Home | History | Annotate | Download | only in Scalar
      1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass reassociates commutative expressions in an order that is designed
     11 // to promote better constant propagation, GCSE, LICM, PRE, etc.
     12 //
     13 // For example: 4 + (x + 5) -> x + (4 + 5)
     14 //
     15 // In the implementation of this algorithm, constants are assigned rank = 0,
     16 // function arguments are rank = 1, and other values are assigned ranks
     17 // corresponding to the reverse post order traversal of current function
     18 // (starting at 2), which effectively gives values in deep loops higher rank
     19 // than values not in loops.
     20 //
     21 //===----------------------------------------------------------------------===//
     22 
     23 #include "llvm/Transforms/Scalar.h"
     24 #include "llvm/ADT/DenseMap.h"
     25 #include "llvm/ADT/PostOrderIterator.h"
     26 #include "llvm/ADT/STLExtras.h"
     27 #include "llvm/ADT/SetVector.h"
     28 #include "llvm/ADT/Statistic.h"
     29 #include "llvm/Analysis/GlobalsModRef.h"
     30 #include "llvm/Analysis/ValueTracking.h"
     31 #include "llvm/IR/CFG.h"
     32 #include "llvm/IR/Constants.h"
     33 #include "llvm/IR/DerivedTypes.h"
     34 #include "llvm/IR/Function.h"
     35 #include "llvm/IR/IRBuilder.h"
     36 #include "llvm/IR/Instructions.h"
     37 #include "llvm/IR/IntrinsicInst.h"
     38 #include "llvm/IR/ValueHandle.h"
     39 #include "llvm/Pass.h"
     40 #include "llvm/Support/Debug.h"
     41 #include "llvm/Support/raw_ostream.h"
     42 #include "llvm/Transforms/Utils/Local.h"
     43 #include <algorithm>
     44 using namespace llvm;
     45 
     46 #define DEBUG_TYPE "reassociate"
     47 
     48 STATISTIC(NumChanged, "Number of insts reassociated");
     49 STATISTIC(NumAnnihil, "Number of expr tree annihilated");
     50 STATISTIC(NumFactor , "Number of multiplies factored");
     51 
     52 namespace {
     53   struct ValueEntry {
     54     unsigned Rank;
     55     Value *Op;
     56     ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
     57   };
     58   inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
     59     return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
     60   }
     61 }
     62 
     63 #ifndef NDEBUG
     64 /// Print out the expression identified in the Ops list.
     65 ///
     66 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
     67   Module *M = I->getModule();
     68   dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
     69        << *Ops[0].Op->getType() << '\t';
     70   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
     71     dbgs() << "[ ";
     72     Ops[i].Op->printAsOperand(dbgs(), false, M);
     73     dbgs() << ", #" << Ops[i].Rank << "] ";
     74   }
     75 }
     76 #endif
     77 
     78 namespace {
     79   /// \brief Utility class representing a base and exponent pair which form one
     80   /// factor of some product.
     81   struct Factor {
     82     Value *Base;
     83     unsigned Power;
     84 
     85     Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
     86 
     87     /// \brief Sort factors in descending order by their power.
     88     struct PowerDescendingSorter {
     89       bool operator()(const Factor &LHS, const Factor &RHS) {
     90         return LHS.Power > RHS.Power;
     91       }
     92     };
     93 
     94     /// \brief Compare factors for equal powers.
     95     struct PowerEqual {
     96       bool operator()(const Factor &LHS, const Factor &RHS) {
     97         return LHS.Power == RHS.Power;
     98       }
     99     };
    100   };
    101 
    102   /// Utility class representing a non-constant Xor-operand. We classify
    103   /// non-constant Xor-Operands into two categories:
    104   ///  C1) The operand is in the form "X & C", where C is a constant and C != ~0
    105   ///  C2)
    106   ///    C2.1) The operand is in the form of "X | C", where C is a non-zero
    107   ///          constant.
    108   ///    C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
    109   ///          operand as "E | 0"
    110   class XorOpnd {
    111   public:
    112     XorOpnd(Value *V);
    113 
    114     bool isInvalid() const { return SymbolicPart == nullptr; }
    115     bool isOrExpr() const { return isOr; }
    116     Value *getValue() const { return OrigVal; }
    117     Value *getSymbolicPart() const { return SymbolicPart; }
    118     unsigned getSymbolicRank() const { return SymbolicRank; }
    119     const APInt &getConstPart() const { return ConstPart; }
    120 
    121     void Invalidate() { SymbolicPart = OrigVal = nullptr; }
    122     void setSymbolicRank(unsigned R) { SymbolicRank = R; }
    123 
    124     // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank.
    125     // The purpose is twofold:
    126     // 1) Cluster together the operands sharing the same symbolic-value.
    127     // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
    128     //   could potentially shorten crital path, and expose more loop-invariants.
    129     //   Note that values' rank are basically defined in RPO order (FIXME).
    130     //   So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
    131     //   than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
    132     //   "z" in the order of X-Y-Z is better than any other orders.
    133     struct PtrSortFunctor {
    134       bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) {
    135         return LHS->getSymbolicRank() < RHS->getSymbolicRank();
    136       }
    137     };
    138   private:
    139     Value *OrigVal;
    140     Value *SymbolicPart;
    141     APInt ConstPart;
    142     unsigned SymbolicRank;
    143     bool isOr;
    144   };
    145 }
    146 
    147 namespace {
    148   class Reassociate : public FunctionPass {
    149     DenseMap<BasicBlock*, unsigned> RankMap;
    150     DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
    151     SetVector<AssertingVH<Instruction> > RedoInsts;
    152     bool MadeChange;
    153   public:
    154     static char ID; // Pass identification, replacement for typeid
    155     Reassociate() : FunctionPass(ID) {
    156       initializeReassociatePass(*PassRegistry::getPassRegistry());
    157     }
    158 
    159     bool runOnFunction(Function &F) override;
    160 
    161     void getAnalysisUsage(AnalysisUsage &AU) const override {
    162       AU.setPreservesCFG();
    163       AU.addPreserved<GlobalsAAWrapperPass>();
    164     }
    165   private:
    166     void BuildRankMap(Function &F);
    167     unsigned getRank(Value *V);
    168     void canonicalizeOperands(Instruction *I);
    169     void ReassociateExpression(BinaryOperator *I);
    170     void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
    171     Value *OptimizeExpression(BinaryOperator *I,
    172                               SmallVectorImpl<ValueEntry> &Ops);
    173     Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
    174     Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
    175     bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd,
    176                         Value *&Res);
    177     bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
    178                         APInt &ConstOpnd, Value *&Res);
    179     bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
    180                                 SmallVectorImpl<Factor> &Factors);
    181     Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
    182                                    SmallVectorImpl<Factor> &Factors);
    183     Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
    184     Value *RemoveFactorFromExpression(Value *V, Value *Factor);
    185     void EraseInst(Instruction *I);
    186     void OptimizeInst(Instruction *I);
    187     Instruction *canonicalizeNegConstExpr(Instruction *I);
    188   };
    189 }
    190 
    191 XorOpnd::XorOpnd(Value *V) {
    192   assert(!isa<ConstantInt>(V) && "No ConstantInt");
    193   OrigVal = V;
    194   Instruction *I = dyn_cast<Instruction>(V);
    195   SymbolicRank = 0;
    196 
    197   if (I && (I->getOpcode() == Instruction::Or ||
    198             I->getOpcode() == Instruction::And)) {
    199     Value *V0 = I->getOperand(0);
    200     Value *V1 = I->getOperand(1);
    201     if (isa<ConstantInt>(V0))
    202       std::swap(V0, V1);
    203 
    204     if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) {
    205       ConstPart = C->getValue();
    206       SymbolicPart = V0;
    207       isOr = (I->getOpcode() == Instruction::Or);
    208       return;
    209     }
    210   }
    211 
    212   // view the operand as "V | 0"
    213   SymbolicPart = V;
    214   ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth());
    215   isOr = true;
    216 }
    217 
    218 char Reassociate::ID = 0;
    219 INITIALIZE_PASS(Reassociate, "reassociate",
    220                 "Reassociate expressions", false, false)
    221 
    222 // Public interface to the Reassociate pass
    223 FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
    224 
    225 /// Return true if V is an instruction of the specified opcode and if it
    226 /// only has one use.
    227 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
    228   if (V->hasOneUse() && isa<Instruction>(V) &&
    229       cast<Instruction>(V)->getOpcode() == Opcode &&
    230       (!isa<FPMathOperator>(V) ||
    231        cast<Instruction>(V)->hasUnsafeAlgebra()))
    232     return cast<BinaryOperator>(V);
    233   return nullptr;
    234 }
    235 
    236 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
    237                                         unsigned Opcode2) {
    238   if (V->hasOneUse() && isa<Instruction>(V) &&
    239       (cast<Instruction>(V)->getOpcode() == Opcode1 ||
    240        cast<Instruction>(V)->getOpcode() == Opcode2) &&
    241       (!isa<FPMathOperator>(V) ||
    242        cast<Instruction>(V)->hasUnsafeAlgebra()))
    243     return cast<BinaryOperator>(V);
    244   return nullptr;
    245 }
    246 
    247 void Reassociate::BuildRankMap(Function &F) {
    248   unsigned i = 2;
    249 
    250   // Assign distinct ranks to function arguments.
    251   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
    252     ValueRankMap[&*I] = ++i;
    253     DEBUG(dbgs() << "Calculated Rank[" << I->getName() << "] = " << i << "\n");
    254   }
    255 
    256   ReversePostOrderTraversal<Function*> RPOT(&F);
    257   for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
    258          E = RPOT.end(); I != E; ++I) {
    259     BasicBlock *BB = *I;
    260     unsigned BBRank = RankMap[BB] = ++i << 16;
    261 
    262     // Walk the basic block, adding precomputed ranks for any instructions that
    263     // we cannot move.  This ensures that the ranks for these instructions are
    264     // all different in the block.
    265     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
    266       if (mayBeMemoryDependent(*I))
    267         ValueRankMap[&*I] = ++BBRank;
    268   }
    269 }
    270 
    271 unsigned Reassociate::getRank(Value *V) {
    272   Instruction *I = dyn_cast<Instruction>(V);
    273   if (!I) {
    274     if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
    275     return 0;  // Otherwise it's a global or constant, rank 0.
    276   }
    277 
    278   if (unsigned Rank = ValueRankMap[I])
    279     return Rank;    // Rank already known?
    280 
    281   // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
    282   // we can reassociate expressions for code motion!  Since we do not recurse
    283   // for PHI nodes, we cannot have infinite recursion here, because there
    284   // cannot be loops in the value graph that do not go through PHI nodes.
    285   unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
    286   for (unsigned i = 0, e = I->getNumOperands();
    287        i != e && Rank != MaxRank; ++i)
    288     Rank = std::max(Rank, getRank(I->getOperand(i)));
    289 
    290   // If this is a not or neg instruction, do not count it for rank.  This
    291   // assures us that X and ~X will have the same rank.
