1 //===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// This file describes how to lower LLVM code to machine code. This has two 12 /// main components: 13 /// 14 /// 1. Which ValueTypes are natively supported by the target. 15 /// 2. Which operations are supported for supported ValueTypes. 16 /// 3. Cost thresholds for alternative implementations of certain operations. 17 /// 18 /// In addition it has a few other components, like information about FP 19 /// immediates. 20 /// 21 //===----------------------------------------------------------------------===// 22 23 #ifndef LLVM_TARGET_TARGETLOWERING_H 24 #define LLVM_TARGET_TARGETLOWERING_H 25 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/CodeGen/DAGCombine.h" 28 #include "llvm/CodeGen/RuntimeLibcalls.h" 29 #include "llvm/CodeGen/SelectionDAGNodes.h" 30 #include "llvm/IR/Attributes.h" 31 #include "llvm/IR/CallSite.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/InlineAsm.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/MC/MCRegisterInfo.h" 37 #include "llvm/Target/TargetCallingConv.h" 38 #include "llvm/Target/TargetMachine.h" 39 #include <climits> 40 #include <map> 41 #include <vector> 42 43 namespace llvm { 44 class CallInst; 45 class CCState; 46 class FastISel; 47 class FunctionLoweringInfo; 48 class ImmutableCallSite; 49 class IntrinsicInst; 50 class MachineBasicBlock; 51 class MachineFunction; 52 class MachineInstr; 53 class MachineJumpTableInfo; 54 class MachineLoop; 55 class Mangler; 56 class MCContext; 57 class MCExpr; 58 class MCSymbol; 59 template<typename T> class SmallVectorImpl; 60 class DataLayout; 61 class TargetRegisterClass; 62 class TargetLibraryInfo; 63 class TargetLoweringObjectFile; 64 class Value; 65 66 namespace Sched { 67 enum Preference { 68 None, // No preference 69 Source, // Follow source order. 70 RegPressure, // Scheduling for lowest register pressure. 71 Hybrid, // Scheduling for both latency and register pressure. 72 ILP, // Scheduling for ILP in low register pressure mode. 73 VLIW // Scheduling for VLIW targets. 74 }; 75 } 76 77 /// This base class for TargetLowering contains the SelectionDAG-independent 78 /// parts that can be used from the rest of CodeGen. 79 class TargetLoweringBase { 80 TargetLoweringBase(const TargetLoweringBase&) = delete; 81 void operator=(const TargetLoweringBase&) = delete; 82 83 public: 84 /// This enum indicates whether operations are valid for a target, and if not, 85 /// what action should be used to make them valid. 86 enum LegalizeAction : uint8_t { 87 Legal, // The target natively supports this operation. 88 Promote, // This operation should be executed in a larger type. 89 Expand, // Try to expand this to other ops, otherwise use a libcall. 90 LibCall, // Don't try to expand this to other ops, always use a libcall. 91 Custom // Use the LowerOperation hook to implement custom lowering. 92 }; 93 94 /// This enum indicates whether a types are legal for a target, and if not, 95 /// what action should be used to make them valid. 96 enum LegalizeTypeAction : uint8_t { 97 TypeLegal, // The target natively supports this type. 98 TypePromoteInteger, // Replace this integer with a larger one. 99 TypeExpandInteger, // Split this integer into two of half the size. 100 TypeSoftenFloat, // Convert this float to a same size integer type, 101 // if an operation is not supported in target HW. 102 TypeExpandFloat, // Split this float into two of half the size. 103 TypeScalarizeVector, // Replace this one-element vector with its element. 104 TypeSplitVector, // Split this vector into two of half the size. 105 TypeWidenVector, // This vector should be widened into a larger vector. 106 TypePromoteFloat // Replace this float with a larger one. 107 }; 108 109 /// LegalizeKind holds the legalization kind that needs to happen to EVT 110 /// in order to type-legalize it. 111 typedef std::pair<LegalizeTypeAction, EVT> LegalizeKind; 112 113 /// Enum that describes how the target represents true/false values. 114 enum BooleanContent { 115 UndefinedBooleanContent, // Only bit 0 counts, the rest can hold garbage. 116 ZeroOrOneBooleanContent, // All bits zero except for bit 0. 117 ZeroOrNegativeOneBooleanContent // All bits equal to bit 0. 118 }; 119 120 /// Enum that describes what type of support for selects the target has. 121 enum SelectSupportKind { 122 ScalarValSelect, // The target supports scalar selects (ex: cmov). 123 ScalarCondVectorVal, // The target supports selects with a scalar condition 124 // and vector values (ex: cmov). 125 VectorMaskSelect // The target supports vector selects with a vector 126 // mask (ex: x86 blends). 127 }; 128 129 /// Enum that specifies what an atomic load/AtomicRMWInst is expanded 130 /// to, if at all. Exists because different targets have different levels of 131 /// support for these atomic instructions, and also have different options 132 /// w.r.t. what they should expand to. 133 enum class AtomicExpansionKind { 134 None, // Don't expand the instruction. 135 LLSC, // Expand the instruction into loadlinked/storeconditional; used 136 // by ARM/AArch64. 137 LLOnly, // Expand the (load) instruction into just a load-linked, which has 138 // greater atomic guarantees than a normal load. 139 CmpXChg, // Expand the instruction into cmpxchg; used by at least X86. 140 }; 141 142 static ISD::NodeType getExtendForContent(BooleanContent Content) { 143 switch (Content) { 144 case UndefinedBooleanContent: 145 // Extend by adding rubbish bits. 146 return ISD::ANY_EXTEND; 147 case ZeroOrOneBooleanContent: 148 // Extend by adding zero bits. 149 return ISD::ZERO_EXTEND; 150 case ZeroOrNegativeOneBooleanContent: 151 // Extend by copying the sign bit. 152 return ISD::SIGN_EXTEND; 153 } 154 llvm_unreachable("Invalid content kind"); 155 } 156 157 /// NOTE: The TargetMachine owns TLOF. 158 explicit TargetLoweringBase(const TargetMachine &TM); 159 virtual ~TargetLoweringBase() {} 160 161 protected: 162 /// \brief Initialize all of the actions to default values. 163 void initActions(); 164 165 public: 166 const TargetMachine &getTargetMachine() const { return TM; } 167 168 virtual bool useSoftFloat() const { return false; } 169 170 /// Return the pointer type for the given address space, defaults to 171 /// the pointer type from the data layout. 172 /// FIXME: The default needs to be removed once all the code is updated. 173 MVT getPointerTy(const DataLayout &DL, uint32_t AS = 0) const { 174 return MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 175 } 176 177 /// EVT is not used in-tree, but is used by out-of-tree target. 178 /// A documentation for this function would be nice... 179 virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const; 180 181 EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const; 182 183 /// Returns the type to be used for the index operand of: 184 /// ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT, 185 /// ISD::INSERT_SUBVECTOR, and ISD::EXTRACT_SUBVECTOR 186 virtual MVT getVectorIdxTy(const DataLayout &DL) const { 187 return getPointerTy(DL); 188 } 189 190 /// Return true if the select operation is expensive for this target. 191 bool isSelectExpensive() const { return SelectIsExpensive; } 192 193 virtual bool isSelectSupported(SelectSupportKind /*kind*/) const { 194 return true; 195 } 196 197 /// Return true if multiple condition registers are available. 198 bool hasMultipleConditionRegisters() const { 199 return HasMultipleConditionRegisters; 200 } 201 202 /// Return true if the target has BitExtract instructions. 203 bool hasExtractBitsInsn() const { return HasExtractBitsInsn; } 204 205 /// Return the preferred vector type legalization action. 206 virtual TargetLoweringBase::LegalizeTypeAction 207 getPreferredVectorAction(EVT VT) const { 208 // The default action for one element vectors is to scalarize 209 if (VT.getVectorNumElements() == 1) 210 return TypeScalarizeVector; 211 // The default action for other vectors is to promote 212 return TypePromoteInteger; 213 } 214 215 // There are two general methods for expanding a BUILD_VECTOR node: 216 // 1. Use SCALAR_TO_VECTOR on the defined scalar values and then shuffle 217 // them together. 218 // 2. Build the vector on the stack and then load it. 219 // If this function returns true, then method (1) will be used, subject to 220 // the constraint that all of the necessary shuffles are legal (as determined 221 // by isShuffleMaskLegal). If this function returns false, then method (2) is 222 // always used. The vector type, and the number of defined values, are 223 // provided. 224 virtual bool 225 shouldExpandBuildVectorWithShuffles(EVT /* VT */, 226 unsigned DefinedValues) const { 227 return DefinedValues < 3; 228 } 229 230 /// Return true if integer divide is usually cheaper than a sequence of 231 /// several shifts, adds, and multiplies for this target. 232 /// The definition of "cheaper" may depend on whether we're optimizing 233 /// for speed or for size. 234 virtual bool isIntDivCheap(EVT VT, AttributeSet Attr) const { 235 return false; 236 } 237 238 /// Return true if sqrt(x) is as cheap or cheaper than 1 / rsqrt(x) 239 bool isFsqrtCheap() const { 240 return FsqrtIsCheap; 241 } 242 243 /// Returns true if target has indicated at least one type should be bypassed. 244 bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); } 245 246 /// Returns map of slow types for division or remainder with corresponding 247 /// fast types 248 const DenseMap<unsigned int, unsigned int> &getBypassSlowDivWidths() const { 249 return BypassSlowDivWidths; 250 } 251 252 /// Return true if Flow Control is an expensive operation that should be 253 /// avoided. 254 bool isJumpExpensive() const { return JumpIsExpensive; } 255 256 /// Return true if selects are only cheaper than branches if the branch is 257 /// unlikely to be predicted right. 258 bool isPredictableSelectExpensive() const { 259 return PredictableSelectIsExpensive; 260 } 261 262 /// isLoadBitCastBeneficial() - Return true if the following transform 263 /// is beneficial. 264 /// fold (conv (load x)) -> (load (conv*)x) 265 /// On architectures that don't natively support some vector loads 266 /// efficiently, casting the load to a smaller vector of larger types and 267 /// loading is more efficient, however, this can be undone by optimizations in 268 /// dag combiner. 269 virtual bool isLoadBitCastBeneficial(EVT /* Load */, 270 EVT /* Bitcast */) const { 271 return true; 272 } 273 274 /// Return true if it is expected to be cheaper to do a store of a non-zero 275 /// vector constant with the given size and type for the address space than to 276 /// store the individual scalar element constants. 277 virtual bool storeOfVectorConstantIsCheap(EVT MemVT, 278 unsigned NumElem, 279 unsigned AddrSpace) const { 280 return false; 281 } 282 283 /// \brief Return true if it is cheap to speculate a call to intrinsic cttz. 284 virtual bool isCheapToSpeculateCttz() const { 285 return false; 286 } 287 288 /// \brief Return true if it is cheap to speculate a call to intrinsic ctlz. 289 virtual bool isCheapToSpeculateCtlz() const { 290 return false; 291 } 292 293 /// \brief Return if the target supports combining a 294 /// chain like: 295 /// \code 296 /// %andResult = and %val1, #imm-with-one-bit-set; 297 /// %icmpResult = icmp %andResult, 0 298 /// br i1 %icmpResult, label %dest1, label %dest2 299 /// \endcode 300 /// into a single machine instruction of a form like: 301 /// \code 302 /// brOnBitSet %register, #bitNumber, dest 303 /// \endcode 304 bool isMaskAndBranchFoldingLegal() const { 305 return MaskAndBranchFoldingIsLegal; 306 } 307 308 /// \brief Return true if the target wants to use the optimization that 309 /// turns ext(promotableInst1(...(promotableInstN(load)))) into 310 /// promotedInst1(...(promotedInstN(ext(load)))). 311 bool enableExtLdPromotion() const { return EnableExtLdPromotion; } 312 313 /// Return true if the target can combine store(extractelement VectorTy, 314 /// Idx). 315 /// \p Cost[out] gives the cost of that transformation when this is true. 316 virtual bool canCombineStoreAndExtract(Type *VectorTy, Value *Idx, 317 unsigned &Cost) const { 318 return false; 319 } 320 321 /// Return true if target supports floating point exceptions. 322 bool hasFloatingPointExceptions() const { 323 return HasFloatingPointExceptions; 324 } 325 326 /// Return true if target always beneficiates from combining into FMA for a 327 /// given value type. This must typically return false on targets where FMA 328 /// takes more cycles to execute than FADD. 329 virtual bool enableAggressiveFMAFusion(EVT VT) const { 330 return false; 331 } 332 333 /// Return the ValueType of the result of SETCC operations. 334 virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, 335 EVT VT) const; 336 337 /// Return the ValueType for comparison libcalls. Comparions libcalls include 338 /// floating point comparion calls, and Ordered/Unordered check calls on 339 /// floating point numbers. 340 virtual 341 MVT::SimpleValueType getCmpLibcallReturnType() const; 342 343 /// For targets without i1 registers, this gives the nature of the high-bits 344 /// of boolean values held in types wider than i1. 345 /// 346 /// "Boolean values" are special true/false values produced by nodes like 347 /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND. 348 /// Not to be confused with general values promoted from i1. Some cpus 349 /// distinguish between vectors of boolean and scalars; the isVec parameter 350 /// selects between the two kinds. For example on X86 a scalar boolean should 351 /// be zero extended from i1, while the elements of a vector of booleans 352 /// should be sign extended from i1. 353 /// 354 /// Some cpus also treat floating point types the same way as they treat 355 /// vectors instead of the way they treat scalars. 356 BooleanContent getBooleanContents(bool isVec, bool isFloat) const { 357 if (isVec) 358 return BooleanVectorContents; 359 return isFloat ? BooleanFloatContents : BooleanContents; 360 } 361 362 BooleanContent getBooleanContents(EVT Type) const { 363 return getBooleanContents(Type.isVector(), Type.isFloatingPoint()); 364 } 365 366 /// Return target scheduling preference. 367 Sched::Preference getSchedulingPreference() const { 368 return SchedPreferenceInfo; 369 } 370 371 /// Some scheduler, e.g. hybrid, can switch to different scheduling heuristics 372 /// for different nodes. This function returns the preference (or none) for 373 /// the given node. 374 virtual Sched::Preference getSchedulingPreference(SDNode *) const { 375 return Sched::None; 376 } 377 378 /// Return the register class that should be used for the specified value 379 /// type. 380 virtual const TargetRegisterClass *getRegClassFor(MVT VT) const { 381 const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy]; 382 assert(RC && "This value type is not natively supported!"); 383 return RC; 384 } 385 386 /// Return the 'representative' register class for the specified value 387 /// type. 388 /// 389 /// The 'representative' register class is the largest legal super-reg 390 /// register class for the register class of the value type. For example, on 391 /// i386 the rep register class for i8, i16, and i32 are GR32; while the rep 392 /// register class is GR64 on x86_64. 