewLHS.getValueType() && 955 OpR->getOpcode() == ISD::AssertSext && 956 cast<VTSDNode>(OpR->getOperand(1))->getVT() == NewRHS.getValueType()) { 957 NewLHS = OpL; 958 NewRHS = OpR; 959 } else { 960 NewLHS = ZExtPromotedInteger(NewLHS); 961 NewRHS = ZExtPromotedInteger(NewRHS); 962 } 963 break; 964 } 965 case ISD::SETUGE: 966 case ISD::SETUGT: 967 case ISD::SETULE: 968 case ISD::SETULT: 969 // ALL of these operations will work if we either sign or zero extend 970 // the operands (including the unsigned comparisons!). Zero extend is 971 // usually a simpler/cheaper operation, so prefer it. 972 NewLHS = ZExtPromotedInteger(NewLHS); 973 NewRHS = ZExtPromotedInteger(NewRHS); 974 break; 975 case ISD::SETGE: 976 case ISD::SETGT: 977 case ISD::SETLT: 978 case ISD::SETLE: 979 NewLHS = SExtPromotedInteger(NewLHS); 980 NewRHS = SExtPromotedInteger(NewRHS); 981 break; 982 } 983 } 984 985 SDValue DAGTypeLegalizer::PromoteIntOp_ANY_EXTEND(SDNode *N) { 986 SDValue Op = GetPromotedInteger(N->getOperand(0)); 987 return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), N->getValueType(0), Op); 988 } 989 990 SDValue DAGTypeLegalizer::PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N) { 991 SDValue Op2 = GetPromotedInteger(N->getOperand(2)); 992 return DAG.getAtomic(N->getOpcode(), SDLoc(N), N->getMemoryVT(), 993 N->getChain(), N->getBasePtr(), Op2, N->getMemOperand(), 994 N->getOrdering(), N->getSynchScope()); 995 } 996 997 SDValue DAGTypeLegalizer::PromoteIntOp_BITCAST(SDNode *N) { 998 // This should only occur in unusual situations like bitcasting to an 999 // x86_fp80, so just turn it into a store+load 1000 return CreateStackStoreLoad(N->getOperand(0), N->getValueType(0)); 1001 } 1002 1003 SDValue DAGTypeLegalizer::PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo) { 1004 assert(OpNo == 2 && "Don't know how to promote this operand!"); 1005 1006 SDValue LHS = N->getOperand(2); 1007 SDValue RHS = N->getOperand(3); 1008 PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(1))->get()); 1009 1010 // The chain (Op#0), CC (#1) and basic block destination (Op#4) are always 1011 // legal types. 1012 return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), 1013 N->getOperand(1), LHS, RHS, N->getOperand(4)), 1014 0); 1015 } 1016 1017 SDValue DAGTypeLegalizer::PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo) { 1018 assert(OpNo == 1 && "only know how to promote condition"); 1019 1020 // Promote all the way up to the canonical SetCC type. 1021 SDValue Cond = PromoteTargetBoolean(N->getOperand(1), MVT::Other); 1022 1023 // The chain (Op#0) and basic block destination (Op#2) are always legal types. 1024 return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), Cond, 1025 N->getOperand(2)), 0); 1026 } 1027 1028 SDValue DAGTypeLegalizer::PromoteIntOp_BUILD_PAIR(SDNode *N) { 1029 // Since the result type is legal, the operands must promote to it. 1030 EVT OVT = N->getOperand(0).getValueType(); 1031 SDValue Lo = ZExtPromotedInteger(N->getOperand(0)); 1032 SDValue Hi = GetPromotedInteger(N->getOperand(1)); 1033 assert(Lo.getValueType() == N->getValueType(0) && "Operand over promoted?"); 1034 SDLoc dl(N); 1035 1036 Hi = DAG.getNode(ISD::SHL, dl, N->getValueType(0), Hi, 1037 DAG.getConstant(OVT.getSizeInBits(), dl, 1038 TLI.getPointerTy(DAG.getDataLayout()))); 1039 return DAG.getNode(ISD::OR, dl, N->getValueType(0), Lo, Hi); 1040 } 1041 1042 SDValue DAGTypeLegalizer::PromoteIntOp_BUILD_VECTOR(SDNode *N) { 1043 // The vector type is legal but the element type is not. This implies 1044 // that the vector is a power-of-two in length and that the element 1045 // type does not have a strange size (eg: it is not i1). 1046 EVT VecVT = N->getValueType(0); 1047 unsigned NumElts = VecVT.getVectorNumElements(); 1048 assert(!((NumElts & 1) && (!TLI.isTypeLegal(VecVT))) && 1049 "Legal vector of one illegal element?"); 1050 1051 // Promote the inserted value. The type does not need to match the 1052 // vector element type. Check that any extra bits introduced will be 1053 // truncated away. 1054 assert(N->getOperand(0).getValueType().getSizeInBits() >= 1055 N->getValueType(0).getVectorElementType().getSizeInBits() && 1056 "Type of inserted value narrower than vector element type!"); 1057 1058 SmallVector<SDValue, 16> NewOps; 1059 for (unsigned i = 0; i < NumElts; ++i) 1060 NewOps.push_back(GetPromotedInteger(N->getOperand(i))); 1061 1062 return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0); 1063 } 1064 1065 SDValue DAGTypeLegalizer::PromoteIntOp_CONVERT_RNDSAT(SDNode *N) { 1066 ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode(); 1067 assert ((CvtCode == ISD::CVT_SS || CvtCode == ISD::CVT_SU || 1068 CvtCode == ISD::CVT_US || CvtCode == ISD::CVT_UU || 1069 CvtCode == ISD::CVT_FS || CvtCode == ISD::CVT_FU) && 1070 "can only promote integer arguments"); 1071 SDValue InOp = GetPromotedInteger(N->getOperand(0)); 1072 return DAG.getConvertRndSat(N->getValueType(0), SDLoc(N), InOp, 1073 N->getOperand(1), N->getOperand(2), 1074 N->getOperand(3), N->getOperand(4), CvtCode); 1075 } 1076 1077 SDValue DAGTypeLegalizer::PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, 1078 unsigned OpNo) { 1079 if (OpNo == 1) { 1080 // Promote the inserted value. This is valid because the type does not 1081 // have to match the vector element type. 1082 1083 // Check that any extra bits introduced will be truncated away. 1084 assert(N->getOperand(1).getValueType().getSizeInBits() >= 1085 N->getValueType(0).getVectorElementType().getSizeInBits() && 1086 "Type of inserted value narrower than vector element type!"); 1087 return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), 1088 GetPromotedInteger(N->getOperand(1)), 1089 N->getOperand(2)), 1090 0); 1091 } 1092 1093 assert(OpNo == 2 && "Different operand and result vector types?"); 1094 1095 // Promote the index. 1096 SDValue Idx = DAG.getZExtOrTrunc(N->getOperand(2), SDLoc(N), 1097 TLI.getVectorIdxTy(DAG.getDataLayout())); 1098 return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), 1099 N->getOperand(1), Idx), 0); 1100 } 1101 1102 SDValue DAGTypeLegalizer::PromoteIntOp_SCALAR_TO_VECTOR(SDNode *N) { 1103 // Integer SCALAR_TO_VECTOR operands are implicitly truncated, so just promote 1104 // the operand in place. 1105 return SDValue(DAG.UpdateNodeOperands(N, 1106 GetPromotedInteger(N->getOperand(0))), 0); 1107 } 1108 1109 SDValue DAGTypeLegalizer::PromoteIntOp_SELECT(SDNode *N, unsigned OpNo) { 1110 assert(OpNo == 0 && "Only know how to promote the condition!"); 1111 SDValue Cond = N->getOperand(0); 1112 EVT OpTy = N->getOperand(1).getValueType(); 1113 1114 // Promote all the way up to the canonical SetCC type. 1115 EVT OpVT = N->getOpcode() == ISD::SELECT ? OpTy.getScalarType() : OpTy; 1116 Cond = PromoteTargetBoolean(Cond, OpVT); 1117 1118 return SDValue(DAG.UpdateNodeOperands(N, Cond, N->getOperand(1), 1119 N->getOperand(2)), 0); 1120 } 1121 1122 SDValue DAGTypeLegalizer::PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo) { 1123 assert(OpNo == 0 && "Don't know how to promote this operand!"); 1124 1125 SDValue LHS = N->getOperand(0); 1126 SDValue RHS = N->getOperand(1); 1127 PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(4))->get()); 1128 1129 // The CC (#4) and the possible return values (#2 and #3) have legal types. 1130 return SDValue(DAG.UpdateNodeOperands(N, LHS, RHS, N->getOperand(2), 1131 N->getOperand(3), N->getOperand(4)), 0); 1132 } 1133 1134 SDValue DAGTypeLegalizer::PromoteIntOp_SETCC(SDNode *N, unsigned OpNo) { 1135 assert(OpNo == 0 && "Don't know how to promote this operand!"); 1136 1137 SDValue LHS = N->getOperand(0); 1138 SDValue RHS = N->getOperand(1); 1139 PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(2))->get()); 1140 1141 // The CC (#2) is always legal. 1142 return SDValue(DAG.UpdateNodeOperands(N, LHS, RHS, N->getOperand(2)), 0); 1143 } 1144 1145 SDValue DAGTypeLegalizer::PromoteIntOp_Shift(SDNode *N) { 1146 return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), 1147 ZExtPromotedInteger(N->getOperand(1))), 0); 1148 } 1149 1150 SDValue DAGTypeLegalizer::PromoteIntOp_SIGN_EXTEND(SDNode *N) { 1151 SDValue Op = GetPromotedInteger(N->getOperand(0)); 1152 SDLoc dl(N); 1153 Op = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Op); 1154 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(), 1155 Op, DAG.getValueType(N->getOperand(0).getValueType())); 1156 } 1157 1158 SDValue DAGTypeLegalizer::PromoteIntOp_SINT_TO_FP(SDNode *N) { 1159 return SDValue(DAG.UpdateNodeOperands(N, 1160 SExtPromotedInteger(N->getOperand(0))), 0); 1161 } 1162 1163 SDValue DAGTypeLegalizer::PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo){ 1164 assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!"); 1165 SDValue Ch = N->getChain(), Ptr = N->getBasePtr(); 1166 SDLoc dl(N); 1167 1168 SDValue Val = GetPromotedInteger(N->getValue()); // Get promoted value. 1169 1170 // Truncate the value and store the result. 1171 return DAG.getTruncStore(Ch, dl, Val, Ptr, 1172 N->getMemoryVT(), N->getMemOperand()); 1173 } 1174 1175 SDValue DAGTypeLegalizer::PromoteIntOp_MSTORE(MaskedStoreSDNode *N, 1176 unsigned OpNo) { 1177 1178 SDValue DataOp = N->getValue(); 1179 EVT DataVT = DataOp.getValueType(); 1180 SDValue Mask = N->getMask(); 1181 SDLoc dl(N); 1182 1183 bool TruncateStore = false; 1184 if (OpNo == 2) { 1185 // Mask comes before the data operand. If the data operand is legal, we just 1186 // promote the mask. 1187 // When the data operand has illegal type, we should legalize the data 1188 // operand first. The mask will be promoted/splitted/widened according to 1189 // the data operand type. 1190 if (TLI.isTypeLegal(DataVT)) 1191 Mask = PromoteTargetBoolean(Mask, DataVT); 1192 else { 1193 if (getTypeAction(DataVT) == TargetLowering::TypePromoteInteger) 1194 return PromoteIntOp_MSTORE(N, 3); 1195 1196 else if (getTypeAction(DataVT) == TargetLowering::TypeWidenVector) 1197 return WidenVecOp_MSTORE(N, 3); 1198 1199 else { 1200 assert (getTypeAction(DataVT) == TargetLowering::TypeSplitVector); 1201 return SplitVecOp_MSTORE(N, 3); 1202 } 1203 } 1204 } else { // Data operand 1205 assert(OpNo == 3 && "Unexpected operand for promotion"); 1206 DataOp = GetPromotedInteger(DataOp); 1207 Mask = PromoteTargetBoolean(Mask, DataOp.getValueType()); 1208 TruncateStore = true; 1209 } 1210 1211 return DAG.getMaskedStore(N->getChain(), dl, DataOp, N->getBasePtr(), Mask, 1212 N->getMemoryVT(), N->getMemOperand(), 1213 TruncateStore); 1214 } 1215 1216 SDValue DAGTypeLegalizer::PromoteIntOp_MLOAD(MaskedLoadSDNode *N, 1217 unsigned OpNo) { 1218 assert(OpNo == 2 && "Only know how to promote the mask!"); 1219 EVT DataVT = N->getValueType(0); 1220 SDValue Mask = PromoteTargetBoolean(N->getOperand(OpNo), DataVT); 1221 SmallVector<SDValue, 4> NewOps(N->op_begin(), N->op_end()); 1222 NewOps[OpNo] = Mask; 1223 return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0); 1224 } 1225 1226 SDValue DAGTypeLegalizer::PromoteIntOp_MGATHER(MaskedGatherSDNode *N, 1227 unsigned OpNo) { 1228 1229 SmallVector<SDValue, 5> NewOps(N->op_begin(), N->op_end()); 1230 if (OpNo == 2) { 1231 // The Mask 1232 EVT DataVT = N->getValueType(0); 1233 NewOps[OpNo] = PromoteTargetBoolean(N->getOperand(OpNo), DataVT); 1234 } else 1235 NewOps[OpNo] = GetPromotedInteger(N->getOperand(OpNo)); 1236 return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0); 1237 } 1238 1239 SDValue DAGTypeLegalizer::PromoteIntOp_MSCATTER(MaskedScatterSDNode *N, 1240 unsigned OpNo) { 1241 SmallVector<SDValue, 5> NewOps(N->op_begin(), N->op_end()); 1242 if (OpNo == 2) { 1243 // The Mask 1244 EVT DataVT = N->getValue().getValueType(); 1245 NewOps[OpNo] = PromoteTargetBoolean(N->getOperand(OpNo), DataVT); 1246 } else 1247 NewOps[OpNo] = GetPromotedInteger(N->getOperand(OpNo)); 1248 return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0); 1249 } 1250 1251 SDValue DAGTypeLegalizer::PromoteIntOp_TRUNCATE(SDNode *N) { 1252 SDValue Op = GetPromotedInteger(N->getOperand(0)); 1253 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), N->getValueType(0), Op); 1254 } 1255 1256 SDValue DAGTypeLegalizer::PromoteIntOp_UINT_TO_FP(SDNode *N) { 1257 return SDValue(DAG.UpdateNodeOperands(N, 1258 ZExtPromotedInteger(N->getOperand(0))), 0); 1259 } 1260 1261 SDValue DAGTypeLegalizer::PromoteIntOp_ZERO_EXTEND(SDNode *N) { 1262 SDLoc dl(N); 1263 SDValue Op = GetPromotedInteger(N->getOperand(0)); 1264 Op = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Op); 1265 return DAG.getZeroExtendInReg(Op, dl, 1266 N->getOperand(0).getValueType().getScalarType()); 1267 } 1268 1269 1270 //===----------------------------------------------------------------------===// 1271 // Integer Result Expansion 1272 //===----------------------------------------------------------------------===// 1273 1274 /// ExpandIntegerResult - This method is called when the specified result of the 1275 /// specified node is found to need expansion. At this point, the node may also 1276 /// have invalid operands or may have other results that need promotion, we just 1277 /// know that (at least) one result needs expansion. 