    292   if  (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) &&
    293        !BinaryOperator::isFNeg(I))
    294     ++Rank;
    295 
    296   DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n");
    297 
    298   return ValueRankMap[I] = Rank;
    299 }
    300 
    301 // Canonicalize constants to RHS.  Otherwise, sort the operands by rank.
    302 void Reassociate::canonicalizeOperands(Instruction *I) {
    303   assert(isa<BinaryOperator>(I) && "Expected binary operator.");
    304   assert(I->isCommutative() && "Expected commutative operator.");
    305 
    306   Value *LHS = I->getOperand(0);
    307   Value *RHS = I->getOperand(1);
    308   unsigned LHSRank = getRank(LHS);
    309   unsigned RHSRank = getRank(RHS);
    310 
    311   if (isa<Constant>(RHS))
    312     return;
    313 
    314   if (isa<Constant>(LHS) || RHSRank < LHSRank)
    315     cast<BinaryOperator>(I)->swapOperands();
    316 }
    317 
    318 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
    319                                  Instruction *InsertBefore, Value *FlagsOp) {
    320   if (S1->getType()->isIntOrIntVectorTy())
    321     return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
    322   else {
    323     BinaryOperator *Res =
    324         BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
    325     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
    326     return Res;
    327   }
    328 }
    329 
    330 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
    331                                  Instruction *InsertBefore, Value *FlagsOp) {
    332   if (S1->getType()->isIntOrIntVectorTy())
    333     return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
    334   else {
    335     BinaryOperator *Res =
    336       BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
    337     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
    338     return Res;
    339   }
    340 }
    341 
    342 static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
    343                                  Instruction *InsertBefore, Value *FlagsOp) {
    344   if (S1->getType()->isIntOrIntVectorTy())
    345     return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
    346   else {
    347     BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
    348     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
    349     return Res;
    350   }
    351 }
    352 
    353 /// Replace 0-X with X*-1.
    354 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
    355   Type *Ty = Neg->getType();
    356   Constant *NegOne = Ty->isIntOrIntVectorTy() ?
    357     ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
    358 
    359   BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
    360   Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
    361   Res->takeName(Neg);
    362   Neg->replaceAllUsesWith(Res);
    363   Res->setDebugLoc(Neg->getDebugLoc());
    364   return Res;
    365 }
    366 
    367 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
    368 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
    369 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
    370 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
    371 /// even x in Bitwidth-bit arithmetic.
    372 static unsigned CarmichaelShift(unsigned Bitwidth) {
    373   if (Bitwidth < 3)
    374     return Bitwidth - 1;
    375   return Bitwidth - 2;
    376 }
    377 
    378 /// Add the extra weight 'RHS' to the existing weight 'LHS',
    379 /// reducing the combined weight using any special properties of the operation.
    380 /// The existing weight LHS represents the computation X op X op ... op X where
    381 /// X occurs LHS times.  The combined weight represents  X op X op ... op X with
    382 /// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
    383 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
    384 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
    385 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
    386   // If we were working with infinite precision arithmetic then the combined
    387   // weight would be LHS + RHS.  But we are using finite precision arithmetic,
    388   // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
    389   // for nilpotent operations and addition, but not for idempotent operations
    390   // and multiplication), so it is important to correctly reduce the combined
    391   // weight back into range if wrapping would be wrong.
    392 
    393   // If RHS is zero then the weight didn't change.
    394   if (RHS.isMinValue())
    395     return;
    396   // If LHS is zero then the combined weight is RHS.
    397   if (LHS.isMinValue()) {
    398     LHS = RHS;
    399     return;
    400   }
    401   // From this point on we know that neither LHS nor RHS is zero.
    402 
    403   if (Instruction::isIdempotent(Opcode)) {
    404     // Idempotent means X op X === X, so any non-zero weight is equivalent to a
    405     // weight of 1.  Keeping weights at zero or one also means that wrapping is
    406     // not a problem.
    407     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
    408     return; // Return a weight of 1.
    409   }
    410   if (Instruction::isNilpotent(Opcode)) {
    411     // Nilpotent means X op X === 0, so reduce weights modulo 2.
    412     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
    413     LHS = 0; // 1 + 1 === 0 modulo 2.
    414     return;
    415   }
    416   if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
    417     // TODO: Reduce the weight by exploiting nsw/nuw?
    418     LHS += RHS;
    419     return;
    420   }
    421 
    422   assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
    423          "Unknown associative operation!");
    424   unsigned Bitwidth = LHS.getBitWidth();
    425   // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
    426   // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
    427   // bit number x, since either x is odd in which case x^CM = 1, or x is even in
    428   // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
    429   // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
    430   // which by a happy accident means that they can always be represented using
    431   // Bitwidth bits.
    432   // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
    433   // the Carmichael number).
    434   if (Bitwidth > 3) {
    435     /// CM - The value of Carmichael's lambda function.
    436     APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
    437     // Any weight W >= Threshold can be replaced with W - CM.
    438     APInt Threshold = CM + Bitwidth;
    439     assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
    440     // For Bitwidth 4 or more the following sum does not overflow.
    441     LHS += RHS;
    442     while (LHS.uge(Threshold))
    443       LHS -= CM;
    444   } else {
    445     // To avoid problems with overflow do everything the same as above but using
    446     // a larger type.
    447     unsigned CM = 1U << CarmichaelShift(Bitwidth);
    448     unsigned Threshold = CM + Bitwidth;
    449     assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
    450            "Weights not reduced!");
    451     unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
    452     while (Total >= Threshold)
    453       Total -= CM;
    454     LHS = Total;
    455   }
    456 }
    457 
    458 typedef std::pair<Value*, APInt> RepeatedValue;
    459 
    460 /// Given an associative binary expression, return the leaf
    461 /// nodes in Ops along with their weights (how many times the leaf occurs).  The
    462 /// original expression is the same as
    463 ///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
    464 /// op
    465 ///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
    466 /// op
    467 ///   ...
    468 /// op
    469 ///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
    470 ///
    471 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
    472 ///
    473 /// This routine may modify the function, in which case it returns 'true'.  The
    474 /// changes it makes may well be destructive, changing the value computed by 'I'
    475 /// to something completely different.  Thus if the routine returns 'true' then
    476 /// you MUST either replace I with a new expression computed from the Ops array,
    477 /// or use RewriteExprTree to put the values back in.
    478 ///
    479 /// A leaf node is either not a binary operation of the same kind as the root
    480 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
    481 /// opcode), or is the same kind of binary operator but has a use which either
    482 /// does not belong to the expression, or does belong to the expression but is
    483 /// a leaf node.  Every leaf node has at least one use that is a non-leaf node
    484 /// of the expression, while for non-leaf nodes (except for the root 'I') every
    485 /// use is a non-leaf node of the expression.
    486 ///
    487 /// For example:
    488 ///           expression graph        node names
    489 ///
    490 ///                     +        |        I
    491 ///                    / \       |
    492 ///                   +   +      |      A,  B
    493 ///                  / \ / \     |
    494 ///                 *   +   *    |    C,  D,  E
    495 ///                / \ / \ / \   |
    496 ///                   +   *      |      F,  G
    497 ///
    498 /// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
    499 /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
    500 ///
    501 /// The expression is maximal: if some instruction is a binary operator of the
    502 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
    503 /// then the instruction also belongs to the expression, is not a leaf node of
    504 /// it, and its operands also belong to the expression (but may be leaf nodes).
    505 ///
    506 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
    507 /// order to ensure that every non-root node in the expression has *exactly one*
    508 /// use by a non-leaf node of the expression.  This destruction means that the
    509 /// caller MUST either replace 'I' with a new expression or use something like
    510 /// RewriteExprTree to put the values back in if the routine indicates that it
    511 /// made a change by returning 'true'.
    512 ///
    513 /// In the above example either the right operand of A or the left operand of B
    514 /// will be replaced by undef.  If it is B's operand then this gives:
    515 ///
    516 ///                     +        |        I
    517 ///                    / \       |
    518 ///                   +   +      |      A,  B - operand of B replaced with undef
    519 ///                  / \   \     |
    520 ///                 *   +   *    |    C,  D,  E
    521 ///                / \ / \ / \   |
    522 ///                   +   *      |      F,  G
    523 ///
    524 /// Note that such undef operands can only be reached by passing through 'I'.
    525 /// For example, if you visit operands recursively starting from a leaf node
    526 /// then you will never see such an undef operand unless you get back to 'I',
    527 /// which requires passing through a phi node.
    528 ///
    529 /// Note that this routine may also mutate binary operators of the wrong type
    530 /// that have all uses inside the expression (i.e. only used by non-leaf nodes
    531 /// of the expression) if it can turn them into binary operators of the right
    532 /// type and thus make the expression bigger.
    533 
    534 static bool LinearizeExprTree(BinaryOperator *I,
    535                               SmallVectorImpl<RepeatedValue> &Ops) {
    536   DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
    537   unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
    538   unsigned Opcode = I->getOpcode();
    539   assert(I->isAssociative() && I->isCommutative() &&
    540          "Expected an associative and commutative operation!");
    541 
    542   // Visit all operands of the expression, keeping track of their weight (the
    543   // number of paths from the expression root to the operand, or if you like
    544   // the number of times that operand occurs in the linearized expression).
    545   // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
    546   // while A has weight two.
    547 
    548   // Worklist of non-leaf nodes (their operands are in the expression too) along
    549   // with their weights, representing a certain number of paths to the operator.
    550   // If an operator occurs in the worklist multiple times then we found multiple
    551   // ways to get to it.
    552   SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
    553   Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
    554   bool Changed = false;
    555 
    556   // Leaves of the expression are values that either aren't the right kind of
    557   // operation (eg: a constant, or a multiply in an add tree), or are, but have
    558   // some uses that are not inside the expression.  For example, in I = X + X,
    559   // X = A + B, the value X has two uses (by I) that are in the expression.  If
    560   // X has any other uses, for example in a return instruction, then we consider
    561   // X to be a leaf, and won't analyze it further.  When we first visit a value,
    562   // if it has more than one use then at first we conservatively consider it to
    563   // be a leaf.  Later, as the expression is explored, we may discover some more
    564   // uses of the value from inside the expression.  If all uses turn out to be
    565   // from within the expression (and the value is a binary operator of the right
    566   // kind) then the value is no longer considered to be a leaf, and its operands
    567   // are explored.
    568 
    569   // Leaves - Keeps track of the set of putative leaves as well as the number of
    570   // paths to each leaf seen so far.
    571   typedef DenseMap<Value*, APInt> LeafMap;
    572   LeafMap Leaves; // Leaf -> Total weight so far.
    573   SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
    574 
    575 #ifndef NDEBUG
    576   SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
    577 #endif
    578   while (!Worklist.empty()) {
    579     std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
    580     I = P.first; // We examine the operands of this binary operator.
    581 
    582     for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
    583       Value *Op = I->getOperand(OpIdx);
    584       APInt Weight = P.second; // Number of paths to this operand.
    585       DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
    586       assert(!Op->use_empty() && "No uses, so how did we get to it?!");
    587 
    588       // If this is a binary operation of the right kind with only one use then
    589       // add its operands to the expression.