393 virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const { 394 const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy]; 395 return RC; 396 } 397 398 /// Return the cost of the 'representative' register class for the specified 399 /// value type. 400 virtual uint8_t getRepRegClassCostFor(MVT VT) const { 401 return RepRegClassCostForVT[VT.SimpleTy]; 402 } 403 404 /// Return true if the target has native support for the specified value type. 405 /// This means that it has a register that directly holds it without 406 /// promotions or expansions. 407 bool isTypeLegal(EVT VT) const { 408 assert(!VT.isSimple() || 409 (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT)); 410 return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != nullptr; 411 } 412 413 class ValueTypeActionImpl { 414 /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum 415 /// that indicates how instruction selection should deal with the type. 416 LegalizeTypeAction ValueTypeActions[MVT::LAST_VALUETYPE]; 417 418 public: 419 ValueTypeActionImpl() { 420 std::fill(std::begin(ValueTypeActions), std::end(ValueTypeActions), 421 TypeLegal); 422 } 423 424 LegalizeTypeAction getTypeAction(MVT VT) const { 425 return ValueTypeActions[VT.SimpleTy]; 426 } 427 428 void setTypeAction(MVT VT, LegalizeTypeAction Action) { 429 ValueTypeActions[VT.SimpleTy] = Action; 430 } 431 }; 432 433 const ValueTypeActionImpl &getValueTypeActions() const { 434 return ValueTypeActions; 435 } 436 437 /// Return how we should legalize values of this type, either it is already 438 /// legal (return 'Legal') or we need to promote it to a larger type (return 439 /// 'Promote'), or we need to expand it into multiple registers of smaller 440 /// integer type (return 'Expand'). 'Custom' is not an option. 441 LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const { 442 return getTypeConversion(Context, VT).first; 443 } 444 LegalizeTypeAction getTypeAction(MVT VT) const { 445 return ValueTypeActions.getTypeAction(VT); 446 } 447 448 /// For types supported by the target, this is an identity function. For 449 /// types that must be promoted to larger types, this returns the larger type 450 /// to promote to. For integer types that are larger than the largest integer 451 /// register, this contains one step in the expansion to get to the smaller 452 /// register. For illegal floating point types, this returns the integer type 453 /// to transform to. 454 EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const { 455 return getTypeConversion(Context, VT).second; 456 } 457 458 /// For types supported by the target, this is an identity function. For 459 /// types that must be expanded (i.e. integer types that are larger than the 460 /// largest integer register or illegal floating point types), this returns 461 /// the largest legal type it will be expanded to. 462 EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const { 463 assert(!VT.isVector()); 464 while (true) { 465 switch (getTypeAction(Context, VT)) { 466 case TypeLegal: 467 return VT; 468 case TypeExpandInteger: 469 VT = getTypeToTransformTo(Context, VT); 470 break; 471 default: 472 llvm_unreachable("Type is not legal nor is it to be expanded!"); 473 } 474 } 475 } 476 477 /// Vector types are broken down into some number of legal first class types. 478 /// For example, EVT::v8f32 maps to 2 EVT::v4f32 with Altivec or SSE1, or 8 479 /// promoted EVT::f64 values with the X86 FP stack. Similarly, EVT::v2i64 480 /// turns into 4 EVT::i32 values with both PPC and X86. 481 /// 482 /// This method returns the number of registers needed, and the VT for each 483 /// register. It also returns the VT and quantity of the intermediate values 484 /// before they are promoted/expanded. 485 unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT, 486 EVT &IntermediateVT, 487 unsigned &NumIntermediates, 488 MVT &RegisterVT) const; 489 490 struct IntrinsicInfo { 491 unsigned opc; // target opcode 492 EVT memVT; // memory VT 493 const Value* ptrVal; // value representing memory location 494 int offset; // offset off of ptrVal 495 unsigned size; // the size of the memory location 496 // (taken from memVT if zero) 497 unsigned align; // alignment 498 bool vol; // is volatile? 499 bool readMem; // reads memory? 500 bool writeMem; // writes memory? 501 502 IntrinsicInfo() : opc(0), ptrVal(nullptr), offset(0), size(0), align(1), 503 vol(false), readMem(false), writeMem(false) {} 504 }; 505 506 /// Given an intrinsic, checks if on the target the intrinsic will need to map 507 /// to a MemIntrinsicNode (touches memory). If this is the case, it returns 508 /// true and store the intrinsic information into the IntrinsicInfo that was 509 /// passed to the function. 510 virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &, 511 unsigned /*Intrinsic*/) const { 512 return false; 513 } 514 515 /// Returns true if the target can instruction select the specified FP 516 /// immediate natively. If false, the legalizer will materialize the FP 517 /// immediate as a load from a constant pool. 518 virtual bool isFPImmLegal(const APFloat &/*Imm*/, EVT /*VT*/) const { 519 return false; 520 } 521 522 /// Targets can use this to indicate that they only support *some* 523 /// VECTOR_SHUFFLE operations, those with specific masks. By default, if a 524 /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to be 525 /// legal. 526 virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &/*Mask*/, 527 EVT /*VT*/) const { 528 return true; 529 } 530 531 /// Returns true if the operation can trap for the value type. 532 /// 533 /// VT must be a legal type. By default, we optimistically assume most 534 /// operations don't trap except for divide and remainder. 535 virtual bool canOpTrap(unsigned Op, EVT VT) const; 536 537 /// Similar to isShuffleMaskLegal. This is used by Targets can use this to 538 /// indicate if there is a suitable VECTOR_SHUFFLE that can be used to replace 539 /// a VAND with a constant pool entry. 540 virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &/*Mask*/, 541 EVT /*VT*/) const { 542 return false; 543 } 544 545 /// Return how this operation should be treated: either it is legal, needs to 546 /// be promoted to a larger size, needs to be expanded to some other code 547 /// sequence, or the target has a custom expander for it. 548 LegalizeAction getOperationAction(unsigned Op, EVT VT) const { 549 if (VT.isExtended()) return Expand; 550 // If a target-specific SDNode requires legalization, require the target 551 // to provide custom legalization for it. 552 if (Op > array_lengthof(OpActions[0])) return Custom; 553 return OpActions[(unsigned)VT.getSimpleVT().SimpleTy][Op]; 554 } 555 556 /// Return true if the specified operation is legal on this target or can be 557 /// made legal with custom lowering. This is used to help guide high-level 558 /// lowering decisions. 559 bool isOperationLegalOrCustom(unsigned Op, EVT VT) const { 560 return (VT == MVT::Other || isTypeLegal(VT)) && 561 (getOperationAction(Op, VT) == Legal || 562 getOperationAction(Op, VT) == Custom); 563 } 564 565 /// Return true if the specified operation is legal on this target or can be 566 /// made legal using promotion. This is used to help guide high-level lowering 567 /// decisions. 568 bool isOperationLegalOrPromote(unsigned Op, EVT VT) const { 569 return (VT == MVT::Other || isTypeLegal(VT)) && 570 (getOperationAction(Op, VT) == Legal || 571 getOperationAction(Op, VT) == Promote); 572 } 573 574 /// Return true if the specified operation is illegal on this target or 575 /// unlikely to be made legal with custom lowering. This is used to help guide 576 /// high-level lowering decisions. 577 bool isOperationExpand(unsigned Op, EVT VT) const { 578 return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand); 579 } 580 581 /// Return true if the specified operation is legal on this target. 582 bool isOperationLegal(unsigned Op, EVT VT) const { 583 return (VT == MVT::Other || isTypeLegal(VT)) && 584 getOperationAction(Op, VT) == Legal; 585 } 586 587 /// Return how this load with extension should be treated: either it is legal, 588 /// needs to be promoted to a larger size, needs to be expanded to some other 589 /// code sequence, or the target has a custom expander for it. 590 LegalizeAction getLoadExtAction(unsigned ExtType, EVT ValVT, 591 EVT MemVT) const { 592 if (ValVT.isExtended() || MemVT.isExtended()) return Expand; 593 unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy; 594 unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy; 595 assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValI < MVT::LAST_VALUETYPE && 596 MemI < MVT::LAST_VALUETYPE && "Table isn't big enough!"); 597 return LoadExtActions[ValI][MemI][ExtType]; 598 } 599 600 /// Return true if the specified load with extension is legal on this target. 601 bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const { 602 return ValVT.isSimple() && MemVT.isSimple() && 603 getLoadExtAction(ExtType, ValVT, MemVT) == Legal; 604 } 605 606 /// Return true if the specified load with extension is legal or custom 607 /// on this target. 608 bool isLoadExtLegalOrCustom(unsigned ExtType, EVT ValVT, EVT MemVT) const { 609 return ValVT.isSimple() && MemVT.isSimple() && 610 (getLoadExtAction(ExtType, ValVT, MemVT) == Legal || 611 getLoadExtAction(ExtType, ValVT, MemVT) == Custom); 612 } 613 614 /// Return how this store with truncation should be treated: either it is 615 /// legal, needs to be promoted to a larger size, needs to be expanded to some 616 /// other code sequence, or the target has a custom expander for it. 617 LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const { 618 if (ValVT.isExtended() || MemVT.isExtended()) return Expand; 619 unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy; 620 unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy; 621 assert(ValI < MVT::LAST_VALUETYPE && MemI < MVT::LAST_VALUETYPE && 622 "Table isn't big enough!"); 623 return TruncStoreActions[ValI][MemI]; 624 } 625 626 /// Return true if the specified store with truncation is legal on this 627 /// target. 628 bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const { 629 return isTypeLegal(ValVT) && MemVT.isSimple() && 630 getTruncStoreAction(ValVT.getSimpleVT(), MemVT.getSimpleVT()) == Legal; 631 } 632 633 /// Return how the indexed load should be treated: either it is legal, needs 634 /// to be promoted to a larger size, needs to be expanded to some other code 635 /// sequence, or the target has a custom expander for it. 636 LegalizeAction 637 getIndexedLoadAction(unsigned IdxMode, MVT VT) const { 638 assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() && 639 "Table isn't big enough!"); 640 unsigned Ty = (unsigned)VT.SimpleTy; 641 return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4); 642 } 643 644 /// Return true if the specified indexed load is legal on this target. 645 bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const { 646 return VT.isSimple() && 647 (getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal || 648 getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom); 649 } 650 651 /// Return how the indexed store should be treated: either it is legal, needs 652 /// to be promoted to a larger size, needs to be expanded to some other code 653 /// sequence, or the target has a custom expander for it. 654 LegalizeAction 655 getIndexedStoreAction(unsigned IdxMode, MVT VT) const { 656 assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() && 657 "Table isn't big enough!"); 658 unsigned Ty = (unsigned)VT.SimpleTy; 659 return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f); 660 } 661 662 /// Return true if the specified indexed load is legal on this target. 663 bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const { 664 return VT.isSimple() && 665 (getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal || 666 getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom); 667 } 668 669 /// Return how the condition code should be treated: either it is legal, needs 670 /// to be expanded to some other code sequence, or the target has a custom 671 /// expander for it. 672 LegalizeAction 673 getCondCodeAction(ISD::CondCode CC, MVT VT) const { 674 assert((unsigned)CC < array_lengthof(CondCodeActions) && 675 ((unsigned)VT.SimpleTy >> 4) < array_lengthof(CondCodeActions[0]) && 676 "Table isn't big enough!"); 677 // See setCondCodeAction for how this is encoded. 678 uint32_t Shift = 4 * (VT.SimpleTy & 0x7); 679 uint32_t Value = CondCodeActions[CC][VT.SimpleTy >> 3]; 680 LegalizeAction Action = (LegalizeAction) ((Value >> Shift) & 0xF); 681 assert(Action != Promote && "Can't promote condition code!"); 682 return Action; 683 } 684 685 /// Return true if the specified condition code is legal on this target. 686 bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const { 687 return 688 getCondCodeAction(CC, VT) == Legal || 689 getCondCodeAction(CC, VT) == Custom; 690 } 691 692 693 /// If the action for this operation is to promote, this method returns the 694 /// ValueType to promote to. 695 MVT getTypeToPromoteTo(unsigned Op, MVT VT) const { 696 assert(getOperationAction(Op, VT) == Promote && 697 "This operation isn't promoted!"); 698 699 // See if this has an explicit type specified. 700 std::map<std::pair<unsigned, MVT::SimpleValueType>, 701 MVT::SimpleValueType>::const_iterator PTTI = 702 PromoteToType.find(std::make_pair(Op, VT.SimpleTy)); 703 if (PTTI != PromoteToType.end()) return PTTI->second; 704 705 assert((VT.isInteger() || VT.isFloatingPoint()) && 706 "Cannot autopromote this type, add it with AddPromotedToType."); 707 708 MVT NVT = VT; 709 do { 710 NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1); 711 assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid && 712 "Didn't find type to promote to!"); 713 } while (!isTypeLegal(NVT) || 714 getOperationAction(Op, NVT) == Promote); 715 return NVT; 716 } 717 718 /// Return the EVT corresponding to this LLVM type. This is fixed by the LLVM 719 /// operations except for the pointer size. If AllowUnknown is true, this 720 /// will return MVT::Other for types with no EVT counterpart (e.g. structs), 721 /// otherwise it will assert. 722 EVT getValueType(const DataLayout &DL, Type *Ty, 723 bool AllowUnknown = false) const { 724 // Lower scalar pointers to native pointer types. 725 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 726 return getPointerTy(DL, PTy->getAddressSpace()); 727 728 if (Ty->isVectorTy()) { 729 VectorType *VTy = cast<VectorType>(Ty); 730 Type *Elm = VTy->getElementType(); 731 // Lower vectors of pointers to native pointer types. 732 if (PointerType *PT = dyn_cast<PointerType>(Elm)) { 733 EVT PointerTy(getPointerTy(DL, PT->getAddressSpace())); 734 Elm = PointerTy.getTypeForEVT(Ty->getContext()); 735 } 736 737 return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false), 738 VTy->getNumElements()); 739 } 740 return EVT::getEVT(Ty, AllowUnknown); 741 } 742 743 /// Return the MVT corresponding to this LLVM type. See getValueType. 744 MVT getSimpleValueType(const DataLayout &DL, Type *Ty, 745 bool AllowUnknown = false) const { 746 return getValueType(DL, Ty, AllowUnknown).getSimpleVT(); 747 } 748 749 /// Return the desired alignment for ByVal or InAlloca aggregate function 750 /// arguments in the caller parameter area. This is the actual alignment, not 751 /// its logarithm. 