1 //===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the interfaces that Mips uses to lower LLVM code into a 11 // selection DAG. 12 // 13 //===----------------------------------------------------------------------===// 14 #include "MipsISelLowering.h" 15 #include "InstPrinter/MipsInstPrinter.h" 16 #include "MCTargetDesc/MipsBaseInfo.h" 17 #include "MipsCCState.h" 18 #include "MipsMachineFunction.h" 19 #include "MipsSubtarget.h" 20 #include "MipsTargetMachine.h" 21 #include "MipsTargetObjectFile.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/ADT/StringSwitch.h" 24 #include "llvm/CodeGen/CallingConvLower.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineJumpTableInfo.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/FunctionLoweringInfo.h" 31 #include "llvm/CodeGen/SelectionDAGISel.h" 32 #include "llvm/CodeGen/ValueTypes.h" 33 #include "llvm/IR/CallingConv.h" 34 #include "llvm/IR/DerivedTypes.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include <cctype> 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "mips-lower" 45 46 STATISTIC(NumTailCalls, "Number of tail calls"); 47 48 static cl::opt<bool> 49 LargeGOT("mxgot", cl::Hidden, 50 cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false)); 51 52 static cl::opt<bool> 53 NoZeroDivCheck("mno-check-zero-division", cl::Hidden, 54 cl::desc("MIPS: Don't trap on integer division by zero."), 55 cl::init(false)); 56 57 static const MCPhysReg Mips64DPRegs[8] = { 58 Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64, 59 Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64 60 }; 61 62 // If I is a shifted mask, set the size (Size) and the first bit of the 63 // mask (Pos), and return true. 64 // For example, if I is 0x003ff800, (Pos, Size) = (11, 11). 65 static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) { 66 if (!isShiftedMask_64(I)) 67 return false; 68 69 Size = countPopulation(I); 70 Pos = countTrailingZeros(I); 71 return true; 72 } 73 74 SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const { 75 MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>(); 76 return DAG.getRegister(FI->getGlobalBaseReg(), Ty); 77 } 78 79 SDValue MipsTargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty, 80 SelectionDAG &DAG, 81 unsigned Flag) const { 82 return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, 0, Flag); 83 } 84 85 SDValue MipsTargetLowering::getTargetNode(ExternalSymbolSDNode *N, EVT Ty, 86 SelectionDAG &DAG, 87 unsigned Flag) const { 88 return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag); 89 } 90 91 SDValue MipsTargetLowering::getTargetNode(BlockAddressSDNode *N, EVT Ty, 92 SelectionDAG &DAG, 93 unsigned Flag) const { 94 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag); 95 } 96 97 SDValue MipsTargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty, 98 SelectionDAG &DAG, 99 unsigned Flag) const { 100 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag); 101 } 102 103 SDValue MipsTargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty, 104 SelectionDAG &DAG, 105 unsigned Flag) const { 106 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(), 107 N->getOffset(), Flag); 108 } 109 110 const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const { 111 switch ((MipsISD::NodeType)Opcode) { 112 case MipsISD::FIRST_NUMBER: break; 113 case MipsISD::JmpLink: return "MipsISD::JmpLink"; 114 case MipsISD::TailCall: return "MipsISD::TailCall"; 115 case MipsISD::Hi: return "MipsISD::Hi"; 116 case MipsISD::Lo: return "MipsISD::Lo"; 117 case MipsISD::GPRel: return "MipsISD::GPRel"; 118 case MipsISD::ThreadPointer: return "MipsISD::ThreadPointer"; 119 case MipsISD::Ret: return "MipsISD::Ret"; 120 case MipsISD::ERet: return "MipsISD::ERet"; 121 case MipsISD::EH_RETURN: return "MipsISD::EH_RETURN"; 122 case MipsISD::FPBrcond: return "MipsISD::FPBrcond"; 123 case MipsISD::FPCmp: return "MipsISD::FPCmp"; 124 case MipsISD::CMovFP_T: return "MipsISD::CMovFP_T"; 125 case MipsISD::CMovFP_F: return "MipsISD::CMovFP_F"; 126 case MipsISD::TruncIntFP: return "MipsISD::TruncIntFP"; 127 case MipsISD::MFHI: return "MipsISD::MFHI"; 128 case MipsISD::MFLO: return "MipsISD::MFLO"; 129 case MipsISD::MTLOHI: return "MipsISD::MTLOHI"; 130 case MipsISD::Mult: return "MipsISD::Mult"; 131 case MipsISD::Multu: return "MipsISD::Multu"; 132 case MipsISD::MAdd: return "MipsISD::MAdd"; 133 case MipsISD::MAddu: return "MipsISD::MAddu"; 134 case MipsISD::MSub: return "MipsISD::MSub"; 135 case MipsISD::MSubu: return "MipsISD::MSubu"; 136 case MipsISD::DivRem: return "MipsISD::DivRem"; 137 case MipsISD::DivRemU: return "MipsISD::DivRemU"; 138 case MipsISD::DivRem16: return "MipsISD::DivRem16"; 139 case MipsISD::DivRemU16: return "MipsISD::DivRemU16"; 140 case MipsISD::BuildPairF64: return "MipsISD::BuildPairF64"; 141 case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64"; 142 case MipsISD::Wrapper: return "MipsISD::Wrapper"; 143 case MipsISD::DynAlloc: return "MipsISD::DynAlloc"; 144 case MipsISD::Sync: return "MipsISD::Sync"; 145 case MipsISD::Ext: return "MipsISD::Ext"; 146 case MipsISD::Ins: return "MipsISD::Ins"; 147 case MipsISD::LWL: return "MipsISD::LWL"; 148 case MipsISD::LWR: return "MipsISD::LWR"; 149 case MipsISD::SWL: return "MipsISD::SWL"; 150 case MipsISD::SWR: return "MipsISD::SWR"; 151 case MipsISD::LDL: return "MipsISD::LDL"; 152 case MipsISD::LDR: return "MipsISD::LDR"; 153 case MipsISD::SDL: return "MipsISD::SDL"; 154 case MipsISD::SDR: return "MipsISD::SDR"; 155 case MipsISD::EXTP: return "MipsISD::EXTP"; 156 case MipsISD::EXTPDP: return "MipsISD::EXTPDP"; 157 case MipsISD::EXTR_S_H: return "MipsISD::EXTR_S_H"; 158 case MipsISD::EXTR_W: return "MipsISD::EXTR_W"; 159 case MipsISD::EXTR_R_W: return "MipsISD::EXTR_R_W"; 160 case MipsISD::EXTR_RS_W: return "MipsISD::EXTR_RS_W"; 161 case MipsISD::SHILO: return "MipsISD::SHILO"; 162 case MipsISD::MTHLIP: return "MipsISD::MTHLIP"; 163 case MipsISD::MULSAQ_S_W_PH: return "MipsISD::MULSAQ_S_W_PH"; 164 case MipsISD::MAQ_S_W_PHL: return "MipsISD::MAQ_S_W_PHL"; 165 case MipsISD::MAQ_S_W_PHR: return "MipsISD::MAQ_S_W_PHR"; 166 case MipsISD::MAQ_SA_W_PHL: return "MipsISD::MAQ_SA_W_PHL"; 167 case MipsISD::MAQ_SA_W_PHR: return "MipsISD::MAQ_SA_W_PHR"; 168 case MipsISD::DPAU_H_QBL: return "MipsISD::DPAU_H_QBL"; 169 case MipsISD::DPAU_H_QBR: return "MipsISD::DPAU_H_QBR"; 170 case MipsISD::DPSU_H_QBL: return "MipsISD::DPSU_H_QBL"; 171 case MipsISD::DPSU_H_QBR: return "MipsISD::DPSU_H_QBR"; 172 case MipsISD::DPAQ_S_W_PH: return "MipsISD::DPAQ_S_W_PH"; 173 case MipsISD::DPSQ_S_W_PH: return "MipsISD::DPSQ_S_W_PH"; 174 case MipsISD::DPAQ_SA_L_W: return "MipsISD::DPAQ_SA_L_W"; 175 case MipsISD::DPSQ_SA_L_W: return "MipsISD::DPSQ_SA_L_W"; 176 case MipsISD::DPA_W_PH: return "MipsISD::DPA_W_PH"; 177 case MipsISD::DPS_W_PH: return "MipsISD::DPS_W_PH"; 178 case MipsISD::DPAQX_S_W_PH: return "MipsISD::DPAQX_S_W_PH"; 179 case MipsISD::DPAQX_SA_W_PH: return "MipsISD::DPAQX_SA_W_PH"; 180 case MipsISD::DPAX_W_PH: return "MipsISD::DPAX_W_PH"; 181 case MipsISD::DPSX_W_PH: return "MipsISD::DPSX_W_PH"; 182 case MipsISD::DPSQX_S_W_PH: return "MipsISD::DPSQX_S_W_PH"; 183 case MipsISD::DPSQX_SA_W_PH: return "MipsISD::DPSQX_SA_W_PH"; 184 case MipsISD::MULSA_W_PH: return "MipsISD::MULSA_W_PH"; 185 case MipsISD::MULT: return "MipsISD::MULT"; 186 case MipsISD::MULTU: return "MipsISD::MULTU"; 187 case MipsISD::MADD_DSP: return "MipsISD::MADD_DSP"; 188 case MipsISD::MADDU_DSP: return "MipsISD::MADDU_DSP"; 189 case MipsISD::MSUB_DSP: return "MipsISD::MSUB_DSP"; 190 case MipsISD::MSUBU_DSP: return "MipsISD::MSUBU_DSP"; 191 case MipsISD::SHLL_DSP: return "MipsISD::SHLL_DSP"; 192 case MipsISD::SHRA_DSP: return "MipsISD::SHRA_DSP"; 193 case MipsISD::SHRL_DSP: return "MipsISD::SHRL_DSP"; 194 case MipsISD::SETCC_DSP: return "MipsISD::SETCC_DSP"; 195 case MipsISD::SELECT_CC_DSP: return "MipsISD::SELECT_CC_DSP"; 196 case MipsISD::VALL_ZERO: return "MipsISD::VALL_ZERO"; 197 case MipsISD::VANY_ZERO: return "MipsISD::VANY_ZERO"; 198 case MipsISD::VALL_NONZERO: return "MipsISD::VALL_NONZERO"; 199 case MipsISD::VANY_NONZERO: return "MipsISD::VANY_NONZERO"; 200 case MipsISD::VCEQ: return "MipsISD::VCEQ"; 201 case MipsISD::VCLE_S: return "MipsISD::VCLE_S"; 202 case MipsISD::VCLE_U: return "MipsISD::VCLE_U"; 203 case MipsISD::VCLT_S: return "MipsISD::VCLT_S"; 204 case MipsISD::VCLT_U: return "MipsISD::VCLT_U"; 205 case MipsISD::VSMAX: return "MipsISD::VSMAX"; 206 case MipsISD::VSMIN: return "MipsISD::VSMIN"; 207 case MipsISD::VUMAX: return "MipsISD::VUMAX"; 208 case MipsISD::VUMIN: return "MipsISD::VUMIN"; 209 case MipsISD::VEXTRACT_SEXT_ELT: return "MipsISD::VEXTRACT_SEXT_ELT"; 210 case MipsISD::VEXTRACT_ZEXT_ELT: return "MipsISD::VEXTRACT_ZEXT_ELT"; 211 case MipsISD::VNOR: return "MipsISD::VNOR"; 212 case MipsISD::VSHF: return "MipsISD::VSHF"; 213 case MipsISD::SHF: return "MipsISD::SHF"; 214 case MipsISD::ILVEV: return "MipsISD::ILVEV"; 215 case MipsISD::ILVOD: return "MipsISD::ILVOD"; 216 case MipsISD::ILVL: return "MipsISD::ILVL"; 217 case MipsISD::ILVR: return "MipsISD::ILVR"; 218 case MipsISD::PCKEV: return "MipsISD::PCKEV"; 219 case MipsISD::PCKOD: return "MipsISD::PCKOD"; 220 case MipsISD::INSVE: return "MipsISD::INSVE"; 221 } 222 return nullptr; 223 } 224 225 MipsTargetLowering::MipsTargetLowering(const MipsTargetMachine &TM, 226 const MipsSubtarget &STI) 227 : TargetLowering(TM), Subtarget(STI), ABI(TM.getABI()) { 228 // Mips does not have i1 type, so use i32 for 229 // setcc operations results (slt, sgt, ...). 230 setBooleanContents(ZeroOrOneBooleanContent); 231 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 232 // The cmp.cond.fmt instruction in MIPS32r6/MIPS64r6 uses 0 and -1 like MSA 233 // does. Integer booleans still use 0 and 1. 234 if (Subtarget.hasMips32r6()) 235 setBooleanContents(ZeroOrOneBooleanContent, 236 ZeroOrNegativeOneBooleanContent); 237 238 // Load extented operations for i1 types must be promoted 239 for (MVT VT : MVT::integer_valuetypes()) { 240 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 241 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 242 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 243 } 244 245 // MIPS doesn't have extending float->double load/store. Set LoadExtAction 246 // for f32, f16 247 for (MVT VT : MVT::fp_valuetypes()) { 248 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); 249 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand); 250 } 251 252 // Set LoadExtAction for f16 vectors to Expand 253 for (MVT VT : MVT::fp_vector_valuetypes()) { 254 MVT F16VT = MVT::getVectorVT(MVT::f16, VT.getVectorNumElements()); 255 if (F16VT.isValid()) 256 setLoadExtAction(ISD::EXTLOAD, VT, F16VT, Expand); 257 } 258 259 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 260 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 261 262 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 263 264 // Used by legalize types to correctly generate the setcc result. 265 // Without this, every float setcc comes with a AND/OR with the result, 266 // we don't want this, since the fpcmp result goes to a flag register, 267 // which is used implicitly by brcond and select operations. 