    590       if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
    591         assert(Visited.insert(Op).second && "Not first visit!");
    592         DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
    593         Worklist.push_back(std::make_pair(BO, Weight));
    594         continue;
    595       }
    596 
    597       // Appears to be a leaf.  Is the operand already in the set of leaves?
    598       LeafMap::iterator It = Leaves.find(Op);
    599       if (It == Leaves.end()) {
    600         // Not in the leaf map.  Must be the first time we saw this operand.
    601         assert(Visited.insert(Op).second && "Not first visit!");
    602         if (!Op->hasOneUse()) {
    603           // This value has uses not accounted for by the expression, so it is
    604           // not safe to modify.  Mark it as being a leaf.
    605           DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
    606           LeafOrder.push_back(Op);
    607           Leaves[Op] = Weight;
    608           continue;
    609         }
    610         // No uses outside the expression, try morphing it.
    611       } else if (It != Leaves.end()) {
    612         // Already in the leaf map.
    613         assert(Visited.count(Op) && "In leaf map but not visited!");
    614 
    615         // Update the number of paths to the leaf.
    616         IncorporateWeight(It->second, Weight, Opcode);
    617 
    618 #if 0   // TODO: Re-enable once PR13021 is fixed.
    619         // The leaf already has one use from inside the expression.  As we want
    620         // exactly one such use, drop this new use of the leaf.
    621         assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
    622         I->setOperand(OpIdx, UndefValue::get(I->getType()));
    623         Changed = true;
    624 
    625         // If the leaf is a binary operation of the right kind and we now see
    626         // that its multiple original uses were in fact all by nodes belonging
    627         // to the expression, then no longer consider it to be a leaf and add
    628         // its operands to the expression.
    629         if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
    630           DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
    631           Worklist.push_back(std::make_pair(BO, It->second));
    632           Leaves.erase(It);
    633           continue;
    634         }
    635 #endif
    636 
    637         // If we still have uses that are not accounted for by the expression
    638         // then it is not safe to modify the value.
    639         if (!Op->hasOneUse())
    640           continue;
    641 
    642         // No uses outside the expression, try morphing it.
    643         Weight = It->second;
    644         Leaves.erase(It); // Since the value may be morphed below.
    645       }
    646 
    647       // At this point we have a value which, first of all, is not a binary
    648       // expression of the right kind, and secondly, is only used inside the
    649       // expression.  This means that it can safely be modified.  See if we
    650       // can usefully morph it into an expression of the right kind.
    651       assert((!isa<Instruction>(Op) ||
    652               cast<Instruction>(Op)->getOpcode() != Opcode
    653               || (isa<FPMathOperator>(Op) &&
    654                   !cast<Instruction>(Op)->hasUnsafeAlgebra())) &&
    655              "Should have been handled above!");
    656       assert(Op->hasOneUse() && "Has uses outside the expression tree!");
    657 
    658       // If this is a multiply expression, turn any internal negations into
    659       // multiplies by -1 so they can be reassociated.
    660       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
    661         if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) ||
    662             (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) {
    663           DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
    664           BO = LowerNegateToMultiply(BO);
    665           DEBUG(dbgs() << *BO << '\n');
    666           Worklist.push_back(std::make_pair(BO, Weight));
    667           Changed = true;
    668           continue;
    669         }
    670 
    671       // Failed to morph into an expression of the right type.  This really is
    672       // a leaf.
    673       DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
    674       assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
    675       LeafOrder.push_back(Op);
    676       Leaves[Op] = Weight;
    677     }
    678   }
    679 
    680   // The leaves, repeated according to their weights, represent the linearized
    681   // form of the expression.
    682   for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
    683     Value *V = LeafOrder[i];
    684     LeafMap::iterator It = Leaves.find(V);
    685     if (It == Leaves.end())
    686       // Node initially thought to be a leaf wasn't.
    687       continue;
    688     assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
    689     APInt Weight = It->second;
    690     if (Weight.isMinValue())
    691       // Leaf already output or weight reduction eliminated it.
    692       continue;
    693     // Ensure the leaf is only output once.
    694     It->second = 0;
    695     Ops.push_back(std::make_pair(V, Weight));
    696   }
    697 
    698   // For nilpotent operations or addition there may be no operands, for example
    699   // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
    700   // in both cases the weight reduces to 0 causing the value to be skipped.
    701   if (Ops.empty()) {
    702     Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
    703     assert(Identity && "Associative operation without identity!");
    704     Ops.emplace_back(Identity, APInt(Bitwidth, 1));
    705   }
    706 
    707   return Changed;
    708 }
    709 
    710 /// Now that the operands for this expression tree are
    711 /// linearized and optimized, emit them in-order.
    712 void Reassociate::RewriteExprTree(BinaryOperator *I,
    713                                   SmallVectorImpl<ValueEntry> &Ops) {
    714   assert(Ops.size() > 1 && "Single values should be used directly!");
    715 
    716   // Since our optimizations should never increase the number of operations, the
    717   // new expression can usually be written reusing the existing binary operators
    718   // from the original expression tree, without creating any new instructions,
    719   // though the rewritten expression may have a completely different topology.
    720   // We take care to not change anything if the new expression will be the same
    721   // as the original.  If more than trivial changes (like commuting operands)
    722   // were made then we are obliged to clear out any optional subclass data like
    723   // nsw flags.
    724 
    725   /// NodesToRewrite - Nodes from the original expression available for writing
    726   /// the new expression into.
    727   SmallVector<BinaryOperator*, 8> NodesToRewrite;
    728   unsigned Opcode = I->getOpcode();
    729   BinaryOperator *Op = I;
    730 
    731   /// NotRewritable - The operands being written will be the leaves of the new
    732   /// expression and must not be used as inner nodes (via NodesToRewrite) by
    733   /// mistake.  Inner nodes are always reassociable, and usually leaves are not
    734   /// (if they were they would have been incorporated into the expression and so
    735   /// would not be leaves), so most of the time there is no danger of this.  But
    736   /// in rare cases a leaf may become reassociable if an optimization kills uses
    737   /// of it, or it may momentarily become reassociable during rewriting (below)
    738   /// due it being removed as an operand of one of its uses.  Ensure that misuse
    739   /// of leaf nodes as inner nodes cannot occur by remembering all of the future
    740   /// leaves and refusing to reuse any of them as inner nodes.
    741   SmallPtrSet<Value*, 8> NotRewritable;
    742   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
    743     NotRewritable.insert(Ops[i].Op);
    744 
    745   // ExpressionChanged - Non-null if the rewritten expression differs from the
    746   // original in some non-trivial way, requiring the clearing of optional flags.
    747   // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
    748   BinaryOperator *ExpressionChanged = nullptr;
    749   for (unsigned i = 0; ; ++i) {
    750     // The last operation (which comes earliest in the IR) is special as both
    751     // operands will come from Ops, rather than just one with the other being
    752     // a subexpression.
    753     if (i+2 == Ops.size()) {
    754       Value *NewLHS = Ops[i].Op;
    755       Value *NewRHS = Ops[i+1].Op;
    756       Value *OldLHS = Op->getOperand(0);
    757       Value *OldRHS = Op->getOperand(1);
    758 
    759       if (NewLHS == OldLHS && NewRHS == OldRHS)
    760         // Nothing changed, leave it alone.
    761         break;
    762 
    763       if (NewLHS == OldRHS && NewRHS == OldLHS) {
    764         // The order of the operands was reversed.  Swap them.
    765         DEBUG(dbgs() << "RA: " << *Op << '\n');
    766         Op->swapOperands();
    767         DEBUG(dbgs() << "TO: " << *Op << '\n');
    768         MadeChange = true;
    769         ++NumChanged;
    770         break;
    771       }
    772 
    773       // The new operation differs non-trivially from the original. Overwrite
    774       // the old operands with the new ones.
    775       DEBUG(dbgs() << "RA: " << *Op << '\n');
    776       if (NewLHS != OldLHS) {
    777         BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
    778         if (BO && !NotRewritable.count(BO))
    779           NodesToRewrite.push_back(BO);
    780         Op->setOperand(0, NewLHS);
    781       }
    782       if (NewRHS != OldRHS) {
    783         BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
    784         if (BO && !NotRewritable.count(BO))
    785           NodesToRewrite.push_back(BO);
    786         Op->setOperand(1, NewRHS);
    787       }
    788       DEBUG(dbgs() << "TO: " << *Op << '\n');
    789 
    790       ExpressionChanged = Op;
    791       MadeChange = true;
    792       ++NumChanged;
    793 
    794       break;
    795     }
    796 
    797     // Not the last operation.  The left-hand side will be a sub-expression
    798     // while the right-hand side will be the current element of Ops.
    799     Value *NewRHS = Ops[i].Op;
    800     if (NewRHS != Op->getOperand(1)) {
    801       DEBUG(dbgs() << "RA: " << *Op << '\n');
    802       if (NewRHS == Op->getOperand(0)) {
    803         // The new right-hand side was already present as the left operand.  If
    804         // we are lucky then swapping the operands will sort out both of them.
    805         Op->swapOperands();
    806       } else {
    807         // Overwrite with the new right-hand side.
    808         BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
    809         if (BO && !NotRewritable.count(BO))
    810           NodesToRewrite.push_back(BO);
    811         Op->setOperand(1, NewRHS);
    812         ExpressionChanged = Op;
    813       }
    814       DEBUG(dbgs() << "TO: " << *Op << '\n');
    815       MadeChange = true;
    816       ++NumChanged;
    817     }
    818 
    819     // Now deal with the left-hand side.  If this is already an operation node
    820     // from the original expression then just rewrite the rest of the expression
    821     // into it.
    822     BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
    823     if (BO && !NotRewritable.count(BO)) {
    824       Op = BO;
    825       continue;
    826     }
    827 
    828     // Otherwise, grab a spare node from the original expression and use that as
    829     // the left-hand side.  If there are no nodes left then the optimizers made
    830     // an expression with more nodes than the original!  This usually means that
    831     // they did something stupid but it might mean that the problem was just too
    832     // hard (finding the mimimal number of multiplications needed to realize a
    833     // multiplication expression is NP-complete).  Whatever the reason, smart or
    834     // stupid, create a new node if there are none left.
    835     BinaryOperator *NewOp;
    836     if (NodesToRewrite.empty()) {
    837       Constant *Undef = UndefValue::get(I->getType());
    838       NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
    839                                      Undef, Undef, "", I);
    840       if (NewOp->getType()->isFPOrFPVectorTy())
    841         NewOp->setFastMathFlags(I->getFastMathFlags());
    842     } else {
    843       NewOp = NodesToRewrite.pop_back_val();
    844     }
    845 
    846     DEBUG(dbgs() << "RA: " << *Op << '\n');
    847     Op->setOperand(0, NewOp);
    848     DEBUG(dbgs() << "TO: " << *Op << '\n');
    849     ExpressionChanged = Op;
    850     MadeChange = true;
    851     ++NumChanged;
    852     Op = NewOp;
    853   }
    854 
    855   // If the expression changed non-trivially then clear out all subclass data
    856   // starting from the operator specified in ExpressionChanged, and compactify
    857   // the operators to just before the expression root to guarantee that the
    858   // expression tree is dominated by all of Ops.