1278 void DAGTypeLegalizer::ExpandIntegerResult(SDNode *N, unsigned ResNo) { 1279 DEBUG(dbgs() << "Expand integer result: "; N->dump(&DAG); dbgs() << "\n"); 1280 SDValue Lo, Hi; 1281 Lo = Hi = SDValue(); 1282 1283 // See if the target wants to custom expand this node. 1284 if (CustomLowerNode(N, N->getValueType(ResNo), true)) 1285 return; 1286 1287 switch (N->getOpcode()) { 1288 default: 1289 #ifndef NDEBUG 1290 dbgs() << "ExpandIntegerResult #" << ResNo << ": "; 1291 N->dump(&DAG); dbgs() << "\n"; 1292 #endif 1293 llvm_unreachable("Do not know how to expand the result of this operator!"); 1294 1295 case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, ResNo, Lo, Hi); break; 1296 case ISD::SELECT: SplitRes_SELECT(N, Lo, Hi); break; 1297 case ISD::SELECT_CC: SplitRes_SELECT_CC(N, Lo, Hi); break; 1298 case ISD::UNDEF: SplitRes_UNDEF(N, Lo, Hi); break; 1299 1300 case ISD::BITCAST: ExpandRes_BITCAST(N, Lo, Hi); break; 1301 case ISD::BUILD_PAIR: ExpandRes_BUILD_PAIR(N, Lo, Hi); break; 1302 case ISD::EXTRACT_ELEMENT: ExpandRes_EXTRACT_ELEMENT(N, Lo, Hi); break; 1303 case ISD::EXTRACT_VECTOR_ELT: ExpandRes_EXTRACT_VECTOR_ELT(N, Lo, Hi); break; 1304 case ISD::VAARG: ExpandRes_VAARG(N, Lo, Hi); break; 1305 1306 case ISD::ANY_EXTEND: ExpandIntRes_ANY_EXTEND(N, Lo, Hi); break; 1307 case ISD::AssertSext: ExpandIntRes_AssertSext(N, Lo, Hi); break; 1308 case ISD::AssertZext: ExpandIntRes_AssertZext(N, Lo, Hi); break; 1309 case ISD::BITREVERSE: ExpandIntRes_BITREVERSE(N, Lo, Hi); break; 1310 case ISD::BSWAP: ExpandIntRes_BSWAP(N, Lo, Hi); break; 1311 case ISD::Constant: ExpandIntRes_Constant(N, Lo, Hi); break; 1312 case ISD::CTLZ_ZERO_UNDEF: 1313 case ISD::CTLZ: ExpandIntRes_CTLZ(N, Lo, Hi); break; 1314 case ISD::CTPOP: ExpandIntRes_CTPOP(N, Lo, Hi); break; 1315 case ISD::CTTZ_ZERO_UNDEF: 1316 case ISD::CTTZ: ExpandIntRes_CTTZ(N, Lo, Hi); break; 1317 case ISD::FP_TO_SINT: ExpandIntRes_FP_TO_SINT(N, Lo, Hi); break; 1318 case ISD::FP_TO_UINT: ExpandIntRes_FP_TO_UINT(N, Lo, Hi); break; 1319 case ISD::LOAD: ExpandIntRes_LOAD(cast<LoadSDNode>(N), Lo, Hi); break; 1320 case ISD::MUL: ExpandIntRes_MUL(N, Lo, Hi); break; 1321 case ISD::READCYCLECOUNTER: ExpandIntRes_READCYCLECOUNTER(N, Lo, Hi); break; 1322 case ISD::SDIV: ExpandIntRes_SDIV(N, Lo, Hi); break; 1323 case ISD::SIGN_EXTEND: ExpandIntRes_SIGN_EXTEND(N, Lo, Hi); break; 1324 case ISD::SIGN_EXTEND_INREG: ExpandIntRes_SIGN_EXTEND_INREG(N, Lo, Hi); break; 1325 case ISD::SREM: ExpandIntRes_SREM(N, Lo, Hi); break; 1326 case ISD::TRUNCATE: ExpandIntRes_TRUNCATE(N, Lo, Hi); break; 1327 case ISD::UDIV: ExpandIntRes_UDIV(N, Lo, Hi); break; 1328 case ISD::UREM: ExpandIntRes_UREM(N, Lo, Hi); break; 1329 case ISD::ZERO_EXTEND: ExpandIntRes_ZERO_EXTEND(N, Lo, Hi); break; 1330 case ISD::ATOMIC_LOAD: ExpandIntRes_ATOMIC_LOAD(N, Lo, Hi); break; 1331 1332 case ISD::ATOMIC_LOAD_ADD: 1333 case ISD::ATOMIC_LOAD_SUB: 1334 case ISD::ATOMIC_LOAD_AND: 1335 case ISD::ATOMIC_LOAD_OR: 1336 case ISD::ATOMIC_LOAD_XOR: 1337 case ISD::ATOMIC_LOAD_NAND: 1338 case ISD::ATOMIC_LOAD_MIN: 1339 case ISD::ATOMIC_LOAD_MAX: 1340 case ISD::ATOMIC_LOAD_UMIN: 1341 case ISD::ATOMIC_LOAD_UMAX: 1342 case ISD::ATOMIC_SWAP: 1343 case ISD::ATOMIC_CMP_SWAP: { 1344 std::pair<SDValue, SDValue> Tmp = ExpandAtomic(N); 1345 SplitInteger(Tmp.first, Lo, Hi); 1346 ReplaceValueWith(SDValue(N, 1), Tmp.second); 1347 break; 1348 } 1349 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 1350 AtomicSDNode *AN = cast<AtomicSDNode>(N); 1351 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::Other); 1352 SDValue Tmp = DAG.getAtomicCmpSwap( 1353 ISD::ATOMIC_CMP_SWAP, SDLoc(N), AN->getMemoryVT(), VTs, 1354 N->getOperand(0), N->getOperand(1), N->getOperand(2), N->getOperand(3), 1355 AN->getMemOperand(), AN->getSuccessOrdering(), AN->getFailureOrdering(), 1356 AN->getSynchScope()); 1357 1358 // Expanding to the strong ATOMIC_CMP_SWAP node means we can determine 1359 // success simply by comparing the loaded value against the ingoing 1360 // comparison. 1361 SDValue Success = DAG.getSetCC(SDLoc(N), N->getValueType(1), Tmp, 1362 N->getOperand(2), ISD::SETEQ); 1363 1364 SplitInteger(Tmp, Lo, Hi); 1365 ReplaceValueWith(SDValue(N, 1), Success); 1366 ReplaceValueWith(SDValue(N, 2), Tmp.getValue(1)); 1367 break; 1368 } 1369 1370 case ISD::AND: 1371 case ISD::OR: 1372 case ISD::XOR: ExpandIntRes_Logical(N, Lo, Hi); break; 1373 1374 case ISD::ADD: 1375 case ISD::SUB: ExpandIntRes_ADDSUB(N, Lo, Hi); break; 1376 1377 case ISD::ADDC: 1378 case ISD::SUBC: ExpandIntRes_ADDSUBC(N, Lo, Hi); break; 1379 1380 case ISD::ADDE: 1381 case ISD::SUBE: ExpandIntRes_ADDSUBE(N, Lo, Hi); break; 1382 1383 case ISD::SHL: 1384 case ISD::SRA: 1385 case ISD::SRL: ExpandIntRes_Shift(N, Lo, Hi); break; 1386 1387 case ISD::SADDO: 1388 case ISD::SSUBO: ExpandIntRes_SADDSUBO(N, Lo, Hi); break; 1389 case ISD::UADDO: 1390 case ISD::USUBO: ExpandIntRes_UADDSUBO(N, Lo, Hi); break; 1391 case ISD::UMULO: 1392 case ISD::SMULO: ExpandIntRes_XMULO(N, Lo, Hi); break; 1393 } 1394 1395 // If Lo/Hi is null, the sub-method took care of registering results etc. 1396 if (Lo.getNode()) 1397 SetExpandedInteger(SDValue(N, ResNo), Lo, Hi); 1398 } 1399 1400 /// Lower an atomic node to the appropriate builtin call. 1401 std::pair <SDValue, SDValue> DAGTypeLegalizer::ExpandAtomic(SDNode *Node) { 1402 unsigned Opc = Node->getOpcode(); 1403 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 1404 RTLIB::Libcall LC = RTLIB::getATOMIC(Opc, VT); 1405 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!"); 1406 1407 return ExpandChainLibCall(LC, Node, false); 1408 } 1409 1410 /// N is a shift by a value that needs to be expanded, 1411 /// and the shift amount is a constant 'Amt'. Expand the operation. 1412 void DAGTypeLegalizer::ExpandShiftByConstant(SDNode *N, const APInt &Amt, 1413 SDValue &Lo, SDValue &Hi) { 1414 SDLoc DL(N); 1415 // Expand the incoming operand to be shifted, so that we have its parts 1416 SDValue InL, InH; 1417 GetExpandedInteger(N->getOperand(0), InL, InH); 1418 1419 // Though Amt shouldn't usually be 0, it's possible. E.g. when legalization 1420 // splitted a vector shift, like this: <op1, op2> SHL <0, 2>. 1421 if (!Amt) { 1422 Lo = InL; 1423 Hi = InH; 1424 return; 1425 } 1426 1427 EVT NVT = InL.getValueType(); 1428 unsigned VTBits = N->getValueType(0).getSizeInBits(); 1429 unsigned NVTBits = NVT.getSizeInBits(); 1430 EVT ShTy = N->getOperand(1).getValueType(); 1431 1432 if (N->getOpcode() == ISD::SHL) { 1433 if (Amt.ugt(VTBits)) { 1434 Lo = Hi = DAG.getConstant(0, DL, NVT); 1435 } else if (Amt.ugt(NVTBits)) { 1436 Lo = DAG.getConstant(0, DL, NVT); 1437 Hi = DAG.getNode(ISD::SHL, DL, 1438 NVT, InL, DAG.getConstant(Amt - NVTBits, DL, ShTy)); 1439 } else if (Amt == NVTBits) { 1440 Lo = DAG.getConstant(0, DL, NVT); 1441 Hi = InL; 1442 } else if (Amt == 1 && 1443 TLI.isOperationLegalOrCustom(ISD::ADDC, 1444 TLI.getTypeToExpandTo(*DAG.getContext(), NVT))) { 1445 // Emit this X << 1 as X+X. 1446 SDVTList VTList = DAG.getVTList(NVT, MVT::Glue); 1447 SDValue LoOps[2] = { InL, InL }; 1448 Lo = DAG.getNode(ISD::ADDC, DL, VTList, LoOps); 1449 SDValue HiOps[3] = { InH, InH, Lo.getValue(1) }; 1450 Hi = DAG.getNode(ISD::ADDE, DL, VTList, HiOps); 1451 } else { 1452 Lo = DAG.getNode(ISD::SHL, DL, NVT, InL, DAG.getConstant(Amt, DL, ShTy)); 1453 Hi = DAG.getNode(ISD::OR, DL, NVT, 1454 DAG.getNode(ISD::SHL, DL, NVT, InH, 1455 DAG.getConstant(Amt, DL, ShTy)), 1456 DAG.getNode(ISD::SRL, DL, NVT, InL, 1457 DAG.getConstant(-Amt + NVTBits, DL, ShTy))); 1458 } 1459 return; 1460 } 1461 1462 if (N->getOpcode() == ISD::SRL) { 1463 if (Amt.ugt(VTBits)) { 1464 Lo = Hi = DAG.getConstant(0, DL, NVT); 1465 } else if (Amt.ugt(NVTBits)) { 1466 Lo = DAG.getNode(ISD::SRL, DL, 1467 NVT, InH, DAG.getConstant(Amt - NVTBits, DL, ShTy)); 1468 Hi = DAG.getConstant(0, DL, NVT); 1469 } else if (Amt == NVTBits) { 1470 Lo = InH; 1471 Hi = DAG.getConstant(0, DL, NVT); 1472 } else { 1473 Lo = DAG.getNode(ISD::OR, DL, NVT, 1474 DAG.getNode(ISD::SRL, DL, NVT, InL, 1475 DAG.getConstant(Amt, DL, ShTy)), 1476 DAG.getNode(ISD::SHL, DL, NVT, InH, 1477 DAG.getConstant(-Amt + NVTBits, DL, ShTy))); 1478 Hi = DAG.getNode(ISD::SRL, DL, NVT, InH, DAG.getConstant(Amt, DL, ShTy)); 1479 } 1480 return; 1481 } 1482 1483 assert(N->getOpcode() == ISD::SRA && "Unknown shift!"); 1484 if (Amt.ugt(VTBits)) { 1485 Hi = Lo = DAG.getNode(ISD::SRA, DL, NVT, InH, 1486 DAG.getConstant(NVTBits - 1, DL, ShTy)); 1487 } else if (Amt.ugt(NVTBits)) { 1488 Lo = DAG.getNode(ISD::SRA, DL, NVT, InH, 1489 DAG.getConstant(Amt - NVTBits, DL, ShTy)); 1490 Hi = DAG.getNode(ISD::SRA, DL, NVT, InH, 1491 DAG.getConstant(NVTBits - 1, DL, ShTy)); 1492 } else if (Amt == NVTBits) { 1493 Lo = InH; 1494 Hi = DAG.getNode(ISD::SRA, DL, NVT, InH, 1495 DAG.getConstant(NVTBits - 1, DL, ShTy)); 1496 } else { 1497 Lo = DAG.getNode(ISD::OR, DL, NVT, 1498 DAG.getNode(ISD::SRL, DL, NVT, InL, 1499 DAG.getConstant(Amt, DL, ShTy)), 1500 DAG.getNode(ISD::SHL, DL, NVT, InH, 1501 DAG.getConstant(-Amt + NVTBits, DL, ShTy))); 1502 Hi = DAG.getNode(ISD::SRA, DL, NVT, InH, DAG.getConstant(Amt, DL, ShTy)); 1503 } 1504 } 1505 1506 /// ExpandShiftWithKnownAmountBit - Try to determine whether we can simplify 1507 /// this shift based on knowledge of the high bit of the shift amount. If we 1508 /// can tell this, we know that it is >= 32 or < 32, without knowing the actual 1509 /// shift amount. 1510 bool DAGTypeLegalizer:: 1511 ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi) { 1512 SDValue Amt = N->getOperand(1); 1513 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); 1514 EVT ShTy = Amt.getValueType(); 1515 unsigned ShBits = ShTy.getScalarType().getSizeInBits(); 1516 unsigned NVTBits = NVT.getScalarType().getSizeInBits(); 1517 assert(isPowerOf2_32(NVTBits) && 1518 "Expanded integer type size not a power of two!"); 1519 SDLoc dl(N); 1520 1521 APInt HighBitMask = APInt::getHighBitsSet(ShBits, ShBits - Log2_32(NVTBits)); 1522 APInt KnownZero, KnownOne; 1523 DAG.computeKnownBits(N->getOperand(1), KnownZero, KnownOne); 1524 1525 // If we don't know anything about the high bits, exit. 1526 if (((KnownZero|KnownOne) & HighBitMask) == 0) 1527 return false; 1528 1529 // Get the incoming operand to be shifted. 