268 AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32); 269 270 // Mips Custom Operations 271 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 272 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 273 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 274 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 275 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 276 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 277 setOperationAction(ISD::SELECT, MVT::f32, Custom); 278 setOperationAction(ISD::SELECT, MVT::f64, Custom); 279 setOperationAction(ISD::SELECT, MVT::i32, Custom); 280 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 281 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 282 setOperationAction(ISD::SETCC, MVT::f32, Custom); 283 setOperationAction(ISD::SETCC, MVT::f64, Custom); 284 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 285 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); 286 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); 287 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 288 289 if (Subtarget.isGP64bit()) { 290 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 291 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 292 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 293 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 294 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 295 setOperationAction(ISD::SELECT, MVT::i64, Custom); 296 setOperationAction(ISD::LOAD, MVT::i64, Custom); 297 setOperationAction(ISD::STORE, MVT::i64, Custom); 298 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 299 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 300 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 301 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 302 } 303 304 if (!Subtarget.isGP64bit()) { 305 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 306 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 307 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 308 } 309 310 setOperationAction(ISD::ADD, MVT::i32, Custom); 311 if (Subtarget.isGP64bit()) 312 setOperationAction(ISD::ADD, MVT::i64, Custom); 313 314 setOperationAction(ISD::SDIV, MVT::i32, Expand); 315 setOperationAction(ISD::SREM, MVT::i32, Expand); 316 setOperationAction(ISD::UDIV, MVT::i32, Expand); 317 setOperationAction(ISD::UREM, MVT::i32, Expand); 318 setOperationAction(ISD::SDIV, MVT::i64, Expand); 319 setOperationAction(ISD::SREM, MVT::i64, Expand); 320 setOperationAction(ISD::UDIV, MVT::i64, Expand); 321 setOperationAction(ISD::UREM, MVT::i64, Expand); 322 323 // Operations not directly supported by Mips. 324 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 325 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 326 setOperationAction(ISD::BR_CC, MVT::i32, Expand); 327 setOperationAction(ISD::BR_CC, MVT::i64, Expand); 328 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand); 329 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 330 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 331 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 332 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 333 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 334 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 335 if (Subtarget.hasCnMips()) { 336 setOperationAction(ISD::CTPOP, MVT::i32, Legal); 337 setOperationAction(ISD::CTPOP, MVT::i64, Legal); 338 } else { 339 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 340 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 341 } 342 setOperationAction(ISD::CTTZ, MVT::i32, Expand); 343 setOperationAction(ISD::CTTZ, MVT::i64, Expand); 344 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); 345 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand); 346 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); 347 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand); 348 setOperationAction(ISD::ROTL, MVT::i32, Expand); 349 setOperationAction(ISD::ROTL, MVT::i64, Expand); 350 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); 351 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand); 352 353 if (!Subtarget.hasMips32r2()) 354 setOperationAction(ISD::ROTR, MVT::i32, Expand); 355 356 if (!Subtarget.hasMips64r2()) 357 setOperationAction(ISD::ROTR, MVT::i64, Expand); 358 359 setOperationAction(ISD::FSIN, MVT::f32, Expand); 360 setOperationAction(ISD::FSIN, MVT::f64, Expand); 361 setOperationAction(ISD::FCOS, MVT::f32, Expand); 362 setOperationAction(ISD::FCOS, MVT::f64, Expand); 363 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 364 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 365 setOperationAction(ISD::FPOWI, MVT::f32, Expand); 366 setOperationAction(ISD::FPOW, MVT::f32, Expand); 367 setOperationAction(ISD::FPOW, MVT::f64, Expand); 368 setOperationAction(ISD::FLOG, MVT::f32, Expand); 369 setOperationAction(ISD::FLOG2, MVT::f32, Expand); 370 setOperationAction(ISD::FLOG10, MVT::f32, Expand); 371 setOperationAction(ISD::FEXP, MVT::f32, Expand); 372 setOperationAction(ISD::FMA, MVT::f32, Expand); 373 setOperationAction(ISD::FMA, MVT::f64, Expand); 374 setOperationAction(ISD::FREM, MVT::f32, Expand); 375 setOperationAction(ISD::FREM, MVT::f64, Expand); 376 377 // Lower f16 conversion operations into library calls 378 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 379 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 380 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 381 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 382 383 setOperationAction(ISD::EH_RETURN, MVT::Other, Custom); 384 385 setOperationAction(ISD::VASTART, MVT::Other, Custom); 386 setOperationAction(ISD::VAARG, MVT::Other, Custom); 387 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 388 setOperationAction(ISD::VAEND, MVT::Other, Expand); 389 390 // Use the default for now 391 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 392 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 393 394 if (!Subtarget.isGP64bit()) { 395 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 396 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 397 } 398 399 setInsertFencesForAtomic(true); 400 401 if (!Subtarget.hasMips32r2()) { 402 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 403 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 404 } 405 406 // MIPS16 lacks MIPS32's clz and clo instructions. 407 if (!Subtarget.hasMips32() || Subtarget.inMips16Mode()) 408 setOperationAction(ISD::CTLZ, MVT::i32, Expand); 409 if (!Subtarget.hasMips64()) 410 setOperationAction(ISD::CTLZ, MVT::i64, Expand); 411 412 if (!Subtarget.hasMips32r2()) 413 setOperationAction(ISD::BSWAP, MVT::i32, Expand); 414 if (!Subtarget.hasMips64r2()) 415 setOperationAction(ISD::BSWAP, MVT::i64, Expand); 416 417 if (Subtarget.isGP64bit()) { 418 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, MVT::i32, Custom); 419 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, MVT::i32, Custom); 420 setLoadExtAction(ISD::EXTLOAD, MVT::i64, MVT::i32, Custom); 421 setTruncStoreAction(MVT::i64, MVT::i32, Custom); 422 } 423 424 setOperationAction(ISD::TRAP, MVT::Other, Legal); 425 426 setTargetDAGCombine(ISD::SDIVREM); 427 setTargetDAGCombine(ISD::UDIVREM); 428 setTargetDAGCombine(ISD::SELECT); 429 setTargetDAGCombine(ISD::AND); 430 setTargetDAGCombine(ISD::OR); 431 setTargetDAGCombine(ISD::ADD); 432 433 setMinFunctionAlignment(Subtarget.isGP64bit() ? 3 : 2); 434 435 // The arguments on the stack are defined in terms of 4-byte slots on O32 436 // and 8-byte slots on N32/N64. 437 setMinStackArgumentAlignment((ABI.IsN32() || ABI.IsN64()) ? 8 : 4); 438 439 setStackPointerRegisterToSaveRestore(ABI.IsN64() ? Mips::SP_64 : Mips::SP); 440 441 MaxStoresPerMemcpy = 16; 442 443 isMicroMips = Subtarget.inMicroMipsMode(); 444 } 445 446 const MipsTargetLowering *MipsTargetLowering::create(const MipsTargetMachine &TM, 447 const MipsSubtarget &STI) { 448 if (STI.inMips16Mode()) 449 return llvm::createMips16TargetLowering(TM, STI); 450 451 return llvm::createMipsSETargetLowering(TM, STI); 452 } 453 454 // Create a fast isel object. 455 FastISel * 456 MipsTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo, 457 const TargetLibraryInfo *libInfo) const { 458 if (!funcInfo.MF->getTarget().Options.EnableFastISel) 459 return TargetLowering::createFastISel(funcInfo, libInfo); 460 return Mips::createFastISel(funcInfo, libInfo); 461 } 462 463 EVT MipsTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &, 464 EVT VT) const { 465 if (!VT.isVector()) 466 return MVT::i32; 467 return VT.changeVectorElementTypeToInteger(); 468 } 469 470 static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG, 471 TargetLowering::DAGCombinerInfo &DCI, 472 const MipsSubtarget &Subtarget) { 473 if (DCI.isBeforeLegalizeOps()) 474 return SDValue(); 475 476 EVT Ty = N->getValueType(0); 477 unsigned LO = (Ty == MVT::i32) ? Mips::LO0 : Mips::LO0_64; 478 unsigned HI = (Ty == MVT::i32) ? Mips::HI0 : Mips::HI0_64; 479 unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 : 480 MipsISD::DivRemU16; 481 SDLoc DL(N); 482 483 SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue, 484 N->getOperand(0), N->getOperand(1)); 485 SDValue InChain = DAG.getEntryNode(); 486 SDValue InGlue = DivRem; 487 488 // insert MFLO 489 if (N->hasAnyUseOfValue(0)) { 490 SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty, 491 InGlue); 492 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo); 493 InChain = CopyFromLo.getValue(1); 494 InGlue = CopyFromLo.getValue(2); 495 } 496 497 // insert MFHI 498 if (N->hasAnyUseOfValue(1)) { 499 SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL, 500 HI, Ty, InGlue); 501 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi); 502 } 503 504 return SDValue(); 505 } 506 507 static Mips::CondCode condCodeToFCC(ISD::CondCode CC) { 508 switch (CC) { 509 default: llvm_unreachable("Unknown fp condition code!"); 510 case ISD::SETEQ: 511 case ISD::SETOEQ: return Mips::FCOND_OEQ; 512 case ISD::SETUNE: return Mips::FCOND_UNE; 513 case ISD::SETLT: 514 case ISD::SETOLT: return Mips::FCOND_OLT; 515 case ISD::SETGT: 516 case ISD::SETOGT: return Mips::FCOND_OGT; 517 case ISD::SETLE: 518 case ISD::SETOLE: return Mips::FCOND_OLE; 519 case ISD::SETGE: 520 case ISD::SETOGE: return Mips::FCOND_OGE; 521 case ISD::SETULT: return Mips::FCOND_ULT; 522 case ISD::SETULE: return Mips::FCOND_ULE; 523 case ISD::SETUGT: return Mips::FCOND_UGT; 524 case ISD::SETUGE: return Mips::FCOND_UGE; 525 case ISD::SETUO: return Mips::FCOND_UN; 526 case ISD::SETO: return Mips::FCOND_OR; 527 case ISD::SETNE: 528 case ISD::SETONE: return Mips::FCOND_ONE; 529 case ISD::SETUEQ: return Mips::FCOND_UEQ; 530 } 531 } 532 533 534 /// This function returns true if the floating point conditional branches and 535 /// conditional moves which use condition code CC should be inverted. 536 static bool invertFPCondCodeUser(Mips::CondCode CC) { 537 if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT) 538 return false; 539 540 assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) && 541 "Illegal Condition Code"); 542 543 return true; 544 } 545 546 // Creates and returns an FPCmp node from a setcc node. 547 // Returns Op if setcc is not a floating point comparison. 548 static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) { 549 // must be a SETCC node 550 if (Op.getOpcode() != ISD::SETCC) 551 return Op; 552 553 SDValue LHS = Op.getOperand(0); 554 555 if (!LHS.getValueType().isFloatingPoint()) 556 return Op; 557 558 SDValue RHS = Op.getOperand(1); 559 SDLoc DL(Op); 560 561 // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of 562 // node if necessary. 563 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 564 565 return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS, 566 DAG.getConstant(condCodeToFCC(CC), DL, MVT::i32)); 567 } 568 569 // Creates and returns a CMovFPT/F node. 570 static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True, 571 SDValue False, SDLoc DL) { 572 ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2)); 573 bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue()); 574 SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32); 575 576 return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL, 577 True.getValueType(), True, FCC0, False, Cond); 578 } 579 580 static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG, 581 TargetLowering::DAGCombinerInfo &DCI, 582 const MipsSubtarget &Subtarget) { 583 if (DCI.isBeforeLegalizeOps()) 584 return SDValue(); 585 586 SDValue SetCC = N->getOperand(0); 587 588 if ((SetCC.getOpcode() != ISD::SETCC) || 589 !SetCC.getOperand(0).getValueType().isInteger()) 590 return SDValue(); 591 592 SDValue False = N->getOperand(2); 593 EVT FalseTy = False.getValueType(); 594 595 if (!FalseTy.isInteger()) 596 return SDValue(); 597 598 ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(False); 599 600 // If the RHS (False) is 0, we swap the order of the operands 601 // of ISD::SELECT (obviously also inverting the condition) so that we can 602 // take advantage of conditional moves using the $0 register. 603 // Example: 604 // return (a != 0) ? x : 0; 605 // load $reg, x 606 // movz $reg, $0, a 607 if (!FalseC) 608 return SDValue(); 609 610 const SDLoc DL(N); 611 612 if (!FalseC->getZExtValue()) { 613 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get(); 614 SDValue True = N->getOperand(1); 615 616 SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0), 617 SetCC.getOperand(1), ISD::getSetCCInverse(CC, true)); 618 619 return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True); 620 } 621 622 // If both operands are integer constants there's a possibility that we 623 // can do some interesting optimizations. 624 SDValue True = N->getOperand(1); 625 ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(True); 626 627 if (!TrueC || !True.getValueType().isInteger()) 628 return SDValue(); 629 630 // We'll also ignore MVT::i64 operands as this optimizations proves 631 // to be ineffective because of the required sign extensions as the result 632 // of a SETCC operator is always MVT::i32 for non-vector types. 633 if (True.getValueType() == MVT::i64) 634 return SDValue(); 635 636 int64_t Diff = TrueC->getSExtValue() - FalseC->getSExtValue(); 637 638 // 1) (a < x) ? y : y-1 639 // slti $reg1, a, x 640 // addiu $reg2, $reg1, y-1 641 if (Diff == 1) 642 return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, False); 643 644 // 2) (a < x) ? y-1 : y 645 // slti $reg1, a, x 646 // xor $reg1, $reg1, 1 647 // addiu $reg2, $reg1, y-1 648 if (Diff == -1) { 649 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get(); 650 SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0), 651 SetCC.getOperand(1), ISD::getSetCCInverse(CC, true)); 652 return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, True); 653 } 654 655 // Couldn't optimize. 