    859   if (ExpressionChanged)
    860     do {
    861       // Preserve FastMathFlags.
    862       if (isa<FPMathOperator>(I)) {
    863         FastMathFlags Flags = I->getFastMathFlags();
    864         ExpressionChanged->clearSubclassOptionalData();
    865         ExpressionChanged->setFastMathFlags(Flags);
    866       } else
    867         ExpressionChanged->clearSubclassOptionalData();
    868 
    869       if (ExpressionChanged == I)
    870         break;
    871       ExpressionChanged->moveBefore(I);
    872       ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
    873     } while (1);
    874 
    875   // Throw away any left over nodes from the original expression.
    876   for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
    877     RedoInsts.insert(NodesToRewrite[i]);
    878 }
    879 
    880 /// Insert instructions before the instruction pointed to by BI,
    881 /// that computes the negative version of the value specified.  The negative
    882 /// version of the value is returned, and BI is left pointing at the instruction
    883 /// that should be processed next by the reassociation pass.
    884 /// Also add intermediate instructions to the redo list that are modified while
    885 /// pushing the negates through adds.  These will be revisited to see if
    886 /// additional opportunities have been exposed.
    887 static Value *NegateValue(Value *V, Instruction *BI,
    888                           SetVector<AssertingVH<Instruction>> &ToRedo) {
    889   if (Constant *C = dyn_cast<Constant>(V)) {
    890     if (C->getType()->isFPOrFPVectorTy()) {
    891       return ConstantExpr::getFNeg(C);
    892     }
    893     return ConstantExpr::getNeg(C);
    894   }
    895 
    896 
    897   // We are trying to expose opportunity for reassociation.  One of the things
    898   // that we want to do to achieve this is to push a negation as deep into an
    899   // expression chain as possible, to expose the add instructions.  In practice,
    900   // this means that we turn this:
    901   //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
    902   // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
    903   // the constants.  We assume that instcombine will clean up the mess later if
    904   // we introduce tons of unnecessary negation instructions.
    905   //
    906   if (BinaryOperator *I =
    907           isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
    908     // Push the negates through the add.
    909     I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
    910     I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
    911     if (I->getOpcode() == Instruction::Add) {
    912       I->setHasNoUnsignedWrap(false);
    913       I->setHasNoSignedWrap(false);
    914     }
    915 
    916     // We must move the add instruction here, because the neg instructions do
    917     // not dominate the old add instruction in general.  By moving it, we are
    918     // assured that the neg instructions we just inserted dominate the
    919     // instruction we are about to insert after them.
    920     //
    921     I->moveBefore(BI);
    922     I->setName(I->getName()+".neg");
    923 
    924     // Add the intermediate negates to the redo list as processing them later
    925     // could expose more reassociating opportunities.
    926     ToRedo.insert(I);
    927     return I;
    928   }
    929 
    930   // Okay, we need to materialize a negated version of V with an instruction.
    931   // Scan the use lists of V to see if we have one already.
    932   for (User *U : V->users()) {
    933     if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U))
    934       continue;
    935 
    936     // We found one!  Now we have to make sure that the definition dominates
    937     // this use.  We do this by moving it to the entry block (if it is a
    938     // non-instruction value) or right after the definition.  These negates will
    939     // be zapped by reassociate later, so we don't need much finesse here.
    940     BinaryOperator *TheNeg = cast<BinaryOperator>(U);
    941 
    942     // Verify that the negate is in this function, V might be a constant expr.
    943     if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
    944       continue;
    945 
    946     BasicBlock::iterator InsertPt;
    947     if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
    948       if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
    949         InsertPt = II->getNormalDest()->begin();
    950       } else {
    951         InsertPt = ++InstInput->getIterator();
    952       }
    953       while (isa<PHINode>(InsertPt)) ++InsertPt;
    954     } else {
    955       InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
    956     }
    957     TheNeg->moveBefore(&*InsertPt);
    958     if (TheNeg->getOpcode() == Instruction::Sub) {
    959       TheNeg->setHasNoUnsignedWrap(false);
    960       TheNeg->setHasNoSignedWrap(false);
    961     } else {
    962       TheNeg->andIRFlags(BI);
    963     }
    964     ToRedo.insert(TheNeg);
    965     return TheNeg;
    966   }
    967 
    968   // Insert a 'neg' instruction that subtracts the value from zero to get the
    969   // negation.
    970   BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
    971   ToRedo.insert(NewNeg);
    972   return NewNeg;
    973 }
    974 
    975 /// Return true if we should break up this subtract of X-Y into (X + -Y).
    976 static bool ShouldBreakUpSubtract(Instruction *Sub) {
    977   // If this is a negation, we can't split it up!
    978   if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub))
    979     return false;
    980 
    981   // Don't breakup X - undef.
    982   if (isa<UndefValue>(Sub->getOperand(1)))
    983     return false;
    984 
    985   // Don't bother to break this up unless either the LHS is an associable add or
    986   // subtract or if this is only used by one.
    987   Value *V0 = Sub->getOperand(0);
    988   if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
    989       isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
    990     return true;
    991   Value *V1 = Sub->getOperand(1);
    992   if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
    993       isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
    994     return true;
    995   Value *VB = Sub->user_back();
    996   if (Sub->hasOneUse() &&
    997       (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
    998        isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
    999     return true;
   1000 
   1001   return false;
   1002 }
   1003 
   1004 /// If we have (X-Y), and if either X is an add, or if this is only used by an
   1005 /// add, transform this into (X+(0-Y)) to promote better reassociation.
   1006 static BinaryOperator *
   1007 BreakUpSubtract(Instruction *Sub, SetVector<AssertingVH<Instruction>> &ToRedo) {
   1008   // Convert a subtract into an add and a neg instruction. This allows sub
   1009   // instructions to be commuted with other add instructions.
   1010   //
   1011   // Calculate the negative value of Operand 1 of the sub instruction,
   1012   // and set it as the RHS of the add instruction we just made.
   1013   //
   1014   Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
   1015   BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
   1016   Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
   1017   Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
   1018   New->takeName(Sub);
   1019 
   1020   // Everyone now refers to the add instruction.
   1021   Sub->replaceAllUsesWith(New);
   1022   New->setDebugLoc(Sub->getDebugLoc());
   1023 
   1024   DEBUG(dbgs() << "Negated: " << *New << '\n');
   1025   return New;
   1026 }
   1027 
   1028 /// If this is a shift of a reassociable multiply or is used by one, change
   1029 /// this into a multiply by a constant to assist with further reassociation.
   1030 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
   1031   Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
   1032   MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
   1033 
   1034   BinaryOperator *Mul =
   1035     BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
   1036   Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
   1037   Mul->takeName(Shl);
   1038 
   1039   // Everyone now refers to the mul instruction.
   1040   Shl->replaceAllUsesWith(Mul);
   1041   Mul->setDebugLoc(Shl->getDebugLoc());
   1042 
   1043   // We can safely preserve the nuw flag in all cases.  It's also safe to turn a
   1044   // nuw nsw shl into a nuw nsw mul.  However, nsw in isolation requires special
   1045   // handling.
   1046   bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
   1047   bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
   1048   if (NSW && NUW)
   1049     Mul->setHasNoSignedWrap(true);
   1050   Mul->setHasNoUnsignedWrap(NUW);
   1051   return Mul;
   1052 }
   1053 
   1054 /// Scan backwards and forwards among values with the same rank as element i
   1055 /// to see if X exists.  If X does not exist, return i.  This is useful when
   1056 /// scanning for 'x' when we see '-x' because they both get the same rank.
   1057 static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
   1058                                   Value *X) {
   1059   unsigned XRank = Ops[i].Rank;
   1060   unsigned e = Ops.size();
   1061   for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
   1062     if (Ops[j].Op == X)
   1063       return j;
   1064     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
   1065       if (Instruction *I2 = dyn_cast<Instruction>(X))
   1066         if (I1->isIdenticalTo(I2))
   1067           return j;
   1068   }
   1069   // Scan backwards.
   1070   for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
   1071     if (Ops[j].Op == X)
   1072       return j;
   1073     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
   1074       if (Instruction *I2 = dyn_cast<Instruction>(X))
   1075         if (I1->isIdenticalTo(I2))
   1076           return j;
   1077   }
   1078   return i;
   1079 }
   1080 
   1081 /// Emit a tree of add instructions, summing Ops together
   1082 /// and returning the result.  Insert the tree before I.
   1083 static Value *EmitAddTreeOfValues(Instruction *I,
   1084                                   SmallVectorImpl<WeakVH> &Ops){
   1085   if (Ops.size() == 1) return Ops.back();
   1086 
   1087   Value *V1 = Ops.back();
   1088   Ops.pop_back();
   1089   Value *V2 = EmitAddTreeOfValues(I, Ops);
   1090   return CreateAdd(V2, V1, "tmp", I, I);
   1091 }
   1092 
   1093 /// If V is an expression tree that is a multiplication sequence,
   1094 /// and if this sequence contains a multiply by Factor,
   1095 /// remove Factor from the tree and return the new tree.
   1096 Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
   1097   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
   1098   if (!BO)
   1099     return nullptr;
   1100 
   1101   SmallVector<RepeatedValue, 8> Tree;
   1102   MadeChange |= LinearizeExprTree(BO, Tree);
   1103   SmallVector<ValueEntry, 8> Factors;
   1104   Factors.reserve(Tree.size());
   1105   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
   1106     RepeatedValue E = Tree[i];
   1107     Factors.append(E.second.getZExtValue(),
   1108                    ValueEntry(getRank(E.first), E.first));
   1109   }
   1110 
   1111   bool FoundFactor = false;
   1112   bool NeedsNegate = false;
   1113   for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
   1114     if (Factors[i].Op == Factor) {
   1115       FoundFactor = true;
   1116       Factors.erase(Factors.begin()+i);
   1117       break;
   1118     }
   1119 
   1120     // If this is a negative version of this factor, remove it.
   1121     if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
   1122       if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
   1123         if (FC1->getValue() == -FC2->getValue()) {
   1124           FoundFactor = NeedsNegate = true;
   1125           Factors.erase(Factors.begin()+i);
   1126           break;
   1127         }
   1128     } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
   1129       if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
   1130         APFloat F1(FC1->getValueAPF());
   1131         APFloat F2(FC2->getValueAPF());
   1132         F2.changeSign();
   1133         if (F1.compare(F2) == APFloat::cmpEqual) {
   1134           FoundFactor = NeedsNegate = true;
   1135           Factors.erase(Factors.begin() + i);
   1136           break;
   1137         }
   1138       }
   1139     }
   1140   }
   1141 
   1142   if (!FoundFactor) {
   1143     // Make sure to restore the operands to the expression tree.