1530 SDValue InL, InH; 1531 GetExpandedInteger(N->getOperand(0), InL, InH); 1532 1533 // If we know that any of the high bits of the shift amount are one, then we 1534 // can do this as a couple of simple shifts. 1535 if (KnownOne.intersects(HighBitMask)) { 1536 // Mask out the high bit, which we know is set. 1537 Amt = DAG.getNode(ISD::AND, dl, ShTy, Amt, 1538 DAG.getConstant(~HighBitMask, dl, ShTy)); 1539 1540 switch (N->getOpcode()) { 1541 default: llvm_unreachable("Unknown shift"); 1542 case ISD::SHL: 1543 Lo = DAG.getConstant(0, dl, NVT); // Low part is zero. 1544 Hi = DAG.getNode(ISD::SHL, dl, NVT, InL, Amt); // High part from Lo part. 1545 return true; 1546 case ISD::SRL: 1547 Hi = DAG.getConstant(0, dl, NVT); // Hi part is zero. 1548 Lo = DAG.getNode(ISD::SRL, dl, NVT, InH, Amt); // Lo part from Hi part. 1549 return true; 1550 case ISD::SRA: 1551 Hi = DAG.getNode(ISD::SRA, dl, NVT, InH, // Sign extend high part. 1552 DAG.getConstant(NVTBits - 1, dl, ShTy)); 1553 Lo = DAG.getNode(ISD::SRA, dl, NVT, InH, Amt); // Lo part from Hi part. 1554 return true; 1555 } 1556 } 1557 1558 // If we know that all of the high bits of the shift amount are zero, then we 1559 // can do this as a couple of simple shifts. 1560 if ((KnownZero & HighBitMask) == HighBitMask) { 1561 // Calculate 31-x. 31 is used instead of 32 to avoid creating an undefined 1562 // shift if x is zero. We can use XOR here because x is known to be smaller 1563 // than 32. 1564 SDValue Amt2 = DAG.getNode(ISD::XOR, dl, ShTy, Amt, 1565 DAG.getConstant(NVTBits - 1, dl, ShTy)); 1566 1567 unsigned Op1, Op2; 1568 switch (N->getOpcode()) { 1569 default: llvm_unreachable("Unknown shift"); 1570 case ISD::SHL: Op1 = ISD::SHL; Op2 = ISD::SRL; break; 1571 case ISD::SRL: 1572 case ISD::SRA: Op1 = ISD::SRL; Op2 = ISD::SHL; break; 1573 } 1574 1575 // When shifting right the arithmetic for Lo and Hi is swapped. 1576 if (N->getOpcode() != ISD::SHL) 1577 std::swap(InL, InH); 1578 1579 // Use a little trick to get the bits that move from Lo to Hi. First 1580 // shift by one bit. 1581 SDValue Sh1 = DAG.getNode(Op2, dl, NVT, InL, DAG.getConstant(1, dl, ShTy)); 1582 // Then compute the remaining shift with amount-1. 1583 SDValue Sh2 = DAG.getNode(Op2, dl, NVT, Sh1, Amt2); 1584 1585 Lo = DAG.getNode(N->getOpcode(), dl, NVT, InL, Amt); 1586 Hi = DAG.getNode(ISD::OR, dl, NVT, DAG.getNode(Op1, dl, NVT, InH, Amt),Sh2); 1587 1588 if (N->getOpcode() != ISD::SHL) 1589 std::swap(Hi, Lo); 1590 return true; 1591 } 1592 1593 return false; 1594 } 1595 1596 /// ExpandShiftWithUnknownAmountBit - Fully general expansion of integer shift 1597 /// of any size. 1598 bool DAGTypeLegalizer:: 1599 ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi) { 1600 SDValue Amt = N->getOperand(1); 1601 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); 1602 EVT ShTy = Amt.getValueType(); 1603 unsigned NVTBits = NVT.getSizeInBits(); 1604 assert(isPowerOf2_32(NVTBits) && 1605 "Expanded integer type size not a power of two!"); 1606 SDLoc dl(N); 1607 1608 // Get the incoming operand to be shifted. 1609 SDValue InL, InH; 1610 GetExpandedInteger(N->getOperand(0), InL, InH); 1611 1612 SDValue NVBitsNode = DAG.getConstant(NVTBits, dl, ShTy); 1613 SDValue AmtExcess = DAG.getNode(ISD::SUB, dl, ShTy, Amt, NVBitsNode); 1614 SDValue AmtLack = DAG.getNode(ISD::SUB, dl, ShTy, NVBitsNode, Amt); 1615 SDValue isShort = DAG.getSetCC(dl, getSetCCResultType(ShTy), 1616 Amt, NVBitsNode, ISD::SETULT); 1617 SDValue isZero = DAG.getSetCC(dl, getSetCCResultType(ShTy), 1618 Amt, DAG.getConstant(0, dl, ShTy), 1619 ISD::SETEQ); 1620 1621 SDValue LoS, HiS, LoL, HiL; 1622 switch (N->getOpcode()) { 1623 default: llvm_unreachable("Unknown shift"); 1624 case ISD::SHL: 1625 // Short: ShAmt < NVTBits 1626 LoS = DAG.getNode(ISD::SHL, dl, NVT, InL, Amt); 1627 HiS = DAG.getNode(ISD::OR, dl, NVT, 1628 DAG.getNode(ISD::SHL, dl, NVT, InH, Amt), 1629 DAG.getNode(ISD::SRL, dl, NVT, InL, AmtLack)); 1630 1631 // Long: ShAmt >= NVTBits 1632 LoL = DAG.getConstant(0, dl, NVT); // Lo part is zero. 1633 HiL = DAG.getNode(ISD::SHL, dl, NVT, InL, AmtExcess); // Hi from Lo part. 1634 1635 Lo = DAG.getSelect(dl, NVT, isShort, LoS, LoL); 1636 Hi = DAG.getSelect(dl, NVT, isZero, InH, 1637 DAG.getSelect(dl, NVT, isShort, HiS, HiL)); 1638 return true; 1639 case ISD::SRL: 1640 // Short: ShAmt < NVTBits 1641 HiS = DAG.getNode(ISD::SRL, dl, NVT, InH, Amt); 1642 LoS = DAG.getNode(ISD::OR, dl, NVT, 1643 DAG.getNode(ISD::SRL, dl, NVT, InL, Amt), 1644 // FIXME: If Amt is zero, the following shift generates an undefined result 1645 // on some architectures. 1646 DAG.getNode(ISD::SHL, dl, NVT, InH, AmtLack)); 1647 1648 // Long: ShAmt >= NVTBits 1649 HiL = DAG.getConstant(0, dl, NVT); // Hi part is zero. 1650 LoL = DAG.getNode(ISD::SRL, dl, NVT, InH, AmtExcess); // Lo from Hi part. 1651 1652 Lo = DAG.getSelect(dl, NVT, isZero, InL, 1653 DAG.getSelect(dl, NVT, isShort, LoS, LoL)); 1654 Hi = DAG.getSelect(dl, NVT, isShort, HiS, HiL); 1655 return true; 1656 case ISD::SRA: 1657 // Short: ShAmt < NVTBits 1658 HiS = DAG.getNode(ISD::SRA, dl, NVT, InH, Amt); 1659 LoS = DAG.getNode(ISD::OR, dl, NVT, 1660 DAG.getNode(ISD::SRL, dl, NVT, InL, Amt), 1661 DAG.getNode(ISD::SHL, dl, NVT, InH, AmtLack)); 1662 1663 // Long: ShAmt >= NVTBits 1664 HiL = DAG.getNode(ISD::SRA, dl, NVT, InH, // Sign of Hi part. 1665 DAG.getConstant(NVTBits - 1, dl, ShTy)); 1666 LoL = DAG.getNode(ISD::SRA, dl, NVT, InH, AmtExcess); // Lo from Hi part. 1667 1668 Lo = DAG.getSelect(dl, NVT, isZero, InL, 1669 DAG.getSelect(dl, NVT, isShort, LoS, LoL)); 1670 Hi = DAG.getSelect(dl, NVT, isShort, HiS, HiL); 1671 return true; 1672 } 1673 } 1674 1675 void DAGTypeLegalizer::ExpandIntRes_ADDSUB(SDNode *N, 1676 SDValue &Lo, SDValue &Hi) { 1677 SDLoc dl(N); 1678 // Expand the subcomponents. 1679 SDValue LHSL, LHSH, RHSL, RHSH; 1680 GetExpandedInteger(N->getOperand(0), LHSL, LHSH); 1681 GetExpandedInteger(N->getOperand(1), RHSL, RHSH); 1682 1683 EVT NVT = LHSL.getValueType(); 1684 SDValue LoOps[2] = { LHSL, RHSL }; 1685 SDValue HiOps[3] = { LHSH, RHSH }; 1686 1687 // Do not generate ADDC/ADDE or SUBC/SUBE if the target does not support 1688 // them. TODO: Teach operation legalization how to expand unsupported 1689 // ADDC/ADDE/SUBC/SUBE. The problem is that these operations generate 1690 // a carry of type MVT::Glue, but there doesn't seem to be any way to 1691 // generate a value of this type in the expanded code sequence. 1692 bool hasCarry = 1693 TLI.isOperationLegalOrCustom(N->getOpcode() == ISD::ADD ? 1694 ISD::ADDC : ISD::SUBC, 1695 TLI.getTypeToExpandTo(*DAG.getContext(), NVT)); 1696 1697 if (hasCarry) { 1698 SDVTList VTList = DAG.getVTList(NVT, MVT::Glue); 1699 if (N->getOpcode() == ISD::ADD) { 1700 Lo = DAG.getNode(ISD::ADDC, dl, VTList, LoOps); 1701 HiOps[2] = Lo.getValue(1); 1702 Hi = DAG.getNode(ISD::ADDE, dl, VTList, HiOps); 1703 } else { 1704 Lo = DAG.getNode(ISD::SUBC, dl, VTList, LoOps); 1705 HiOps[2] = Lo.getValue(1); 1706 Hi = DAG.getNode(ISD::SUBE, dl, VTList, HiOps); 1707 } 1708 return; 1709 } 1710 1711 bool hasOVF = 1712 TLI.isOperationLegalOrCustom(N->getOpcode() == ISD::ADD ? 1713 ISD::UADDO : ISD::USUBO, 1714 TLI.getTypeToExpandTo(*DAG.getContext(), NVT)); 1715 if (hasOVF) { 1716 SDVTList VTList = DAG.getVTList(NVT, NVT); 1717 TargetLoweringBase::BooleanContent BoolType = TLI.getBooleanContents(NVT); 1718 int RevOpc; 1719 if (N->getOpcode() == ISD::ADD) { 1720 RevOpc = ISD::SUB; 1721 Lo = DAG.getNode(ISD::UADDO, dl, VTList, LoOps); 1722 Hi = DAG.getNode(ISD::ADD, dl, NVT, makeArrayRef(HiOps, 2)); 1723 } else { 1724 RevOpc = ISD::ADD; 1725 Lo = DAG.getNode(ISD::USUBO, dl, VTList, LoOps); 1726 Hi = DAG.getNode(ISD::SUB, dl, NVT, makeArrayRef(HiOps, 2)); 1727 } 1728 SDValue OVF = Lo.getValue(1); 1729 1730 switch (BoolType) { 1731 case TargetLoweringBase::UndefinedBooleanContent: 1732 OVF = DAG.getNode(ISD::AND, dl, NVT, DAG.getConstant(1, dl, NVT), OVF); 1733 // Fallthrough 1734 case TargetLoweringBase::ZeroOrOneBooleanContent: 1735 Hi = DAG.getNode(N->getOpcode(), dl, NVT, Hi, OVF); 1736 break; 1737 case TargetLoweringBase::ZeroOrNegativeOneBooleanContent: 1738 Hi = DAG.getNode(RevOpc, dl, NVT, Hi, OVF); 1739 } 1740 return; 1741 } 1742 1743 if (N->getOpcode() == ISD::ADD) { 1744 Lo = DAG.getNode(ISD::ADD, dl, NVT, LoOps); 1745 Hi = DAG.getNode(ISD::ADD, dl, NVT, makeArrayRef(HiOps, 2)); 1746 SDValue Cmp1 = DAG.getSetCC(dl, getSetCCResultType(NVT), Lo, LoOps[0], 1747 ISD::SETULT); 1748 SDValue Carry1 = DAG.getSelect(dl, NVT, Cmp1, 1749 DAG.getConstant(1, dl, NVT), 1750 DAG.getConstant(0, dl, NVT)); 1751 SDValue Cmp2 = DAG.getSetCC(dl, getSetCCResultType(NVT), Lo, LoOps[1], 1752 ISD::SETULT); 1753 SDValue Carry2 = DAG.getSelect(dl, NVT, Cmp2, 1754 DAG.getConstant(1, dl, NVT), Carry1); 1755 Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, Carry2); 1756 } else { 1757 Lo = DAG.getNode(ISD::SUB, dl, NVT, LoOps); 1758 Hi = DAG.getNode(ISD::SUB, dl, NVT, makeArrayRef(HiOps, 2)); 1759 SDValue Cmp = 1760 DAG.getSetCC(dl, getSetCCResultType(LoOps[0].getValueType()), 1761 LoOps[0], LoOps[1], ISD::SETULT); 1762 SDValue Borrow = DAG.getSelect(dl, NVT, Cmp, 1763 DAG.getConstant(1, dl, NVT), 1764 DAG.getConstant(0, dl, NVT)); 1765 Hi = DAG.getNode(ISD::SUB, dl, NVT, Hi, Borrow); 1766 } 1767 } 1768 1769 void DAGTypeLegalizer::ExpandIntRes_ADDSUBC(SDNode *N, 1770 SDValue &Lo, SDValue &Hi) { 1771 // Expand the subcomponents. 1772 SDValue LHSL, LHSH, RHSL, RHSH; 1773 SDLoc dl(N); 1774 GetExpandedInteger(N->getOperand(0), LHSL, LHSH); 1775 GetExpandedInteger(N->getOperand(1), RHSL, RHSH); 1776 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Glue); 1777 SDValue LoOps[2] = { LHSL, RHSL }; 1778 SDValue HiOps[3] = { LHSH, RHSH }; 1779 1780 if (N->getOpcode() == ISD::ADDC) { 1781 Lo = DAG.getNode(ISD::ADDC, dl, VTList, LoOps); 1782 HiOps[2] = Lo.getValue(1); 1783 Hi = DAG.getNode(ISD::ADDE, dl, VTList, HiOps); 1784 } else { 1785 Lo = DAG.getNode(ISD::SUBC, dl, VTList, LoOps); 1786 HiOps[2] = Lo.getValue(1); 1787 Hi = DAG.getNode(ISD::SUBE, dl, VTList, HiOps); 1788 } 1789 1790 // Legalized the flag result - switch anything that used the old flag to 1791 // use the new one. 1792 ReplaceValueWith(SDValue(N, 1), Hi.getValue(1)); 1793 } 1794 1795 void DAGTypeLegalizer::ExpandIntRes_ADDSUBE(SDNode *N, 1796 SDValue &Lo, SDValue &Hi) { 1797 // Expand the subcomponents. 1798 SDValue LHSL, LHSH, RHSL, RHSH; 1799 SDLoc dl(N); 1800 GetExpandedInteger(N->getOperand(0), LHSL, LHSH); 1801 GetExpandedInteger(N->getOperand(1), RHSL, RHSH); 1802 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Glue); 1803 SDValue LoOps[3] = { LHSL, RHSL, N->getOperand(2) }; 1804 SDValue HiOps[3] = { LHSH, RHSH }; 1805 1806 Lo = DAG.getNode(N->getOpcode(), dl, VTList, LoOps); 1807 HiOps[2] = Lo.getValue(1); 1808 Hi = DAG.getNode(N->getOpcode(), dl, VTList, HiOps); 1809 1810 // Legalized the flag result - switch anything that used the old flag to 1811 // use the new one. 1812 ReplaceValueWith(SDValue(N, 1), Hi.getValue(1)); 1813 } 1814 1815 void DAGTypeLegalizer::ExpandIntRes_ANY_EXTEND(SDNode *N, 1816 SDValue &Lo, SDValue &Hi) { 1817 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); 1818 SDLoc dl(N); 1819 SDValue Op = N->getOperand(0); 1820 if (Op.getValueType().bitsLE(NVT)) { 1821 // The low part is any extension of the input (which degenerates to a copy). 1822 Lo = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Op); 1823 Hi = DAG.getUNDEF(NVT); // The high part is undefined. 