752 virtual unsigned getByValTypeAlignment(Type *Ty, const DataLayout &DL) const; 753 754 /// Return the type of registers that this ValueType will eventually require. 755 MVT getRegisterType(MVT VT) const { 756 assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT)); 757 return RegisterTypeForVT[VT.SimpleTy]; 758 } 759 760 /// Return the type of registers that this ValueType will eventually require. 761 MVT getRegisterType(LLVMContext &Context, EVT VT) const { 762 if (VT.isSimple()) { 763 assert((unsigned)VT.getSimpleVT().SimpleTy < 764 array_lengthof(RegisterTypeForVT)); 765 return RegisterTypeForVT[VT.getSimpleVT().SimpleTy]; 766 } 767 if (VT.isVector()) { 768 EVT VT1; 769 MVT RegisterVT; 770 unsigned NumIntermediates; 771 (void)getVectorTypeBreakdown(Context, VT, VT1, 772 NumIntermediates, RegisterVT); 773 return RegisterVT; 774 } 775 if (VT.isInteger()) { 776 return getRegisterType(Context, getTypeToTransformTo(Context, VT)); 777 } 778 llvm_unreachable("Unsupported extended type!"); 779 } 780 781 /// Return the number of registers that this ValueType will eventually 782 /// require. 783 /// 784 /// This is one for any types promoted to live in larger registers, but may be 785 /// more than one for types (like i64) that are split into pieces. For types 786 /// like i140, which are first promoted then expanded, it is the number of 787 /// registers needed to hold all the bits of the original type. For an i140 788 /// on a 32 bit machine this means 5 registers. 789 unsigned getNumRegisters(LLVMContext &Context, EVT VT) const { 790 if (VT.isSimple()) { 791 assert((unsigned)VT.getSimpleVT().SimpleTy < 792 array_lengthof(NumRegistersForVT)); 793 return NumRegistersForVT[VT.getSimpleVT().SimpleTy]; 794 } 795 if (VT.isVector()) { 796 EVT VT1; 797 MVT VT2; 798 unsigned NumIntermediates; 799 return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2); 800 } 801 if (VT.isInteger()) { 802 unsigned BitWidth = VT.getSizeInBits(); 803 unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits(); 804 return (BitWidth + RegWidth - 1) / RegWidth; 805 } 806 llvm_unreachable("Unsupported extended type!"); 807 } 808 809 /// If true, then instruction selection should seek to shrink the FP constant 810 /// of the specified type to a smaller type in order to save space and / or 811 /// reduce runtime. 812 virtual bool ShouldShrinkFPConstant(EVT) const { return true; } 813 814 // Return true if it is profitable to reduce the given load node to a smaller 815 // type. 816 // 817 // e.g. (i16 (trunc (i32 (load x))) -> i16 load x should be performed 818 virtual bool shouldReduceLoadWidth(SDNode *Load, 819 ISD::LoadExtType ExtTy, 820 EVT NewVT) const { 821 return true; 822 } 823 824 /// When splitting a value of the specified type into parts, does the Lo 825 /// or Hi part come first? This usually follows the endianness, except 826 /// for ppcf128, where the Hi part always comes first. 827 bool hasBigEndianPartOrdering(EVT VT, const DataLayout &DL) const { 828 return DL.isBigEndian() || VT == MVT::ppcf128; 829 } 830 831 /// If true, the target has custom DAG combine transformations that it can 832 /// perform for the specified node. 833 bool hasTargetDAGCombine(ISD::NodeType NT) const { 834 assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray)); 835 return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7)); 836 } 837 838 unsigned getGatherAllAliasesMaxDepth() const { 839 return GatherAllAliasesMaxDepth; 840 } 841 842 /// \brief Get maximum # of store operations permitted for llvm.memset 843 /// 844 /// This function returns the maximum number of store operations permitted 845 /// to replace a call to llvm.memset. The value is set by the target at the 846 /// performance threshold for such a replacement. If OptSize is true, 847 /// return the limit for functions that have OptSize attribute. 848 unsigned getMaxStoresPerMemset(bool OptSize) const { 849 return OptSize ? MaxStoresPerMemsetOptSize : MaxStoresPerMemset; 850 } 851 852 /// \brief Get maximum # of store operations permitted for llvm.memcpy 853 /// 854 /// This function returns the maximum number of store operations permitted 855 /// to replace a call to llvm.memcpy. The value is set by the target at the 856 /// performance threshold for such a replacement. If OptSize is true, 857 /// return the limit for functions that have OptSize attribute. 858 unsigned getMaxStoresPerMemcpy(bool OptSize) const { 859 return OptSize ? MaxStoresPerMemcpyOptSize : MaxStoresPerMemcpy; 860 } 861 862 /// \brief Get maximum # of store operations permitted for llvm.memmove 863 /// 864 /// This function returns the maximum number of store operations permitted 865 /// to replace a call to llvm.memmove. The value is set by the target at the 866 /// performance threshold for such a replacement. If OptSize is true, 867 /// return the limit for functions that have OptSize attribute. 868 unsigned getMaxStoresPerMemmove(bool OptSize) const { 869 return OptSize ? MaxStoresPerMemmoveOptSize : MaxStoresPerMemmove; 870 } 871 872 /// \brief Determine if the target supports unaligned memory accesses. 873 /// 874 /// This function returns true if the target allows unaligned memory accesses 875 /// of the specified type in the given address space. If true, it also returns 876 /// whether the unaligned memory access is "fast" in the last argument by 877 /// reference. This is used, for example, in situations where an array 878 /// copy/move/set is converted to a sequence of store operations. Its use 879 /// helps to ensure that such replacements don't generate code that causes an 880 /// alignment error (trap) on the target machine. 881 virtual bool allowsMisalignedMemoryAccesses(EVT, 882 unsigned AddrSpace = 0, 883 unsigned Align = 1, 884 bool * /*Fast*/ = nullptr) const { 885 return false; 886 } 887 888 /// Return true if the target supports a memory access of this type for the 889 /// given address space and alignment. If the access is allowed, the optional 890 /// final parameter returns if the access is also fast (as defined by the 891 /// target). 892 bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, 893 unsigned AddrSpace = 0, unsigned Alignment = 1, 894 bool *Fast = nullptr) const; 895 896 /// Returns the target specific optimal type for load and store operations as 897 /// a result of memset, memcpy, and memmove lowering. 898 /// 899 /// If DstAlign is zero that means it's safe to destination alignment can 900 /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't 901 /// a need to check it against alignment requirement, probably because the 902 /// source does not need to be loaded. If 'IsMemset' is true, that means it's 903 /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of 904 /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it 905 /// does not need to be loaded. It returns EVT::Other if the type should be 906 /// determined using generic target-independent logic. 907 virtual EVT getOptimalMemOpType(uint64_t /*Size*/, 908 unsigned /*DstAlign*/, unsigned /*SrcAlign*/, 909 bool /*IsMemset*/, 910 bool /*ZeroMemset*/, 911 bool /*MemcpyStrSrc*/, 912 MachineFunction &/*MF*/) const { 913 return MVT::Other; 914 } 915 916 /// Returns true if it's safe to use load / store of the specified type to 917 /// expand memcpy / memset inline. 918 /// 919 /// This is mostly true for all types except for some special cases. For 920 /// example, on X86 targets without SSE2 f64 load / store are done with fldl / 921 /// fstpl which also does type conversion. Note the specified type doesn't 922 /// have to be legal as the hook is used before type legalization. 923 virtual bool isSafeMemOpType(MVT /*VT*/) const { return true; } 924 925 /// Determine if we should use _setjmp or setjmp to implement llvm.setjmp. 926 bool usesUnderscoreSetJmp() const { 927 return UseUnderscoreSetJmp; 928 } 929 930 /// Determine if we should use _longjmp or longjmp to implement llvm.longjmp. 931 bool usesUnderscoreLongJmp() const { 932 return UseUnderscoreLongJmp; 933 } 934 935 /// Return integer threshold on number of blocks to use jump tables rather 936 /// than if sequence. 937 int getMinimumJumpTableEntries() const { 938 return MinimumJumpTableEntries; 939 } 940 941 /// If a physical register, this specifies the register that 942 /// llvm.savestack/llvm.restorestack should save and restore. 943 unsigned getStackPointerRegisterToSaveRestore() const { 944 return StackPointerRegisterToSaveRestore; 945 } 946 947 /// If a physical register, this returns the register that receives the 948 /// exception address on entry to an EH pad. 949 virtual unsigned 950 getExceptionPointerRegister(const Constant *PersonalityFn) const { 951 // 0 is guaranteed to be the NoRegister value on all targets 952 return 0; 953 } 954 955 /// If a physical register, this returns the register that receives the 956 /// exception typeid on entry to a landing pad. 957 virtual unsigned 958 getExceptionSelectorRegister(const Constant *PersonalityFn) const { 959 // 0 is guaranteed to be the NoRegister value on all targets 960 return 0; 961 } 962 963 /// Returns the target's jmp_buf size in bytes (if never set, the default is 964 /// 200) 965 unsigned getJumpBufSize() const { 966 return JumpBufSize; 967 } 968 969 /// Returns the target's jmp_buf alignment in bytes (if never set, the default 970 /// is 0) 971 unsigned getJumpBufAlignment() const { 972 return JumpBufAlignment; 973 } 974 975 /// Return the minimum stack alignment of an argument. 976 unsigned getMinStackArgumentAlignment() const { 977 return MinStackArgumentAlignment; 978 } 979 980 /// Return the minimum function alignment. 981 unsigned getMinFunctionAlignment() const { 982 return MinFunctionAlignment; 983 } 984 985 /// Return the preferred function alignment. 986 unsigned getPrefFunctionAlignment() const { 987 return PrefFunctionAlignment; 988 } 989 990 /// Return the preferred loop alignment. 991 virtual unsigned getPrefLoopAlignment(MachineLoop *ML = nullptr) const { 992 return PrefLoopAlignment; 993 } 994 995 /// Return whether the DAG builder should automatically insert fences and 996 /// reduce ordering for atomics. 997 bool getInsertFencesForAtomic() const { 998 return InsertFencesForAtomic; 999 } 1000 1001 /// Return true if the target stores stack protector cookies at a fixed offset 1002 /// in some non-standard address space, and populates the address space and 1003 /// offset as appropriate. 1004 virtual bool getStackCookieLocation(unsigned &/*AddressSpace*/, 1005 unsigned &/*Offset*/) const { 1006 return false; 1007 } 1008 1009 /// If the target has a standard location for the unsafe stack pointer, 1010 /// returns the address of that location. Otherwise, returns nullptr. 1011 virtual Value *getSafeStackPointerLocation(IRBuilder<> &IRB) const; 1012 1013 /// Returns true if a cast between SrcAS and DestAS is a noop. 1014 virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const { 1015 return false; 1016 } 1017 1018 /// Return true if the pointer arguments to CI should be aligned by aligning 1019 /// the object whose address is being passed. If so then MinSize is set to the 1020 /// minimum size the object must be to be aligned and PrefAlign is set to the 1021 /// preferred alignment. 1022 virtual bool shouldAlignPointerArgs(CallInst * /*CI*/, unsigned & /*MinSize*/, 1023 unsigned & /*PrefAlign*/) const { 1024 return false; 1025 } 1026 1027 //===--------------------------------------------------------------------===// 1028 /// \name Helpers for TargetTransformInfo implementations 1029 /// @{ 1030 1031 /// Get the ISD node that corresponds to the Instruction class opcode. 1032 int InstructionOpcodeToISD(unsigned Opcode) const; 1033 1034 /// Estimate the cost of type-legalization and the legalized type. 1035 std::pair<int, MVT> getTypeLegalizationCost(const DataLayout &DL, 1036 Type *Ty) const; 1037 1038 /// @} 1039 1040 //===--------------------------------------------------------------------===// 1041 /// \name Helpers for atomic expansion. 1042 /// @{ 1043 1044 /// Perform a load-linked operation on Addr, returning a "Value *" with the 1045 /// corresponding pointee type. This may entail some non-trivial operations to 1046 /// truncate or reconstruct types that will be illegal in the backend. See 1047 /// ARMISelLowering for an example implementation. 1048 virtual Value *emitLoadLinked(IRBuilder<> &Builder, Value *Addr, 1049 AtomicOrdering Ord) const { 1050 llvm_unreachable("Load linked unimplemented on this target"); 1051 } 1052 1053 /// Perform a store-conditional operation to Addr. Return the status of the 1054 /// store. This should be 0 if the store succeeded, non-zero otherwise. 1055 virtual Value *emitStoreConditional(IRBuilder<> &Builder, Value *Val, 1056 Value *Addr, AtomicOrdering Ord) const { 1057 llvm_unreachable("Store conditional unimplemented on this target"); 1058 } 1059 1060 /// Inserts in the IR a target-specific intrinsic specifying a fence. 1061 /// It is called by AtomicExpandPass before expanding an 1062 /// AtomicRMW/AtomicCmpXchg/AtomicStore/AtomicLoad. 1063 /// RMW and CmpXchg set both IsStore and IsLoad to true. 1064 /// This function should either return a nullptr, or a pointer to an IR-level 1065 /// Instruction*. Even complex fence sequences can be represented by a 1066 /// single Instruction* through an intrinsic to be lowered later. 1067 /// Backends with !getInsertFencesForAtomic() should keep a no-op here. 1068 /// Backends should override this method to produce target-specific intrinsic 1069 /// for their fences. 1070 /// FIXME: Please note that the default implementation here in terms of 1071 /// IR-level fences exists for historical/compatibility reasons and is 1072 /// *unsound* ! Fences cannot, in general, be used to restore sequential 1073 /// consistency. For example, consider the following example: 1074 /// atomic<int> x = y = 0; 1075 /// int r1, r2, r3, r4; 1076 /// Thread 0: 1077 /// x.store(1); 1078 /// Thread 1: 1079 /// y.store(1); 1080 /// Thread 2: 1081 /// r1 = x.load(); 1082 /// r2 = y.load(); 1083 /// Thread 3: 1084 /// r3 = y.load(); 1085 /// r4 = x.load(); 1086 /// r1 = r3 = 1 and r2 = r4 = 0 is impossible as long as the accesses are all 1087 /// seq_cst. But if they are lowered to monotonic accesses, no amount of 1088 /// IR-level fences can prevent it. 1089 /// @{ 1090 virtual Instruction *emitLeadingFence(IRBuilder<> &Builder, 1091 AtomicOrdering Ord, bool IsStore, 1092 bool IsLoad) const { 1093 if (!getInsertFencesForAtomic()) 1094 return nullptr; 1095 1096 if (isAtLeastRelease(Ord) && IsStore) 1097 return Builder.CreateFence(Ord); 1098 else 1099 return nullptr; 1100 } 1101 1102 virtual Instruction *emitTrailingFence(IRBuilder<> &Builder, 1103 AtomicOrdering Ord, bool IsStore, 1104 bool IsLoad) const { 1105 if (!getInsertFencesForAtomic()) 1106 return nullptr; 1107 1108 if (isAtLeastAcquire(Ord)) 1109 return Builder.CreateFence(Ord); 1110 else 1111 return nullptr; 1112 } 1113 /// @} 1114 1115 // Emits code that executes when the comparison result in the ll/sc 1116 // expansion of a cmpxchg instruction is such that the store-conditional will 1117 // not execute. This makes it possible to balance out the load-linked with 1118 // a dedicated instruction, if desired. 1119 // E.g., on ARM, if ldrex isn't followed by strex, the exclusive monitor would 1120 // be unnecessarily held, except if clrex, inserted by this hook, is executed. 