   1144     RewriteExprTree(BO, Factors);
   1145     return nullptr;
   1146   }
   1147 
   1148   BasicBlock::iterator InsertPt = ++BO->getIterator();
   1149 
   1150   // If this was just a single multiply, remove the multiply and return the only
   1151   // remaining operand.
   1152   if (Factors.size() == 1) {
   1153     RedoInsts.insert(BO);
   1154     V = Factors[0].Op;
   1155   } else {
   1156     RewriteExprTree(BO, Factors);
   1157     V = BO;
   1158   }
   1159 
   1160   if (NeedsNegate)
   1161     V = CreateNeg(V, "neg", &*InsertPt, BO);
   1162 
   1163   return V;
   1164 }
   1165 
   1166 /// If V is a single-use multiply, recursively add its operands as factors,
   1167 /// otherwise add V to the list of factors.
   1168 ///
   1169 /// Ops is the top-level list of add operands we're trying to factor.
   1170 static void FindSingleUseMultiplyFactors(Value *V,
   1171                                          SmallVectorImpl<Value*> &Factors,
   1172                                        const SmallVectorImpl<ValueEntry> &Ops) {
   1173   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
   1174   if (!BO) {
   1175     Factors.push_back(V);
   1176     return;
   1177   }
   1178 
   1179   // Otherwise, add the LHS and RHS to the list of factors.
   1180   FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
   1181   FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
   1182 }
   1183 
   1184 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
   1185 /// This optimizes based on identities.  If it can be reduced to a single Value,
   1186 /// it is returned, otherwise the Ops list is mutated as necessary.
   1187 static Value *OptimizeAndOrXor(unsigned Opcode,
   1188                                SmallVectorImpl<ValueEntry> &Ops) {
   1189   // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
   1190   // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
   1191   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
   1192     // First, check for X and ~X in the operand list.
   1193     assert(i < Ops.size());
   1194     if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
   1195       Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
   1196       unsigned FoundX = FindInOperandList(Ops, i, X);
   1197       if (FoundX != i) {
   1198         if (Opcode == Instruction::And)   // ...&X&~X = 0
   1199           return Constant::getNullValue(X->getType());
   1200 
   1201         if (Opcode == Instruction::Or)    // ...|X|~X = -1
   1202           return Constant::getAllOnesValue(X->getType());
   1203       }
   1204     }
   1205 
   1206     // Next, check for duplicate pairs of values, which we assume are next to
   1207     // each other, due to our sorting criteria.
   1208     assert(i < Ops.size());
   1209     if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
   1210       if (Opcode == Instruction::And || Opcode == Instruction::Or) {
   1211         // Drop duplicate values for And and Or.
   1212         Ops.erase(Ops.begin()+i);
   1213         --i; --e;
   1214         ++NumAnnihil;
   1215         continue;
   1216       }
   1217 
   1218       // Drop pairs of values for Xor.
   1219       assert(Opcode == Instruction::Xor);
   1220       if (e == 2)
   1221         return Constant::getNullValue(Ops[0].Op->getType());
   1222 
   1223       // Y ^ X^X -> Y
   1224       Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
   1225       i -= 1; e -= 2;
   1226       ++NumAnnihil;
   1227     }
   1228   }
   1229   return nullptr;
   1230 }
   1231 
   1232 /// Helper function of CombineXorOpnd(). It creates a bitwise-and
   1233 /// instruction with the given two operands, and return the resulting
   1234 /// instruction. There are two special cases: 1) if the constant operand is 0,
   1235 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will
   1236 /// be returned.
   1237 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
   1238                              const APInt &ConstOpnd) {
   1239   if (ConstOpnd != 0) {
   1240     if (!ConstOpnd.isAllOnesValue()) {
   1241       LLVMContext &Ctx = Opnd->getType()->getContext();
   1242       Instruction *I;
   1243       I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd),
   1244                                     "and.ra", InsertBefore);
   1245       I->setDebugLoc(InsertBefore->getDebugLoc());
   1246       return I;
   1247     }
   1248     return Opnd;
   1249   }
   1250   return nullptr;
   1251 }
   1252 
   1253 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
   1254 // into "R ^ C", where C would be 0, and R is a symbolic value.
   1255 //
   1256 // If it was successful, true is returned, and the "R" and "C" is returned
   1257 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
   1258 // and both "Res" and "ConstOpnd" remain unchanged.
   1259 //
   1260 bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
   1261                                  APInt &ConstOpnd, Value *&Res) {
   1262   // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
   1263   //                       = ((x | c1) ^ c1) ^ (c1 ^ c2)
   1264   //                       = (x & ~c1) ^ (c1 ^ c2)
   1265   // It is useful only when c1 == c2.
   1266   if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) {
   1267     if (!Opnd1->getValue()->hasOneUse())
   1268       return false;
   1269 
   1270     const APInt &C1 = Opnd1->getConstPart();
   1271     if (C1 != ConstOpnd)
   1272       return false;
   1273 
   1274     Value *X = Opnd1->getSymbolicPart();
   1275     Res = createAndInstr(I, X, ~C1);
   1276     // ConstOpnd was C2, now C1 ^ C2.
   1277     ConstOpnd ^= C1;
   1278 
   1279     if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
   1280       RedoInsts.insert(T);
   1281     return true;
   1282   }
   1283   return false;
   1284 }
   1285 
   1286 
   1287 // Helper function of OptimizeXor(). It tries to simplify
   1288 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
   1289 // symbolic value.
   1290 //
   1291 // If it was successful, true is returned, and the "R" and "C" is returned
   1292 // via "Res" and "ConstOpnd", respectively (If the entire expression is
   1293 // evaluated to a constant, the Res is set to NULL); otherwise, false is
   1294 // returned, and both "Res" and "ConstOpnd" remain unchanged.
   1295 bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
   1296                                  APInt &ConstOpnd, Value *&Res) {
   1297   Value *X = Opnd1->getSymbolicPart();
   1298   if (X != Opnd2->getSymbolicPart())
   1299     return false;
   1300 
   1301   // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
   1302   int DeadInstNum = 1;
   1303   if (Opnd1->getValue()->hasOneUse())
   1304     DeadInstNum++;
   1305   if (Opnd2->getValue()->hasOneUse())
   1306     DeadInstNum++;
   1307 
   1308   // Xor-Rule 2:
   1309   //  (x | c1) ^ (x & c2)
   1310   //   = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
   1311   //   = (x & ~c1) ^ (x & c2) ^ c1               // Xor-Rule 1
   1312   //   = (x & c3) ^ c1, where c3 = ~c1 ^ c2      // Xor-rule 3
   1313   //
   1314   if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
   1315     if (Opnd2->isOrExpr())
   1316       std::swap(Opnd1, Opnd2);
   1317 
   1318     const APInt &C1 = Opnd1->getConstPart();
   1319     const APInt &C2 = Opnd2->getConstPart();
   1320     APInt C3((~C1) ^ C2);
   1321 
   1322     // Do not increase code size!
   1323     if (C3 != 0 && !C3.isAllOnesValue()) {
   1324       int NewInstNum = ConstOpnd != 0 ? 1 : 2;
   1325       if (NewInstNum > DeadInstNum)
   1326         return false;
   1327     }
   1328 
   1329     Res = createAndInstr(I, X, C3);
   1330     ConstOpnd ^= C1;
   1331 
   1332   } else if (Opnd1->isOrExpr()) {
   1333     // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
   1334     //
   1335     const APInt &C1 = Opnd1->getConstPart();
   1336     const APInt &C2 = Opnd2->getConstPart();
   1337     APInt C3 = C1 ^ C2;
   1338 
   1339     // Do not increase code size
   1340     if (C3 != 0 && !C3.isAllOnesValue()) {
   1341       int NewInstNum = ConstOpnd != 0 ? 1 : 2;
   1342       if (NewInstNum > DeadInstNum)
   1343         return false;
   1344     }
   1345 
   1346     Res = createAndInstr(I, X, C3);
   1347     ConstOpnd ^= C3;
   1348   } else {
   1349     // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
   1350     //
   1351     const APInt &C1 = Opnd1->getConstPart();
   1352     const APInt &C2 = Opnd2->getConstPart();
   1353     APInt C3 = C1 ^ C2;
   1354     Res = createAndInstr(I, X, C3);
   1355   }
   1356 
   1357   // Put the original operands in the Redo list; hope they will be deleted
   1358   // as dead code.
   1359   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
   1360     RedoInsts.insert(T);
   1361   if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
   1362     RedoInsts.insert(T);
   1363 
   1364   return true;
   1365 }
   1366 
   1367 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced
   1368 /// to a single Value, it is returned, otherwise the Ops list is mutated as
   1369 /// necessary.
   1370 Value *Reassociate::OptimizeXor(Instruction *I,
   1371                                 SmallVectorImpl<ValueEntry> &Ops) {
   1372   if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
   1373     return V;
   1374 
   1375   if (Ops.size() == 1)
   1376     return nullptr;
   1377 
   1378   SmallVector<XorOpnd, 8> Opnds;
   1379   SmallVector<XorOpnd*, 8> OpndPtrs;
   1380   Type *Ty = Ops[0].Op->getType();
   1381   APInt ConstOpnd(Ty->getIntegerBitWidth(), 0);
   1382 
   1383   // Step 1: Convert ValueEntry to XorOpnd
   1384   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
   1385     Value *V = Ops[i].Op;
   1386     if (!isa<ConstantInt>(V)) {
   1387       XorOpnd O(V);
   1388       O.setSymbolicRank(getRank(O.getSymbolicPart()));
   1389       Opnds.push_back(O);
   1390     } else
   1391       ConstOpnd ^= cast<ConstantInt>(V)->getValue();
   1392   }
   1393 
   1394   // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
   1395   //  It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
   1396   //  the "OpndPtrs" as well. For the similar reason, do not fuse this loop
   1397   //  with the previous loop --- the iterator of the "Opnds" may be invalidated
   1398   //  when new elements are added to the vector.
   1399   for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
   1400     OpndPtrs.push_back(&Opnds[i]);
   1401 
   1402   // Step 2: Sort the Xor-Operands in a way such that the operands containing
   1403   //  the same symbolic value cluster together. For instance, the input operand
   1404   //  sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
   1405   //  ("x | 123", "x & 789", "y & 456").