1824 } else { 1825 // For example, extension of an i48 to an i64. The operand type necessarily 1826 // promotes to the result type, so will end up being expanded too. 1827 assert(getTypeAction(Op.getValueType()) == 1828 TargetLowering::TypePromoteInteger && 1829 "Only know how to promote this result!"); 1830 SDValue Res = GetPromotedInteger(Op); 1831 assert(Res.getValueType() == N->getValueType(0) && 1832 "Operand over promoted?"); 1833 // Split the promoted operand. This will simplify when it is expanded. 1834 SplitInteger(Res, Lo, Hi); 1835 } 1836 } 1837 1838 void DAGTypeLegalizer::ExpandIntRes_AssertSext(SDNode *N, 1839 SDValue &Lo, SDValue &Hi) { 1840 SDLoc dl(N); 1841 GetExpandedInteger(N->getOperand(0), Lo, Hi); 1842 EVT NVT = Lo.getValueType(); 1843 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 1844 unsigned NVTBits = NVT.getSizeInBits(); 1845 unsigned EVTBits = EVT.getSizeInBits(); 1846 1847 if (NVTBits < EVTBits) { 1848 Hi = DAG.getNode(ISD::AssertSext, dl, NVT, Hi, 1849 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), 1850 EVTBits - NVTBits))); 1851 } else { 1852 Lo = DAG.getNode(ISD::AssertSext, dl, NVT, Lo, DAG.getValueType(EVT)); 1853 // The high part replicates the sign bit of Lo, make it explicit. 1854 Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo, 1855 DAG.getConstant(NVTBits - 1, dl, 1856 TLI.getPointerTy(DAG.getDataLayout()))); 1857 } 1858 } 1859 1860 void DAGTypeLegalizer::ExpandIntRes_AssertZext(SDNode *N, 1861 SDValue &Lo, SDValue &Hi) { 1862 SDLoc dl(N); 1863 GetExpandedInteger(N->getOperand(0), Lo, Hi); 1864 EVT NVT = Lo.getValueType(); 1865 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 1866 unsigned NVTBits = NVT.getSizeInBits(); 1867 unsigned EVTBits = EVT.getSizeInBits(); 1868 1869 if (NVTBits < EVTBits) { 1870 Hi = DAG.getNode(ISD::AssertZext, dl, NVT, Hi, 1871 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), 1872 EVTBits - NVTBits))); 1873 } else { 1874 Lo = DAG.getNode(ISD::AssertZext, dl, NVT, Lo, DAG.getValueType(EVT)); 1875 // The high part must be zero, make it explicit. 1876 Hi = DAG.getConstant(0, dl, NVT); 1877 } 1878 } 1879 1880 void DAGTypeLegalizer::ExpandIntRes_BITREVERSE(SDNode *N, 1881 SDValue &Lo, SDValue &Hi) { 1882 SDLoc dl(N); 1883 GetExpandedInteger(N->getOperand(0), Hi, Lo); // Note swapped operands. 1884 Lo = DAG.getNode(ISD::BITREVERSE, dl, Lo.getValueType(), Lo); 1885 Hi = DAG.getNode(ISD::BITREVERSE, dl, Hi.getValueType(), Hi); 1886 } 1887 1888 void DAGTypeLegalizer::ExpandIntRes_BSWAP(SDNode *N, 1889 SDValue &Lo, SDValue &Hi) { 1890 SDLoc dl(N); 1891 GetExpandedInteger(N->getOperand(0), Hi, Lo); // Note swapped operands. 1892 Lo = DAG.getNode(ISD::BSWAP, dl, Lo.getValueType(), Lo); 1893 Hi = DAG.getNode(ISD::BSWAP, dl, Hi.getValueType(), Hi); 1894 } 1895 1896 void DAGTypeLegalizer::ExpandIntRes_Constant(SDNode *N, 1897 SDValue &Lo, SDValue &Hi) { 1898 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); 1899 unsigned NBitWidth = NVT.getSizeInBits(); 1900 auto Constant = cast<ConstantSDNode>(N); 1901 const APInt &Cst = Constant->getAPIntValue(); 1902 bool IsTarget = Constant->isTargetOpcode(); 1903 bool IsOpaque = Constant->isOpaque(); 1904 SDLoc dl(N); 1905 Lo = DAG.getConstant(Cst.trunc(NBitWidth), dl, NVT, IsTarget, IsOpaque); 1906 Hi = DAG.getConstant(Cst.lshr(NBitWidth).trunc(NBitWidth), dl, NVT, IsTarget, 1907 IsOpaque); 1908 } 1909 1910 void DAGTypeLegalizer::ExpandIntRes_CTLZ(SDNode *N, 1911 SDValue &Lo, SDValue &Hi) { 1912 SDLoc dl(N); 1913 // ctlz (HiLo) -> Hi != 0 ? ctlz(Hi) : (ctlz(Lo)+32) 1914 GetExpandedInteger(N->getOperand(0), Lo, Hi); 1915 EVT NVT = Lo.getValueType(); 1916 1917 SDValue HiNotZero = DAG.getSetCC(dl, getSetCCResultType(NVT), Hi, 1918 DAG.getConstant(0, dl, NVT), ISD::SETNE); 1919 1920 SDValue LoLZ = DAG.getNode(N->getOpcode(), dl, NVT, Lo); 1921 SDValue HiLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, NVT, Hi); 1922 1923 Lo = DAG.getSelect(dl, NVT, HiNotZero, HiLZ, 1924 DAG.getNode(ISD::ADD, dl, NVT, LoLZ, 1925 DAG.getConstant(NVT.getSizeInBits(), dl, 1926 NVT))); 1927 Hi = DAG.getConstant(0, dl, NVT); 1928 } 1929 1930 void DAGTypeLegalizer::ExpandIntRes_CTPOP(SDNode *N, 1931 SDValue &Lo, SDValue &Hi) { 1932 SDLoc dl(N); 1933 // ctpop(HiLo) -> ctpop(Hi)+ctpop(Lo) 1934 GetExpandedInteger(N->getOperand(0), Lo, Hi); 1935 EVT NVT = Lo.getValueType(); 1936 Lo = DAG.getNode(ISD::ADD, dl, NVT, DAG.getNode(ISD::CTPOP, dl, NVT, Lo), 1937 DAG.getNode(ISD::CTPOP, dl, NVT, Hi)); 1938 Hi = DAG.getConstant(0, dl, NVT); 1939 } 1940 1941 void DAGTypeLegalizer::ExpandIntRes_CTTZ(SDNode *N, 1942 SDValue &Lo, SDValue &Hi) { 1943 SDLoc dl(N); 1944 // cttz (HiLo) -> Lo != 0 ? cttz(Lo) : (cttz(Hi)+32) 1945 GetExpandedInteger(N->getOperand(0), Lo, Hi); 1946 EVT NVT = Lo.getValueType(); 1947 1948 SDValue LoNotZero = DAG.getSetCC(dl, getSetCCResultType(NVT), Lo, 1949 DAG.getConstant(0, dl, NVT), ISD::SETNE); 1950 1951 SDValue LoLZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, NVT, Lo); 1952 SDValue HiLZ = DAG.getNode(N->getOpcode(), dl, NVT, Hi); 1953 1954 Lo = DAG.getSelect(dl, NVT, LoNotZero, LoLZ, 1955 DAG.getNode(ISD::ADD, dl, NVT, HiLZ, 1956 DAG.getConstant(NVT.getSizeInBits(), dl, 1957 NVT))); 1958 Hi = DAG.getConstant(0, dl, NVT); 1959 } 1960 1961 void DAGTypeLegalizer::ExpandIntRes_FP_TO_SINT(SDNode *N, SDValue &Lo, 1962 SDValue &Hi) { 1963 SDLoc dl(N); 1964 EVT VT = N->getValueType(0); 1965 1966 SDValue Op = N->getOperand(0); 1967 if (getTypeAction(Op.getValueType()) == TargetLowering::TypePromoteFloat) 1968 Op = GetPromotedFloat(Op); 1969 1970 RTLIB::Libcall LC = RTLIB::getFPTOSINT(Op.getValueType(), VT); 1971 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fp-to-sint conversion!"); 1972 SplitInteger(TLI.makeLibCall(DAG, LC, VT, Op, true/*irrelevant*/, dl).first, 1973 Lo, Hi); 1974 } 1975 1976 void DAGTypeLegalizer::ExpandIntRes_FP_TO_UINT(SDNode *N, SDValue &Lo, 1977 SDValue &Hi) { 1978 SDLoc dl(N); 1979 EVT VT = N->getValueType(0); 1980 1981 SDValue Op = N->getOperand(0); 1982 if (getTypeAction(Op.getValueType()) == TargetLowering::TypePromoteFloat) 1983 Op = GetPromotedFloat(Op); 1984 1985 RTLIB::Libcall LC = RTLIB::getFPTOUINT(Op.getValueType(), VT); 1986 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fp-to-uint conversion!"); 1987 SplitInteger(TLI.makeLibCall(DAG, LC, VT, Op, false/*irrelevant*/, dl).first, 1988 Lo, Hi); 1989 } 1990 1991 void DAGTypeLegalizer::ExpandIntRes_LOAD(LoadSDNode *N, 1992 SDValue &Lo, SDValue &Hi) { 1993 if (ISD::isNormalLoad(N)) { 1994 ExpandRes_NormalLoad(N, Lo, Hi); 1995 return; 1996 } 1997 1998 assert(ISD::isUNINDEXEDLoad(N) && "Indexed load during type legalization!"); 1999 2000 EVT VT = N->getValueType(0); 2001 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); 2002 SDValue Ch = N->getChain(); 2003 SDValue Ptr = N->getBasePtr(); 2004 ISD::LoadExtType ExtType = N->getExtensionType(); 2005 unsigned Alignment = N->getAlignment(); 2006 bool isVolatile = N->isVolatile(); 2007 bool isNonTemporal = N->isNonTemporal(); 2008 bool isInvariant = N->isInvariant(); 2009 AAMDNodes AAInfo = N->getAAInfo(); 2010 SDLoc dl(N); 2011 2012 assert(NVT.isByteSized() && "Expanded type not byte sized!"); 2013 2014 if (N->getMemoryVT().bitsLE(NVT)) { 2015 EVT MemVT = N->getMemoryVT(); 2016 2017 Lo = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr, N->getPointerInfo(), 2018 MemVT, isVolatile, isNonTemporal, isInvariant, 2019 Alignment, AAInfo); 2020 2021 // Remember the chain. 2022 Ch = Lo.getValue(1); 2023 2024 if (ExtType == ISD::SEXTLOAD) { 2025 // The high part is obtained by SRA'ing all but one of the bits of the 2026 // lo part. 2027 unsigned LoSize = Lo.getValueType().getSizeInBits(); 2028 Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo, 2029 DAG.getConstant(LoSize - 1, dl, 2030 TLI.getPointerTy(DAG.getDataLayout()))); 2031 } else if (ExtType == ISD::ZEXTLOAD) { 2032 // The high part is just a zero. 2033 Hi = DAG.getConstant(0, dl, NVT); 2034 } else { 2035 assert(ExtType == ISD::EXTLOAD && "Unknown extload!"); 2036 // The high part is undefined. 2037 Hi = DAG.getUNDEF(NVT); 2038 } 2039 } else if (DAG.getDataLayout().isLittleEndian()) { 2040 // Little-endian - low bits are at low addresses. 2041 Lo = DAG.getLoad(NVT, dl, Ch, Ptr, N->getPointerInfo(), 2042 isVolatile, isNonTemporal, isInvariant, Alignment, 2043 AAInfo); 2044 2045 unsigned ExcessBits = 2046 N->getMemoryVT().getSizeInBits() - NVT.getSizeInBits(); 2047 EVT NEVT = EVT::getIntegerVT(*DAG.getContext(), ExcessBits); 2048 2049 // Increment the pointer to the other half. 2050 unsigned IncrementSize = NVT.getSizeInBits()/8; 2051 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 2052 DAG.getConstant(IncrementSize, dl, Ptr.getValueType())); 2053 Hi = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr, 2054 N->getPointerInfo().getWithOffset(IncrementSize), NEVT, 2055 isVolatile, isNonTemporal, isInvariant, 2056 MinAlign(Alignment, IncrementSize), AAInfo); 2057 2058 // Build a factor node to remember that this load is independent of the 2059 // other one. 2060 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 2061 Hi.getValue(1)); 2062 } else { 2063 // Big-endian - high bits are at low addresses. Favor aligned loads at 2064 // the cost of some bit-fiddling. 2065 EVT MemVT = N->getMemoryVT(); 2066 unsigned EBytes = MemVT.getStoreSize(); 2067 unsigned IncrementSize = NVT.getSizeInBits()/8; 2068 unsigned ExcessBits = (EBytes - IncrementSize)*8; 2069 2070 // Load both the high bits and maybe some of the low bits. 2071 Hi = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr, N->getPointerInfo(), 2072 EVT::getIntegerVT(*DAG.getContext(), 2073 MemVT.getSizeInBits() - ExcessBits), 2074 isVolatile, isNonTemporal, isInvariant, Alignment, 2075 AAInfo); 2076 2077 // Increment the pointer to the other half. 2078 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 2079 DAG.getConstant(IncrementSize, dl, Ptr.getValueType())); 2080 // Load the rest of the low bits. 2081 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, NVT, Ch, Ptr, 2082 N->getPointerInfo().getWithOffset(IncrementSize), 2083 EVT::getIntegerVT(*DAG.getContext(), ExcessBits), 2084 isVolatile, isNonTemporal, isInvariant, 2085 MinAlign(Alignment, IncrementSize), AAInfo); 2086 2087 // Build a factor node to remember that this load is independent of the 2088 // other one. 2089 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 2090 Hi.getValue(1)); 2091 2092 if (ExcessBits < NVT.getSizeInBits()) { 2093 // Transfer low bits from the bottom of Hi to the top of Lo. 2094 Lo = DAG.getNode( 2095 ISD::OR, dl, NVT, Lo, 2096 DAG.getNode(ISD::SHL, dl, NVT, Hi, 2097 DAG.getConstant(ExcessBits, dl, 2098 TLI.getPointerTy(DAG.getDataLayout())))); 2099 // Move high bits to the right position in Hi. 2100 Hi = DAG.getNode(ExtType == ISD::SEXTLOAD ? ISD::SRA : ISD::SRL, dl, NVT, 2101 Hi, 2102 DAG.getConstant(NVT.getSizeInBits() - ExcessBits, dl, 2103 TLI.getPointerTy(DAG.getDataLayout()))); 2104 } 2105 } 2106 2107 // Legalize the chain result - switch anything that used the old chain to 2108 // use the new one. 2109 ReplaceValueWith(SDValue(N, 1), Ch); 2110 } 2111 2112 void DAGTypeLegalizer::ExpandIntRes_Logical(SDNode *N, 2113 SDValue &Lo, SDValue &Hi) { 2114 SDLoc dl(N); 2115 SDValue LL, LH, RL, RH; 2116 GetExpandedInteger(N->getOperand(0), LL, LH); 2117 GetExpandedInteger(N->getOperand(1), RL, RH); 2118 Lo = DAG.getNode(N->getOpcode(), dl, LL.getValueType(), LL, RL); 2119 Hi = DAG.getNode(N->getOpcode(), dl, LL.getValueType(), LH, RH); 2120 } 2121 2122 void DAGTypeLegalizer::ExpandIntRes_MUL(SDNode *N, 2123 SDValue &Lo, SDValue &Hi) { 2124 EVT VT = N->getValueType(0); 2125 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); 2126 SDLoc dl(N); 2127 2128 SDValue LL, LH, RL, RH; 2129 GetExpandedInteger(N->getOperand(0), LL, LH); 2130 GetExpandedInteger(N->getOperand(1), RL, RH); 2131 2132 if (TLI.expandMUL(N, Lo, Hi, NVT, DAG, LL, LH, RL, RH)) 2133 return; 2134 2135 // If nothing else, we can make a libcall. 