1121 virtual void emitAtomicCmpXchgNoStoreLLBalance(IRBuilder<> &Builder) const {} 1122 1123 /// Returns true if the given (atomic) store should be expanded by the 1124 /// IR-level AtomicExpand pass into an "atomic xchg" which ignores its input. 1125 virtual bool shouldExpandAtomicStoreInIR(StoreInst *SI) const { 1126 return false; 1127 } 1128 1129 /// Returns true if arguments should be sign-extended in lib calls. 1130 virtual bool shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 1131 return IsSigned; 1132 } 1133 1134 /// Returns how the given (atomic) load should be expanded by the 1135 /// IR-level AtomicExpand pass. 1136 virtual AtomicExpansionKind shouldExpandAtomicLoadInIR(LoadInst *LI) const { 1137 return AtomicExpansionKind::None; 1138 } 1139 1140 /// Returns true if the given atomic cmpxchg should be expanded by the 1141 /// IR-level AtomicExpand pass into a load-linked/store-conditional sequence 1142 /// (through emitLoadLinked() and emitStoreConditional()). 1143 virtual bool shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const { 1144 return false; 1145 } 1146 1147 /// Returns how the IR-level AtomicExpand pass should expand the given 1148 /// AtomicRMW, if at all. Default is to never expand. 1149 virtual AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *) const { 1150 return AtomicExpansionKind::None; 1151 } 1152 1153 /// On some platforms, an AtomicRMW that never actually modifies the value 1154 /// (such as fetch_add of 0) can be turned into a fence followed by an 1155 /// atomic load. This may sound useless, but it makes it possible for the 1156 /// processor to keep the cacheline shared, dramatically improving 1157 /// performance. And such idempotent RMWs are useful for implementing some 1158 /// kinds of locks, see for example (justification + benchmarks): 1159 /// http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf 1160 /// This method tries doing that transformation, returning the atomic load if 1161 /// it succeeds, and nullptr otherwise. 1162 /// If shouldExpandAtomicLoadInIR returns true on that load, it will undergo 1163 /// another round of expansion. 1164 virtual LoadInst * 1165 lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *RMWI) const { 1166 return nullptr; 1167 } 1168 1169 /// Returns true if we should normalize 1170 /// select(N0&N1, X, Y) => select(N0, select(N1, X, Y), Y) and 1171 /// select(N0|N1, X, Y) => select(N0, select(N1, X, Y, Y)) if it is likely 1172 /// that it saves us from materializing N0 and N1 in an integer register. 1173 /// Targets that are able to perform and/or on flags should return false here. 1174 virtual bool shouldNormalizeToSelectSequence(LLVMContext &Context, 1175 EVT VT) const { 1176 // If a target has multiple condition registers, then it likely has logical 1177 // operations on those registers. 1178 if (hasMultipleConditionRegisters()) 1179 return false; 1180 // Only do the transform if the value won't be split into multiple 1181 // registers. 1182 LegalizeTypeAction Action = getTypeAction(Context, VT); 1183 return Action != TypeExpandInteger && Action != TypeExpandFloat && 1184 Action != TypeSplitVector; 1185 } 1186 1187 //===--------------------------------------------------------------------===// 1188 // TargetLowering Configuration Methods - These methods should be invoked by 1189 // the derived class constructor to configure this object for the target. 1190 // 1191 protected: 1192 /// Specify how the target extends the result of integer and floating point 1193 /// boolean values from i1 to a wider type. See getBooleanContents. 1194 void setBooleanContents(BooleanContent Ty) { 1195 BooleanContents = Ty; 1196 BooleanFloatContents = Ty; 1197 } 1198 1199 /// Specify how the target extends the result of integer and floating point 1200 /// boolean values from i1 to a wider type. See getBooleanContents. 1201 void setBooleanContents(BooleanContent IntTy, BooleanContent FloatTy) { 1202 BooleanContents = IntTy; 1203 BooleanFloatContents = FloatTy; 1204 } 1205 1206 /// Specify how the target extends the result of a vector boolean value from a 1207 /// vector of i1 to a wider type. See getBooleanContents. 1208 void setBooleanVectorContents(BooleanContent Ty) { 1209 BooleanVectorContents = Ty; 1210 } 1211 1212 /// Specify the target scheduling preference. 1213 void setSchedulingPreference(Sched::Preference Pref) { 1214 SchedPreferenceInfo = Pref; 1215 } 1216 1217 /// Indicate whether this target prefers to use _setjmp to implement 1218 /// llvm.setjmp or the version without _. Defaults to false. 1219 void setUseUnderscoreSetJmp(bool Val) { 1220 UseUnderscoreSetJmp = Val; 1221 } 1222 1223 /// Indicate whether this target prefers to use _longjmp to implement 1224 /// llvm.longjmp or the version without _. Defaults to false. 1225 void setUseUnderscoreLongJmp(bool Val) { 1226 UseUnderscoreLongJmp = Val; 1227 } 1228 1229 /// Indicate the number of blocks to generate jump tables rather than if 1230 /// sequence. 1231 void setMinimumJumpTableEntries(int Val) { 1232 MinimumJumpTableEntries = Val; 1233 } 1234 1235 /// If set to a physical register, this specifies the register that 1236 /// llvm.savestack/llvm.restorestack should save and restore. 1237 void setStackPointerRegisterToSaveRestore(unsigned R) { 1238 StackPointerRegisterToSaveRestore = R; 1239 } 1240 1241 /// Tells the code generator not to expand operations into sequences that use 1242 /// the select operations if possible. 1243 void setSelectIsExpensive(bool isExpensive = true) { 1244 SelectIsExpensive = isExpensive; 1245 } 1246 1247 /// Tells the code generator that the target has multiple (allocatable) 1248 /// condition registers that can be used to store the results of comparisons 1249 /// for use by selects and conditional branches. With multiple condition 1250 /// registers, the code generator will not aggressively sink comparisons into 1251 /// the blocks of their users. 1252 void setHasMultipleConditionRegisters(bool hasManyRegs = true) { 1253 HasMultipleConditionRegisters = hasManyRegs; 1254 } 1255 1256 /// Tells the code generator that the target has BitExtract instructions. 1257 /// The code generator will aggressively sink "shift"s into the blocks of 1258 /// their users if the users will generate "and" instructions which can be 1259 /// combined with "shift" to BitExtract instructions. 1260 void setHasExtractBitsInsn(bool hasExtractInsn = true) { 1261 HasExtractBitsInsn = hasExtractInsn; 1262 } 1263 1264 /// Tells the code generator not to expand logic operations on comparison 1265 /// predicates into separate sequences that increase the amount of flow 1266 /// control. 1267 void setJumpIsExpensive(bool isExpensive = true); 1268 1269 /// Tells the code generator that fsqrt is cheap, and should not be replaced 1270 /// with an alternative sequence of instructions. 1271 void setFsqrtIsCheap(bool isCheap = true) { FsqrtIsCheap = isCheap; } 1272 1273 /// Tells the code generator that this target supports floating point 1274 /// exceptions and cares about preserving floating point exception behavior. 1275 void setHasFloatingPointExceptions(bool FPExceptions = true) { 1276 HasFloatingPointExceptions = FPExceptions; 1277 } 1278 1279 /// Tells the code generator which bitwidths to bypass. 1280 void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) { 1281 BypassSlowDivWidths[SlowBitWidth] = FastBitWidth; 1282 } 1283 1284 /// Add the specified register class as an available regclass for the 1285 /// specified value type. This indicates the selector can handle values of 1286 /// that class natively. 1287 void addRegisterClass(MVT VT, const TargetRegisterClass *RC) { 1288 assert((unsigned)VT.SimpleTy < array_lengthof(RegClassForVT)); 1289 AvailableRegClasses.push_back(std::make_pair(VT, RC)); 1290 RegClassForVT[VT.SimpleTy] = RC; 1291 } 1292 1293 /// Remove all register classes. 1294 void clearRegisterClasses() { 1295 std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr); 1296 1297 AvailableRegClasses.clear(); 1298 } 1299 1300 /// \brief Remove all operation actions. 1301 void clearOperationActions() { 1302 } 1303 1304 /// Return the largest legal super-reg register class of the register class 1305 /// for the specified type and its associated "cost". 1306 virtual std::pair<const TargetRegisterClass *, uint8_t> 1307 findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const; 1308 1309 /// Once all of the register classes are added, this allows us to compute 1310 /// derived properties we expose. 1311 void computeRegisterProperties(const TargetRegisterInfo *TRI); 1312 1313 /// Indicate that the specified operation does not work with the specified 1314 /// type and indicate what to do about it. 1315 void setOperationAction(unsigned Op, MVT VT, 1316 LegalizeAction Action) { 1317 assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!"); 1318 OpActions[(unsigned)VT.SimpleTy][Op] = Action; 1319 } 1320 1321 /// Indicate that the specified load with extension does not work with the 1322 /// specified type and indicate what to do about it. 1323 void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, 1324 LegalizeAction Action) { 1325 assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValVT.isValid() && 1326 MemVT.isValid() && "Table isn't big enough!"); 1327 LoadExtActions[(unsigned)ValVT.SimpleTy][MemVT.SimpleTy][ExtType] = Action; 1328 } 1329 1330 /// Indicate that the specified truncating store does not work with the 1331 /// specified type and indicate what to do about it. 1332 void setTruncStoreAction(MVT ValVT, MVT MemVT, 1333 LegalizeAction Action) { 1334 assert(ValVT.isValid() && MemVT.isValid() && "Table isn't big enough!"); 1335 TruncStoreActions[(unsigned)ValVT.SimpleTy][MemVT.SimpleTy] = Action; 1336 } 1337 1338 /// Indicate that the specified indexed load does or does not work with the 1339 /// specified type and indicate what to do abort it. 1340 /// 1341 /// NOTE: All indexed mode loads are initialized to Expand in 1342 /// TargetLowering.cpp 1343 void setIndexedLoadAction(unsigned IdxMode, MVT VT, 1344 LegalizeAction Action) { 1345 assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE && 1346 (unsigned)Action < 0xf && "Table isn't big enough!"); 1347 // Load action are kept in the upper half. 1348 IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0; 1349 IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4; 1350 } 1351 1352 /// Indicate that the specified indexed store does or does not work with the 1353 /// specified type and indicate what to do about it. 1354 /// 1355 /// NOTE: All indexed mode stores are initialized to Expand in 1356 /// TargetLowering.cpp 1357 void setIndexedStoreAction(unsigned IdxMode, MVT VT, 1358 LegalizeAction Action) { 1359 assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE && 1360 (unsigned)Action < 0xf && "Table isn't big enough!"); 1361 // Store action are kept in the lower half. 1362 IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f; 1363 IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action); 1364 } 1365 1366 /// Indicate that the specified condition code is or isn't supported on the 1367 /// target and indicate what to do about it. 1368 void setCondCodeAction(ISD::CondCode CC, MVT VT, 1369 LegalizeAction Action) { 1370 assert(VT.isValid() && (unsigned)CC < array_lengthof(CondCodeActions) && 1371 "Table isn't big enough!"); 1372 assert((unsigned)Action < 0x10 && "too many bits for bitfield array"); 1373 /// The lower 3 bits of the SimpleTy index into Nth 4bit set from the 32-bit 1374 /// value and the upper 29 bits index into the second dimension of the array 1375 /// to select what 32-bit value to use. 1376 uint32_t Shift = 4 * (VT.SimpleTy & 0x7); 1377 CondCodeActions[CC][VT.SimpleTy >> 3] &= ~((uint32_t)0xF << Shift); 1378 CondCodeActions[CC][VT.SimpleTy >> 3] |= (uint32_t)Action << Shift; 1379 } 1380 1381 /// If Opc/OrigVT is specified as being promoted, the promotion code defaults 1382 /// to trying a larger integer/fp until it can find one that works. If that 1383 /// default is insufficient, this method can be used by the target to override 1384 /// the default. 1385 void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) { 1386 PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy; 1387 } 1388 1389 /// Targets should invoke this method for each target independent node that 1390 /// they want to provide a custom DAG combiner for by implementing the 1391 /// PerformDAGCombine virtual method. 1392 void setTargetDAGCombine(ISD::NodeType NT) { 1393 assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray)); 1394 TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7); 1395 } 1396 1397 /// Set the target's required jmp_buf buffer size (in bytes); default is 200 1398 void setJumpBufSize(unsigned Size) { 1399 JumpBufSize = Size; 1400 } 1401 1402 /// Set the target's required jmp_buf buffer alignment (in bytes); default is 1403 /// 0 1404 void setJumpBufAlignment(unsigned Align) { 1405 JumpBufAlignment = Align; 1406 } 1407 1408 /// Set the target's minimum function alignment (in log2(bytes)) 1409 void setMinFunctionAlignment(unsigned Align) { 1410 MinFunctionAlignment = Align; 1411 } 1412 1413 /// Set the target's preferred function alignment. This should be set if 1414 /// there is a performance benefit to higher-than-minimum alignment (in 1415 /// log2(bytes)) 1416 void setPrefFunctionAlignment(unsigned Align) { 1417 PrefFunctionAlignment = Align; 1418 } 1419 1420 /// Set the target's preferred loop alignment. Default alignment is zero, it 1421 /// means the target does not care about loop alignment. The alignment is 1422 /// specified in log2(bytes). The target may also override 1423 /// getPrefLoopAlignment to provide per-loop values. 1424 void setPrefLoopAlignment(unsigned Align) { 1425 PrefLoopAlignment = Align; 1426 } 1427 1428 /// Set the minimum stack alignment of an argument (in log2(bytes)). 1429 void setMinStackArgumentAlignment(unsigned Align) { 1430 MinStackArgumentAlignment = Align; 1431 } 1432 1433 /// Set if the DAG builder should automatically insert fences and reduce the 1434 /// order of atomic memory operations to Monotonic. 1435 void setInsertFencesForAtomic(bool fence) { 1436 InsertFencesForAtomic = fence; 1437 } 1438 1439 public: 1440 //===--------------------------------------------------------------------===// 1441 // Addressing mode description hooks (used by LSR etc). 1442 // 1443 1444 /// CodeGenPrepare sinks address calculations into the same BB as Load/Store 1445 /// instructions reading the address. This allows as much computation as 1446 /// possible to be done in the address mode for that operand. This hook lets 1447 /// targets also pass back when this should be done on intrinsics which 1448 /// load/store. 1449 virtual bool GetAddrModeArguments(IntrinsicInst * /*I*/, 1450 SmallVectorImpl<Value*> &/*Ops*/, 1451 Type *&/*AccessTy*/, 1452 unsigned AddrSpace = 0) const { 1453 return false; 1454 } 1455 1456 /// This represents an addressing mode of: 1457 /// BaseGV + BaseOffs + BaseReg + Scale*ScaleReg 1458 /// If BaseGV is null, there is no BaseGV. 1459 /// If BaseOffs is zero, there is no base offset. 1460 /// If HasBaseReg is false, there is no base register. 1461 /// If Scale is zero, there is no ScaleReg. Scale of 1 indicates a reg with 1462 /// no scale. 