   1406   std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor());
   1407 
   1408   // Step 3: Combine adjacent operands
   1409   XorOpnd *PrevOpnd = nullptr;
   1410   bool Changed = false;
   1411   for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
   1412     XorOpnd *CurrOpnd = OpndPtrs[i];
   1413     // The combined value
   1414     Value *CV;
   1415 
   1416     // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
   1417     if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
   1418       Changed = true;
   1419       if (CV)
   1420         *CurrOpnd = XorOpnd(CV);
   1421       else {
   1422         CurrOpnd->Invalidate();
   1423         continue;
   1424       }
   1425     }
   1426 
   1427     if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
   1428       PrevOpnd = CurrOpnd;
   1429       continue;
   1430     }
   1431 
   1432     // step 3.2: When previous and current operands share the same symbolic
   1433     //  value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
   1434     //
   1435     if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
   1436       // Remove previous operand
   1437       PrevOpnd->Invalidate();
   1438       if (CV) {
   1439         *CurrOpnd = XorOpnd(CV);
   1440         PrevOpnd = CurrOpnd;
   1441       } else {
   1442         CurrOpnd->Invalidate();
   1443         PrevOpnd = nullptr;
   1444       }
   1445       Changed = true;
   1446     }
   1447   }
   1448 
   1449   // Step 4: Reassemble the Ops
   1450   if (Changed) {
   1451     Ops.clear();
   1452     for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
   1453       XorOpnd &O = Opnds[i];
   1454       if (O.isInvalid())
   1455         continue;
   1456       ValueEntry VE(getRank(O.getValue()), O.getValue());
   1457       Ops.push_back(VE);
   1458     }
   1459     if (ConstOpnd != 0) {
   1460       Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd);
   1461       ValueEntry VE(getRank(C), C);
   1462       Ops.push_back(VE);
   1463     }
   1464     int Sz = Ops.size();
   1465     if (Sz == 1)
   1466       return Ops.back().Op;
   1467     else if (Sz == 0) {
   1468       assert(ConstOpnd == 0);
   1469       return ConstantInt::get(Ty->getContext(), ConstOpnd);
   1470     }
   1471   }
   1472 
   1473   return nullptr;
   1474 }
   1475 
   1476 /// Optimize a series of operands to an 'add' instruction.  This
   1477 /// optimizes based on identities.  If it can be reduced to a single Value, it
   1478 /// is returned, otherwise the Ops list is mutated as necessary.
   1479 Value *Reassociate::OptimizeAdd(Instruction *I,
   1480                                 SmallVectorImpl<ValueEntry> &Ops) {
   1481   // Scan the operand lists looking for X and -X pairs.  If we find any, we
   1482   // can simplify expressions like X+-X == 0 and X+~X ==-1.  While we're at it,
   1483   // scan for any
   1484   // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
   1485 
   1486   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
   1487     Value *TheOp = Ops[i].Op;
   1488     // Check to see if we've seen this operand before.  If so, we factor all
   1489     // instances of the operand together.  Due to our sorting criteria, we know
   1490     // that these need to be next to each other in the vector.
   1491     if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
   1492       // Rescan the list, remove all instances of this operand from the expr.
   1493       unsigned NumFound = 0;
   1494       do {
   1495         Ops.erase(Ops.begin()+i);
   1496         ++NumFound;
   1497       } while (i != Ops.size() && Ops[i].Op == TheOp);
   1498 
   1499       DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
   1500       ++NumFactor;
   1501 
   1502       // Insert a new multiply.
   1503       Type *Ty = TheOp->getType();
   1504       Constant *C = Ty->isIntOrIntVectorTy() ?
   1505         ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
   1506       Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
   1507 
   1508       // Now that we have inserted a multiply, optimize it. This allows us to
   1509       // handle cases that require multiple factoring steps, such as this:
   1510       // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
   1511       RedoInsts.insert(Mul);
   1512 
   1513       // If every add operand was a duplicate, return the multiply.
   1514       if (Ops.empty())
   1515         return Mul;
   1516 
   1517       // Otherwise, we had some input that didn't have the dupe, such as
   1518       // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
   1519       // things being added by this operation.
   1520       Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
   1521 
   1522       --i;
   1523       e = Ops.size();
   1524       continue;
   1525     }
   1526 
   1527     // Check for X and -X or X and ~X in the operand list.
   1528     if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) &&
   1529         !BinaryOperator::isNot(TheOp))
   1530       continue;
   1531 
   1532     Value *X = nullptr;
   1533     if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))
   1534       X = BinaryOperator::getNegArgument(TheOp);
   1535     else if (BinaryOperator::isNot(TheOp))
   1536       X = BinaryOperator::getNotArgument(TheOp);
   1537 
   1538     unsigned FoundX = FindInOperandList(Ops, i, X);
   1539     if (FoundX == i)
   1540       continue;
   1541 
   1542     // Remove X and -X from the operand list.
   1543     if (Ops.size() == 2 &&
   1544         (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)))
   1545       return Constant::getNullValue(X->getType());
   1546 
   1547     // Remove X and ~X from the operand list.
   1548     if (Ops.size() == 2 && BinaryOperator::isNot(TheOp))
   1549       return Constant::getAllOnesValue(X->getType());
   1550 
   1551     Ops.erase(Ops.begin()+i);
   1552     if (i < FoundX)
   1553       --FoundX;
   1554     else
   1555       --i;   // Need to back up an extra one.
   1556     Ops.erase(Ops.begin()+FoundX);
   1557     ++NumAnnihil;
   1558     --i;     // Revisit element.
   1559     e -= 2;  // Removed two elements.
   1560 
   1561     // if X and ~X we append -1 to the operand list.
   1562     if (BinaryOperator::isNot(TheOp)) {
   1563       Value *V = Constant::getAllOnesValue(X->getType());
   1564       Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
   1565       e += 1;
   1566     }
   1567   }
   1568 
   1569   // Scan the operand list, checking to see if there are any common factors
   1570   // between operands.  Consider something like A*A+A*B*C+D.  We would like to
   1571   // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
   1572   // To efficiently find this, we count the number of times a factor occurs
   1573   // for any ADD operands that are MULs.
   1574   DenseMap<Value*, unsigned> FactorOccurrences;
   1575 
   1576   // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
   1577   // where they are actually the same multiply.
   1578   unsigned MaxOcc = 0;
   1579   Value *MaxOccVal = nullptr;
   1580   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
   1581     BinaryOperator *BOp =
   1582         isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
   1583     if (!BOp)
   1584       continue;
   1585 
   1586     // Compute all of the factors of this added value.
   1587     SmallVector<Value*, 8> Factors;
   1588     FindSingleUseMultiplyFactors(BOp, Factors, Ops);
   1589     assert(Factors.size() > 1 && "Bad linearize!");
   1590 
   1591     // Add one to FactorOccurrences for each unique factor in this op.
   1592     SmallPtrSet<Value*, 8> Duplicates;
   1593     for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
   1594       Value *Factor = Factors[i];
   1595       if (!Duplicates.insert(Factor).second)
   1596         continue;
   1597 
   1598       unsigned Occ = ++FactorOccurrences[Factor];
   1599       if (Occ > MaxOcc) {
   1600         MaxOcc = Occ;
   1601         MaxOccVal = Factor;
   1602       }
   1603 
   1604       // If Factor is a negative constant, add the negated value as a factor
   1605       // because we can percolate the negate out.  Watch for minint, which
   1606       // cannot be positivified.
   1607       if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
   1608         if (CI->isNegative() && !CI->isMinValue(true)) {
   1609           Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
   1610           assert(!Duplicates.count(Factor) &&
   1611                  "Shouldn't have two constant factors, missed a canonicalize");
   1612           unsigned Occ = ++FactorOccurrences[Factor];
   1613           if (Occ > MaxOcc) {
   1614             MaxOcc = Occ;
   1615             MaxOccVal = Factor;
   1616           }
   1617         }
   1618       } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
   1619         if (CF->isNegative()) {
   1620           APFloat F(CF->getValueAPF());
   1621           F.changeSign();
   1622           Factor = ConstantFP::get(CF->getContext(), F);
   1623           assert(!Duplicates.count(Factor) &&
   1624                  "Shouldn't have two constant factors, missed a canonicalize");
   1625           unsigned Occ = ++FactorOccurrences[Factor];
   1626           if (Occ > MaxOcc) {
   1627             MaxOcc = Occ;
   1628             MaxOccVal = Factor;
   1629           }
   1630         }
   1631       }
   1632     }
   1633   }
   1634 
   1635   // If any factor occurred more than one time, we can pull it out.
   1636   if (MaxOcc > 1) {
   1637     DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
   1638     ++NumFactor;
   1639 
   1640     // Create a new instruction that uses the MaxOccVal twice.  If we don't do
   1641     // this, we could otherwise run into situations where removing a factor
   1642     // from an expression will drop a use of maxocc, and this can cause
   1643     // RemoveFactorFromExpression on successive values to behave differently.
   1644     Instruction *DummyInst =
   1645         I->getType()->isIntOrIntVectorTy()
   1646             ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
   1647             : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
   1648 
   1649     SmallVector<WeakVH, 4> NewMulOps;
   1650     for (unsigned i = 0; i != Ops.size(); ++i) {
   1651       // Only try to remove factors from expressions we're allowed to.
   1652       BinaryOperator *BOp =
   1653           isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
   1654       if (!BOp)
   1655         continue;
   1656 
   1657       if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
   1658         // The factorized operand may occur several times.  Convert them all in
   1659         // one fell swoop.
   1660         for (unsigned j = Ops.size(); j != i;) {
   1661           --j;
   1662           if (Ops[j].Op == Ops[i].Op) {
   1663             NewMulOps.push_back(V);
   1664             Ops.erase(Ops.begin()+j);
   1665           }
   1666         }
   1667         --i;
   1668       }
   1669     }
   1670 
   1671     // No need for extra uses anymore.
   1672     delete DummyInst;
   1673 
   1674     unsigned NumAddedValues = NewMulOps.size();
   1675     Value *V = EmitAddTreeOfValues(I, NewMulOps);
   1676 
   1677     // Now that we have inserted the add tree, optimize it. This allows us to
   1678     // handle cases that require multiple factoring steps, such as this:
   1679     // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
   1680     assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
   1681     (void)NumAddedValues;
   1682     if (Instruction *VI = dyn_cast<Instruction>(V))
   1683       RedoInsts.insert(VI);
   1684 
   1685     // Create the multiply.
   1686     Instruction *V2 = CreateMul(V, MaxOccVal, "tmp", I, I);
   1687 
   1688     // Rerun associate on the multiply in case the inner expression turned into
   1689     // a multiply.  We want to make sure that we keep things in canonical form.
   1690     RedoInsts.insert(V2);
   1691 
   1692     // If every add operand included the factor (e.g. "A*B + A*C"), then the
   1693     // entire result expression is just the multiply "A*(B+C)".
   1694     if (Ops.empty())
   1695       return V2;
   1696 
   1697     // Otherwise, we had some input that didn't have the factor, such as
   1698     // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
   1699     // things being added by this operation.
   1700     Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
   1701   }
   1702 
   1703   return nullptr;
   1704 }
   1705 
   1706 /// \brief Build up a vector of value/power pairs factoring a product.
   1707 ///
   1708 /// Given a series of multiplication operands, build a vector of factors and
   1709 /// the powers each is raised to when forming the final product. Sort them in
   1710 /// the order of descending power.
   1711 ///
   1712 ///      (x*x)          -> [(x, 2)]
   1713 ///     ((x*x)*x)       -> [(x, 3)]
   1714 ///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
   1715 ///
   1716 /// \returns Whether any factors have a power greater than one.