2136 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 2137 if (VT == MVT::i16) 2138 LC = RTLIB::MUL_I16; 2139 else if (VT == MVT::i32) 2140 LC = RTLIB::MUL_I32; 2141 else if (VT == MVT::i64) 2142 LC = RTLIB::MUL_I64; 2143 else if (VT == MVT::i128) 2144 LC = RTLIB::MUL_I128; 2145 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported MUL!"); 2146 2147 SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) }; 2148 SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, true/*irrelevant*/, dl).first, 2149 Lo, Hi); 2150 } 2151 2152 void DAGTypeLegalizer::ExpandIntRes_READCYCLECOUNTER(SDNode *N, SDValue &Lo, 2153 SDValue &Hi) { 2154 SDLoc DL(N); 2155 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); 2156 SDVTList VTs = DAG.getVTList(NVT, NVT, MVT::Other); 2157 SDValue R = DAG.getNode(N->getOpcode(), DL, VTs, N->getOperand(0)); 2158 Lo = R.getValue(0); 2159 Hi = R.getValue(1); 2160 ReplaceValueWith(SDValue(N, 1), R.getValue(2)); 2161 } 2162 2163 void DAGTypeLegalizer::ExpandIntRes_SADDSUBO(SDNode *Node, 2164 SDValue &Lo, SDValue &Hi) { 2165 SDValue LHS = Node->getOperand(0); 2166 SDValue RHS = Node->getOperand(1); 2167 SDLoc dl(Node); 2168 2169 // Expand the result by simply replacing it with the equivalent 2170 // non-overflow-checking operation. 2171 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ? 2172 ISD::ADD : ISD::SUB, dl, LHS.getValueType(), 2173 LHS, RHS); 2174 SplitInteger(Sum, Lo, Hi); 2175 2176 // Compute the overflow. 2177 // 2178 // LHSSign -> LHS >= 0 2179 // RHSSign -> RHS >= 0 2180 // SumSign -> Sum >= 0 2181 // 2182 // Add: 2183 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) 2184 // Sub: 2185 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) 2186 // 2187 EVT OType = Node->getValueType(1); 2188 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 2189 2190 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE); 2191 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE); 2192 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign, 2193 Node->getOpcode() == ISD::SADDO ? 2194 ISD::SETEQ : ISD::SETNE); 2195 2196 SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE); 2197 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE); 2198 2199 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE); 2200 2201 // Use the calculated overflow everywhere. 2202 ReplaceValueWith(SDValue(Node, 1), Cmp); 2203 } 2204 2205 void DAGTypeLegalizer::ExpandIntRes_SDIV(SDNode *N, 2206 SDValue &Lo, SDValue &Hi) { 2207 EVT VT = N->getValueType(0); 2208 SDLoc dl(N); 2209 SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) }; 2210 2211 if (TLI.getOperationAction(ISD::SDIVREM, VT) == TargetLowering::Custom) { 2212 SDValue Res = DAG.getNode(ISD::SDIVREM, dl, DAG.getVTList(VT, VT), Ops); 2213 SplitInteger(Res.getValue(0), Lo, Hi); 2214 return; 2215 } 2216 2217 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 2218 if (VT == MVT::i16) 2219 LC = RTLIB::SDIV_I16; 2220 else if (VT == MVT::i32) 2221 LC = RTLIB::SDIV_I32; 2222 else if (VT == MVT::i64) 2223 LC = RTLIB::SDIV_I64; 2224 else if (VT == MVT::i128) 2225 LC = RTLIB::SDIV_I128; 2226 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!"); 2227 2228 SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, true, dl).first, Lo, Hi); 2229 } 2230 2231 void DAGTypeLegalizer::ExpandIntRes_Shift(SDNode *N, 2232 SDValue &Lo, SDValue &Hi) { 2233 EVT VT = N->getValueType(0); 2234 SDLoc dl(N); 2235 2236 // If we can emit an efficient shift operation, do so now. Check to see if 2237 // the RHS is a constant. 2238 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1))) 2239 return ExpandShiftByConstant(N, CN->getAPIntValue(), Lo, Hi); 2240 2241 // If we can determine that the high bit of the shift is zero or one, even if 2242 // the low bits are variable, emit this shift in an optimized form. 2243 if (ExpandShiftWithKnownAmountBit(N, Lo, Hi)) 2244 return; 2245 2246 // If this target supports shift_PARTS, use it. First, map to the _PARTS opc. 2247 unsigned PartsOpc; 2248 if (N->getOpcode() == ISD::SHL) { 2249 PartsOpc = ISD::SHL_PARTS; 2250 } else if (N->getOpcode() == ISD::SRL) { 2251 PartsOpc = ISD::SRL_PARTS; 2252 } else { 2253 assert(N->getOpcode() == ISD::SRA && "Unknown shift!"); 2254 PartsOpc = ISD::SRA_PARTS; 2255 } 2256 2257 // Next check to see if the target supports this SHL_PARTS operation or if it 2258 // will custom expand it. 2259 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); 2260 TargetLowering::LegalizeAction Action = TLI.getOperationAction(PartsOpc, NVT); 2261 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || 2262 Action == TargetLowering::Custom) { 2263 // Expand the subcomponents. 2264 SDValue LHSL, LHSH; 2265 GetExpandedInteger(N->getOperand(0), LHSL, LHSH); 2266 EVT VT = LHSL.getValueType(); 2267 2268 // If the shift amount operand is coming from a vector legalization it may 2269 // have an illegal type. Fix that first by casting the operand, otherwise 2270 // the new SHL_PARTS operation would need further legalization. 2271 SDValue ShiftOp = N->getOperand(1); 2272 EVT ShiftTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2273 assert(ShiftTy.getScalarType().getSizeInBits() >= 2274 Log2_32_Ceil(VT.getScalarType().getSizeInBits()) && 2275 "ShiftAmountTy is too small to cover the range of this type!"); 2276 if (ShiftOp.getValueType() != ShiftTy) 2277 ShiftOp = DAG.getZExtOrTrunc(ShiftOp, dl, ShiftTy); 2278 2279 SDValue Ops[] = { LHSL, LHSH, ShiftOp }; 2280 Lo = DAG.getNode(PartsOpc, dl, DAG.getVTList(VT, VT), Ops); 2281 Hi = Lo.getValue(1); 2282 return; 2283 } 2284 2285 // Otherwise, emit a libcall. 2286 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 2287 bool isSigned; 2288 if (N->getOpcode() == ISD::SHL) { 2289 isSigned = false; /*sign irrelevant*/ 2290 if (VT == MVT::i16) 2291 LC = RTLIB::SHL_I16; 2292 else if (VT == MVT::i32) 2293 LC = RTLIB::SHL_I32; 2294 else if (VT == MVT::i64) 2295 LC = RTLIB::SHL_I64; 2296 else if (VT == MVT::i128) 2297 LC = RTLIB::SHL_I128; 2298 } else if (N->getOpcode() == ISD::SRL) { 2299 isSigned = false; 2300 if (VT == MVT::i16) 2301 LC = RTLIB::SRL_I16; 2302 else if (VT == MVT::i32) 2303 LC = RTLIB::SRL_I32; 2304 else if (VT == MVT::i64) 2305 LC = RTLIB::SRL_I64; 2306 else if (VT == MVT::i128) 2307 LC = RTLIB::SRL_I128; 2308 } else { 2309 assert(N->getOpcode() == ISD::SRA && "Unknown shift!"); 2310 isSigned = true; 2311 if (VT == MVT::i16) 2312 LC = RTLIB::SRA_I16; 2313 else if (VT == MVT::i32) 2314 LC = RTLIB::SRA_I32; 2315 else if (VT == MVT::i64) 2316 LC = RTLIB::SRA_I64; 2317 else if (VT == MVT::i128) 2318 LC = RTLIB::SRA_I128; 2319 } 2320 2321 if (LC != RTLIB::UNKNOWN_LIBCALL && TLI.getLibcallName(LC)) { 2322 SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) }; 2323 SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, isSigned, dl).first, Lo, Hi); 2324 return; 2325 } 2326 2327 if (!ExpandShiftWithUnknownAmountBit(N, Lo, Hi)) 2328 llvm_unreachable("Unsupported shift!"); 2329 } 2330 2331 void DAGTypeLegalizer::ExpandIntRes_SIGN_EXTEND(SDNode *N, 2332 SDValue &Lo, SDValue &Hi) { 2333 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); 2334 SDLoc dl(N); 2335 SDValue Op = N->getOperand(0); 2336 if (Op.getValueType().bitsLE(NVT)) { 2337 // The low part is sign extension of the input (degenerates to a copy). 2338 Lo = DAG.getNode(ISD::SIGN_EXTEND, dl, NVT, N->getOperand(0)); 2339 // The high part is obtained by SRA'ing all but one of the bits of low part. 2340 unsigned LoSize = NVT.getSizeInBits(); 2341 Hi = DAG.getNode( 2342 ISD::SRA, dl, NVT, Lo, 2343 DAG.getConstant(LoSize - 1, dl, TLI.getPointerTy(DAG.getDataLayout()))); 2344 } else { 2345 // For example, extension of an i48 to an i64. The operand type necessarily 2346 // promotes to the result type, so will end up being expanded too. 2347 assert(getTypeAction(Op.getValueType()) == 2348 TargetLowering::TypePromoteInteger && 2349 "Only know how to promote this result!"); 2350 SDValue Res = GetPromotedInteger(Op); 2351 assert(Res.getValueType() == N->getValueType(0) && 2352 "Operand over promoted?"); 2353 // Split the promoted operand. This will simplify when it is expanded. 2354 SplitInteger(Res, Lo, Hi); 2355 unsigned ExcessBits = 2356 Op.getValueType().getSizeInBits() - NVT.getSizeInBits(); 2357 Hi = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Hi.getValueType(), Hi, 2358 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), 2359 ExcessBits))); 2360 } 2361 } 2362 2363 void DAGTypeLegalizer:: 2364 ExpandIntRes_SIGN_EXTEND_INREG(SDNode *N, SDValue &Lo, SDValue &Hi) { 2365 SDLoc dl(N); 2366 GetExpandedInteger(N->getOperand(0), Lo, Hi); 2367 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 2368 2369 if (EVT.bitsLE(Lo.getValueType())) { 2370 // sext_inreg the low part if needed. 2371 Lo = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Lo.getValueType(), Lo, 2372 N->getOperand(1)); 2373 2374 // The high part gets the sign extension from the lo-part. This handles 2375 // things like sextinreg V:i64 from i8. 2376 Hi = DAG.getNode(ISD::SRA, dl, Hi.getValueType(), Lo, 2377 DAG.getConstant(Hi.getValueType().getSizeInBits() - 1, dl, 2378 TLI.getPointerTy(DAG.getDataLayout()))); 2379 } else { 2380 // For example, extension of an i48 to an i64. Leave the low part alone, 2381 // sext_inreg the high part. 2382 unsigned ExcessBits = 2383 EVT.getSizeInBits() - Lo.getValueType().getSizeInBits(); 2384 Hi = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Hi.getValueType(), Hi, 2385 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), 2386 ExcessBits))); 2387 } 2388 } 2389 2390 void DAGTypeLegalizer::ExpandIntRes_SREM(SDNode *N, 2391 SDValue &Lo, SDValue &Hi) { 2392 EVT VT = N->getValueType(0); 2393 SDLoc dl(N); 2394 SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) }; 2395 2396 if (TLI.getOperationAction(ISD::SDIVREM, VT) == TargetLowering::Custom) { 2397 SDValue Res = DAG.getNode(ISD::SDIVREM, dl, DAG.getVTList(VT, VT), Ops); 2398 SplitInteger(Res.getValue(1), Lo, Hi); 2399 return; 2400 } 2401 2402 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 2403 if (VT == MVT::i16) 2404 LC = RTLIB::SREM_I16; 2405 else if (VT == MVT::i32) 2406 LC = RTLIB::SREM_I32; 2407 else if (VT == MVT::i64) 2408 LC = RTLIB::SREM_I64; 2409 else if (VT == MVT::i128) 2410 LC = RTLIB::SREM_I128; 2411 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!"); 2412 2413 SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, true, dl).first, Lo, Hi); 2414 } 2415 2416 void DAGTypeLegalizer::ExpandIntRes_TRUNCATE(SDNode *N, 2417 SDValue &Lo, SDValue &Hi) { 2418 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); 2419 SDLoc dl(N); 2420 Lo = DAG.getNode(ISD::TRUNCATE, dl, NVT, N->getOperand(0)); 2421 Hi = DAG.getNode(ISD::SRL, dl, N->getOperand(0).getValueType(), 2422 N->getOperand(0), 2423 DAG.getConstant(NVT.getSizeInBits(), dl, 2424 TLI.getPointerTy(DAG.getDataLayout()))); 2425 Hi = DAG.getNode(ISD::TRUNCATE, dl, NVT, Hi); 2426 } 2427 2428 void DAGTypeLegalizer::ExpandIntRes_UADDSUBO(SDNode *N, 2429 SDValue &Lo, SDValue &Hi) { 2430 SDValue LHS = N->getOperand(0); 2431 SDValue RHS = N->getOperand(1); 2432 SDLoc dl(N); 2433 2434 // Expand the result by simply replacing it with the equivalent 2435 // non-overflow-checking operation. 2436 SDValue Sum = DAG.getNode(N->getOpcode() == ISD::UADDO ? 2437 ISD::ADD : ISD::SUB, dl, LHS.getValueType(), 2438 LHS, RHS); 2439 SplitInteger(Sum, Lo, Hi); 2440 2441 // Calculate the overflow: addition overflows iff a + b < a, and subtraction 2442 // overflows iff a - b > a. 2443 SDValue Ofl = DAG.getSetCC(dl, N->getValueType(1), Sum, LHS, 2444 N->getOpcode () == ISD::UADDO ? 