656 return SDValue(); 657 } 658 659 static SDValue performCMovFPCombine(SDNode *N, SelectionDAG &DAG, 660 TargetLowering::DAGCombinerInfo &DCI, 661 const MipsSubtarget &Subtarget) { 662 if (DCI.isBeforeLegalizeOps()) 663 return SDValue(); 664 665 SDValue ValueIfTrue = N->getOperand(0), ValueIfFalse = N->getOperand(2); 666 667 ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(ValueIfFalse); 668 if (!FalseC || FalseC->getZExtValue()) 669 return SDValue(); 670 671 // Since RHS (False) is 0, we swap the order of the True/False operands 672 // (obviously also inverting the condition) so that we can 673 // take advantage of conditional moves using the $0 register. 674 // Example: 675 // return (a != 0) ? x : 0; 676 // load $reg, x 677 // movz $reg, $0, a 678 unsigned Opc = (N->getOpcode() == MipsISD::CMovFP_T) ? MipsISD::CMovFP_F : 679 MipsISD::CMovFP_T; 680 681 SDValue FCC = N->getOperand(1), Glue = N->getOperand(3); 682 return DAG.getNode(Opc, SDLoc(N), ValueIfFalse.getValueType(), 683 ValueIfFalse, FCC, ValueIfTrue, Glue); 684 } 685 686 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG, 687 TargetLowering::DAGCombinerInfo &DCI, 688 const MipsSubtarget &Subtarget) { 689 // Pattern match EXT. 690 // $dst = and ((sra or srl) $src , pos), (2**size - 1) 691 // => ext $dst, $src, size, pos 692 if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert()) 693 return SDValue(); 694 695 SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1); 696 unsigned ShiftRightOpc = ShiftRight.getOpcode(); 697 698 // Op's first operand must be a shift right. 699 if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL) 700 return SDValue(); 701 702 // The second operand of the shift must be an immediate. 703 ConstantSDNode *CN; 704 if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1)))) 705 return SDValue(); 706 707 uint64_t Pos = CN->getZExtValue(); 708 uint64_t SMPos, SMSize; 709 710 // Op's second operand must be a shifted mask. 711 if (!(CN = dyn_cast<ConstantSDNode>(Mask)) || 712 !isShiftedMask(CN->getZExtValue(), SMPos, SMSize)) 713 return SDValue(); 714 715 // Return if the shifted mask does not start at bit 0 or the sum of its size 716 // and Pos exceeds the word's size. 717 EVT ValTy = N->getValueType(0); 718 if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits()) 719 return SDValue(); 720 721 SDLoc DL(N); 722 return DAG.getNode(MipsISD::Ext, DL, ValTy, 723 ShiftRight.getOperand(0), 724 DAG.getConstant(Pos, DL, MVT::i32), 725 DAG.getConstant(SMSize, DL, MVT::i32)); 726 } 727 728 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 729 TargetLowering::DAGCombinerInfo &DCI, 730 const MipsSubtarget &Subtarget) { 731 // Pattern match INS. 732 // $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1), 733 // where mask1 = (2**size - 1) << pos, mask0 = ~mask1 734 // => ins $dst, $src, size, pos, $src1 735 if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert()) 736 return SDValue(); 737 738 SDValue And0 = N->getOperand(0), And1 = N->getOperand(1); 739 uint64_t SMPos0, SMSize0, SMPos1, SMSize1; 740 ConstantSDNode *CN; 741 742 // See if Op's first operand matches (and $src1 , mask0). 743 if (And0.getOpcode() != ISD::AND) 744 return SDValue(); 745 746 if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) || 747 !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0)) 748 return SDValue(); 749 750 // See if Op's second operand matches (and (shl $src, pos), mask1). 751 if (And1.getOpcode() != ISD::AND) 752 return SDValue(); 753 754 if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) || 755 !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1)) 756 return SDValue(); 757 758 // The shift masks must have the same position and size. 759 if (SMPos0 != SMPos1 || SMSize0 != SMSize1) 760 return SDValue(); 761 762 SDValue Shl = And1.getOperand(0); 763 if (Shl.getOpcode() != ISD::SHL) 764 return SDValue(); 765 766 if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1)))) 767 return SDValue(); 768 769 unsigned Shamt = CN->getZExtValue(); 770 771 // Return if the shift amount and the first bit position of mask are not the 772 // same. 773 EVT ValTy = N->getValueType(0); 774 if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits())) 775 return SDValue(); 776 777 SDLoc DL(N); 778 return DAG.getNode(MipsISD::Ins, DL, ValTy, Shl.getOperand(0), 779 DAG.getConstant(SMPos0, DL, MVT::i32), 780 DAG.getConstant(SMSize0, DL, MVT::i32), 781 And0.getOperand(0)); 782 } 783 784 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, 785 TargetLowering::DAGCombinerInfo &DCI, 786 const MipsSubtarget &Subtarget) { 787 // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt)) 788 789 if (DCI.isBeforeLegalizeOps()) 790 return SDValue(); 791 792 SDValue Add = N->getOperand(1); 793 794 if (Add.getOpcode() != ISD::ADD) 795 return SDValue(); 796 797 SDValue Lo = Add.getOperand(1); 798 799 if ((Lo.getOpcode() != MipsISD::Lo) || 800 (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable)) 801 return SDValue(); 802 803 EVT ValTy = N->getValueType(0); 804 SDLoc DL(N); 805 806 SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0), 807 Add.getOperand(0)); 808 return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo); 809 } 810 811 SDValue MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) 812 const { 813 SelectionDAG &DAG = DCI.DAG; 814 unsigned Opc = N->getOpcode(); 815 816 switch (Opc) { 817 default: break; 818 case ISD::SDIVREM: 819 case ISD::UDIVREM: 820 return performDivRemCombine(N, DAG, DCI, Subtarget); 821 case ISD::SELECT: 822 return performSELECTCombine(N, DAG, DCI, Subtarget); 823 case MipsISD::CMovFP_F: 824 case MipsISD::CMovFP_T: 825 return performCMovFPCombine(N, DAG, DCI, Subtarget); 826 case ISD::AND: 827 return performANDCombine(N, DAG, DCI, Subtarget); 828 case ISD::OR: 829 return performORCombine(N, DAG, DCI, Subtarget); 830 case ISD::ADD: 831 return performADDCombine(N, DAG, DCI, Subtarget); 832 } 833 834 return SDValue(); 835 } 836 837 bool MipsTargetLowering::isCheapToSpeculateCttz() const { 838 return Subtarget.hasMips32(); 839 } 840 841 bool MipsTargetLowering::isCheapToSpeculateCtlz() const { 842 return Subtarget.hasMips32(); 843 } 844 845 void 846 MipsTargetLowering::LowerOperationWrapper(SDNode *N, 847 SmallVectorImpl<SDValue> &Results, 848 SelectionDAG &DAG) const { 849 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 850 851 for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I) 852 Results.push_back(Res.getValue(I)); 853 } 854 855 void 856 MipsTargetLowering::ReplaceNodeResults(SDNode *N, 857 SmallVectorImpl<SDValue> &Results, 858 SelectionDAG &DAG) const { 859 return LowerOperationWrapper(N, Results, DAG); 860 } 861 862 SDValue MipsTargetLowering:: 863 LowerOperation(SDValue Op, SelectionDAG &DAG) const 864 { 865 switch (Op.getOpcode()) 866 { 867 case ISD::BR_JT: return lowerBR_JT(Op, DAG); 868 case ISD::BRCOND: return lowerBRCOND(Op, DAG); 869 case ISD::ConstantPool: return lowerConstantPool(Op, DAG); 870 case ISD::GlobalAddress: return lowerGlobalAddress(Op, DAG); 871 case ISD::BlockAddress: return lowerBlockAddress(Op, DAG); 872 case ISD::GlobalTLSAddress: return lowerGlobalTLSAddress(Op, DAG); 873 case ISD::JumpTable: return lowerJumpTable(Op, DAG); 874 case ISD::SELECT: return lowerSELECT(Op, DAG); 875 case ISD::SELECT_CC: return lowerSELECT_CC(Op, DAG); 876 case ISD::SETCC: return lowerSETCC(Op, DAG); 877 case ISD::VASTART: return lowerVASTART(Op, DAG); 878 case ISD::VAARG: return lowerVAARG(Op, DAG); 879 case ISD::FCOPYSIGN: return lowerFCOPYSIGN(Op, DAG); 880 case ISD::FRAMEADDR: return lowerFRAMEADDR(Op, DAG); 881 case ISD::RETURNADDR: return lowerRETURNADDR(Op, DAG); 882 case ISD::EH_RETURN: return lowerEH_RETURN(Op, DAG); 883 case ISD::ATOMIC_FENCE: return lowerATOMIC_FENCE(Op, DAG); 884 case ISD::SHL_PARTS: return lowerShiftLeftParts(Op, DAG); 885 case ISD::SRA_PARTS: return lowerShiftRightParts(Op, DAG, true); 886 case ISD::SRL_PARTS: return lowerShiftRightParts(Op, DAG, false); 887 case ISD::LOAD: return lowerLOAD(Op, DAG); 888 case ISD::STORE: return lowerSTORE(Op, DAG); 889 case ISD::ADD: return lowerADD(Op, DAG); 890 case ISD::FP_TO_SINT: return lowerFP_TO_SINT(Op, DAG); 891 } 892 return SDValue(); 893 } 894 895 //===----------------------------------------------------------------------===// 896 // Lower helper functions 897 //===----------------------------------------------------------------------===// 898 899 // addLiveIn - This helper function adds the specified physical register to the 900 // MachineFunction as a live in value. It also creates a corresponding 901 // virtual register for it. 902 static unsigned 903 addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC) 904 { 905 unsigned VReg = MF.getRegInfo().createVirtualRegister(RC); 906 MF.getRegInfo().addLiveIn(PReg, VReg); 907 return VReg; 908 } 909 910 static MachineBasicBlock *insertDivByZeroTrap(MachineInstr *MI, 911 MachineBasicBlock &MBB, 912 const TargetInstrInfo &TII, 913 bool Is64Bit) { 914 if (NoZeroDivCheck) 915 return &MBB; 916 917 // Insert instruction "teq $divisor_reg, $zero, 7". 918 MachineBasicBlock::iterator I(MI); 919 MachineInstrBuilder MIB; 920 MachineOperand &Divisor = MI->getOperand(2); 921 MIB = BuildMI(MBB, std::next(I), MI->getDebugLoc(), TII.get(Mips::TEQ)) 922 .addReg(Divisor.getReg(), getKillRegState(Divisor.isKill())) 923 .addReg(Mips::ZERO).addImm(7); 924 925 // Use the 32-bit sub-register if this is a 64-bit division. 926 if (Is64Bit) 927 MIB->getOperand(0).setSubReg(Mips::sub_32); 928 929 // Clear Divisor's kill flag. 930 Divisor.setIsKill(false); 931 932 // We would normally delete the original instruction here but in this case 933 // we only needed to inject an additional instruction rather than replace it. 934 935 return &MBB; 936 } 937 938 MachineBasicBlock * 939 MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 940 MachineBasicBlock *BB) const { 941 switch (MI->getOpcode()) { 942 default: 943 llvm_unreachable("Unexpected instr type to insert"); 944 case Mips::ATOMIC_LOAD_ADD_I8: 945 return emitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu); 946 case Mips::ATOMIC_LOAD_ADD_I16: 947 return emitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu); 948 case Mips::ATOMIC_LOAD_ADD_I32: 949 return emitAtomicBinary(MI, BB, 4, Mips::ADDu); 950 case Mips::ATOMIC_LOAD_ADD_I64: 951 return emitAtomicBinary(MI, BB, 8, Mips::DADDu); 952 953 case Mips::ATOMIC_LOAD_AND_I8: 954 return emitAtomicBinaryPartword(MI, BB, 1, Mips::AND); 955 case Mips::ATOMIC_LOAD_AND_I16: 956 return emitAtomicBinaryPartword(MI, BB, 2, Mips::AND); 957 case Mips::ATOMIC_LOAD_AND_I32: 958 return emitAtomicBinary(MI, BB, 4, Mips::AND); 959 case Mips::ATOMIC_LOAD_AND_I64: 960 return emitAtomicBinary(MI, BB, 8, Mips::AND64); 961 962 case Mips::ATOMIC_LOAD_OR_I8: 963 return emitAtomicBinaryPartword(MI, BB, 1, Mips::OR); 964 case Mips::ATOMIC_LOAD_OR_I16: 965 return emitAtomicBinaryPartword(MI, BB, 2, Mips::OR); 966 case Mips::ATOMIC_LOAD_OR_I32: 967 return emitAtomicBinary(MI, BB, 4, Mips::OR); 968 case Mips::ATOMIC_LOAD_OR_I64: 969 return emitAtomicBinary(MI, BB, 8, Mips::OR64); 970 971 case Mips::ATOMIC_LOAD_XOR_I8: 972 return emitAtomicBinaryPartword(MI, BB, 1, Mips::XOR); 973 case Mips::ATOMIC_LOAD_XOR_I16: 974 return emitAtomicBinaryPartword(MI, BB, 2, Mips::XOR); 975 case Mips::ATOMIC_LOAD_XOR_I32: 976 return emitAtomicBinary(MI, BB, 4, Mips::XOR); 977 case Mips::ATOMIC_LOAD_XOR_I64: 978 return emitAtomicBinary(MI, BB, 8, Mips::XOR64); 979 980 case Mips::ATOMIC_LOAD_NAND_I8: 981 return emitAtomicBinaryPartword(MI, BB, 1, 0, true); 982 case Mips::ATOMIC_LOAD_NAND_I16: 983 return emitAtomicBinaryPartword(MI, BB, 2, 0, true); 984 case Mips::ATOMIC_LOAD_NAND_I32: 985 return emitAtomicBinary(MI, BB, 4, 0, true); 986 case Mips::ATOMIC_LOAD_NAND_I64: 987 return emitAtomicBinary(MI, BB, 8, 0, true); 988 989 case Mips::ATOMIC_LOAD_SUB_I8: 990 return emitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu); 991 case Mips::ATOMIC_LOAD_SUB_I16: 992 return emitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu); 993 case Mips::ATOMIC_LOAD_SUB_I32: 994 return emitAtomicBinary(MI, BB, 4, Mips::SUBu); 995 case Mips::ATOMIC_LOAD_SUB_I64: 996 return emitAtomicBinary(MI, BB, 8, Mips::DSUBu); 997 998 case Mips::ATOMIC_SWAP_I8: 999 return emitAtomicBinaryPartword(MI, BB, 1, 0); 1000 case Mips::ATOMIC_SWAP_I16: 1001 return emitAtomicBinaryPartword(MI, BB, 2, 0); 1002 case Mips::ATOMIC_SWAP_I32: 1003 return emitAtomicBinary(MI, BB, 4, 0); 1004 case Mips::ATOMIC_SWAP_I64: 1005 return emitAtomicBinary(MI, BB, 8, 0); 1006 1007 case Mips::ATOMIC_CMP_SWAP_I8: 1008 return emitAtomicCmpSwapPartword(MI, BB, 1); 1009 case Mips::ATOMIC_CMP_SWAP_I16: 1010 return emitAtomicCmpSwapPartword(MI, BB, 2); 1011 case Mips::ATOMIC_CMP_SWAP_I32: 1012 return emitAtomicCmpSwap(MI, BB, 4); 1013 case Mips::ATOMIC_CMP_SWAP_I64: 1014 return emitAtomicCmpSwap(MI, BB, 8); 1015 case Mips::PseudoSDIV: 1016 case Mips::PseudoUDIV: 1017 case Mips::DIV: 1018 case Mips::DIVU: 1019 case Mips::MOD: 1020 case Mips::MODU: 1021 return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false); 1022 case Mips::PseudoDSDIV: 1023 case Mips::PseudoDUDIV: 1024 case Mips::DDIV: 1025 case Mips::DDIVU: 1026 case Mips::DMOD: 1027 