   1717 bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
   1718                                          SmallVectorImpl<Factor> &Factors) {
   1719   // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
   1720   // Compute the sum of powers of simplifiable factors.
   1721   unsigned FactorPowerSum = 0;
   1722   for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
   1723     Value *Op = Ops[Idx-1].Op;
   1724 
   1725     // Count the number of occurrences of this value.
   1726     unsigned Count = 1;
   1727     for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
   1728       ++Count;
   1729     // Track for simplification all factors which occur 2 or more times.
   1730     if (Count > 1)
   1731       FactorPowerSum += Count;
   1732   }
   1733 
   1734   // We can only simplify factors if the sum of the powers of our simplifiable
   1735   // factors is 4 or higher. When that is the case, we will *always* have
   1736   // a simplification. This is an important invariant to prevent cyclicly
   1737   // trying to simplify already minimal formations.
   1738   if (FactorPowerSum < 4)
   1739     return false;
   1740 
   1741   // Now gather the simplifiable factors, removing them from Ops.
   1742   FactorPowerSum = 0;
   1743   for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
   1744     Value *Op = Ops[Idx-1].Op;
   1745 
   1746     // Count the number of occurrences of this value.
   1747     unsigned Count = 1;
   1748     for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
   1749       ++Count;
   1750     if (Count == 1)
   1751       continue;
   1752     // Move an even number of occurrences to Factors.
   1753     Count &= ~1U;
   1754     Idx -= Count;
   1755     FactorPowerSum += Count;
   1756     Factors.push_back(Factor(Op, Count));
   1757     Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
   1758   }
   1759 
   1760   // None of the adjustments above should have reduced the sum of factor powers
   1761   // below our mininum of '4'.
   1762   assert(FactorPowerSum >= 4);
   1763 
   1764   std::stable_sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
   1765   return true;
   1766 }
   1767 
   1768 /// \brief Build a tree of multiplies, computing the product of Ops.
   1769 static Value *buildMultiplyTree(IRBuilder<> &Builder,
   1770                                 SmallVectorImpl<Value*> &Ops) {
   1771   if (Ops.size() == 1)
   1772     return Ops.back();
   1773 
   1774   Value *LHS = Ops.pop_back_val();
   1775   do {
   1776     if (LHS->getType()->isIntOrIntVectorTy())
   1777       LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
   1778     else
   1779       LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
   1780   } while (!Ops.empty());
   1781 
   1782   return LHS;
   1783 }
   1784 
   1785 /// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
   1786 ///
   1787 /// Given a vector of values raised to various powers, where no two values are
   1788 /// equal and the powers are sorted in decreasing order, compute the minimal
   1789 /// DAG of multiplies to compute the final product, and return that product
   1790 /// value.
   1791 Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
   1792                                             SmallVectorImpl<Factor> &Factors) {
   1793   assert(Factors[0].Power);
   1794   SmallVector<Value *, 4> OuterProduct;
   1795   for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
   1796        Idx < Size && Factors[Idx].Power > 0; ++Idx) {
   1797     if (Factors[Idx].Power != Factors[LastIdx].Power) {
   1798       LastIdx = Idx;
   1799       continue;
   1800     }
   1801 
   1802     // We want to multiply across all the factors with the same power so that
   1803     // we can raise them to that power as a single entity. Build a mini tree
   1804     // for that.
   1805     SmallVector<Value *, 4> InnerProduct;
   1806     InnerProduct.push_back(Factors[LastIdx].Base);
   1807     do {
   1808       InnerProduct.push_back(Factors[Idx].Base);
   1809       ++Idx;
   1810     } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
   1811 
   1812     // Reset the base value of the first factor to the new expression tree.
   1813     // We'll remove all the factors with the same power in a second pass.
   1814     Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
   1815     if (Instruction *MI = dyn_cast<Instruction>(M))
   1816       RedoInsts.insert(MI);
   1817 
   1818     LastIdx = Idx;
   1819   }
   1820   // Unique factors with equal powers -- we've folded them into the first one's
   1821   // base.
   1822   Factors.erase(std::unique(Factors.begin(), Factors.end(),
   1823                             Factor::PowerEqual()),
   1824                 Factors.end());
   1825 
   1826   // Iteratively collect the base of each factor with an add power into the
   1827   // outer product, and halve each power in preparation for squaring the
   1828   // expression.
   1829   for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
   1830     if (Factors[Idx].Power & 1)
   1831       OuterProduct.push_back(Factors[Idx].Base);
   1832     Factors[Idx].Power >>= 1;
   1833   }
   1834   if (Factors[0].Power) {
   1835     Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
   1836     OuterProduct.push_back(SquareRoot);
   1837     OuterProduct.push_back(SquareRoot);
   1838   }
   1839   if (OuterProduct.size() == 1)
   1840     return OuterProduct.front();
   1841 
   1842   Value *V = buildMultiplyTree(Builder, OuterProduct);
   1843   return V;
   1844 }
   1845 
   1846 Value *Reassociate::OptimizeMul(BinaryOperator *I,
   1847                                 SmallVectorImpl<ValueEntry> &Ops) {
   1848   // We can only optimize the multiplies when there is a chain of more than
   1849   // three, such that a balanced tree might require fewer total multiplies.
   1850   if (Ops.size() < 4)
   1851     return nullptr;
   1852 
   1853   // Try to turn linear trees of multiplies without other uses of the
   1854   // intermediate stages into minimal multiply DAGs with perfect sub-expression
   1855   // re-use.
   1856   SmallVector<Factor, 4> Factors;
   1857   if (!collectMultiplyFactors(Ops, Factors))
   1858     return nullptr; // All distinct factors, so nothing left for us to do.
   1859 
   1860   IRBuilder<> Builder(I);
   1861   Value *V = buildMinimalMultiplyDAG(Builder, Factors);
   1862   if (Ops.empty())
   1863     return V;
   1864 
   1865   ValueEntry NewEntry = ValueEntry(getRank(V), V);
   1866   Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
   1867   return nullptr;
   1868 }
   1869 
   1870 Value *Reassociate::OptimizeExpression(BinaryOperator *I,
   1871                                        SmallVectorImpl<ValueEntry> &Ops) {
   1872   // Now that we have the linearized expression tree, try to optimize it.
   1873   // Start by folding any constants that we found.
   1874   Constant *Cst = nullptr;
   1875   unsigned Opcode = I->getOpcode();
   1876   while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
   1877     Constant *C = cast<Constant>(Ops.pop_back_val().Op);
   1878     Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
   1879   }
   1880   // If there was nothing but constants then we are done.
   1881   if (Ops.empty())
   1882     return Cst;
   1883 
   1884   // Put the combined constant back at the end of the operand list, except if
   1885   // there is no point.  For example, an add of 0 gets dropped here, while a
   1886   // multiplication by zero turns the whole expression into zero.
   1887   if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
   1888     if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
   1889       return Cst;
   1890     Ops.push_back(ValueEntry(0, Cst));
   1891   }
   1892 
   1893   if (Ops.size() == 1) return Ops[0].Op;
   1894 
   1895   // Handle destructive annihilation due to identities between elements in the
   1896   // argument list here.
   1897   unsigned NumOps = Ops.size();
   1898   switch (Opcode) {
   1899   default: break;
   1900   case Instruction::And:
   1901   case Instruction::Or:
   1902     if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
   1903       return Result;
   1904     break;
   1905 
   1906   case Instruction::Xor:
   1907     if (Value *Result = OptimizeXor(I, Ops))
   1908       return Result;
   1909     break;
   1910 
   1911   case Instruction::Add:
   1912   case Instruction::FAdd:
   1913     if (Value *Result = OptimizeAdd(I, Ops))
   1914       return Result;
   1915     break;
   1916 
   1917   case Instruction::Mul:
   1918   case Instruction::FMul:
   1919     if (Value *Result = OptimizeMul(I, Ops))
   1920       return Result;
   1921     break;
   1922   }
   1923 
   1924   if (Ops.size() != NumOps)
   1925     return OptimizeExpression(I, Ops);
   1926   return nullptr;
   1927 }
   1928 
   1929 /// Zap the given instruction, adding interesting operands to the work list.
   1930 void Reassociate::EraseInst(Instruction *I) {
   1931   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
   1932   SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
   1933   // Erase the dead instruction.
   1934   ValueRankMap.erase(I);
   1935   RedoInsts.remove(I);
   1936   I->eraseFromParent();
   1937   // Optimize its operands.
   1938   SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
   1939   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   1940     if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
   1941       // If this is a node in an expression tree, climb to the expression root
   1942       // and add that since that's where optimization actually happens.
   1943       unsigned Opcode = Op->getOpcode();
   1944       while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
   1945              Visited.insert(Op).second)
   1946         Op = Op->user_back();
   1947       RedoInsts.insert(Op);
   1948     }
   1949 }
   1950 
   1951 // Canonicalize expressions of the following form:
   1952 //  x + (-Constant * y) -> x - (Constant * y)
   1953 //  x - (-Constant * y) -> x + (Constant * y)
   1954 Instruction *Reassociate::canonicalizeNegConstExpr(Instruction *I) {
   1955   if (!I->hasOneUse() || I->getType()->isVectorTy())
   1956     return nullptr;
   1957 
   1958   // Must be a fmul or fdiv instruction.
   1959   unsigned Opcode = I->getOpcode();
   1960   if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv)
   1961     return nullptr;
   1962 
   1963   auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
   1964   auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
   1965 
   1966   // Both operands are constant, let it get constant folded away.
   1967   if (C0 && C1)
   1968     return nullptr;
   1969 
   1970   ConstantFP *CF = C0 ? C0 : C1;
   1971 
   1972   // Must have one constant operand.
   1973   if (!CF)
   1974     return nullptr;
   1975 
   1976   // Must be a negative ConstantFP.
   1977   if (!CF->isNegative())
   1978     return nullptr;
   1979 
   1980   // User must be a binary operator with one or more uses.
   1981   Instruction *User = I->user_back();
   1982   if (!isa<BinaryOperator>(User) || !User->hasNUsesOrMore(1))
   1983     return nullptr;
   1984 
   1985   unsigned UserOpcode = User->getOpcode();
   1986   if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub)
   1987     return nullptr;
   1988 
   1989   // Subtraction is not commutative. Explicitly, the following transform is
   1990   // not valid: (-Constant * y) - x  -> x + (Constant * y)
   1991   if (!User->isCommutative() && User->getOperand(1) != I)
   1992     return nullptr;
   1993 
   1994   // Change the sign of the constant.
   1995   APFloat Val = CF->getValueAPF();
   1996   Val.changeSign();
   1997   I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val));
   1998 
   1999   // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
   2000   // ((-Const*y) + x) -> (x + (-Const*y)).