2445 ISD::SETULT : ISD::SETUGT); 2446 2447 // Use the calculated overflow everywhere. 2448 ReplaceValueWith(SDValue(N, 1), Ofl); 2449 } 2450 2451 void DAGTypeLegalizer::ExpandIntRes_XMULO(SDNode *N, 2452 SDValue &Lo, SDValue &Hi) { 2453 EVT VT = N->getValueType(0); 2454 SDLoc dl(N); 2455 2456 // A divide for UMULO should be faster than a function call. 2457 if (N->getOpcode() == ISD::UMULO) { 2458 SDValue LHS = N->getOperand(0), RHS = N->getOperand(1); 2459 2460 SDValue MUL = DAG.getNode(ISD::MUL, dl, LHS.getValueType(), LHS, RHS); 2461 SplitInteger(MUL, Lo, Hi); 2462 2463 // A divide for UMULO will be faster than a function call. Select to 2464 // make sure we aren't using 0. 2465 SDValue isZero = DAG.getSetCC(dl, getSetCCResultType(VT), 2466 RHS, DAG.getConstant(0, dl, VT), ISD::SETEQ); 2467 SDValue NotZero = DAG.getSelect(dl, VT, isZero, 2468 DAG.getConstant(1, dl, VT), RHS); 2469 SDValue DIV = DAG.getNode(ISD::UDIV, dl, VT, MUL, NotZero); 2470 SDValue Overflow = DAG.getSetCC(dl, N->getValueType(1), DIV, LHS, 2471 ISD::SETNE); 2472 Overflow = DAG.getSelect(dl, N->getValueType(1), isZero, 2473 DAG.getConstant(0, dl, N->getValueType(1)), 2474 Overflow); 2475 ReplaceValueWith(SDValue(N, 1), Overflow); 2476 return; 2477 } 2478 2479 Type *RetTy = VT.getTypeForEVT(*DAG.getContext()); 2480 EVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 2481 Type *PtrTy = PtrVT.getTypeForEVT(*DAG.getContext()); 2482 2483 // Replace this with a libcall that will check overflow. 2484 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 2485 if (VT == MVT::i32) 2486 LC = RTLIB::MULO_I32; 2487 else if (VT == MVT::i64) 2488 LC = RTLIB::MULO_I64; 2489 else if (VT == MVT::i128) 2490 LC = RTLIB::MULO_I128; 2491 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported XMULO!"); 2492 2493 SDValue Temp = DAG.CreateStackTemporary(PtrVT); 2494 // Temporary for the overflow value, default it to zero. 2495 SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, 2496 DAG.getConstant(0, dl, PtrVT), Temp, 2497 MachinePointerInfo(), false, false, 0); 2498 2499 TargetLowering::ArgListTy Args; 2500 TargetLowering::ArgListEntry Entry; 2501 for (const SDValue &Op : N->op_values()) { 2502 EVT ArgVT = Op.getValueType(); 2503 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2504 Entry.Node = Op; 2505 Entry.Ty = ArgTy; 2506 Entry.isSExt = true; 2507 Entry.isZExt = false; 2508 Args.push_back(Entry); 2509 } 2510 2511 // Also pass the address of the overflow check. 2512 Entry.Node = Temp; 2513 Entry.Ty = PtrTy->getPointerTo(); 2514 Entry.isSExt = true; 2515 Entry.isZExt = false; 2516 Args.push_back(Entry); 2517 2518 SDValue Func = DAG.getExternalSymbol(TLI.getLibcallName(LC), PtrVT); 2519 2520 TargetLowering::CallLoweringInfo CLI(DAG); 2521 CLI.setDebugLoc(dl).setChain(Chain) 2522 .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Func, std::move(Args), 0) 2523 .setSExtResult(); 2524 2525 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2526 2527 SplitInteger(CallInfo.first, Lo, Hi); 2528 SDValue Temp2 = DAG.getLoad(PtrVT, dl, CallInfo.second, Temp, 2529 MachinePointerInfo(), false, false, false, 0); 2530 SDValue Ofl = DAG.getSetCC(dl, N->getValueType(1), Temp2, 2531 DAG.getConstant(0, dl, PtrVT), 2532 ISD::SETNE); 2533 // Use the overflow from the libcall everywhere. 2534 ReplaceValueWith(SDValue(N, 1), Ofl); 2535 } 2536 2537 void DAGTypeLegalizer::ExpandIntRes_UDIV(SDNode *N, 2538 SDValue &Lo, SDValue &Hi) { 2539 EVT VT = N->getValueType(0); 2540 SDLoc dl(N); 2541 SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) }; 2542 2543 if (TLI.getOperationAction(ISD::UDIVREM, VT) == TargetLowering::Custom) { 2544 SDValue Res = DAG.getNode(ISD::UDIVREM, dl, DAG.getVTList(VT, VT), Ops); 2545 SplitInteger(Res.getValue(0), Lo, Hi); 2546 return; 2547 } 2548 2549 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 2550 if (VT == MVT::i16) 2551 LC = RTLIB::UDIV_I16; 2552 else if (VT == MVT::i32) 2553 LC = RTLIB::UDIV_I32; 2554 else if (VT == MVT::i64) 2555 LC = RTLIB::UDIV_I64; 2556 else if (VT == MVT::i128) 2557 LC = RTLIB::UDIV_I128; 2558 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported UDIV!"); 2559 2560 SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, false, dl).first, Lo, Hi); 2561 } 2562 2563 void DAGTypeLegalizer::ExpandIntRes_UREM(SDNode *N, 2564 SDValue &Lo, SDValue &Hi) { 2565 EVT VT = N->getValueType(0); 2566 SDLoc dl(N); 2567 SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) }; 2568 2569 if (TLI.getOperationAction(ISD::UDIVREM, VT) == TargetLowering::Custom) { 2570 SDValue Res = DAG.getNode(ISD::UDIVREM, dl, DAG.getVTList(VT, VT), Ops); 2571 SplitInteger(Res.getValue(1), Lo, Hi); 2572 return; 2573 } 2574 2575 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 2576 if (VT == MVT::i16) 2577 LC = RTLIB::UREM_I16; 2578 else if (VT == MVT::i32) 2579 LC = RTLIB::UREM_I32; 2580 else if (VT == MVT::i64) 2581 LC = RTLIB::UREM_I64; 2582 else if (VT == MVT::i128) 2583 LC = RTLIB::UREM_I128; 2584 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported UREM!"); 2585 2586 SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, false, dl).first, Lo, Hi); 2587 } 2588 2589 void DAGTypeLegalizer::ExpandIntRes_ZERO_EXTEND(SDNode *N, 2590 SDValue &Lo, SDValue &Hi) { 2591 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); 2592 SDLoc dl(N); 2593 SDValue Op = N->getOperand(0); 2594 if (Op.getValueType().bitsLE(NVT)) { 2595 // The low part is zero extension of the input (degenerates to a copy). 2596 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N->getOperand(0)); 2597 Hi = DAG.getConstant(0, dl, NVT); // The high part is just a zero. 2598 } else { 2599 // For example, extension of an i48 to an i64. The operand type necessarily 2600 // promotes to the result type, so will end up being expanded too. 2601 assert(getTypeAction(Op.getValueType()) == 2602 TargetLowering::TypePromoteInteger && 2603 "Only know how to promote this result!"); 2604 SDValue Res = GetPromotedInteger(Op); 2605 assert(Res.getValueType() == N->getValueType(0) && 2606 "Operand over promoted?"); 2607 // Split the promoted operand. This will simplify when it is expanded. 2608 SplitInteger(Res, Lo, Hi); 2609 unsigned ExcessBits = 2610 Op.getValueType().getSizeInBits() - NVT.getSizeInBits(); 2611 Hi = DAG.getZeroExtendInReg(Hi, dl, 2612 EVT::getIntegerVT(*DAG.getContext(), 2613 ExcessBits)); 2614 } 2615 } 2616 2617 void DAGTypeLegalizer::ExpandIntRes_ATOMIC_LOAD(SDNode *N, 2618 SDValue &Lo, SDValue &Hi) { 2619 SDLoc dl(N); 2620 EVT VT = cast<AtomicSDNode>(N)->getMemoryVT(); 2621 SDVTList VTs = DAG.getVTList(VT, MVT::i1, MVT::Other); 2622 SDValue Zero = DAG.getConstant(0, dl, VT); 2623 SDValue Swap = DAG.getAtomicCmpSwap( 2624 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, 2625 cast<AtomicSDNode>(N)->getMemoryVT(), VTs, N->getOperand(0), 2626 N->getOperand(1), Zero, Zero, cast<AtomicSDNode>(N)->getMemOperand(), 2627 cast<AtomicSDNode>(N)->getOrdering(), 2628 cast<AtomicSDNode>(N)->getOrdering(), 2629 cast<AtomicSDNode>(N)->getSynchScope()); 2630 2631 ReplaceValueWith(SDValue(N, 0), Swap.getValue(0)); 2632 ReplaceValueWith(SDValue(N, 1), Swap.getValue(2)); 2633 } 2634 2635 //===----------------------------------------------------------------------===// 2636 // Integer Operand Expansion 2637 //===----------------------------------------------------------------------===// 2638 2639 /// ExpandIntegerOperand - This method is called when the specified operand of 2640 /// the specified node is found to need expansion. At this point, all of the 2641 /// result types of the node are known to be legal, but other operands of the 2642 /// node may need promotion or expansion as well as the specified one. 2643 bool DAGTypeLegalizer::ExpandIntegerOperand(SDNode *N, unsigned OpNo) { 2644 DEBUG(dbgs() << "Expand integer operand: "; N->dump(&DAG); dbgs() << "\n"); 2645 SDValue Res = SDValue(); 2646 2647 if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false)) 2648 return false; 2649 2650 switch (N->getOpcode()) { 2651 default: 2652 #ifndef NDEBUG 2653 dbgs() << "ExpandIntegerOperand Op #" << OpNo << ": "; 2654 N->dump(&DAG); dbgs() << "\n"; 2655 #endif 2656 llvm_unreachable("Do not know how to expand this operator's operand!"); 2657 2658 case ISD::BITCAST: Res = ExpandOp_BITCAST(N); break; 2659 case ISD::BR_CC: Res = ExpandIntOp_BR_CC(N); break; 2660 case ISD::BUILD_VECTOR: Res = ExpandOp_BUILD_VECTOR(N); break; 2661 case ISD::EXTRACT_ELEMENT: Res = ExpandOp_EXTRACT_ELEMENT(N); break; 2662 case ISD::INSERT_VECTOR_ELT: Res = ExpandOp_INSERT_VECTOR_ELT(N); break; 2663 case ISD::SCALAR_TO_VECTOR: Res = ExpandOp_SCALAR_TO_VECTOR(N); break; 2664 case ISD::SELECT_CC: Res = ExpandIntOp_SELECT_CC(N); break; 2665 case ISD::SETCC: Res = ExpandIntOp_SETCC(N); break; 2666 case ISD::SETCCE: Res = ExpandIntOp_SETCCE(N); break; 2667 case ISD::SINT_TO_FP: Res = ExpandIntOp_SINT_TO_FP(N); break; 2668 case ISD::STORE: Res = ExpandIntOp_STORE(cast<StoreSDNode>(N), OpNo); break; 2669 case ISD::TRUNCATE: Res = ExpandIntOp_TRUNCATE(N); break; 2670 case ISD::UINT_TO_FP: Res = ExpandIntOp_UINT_TO_FP(N); break; 2671 2672 case ISD::SHL: 2673 case ISD::SRA: 2674 case ISD::SRL: 2675 case ISD::ROTL: 2676 case ISD::ROTR: Res = ExpandIntOp_Shift(N); break; 2677 case ISD::RETURNADDR: 2678 case ISD::FRAMEADDR: Res = ExpandIntOp_RETURNADDR(N); break; 2679 2680 case ISD::ATOMIC_STORE: Res = ExpandIntOp_ATOMIC_STORE(N); break; 2681 } 2682 2683 // If the result is null, the sub-method took care of registering results etc. 2684 if (!Res.getNode()) return false; 2685 2686 // If the result is N, the sub-method updated N in place. Tell the legalizer 2687 // core about this. 2688 if (Res.getNode() == N) 2689 return true; 2690 2691 assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 && 2692 "Invalid operand expansion"); 2693 2694 ReplaceValueWith(SDValue(N, 0), Res); 2695 return false; 2696 } 2697 2698 /// IntegerExpandSetCCOperands - Expand the operands of a comparison. This code 2699 /// is shared among BR_CC, SELECT_CC, and SETCC handlers. 2700 void DAGTypeLegalizer::IntegerExpandSetCCOperands(SDValue &NewLHS, 2701 SDValue &NewRHS, 2702 ISD::CondCode &CCCode, 2703 SDLoc dl) { 2704 SDValue LHSLo, LHSHi, RHSLo, RHSHi; 2705 GetExpandedInteger(NewLHS, LHSLo, LHSHi); 2706 GetExpandedInteger(NewRHS, RHSLo, RHSHi); 2707 2708 if (CCCode == ISD::SETEQ || CCCode == ISD::SETNE) { 2709 if (RHSLo == RHSHi) { 2710 if (ConstantSDNode *RHSCST = dyn_cast<ConstantSDNode>(RHSLo)) { 2711 if (RHSCST->isAllOnesValue()) { 2712 // Equality comparison to -1. 2713 NewLHS = DAG.getNode(ISD::AND, dl, 2714 LHSLo.getValueType(), LHSLo, LHSHi); 2715 NewRHS = RHSLo; 2716 return; 2717 } 2718 } 2719 } 2720 2721 NewLHS = DAG.getNode(ISD::XOR, dl, LHSLo.getValueType(), LHSLo, RHSLo); 2722 NewRHS = DAG.getNode(ISD::XOR, dl, LHSLo.getValueType(), LHSHi, RHSHi); 2723 NewLHS = DAG.getNode(ISD::OR, dl, NewLHS.getValueType(), NewLHS, NewRHS); 2724 NewRHS = DAG.getConstant(0, dl, NewLHS.getValueType()); 2725 return; 2726 } 2727 2728 // If this is a comparison of the sign bit, just look at the top part. 2729 // X > -1, x < 0 2730 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(NewRHS)) 2731 if ((CCCode == ISD::SETLT && CST->isNullValue()) || // X < 0 2732 (CCCode == ISD::SETGT && CST->isAllOnesValue())) { // X > -1 2733 NewLHS = LHSHi; 2734 NewRHS = RHSHi; 2735 return; 2736 } 2737 2738 // FIXME: This generated code sucks. 