1463 struct AddrMode { 1464 GlobalValue *BaseGV; 1465 int64_t BaseOffs; 1466 bool HasBaseReg; 1467 int64_t Scale; 1468 AddrMode() : BaseGV(nullptr), BaseOffs(0), HasBaseReg(false), Scale(0) {} 1469 }; 1470 1471 /// Return true if the addressing mode represented by AM is legal for this 1472 /// target, for a load/store of the specified type. 1473 /// 1474 /// The type may be VoidTy, in which case only return true if the addressing 1475 /// mode is legal for a load/store of any legal type. TODO: Handle 1476 /// pre/postinc as well. 1477 /// 1478 /// If the address space cannot be determined, it will be -1. 1479 /// 1480 /// TODO: Remove default argument 1481 virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, 1482 Type *Ty, unsigned AddrSpace) const; 1483 1484 /// \brief Return the cost of the scaling factor used in the addressing mode 1485 /// represented by AM for this target, for a load/store of the specified type. 1486 /// 1487 /// If the AM is supported, the return value must be >= 0. 1488 /// If the AM is not supported, it returns a negative value. 1489 /// TODO: Handle pre/postinc as well. 1490 /// TODO: Remove default argument 1491 virtual int getScalingFactorCost(const DataLayout &DL, const AddrMode &AM, 1492 Type *Ty, unsigned AS = 0) const { 1493 // Default: assume that any scaling factor used in a legal AM is free. 1494 if (isLegalAddressingMode(DL, AM, Ty, AS)) 1495 return 0; 1496 return -1; 1497 } 1498 1499 /// Return true if the specified immediate is legal icmp immediate, that is 1500 /// the target has icmp instructions which can compare a register against the 1501 /// immediate without having to materialize the immediate into a register. 1502 virtual bool isLegalICmpImmediate(int64_t) const { 1503 return true; 1504 } 1505 1506 /// Return true if the specified immediate is legal add immediate, that is the 1507 /// target has add instructions which can add a register with the immediate 1508 /// without having to materialize the immediate into a register. 1509 virtual bool isLegalAddImmediate(int64_t) const { 1510 return true; 1511 } 1512 1513 /// Return true if it's significantly cheaper to shift a vector by a uniform 1514 /// scalar than by an amount which will vary across each lane. On x86, for 1515 /// example, there is a "psllw" instruction for the former case, but no simple 1516 /// instruction for a general "a << b" operation on vectors. 1517 virtual bool isVectorShiftByScalarCheap(Type *Ty) const { 1518 return false; 1519 } 1520 1521 /// Return true if it's free to truncate a value of type FromTy to type 1522 /// ToTy. e.g. On x86 it's free to truncate a i32 value in register EAX to i16 1523 /// by referencing its sub-register AX. 1524 /// Targets must return false when FromTy <= ToTy. 1525 virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const { 1526 return false; 1527 } 1528 1529 /// Return true if a truncation from FromTy to ToTy is permitted when deciding 1530 /// whether a call is in tail position. Typically this means that both results 1531 /// would be assigned to the same register or stack slot, but it could mean 1532 /// the target performs adequate checks of its own before proceeding with the 1533 /// tail call. Targets must return false when FromTy <= ToTy. 1534 virtual bool allowTruncateForTailCall(Type *FromTy, Type *ToTy) const { 1535 return false; 1536 } 1537 1538 virtual bool isTruncateFree(EVT FromVT, EVT ToVT) const { 1539 return false; 1540 } 1541 1542 virtual bool isProfitableToHoist(Instruction *I) const { return true; } 1543 1544 /// Return true if the extension represented by \p I is free. 1545 /// Unlikely the is[Z|FP]ExtFree family which is based on types, 1546 /// this method can use the context provided by \p I to decide 1547 /// whether or not \p I is free. 1548 /// This method extends the behavior of the is[Z|FP]ExtFree family. 1549 /// In other words, if is[Z|FP]Free returns true, then this method 1550 /// returns true as well. The converse is not true. 1551 /// The target can perform the adequate checks by overriding isExtFreeImpl. 1552 /// \pre \p I must be a sign, zero, or fp extension. 1553 bool isExtFree(const Instruction *I) const { 1554 switch (I->getOpcode()) { 1555 case Instruction::FPExt: 1556 if (isFPExtFree(EVT::getEVT(I->getType()))) 1557 return true; 1558 break; 1559 case Instruction::ZExt: 1560 if (isZExtFree(I->getOperand(0)->getType(), I->getType())) 1561 return true; 1562 break; 1563 case Instruction::SExt: 1564 break; 1565 default: 1566 llvm_unreachable("Instruction is not an extension"); 1567 } 1568 return isExtFreeImpl(I); 1569 } 1570 1571 /// Return true if any actual instruction that defines a value of type FromTy 1572 /// implicitly zero-extends the value to ToTy in the result register. 1573 /// 1574 /// The function should return true when it is likely that the truncate can 1575 /// be freely folded with an instruction defining a value of FromTy. If 1576 /// the defining instruction is unknown (because you're looking at a 1577 /// function argument, PHI, etc.) then the target may require an 1578 /// explicit truncate, which is not necessarily free, but this function 1579 /// does not deal with those cases. 1580 /// Targets must return false when FromTy >= ToTy. 1581 virtual bool isZExtFree(Type *FromTy, Type *ToTy) const { 1582 return false; 1583 } 1584 1585 virtual bool isZExtFree(EVT FromTy, EVT ToTy) const { 1586 return false; 1587 } 1588 1589 /// Return true if the target supplies and combines to a paired load 1590 /// two loaded values of type LoadedType next to each other in memory. 1591 /// RequiredAlignment gives the minimal alignment constraints that must be met 1592 /// to be able to select this paired load. 1593 /// 1594 /// This information is *not* used to generate actual paired loads, but it is 1595 /// used to generate a sequence of loads that is easier to combine into a 1596 /// paired load. 1597 /// For instance, something like this: 1598 /// a = load i64* addr 1599 /// b = trunc i64 a to i32 1600 /// c = lshr i64 a, 32 1601 /// d = trunc i64 c to i32 1602 /// will be optimized into: 1603 /// b = load i32* addr1 1604 /// d = load i32* addr2 1605 /// Where addr1 = addr2 +/- sizeof(i32). 1606 /// 1607 /// In other words, unless the target performs a post-isel load combining, 1608 /// this information should not be provided because it will generate more 1609 /// loads. 1610 virtual bool hasPairedLoad(Type * /*LoadedType*/, 1611 unsigned & /*RequiredAligment*/) const { 1612 return false; 1613 } 1614 1615 virtual bool hasPairedLoad(EVT /*LoadedType*/, 1616 unsigned & /*RequiredAligment*/) const { 1617 return false; 1618 } 1619 1620 /// \brief Get the maximum supported factor for interleaved memory accesses. 1621 /// Default to be the minimum interleave factor: 2. 1622 virtual unsigned getMaxSupportedInterleaveFactor() const { return 2; } 1623 1624 /// \brief Lower an interleaved load to target specific intrinsics. Return 1625 /// true on success. 1626 /// 1627 /// \p LI is the vector load instruction. 1628 /// \p Shuffles is the shufflevector list to DE-interleave the loaded vector. 1629 /// \p Indices is the corresponding indices for each shufflevector. 1630 /// \p Factor is the interleave factor. 1631 virtual bool lowerInterleavedLoad(LoadInst *LI, 1632 ArrayRef<ShuffleVectorInst *> Shuffles, 1633 ArrayRef<unsigned> Indices, 1634 unsigned Factor) const { 1635 return false; 1636 } 1637 1638 /// \brief Lower an interleaved store to target specific intrinsics. Return 1639 /// true on success. 1640 /// 1641 /// \p SI is the vector store instruction. 1642 /// \p SVI is the shufflevector to RE-interleave the stored vector. 1643 /// \p Factor is the interleave factor. 1644 virtual bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI, 1645 unsigned Factor) const { 1646 return false; 1647 } 1648 1649 /// Return true if zero-extending the specific node Val to type VT2 is free 1650 /// (either because it's implicitly zero-extended such as ARM ldrb / ldrh or 1651 /// because it's folded such as X86 zero-extending loads). 1652 virtual bool isZExtFree(SDValue Val, EVT VT2) const { 1653 return isZExtFree(Val.getValueType(), VT2); 1654 } 1655 1656 /// Return true if an fpext operation is free (for instance, because 1657 /// single-precision floating-point numbers are implicitly extended to 1658 /// double-precision). 1659 virtual bool isFPExtFree(EVT VT) const { 1660 assert(VT.isFloatingPoint()); 1661 return false; 1662 } 1663 1664 /// Return true if folding a vector load into ExtVal (a sign, zero, or any 1665 /// extend node) is profitable. 1666 virtual bool isVectorLoadExtDesirable(SDValue ExtVal) const { return false; } 1667 1668 /// Return true if an fneg operation is free to the point where it is never 1669 /// worthwhile to replace it with a bitwise operation. 1670 virtual bool isFNegFree(EVT VT) const { 1671 assert(VT.isFloatingPoint()); 1672 return false; 1673 } 1674 1675 /// Return true if an fabs operation is free to the point where it is never 1676 /// worthwhile to replace it with a bitwise operation. 1677 virtual bool isFAbsFree(EVT VT) const { 1678 assert(VT.isFloatingPoint()); 1679 return false; 1680 } 1681 1682 /// Return true if an FMA operation is faster than a pair of fmul and fadd 1683 /// instructions. fmuladd intrinsics will be expanded to FMAs when this method 1684 /// returns true, otherwise fmuladd is expanded to fmul + fadd. 1685 /// 1686 /// NOTE: This may be called before legalization on types for which FMAs are 1687 /// not legal, but should return true if those types will eventually legalize 1688 /// to types that support FMAs. After legalization, it will only be called on 1689 /// types that support FMAs (via Legal or Custom actions) 1690 virtual bool isFMAFasterThanFMulAndFAdd(EVT) const { 1691 return false; 1692 } 1693 1694 /// Return true if it's profitable to narrow operations of type VT1 to 1695 /// VT2. e.g. on x86, it's profitable to narrow from i32 to i8 but not from 1696 /// i32 to i16. 1697 virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const { 1698 return false; 1699 } 1700 1701 /// \brief Return true if it is beneficial to convert a load of a constant to 1702 /// just the constant itself. 1703 /// On some targets it might be more efficient to use a combination of 1704 /// arithmetic instructions to materialize the constant instead of loading it 1705 /// from a constant pool. 1706 virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm, 1707 Type *Ty) const { 1708 return false; 1709 } 1710 1711 /// Return true if EXTRACT_SUBVECTOR is cheap for this result type 1712 /// with this index. This is needed because EXTRACT_SUBVECTOR usually 1713 /// has custom lowering that depends on the index of the first element, 1714 /// and only the target knows which lowering is cheap. 1715 virtual bool isExtractSubvectorCheap(EVT ResVT, unsigned Index) const { 1716 return false; 1717 } 1718 1719 // Return true if it is profitable to use a scalar input to a BUILD_VECTOR 1720 // even if the vector itself has multiple uses. 1721 virtual bool aggressivelyPreferBuildVectorSources(EVT VecVT) const { 1722 return false; 1723 } 1724 1725 //===--------------------------------------------------------------------===// 1726 // Runtime Library hooks 1727 // 1728 1729 /// Rename the default libcall routine name for the specified libcall. 1730 void setLibcallName(RTLIB::Libcall Call, const char *Name) { 1731 LibcallRoutineNames[Call] = Name; 1732 } 1733 1734 /// Get the libcall routine name for the specified libcall. 1735 const char *getLibcallName(RTLIB::Libcall Call) const { 1736 return LibcallRoutineNames[Call]; 1737 } 1738 1739 /// Override the default CondCode to be used to test the result of the 1740 /// comparison libcall against zero. 1741 void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) { 1742 CmpLibcallCCs[Call] = CC; 1743 } 1744 1745 /// Get the CondCode that's to be used to test the result of the comparison 1746 /// libcall against zero. 1747 ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const { 1748 return CmpLibcallCCs[Call]; 1749 } 1750 1751 /// Set the CallingConv that should be used for the specified libcall. 1752 void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) { 1753 LibcallCallingConvs[Call] = CC; 1754 } 1755 1756 /// Get the CallingConv that should be used for the specified libcall. 1757 CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const { 1758 return LibcallCallingConvs[Call]; 1759 } 1760 1761 private: 1762 const TargetMachine &TM; 1763 1764 /// Tells the code generator not to expand operations into sequences that use 1765 /// the select operations if possible. 1766 bool SelectIsExpensive; 1767 1768 /// Tells the code generator that the target has multiple (allocatable) 1769 /// condition registers that can be used to store the results of comparisons 1770 /// for use by selects and conditional branches. With multiple condition 1771 /// registers, the code generator will not aggressively sink comparisons into 1772 /// the blocks of their users. 1773 bool HasMultipleConditionRegisters; 1774 1775 /// Tells the code generator that the target has BitExtract instructions. 1776 /// The code generator will aggressively sink "shift"s into the blocks of 1777 /// their users if the users will generate "and" instructions which can be 1778 /// combined with "shift" to BitExtract instructions. 1779 bool HasExtractBitsInsn; 1780 1781 // Don't expand fsqrt with an approximation based on the inverse sqrt. 1782 bool FsqrtIsCheap; 1783 1784 /// Tells the code generator to bypass slow divide or remainder 1785 /// instructions. For example, BypassSlowDivWidths[32,8] tells the code 1786 /// generator to bypass 32-bit integer div/rem with an 8-bit unsigned integer 1787 /// div/rem when the operands are positive and less than 256. 1788 DenseMap <unsigned int, unsigned int> BypassSlowDivWidths; 1789 1790 /// Tells the code generator that it shouldn't generate extra flow control 1791 /// instructions and should attempt to combine flow control instructions via 1792 /// predication. 1793 bool JumpIsExpensive; 1794 1795 /// Whether the target supports or cares about preserving floating point 1796 /// exception behavior. 1797 bool HasFloatingPointExceptions; 1798 1799 /// This target prefers to use _setjmp to implement llvm.setjmp. 1800 /// 1801 /// Defaults to false. 1802 bool UseUnderscoreSetJmp; 1803 1804 /// This target prefers to use _longjmp to implement llvm.longjmp. 1805 /// 1806 /// Defaults to false. 1807 bool UseUnderscoreLongJmp; 1808 1809 /// Number of blocks threshold to use jump tables. 1810 int MinimumJumpTableEntries; 1811 1812 /// Information about the contents of the high-bits in boolean values held in 1813 /// a type wider than i1. See getBooleanContents. 1814 BooleanContent BooleanContents; 1815 1816 /// Information about the contents of the high-bits in boolean values held in 1817 /// a type wider than i1. See getBooleanContents. 1818 BooleanContent BooleanFloatContents; 1819 1820 /// Information about the contents of the high-bits in boolean vector values 1821 /// when the element type is wider than i1. See getBooleanContents. 1822 BooleanContent BooleanVectorContents; 1823 1824 /// The target scheduling preference: shortest possible total cycles or lowest 1825 /// register usage. 