case Mips::DMODU: 1028 return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), true); 1029 case Mips::SEL_D: 1030 return emitSEL_D(MI, BB); 1031 1032 case Mips::PseudoSELECT_I: 1033 case Mips::PseudoSELECT_I64: 1034 case Mips::PseudoSELECT_S: 1035 case Mips::PseudoSELECT_D32: 1036 case Mips::PseudoSELECT_D64: 1037 return emitPseudoSELECT(MI, BB, false, Mips::BNE); 1038 case Mips::PseudoSELECTFP_F_I: 1039 case Mips::PseudoSELECTFP_F_I64: 1040 case Mips::PseudoSELECTFP_F_S: 1041 case Mips::PseudoSELECTFP_F_D32: 1042 case Mips::PseudoSELECTFP_F_D64: 1043 return emitPseudoSELECT(MI, BB, true, Mips::BC1F); 1044 case Mips::PseudoSELECTFP_T_I: 1045 case Mips::PseudoSELECTFP_T_I64: 1046 case Mips::PseudoSELECTFP_T_S: 1047 case Mips::PseudoSELECTFP_T_D32: 1048 case Mips::PseudoSELECTFP_T_D64: 1049 return emitPseudoSELECT(MI, BB, true, Mips::BC1T); 1050 } 1051 } 1052 1053 // This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and 1054 // Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true) 1055 MachineBasicBlock * 1056 MipsTargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, 1057 unsigned Size, unsigned BinOpcode, 1058 bool Nand) const { 1059 assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary."); 1060 1061 MachineFunction *MF = BB->getParent(); 1062 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 1063 const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8)); 1064 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 1065 DebugLoc DL = MI->getDebugLoc(); 1066 unsigned LL, SC, AND, NOR, ZERO, BEQ; 1067 1068 if (Size == 4) { 1069 if (isMicroMips) { 1070 LL = Mips::LL_MM; 1071 SC = Mips::SC_MM; 1072 } else { 1073 LL = Subtarget.hasMips32r6() ? Mips::LL_R6 : Mips::LL; 1074 SC = Subtarget.hasMips32r6() ? Mips::SC_R6 : Mips::SC; 1075 } 1076 AND = Mips::AND; 1077 NOR = Mips::NOR; 1078 ZERO = Mips::ZERO; 1079 BEQ = Mips::BEQ; 1080 } else { 1081 LL = Subtarget.hasMips64r6() ? Mips::LLD_R6 : Mips::LLD; 1082 SC = Subtarget.hasMips64r6() ? Mips::SCD_R6 : Mips::SCD; 1083 AND = Mips::AND64; 1084 NOR = Mips::NOR64; 1085 ZERO = Mips::ZERO_64; 1086 BEQ = Mips::BEQ64; 1087 } 1088 1089 unsigned OldVal = MI->getOperand(0).getReg(); 1090 unsigned Ptr = MI->getOperand(1).getReg(); 1091 unsigned Incr = MI->getOperand(2).getReg(); 1092 1093 unsigned StoreVal = RegInfo.createVirtualRegister(RC); 1094 unsigned AndRes = RegInfo.createVirtualRegister(RC); 1095 unsigned Success = RegInfo.createVirtualRegister(RC); 1096 1097 // insert new blocks after the current block 1098 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1099 MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB); 1100 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); 1101 MachineFunction::iterator It = ++BB->getIterator(); 1102 MF->insert(It, loopMBB); 1103 MF->insert(It, exitMBB); 1104 1105 // Transfer the remainder of BB and its successor edges to exitMBB. 1106 exitMBB->splice(exitMBB->begin(), BB, 1107 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 1108 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 1109 1110 // thisMBB: 1111 // ... 1112 // fallthrough --> loopMBB 1113 BB->addSuccessor(loopMBB); 1114 loopMBB->addSuccessor(loopMBB); 1115 loopMBB->addSuccessor(exitMBB); 1116 1117 // loopMBB: 1118 // ll oldval, 0(ptr) 1119 // <binop> storeval, oldval, incr 1120 // sc success, storeval, 0(ptr) 1121 // beq success, $0, loopMBB 1122 BB = loopMBB; 1123 BuildMI(BB, DL, TII->get(LL), OldVal).addReg(Ptr).addImm(0); 1124 if (Nand) { 1125 // and andres, oldval, incr 1126 // nor storeval, $0, andres 1127 BuildMI(BB, DL, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr); 1128 BuildMI(BB, DL, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes); 1129 } else if (BinOpcode) { 1130 // <binop> storeval, oldval, incr 1131 BuildMI(BB, DL, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr); 1132 } else { 1133 StoreVal = Incr; 1134 } 1135 BuildMI(BB, DL, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0); 1136 BuildMI(BB, DL, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB); 1137 1138 MI->eraseFromParent(); // The instruction is gone now. 1139 1140 return exitMBB; 1141 } 1142 1143 MachineBasicBlock *MipsTargetLowering::emitSignExtendToI32InReg( 1144 MachineInstr *MI, MachineBasicBlock *BB, unsigned Size, unsigned DstReg, 1145 unsigned SrcReg) const { 1146 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 1147 DebugLoc DL = MI->getDebugLoc(); 1148 1149 if (Subtarget.hasMips32r2() && Size == 1) { 1150 BuildMI(BB, DL, TII->get(Mips::SEB), DstReg).addReg(SrcReg); 1151 return BB; 1152 } 1153 1154 if (Subtarget.hasMips32r2() && Size == 2) { 1155 BuildMI(BB, DL, TII->get(Mips::SEH), DstReg).addReg(SrcReg); 1156 return BB; 1157 } 1158 1159 MachineFunction *MF = BB->getParent(); 1160 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 1161 const TargetRegisterClass *RC = getRegClassFor(MVT::i32); 1162 unsigned ScrReg = RegInfo.createVirtualRegister(RC); 1163 1164 assert(Size < 32); 1165 int64_t ShiftImm = 32 - (Size * 8); 1166 1167 BuildMI(BB, DL, TII->get(Mips::SLL), ScrReg).addReg(SrcReg).addImm(ShiftImm); 1168 BuildMI(BB, DL, TII->get(Mips::SRA), DstReg).addReg(ScrReg).addImm(ShiftImm); 1169 1170 return BB; 1171 } 1172 1173 MachineBasicBlock *MipsTargetLowering::emitAtomicBinaryPartword( 1174 MachineInstr *MI, MachineBasicBlock *BB, unsigned Size, unsigned BinOpcode, 1175 bool Nand) const { 1176 assert((Size == 1 || Size == 2) && 1177 "Unsupported size for EmitAtomicBinaryPartial."); 1178 1179 MachineFunction *MF = BB->getParent(); 1180 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 1181 const TargetRegisterClass *RC = getRegClassFor(MVT::i32); 1182 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 1183 DebugLoc DL = MI->getDebugLoc(); 1184 1185 unsigned Dest = MI->getOperand(0).getReg(); 1186 unsigned Ptr = MI->getOperand(1).getReg(); 1187 unsigned Incr = MI->getOperand(2).getReg(); 1188 1189 unsigned AlignedAddr = RegInfo.createVirtualRegister(RC); 1190 unsigned ShiftAmt = RegInfo.createVirtualRegister(RC); 1191 unsigned Mask = RegInfo.createVirtualRegister(RC); 1192 unsigned Mask2 = RegInfo.createVirtualRegister(RC); 1193 unsigned NewVal = RegInfo.createVirtualRegister(RC); 1194 unsigned OldVal = RegInfo.createVirtualRegister(RC); 1195 unsigned Incr2 = RegInfo.createVirtualRegister(RC); 1196 unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC); 1197 unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC); 1198 unsigned MaskUpper = RegInfo.createVirtualRegister(RC); 1199 unsigned AndRes = RegInfo.createVirtualRegister(RC); 1200 unsigned BinOpRes = RegInfo.createVirtualRegister(RC); 1201 unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC); 1202 unsigned StoreVal = RegInfo.createVirtualRegister(RC); 1203 unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC); 1204 unsigned SrlRes = RegInfo.createVirtualRegister(RC); 1205 unsigned Success = RegInfo.createVirtualRegister(RC); 1206 1207 // insert new blocks after the current block 1208 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1209 MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB); 1210 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB); 1211 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); 1212 MachineFunction::iterator It = ++BB->getIterator(); 1213 MF->insert(It, loopMBB); 1214 MF->insert(It, sinkMBB); 1215 MF->insert(It, exitMBB); 1216 1217 // Transfer the remainder of BB and its successor edges to exitMBB. 1218 exitMBB->splice(exitMBB->begin(), BB, 1219 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 1220 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 1221 1222 BB->addSuccessor(loopMBB); 1223 loopMBB->addSuccessor(loopMBB); 1224 loopMBB->addSuccessor(sinkMBB); 1225 sinkMBB->addSuccessor(exitMBB); 1226 1227 // thisMBB: 1228 // addiu masklsb2,$0,-4 # 0xfffffffc 1229 // and alignedaddr,ptr,masklsb2 1230 // andi ptrlsb2,ptr,3 1231 // sll shiftamt,ptrlsb2,3 1232 // ori maskupper,$0,255 # 0xff 1233 // sll mask,maskupper,shiftamt 1234 // nor mask2,$0,mask 1235 // sll incr2,incr,shiftamt 1236 1237 int64_t MaskImm = (Size == 1) ? 255 : 65535; 1238 BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2) 1239 .addReg(Mips::ZERO).addImm(-4); 1240 BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr) 1241 .addReg(Ptr).addReg(MaskLSB2); 1242 BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3); 1243 if (Subtarget.isLittle()) { 1244 BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3); 1245 } else { 1246 unsigned Off = RegInfo.createVirtualRegister(RC); 1247 BuildMI(BB, DL, TII->get(Mips::XORi), Off) 1248 .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2); 1249 BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3); 1250 } 1251 BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper) 1252 .addReg(Mips::ZERO).addImm(MaskImm); 1253 BuildMI(BB, DL, TII->get(Mips::SLLV), Mask) 1254 .addReg(MaskUpper).addReg(ShiftAmt); 1255 BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask); 1256 BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt); 1257 1258 // atomic.load.binop 1259 // loopMBB: 1260 // ll oldval,0(alignedaddr) 1261 // binop binopres,oldval,incr2 1262 // and newval,binopres,mask 1263 // and maskedoldval0,oldval,mask2 1264 // or storeval,maskedoldval0,newval 1265 // sc success,storeval,0(alignedaddr) 1266 // beq success,$0,loopMBB 1267 1268 // atomic.swap 1269 // loopMBB: 1270 // ll oldval,0(alignedaddr) 1271 // and newval,incr2,mask 1272 // and maskedoldval0,oldval,mask2 1273 // or storeval,maskedoldval0,newval 1274 // sc success,storeval,0(alignedaddr) 1275 // beq success,$0,loopMBB 1276 1277 BB = loopMBB; 1278 unsigned LL = isMicroMips ? Mips::LL_MM : Mips::LL; 1279 BuildMI(BB, DL, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0); 1280 if (Nand) { 1281 // and andres, oldval, incr2 1282 // nor binopres, $0, andres 1283 // and newval, binopres, mask 1284 BuildMI(BB, DL, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2); 1285 BuildMI(BB, DL, TII->get(Mips::NOR), BinOpRes) 1286 .addReg(Mips::ZERO).addReg(AndRes); 1287 BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask); 1288 } else if (BinOpcode) { 1289 // <binop> binopres, oldval, incr2 1290 // and newval, binopres, mask 1291 BuildMI(BB, DL, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2); 1292 BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask); 1293 } else { // atomic.swap 1294 // and newval, incr2, mask 1295 BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask); 1296 } 1297 1298 BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0) 1299 .addReg(OldVal).addReg(Mask2); 1300 BuildMI(BB, DL, TII->get(Mips::OR), StoreVal) 1301 .addReg(MaskedOldVal0).addReg(NewVal); 1302 unsigned SC = isMicroMips ? Mips::SC_MM : Mips::SC; 1303 BuildMI(BB, DL, TII->get(SC), Success) 1304 .addReg(StoreVal).addReg(AlignedAddr).addImm(0); 1305 BuildMI(BB, DL, TII->get(Mips::BEQ)) 1306 .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB); 1307 1308 // sinkMBB: 1309 // and maskedoldval1,oldval,mask 1310 // srl srlres,maskedoldval1,shiftamt 1311 // sign_extend dest,srlres 1312 BB = sinkMBB; 1313 1314 BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1) 1315 .addReg(OldVal).addReg(Mask); 1316 BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes) 1317 .addReg(MaskedOldVal1).addReg(ShiftAmt); 1318 BB = emitSignExtendToI32InReg(MI, BB, Size, Dest, SrlRes); 1319 1320 MI->eraseFromParent(); // The instruction is gone now. 1321 1322 return exitMBB; 1323 } 1324 1325 MachineBasicBlock * MipsTargetLowering::emitAtomicCmpSwap(MachineInstr *MI, 1326 MachineBasicBlock *BB, 1327 unsigned Size) const { 1328 assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap."); 1329 1330 MachineFunction *MF = BB->getParent(); 1331 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 1332 const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8)); 1333 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 1334 DebugLoc DL = MI->getDebugLoc(); 1335 unsigned LL, SC, ZERO, BNE, BEQ; 1336 1337 if (Size == 4) { 1338 if (isMicroMips) { 1339 LL = Mips::LL_MM; 1340 SC = Mips::SC_MM; 1341 } else { 1342 LL = Subtarget.hasMips32r6() ? Mips::LL_R6 : Mips::LL; 1343 SC = Subtarget.hasMips32r6() ? Mips::SC_R6 : Mips::SC; 1344 } 1345 ZERO = Mips::ZERO; 1346 BNE = Mips::BNE; 1347 BEQ = Mips::BEQ; 1348 } else { 1349 LL = Subtarget.hasMips64r6() ? Mips::LLD_R6 : Mips::LLD; 1350 SC = Subtarget.hasMips64r6() ? Mips::SCD_R6 : Mips::SCD; 1351 ZERO = Mips::ZERO_64; 1352 BNE = Mips::BNE64; 1353 BEQ = Mips::BEQ64; 1354 } 1355 1356 unsigned Dest = MI->getOperand(0).getReg(); 1357 unsigned Ptr = MI->getOperand(1).getReg(); 1358 unsigned OldVal = MI->getOperand(2).getReg(); 1359 unsigned NewVal = MI->getOperand(3).getReg(); 1360 1361 unsigned Success = RegInfo.createVirtualRegister(RC); 1362 1363 // insert new blocks after the current block 1364 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1365 MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB); 1366 MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB); 1367 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); 1368 MachineFunction::iterator It = ++BB->getIterator(); 1369 MF->insert(It, loop1MBB); 1370 MF->insert(It, loop2MBB); 1371 MF->insert(It, exitMBB); 1372 1373 // Transfer the remainder of BB and its successor edges to exitMBB. 