2739 ISD::CondCode LowCC; 2740 switch (CCCode) { 2741 default: llvm_unreachable("Unknown integer setcc!"); 2742 case ISD::SETLT: 2743 case ISD::SETULT: LowCC = ISD::SETULT; break; 2744 case ISD::SETGT: 2745 case ISD::SETUGT: LowCC = ISD::SETUGT; break; 2746 case ISD::SETLE: 2747 case ISD::SETULE: LowCC = ISD::SETULE; break; 2748 case ISD::SETGE: 2749 case ISD::SETUGE: LowCC = ISD::SETUGE; break; 2750 } 2751 2752 // Tmp1 = lo(op1) < lo(op2) // Always unsigned comparison 2753 // Tmp2 = hi(op1) < hi(op2) // Signedness depends on operands 2754 // dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2; 2755 2756 // NOTE: on targets without efficient SELECT of bools, we can always use 2757 // this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3) 2758 TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, AfterLegalizeTypes, true, 2759 nullptr); 2760 SDValue Tmp1, Tmp2; 2761 if (TLI.isTypeLegal(LHSLo.getValueType()) && 2762 TLI.isTypeLegal(RHSLo.getValueType())) 2763 Tmp1 = TLI.SimplifySetCC(getSetCCResultType(LHSLo.getValueType()), 2764 LHSLo, RHSLo, LowCC, false, DagCombineInfo, dl); 2765 if (!Tmp1.getNode()) 2766 Tmp1 = DAG.getSetCC(dl, getSetCCResultType(LHSLo.getValueType()), 2767 LHSLo, RHSLo, LowCC); 2768 if (TLI.isTypeLegal(LHSHi.getValueType()) && 2769 TLI.isTypeLegal(RHSHi.getValueType())) 2770 Tmp2 = TLI.SimplifySetCC(getSetCCResultType(LHSHi.getValueType()), 2771 LHSHi, RHSHi, CCCode, false, DagCombineInfo, dl); 2772 if (!Tmp2.getNode()) 2773 Tmp2 = DAG.getNode(ISD::SETCC, dl, 2774 getSetCCResultType(LHSHi.getValueType()), 2775 LHSHi, RHSHi, DAG.getCondCode(CCCode)); 2776 2777 ConstantSDNode *Tmp1C = dyn_cast<ConstantSDNode>(Tmp1.getNode()); 2778 ConstantSDNode *Tmp2C = dyn_cast<ConstantSDNode>(Tmp2.getNode()); 2779 if ((Tmp1C && Tmp1C->isNullValue()) || 2780 (Tmp2C && Tmp2C->isNullValue() && 2781 (CCCode == ISD::SETLE || CCCode == ISD::SETGE || 2782 CCCode == ISD::SETUGE || CCCode == ISD::SETULE)) || 2783 (Tmp2C && Tmp2C->getAPIntValue() == 1 && 2784 (CCCode == ISD::SETLT || CCCode == ISD::SETGT || 2785 CCCode == ISD::SETUGT || CCCode == ISD::SETULT))) { 2786 // low part is known false, returns high part. 2787 // For LE / GE, if high part is known false, ignore the low part. 2788 // For LT / GT, if high part is known true, ignore the low part. 2789 NewLHS = Tmp2; 2790 NewRHS = SDValue(); 2791 return; 2792 } 2793 2794 if (LHSHi == RHSHi) { 2795 // Comparing the low bits is enough. 2796 NewLHS = Tmp1; 2797 NewRHS = SDValue(); 2798 return; 2799 } 2800 2801 // Lower with SETCCE if the target supports it. 2802 // FIXME: Make all targets support this, then remove the other lowering. 2803 if (TLI.getOperationAction( 2804 ISD::SETCCE, 2805 TLI.getTypeToExpandTo(*DAG.getContext(), LHSLo.getValueType())) == 2806 TargetLowering::Custom) { 2807 // SETCCE can detect < and >= directly. For > and <=, flip operands and 2808 // condition code. 2809 bool FlipOperands = false; 2810 switch (CCCode) { 2811 case ISD::SETGT: CCCode = ISD::SETLT; FlipOperands = true; break; 2812 case ISD::SETUGT: CCCode = ISD::SETULT; FlipOperands = true; break; 2813 case ISD::SETLE: CCCode = ISD::SETGE; FlipOperands = true; break; 2814 case ISD::SETULE: CCCode = ISD::SETUGE; FlipOperands = true; break; 2815 default: break; 2816 } 2817 if (FlipOperands) { 2818 std::swap(LHSLo, RHSLo); 2819 std::swap(LHSHi, RHSHi); 2820 } 2821 // Perform a wide subtraction, feeding the carry from the low part into 2822 // SETCCE. The SETCCE operation is essentially looking at the high part of 2823 // the result of LHS - RHS. It is negative iff LHS < RHS. It is zero or 2824 // positive iff LHS >= RHS. 2825 SDVTList VTList = DAG.getVTList(LHSLo.getValueType(), MVT::Glue); 2826 SDValue LowCmp = DAG.getNode(ISD::SUBC, dl, VTList, LHSLo, RHSLo); 2827 SDValue Res = 2828 DAG.getNode(ISD::SETCCE, dl, getSetCCResultType(LHSLo.getValueType()), 2829 LHSHi, RHSHi, LowCmp.getValue(1), DAG.getCondCode(CCCode)); 2830 NewLHS = Res; 2831 NewRHS = SDValue(); 2832 return; 2833 } 2834 2835 NewLHS = TLI.SimplifySetCC(getSetCCResultType(LHSHi.getValueType()), 2836 LHSHi, RHSHi, ISD::SETEQ, false, 2837 DagCombineInfo, dl); 2838 if (!NewLHS.getNode()) 2839 NewLHS = DAG.getSetCC(dl, getSetCCResultType(LHSHi.getValueType()), 2840 LHSHi, RHSHi, ISD::SETEQ); 2841 NewLHS = DAG.getSelect(dl, Tmp1.getValueType(), 2842 NewLHS, Tmp1, Tmp2); 2843 NewRHS = SDValue(); 2844 } 2845 2846 SDValue DAGTypeLegalizer::ExpandIntOp_BR_CC(SDNode *N) { 2847 SDValue NewLHS = N->getOperand(2), NewRHS = N->getOperand(3); 2848 ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(1))->get(); 2849 IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, SDLoc(N)); 2850 2851 // If ExpandSetCCOperands returned a scalar, we need to compare the result 2852 // against zero to select between true and false values. 2853 if (!NewRHS.getNode()) { 2854 NewRHS = DAG.getConstant(0, SDLoc(N), NewLHS.getValueType()); 2855 CCCode = ISD::SETNE; 2856 } 2857 2858 // Update N to have the operands specified. 2859 return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), 2860 DAG.getCondCode(CCCode), NewLHS, NewRHS, 2861 N->getOperand(4)), 0); 2862 } 2863 2864 SDValue DAGTypeLegalizer::ExpandIntOp_SELECT_CC(SDNode *N) { 2865 SDValue NewLHS = N->getOperand(0), NewRHS = N->getOperand(1); 2866 ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(4))->get(); 2867 IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, SDLoc(N)); 2868 2869 // If ExpandSetCCOperands returned a scalar, we need to compare the result 2870 // against zero to select between true and false values. 2871 if (!NewRHS.getNode()) { 2872 NewRHS = DAG.getConstant(0, SDLoc(N), NewLHS.getValueType()); 2873 CCCode = ISD::SETNE; 2874 } 2875 2876 // Update N to have the operands specified. 2877 return SDValue(DAG.UpdateNodeOperands(N, NewLHS, NewRHS, 2878 N->getOperand(2), N->getOperand(3), 2879 DAG.getCondCode(CCCode)), 0); 2880 } 2881 2882 SDValue DAGTypeLegalizer::ExpandIntOp_SETCC(SDNode *N) { 2883 SDValue NewLHS = N->getOperand(0), NewRHS = N->getOperand(1); 2884 ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(2))->get(); 2885 IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, SDLoc(N)); 2886 2887 // If ExpandSetCCOperands returned a scalar, use it. 2888 if (!NewRHS.getNode()) { 2889 assert(NewLHS.getValueType() == N->getValueType(0) && 2890 "Unexpected setcc expansion!"); 2891 return NewLHS; 2892 } 2893 2894 // Otherwise, update N to have the operands specified. 2895 return SDValue(DAG.UpdateNodeOperands(N, NewLHS, NewRHS, 2896 DAG.getCondCode(CCCode)), 0); 2897 } 2898 2899 SDValue DAGTypeLegalizer::ExpandIntOp_SETCCE(SDNode *N) { 2900 SDValue LHS = N->getOperand(0); 2901 SDValue RHS = N->getOperand(1); 2902 SDValue Carry = N->getOperand(2); 2903 SDValue Cond = N->getOperand(3); 2904 SDLoc dl = SDLoc(N); 2905 2906 SDValue LHSLo, LHSHi, RHSLo, RHSHi; 2907 GetExpandedInteger(LHS, LHSLo, LHSHi); 2908 GetExpandedInteger(RHS, RHSLo, RHSHi); 2909 2910 // Expand to a SUBE for the low part and a smaller SETCCE for the high. 2911 SDVTList VTList = DAG.getVTList(LHSLo.getValueType(), MVT::Glue); 2912 SDValue LowCmp = DAG.getNode(ISD::SUBE, dl, VTList, LHSLo, RHSLo, Carry); 2913 return DAG.getNode(ISD::SETCCE, dl, N->getValueType(0), LHSHi, RHSHi, 2914 LowCmp.getValue(1), Cond); 2915 } 2916 2917 SDValue DAGTypeLegalizer::ExpandIntOp_Shift(SDNode *N) { 2918 // The value being shifted is legal, but the shift amount is too big. 2919 // It follows that either the result of the shift is undefined, or the 2920 // upper half of the shift amount is zero. Just use the lower half. 2921 SDValue Lo, Hi; 2922 GetExpandedInteger(N->getOperand(1), Lo, Hi); 2923 return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), Lo), 0); 2924 } 2925 2926 SDValue DAGTypeLegalizer::ExpandIntOp_RETURNADDR(SDNode *N) { 2927 // The argument of RETURNADDR / FRAMEADDR builtin is 32 bit contant. This 2928 // surely makes pretty nice problems on 8/16 bit targets. Just truncate this 2929 // constant to valid type. 2930 SDValue Lo, Hi; 2931 GetExpandedInteger(N->getOperand(0), Lo, Hi); 2932 return SDValue(DAG.UpdateNodeOperands(N, Lo), 0); 2933 } 2934 2935 SDValue DAGTypeLegalizer::ExpandIntOp_SINT_TO_FP(SDNode *N) { 2936 SDValue Op = N->getOperand(0); 2937 EVT DstVT = N->getValueType(0); 2938 RTLIB::Libcall LC = RTLIB::getSINTTOFP(Op.getValueType(), DstVT); 2939 assert(LC != RTLIB::UNKNOWN_LIBCALL && 2940 "Don't know how to expand this SINT_TO_FP!"); 2941 return TLI.makeLibCall(DAG, LC, DstVT, Op, true, SDLoc(N)).first; 2942 } 2943 2944 SDValue DAGTypeLegalizer::ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo) { 2945 if (ISD::isNormalStore(N)) 2946 return ExpandOp_NormalStore(N, OpNo); 2947 2948 assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!"); 2949 assert(OpNo == 1 && "Can only expand the stored value so far"); 2950 2951 EVT VT = N->getOperand(1).getValueType(); 2952 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); 2953 SDValue Ch = N->getChain(); 2954 SDValue Ptr = N->getBasePtr(); 2955 unsigned Alignment = N->getAlignment(); 2956 bool isVolatile = N->isVolatile(); 2957 bool isNonTemporal = N->isNonTemporal(); 2958 AAMDNodes AAInfo = N->getAAInfo(); 2959 SDLoc dl(N); 2960 SDValue Lo, Hi; 2961 2962 assert(NVT.isByteSized() && "Expanded type not byte sized!"); 2963 2964 if (N->getMemoryVT().bitsLE(NVT)) { 2965 GetExpandedInteger(N->getValue(), Lo, Hi); 2966 return DAG.getTruncStore(Ch, dl, Lo, Ptr, N->getPointerInfo(), 2967 N->getMemoryVT(), isVolatile, isNonTemporal, 2968 Alignment, AAInfo); 2969 } 2970 2971 if (DAG.getDataLayout().isLittleEndian()) { 2972 // Little-endian - low bits are at low addresses. 2973 GetExpandedInteger(N->getValue(), Lo, Hi); 2974 2975 Lo = DAG.getStore(Ch, dl, Lo, Ptr, N->getPointerInfo(), 2976 isVolatile, isNonTemporal, Alignment, AAInfo); 2977 2978 unsigned ExcessBits = 2979 N->getMemoryVT().getSizeInBits() - NVT.getSizeInBits(); 2980 EVT NEVT = EVT::getIntegerVT(*DAG.getContext(), ExcessBits); 2981 2982 // Increment the pointer to the other half. 2983 unsigned IncrementSize = NVT.getSizeInBits()/8; 2984 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 2985 DAG.getConstant(IncrementSize, dl, Ptr.getValueType())); 2986 Hi = DAG.getTruncStore(Ch, dl, Hi, Ptr, 2987 N->getPointerInfo().getWithOffset(IncrementSize), 2988 NEVT, isVolatile, isNonTemporal, 2989 MinAlign(Alignment, IncrementSize), AAInfo); 2990 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 2991 } 2992 2993 // Big-endian - high bits are at low addresses. Favor aligned stores at 2994 // the cost of some bit-fiddling. 2995 GetExpandedInteger(N->getValue(), Lo, Hi); 2996 2997 EVT ExtVT = N->getMemoryVT(); 2998 unsigned EBytes = ExtVT.getStoreSize(); 2999 unsigned IncrementSize = NVT.getSizeInBits()/8; 3000 unsigned ExcessBits = (EBytes - IncrementSize)*8; 3001 EVT HiVT = EVT::getIntegerVT(*DAG.getContext(), 3002 ExtVT.getSizeInBits() - ExcessBits); 3003 3004 if (ExcessBits < NVT.getSizeInBits()) { 3005 // Transfer high bits from the top of Lo to the bottom of Hi. 3006 Hi = DAG.getNode(ISD::SHL, dl, NVT, Hi, 3007 DAG.getConstant(NVT.getSizeInBits() - ExcessBits, dl, 3008 TLI.getPointerTy(DAG.getDataLayout()))); 3009 Hi = DAG.getNode( 3010 ISD::OR, dl, NVT, Hi, 3011 DAG.getNode(ISD::SRL, dl, NVT, Lo, 3012 DAG.getConstant(ExcessBits, dl, 3013 TLI.getPointerTy(DAG.getDataLayout())))); 3014 } 3015 3016 // Store both the high bits and maybe some of the low bits. 3017 Hi = DAG.getTruncStore(Ch, dl, Hi, Ptr, N->getPointerInfo(), 3018 HiVT, isVolatile, isNonTemporal, Alignment, AAInfo); 3019 3020 // Increment the pointer to the other half. 3021 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 3022 DAG.getConstant(IncrementSize, dl, Ptr.getValueType())); 3023 // Store the lowest ExcessBits bits in the second half. 3024 Lo = DAG.getTruncStore(Ch, dl, Lo, Ptr, 3025 N->getPointerInfo().getWithOffset(IncrementSize), 3026 EVT::getIntegerVT(*DAG.getContext(), ExcessBits), 3027 isVolatile, isNonTemporal, 3028 MinAlign(Alignment, IncrementSize), AAInfo); 3029 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 3030 } 3031 3032 SDValue DAGTypeLegalizer::ExpandIntOp_TRUNCATE(SDNode *N) { 3033 SDValue InL, InH; 3034 GetExpandedInteger(N->getOperand(0), InL, InH); 3035 // Just truncate the low part of the source. 