1826 Sched::Preference SchedPreferenceInfo; 1827 1828 /// The size, in bytes, of the target's jmp_buf buffers 1829 unsigned JumpBufSize; 1830 1831 /// The alignment, in bytes, of the target's jmp_buf buffers 1832 unsigned JumpBufAlignment; 1833 1834 /// The minimum alignment that any argument on the stack needs to have. 1835 unsigned MinStackArgumentAlignment; 1836 1837 /// The minimum function alignment (used when optimizing for size, and to 1838 /// prevent explicitly provided alignment from leading to incorrect code). 1839 unsigned MinFunctionAlignment; 1840 1841 /// The preferred function alignment (used when alignment unspecified and 1842 /// optimizing for speed). 1843 unsigned PrefFunctionAlignment; 1844 1845 /// The preferred loop alignment. 1846 unsigned PrefLoopAlignment; 1847 1848 /// Whether the DAG builder should automatically insert fences and reduce 1849 /// ordering for atomics. (This will be set for for most architectures with 1850 /// weak memory ordering.) 1851 bool InsertFencesForAtomic; 1852 1853 /// If set to a physical register, this specifies the register that 1854 /// llvm.savestack/llvm.restorestack should save and restore. 1855 unsigned StackPointerRegisterToSaveRestore; 1856 1857 /// This indicates the default register class to use for each ValueType the 1858 /// target supports natively. 1859 const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE]; 1860 unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE]; 1861 MVT RegisterTypeForVT[MVT::LAST_VALUETYPE]; 1862 1863 /// This indicates the "representative" register class to use for each 1864 /// ValueType the target supports natively. This information is used by the 1865 /// scheduler to track register pressure. By default, the representative 1866 /// register class is the largest legal super-reg register class of the 1867 /// register class of the specified type. e.g. On x86, i8, i16, and i32's 1868 /// representative class would be GR32. 1869 const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE]; 1870 1871 /// This indicates the "cost" of the "representative" register class for each 1872 /// ValueType. The cost is used by the scheduler to approximate register 1873 /// pressure. 1874 uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE]; 1875 1876 /// For any value types we are promoting or expanding, this contains the value 1877 /// type that we are changing to. For Expanded types, this contains one step 1878 /// of the expand (e.g. i64 -> i32), even if there are multiple steps required 1879 /// (e.g. i64 -> i16). For types natively supported by the system, this holds 1880 /// the same type (e.g. i32 -> i32). 1881 MVT TransformToType[MVT::LAST_VALUETYPE]; 1882 1883 /// For each operation and each value type, keep a LegalizeAction that 1884 /// indicates how instruction selection should deal with the operation. Most 1885 /// operations are Legal (aka, supported natively by the target), but 1886 /// operations that are not should be described. Note that operations on 1887 /// non-legal value types are not described here. 1888 LegalizeAction OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END]; 1889 1890 /// For each load extension type and each value type, keep a LegalizeAction 1891 /// that indicates how instruction selection should deal with a load of a 1892 /// specific value type and extension type. 1893 LegalizeAction LoadExtActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE] 1894 [ISD::LAST_LOADEXT_TYPE]; 1895 1896 /// For each value type pair keep a LegalizeAction that indicates whether a 1897 /// truncating store of a specific value type and truncating type is legal. 1898 LegalizeAction TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE]; 1899 1900 /// For each indexed mode and each value type, keep a pair of LegalizeAction 1901 /// that indicates how instruction selection should deal with the load / 1902 /// store. 1903 /// 1904 /// The first dimension is the value_type for the reference. The second 1905 /// dimension represents the various modes for load store. 1906 uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE]; 1907 1908 /// For each condition code (ISD::CondCode) keep a LegalizeAction that 1909 /// indicates how instruction selection should deal with the condition code. 1910 /// 1911 /// Because each CC action takes up 4 bits, we need to have the array size be 1912 /// large enough to fit all of the value types. This can be done by rounding 1913 /// up the MVT::LAST_VALUETYPE value to the next multiple of 8. 1914 uint32_t CondCodeActions[ISD::SETCC_INVALID][(MVT::LAST_VALUETYPE + 7) / 8]; 1915 1916 protected: 1917 ValueTypeActionImpl ValueTypeActions; 1918 1919 private: 1920 LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const; 1921 1922 private: 1923 std::vector<std::pair<MVT, const TargetRegisterClass*> > AvailableRegClasses; 1924 1925 /// Targets can specify ISD nodes that they would like PerformDAGCombine 1926 /// callbacks for by calling setTargetDAGCombine(), which sets a bit in this 1927 /// array. 1928 unsigned char 1929 TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT]; 1930 1931 /// For operations that must be promoted to a specific type, this holds the 1932 /// destination type. This map should be sparse, so don't hold it as an 1933 /// array. 1934 /// 1935 /// Targets add entries to this map with AddPromotedToType(..), clients access 1936 /// this with getTypeToPromoteTo(..). 1937 std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType> 1938 PromoteToType; 1939 1940 /// Stores the name each libcall. 1941 const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL]; 1942 1943 /// The ISD::CondCode that should be used to test the result of each of the 1944 /// comparison libcall against zero. 1945 ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL]; 1946 1947 /// Stores the CallingConv that should be used for each libcall. 1948 CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL]; 1949 1950 protected: 1951 /// Return true if the extension represented by \p I is free. 1952 /// \pre \p I is a sign, zero, or fp extension and 1953 /// is[Z|FP]ExtFree of the related types is not true. 1954 virtual bool isExtFreeImpl(const Instruction *I) const { return false; } 1955 1956 /// Depth that GatherAllAliases should should continue looking for chain 1957 /// dependencies when trying to find a more preferrable chain. As an 1958 /// approximation, this should be more than the number of consecutive stores 1959 /// expected to be merged. 1960 unsigned GatherAllAliasesMaxDepth; 1961 1962 /// \brief Specify maximum number of store instructions per memset call. 1963 /// 1964 /// When lowering \@llvm.memset this field specifies the maximum number of 1965 /// store operations that may be substituted for the call to memset. Targets 1966 /// must set this value based on the cost threshold for that target. Targets 1967 /// should assume that the memset will be done using as many of the largest 1968 /// store operations first, followed by smaller ones, if necessary, per 1969 /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine 1970 /// with 16-bit alignment would result in four 2-byte stores and one 1-byte 1971 /// store. This only applies to setting a constant array of a constant size. 1972 unsigned MaxStoresPerMemset; 1973 1974 /// Maximum number of stores operations that may be substituted for the call 1975 /// to memset, used for functions with OptSize attribute. 1976 unsigned MaxStoresPerMemsetOptSize; 1977 1978 /// \brief Specify maximum bytes of store instructions per memcpy call. 1979 /// 1980 /// When lowering \@llvm.memcpy this field specifies the maximum number of 1981 /// store operations that may be substituted for a call to memcpy. Targets 1982 /// must set this value based on the cost threshold for that target. Targets 1983 /// should assume that the memcpy will be done using as many of the largest 1984 /// store operations first, followed by smaller ones, if necessary, per 1985 /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine 1986 /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store 1987 /// and one 1-byte store. This only applies to copying a constant array of 1988 /// constant size. 1989 unsigned MaxStoresPerMemcpy; 1990 1991 /// Maximum number of store operations that may be substituted for a call to 1992 /// memcpy, used for functions with OptSize attribute. 1993 unsigned MaxStoresPerMemcpyOptSize; 1994 1995 /// \brief Specify maximum bytes of store instructions per memmove call. 1996 /// 1997 /// When lowering \@llvm.memmove this field specifies the maximum number of 1998 /// store instructions that may be substituted for a call to memmove. Targets 1999 /// must set this value based on the cost threshold for that target. Targets 2000 /// should assume that the memmove will be done using as many of the largest 2001 /// store operations first, followed by smaller ones, if necessary, per 2002 /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine 2003 /// with 8-bit alignment would result in nine 1-byte stores. This only 2004 /// applies to copying a constant array of constant size. 2005 unsigned MaxStoresPerMemmove; 2006 2007 /// Maximum number of store instructions that may be substituted for a call to 2008 /// memmove, used for functions with OptSize attribute. 2009 unsigned MaxStoresPerMemmoveOptSize; 2010 2011 /// Tells the code generator that select is more expensive than a branch if 2012 /// the branch is usually predicted right. 2013 bool PredictableSelectIsExpensive; 2014 2015 /// MaskAndBranchFoldingIsLegal - Indicates if the target supports folding 2016 /// a mask of a single bit, a compare, and a branch into a single instruction. 2017 bool MaskAndBranchFoldingIsLegal; 2018 2019 /// \see enableExtLdPromotion. 2020 bool EnableExtLdPromotion; 2021 2022 protected: 2023 /// Return true if the value types that can be represented by the specified 2024 /// register class are all legal. 2025 bool isLegalRC(const TargetRegisterClass *RC) const; 2026 2027 /// Replace/modify any TargetFrameIndex operands with a targte-dependent 2028 /// sequence of memory operands that is recognized by PrologEpilogInserter. 2029 MachineBasicBlock *emitPatchPoint(MachineInstr *MI, 2030 MachineBasicBlock *MBB) const; 2031 }; 2032 2033 /// This class defines information used to lower LLVM code to legal SelectionDAG 2034 /// operators that the target instruction selector can accept natively. 2035 /// 2036 /// This class also defines callbacks that targets must implement to lower 2037 /// target-specific constructs to SelectionDAG operators. 2038 class TargetLowering : public TargetLoweringBase { 2039 TargetLowering(const TargetLowering&) = delete; 2040 void operator=(const TargetLowering&) = delete; 2041 2042 public: 2043 /// NOTE: The TargetMachine owns TLOF. 2044 explicit TargetLowering(const TargetMachine &TM); 2045 2046 /// Returns true by value, base pointer and offset pointer and addressing mode 2047 /// by reference if the node's address can be legally represented as 2048 /// pre-indexed load / store address. 2049 virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/, 2050 SDValue &/*Offset*/, 2051 ISD::MemIndexedMode &/*AM*/, 2052 SelectionDAG &/*DAG*/) const { 2053 return false; 2054 } 2055 2056 /// Returns true by value, base pointer and offset pointer and addressing mode 2057 /// by reference if this node can be combined with a load / store to form a 2058 /// post-indexed load / store. 2059 virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/, 2060 SDValue &/*Base*/, 2061 SDValue &/*Offset*/, 2062 ISD::MemIndexedMode &/*AM*/, 2063 SelectionDAG &/*DAG*/) const { 2064 return false; 2065 } 2066 2067 /// Return the entry encoding for a jump table in the current function. The 2068 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 2069 virtual unsigned getJumpTableEncoding() const; 2070 2071 virtual const MCExpr * 2072 LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/, 2073 const MachineBasicBlock * /*MBB*/, unsigned /*uid*/, 2074 MCContext &/*Ctx*/) const { 2075 llvm_unreachable("Need to implement this hook if target has custom JTIs"); 2076 } 2077 2078 /// Returns relocation base for the given PIC jumptable. 2079 virtual SDValue getPICJumpTableRelocBase(SDValue Table, 2080 SelectionDAG &DAG) const; 2081 2082 /// This returns the relocation base for the given PIC jumptable, the same as 2083 /// getPICJumpTableRelocBase, but as an MCExpr. 2084 virtual const MCExpr * 2085 getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 2086 unsigned JTI, MCContext &Ctx) const; 2087 2088 /// Return true if folding a constant offset with the given GlobalAddress is 2089 /// legal. It is frequently not legal in PIC relocation models. 2090 virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const; 2091 2092 bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 2093 SDValue &Chain) const; 2094 2095 void softenSetCCOperands(SelectionDAG &DAG, EVT VT, 2096 SDValue &NewLHS, SDValue &NewRHS, 2097 ISD::CondCode &CCCode, SDLoc DL) const; 2098 2099 /// Returns a pair of (return value, chain). 2100 /// It is an error to pass RTLIB::UNKNOWN_LIBCALL as \p LC. 2101 std::pair<SDValue, SDValue> makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, 2102 EVT RetVT, ArrayRef<SDValue> Ops, 2103 bool isSigned, SDLoc dl, 2104 bool doesNotReturn = false, 2105 bool isReturnValueUsed = true) const; 2106 2107 //===--------------------------------------------------------------------===// 2108 // TargetLowering Optimization Methods 2109 // 2110 2111 /// A convenience struct that encapsulates a DAG, and two SDValues for 2112 /// returning information from TargetLowering to its clients that want to 2113 /// combine. 2114 struct TargetLoweringOpt { 2115 SelectionDAG &DAG; 2116 bool LegalTys; 2117 bool LegalOps; 2118 SDValue Old; 2119 SDValue New; 2120 2121 explicit TargetLoweringOpt(SelectionDAG &InDAG, 2122 bool LT, bool LO) : 2123 DAG(InDAG), LegalTys(LT), LegalOps(LO) {} 2124 2125 bool LegalTypes() const { return LegalTys; } 2126 bool LegalOperations() const { return LegalOps; } 2127 2128 bool CombineTo(SDValue O, SDValue N) { 2129 Old = O; 2130 New = N; 2131 return true; 2132 } 2133 2134 /// Check to see if the specified operand of the specified instruction is a 2135 /// constant integer. If so, check to see if there are any bits set in the 2136 /// constant that are not demanded. If so, shrink the constant and return 2137 /// true. 2138 bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded); 2139 2140 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. This 2141 /// uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 2142 /// generalized for targets with other types of implicit widening casts. 2143 bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded, 2144 SDLoc dl); 2145 }; 2146 2147 /// Look at Op. At this point, we know that only the DemandedMask bits of the 2148 /// result of Op are ever used downstream. If we can use this information to 2149 /// simplify Op, create a new simplified DAG node and return true, returning 2150 /// the original and new nodes in Old and New. Otherwise, analyze the 2151 /// expression and return a mask of KnownOne and KnownZero bits for the 2152 /// expression (used to simplify the caller). The KnownZero/One bits may only 2153 /// be accurate for those bits in the DemandedMask. 2154 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask, 2155 APInt &KnownZero, APInt &KnownOne, 2156 TargetLoweringOpt &TLO, unsigned Depth = 0) const; 2157 2158 /// Determine which of the bits specified in Mask are known to be either zero 2159 /// or one and return them in the KnownZero/KnownOne bitsets. 