   2001   if (User->getOperand(0) == I && User->isCommutative())
   2002     cast<BinaryOperator>(User)->swapOperands();
   2003 
   2004   Value *Op0 = User->getOperand(0);
   2005   Value *Op1 = User->getOperand(1);
   2006   BinaryOperator *NI;
   2007   switch (UserOpcode) {
   2008   default:
   2009     llvm_unreachable("Unexpected Opcode!");
   2010   case Instruction::FAdd:
   2011     NI = BinaryOperator::CreateFSub(Op0, Op1);
   2012     NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
   2013     break;
   2014   case Instruction::FSub:
   2015     NI = BinaryOperator::CreateFAdd(Op0, Op1);
   2016     NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
   2017     break;
   2018   }
   2019 
   2020   NI->insertBefore(User);
   2021   NI->setName(User->getName());
   2022   User->replaceAllUsesWith(NI);
   2023   NI->setDebugLoc(I->getDebugLoc());
   2024   RedoInsts.insert(I);
   2025   MadeChange = true;
   2026   return NI;
   2027 }
   2028 
   2029 /// Inspect and optimize the given instruction. Note that erasing
   2030 /// instructions is not allowed.
   2031 void Reassociate::OptimizeInst(Instruction *I) {
   2032   // Only consider operations that we understand.
   2033   if (!isa<BinaryOperator>(I))
   2034     return;
   2035 
   2036   if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
   2037     // If an operand of this shift is a reassociable multiply, or if the shift
   2038     // is used by a reassociable multiply or add, turn into a multiply.
   2039     if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
   2040         (I->hasOneUse() &&
   2041          (isReassociableOp(I->user_back(), Instruction::Mul) ||
   2042           isReassociableOp(I->user_back(), Instruction::Add)))) {
   2043       Instruction *NI = ConvertShiftToMul(I);
   2044       RedoInsts.insert(I);
   2045       MadeChange = true;
   2046       I = NI;
   2047     }
   2048 
   2049   // Canonicalize negative constants out of expressions.
   2050   if (Instruction *Res = canonicalizeNegConstExpr(I))
   2051     I = Res;
   2052 
   2053   // Commute binary operators, to canonicalize the order of their operands.
   2054   // This can potentially expose more CSE opportunities, and makes writing other
   2055   // transformations simpler.
   2056   if (I->isCommutative())
   2057     canonicalizeOperands(I);
   2058 
   2059   // TODO: We should optimize vector Xor instructions, but they are
   2060   // currently unsupported.
   2061   if (I->getType()->isVectorTy() && I->getOpcode() == Instruction::Xor)
   2062     return;
   2063 
   2064   // Don't optimize floating point instructions that don't have unsafe algebra.
   2065   if (I->getType()->isFPOrFPVectorTy() && !I->hasUnsafeAlgebra())
   2066     return;
   2067 
   2068   // Do not reassociate boolean (i1) expressions.  We want to preserve the
   2069   // original order of evaluation for short-circuited comparisons that
   2070   // SimplifyCFG has folded to AND/OR expressions.  If the expression
   2071   // is not further optimized, it is likely to be transformed back to a
   2072   // short-circuited form for code gen, and the source order may have been
   2073   // optimized for the most likely conditions.
   2074   if (I->getType()->isIntegerTy(1))
   2075     return;
   2076 
   2077   // If this is a subtract instruction which is not already in negate form,
   2078   // see if we can convert it to X+-Y.
   2079   if (I->getOpcode() == Instruction::Sub) {
   2080     if (ShouldBreakUpSubtract(I)) {
   2081       Instruction *NI = BreakUpSubtract(I, RedoInsts);
   2082       RedoInsts.insert(I);
   2083       MadeChange = true;
   2084       I = NI;
   2085     } else if (BinaryOperator::isNeg(I)) {
   2086       // Otherwise, this is a negation.  See if the operand is a multiply tree
   2087       // and if this is not an inner node of a multiply tree.
   2088       if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
   2089           (!I->hasOneUse() ||
   2090            !isReassociableOp(I->user_back(), Instruction::Mul))) {
   2091         Instruction *NI = LowerNegateToMultiply(I);
   2092         // If the negate was simplified, revisit the users to see if we can
   2093         // reassociate further.
   2094         for (User *U : NI->users()) {
   2095           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
   2096             RedoInsts.insert(Tmp);
   2097         }
   2098         RedoInsts.insert(I);
   2099         MadeChange = true;
   2100         I = NI;
   2101       }
   2102     }
   2103   } else if (I->getOpcode() == Instruction::FSub) {
   2104     if (ShouldBreakUpSubtract(I)) {
   2105       Instruction *NI = BreakUpSubtract(I, RedoInsts);
   2106       RedoInsts.insert(I);
   2107       MadeChange = true;
   2108       I = NI;
   2109     } else if (BinaryOperator::isFNeg(I)) {
   2110       // Otherwise, this is a negation.  See if the operand is a multiply tree
   2111       // and if this is not an inner node of a multiply tree.
   2112       if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
   2113           (!I->hasOneUse() ||
   2114            !isReassociableOp(I->user_back(), Instruction::FMul))) {
   2115         // If the negate was simplified, revisit the users to see if we can
   2116         // reassociate further.
   2117         Instruction *NI = LowerNegateToMultiply(I);
   2118         for (User *U : NI->users()) {
   2119           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
   2120             RedoInsts.insert(Tmp);
   2121         }
   2122         RedoInsts.insert(I);
   2123         MadeChange = true;
   2124         I = NI;
   2125       }
   2126     }
   2127   }
   2128 
   2129   // If this instruction is an associative binary operator, process it.
   2130   if (!I->isAssociative()) return;
   2131   BinaryOperator *BO = cast<BinaryOperator>(I);
   2132 
   2133   // If this is an interior node of a reassociable tree, ignore it until we
   2134   // get to the root of the tree, to avoid N^2 analysis.
   2135   unsigned Opcode = BO->getOpcode();
   2136   if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
   2137     // During the initial run we will get to the root of the tree.
   2138     // But if we get here while we are redoing instructions, there is no
   2139     // guarantee that the root will be visited. So Redo later
   2140     if (BO->user_back() != BO)
   2141       RedoInsts.insert(BO->user_back());
   2142     return;
   2143   }
   2144 
   2145   // If this is an add tree that is used by a sub instruction, ignore it
   2146   // until we process the subtract.
   2147   if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
   2148       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
   2149     return;
   2150   if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
   2151       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
   2152     return;
   2153 
   2154   ReassociateExpression(BO);
   2155 }
   2156 
   2157 void Reassociate::ReassociateExpression(BinaryOperator *I) {
   2158   // First, walk the expression tree, linearizing the tree, collecting the
   2159   // operand information.
   2160   SmallVector<RepeatedValue, 8> Tree;
   2161   MadeChange |= LinearizeExprTree(I, Tree);
   2162   SmallVector<ValueEntry, 8> Ops;
   2163   Ops.reserve(Tree.size());
   2164   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
   2165     RepeatedValue E = Tree[i];
   2166     Ops.append(E.second.getZExtValue(),
   2167                ValueEntry(getRank(E.first), E.first));
   2168   }
   2169 
   2170   DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
   2171 
   2172   // Now that we have linearized the tree to a list and have gathered all of
   2173   // the operands and their ranks, sort the operands by their rank.  Use a
   2174   // stable_sort so that values with equal ranks will have their relative
   2175   // positions maintained (and so the compiler is deterministic).  Note that
   2176   // this sorts so that the highest ranking values end up at the beginning of
   2177   // the vector.
   2178   std::stable_sort(Ops.begin(), Ops.end());
   2179 
   2180   // Now that we have the expression tree in a convenient
   2181   // sorted form, optimize it globally if possible.
   2182   if (Value *V = OptimizeExpression(I, Ops)) {
   2183     if (V == I)
   2184       // Self-referential expression in unreachable code.
   2185       return;
   2186     // This expression tree simplified to something that isn't a tree,
   2187     // eliminate it.
   2188     DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
   2189     I->replaceAllUsesWith(V);
   2190     if (Instruction *VI = dyn_cast<Instruction>(V))
   2191       VI->setDebugLoc(I->getDebugLoc());
   2192     RedoInsts.insert(I);
   2193     ++NumAnnihil;
   2194     return;
   2195   }
   2196 
   2197   // We want to sink immediates as deeply as possible except in the case where
   2198   // this is a multiply tree used only by an add, and the immediate is a -1.
   2199   // In this case we reassociate to put the negation on the outside so that we
   2200   // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
   2201   if (I->hasOneUse()) {
   2202     if (I->getOpcode() == Instruction::Mul &&
   2203         cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
   2204         isa<ConstantInt>(Ops.back().Op) &&
   2205         cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
   2206       ValueEntry Tmp = Ops.pop_back_val();
   2207       Ops.insert(Ops.begin(), Tmp);
   2208     } else if (I->getOpcode() == Instruction::FMul &&
   2209                cast<Instruction>(I->user_back())->getOpcode() ==
   2210                    Instruction::FAdd &&
   2211                isa<ConstantFP>(Ops.back().Op) &&
   2212                cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
   2213       ValueEntry Tmp = Ops.pop_back_val();
   2214       Ops.insert(Ops.begin(), Tmp);
   2215     }
   2216   }
   2217 
   2218   DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
   2219 
   2220   if (Ops.size() == 1) {
   2221     if (Ops[0].Op == I)
   2222       // Self-referential expression in unreachable code.
   2223       return;
   2224 
   2225     // This expression tree simplified to something that isn't a tree,
   2226     // eliminate it.
   2227     I->replaceAllUsesWith(Ops[0].Op);
   2228     if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
   2229       OI->setDebugLoc(I->getDebugLoc());
   2230     RedoInsts.insert(I);
   2231     return;
   2232   }
   2233 
   2234   // Now that we ordered and optimized the expressions, splat them back into
   2235   // the expression tree, removing any unneeded nodes.
   2236   RewriteExprTree(I, Ops);
   2237 }
   2238 
   2239 bool Reassociate::runOnFunction(Function &F) {
   2240   if (skipOptnoneFunction(F))
   2241     return false;
   2242 
   2243   // Calculate the rank map for F
   2244   BuildRankMap(F);
   2245 
   2246   MadeChange = false;
   2247   for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
   2248     // Optimize every instruction in the basic block.
   2249     for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; )
   2250       if (isInstructionTriviallyDead(&*II)) {
   2251         EraseInst(&*II++);
   2252       } else {
   2253         OptimizeInst(&*II);
   2254         assert(II->getParent() == BI && "Moved to a different block!");
   2255         ++II;
   2256       }
   2257 
   2258     // If this produced extra instructions to optimize, handle them now.
   2259     while (!RedoInsts.empty()) {
   2260       Instruction *I = RedoInsts.pop_back_val();
   2261       if (isInstructionTriviallyDead(I))
   2262         EraseInst(I);
   2263       else
   2264         OptimizeInst(I);
   2265     }
   2266   }
   2267 
   2268   // We are done with the rank map.
   2269   RankMap.clear();
   2270   ValueRankMap.clear();
   2271 
   2272   return MadeChange;
   2273 }
   2274