1374 exitMBB->splice(exitMBB->begin(), BB, 1375 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 1376 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 1377 1378 // thisMBB: 1379 // ... 1380 // fallthrough --> loop1MBB 1381 BB->addSuccessor(loop1MBB); 1382 loop1MBB->addSuccessor(exitMBB); 1383 loop1MBB->addSuccessor(loop2MBB); 1384 loop2MBB->addSuccessor(loop1MBB); 1385 loop2MBB->addSuccessor(exitMBB); 1386 1387 // loop1MBB: 1388 // ll dest, 0(ptr) 1389 // bne dest, oldval, exitMBB 1390 BB = loop1MBB; 1391 BuildMI(BB, DL, TII->get(LL), Dest).addReg(Ptr).addImm(0); 1392 BuildMI(BB, DL, TII->get(BNE)) 1393 .addReg(Dest).addReg(OldVal).addMBB(exitMBB); 1394 1395 // loop2MBB: 1396 // sc success, newval, 0(ptr) 1397 // beq success, $0, loop1MBB 1398 BB = loop2MBB; 1399 BuildMI(BB, DL, TII->get(SC), Success) 1400 .addReg(NewVal).addReg(Ptr).addImm(0); 1401 BuildMI(BB, DL, TII->get(BEQ)) 1402 .addReg(Success).addReg(ZERO).addMBB(loop1MBB); 1403 1404 MI->eraseFromParent(); // The instruction is gone now. 1405 1406 return exitMBB; 1407 } 1408 1409 MachineBasicBlock * 1410 MipsTargetLowering::emitAtomicCmpSwapPartword(MachineInstr *MI, 1411 MachineBasicBlock *BB, 1412 unsigned Size) const { 1413 assert((Size == 1 || Size == 2) && 1414 "Unsupported size for EmitAtomicCmpSwapPartial."); 1415 1416 MachineFunction *MF = BB->getParent(); 1417 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 1418 const TargetRegisterClass *RC = getRegClassFor(MVT::i32); 1419 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 1420 DebugLoc DL = MI->getDebugLoc(); 1421 1422 unsigned Dest = MI->getOperand(0).getReg(); 1423 unsigned Ptr = MI->getOperand(1).getReg(); 1424 unsigned CmpVal = MI->getOperand(2).getReg(); 1425 unsigned NewVal = MI->getOperand(3).getReg(); 1426 1427 unsigned AlignedAddr = RegInfo.createVirtualRegister(RC); 1428 unsigned ShiftAmt = RegInfo.createVirtualRegister(RC); 1429 unsigned Mask = RegInfo.createVirtualRegister(RC); 1430 unsigned Mask2 = RegInfo.createVirtualRegister(RC); 1431 unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC); 1432 unsigned OldVal = RegInfo.createVirtualRegister(RC); 1433 unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC); 1434 unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC); 1435 unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC); 1436 unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC); 1437 unsigned MaskUpper = RegInfo.createVirtualRegister(RC); 1438 unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC); 1439 unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC); 1440 unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC); 1441 unsigned StoreVal = RegInfo.createVirtualRegister(RC); 1442 unsigned SrlRes = RegInfo.createVirtualRegister(RC); 1443 unsigned Success = RegInfo.createVirtualRegister(RC); 1444 1445 // insert new blocks after the current block 1446 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1447 MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB); 1448 MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB); 1449 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB); 1450 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); 1451 MachineFunction::iterator It = ++BB->getIterator(); 1452 MF->insert(It, loop1MBB); 1453 MF->insert(It, loop2MBB); 1454 MF->insert(It, sinkMBB); 1455 MF->insert(It, exitMBB); 1456 1457 // Transfer the remainder of BB and its successor edges to exitMBB. 1458 exitMBB->splice(exitMBB->begin(), BB, 1459 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 1460 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 1461 1462 BB->addSuccessor(loop1MBB); 1463 loop1MBB->addSuccessor(sinkMBB); 1464 loop1MBB->addSuccessor(loop2MBB); 1465 loop2MBB->addSuccessor(loop1MBB); 1466 loop2MBB->addSuccessor(sinkMBB); 1467 sinkMBB->addSuccessor(exitMBB); 1468 1469 // FIXME: computation of newval2 can be moved to loop2MBB. 1470 // thisMBB: 1471 // addiu masklsb2,$0,-4 # 0xfffffffc 1472 // and alignedaddr,ptr,masklsb2 1473 // andi ptrlsb2,ptr,3 1474 // sll shiftamt,ptrlsb2,3 1475 // ori maskupper,$0,255 # 0xff 1476 // sll mask,maskupper,shiftamt 1477 // nor mask2,$0,mask 1478 // andi maskedcmpval,cmpval,255 1479 // sll shiftedcmpval,maskedcmpval,shiftamt 1480 // andi maskednewval,newval,255 1481 // sll shiftednewval,maskednewval,shiftamt 1482 int64_t MaskImm = (Size == 1) ? 255 : 65535; 1483 BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2) 1484 .addReg(Mips::ZERO).addImm(-4); 1485 BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr) 1486 .addReg(Ptr).addReg(MaskLSB2); 1487 BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3); 1488 if (Subtarget.isLittle()) { 1489 BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3); 1490 } else { 1491 unsigned Off = RegInfo.createVirtualRegister(RC); 1492 BuildMI(BB, DL, TII->get(Mips::XORi), Off) 1493 .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2); 1494 BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3); 1495 } 1496 BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper) 1497 .addReg(Mips::ZERO).addImm(MaskImm); 1498 BuildMI(BB, DL, TII->get(Mips::SLLV), Mask) 1499 .addReg(MaskUpper).addReg(ShiftAmt); 1500 BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask); 1501 BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal) 1502 .addReg(CmpVal).addImm(MaskImm); 1503 BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal) 1504 .addReg(MaskedCmpVal).addReg(ShiftAmt); 1505 BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal) 1506 .addReg(NewVal).addImm(MaskImm); 1507 BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal) 1508 .addReg(MaskedNewVal).addReg(ShiftAmt); 1509 1510 // loop1MBB: 1511 // ll oldval,0(alginedaddr) 1512 // and maskedoldval0,oldval,mask 1513 // bne maskedoldval0,shiftedcmpval,sinkMBB 1514 BB = loop1MBB; 1515 unsigned LL = isMicroMips ? Mips::LL_MM : Mips::LL; 1516 BuildMI(BB, DL, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0); 1517 BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0) 1518 .addReg(OldVal).addReg(Mask); 1519 BuildMI(BB, DL, TII->get(Mips::BNE)) 1520 .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB); 1521 1522 // loop2MBB: 1523 // and maskedoldval1,oldval,mask2 1524 // or storeval,maskedoldval1,shiftednewval 1525 // sc success,storeval,0(alignedaddr) 1526 // beq success,$0,loop1MBB 1527 BB = loop2MBB; 1528 BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1) 1529 .addReg(OldVal).addReg(Mask2); 1530 BuildMI(BB, DL, TII->get(Mips::OR), StoreVal) 1531 .addReg(MaskedOldVal1).addReg(ShiftedNewVal); 1532 unsigned SC = isMicroMips ? Mips::SC_MM : Mips::SC; 1533 BuildMI(BB, DL, TII->get(SC), Success) 1534 .addReg(StoreVal).addReg(AlignedAddr).addImm(0); 1535 BuildMI(BB, DL, TII->get(Mips::BEQ)) 1536 .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB); 1537 1538 // sinkMBB: 1539 // srl srlres,maskedoldval0,shiftamt 1540 // sign_extend dest,srlres 1541 BB = sinkMBB; 1542 1543 BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes) 1544 .addReg(MaskedOldVal0).addReg(ShiftAmt); 1545 BB = emitSignExtendToI32InReg(MI, BB, Size, Dest, SrlRes); 1546 1547 MI->eraseFromParent(); // The instruction is gone now. 1548 1549 return exitMBB; 1550 } 1551 1552 MachineBasicBlock *MipsTargetLowering::emitSEL_D(MachineInstr *MI, 1553 MachineBasicBlock *BB) const { 1554 MachineFunction *MF = BB->getParent(); 1555 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1556 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 1557 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 1558 DebugLoc DL = MI->getDebugLoc(); 1559 MachineBasicBlock::iterator II(MI); 1560 1561 unsigned Fc = MI->getOperand(1).getReg(); 1562 const auto &FGR64RegClass = TRI->getRegClass(Mips::FGR64RegClassID); 1563 1564 unsigned Fc2 = RegInfo.createVirtualRegister(FGR64RegClass); 1565 1566 BuildMI(*BB, II, DL, TII->get(Mips::SUBREG_TO_REG), Fc2) 1567 .addImm(0) 1568 .addReg(Fc) 1569 .addImm(Mips::sub_lo); 1570 1571 // We don't erase the original instruction, we just replace the condition 1572 // register with the 64-bit super-register. 1573 MI->getOperand(1).setReg(Fc2); 1574 1575 return BB; 1576 } 1577 1578 //===----------------------------------------------------------------------===// 1579 // Misc Lower Operation implementation 1580 //===----------------------------------------------------------------------===// 1581 SDValue MipsTargetLowering::lowerBR_JT(SDValue Op, SelectionDAG &DAG) const { 1582 SDValue Chain = Op.getOperand(0); 1583 SDValue Table = Op.getOperand(1); 1584 SDValue Index = Op.getOperand(2); 1585 SDLoc DL(Op); 1586 auto &TD = DAG.getDataLayout(); 1587 EVT PTy = getPointerTy(TD); 1588 unsigned EntrySize = 1589 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 1590 1591 Index = DAG.getNode(ISD::MUL, DL, PTy, Index, 1592 DAG.getConstant(EntrySize, DL, PTy)); 1593 SDValue Addr = DAG.getNode(ISD::ADD, DL, PTy, Index, Table); 1594 1595 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 1596 Addr = 1597 DAG.getExtLoad(ISD::SEXTLOAD, DL, PTy, Chain, Addr, 1598 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), 1599 MemVT, false, false, false, 0); 1600 Chain = Addr.getValue(1); 1601 1602 if ((getTargetMachine().getRelocationModel() == Reloc::PIC_) || ABI.IsN64()) { 1603 // For PIC, the sequence is: 1604 // BRIND(load(Jumptable + index) + RelocBase) 1605 // RelocBase can be JumpTable, GOT or some sort of global base. 1606 Addr = DAG.getNode(ISD::ADD, DL, PTy, Addr, 1607 getPICJumpTableRelocBase(Table, DAG)); 1608 } 1609 1610 return DAG.getNode(ISD::BRIND, DL, MVT::Other, Chain, Addr); 1611 } 1612 1613 SDValue MipsTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 1614 // The first operand is the chain, the second is the condition, the third is 1615 // the block to branch to if the condition is true. 1616 SDValue Chain = Op.getOperand(0); 1617 SDValue Dest = Op.getOperand(2); 1618 SDLoc DL(Op); 1619 1620 assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6()); 1621 SDValue CondRes = createFPCmp(DAG, Op.getOperand(1)); 1622 1623 // Return if flag is not set by a floating point comparison. 1624 if (CondRes.getOpcode() != MipsISD::FPCmp) 1625 return Op; 1626 1627 SDValue CCNode = CondRes.getOperand(2); 1628 Mips::CondCode CC = 1629 (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue(); 1630 unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T; 1631 SDValue BrCode = DAG.getConstant(Opc, DL, MVT::i32); 1632 SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32); 1633 return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode, 1634 FCC0, Dest, CondRes); 1635 } 1636 1637 SDValue MipsTargetLowering:: 1638 lowerSELECT(SDValue Op, SelectionDAG &DAG) const 1639 { 1640 assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6()); 1641 SDValue Cond = createFPCmp(DAG, Op.getOperand(0)); 1642 1643 // Return if flag is not set by a floating point comparison. 1644 if (Cond.getOpcode() != MipsISD::FPCmp) 1645 return Op; 1646 1647 return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2), 1648 SDLoc(Op)); 1649 } 1650 1651 SDValue MipsTargetLowering:: 1652 lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const 1653 { 1654 SDLoc DL(Op); 1655 EVT Ty = Op.getOperand(0).getValueType(); 1656 SDValue Cond = 1657 DAG.getNode(ISD::SETCC, DL, getSetCCResultType(DAG.getDataLayout(), 1658 *DAG.getContext(), Ty), 1659 Op.getOperand(0), Op.getOperand(1), Op.getOperand(4)); 1660 1661 return DAG.getNode(ISD::SELECT, DL, Op.getValueType(), Cond, Op.getOperand(2), 1662 Op.getOperand(3)); 1663 } 1664 1665 SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const { 1666 assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6()); 1667 SDValue Cond = createFPCmp(DAG, Op); 1668 1669 assert(Cond.getOpcode() == MipsISD::FPCmp && 1670 "Floating point operand expected."); 1671 1672 SDLoc DL(Op); 1673 SDValue True = DAG.getConstant(1, DL, MVT::i32); 1674 SDValue False = DAG.getConstant(0, DL, MVT::i32); 1675 1676 return createCMovFP(DAG, Cond, True, False, DL); 1677 } 1678 1679 SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op, 1680 SelectionDAG &DAG) const { 1681 EVT Ty = Op.getValueType(); 1682 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 1683 const GlobalValue *GV = N->getGlobal(); 1684 1685 if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !ABI.IsN64()) { 1686 const MipsTargetObjectFile *TLOF = 1687 static_cast<const MipsTargetObjectFile *>( 1688 getTargetMachine().getObjFileLowering()); 1689 if (TLOF->IsGlobalInSmallSection(GV, getTargetMachine())) 1690 // %gp_rel relocation 1691 return getAddrGPRel(N, SDLoc(N), Ty, DAG); 1692 1693 // %hi/%lo relocation 1694 return getAddrNonPIC(N, SDLoc(N), Ty, DAG); 1695 } 1696 1697 if (GV->hasInternalLinkage() || (GV->hasLocalLinkage() && !isa<Function>(GV))) 1698 return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64()); 1699 1700 if (LargeGOT) 1701 return getAddrGlobalLargeGOT( 1702 N, SDLoc(N), Ty, DAG, MipsII::MO_GOT_HI16, MipsII::MO_GOT_LO16, 1703 DAG.getEntryNode(), 1704 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 1705 1706 return getAddrGlobal( 1707 N, SDLoc(N), Ty, DAG, 1708 (ABI.IsN32() || ABI.IsN64()) ? MipsII::MO_GOT_DISP : MipsII::MO_GOT16, 1709 DAG.getEntryNode(), MachinePointerInfo::getGOT(DAG.getMachineFunction())); 1710 } 1711 1712 SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op, 1713 SelectionDAG &DAG) const { 1714 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 1715 EVT Ty = Op.getValueType(); 1716 1717 if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !ABI.IsN64()) 1718 return getAddrNonPIC(N, SDLoc(N), Ty, DAG); 1719 1720 return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64()); 1721 } 1722 1723 SDValue MipsTargetLowering:: 1724 lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const 1725 { 1726 // If the relocation model is PIC, use the General Dynamic TLS Model or 1727 // Local Dynamic TLS model, otherwise use the Initial Exec or 1728 // Local Exec TLS Model. 