2160 virtual void computeKnownBitsForTargetNode(const SDValue Op, 2161 APInt &KnownZero, 2162 APInt &KnownOne, 2163 const SelectionDAG &DAG, 2164 unsigned Depth = 0) const; 2165 2166 /// This method can be implemented by targets that want to expose additional 2167 /// information about sign bits to the DAG Combiner. 2168 virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op, 2169 const SelectionDAG &DAG, 2170 unsigned Depth = 0) const; 2171 2172 struct DAGCombinerInfo { 2173 void *DC; // The DAG Combiner object. 2174 CombineLevel Level; 2175 bool CalledByLegalizer; 2176 public: 2177 SelectionDAG &DAG; 2178 2179 DAGCombinerInfo(SelectionDAG &dag, CombineLevel level, bool cl, void *dc) 2180 : DC(dc), Level(level), CalledByLegalizer(cl), DAG(dag) {} 2181 2182 bool isBeforeLegalize() const { return Level == BeforeLegalizeTypes; } 2183 bool isBeforeLegalizeOps() const { return Level < AfterLegalizeVectorOps; } 2184 bool isAfterLegalizeVectorOps() const { 2185 return Level == AfterLegalizeDAG; 2186 } 2187 CombineLevel getDAGCombineLevel() { return Level; } 2188 bool isCalledByLegalizer() const { return CalledByLegalizer; } 2189 2190 void AddToWorklist(SDNode *N); 2191 void RemoveFromWorklist(SDNode *N); 2192 SDValue CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo = true); 2193 SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true); 2194 SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true); 2195 2196 void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO); 2197 }; 2198 2199 /// Return if the N is a constant or constant vector equal to the true value 2200 /// from getBooleanContents(). 2201 bool isConstTrueVal(const SDNode *N) const; 2202 2203 /// Return if the N is a constant or constant vector equal to the false value 2204 /// from getBooleanContents(). 2205 bool isConstFalseVal(const SDNode *N) const; 2206 2207 /// Try to simplify a setcc built with the specified operands and cc. If it is 2208 /// unable to simplify it, return a null SDValue. 2209 SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 2210 ISD::CondCode Cond, bool foldBooleans, 2211 DAGCombinerInfo &DCI, SDLoc dl) const; 2212 2213 /// Returns true (and the GlobalValue and the offset) if the node is a 2214 /// GlobalAddress + offset. 2215 virtual bool 2216 isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const; 2217 2218 /// This method will be invoked for all target nodes and for any 2219 /// target-independent nodes that the target has registered with invoke it 2220 /// for. 2221 /// 2222 /// The semantics are as follows: 2223 /// Return Value: 2224 /// SDValue.Val == 0 - No change was made 2225 /// SDValue.Val == N - N was replaced, is dead, and is already handled. 2226 /// otherwise - N should be replaced by the returned Operand. 2227 /// 2228 /// In addition, methods provided by DAGCombinerInfo may be used to perform 2229 /// more complex transformations. 2230 /// 2231 virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const; 2232 2233 /// Return true if it is profitable to move a following shift through this 2234 // node, adjusting any immediate operands as necessary to preserve semantics. 2235 // This transformation may not be desirable if it disrupts a particularly 2236 // auspicious target-specific tree (e.g. bitfield extraction in AArch64). 2237 // By default, it returns true. 2238 virtual bool isDesirableToCommuteWithShift(const SDNode *N /*Op*/) const { 2239 return true; 2240 } 2241 2242 /// Return true if the target has native support for the specified value type 2243 /// and it is 'desirable' to use the type for the given node type. e.g. On x86 2244 /// i16 is legal, but undesirable since i16 instruction encodings are longer 2245 /// and some i16 instructions are slow. 2246 virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const { 2247 // By default, assume all legal types are desirable. 2248 return isTypeLegal(VT); 2249 } 2250 2251 /// Return true if it is profitable for dag combiner to transform a floating 2252 /// point op of specified opcode to a equivalent op of an integer 2253 /// type. e.g. f32 load -> i32 load can be profitable on ARM. 2254 virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/, 2255 EVT /*VT*/) const { 2256 return false; 2257 } 2258 2259 /// This method query the target whether it is beneficial for dag combiner to 2260 /// promote the specified node. If true, it should return the desired 2261 /// promotion type by reference. 2262 virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const { 2263 return false; 2264 } 2265 2266 /// Return true if the target supports that a subset of CSRs for the given 2267 /// machine function is handled explicitly via copies. 2268 virtual bool supportSplitCSR(MachineFunction *MF) const { 2269 return false; 2270 } 2271 2272 /// Perform necessary initialization to handle a subset of CSRs explicitly 2273 /// via copies. This function is called at the beginning of instruction 2274 /// selection. 2275 virtual void initializeSplitCSR(MachineBasicBlock *Entry) const { 2276 llvm_unreachable("Not Implemented"); 2277 } 2278 2279 /// Insert explicit copies in entry and exit blocks. We copy a subset of 2280 /// CSRs to virtual registers in the entry block, and copy them back to 2281 /// physical registers in the exit blocks. This function is called at the end 2282 /// of instruction selection. 2283 virtual void insertCopiesSplitCSR( 2284 MachineBasicBlock *Entry, 2285 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 2286 llvm_unreachable("Not Implemented"); 2287 } 2288 2289 //===--------------------------------------------------------------------===// 2290 // Lowering methods - These methods must be implemented by targets so that 2291 // the SelectionDAGBuilder code knows how to lower these. 2292 // 2293 2294 /// This hook must be implemented to lower the incoming (formal) arguments, 2295 /// described by the Ins array, into the specified DAG. The implementation 2296 /// should fill in the InVals array with legal-type argument values, and 2297 /// return the resulting token chain value. 2298 /// 2299 virtual SDValue 2300 LowerFormalArguments(SDValue /*Chain*/, CallingConv::ID /*CallConv*/, 2301 bool /*isVarArg*/, 2302 const SmallVectorImpl<ISD::InputArg> &/*Ins*/, 2303 SDLoc /*dl*/, SelectionDAG &/*DAG*/, 2304 SmallVectorImpl<SDValue> &/*InVals*/) const { 2305 llvm_unreachable("Not Implemented"); 2306 } 2307 2308 struct ArgListEntry { 2309 SDValue Node; 2310 Type* Ty; 2311 bool isSExt : 1; 2312 bool isZExt : 1; 2313 bool isInReg : 1; 2314 bool isSRet : 1; 2315 bool isNest : 1; 2316 bool isByVal : 1; 2317 bool isInAlloca : 1; 2318 bool isReturned : 1; 2319 uint16_t Alignment; 2320 2321 ArgListEntry() : isSExt(false), isZExt(false), isInReg(false), 2322 isSRet(false), isNest(false), isByVal(false), isInAlloca(false), 2323 isReturned(false), Alignment(0) { } 2324 2325 void setAttributes(ImmutableCallSite *CS, unsigned AttrIdx); 2326 }; 2327 typedef std::vector<ArgListEntry> ArgListTy; 2328 2329 /// This structure contains all information that is necessary for lowering 2330 /// calls. It is passed to TLI::LowerCallTo when the SelectionDAG builder 2331 /// needs to lower a call, and targets will see this struct in their LowerCall 2332 /// implementation. 2333 struct CallLoweringInfo { 2334 SDValue Chain; 2335 Type *RetTy; 2336 bool RetSExt : 1; 2337 bool RetZExt : 1; 2338 bool IsVarArg : 1; 2339 bool IsInReg : 1; 2340 bool DoesNotReturn : 1; 2341 bool IsReturnValueUsed : 1; 2342 2343 // IsTailCall should be modified by implementations of 2344 // TargetLowering::LowerCall that perform tail call conversions. 2345 bool IsTailCall; 2346 2347 unsigned NumFixedArgs; 2348 CallingConv::ID CallConv; 2349 SDValue Callee; 2350 ArgListTy Args; 2351 SelectionDAG &DAG; 2352 SDLoc DL; 2353 ImmutableCallSite *CS; 2354 bool IsPatchPoint; 2355 SmallVector<ISD::OutputArg, 32> Outs; 2356 SmallVector<SDValue, 32> OutVals; 2357 SmallVector<ISD::InputArg, 32> Ins; 2358 2359 CallLoweringInfo(SelectionDAG &DAG) 2360 : RetTy(nullptr), RetSExt(false), RetZExt(false), IsVarArg(false), 2361 IsInReg(false), DoesNotReturn(false), IsReturnValueUsed(true), 2362 IsTailCall(false), NumFixedArgs(-1), CallConv(CallingConv::C), 2363 DAG(DAG), CS(nullptr), IsPatchPoint(false) {} 2364 2365 CallLoweringInfo &setDebugLoc(SDLoc dl) { 2366 DL = dl; 2367 return *this; 2368 } 2369 2370 CallLoweringInfo &setChain(SDValue InChain) { 2371 Chain = InChain; 2372 return *this; 2373 } 2374 2375 CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultType, 2376 SDValue Target, ArgListTy &&ArgsList, 2377 unsigned FixedArgs = -1) { 2378 RetTy = ResultType; 2379 Callee = Target; 2380 CallConv = CC; 2381 NumFixedArgs = 2382 (FixedArgs == static_cast<unsigned>(-1) ? Args.size() : FixedArgs); 2383 Args = std::move(ArgsList); 2384 return *this; 2385 } 2386 2387 CallLoweringInfo &setCallee(Type *ResultType, FunctionType *FTy, 2388 SDValue Target, ArgListTy &&ArgsList, 2389 ImmutableCallSite &Call) { 2390 RetTy = ResultType; 2391 2392 IsInReg = Call.paramHasAttr(0, Attribute::InReg); 2393 DoesNotReturn = Call.doesNotReturn(); 2394 IsVarArg = FTy->isVarArg(); 2395 IsReturnValueUsed = !Call.getInstruction()->use_empty(); 2396 RetSExt = Call.paramHasAttr(0, Attribute::SExt); 2397 RetZExt = Call.paramHasAttr(0, Attribute::ZExt); 2398 2399 Callee = Target; 2400 2401 CallConv = Call.getCallingConv(); 2402 NumFixedArgs = FTy->getNumParams(); 2403 Args = std::move(ArgsList); 2404 2405 CS = &Call; 2406 2407 return *this; 2408 } 2409 2410 CallLoweringInfo &setInRegister(bool Value = true) { 2411 IsInReg = Value; 2412 return *this; 2413 } 2414 2415 CallLoweringInfo &setNoReturn(bool Value = true) { 2416 DoesNotReturn = Value; 2417 return *this; 2418 } 2419 2420 CallLoweringInfo &setVarArg(bool Value = true) { 2421 IsVarArg = Value; 2422 return *this; 2423 } 2424 2425 CallLoweringInfo &setTailCall(bool Value = true) { 2426 IsTailCall = Value; 2427 return *this; 2428 } 2429 2430 CallLoweringInfo &setDiscardResult(bool Value = true) { 2431 IsReturnValueUsed = !Value; 2432 return *this; 2433 } 2434 2435 CallLoweringInfo &setSExtResult(bool Value = true) { 2436 RetSExt = Value; 2437 return *this; 2438 } 2439 2440 CallLoweringInfo &setZExtResult(bool Value = true) { 2441 RetZExt = Value; 2442 return *this; 2443 } 2444 2445 CallLoweringInfo &setIsPatchPoint(bool Value = true) { 2446 IsPatchPoint = Value; 2447 return *this; 2448 } 2449 2450 ArgListTy &getArgs() { 2451 return Args; 2452 } 2453 2454 }; 2455 2456 // Mark inreg arguments for lib-calls. For normal calls this is done by 2457 // the frontend ABI code. 2458 virtual void markInRegArguments(SelectionDAG &DAG, 2459 TargetLowering::ArgListTy &Args) const { 2460 return; 2461 } 2462 2463 /// This function lowers an abstract call to a function into an actual call. 2464 /// This returns a pair of operands. The first element is the return value 2465 /// for the function (if RetTy is not VoidTy). The second element is the 2466 /// outgoing token chain. It calls LowerCall to do the actual lowering. 2467 std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const; 2468 2469 /// This hook must be implemented to lower calls into the specified 2470 /// DAG. The outgoing arguments to the call are described by the Outs array, 2471 /// and the values to be returned by the call are described by the Ins 2472 /// array. The implementation should fill in the InVals array with legal-type 2473 /// return values from the call, and return the resulting token chain value. 2474 virtual SDValue 2475 LowerCall(CallLoweringInfo &/*CLI*/, 2476 SmallVectorImpl<SDValue> &/*InVals*/) const { 2477 llvm_unreachable("Not Implemented"); 2478 } 2479 2480 /// Target-specific cleanup for formal ByVal parameters. 2481 virtual void HandleByVal(CCState *, unsigned &, unsigned) const {} 2482 2483 /// This hook should be implemented to check whether the return values 2484 /// described by the Outs array can fit into the return registers. If false 2485 /// is returned, an sret-demotion is performed. 2486 virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/, 2487 MachineFunction &/*MF*/, bool /*isVarArg*/, 2488 const SmallVectorImpl<ISD::OutputArg> &/*Outs*/, 2489 LLVMContext &/*Context*/) const 2490 { 2491 // Return true by default to get preexisting behavior. 2492 return true; 2493 } 2494 2495 /// This hook must be implemented to lower outgoing return values, described 2496 /// by the Outs array, into the specified DAG. The implementation should 2497 /// return the resulting token chain value. 2498 virtual SDValue 2499 LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/, 2500 bool /*isVarArg*/, 2501 const SmallVectorImpl<ISD::OutputArg> &/*Outs*/, 2502 const SmallVectorImpl<SDValue> &/*OutVals*/, 2503 SDLoc /*dl*/, SelectionDAG &/*DAG*/) const { 2504 llvm_unreachable("Not Implemented"); 2505 } 2506 2507 /// Return true if result of the specified node is used by a return node 2508 /// only. It also compute and return the input chain for the tail call. 2509 /// 2510 /// This is used to determine whether it is possible to codegen a libcall as 2511 /// tail call at legalization time. 2512 virtual bool isUsedByReturnOnly(SDNode *, SDValue &/*Chain*/) const { 2513 return false; 2514 } 2515 2516 /// Return true if the target may be able emit the call instruction as a tail 2517 /// call. This is used by optimization passes to determine if it's profitable 2518 /// to duplicate return instructions to enable tailcall optimization. 2519 virtual bool mayBeEmittedAsTailCall(CallInst *) const { 2520 return false; 2521 } 2522 2523 /// Return the builtin name for the __builtin___clear_cache intrinsic 2524 /// Default is to invoke the clear cache library call 2525 virtual const char * getClearCacheBuiltinName() const { 2526 return "__clear_cache"; 2527 } 2528 2529 /// Return the register ID of the name passed in. Used by named register 2530 /// global variables extension. There is no target-independent behaviour 2531 /// so the default action is to bail. 2532 virtual unsigned getRegisterByName(const char* RegName, EVT VT, 2533 SelectionDAG &DAG) const { 2534 report_fatal_error("Named registers not implemented for this target"); 2535 } 2536 2537 /// Return the type that should be used to zero or sign extend a 2538 /// zeroext/signext integer argument or return value. FIXME: Most C calling 2539 /// convention requires the return type to be promoted, but this is not true 2540 /// all the time, e.g. i1 on x86-64. It is also not necessary for non-C 2541 /// calling conventions. The frontend should handle this and include all of 2542 /// the necessary information. 2543 virtual EVT getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT, 2544 ISD::NodeType /*ExtendKind*/) const { 2545 EVT MinVT = getRegisterType(Context, MVT::i32); 2546 return VT.bitsLT(MinVT) ? MinVT : VT; 2547 } 2548 2549 /// For some targets, an LLVM struct type must be broken down into multiple 2550 /// simple types, but the calling convention specifies that the entire struct 2551 /// must be passed in a block of consecutive registers. 2552 virtual bool 2553 functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv, 2554 bool isVarArg) const { 2555 return false; 2556 } 2557 2558 /// Returns a 0 terminated array of registers that can be safely used as 2559 /// scratch registers. 