3036 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), N->getValueType(0), InL); 3037 } 3038 3039 SDValue DAGTypeLegalizer::ExpandIntOp_UINT_TO_FP(SDNode *N) { 3040 SDValue Op = N->getOperand(0); 3041 EVT SrcVT = Op.getValueType(); 3042 EVT DstVT = N->getValueType(0); 3043 SDLoc dl(N); 3044 3045 // The following optimization is valid only if every value in SrcVT (when 3046 // treated as signed) is representable in DstVT. Check that the mantissa 3047 // size of DstVT is >= than the number of bits in SrcVT -1. 3048 const fltSemantics &sem = DAG.EVTToAPFloatSemantics(DstVT); 3049 if (APFloat::semanticsPrecision(sem) >= SrcVT.getSizeInBits()-1 && 3050 TLI.getOperationAction(ISD::SINT_TO_FP, SrcVT) == TargetLowering::Custom){ 3051 // Do a signed conversion then adjust the result. 3052 SDValue SignedConv = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Op); 3053 SignedConv = TLI.LowerOperation(SignedConv, DAG); 3054 3055 // The result of the signed conversion needs adjusting if the 'sign bit' of 3056 // the incoming integer was set. To handle this, we dynamically test to see 3057 // if it is set, and, if so, add a fudge factor. 3058 3059 const uint64_t F32TwoE32 = 0x4F800000ULL; 3060 const uint64_t F32TwoE64 = 0x5F800000ULL; 3061 const uint64_t F32TwoE128 = 0x7F800000ULL; 3062 3063 APInt FF(32, 0); 3064 if (SrcVT == MVT::i32) 3065 FF = APInt(32, F32TwoE32); 3066 else if (SrcVT == MVT::i64) 3067 FF = APInt(32, F32TwoE64); 3068 else if (SrcVT == MVT::i128) 3069 FF = APInt(32, F32TwoE128); 3070 else 3071 llvm_unreachable("Unsupported UINT_TO_FP!"); 3072 3073 // Check whether the sign bit is set. 3074 SDValue Lo, Hi; 3075 GetExpandedInteger(Op, Lo, Hi); 3076 SDValue SignSet = DAG.getSetCC(dl, 3077 getSetCCResultType(Hi.getValueType()), 3078 Hi, 3079 DAG.getConstant(0, dl, Hi.getValueType()), 3080 ISD::SETLT); 3081 3082 // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits. 3083 SDValue FudgePtr = 3084 DAG.getConstantPool(ConstantInt::get(*DAG.getContext(), FF.zext(64)), 3085 TLI.getPointerTy(DAG.getDataLayout())); 3086 3087 // Get a pointer to FF if the sign bit was set, or to 0 otherwise. 3088 SDValue Zero = DAG.getIntPtrConstant(0, dl); 3089 SDValue Four = DAG.getIntPtrConstant(4, dl); 3090 if (DAG.getDataLayout().isBigEndian()) 3091 std::swap(Zero, Four); 3092 SDValue Offset = DAG.getSelect(dl, Zero.getValueType(), SignSet, 3093 Zero, Four); 3094 unsigned Alignment = cast<ConstantPoolSDNode>(FudgePtr)->getAlignment(); 3095 FudgePtr = DAG.getNode(ISD::ADD, dl, FudgePtr.getValueType(), 3096 FudgePtr, Offset); 3097 Alignment = std::min(Alignment, 4u); 3098 3099 // Load the value out, extending it from f32 to the destination float type. 3100 // FIXME: Avoid the extend by constructing the right constant pool? 3101 SDValue Fudge = DAG.getExtLoad( 3102 ISD::EXTLOAD, dl, DstVT, DAG.getEntryNode(), FudgePtr, 3103 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, 3104 false, false, false, Alignment); 3105 return DAG.getNode(ISD::FADD, dl, DstVT, SignedConv, Fudge); 3106 } 3107 3108 // Otherwise, use a libcall. 3109 RTLIB::Libcall LC = RTLIB::getUINTTOFP(SrcVT, DstVT); 3110 assert(LC != RTLIB::UNKNOWN_LIBCALL && 3111 "Don't know how to expand this UINT_TO_FP!"); 3112 return TLI.makeLibCall(DAG, LC, DstVT, Op, true, dl).first; 3113 } 3114 3115 SDValue DAGTypeLegalizer::ExpandIntOp_ATOMIC_STORE(SDNode *N) { 3116 SDLoc dl(N); 3117 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, 3118 cast<AtomicSDNode>(N)->getMemoryVT(), 3119 N->getOperand(0), 3120 N->getOperand(1), N->getOperand(2), 3121 cast<AtomicSDNode>(N)->getMemOperand(), 3122 cast<AtomicSDNode>(N)->getOrdering(), 3123 cast<AtomicSDNode>(N)->getSynchScope()); 3124 return Swap.getValue(1); 3125 } 3126 3127 3128 SDValue DAGTypeLegalizer::PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N) { 3129 SDValue InOp0 = N->getOperand(0); 3130 EVT InVT = InOp0.getValueType(); 3131 3132 EVT OutVT = N->getValueType(0); 3133 EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT); 3134 assert(NOutVT.isVector() && "This type must be promoted to a vector type"); 3135 unsigned OutNumElems = OutVT.getVectorNumElements(); 3136 EVT NOutVTElem = NOutVT.getVectorElementType(); 3137 3138 SDLoc dl(N); 3139 SDValue BaseIdx = N->getOperand(1); 3140 3141 SmallVector<SDValue, 8> Ops; 3142 Ops.reserve(OutNumElems); 3143 for (unsigned i = 0; i != OutNumElems; ++i) { 3144 3145 // Extract the element from the original vector. 3146 SDValue Index = DAG.getNode(ISD::ADD, dl, BaseIdx.getValueType(), 3147 BaseIdx, DAG.getConstant(i, dl, BaseIdx.getValueType())); 3148 SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 3149 InVT.getVectorElementType(), N->getOperand(0), Index); 3150 3151 SDValue Op = DAG.getNode(ISD::ANY_EXTEND, dl, NOutVTElem, Ext); 3152 // Insert the converted element to the new vector. 3153 Ops.push_back(Op); 3154 } 3155 3156 return DAG.getNode(ISD::BUILD_VECTOR, dl, NOutVT, Ops); 3157 } 3158 3159 3160 SDValue DAGTypeLegalizer::PromoteIntRes_VECTOR_SHUFFLE(SDNode *N) { 3161 ShuffleVectorSDNode *SV = cast<ShuffleVectorSDNode>(N); 3162 EVT VT = N->getValueType(0); 3163 SDLoc dl(N); 3164 3165 ArrayRef<int> NewMask = SV->getMask().slice(0, VT.getVectorNumElements()); 3166 3167 SDValue V0 = GetPromotedInteger(N->getOperand(0)); 3168 SDValue V1 = GetPromotedInteger(N->getOperand(1)); 3169 EVT OutVT = V0.getValueType(); 3170 3171 return DAG.getVectorShuffle(OutVT, dl, V0, V1, NewMask); 3172 } 3173 3174 3175 SDValue DAGTypeLegalizer::PromoteIntRes_BUILD_VECTOR(SDNode *N) { 3176 EVT OutVT = N->getValueType(0); 3177 EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT); 3178 assert(NOutVT.isVector() && "This type must be promoted to a vector type"); 3179 unsigned NumElems = N->getNumOperands(); 3180 EVT NOutVTElem = NOutVT.getVectorElementType(); 3181 3182 SDLoc dl(N); 3183 3184 SmallVector<SDValue, 8> Ops; 3185 Ops.reserve(NumElems); 3186 for (unsigned i = 0; i != NumElems; ++i) { 3187 SDValue Op; 3188 // BUILD_VECTOR integer operand types are allowed to be larger than the 3189 // result's element type. This may still be true after the promotion. For 3190 // example, we might be promoting (<v?i1> = BV <i32>, <i32>, ...) to 3191 // (v?i16 = BV <i32>, <i32>, ...), and we can't any_extend <i32> to <i16>. 3192 if (N->getOperand(i).getValueType().bitsLT(NOutVTElem)) 3193 Op = DAG.getNode(ISD::ANY_EXTEND, dl, NOutVTElem, N->getOperand(i)); 3194 else 3195 Op = N->getOperand(i); 3196 Ops.push_back(Op); 3197 } 3198 3199 return DAG.getNode(ISD::BUILD_VECTOR, dl, NOutVT, Ops); 3200 } 3201 3202 SDValue DAGTypeLegalizer::PromoteIntRes_SCALAR_TO_VECTOR(SDNode *N) { 3203 3204 SDLoc dl(N); 3205 3206 assert(!N->getOperand(0).getValueType().isVector() && 3207 "Input must be a scalar"); 3208 3209 EVT OutVT = N->getValueType(0); 3210 EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT); 3211 assert(NOutVT.isVector() && "This type must be promoted to a vector type"); 3212 EVT NOutVTElem = NOutVT.getVectorElementType(); 3213 3214 SDValue Op = DAG.getNode(ISD::ANY_EXTEND, dl, NOutVTElem, N->getOperand(0)); 3215 3216 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NOutVT, Op); 3217 } 3218 3219 SDValue DAGTypeLegalizer::PromoteIntRes_CONCAT_VECTORS(SDNode *N) { 3220 SDLoc dl(N); 3221 3222 EVT OutVT = N->getValueType(0); 3223 EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT); 3224 assert(NOutVT.isVector() && "This type must be promoted to a vector type"); 3225 3226 EVT InElemTy = OutVT.getVectorElementType(); 3227 EVT OutElemTy = NOutVT.getVectorElementType(); 3228 3229 unsigned NumElem = N->getOperand(0).getValueType().getVectorNumElements(); 3230 unsigned NumOutElem = NOutVT.getVectorNumElements(); 3231 unsigned NumOperands = N->getNumOperands(); 3232 assert(NumElem * NumOperands == NumOutElem && 3233 "Unexpected number of elements"); 3234 3235 // Take the elements from the first vector. 3236 SmallVector<SDValue, 8> Ops(NumOutElem); 3237 for (unsigned i = 0; i < NumOperands; ++i) { 3238 SDValue Op = N->getOperand(i); 3239 for (unsigned j = 0; j < NumElem; ++j) { 3240 SDValue Ext = DAG.getNode( 3241 ISD::EXTRACT_VECTOR_ELT, dl, InElemTy, Op, 3242 DAG.getConstant(j, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3243 Ops[i * NumElem + j] = DAG.getNode(ISD::ANY_EXTEND, dl, OutElemTy, Ext); 3244 } 3245 } 3246 3247 return DAG.getNode(ISD::BUILD_VECTOR, dl, NOutVT, Ops); 3248 } 3249 3250 SDValue DAGTypeLegalizer::PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N) { 3251 EVT OutVT = N->getValueType(0); 3252 EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT); 3253 assert(NOutVT.isVector() && "This type must be promoted to a vector type"); 3254 3255 EVT NOutVTElem = NOutVT.getVectorElementType(); 3256 3257 SDLoc dl(N); 3258 SDValue V0 = GetPromotedInteger(N->getOperand(0)); 3259 3260 SDValue ConvElem = DAG.getNode(ISD::ANY_EXTEND, dl, 3261 NOutVTElem, N->getOperand(1)); 3262 return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NOutVT, 3263 V0, ConvElem, N->getOperand(2)); 3264 } 3265 3266 SDValue DAGTypeLegalizer::PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N) { 3267 SDLoc dl(N); 3268 SDValue V0 = GetPromotedInteger(N->getOperand(0)); 3269 SDValue V1 = DAG.getZExtOrTrunc(N->getOperand(1), dl, 3270 TLI.getVectorIdxTy(DAG.getDataLayout())); 3271 SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 3272 V0->getValueType(0).getScalarType(), V0, V1); 3273 3274 // EXTRACT_VECTOR_ELT can return types which are wider than the incoming 3275 // element types. If this is the case then we need to expand the outgoing 3276 // value and not truncate it. 3277 return DAG.getAnyExtOrTrunc(Ext, dl, N->getValueType(0)); 3278 } 3279 3280 SDValue DAGTypeLegalizer::PromoteIntOp_EXTRACT_SUBVECTOR(SDNode *N) { 3281 SDLoc dl(N); 3282 SDValue V0 = GetPromotedInteger(N->getOperand(0)); 3283 MVT InVT = V0.getValueType().getSimpleVT(); 3284 MVT OutVT = MVT::getVectorVT(InVT.getVectorElementType(), 3285 N->getValueType(0).getVectorNumElements()); 3286 SDValue Ext = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OutVT, V0, N->getOperand(1)); 3287 return DAG.getNode(ISD::TRUNCATE, dl, N->getValueType(0), Ext); 3288 } 3289 3290 SDValue DAGTypeLegalizer::PromoteIntOp_CONCAT_VECTORS(SDNode *N) { 3291 SDLoc dl(N); 3292 unsigned NumElems = N->getNumOperands(); 3293 3294 EVT RetSclrTy = N->getValueType(0).getVectorElementType(); 3295 3296 SmallVector<SDValue, 8> NewOps; 3297 NewOps.reserve(NumElems); 3298 3299 // For each incoming vector 3300 for (unsigned VecIdx = 0; VecIdx != NumElems; ++VecIdx) { 3301 SDValue Incoming = GetPromotedInteger(N->getOperand(VecIdx)); 3302 EVT SclrTy = Incoming->getValueType(0).getVectorElementType(); 3303 unsigned NumElem = Incoming->getValueType(0).getVectorNumElements(); 3304 3305 for (unsigned i=0; i<NumElem; ++i) { 3306 // Extract element from incoming vector 3307 SDValue Ex = DAG.getNode( 3308 ISD::EXTRACT_VECTOR_ELT, dl, SclrTy, Incoming, 3309 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3310 SDValue Tr = DAG.getNode(ISD::TRUNCATE, dl, RetSclrTy, Ex); 3311 NewOps.push_back(Tr); 3312 } 3313 } 3314 3315 return DAG.getNode(ISD::BUILD_VECTOR, dl, N->getValueType(0), NewOps); 3316 } 3317