1729 1730 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 1731 if (DAG.getTarget().Options.EmulatedTLS) 1732 return LowerToTLSEmulatedModel(GA, DAG); 1733 1734 SDLoc DL(GA); 1735 const GlobalValue *GV = GA->getGlobal(); 1736 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1737 1738 TLSModel::Model model = getTargetMachine().getTLSModel(GV); 1739 1740 if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) { 1741 // General Dynamic and Local Dynamic TLS Model. 1742 unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM 1743 : MipsII::MO_TLSGD; 1744 1745 SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag); 1746 SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, 1747 getGlobalReg(DAG, PtrVT), TGA); 1748 unsigned PtrSize = PtrVT.getSizeInBits(); 1749 IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize); 1750 1751 SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT); 1752 1753 ArgListTy Args; 1754 ArgListEntry Entry; 1755 Entry.Node = Argument; 1756 Entry.Ty = PtrTy; 1757 Args.push_back(Entry); 1758 1759 TargetLowering::CallLoweringInfo CLI(DAG); 1760 CLI.setDebugLoc(DL).setChain(DAG.getEntryNode()) 1761 .setCallee(CallingConv::C, PtrTy, TlsGetAddr, std::move(Args), 0); 1762 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 1763 1764 SDValue Ret = CallResult.first; 1765 1766 if (model != TLSModel::LocalDynamic) 1767 return Ret; 1768 1769 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 1770 MipsII::MO_DTPREL_HI); 1771 SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi); 1772 SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 1773 MipsII::MO_DTPREL_LO); 1774 SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo); 1775 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret); 1776 return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo); 1777 } 1778 1779 SDValue Offset; 1780 if (model == TLSModel::InitialExec) { 1781 // Initial Exec TLS Model 1782 SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 1783 MipsII::MO_GOTTPREL); 1784 TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT), 1785 TGA); 1786 Offset = DAG.getLoad(PtrVT, DL, 1787 DAG.getEntryNode(), TGA, MachinePointerInfo(), 1788 false, false, false, 0); 1789 } else { 1790 // Local Exec TLS Model 1791 assert(model == TLSModel::LocalExec); 1792 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 1793 MipsII::MO_TPREL_HI); 1794 SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 1795 MipsII::MO_TPREL_LO); 1796 SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi); 1797 SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo); 1798 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 1799 } 1800 1801 SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT); 1802 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset); 1803 } 1804 1805 SDValue MipsTargetLowering:: 1806 lowerJumpTable(SDValue Op, SelectionDAG &DAG) const 1807 { 1808 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 1809 EVT Ty = Op.getValueType(); 1810 1811 if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !ABI.IsN64()) 1812 return getAddrNonPIC(N, SDLoc(N), Ty, DAG); 1813 1814 return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64()); 1815 } 1816 1817 SDValue MipsTargetLowering:: 1818 lowerConstantPool(SDValue Op, SelectionDAG &DAG) const 1819 { 1820 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 1821 EVT Ty = Op.getValueType(); 1822 1823 if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !ABI.IsN64()) { 1824 const MipsTargetObjectFile *TLOF = 1825 static_cast<const MipsTargetObjectFile *>( 1826 getTargetMachine().getObjFileLowering()); 1827 1828 if (TLOF->IsConstantInSmallSection(DAG.getDataLayout(), N->getConstVal(), 1829 getTargetMachine())) 1830 // %gp_rel relocation 1831 return getAddrGPRel(N, SDLoc(N), Ty, DAG); 1832 1833 return getAddrNonPIC(N, SDLoc(N), Ty, DAG); 1834 } 1835 1836 return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64()); 1837 } 1838 1839 SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 1840 MachineFunction &MF = DAG.getMachineFunction(); 1841 MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>(); 1842 1843 SDLoc DL(Op); 1844 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 1845 getPointerTy(MF.getDataLayout())); 1846 1847 // vastart just stores the address of the VarArgsFrameIndex slot into the 1848 // memory location argument. 1849 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1850 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 1851 MachinePointerInfo(SV), false, false, 0); 1852 } 1853 1854 SDValue MipsTargetLowering::lowerVAARG(SDValue Op, SelectionDAG &DAG) const { 1855 SDNode *Node = Op.getNode(); 1856 EVT VT = Node->getValueType(0); 1857 SDValue Chain = Node->getOperand(0); 1858 SDValue VAListPtr = Node->getOperand(1); 1859 unsigned Align = Node->getConstantOperandVal(3); 1860 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1861 SDLoc DL(Node); 1862 unsigned ArgSlotSizeInBytes = (ABI.IsN32() || ABI.IsN64()) ? 8 : 4; 1863 1864 SDValue VAListLoad = 1865 DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL, Chain, VAListPtr, 1866 MachinePointerInfo(SV), false, false, false, 0); 1867 SDValue VAList = VAListLoad; 1868 1869 // Re-align the pointer if necessary. 1870 // It should only ever be necessary for 64-bit types on O32 since the minimum 1871 // argument alignment is the same as the maximum type alignment for N32/N64. 1872 // 1873 // FIXME: We currently align too often. The code generator doesn't notice 1874 // when the pointer is still aligned from the last va_arg (or pair of 1875 // va_args for the i64 on O32 case). 1876 if (Align > getMinStackArgumentAlignment()) { 1877 assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2"); 1878 1879 VAList = DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList, 1880 DAG.getConstant(Align - 1, DL, VAList.getValueType())); 1881 1882 VAList = DAG.getNode(ISD::AND, DL, VAList.getValueType(), VAList, 1883 DAG.getConstant(-(int64_t)Align, DL, 1884 VAList.getValueType())); 1885 } 1886 1887 // Increment the pointer, VAList, to the next vaarg. 1888 auto &TD = DAG.getDataLayout(); 1889 unsigned ArgSizeInBytes = 1890 TD.getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())); 1891 SDValue Tmp3 = DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList, 1892 DAG.getConstant(RoundUpToAlignment(ArgSizeInBytes, 1893 ArgSlotSizeInBytes), 1894 DL, VAList.getValueType())); 1895 // Store the incremented VAList to the legalized pointer 1896 Chain = DAG.getStore(VAListLoad.getValue(1), DL, Tmp3, VAListPtr, 1897 MachinePointerInfo(SV), false, false, 0); 1898 1899 // In big-endian mode we must adjust the pointer when the load size is smaller 1900 // than the argument slot size. We must also reduce the known alignment to 1901 // match. For example in the N64 ABI, we must add 4 bytes to the offset to get 1902 // the correct half of the slot, and reduce the alignment from 8 (slot 1903 // alignment) down to 4 (type alignment). 1904 if (!Subtarget.isLittle() && ArgSizeInBytes < ArgSlotSizeInBytes) { 1905 unsigned Adjustment = ArgSlotSizeInBytes - ArgSizeInBytes; 1906 VAList = DAG.getNode(ISD::ADD, DL, VAListPtr.getValueType(), VAList, 1907 DAG.getIntPtrConstant(Adjustment, DL)); 1908 } 1909 // Load the actual argument out of the pointer VAList 1910 return DAG.getLoad(VT, DL, Chain, VAList, MachinePointerInfo(), false, false, 1911 false, 0); 1912 } 1913 1914 static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG, 1915 bool HasExtractInsert) { 1916 EVT TyX = Op.getOperand(0).getValueType(); 1917 EVT TyY = Op.getOperand(1).getValueType(); 1918 SDLoc DL(Op); 1919 SDValue Const1 = DAG.getConstant(1, DL, MVT::i32); 1920 SDValue Const31 = DAG.getConstant(31, DL, MVT::i32); 1921 SDValue Res; 1922 1923 // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it 1924 // to i32. 1925 SDValue X = (TyX == MVT::f32) ? 1926 DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) : 1927 DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0), 1928 Const1); 1929 SDValue Y = (TyY == MVT::f32) ? 1930 DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) : 1931 DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1), 1932 Const1); 1933 1934 if (HasExtractInsert) { 1935 // ext E, Y, 31, 1 ; extract bit31 of Y 1936 // ins X, E, 31, 1 ; insert extracted bit at bit31 of X 1937 SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1); 1938 Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X); 1939 } else { 1940 // sll SllX, X, 1 1941 // srl SrlX, SllX, 1 1942 // srl SrlY, Y, 31 1943 // sll SllY, SrlX, 31 1944 // or Or, SrlX, SllY 1945 SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1); 1946 SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1); 1947 SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31); 1948 SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31); 1949 Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY); 1950 } 1951 1952 if (TyX == MVT::f32) 1953 return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res); 1954 1955 SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, 1956 Op.getOperand(0), 1957 DAG.getConstant(0, DL, MVT::i32)); 1958 return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res); 1959 } 1960 1961 static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, 1962 bool HasExtractInsert) { 1963 unsigned WidthX = Op.getOperand(0).getValueSizeInBits(); 1964 unsigned WidthY = Op.getOperand(1).getValueSizeInBits(); 1965 EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY); 1966 SDLoc DL(Op); 1967 SDValue Const1 = DAG.getConstant(1, DL, MVT::i32); 1968 1969 // Bitcast to integer nodes. 1970 SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0)); 1971 SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1)); 1972 1973 if (HasExtractInsert) { 1974 // ext E, Y, width(Y) - 1, 1 ; extract bit width(Y)-1 of Y 1975 // ins X, E, width(X) - 1, 1 ; insert extracted bit at bit width(X)-1 of X 1976 SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y, 1977 DAG.getConstant(WidthY - 1, DL, MVT::i32), Const1); 1978 1979 if (WidthX > WidthY) 1980 E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E); 1981 else if (WidthY > WidthX) 1982 E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E); 1983 1984 SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E, 1985 DAG.getConstant(WidthX - 1, DL, MVT::i32), Const1, 1986 X); 1987 return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I); 1988 } 1989 1990 // (d)sll SllX, X, 1 1991 // (d)srl SrlX, SllX, 1 1992 // (d)srl SrlY, Y, width(Y)-1 1993 // (d)sll SllY, SrlX, width(Y)-1 1994 // or Or, SrlX, SllY 1995 SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1); 1996 SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1); 1997 SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y, 1998 DAG.getConstant(WidthY - 1, DL, MVT::i32)); 1999 2000 if (WidthX > WidthY) 2001 SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY); 2002 else if (WidthY > WidthX) 2003 SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY); 2004 2005 SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY, 2006 DAG.getConstant(WidthX - 1, DL, MVT::i32)); 2007 SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY); 2008 return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or); 2009 } 2010 2011 SDValue 2012 MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const { 2013 if (Subtarget.isGP64bit()) 2014 return lowerFCOPYSIGN64(Op, DAG, Subtarget.hasExtractInsert()); 2015 2016 return lowerFCOPYSIGN32(Op, DAG, Subtarget.hasExtractInsert()); 2017 } 2018 2019 SDValue MipsTargetLowering:: 2020 lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { 2021 // check the depth 2022 assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) && 2023 "Frame address can only be determined for current frame."); 2024 2025 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 2026 MFI->setFrameAddressIsTaken(true); 2027 EVT VT = Op.getValueType(); 2028 SDLoc DL(Op); 2029 SDValue FrameAddr = DAG.getCopyFromReg( 2030 DAG.getEntryNode(), DL, ABI.IsN64() ? Mips::FP_64 : Mips::FP, VT); 2031 return FrameAddr; 2032 } 2033 2034 SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op, 2035 SelectionDAG &DAG) const { 2036 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 2037 return SDValue(); 2038 2039 // check the depth 2040 assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) && 2041 "Return address can be determined only for current frame."); 2042 2043 MachineFunction &MF = DAG.getMachineFunction(); 2044 MachineFrameInfo *MFI = MF.getFrameInfo(); 2045 MVT VT = Op.getSimpleValueType(); 2046 unsigned RA = ABI.IsN64() ? Mips::RA_64 : Mips::RA; 2047 MFI->setReturnAddressIsTaken(true); 2048 2049 // Return RA, which contains the return address. Mark it an implicit live-in. 2050 unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT)); 2051 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT); 2052 } 2053 2054 // An EH_RETURN is the result of lowering llvm.eh.return which in turn is 2055 // generated from __builtin_eh_return (offset, handler) 2056 // The effect of this is to adjust the stack pointer by "offset" 2057 // and then branch to "handler". 