2560 virtual const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const { 2561 return nullptr; 2562 } 2563 2564 /// This callback is used to prepare for a volatile or atomic load. 2565 /// It takes a chain node as input and returns the chain for the load itself. 2566 /// 2567 /// Having a callback like this is necessary for targets like SystemZ, 2568 /// which allows a CPU to reuse the result of a previous load indefinitely, 2569 /// even if a cache-coherent store is performed by another CPU. The default 2570 /// implementation does nothing. 2571 virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL, 2572 SelectionDAG &DAG) const { 2573 return Chain; 2574 } 2575 2576 /// This callback is invoked by the type legalizer to legalize nodes with an 2577 /// illegal operand type but legal result types. It replaces the 2578 /// LowerOperation callback in the type Legalizer. The reason we can not do 2579 /// away with LowerOperation entirely is that LegalizeDAG isn't yet ready to 2580 /// use this callback. 2581 /// 2582 /// TODO: Consider merging with ReplaceNodeResults. 2583 /// 2584 /// The target places new result values for the node in Results (their number 2585 /// and types must exactly match those of the original return values of 2586 /// the node), or leaves Results empty, which indicates that the node is not 2587 /// to be custom lowered after all. 2588 /// The default implementation calls LowerOperation. 2589 virtual void LowerOperationWrapper(SDNode *N, 2590 SmallVectorImpl<SDValue> &Results, 2591 SelectionDAG &DAG) const; 2592 2593 /// This callback is invoked for operations that are unsupported by the 2594 /// target, which are registered to use 'custom' lowering, and whose defined 2595 /// values are all legal. If the target has no operations that require custom 2596 /// lowering, it need not implement this. The default implementation of this 2597 /// aborts. 2598 virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const; 2599 2600 /// This callback is invoked when a node result type is illegal for the 2601 /// target, and the operation was registered to use 'custom' lowering for that 2602 /// result type. The target places new result values for the node in Results 2603 /// (their number and types must exactly match those of the original return 2604 /// values of the node), or leaves Results empty, which indicates that the 2605 /// node is not to be custom lowered after all. 2606 /// 2607 /// If the target has no operations that require custom lowering, it need not 2608 /// implement this. The default implementation aborts. 2609 virtual void ReplaceNodeResults(SDNode * /*N*/, 2610 SmallVectorImpl<SDValue> &/*Results*/, 2611 SelectionDAG &/*DAG*/) const { 2612 llvm_unreachable("ReplaceNodeResults not implemented for this target!"); 2613 } 2614 2615 /// This method returns the name of a target specific DAG node. 2616 virtual const char *getTargetNodeName(unsigned Opcode) const; 2617 2618 /// This method returns a target specific FastISel object, or null if the 2619 /// target does not support "fast" ISel. 2620 virtual FastISel *createFastISel(FunctionLoweringInfo &, 2621 const TargetLibraryInfo *) const { 2622 return nullptr; 2623 } 2624 2625 2626 bool verifyReturnAddressArgumentIsConstant(SDValue Op, 2627 SelectionDAG &DAG) const; 2628 2629 //===--------------------------------------------------------------------===// 2630 // Inline Asm Support hooks 2631 // 2632 2633 /// This hook allows the target to expand an inline asm call to be explicit 2634 /// llvm code if it wants to. This is useful for turning simple inline asms 2635 /// into LLVM intrinsics, which gives the compiler more information about the 2636 /// behavior of the code. 2637 virtual bool ExpandInlineAsm(CallInst *) const { 2638 return false; 2639 } 2640 2641 enum ConstraintType { 2642 C_Register, // Constraint represents specific register(s). 2643 C_RegisterClass, // Constraint represents any of register(s) in class. 2644 C_Memory, // Memory constraint. 2645 C_Other, // Something else. 2646 C_Unknown // Unsupported constraint. 2647 }; 2648 2649 enum ConstraintWeight { 2650 // Generic weights. 2651 CW_Invalid = -1, // No match. 2652 CW_Okay = 0, // Acceptable. 2653 CW_Good = 1, // Good weight. 2654 CW_Better = 2, // Better weight. 2655 CW_Best = 3, // Best weight. 2656 2657 // Well-known weights. 2658 CW_SpecificReg = CW_Okay, // Specific register operands. 2659 CW_Register = CW_Good, // Register operands. 2660 CW_Memory = CW_Better, // Memory operands. 2661 CW_Constant = CW_Best, // Constant operand. 2662 CW_Default = CW_Okay // Default or don't know type. 2663 }; 2664 2665 /// This contains information for each constraint that we are lowering. 2666 struct AsmOperandInfo : public InlineAsm::ConstraintInfo { 2667 /// This contains the actual string for the code, like "m". TargetLowering 2668 /// picks the 'best' code from ConstraintInfo::Codes that most closely 2669 /// matches the operand. 2670 std::string ConstraintCode; 2671 2672 /// Information about the constraint code, e.g. Register, RegisterClass, 2673 /// Memory, Other, Unknown. 2674 TargetLowering::ConstraintType ConstraintType; 2675 2676 /// If this is the result output operand or a clobber, this is null, 2677 /// otherwise it is the incoming operand to the CallInst. This gets 2678 /// modified as the asm is processed. 2679 Value *CallOperandVal; 2680 2681 /// The ValueType for the operand value. 2682 MVT ConstraintVT; 2683 2684 /// Return true of this is an input operand that is a matching constraint 2685 /// like "4". 2686 bool isMatchingInputConstraint() const; 2687 2688 /// If this is an input matching constraint, this method returns the output 2689 /// operand it matches. 2690 unsigned getMatchedOperand() const; 2691 2692 /// Copy constructor for copying from a ConstraintInfo. 2693 AsmOperandInfo(InlineAsm::ConstraintInfo Info) 2694 : InlineAsm::ConstraintInfo(std::move(Info)), 2695 ConstraintType(TargetLowering::C_Unknown), CallOperandVal(nullptr), 2696 ConstraintVT(MVT::Other) {} 2697 }; 2698 2699 typedef std::vector<AsmOperandInfo> AsmOperandInfoVector; 2700 2701 /// Split up the constraint string from the inline assembly value into the 2702 /// specific constraints and their prefixes, and also tie in the associated 2703 /// operand values. If this returns an empty vector, and if the constraint 2704 /// string itself isn't empty, there was an error parsing. 2705 virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL, 2706 const TargetRegisterInfo *TRI, 2707 ImmutableCallSite CS) const; 2708 2709 /// Examine constraint type and operand type and determine a weight value. 2710 /// The operand object must already have been set up with the operand type. 2711 virtual ConstraintWeight getMultipleConstraintMatchWeight( 2712 AsmOperandInfo &info, int maIndex) const; 2713 2714 /// Examine constraint string and operand type and determine a weight value. 2715 /// The operand object must already have been set up with the operand type. 2716 virtual ConstraintWeight getSingleConstraintMatchWeight( 2717 AsmOperandInfo &info, const char *constraint) const; 2718 2719 /// Determines the constraint code and constraint type to use for the specific 2720 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 2721 /// If the actual operand being passed in is available, it can be passed in as 2722 /// Op, otherwise an empty SDValue can be passed. 2723 virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo, 2724 SDValue Op, 2725 SelectionDAG *DAG = nullptr) const; 2726 2727 /// Given a constraint, return the type of constraint it is for this target. 2728 virtual ConstraintType getConstraintType(StringRef Constraint) const; 2729 2730 /// Given a physical register constraint (e.g. {edx}), return the register 2731 /// number and the register class for the register. 2732 /// 2733 /// Given a register class constraint, like 'r', if this corresponds directly 2734 /// to an LLVM register class, return a register of 0 and the register class 2735 /// pointer. 2736 /// 2737 /// This should only be used for C_Register constraints. On error, this 2738 /// returns a register number of 0 and a null register class pointer. 2739 virtual std::pair<unsigned, const TargetRegisterClass *> 2740 getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 2741 StringRef Constraint, MVT VT) const; 2742 2743 virtual unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const { 2744 if (ConstraintCode == "i") 2745 return InlineAsm::Constraint_i; 2746 else if (ConstraintCode == "m") 2747 return InlineAsm::Constraint_m; 2748 return InlineAsm::Constraint_Unknown; 2749 } 2750 2751 /// Try to replace an X constraint, which matches anything, with another that 2752 /// has more specific requirements based on the type of the corresponding 2753 /// operand. This returns null if there is no replacement to make. 2754 virtual const char *LowerXConstraint(EVT ConstraintVT) const; 2755 2756 /// Lower the specified operand into the Ops vector. If it is invalid, don't 2757 /// add anything to Ops. 2758 virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 2759 std::vector<SDValue> &Ops, 2760 SelectionDAG &DAG) const; 2761 2762 //===--------------------------------------------------------------------===// 2763 // Div utility functions 2764 // 2765 SDValue BuildSDIV(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, 2766 bool IsAfterLegalization, 2767 std::vector<SDNode *> *Created) const; 2768 SDValue BuildUDIV(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, 2769 bool IsAfterLegalization, 2770 std::vector<SDNode *> *Created) const; 2771 2772 /// Targets may override this function to provide custom SDIV lowering for 2773 /// power-of-2 denominators. If the target returns an empty SDValue, LLVM 2774 /// assumes SDIV is expensive and replaces it with a series of other integer 2775 /// operations. 2776 virtual SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, 2777 SelectionDAG &DAG, 2778 std::vector<SDNode *> *Created) const; 2779 2780 /// Indicate whether this target prefers to combine FDIVs with the same 2781 /// divisor. If the transform should never be done, return zero. If the 2782 /// transform should be done, return the minimum number of divisor uses 2783 /// that must exist. 2784 virtual unsigned combineRepeatedFPDivisors() const { 2785 return 0; 2786 } 2787 2788 /// Hooks for building estimates in place of slower divisions and square 2789 /// roots. 2790 2791 /// Return a reciprocal square root estimate value for the input operand. 2792 /// The RefinementSteps output is the number of Newton-Raphson refinement 2793 /// iterations required to generate a sufficient (though not necessarily 2794 /// IEEE-754 compliant) estimate for the value type. 2795 /// The boolean UseOneConstNR output is used to select a Newton-Raphson 2796 /// algorithm implementation that uses one constant or two constants. 2797 /// A target may choose to implement its own refinement within this function. 2798 /// If that's true, then return '0' as the number of RefinementSteps to avoid 2799 /// any further refinement of the estimate. 2800 /// An empty SDValue return means no estimate sequence can be created. 2801 virtual SDValue getRsqrtEstimate(SDValue Operand, DAGCombinerInfo &DCI, 2802 unsigned &RefinementSteps, 2803 bool &UseOneConstNR) const { 2804 return SDValue(); 2805 } 2806 2807 /// Return a reciprocal estimate value for the input operand. 2808 /// The RefinementSteps output is the number of Newton-Raphson refinement 2809 /// iterations required to generate a sufficient (though not necessarily 2810 /// IEEE-754 compliant) estimate for the value type. 2811 /// A target may choose to implement its own refinement within this function. 2812 /// If that's true, then return '0' as the number of RefinementSteps to avoid 2813 /// any further refinement of the estimate. 2814 /// An empty SDValue return means no estimate sequence can be created. 2815 virtual SDValue getRecipEstimate(SDValue Operand, DAGCombinerInfo &DCI, 2816 unsigned &RefinementSteps) const { 2817 return SDValue(); 2818 } 2819 2820 //===--------------------------------------------------------------------===// 2821 // Legalization utility functions 2822 // 2823 2824 /// Expand a MUL into two nodes. One that computes the high bits of 2825 /// the result and one that computes the low bits. 2826 /// \param HiLoVT The value type to use for the Lo and Hi nodes. 2827 /// \param LL Low bits of the LHS of the MUL. You can use this parameter 2828 /// if you want to control how low bits are extracted from the LHS. 2829 /// \param LH High bits of the LHS of the MUL. See LL for meaning. 2830 /// \param RL Low bits of the RHS of the MUL. See LL for meaning 2831 /// \param RH High bits of the RHS of the MUL. See LL for meaning. 2832 /// \returns true if the node has been expanded. false if it has not 2833 bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 2834 SelectionDAG &DAG, SDValue LL = SDValue(), 2835 SDValue LH = SDValue(), SDValue RL = SDValue(), 2836 SDValue RH = SDValue()) const; 2837 2838 /// Expand float(f32) to SINT(i64) conversion 2839 /// \param N Node to expand 2840 /// \param Result output after conversion 2841 /// \returns True, if the expansion was successful, false otherwise 2842 bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const; 2843 2844 //===--------------------------------------------------------------------===// 2845 // Instruction Emitting Hooks 2846 // 2847 2848 /// This method should be implemented by targets that mark instructions with 2849 /// the 'usesCustomInserter' flag. These instructions are special in various 2850 /// ways, which require special support to insert. The specified MachineInstr 2851 /// is created but not inserted into any basic blocks, and this method is 2852 /// called to expand it into a sequence of instructions, potentially also 2853 /// creating new basic blocks and control flow. 2854 /// As long as the returned basic block is different (i.e., we created a new 2855 /// one), the custom inserter is free to modify the rest of \p MBB. 2856 virtual MachineBasicBlock * 2857 EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const; 2858 2859 /// This method should be implemented by targets that mark instructions with 2860 /// the 'hasPostISelHook' flag. These instructions must be adjusted after 2861 /// instruction selection by target hooks. e.g. To fill in optional defs for 2862 /// ARM 's' setting instructions. 2863 virtual void 2864 AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const; 2865 2866 /// If this function returns true, SelectionDAGBuilder emits a 2867 /// LOAD_STACK_GUARD node when it is lowering Intrinsic::stackprotector. 2868 virtual bool useLoadStackGuardNode() const { 2869 return false; 2870 } 2871 2872 /// Lower TLS global address SDNode for target independent emulated TLS model. 2873 virtual SDValue LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 2874 SelectionDAG &DAG) const; 2875 }; 2876 2877 /// Given an LLVM IR type and return type attributes, compute the return value 2878 /// EVTs and flags, and optionally also the offsets, if the return value is 2879 /// being lowered to memory. 2880 void GetReturnInfo(Type *ReturnType, AttributeSet attr, 2881 SmallVectorImpl<ISD::OutputArg> &Outs, 2882 const TargetLowering &TLI, const DataLayout &DL); 2883 2884 } // end llvm namespace 2885 2886 #endif 2887