2058 SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG) 2059 const { 2060 MachineFunction &MF = DAG.getMachineFunction(); 2061 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); 2062 2063 MipsFI->setCallsEhReturn(); 2064 SDValue Chain = Op.getOperand(0); 2065 SDValue Offset = Op.getOperand(1); 2066 SDValue Handler = Op.getOperand(2); 2067 SDLoc DL(Op); 2068 EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32; 2069 2070 // Store stack offset in V1, store jump target in V0. Glue CopyToReg and 2071 // EH_RETURN nodes, so that instructions are emitted back-to-back. 2072 unsigned OffsetReg = ABI.IsN64() ? Mips::V1_64 : Mips::V1; 2073 unsigned AddrReg = ABI.IsN64() ? Mips::V0_64 : Mips::V0; 2074 Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue()); 2075 Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1)); 2076 return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain, 2077 DAG.getRegister(OffsetReg, Ty), 2078 DAG.getRegister(AddrReg, getPointerTy(MF.getDataLayout())), 2079 Chain.getValue(1)); 2080 } 2081 2082 SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op, 2083 SelectionDAG &DAG) const { 2084 // FIXME: Need pseudo-fence for 'singlethread' fences 2085 // FIXME: Set SType for weaker fences where supported/appropriate. 2086 unsigned SType = 0; 2087 SDLoc DL(Op); 2088 return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0), 2089 DAG.getConstant(SType, DL, MVT::i32)); 2090 } 2091 2092 SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op, 2093 SelectionDAG &DAG) const { 2094 SDLoc DL(Op); 2095 MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32; 2096 2097 SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1); 2098 SDValue Shamt = Op.getOperand(2); 2099 // if shamt < (VT.bits): 2100 // lo = (shl lo, shamt) 2101 // hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt)) 2102 // else: 2103 // lo = 0 2104 // hi = (shl lo, shamt[4:0]) 2105 SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt, 2106 DAG.getConstant(-1, DL, MVT::i32)); 2107 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, 2108 DAG.getConstant(1, DL, VT)); 2109 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, Not); 2110 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 2111 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 2112 SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 2113 SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt, 2114 DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32)); 2115 Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2116 DAG.getConstant(0, DL, VT), ShiftLeftLo); 2117 Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftLeftLo, Or); 2118 2119 SDValue Ops[2] = {Lo, Hi}; 2120 return DAG.getMergeValues(Ops, DL); 2121 } 2122 2123 SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 2124 bool IsSRA) const { 2125 SDLoc DL(Op); 2126 SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1); 2127 SDValue Shamt = Op.getOperand(2); 2128 MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32; 2129 2130 // if shamt < (VT.bits): 2131 // lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt)) 2132 // if isSRA: 2133 // hi = (sra hi, shamt) 2134 // else: 2135 // hi = (srl hi, shamt) 2136 // else: 2137 // if isSRA: 2138 // lo = (sra hi, shamt[4:0]) 2139 // hi = (sra hi, 31) 2140 // else: 2141 // lo = (srl hi, shamt[4:0]) 2142 // hi = 0 2143 SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt, 2144 DAG.getConstant(-1, DL, MVT::i32)); 2145 SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, VT, Hi, 2146 DAG.getConstant(1, DL, VT)); 2147 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, ShiftLeft1Hi, Not); 2148 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 2149 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 2150 SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, 2151 DL, VT, Hi, Shamt); 2152 SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt, 2153 DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32)); 2154 SDValue Ext = DAG.getNode(ISD::SRA, DL, VT, Hi, 2155 DAG.getConstant(VT.getSizeInBits() - 1, DL, VT)); 2156 Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftRightHi, Or); 2157 Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond, 2158 IsSRA ? Ext : DAG.getConstant(0, DL, VT), ShiftRightHi); 2159 2160 SDValue Ops[2] = {Lo, Hi}; 2161 return DAG.getMergeValues(Ops, DL); 2162 } 2163 2164 static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD, 2165 SDValue Chain, SDValue Src, unsigned Offset) { 2166 SDValue Ptr = LD->getBasePtr(); 2167 EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT(); 2168 EVT BasePtrVT = Ptr.getValueType(); 2169 SDLoc DL(LD); 2170 SDVTList VTList = DAG.getVTList(VT, MVT::Other); 2171 2172 if (Offset) 2173 Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr, 2174 DAG.getConstant(Offset, DL, BasePtrVT)); 2175 2176 SDValue Ops[] = { Chain, Ptr, Src }; 2177 return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT, 2178 LD->getMemOperand()); 2179 } 2180 2181 // Expand an unaligned 32 or 64-bit integer load node. 2182 SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const { 2183 LoadSDNode *LD = cast<LoadSDNode>(Op); 2184 EVT MemVT = LD->getMemoryVT(); 2185 2186 if (Subtarget.systemSupportsUnalignedAccess()) 2187 return Op; 2188 2189 // Return if load is aligned or if MemVT is neither i32 nor i64. 2190 if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) || 2191 ((MemVT != MVT::i32) && (MemVT != MVT::i64))) 2192 return SDValue(); 2193 2194 bool IsLittle = Subtarget.isLittle(); 2195 EVT VT = Op.getValueType(); 2196 ISD::LoadExtType ExtType = LD->getExtensionType(); 2197 SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT); 2198 2199 assert((VT == MVT::i32) || (VT == MVT::i64)); 2200 2201 // Expand 2202 // (set dst, (i64 (load baseptr))) 2203 // to 2204 // (set tmp, (ldl (add baseptr, 7), undef)) 2205 // (set dst, (ldr baseptr, tmp)) 2206 if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) { 2207 SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef, 2208 IsLittle ? 7 : 0); 2209 return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL, 2210 IsLittle ? 0 : 7); 2211 } 2212 2213 SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef, 2214 IsLittle ? 3 : 0); 2215 SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL, 2216 IsLittle ? 0 : 3); 2217 2218 // Expand 2219 // (set dst, (i32 (load baseptr))) or 2220 // (set dst, (i64 (sextload baseptr))) or 2221 // (set dst, (i64 (extload baseptr))) 2222 // to 2223 // (set tmp, (lwl (add baseptr, 3), undef)) 2224 // (set dst, (lwr baseptr, tmp)) 2225 if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) || 2226 (ExtType == ISD::EXTLOAD)) 2227 return LWR; 2228 2229 assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD)); 2230 2231 // Expand 2232 // (set dst, (i64 (zextload baseptr))) 2233 // to 2234 // (set tmp0, (lwl (add baseptr, 3), undef)) 2235 // (set tmp1, (lwr baseptr, tmp0)) 2236 // (set tmp2, (shl tmp1, 32)) 2237 // (set dst, (srl tmp2, 32)) 2238 SDLoc DL(LD); 2239 SDValue Const32 = DAG.getConstant(32, DL, MVT::i32); 2240 SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32); 2241 SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32); 2242 SDValue Ops[] = { SRL, LWR.getValue(1) }; 2243 return DAG.getMergeValues(Ops, DL); 2244 } 2245 2246 static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD, 2247 SDValue Chain, unsigned Offset) { 2248 SDValue Ptr = SD->getBasePtr(), Value = SD->getValue(); 2249 EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType(); 2250 SDLoc DL(SD); 2251 SDVTList VTList = DAG.getVTList(MVT::Other); 2252 2253 if (Offset) 2254 Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr, 2255 DAG.getConstant(Offset, DL, BasePtrVT)); 2256 2257 SDValue Ops[] = { Chain, Value, Ptr }; 2258 return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT, 2259 SD->getMemOperand()); 2260 } 2261 2262 // Expand an unaligned 32 or 64-bit integer store node. 2263 static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG, 2264 bool IsLittle) { 2265 SDValue Value = SD->getValue(), Chain = SD->getChain(); 2266 EVT VT = Value.getValueType(); 2267 2268 // Expand 2269 // (store val, baseptr) or 2270 // (truncstore val, baseptr) 2271 // to 2272 // (swl val, (add baseptr, 3)) 2273 // (swr val, baseptr) 2274 if ((VT == MVT::i32) || SD->isTruncatingStore()) { 2275 SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain, 2276 IsLittle ? 3 : 0); 2277 return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3); 2278 } 2279 2280 assert(VT == MVT::i64); 2281 2282 // Expand 2283 // (store val, baseptr) 2284 // to 2285 // (sdl val, (add baseptr, 7)) 2286 // (sdr val, baseptr) 2287 SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0); 2288 return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7); 2289 } 2290 2291 // Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr). 2292 static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG) { 2293 SDValue Val = SD->getValue(); 2294 2295 if (Val.getOpcode() != ISD::FP_TO_SINT) 2296 return SDValue(); 2297 2298 EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits()); 2299 SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy, 2300 Val.getOperand(0)); 2301 2302 return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(), 2303 SD->getPointerInfo(), SD->isVolatile(), 2304 SD->isNonTemporal(), SD->getAlignment()); 2305 } 2306 2307 SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const { 2308 StoreSDNode *SD = cast<StoreSDNode>(Op); 2309 EVT MemVT = SD->getMemoryVT(); 2310 2311 // Lower unaligned integer stores. 2312 if (!Subtarget.systemSupportsUnalignedAccess() && 2313 (SD->getAlignment() < MemVT.getSizeInBits() / 8) && 2314 ((MemVT == MVT::i32) || (MemVT == MVT::i64))) 2315 return lowerUnalignedIntStore(SD, DAG, Subtarget.isLittle()); 2316 2317 return lowerFP_TO_SINT_STORE(SD, DAG); 2318 } 2319 2320 SDValue MipsTargetLowering::lowerADD(SDValue Op, SelectionDAG &DAG) const { 2321 if (Op->getOperand(0).getOpcode() != ISD::FRAMEADDR 2322 || cast<ConstantSDNode> 2323 (Op->getOperand(0).getOperand(0))->getZExtValue() != 0 2324 || Op->getOperand(1).getOpcode() != ISD::FRAME_TO_ARGS_OFFSET) 2325 return SDValue(); 2326 2327 // The pattern 2328 // (add (frameaddr 0), (frame_to_args_offset)) 2329 // results from lowering llvm.eh.dwarf.cfa intrinsic. Transform it to 2330 // (add FrameObject, 0) 2331 // where FrameObject is a fixed StackObject with offset 0 which points to 2332 // the old stack pointer. 2333 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 2334 EVT ValTy = Op->getValueType(0); 2335 int FI = MFI->CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false); 2336 SDValue InArgsAddr = DAG.getFrameIndex(FI, ValTy); 2337 SDLoc DL(Op); 2338 return DAG.getNode(ISD::ADD, DL, ValTy, InArgsAddr, 2339 DAG.getConstant(0, DL, ValTy)); 2340 } 2341 2342 SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op, 2343 SelectionDAG &DAG) const { 2344 EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits()); 2345 SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy, 2346 Op.getOperand(0)); 2347 return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc); 2348 } 2349 2350 //===----------------------------------------------------------------------===// 2351 // Calling Convention Implementation 2352 //===----------------------------------------------------------------------===// 2353 2354 //===----------------------------------------------------------------------===// 2355 // TODO: Implement a generic logic using tblgen that can support this. 2356 // Mips O32 ABI rules: 2357 // --- 2358 // i32 - Passed in A0, A1, A2, A3 and stack 2359 // f32 - Only passed in f32 registers if no int reg has been used yet to hold 2360 // an argument. Otherwise, passed in A1, A2, A3 and stack. 2361 // f64 - Only passed in two aliased f32 registers if no int reg has been used 2362 // yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is 2363 // not used, it must be shadowed. If only A3 is available, shadow it and 2364 // go to stack. 2365 // 2366 // For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack. 2367 //===----------------------------------------------------------------------===// 2368 2369 static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT, 2370 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 2371 CCState &State, ArrayRef<MCPhysReg> F64Regs) { 2372 const MipsSubtarget &Subtarget = static_cast<const MipsSubtarget &>( 2373 State.getMachineFunction().getSubtarget()); 2374 2375 static const MCPhysReg IntRegs[] = { Mips::A0, Mips::A1, Mips::A2, Mips::A3 }; 2376 static const MCPhysReg F32Regs[] = { Mips::F12, Mips::F14 }; 2377 2378 // Do not process byval args here. 2379 if (ArgFlags.isByVal()) 2380 return true; 2381 2382 // Promote i8 and i16 2383 if (ArgFlags.isInReg() && !Subtarget.isLittle()) { 2384 if (LocVT == MVT::i8 || LocVT == MVT::i16 || LocVT == MVT::i32) { 2385 LocVT = MVT::i32; 2386 if (ArgFlags.isSExt()) 2387 LocInfo = CCValAssign::SExtUpper; 2388 else if (ArgFlags.isZExt()) 2389 LocInfo = CCValAssign::ZExtUpper; 2390 else 2391 LocInfo = CCValAssign::AExtUpper; 2392 } 2393 } 2394 2395 // Promote i8 and i16 2396 if (LocVT == MVT::i8 || LocVT == MVT::i16) { 2397 LocVT = MVT::i32; 2398 if (ArgFlags.isSExt()) 2399 LocInfo = CCValAssign::SExt; 2400 else if (ArgFlags.isZExt()) 2401 LocInfo = CCValAssign::ZExt; 2402 else 2403 LocInfo = CCValAssign::AExt; 2404 } 2405 2406 unsigned Reg; 2407 2408 // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following 2409 // is true: function is vararg, argument is 3rd or higher, there is previous 2410 // argument which is not f32 or f64. 2411 bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1 || 2412 State.getFirstUnallocated(F32Regs) != ValNo; 2413 unsigned OrigAlign = ArgFlags.getOrigAlign(); 2414 bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8); 2415 2416 if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) { 2417 Reg = State.AllocateReg(IntRegs); 2418 // If this is the first part of an i64 arg, 2419 // the allocated register must be either A0 or A2. 2420 if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3)) 2421 Reg = State.AllocateReg(IntRegs); 2422 LocVT = MVT::i32; 2423 } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) { 2424 // Allocate int register and shadow next int register. If first 2425 // available register is Mips::A1 or Mips::A3, shadow it too. 2426 Reg = State.AllocateReg(IntRegs); 2427 if (Reg == Mips::A1 || Reg == Mips::A3) 2428 Reg = State.AllocateReg(IntRegs); 2429 State.AllocateReg(IntRegs); 2430 LocVT = MVT::i32; 2431 } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) { 2432 // we are guaranteed to find an available float register 2433 if (ValVT == MVT::f32) { 2434 Reg = State.AllocateReg(F32Regs); 2435 // Shadow int register 2436 State.AllocateReg(IntRegs); 2437 } else { 2438 Reg = State.AllocateReg(F64Regs); 2439 // Shadow int registers 2440 unsigned Reg2 = State.AllocateReg(IntRegs); 2441 if (Reg2 == Mips::A1 || Reg2 == Mips::A3) 2442 State.AllocateReg(IntRegs); 2443 State.AllocateReg(IntRegs); 2444 } 2445 } else 2446 llvm_unreachable("Cannot handle this ValVT."); 2447 2448 if (!Reg) { 2449 unsigned Offset = State.AllocateStack(ValVT.getSizeInBits() >> 3, 2450 OrigAlign); 2451 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 2452 } else 2453 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 2454 2455 return false; 2456 } 2457 2458 static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT, 2459 MVT LocVT, CCValAssign::LocInfo LocInfo, 2460 ISD::ArgFlagsTy ArgFlags, CCState &State) { 2461 static const MCPhysReg F64Regs[] = { Mips::D6, Mips::D7 }; 2462 2463 return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs); 2464 } 2465 2466 static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT, 2467 MVT LocVT, CCValAssign::LocInfo LocInfo, 2468 ISD::ArgFlagsTy ArgFlags, CCState &State) { 2469 static const MCPhysReg F64Regs[] = { Mips::D12_64, Mips::D14_64 }; 2470 2471 return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs); 2472 } 2473 2474 static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT, 2475 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 2476 CCState &State) LLVM_ATTRIBUTE_UNUSED; 2477 2478 #include "MipsGenCallingConv.inc" 2479 2480 //===----------------------------------------------------------------------===// 2481 // Call Calling Convention Implementation 2482 //===----------------------------------------------------------------------===// 2483 2484 // Return next O32 integer argument register. 2485 static unsigned getNextIntArgReg(unsigned Reg) { 2486 assert((Reg == Mips::A0) || (Reg == Mips::A2)); 2487 return (Reg == Mips::A0) ? Mips::A1 : Mips::A3; 2488 } 2489 2490 SDValue 2491 MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset, 2492 SDValue Chain, SDValue Arg, SDLoc DL, 2493 bool IsTailCall, SelectionDAG &DAG) const { 2494 if (!IsTailCall) { 2495 SDValue PtrOff = 2496 DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), StackPtr, 2497 DAG.getIntPtrConstant(Offset, DL)); 2498 return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo(), false, 2499 false, 0); 2500 } 2501 2502 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 2503 int FI = MFI->CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false); 2504 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 2505 return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(), 2506 /*isVolatile=*/ true, false, 0); 2507 } 2508 2509 void MipsTargetLowering:: 2510 getOpndList(SmallVectorImpl<SDValue> &Ops, 2511 std::deque< std::pair<unsigned, SDValue> > &RegsToPass, 2512 bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage, 2513 bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee, 2514 SDValue Chain) const { 2515 // Insert node "GP copy globalreg" before call to function. 2516 // 2517 // R_MIPS_CALL* operators (emitted when non-internal functions are called 2518 // in PIC mode) allow symbols to be resolved via lazy binding. 2519 // The lazy binding stub requires GP to point to the GOT. 2520 // Note that we don't need GP to point to the GOT for indirect calls 2521 // (when R_MIPS_CALL* is not used for the call) because Mips linker generates 2522 // lazy binding stub for a function only when R_MIPS_CALL* are the only relocs 2523 // used for the function (that is, Mips linker doesn't generate lazy binding 2524 // stub for a function whose address is taken in the program). 2525 if (IsPICCall && !InternalLinkage && IsCallReloc) { 2526 unsigned GPReg = ABI.IsN64() ? Mips::GP_64 : Mips::GP; 2527 EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32; 2528 RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty))); 2529 } 2530 2531 // Build a sequence of copy-to-reg nodes chained together with token 2532 // chain and flag operands which copy the outgoing args into registers. 2533 // The InFlag in necessary since all emitted instructions must be 2534 // stuck together. 2535 SDValue InFlag; 2536 2537 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 2538 Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first, 2539 RegsToPass[i].second, InFlag); 2540 InFlag = Chain.getValue(1); 2541 } 2542 2543 // Add argument registers to the end of the list so that they are 2544 // known live into the call. 2545 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 2546 Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first, 2547 RegsToPass[i].second.getValueType())); 2548 2549 // Add a register mask operand representing the call-preserved registers. 2550 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2551 const uint32_t *Mask = 2552 TRI->getCallPreservedMask(CLI.DAG.getMachineFunction(), CLI.CallConv); 2553 assert(Mask && "Missing call preserved mask for calling convention"); 2554 if (Subtarget.inMips16HardFloat()) { 2555 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) { 2556 llvm::StringRef Sym = G->getGlobal()->getName(); 2557 Function *F = G->getGlobal()->getParent()->getFunction(Sym); 2558 if (F && F->hasFnAttribute("__Mips16RetHelper")) { 2559 Mask = MipsRegisterInfo::getMips16RetHelperMask(); 2560 } 2561 } 2562 } 2563 Ops.push_back(CLI.DAG.getRegisterMask(Mask)); 2564 2565 if (InFlag.getNode()) 2566 Ops.push_back(InFlag); 2567 } 2568 2569 /// LowerCall - functions arguments are copied from virtual regs to 2570 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted. 2571 SDValue 2572 MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 2573 SmallVectorImpl<SDValue> &InVals) const { 2574 SelectionDAG &DAG = CLI.DAG; 2575 SDLoc DL = CLI.DL; 2576 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 2577 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 2578 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 2579 SDValue Chain = CLI.Chain; 2580 SDValue Callee = CLI.Callee; 2581 bool &IsTailCall = CLI.IsTailCall; 2582 CallingConv::ID CallConv = CLI.CallConv; 2583 bool IsVarArg = CLI.IsVarArg; 2584 2585 MachineFunction &MF = DAG.getMachineFunction(); 2586 MachineFrameInfo *MFI = MF.getFrameInfo(); 2587 const TargetFrameLowering *TFL = Subtarget.getFrameLowering(); 2588 MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>(); 2589 bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_; 2590 2591 // Analyze operands of the call, assigning locations to each operand. 2592 SmallVector<CCValAssign, 16> ArgLocs; 2593 MipsCCState CCInfo( 2594 CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext(), 2595 MipsCCState::getSpecialCallingConvForCallee(Callee.getNode(), Subtarget)); 2596 2597 // Allocate the reserved argument area. It seems strange to do this from the 2598 // caller side but removing it breaks the frame size calculation. 2599 CCInfo.AllocateStack(ABI.GetCalleeAllocdArgSizeInBytes(CallConv), 1); 2600 2601 CCInfo.AnalyzeCallOperands(Outs, CC_Mips, CLI.getArgs(), Callee.getNode()); 2602 2603 // Get a count of how many bytes are to be pushed on the stack. 2604 unsigned NextStackOffset = CCInfo.getNextStackOffset(); 2605 2606 // Check if it's really possible to do a tail call. 2607 if (IsTailCall) 2608 IsTailCall = isEligibleForTailCallOptimization( 2609 CCInfo, NextStackOffset, *MF.getInfo<MipsFunctionInfo>()); 2610 2611 if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall()) 2612 report_fatal_error("failed to perform tail call elimination on a call " 2613 "site marked musttail"); 2614 2615 if (IsTailCall) 2616 ++NumTailCalls; 2617 2618 // Chain is the output chain of the last Load/Store or CopyToReg node. 2619 // ByValChain is the output chain of the last Memcpy node created for copying 2620 // byval arguments to the stack. 2621 unsigned StackAlignment = TFL->getStackAlignment(); 2622 NextStackOffset = RoundUpToAlignment(NextStackOffset, StackAlignment); 2623 SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, DL, true); 2624 2625 if (!IsTailCall) 2626 Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal, DL); 2627 2628 SDValue StackPtr = 2629 DAG.getCopyFromReg(Chain, DL, ABI.IsN64() ? Mips::SP_64 : Mips::SP, 2630 getPointerTy(DAG.getDataLayout())); 2631 2632 // With EABI is it possible to have 16 args on registers. 2633 std::deque< std::pair<unsigned, SDValue> > RegsToPass; 2634 SmallVector<SDValue, 8> MemOpChains; 2635 2636 CCInfo.rewindByValRegsInfo(); 2637 2638 // Walk the register/memloc assignments, inserting copies/loads. 2639 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 2640 SDValue Arg = OutVals[i]; 2641 CCValAssign &VA = ArgLocs[i]; 2642 MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT(); 2643 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2644 bool UseUpperBits = false; 2645 2646 // ByVal Arg. 2647 if (Flags.isByVal()) { 2648 unsigned FirstByValReg, LastByValReg; 2649 unsigned ByValIdx = CCInfo.getInRegsParamsProcessed(); 2650 CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg); 2651 2652 assert(Flags.getByValSize() && 2653 "ByVal args of size 0 should have been ignored by front-end."); 2654 assert(ByValIdx < CCInfo.getInRegsParamsCount()); 2655 assert(!IsTailCall && 2656 "Do not tail-call optimize if there is a byval argument."); 2657 passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg, 2658 FirstByValReg, LastByValReg, Flags, Subtarget.isLittle(), 2659 VA); 2660 CCInfo.nextInRegsParam(); 2661 continue; 2662 } 2663 2664 // Promote the value if needed. 2665 switch (VA.getLocInfo()) { 2666 default: 2667 llvm_unreachable("Unknown loc info!"); 2668 case CCValAssign::Full: 2669 if (VA.isRegLoc()) { 2670 if ((ValVT == MVT::f32 && LocVT == MVT::i32) || 2671 (ValVT == MVT::f64 && LocVT == MVT::i64) || 2672 (ValVT == MVT::i64 && LocVT == MVT::f64)) 2673 Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg); 2674 else if (ValVT == MVT::f64 && LocVT == MVT::i32) { 2675 SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, 2676 Arg, DAG.getConstant(0, DL, MVT::i32)); 2677 SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, 2678 Arg, DAG.getConstant(1, DL, MVT::i32)); 2679 if (!Subtarget.isLittle()) 2680 std::swap(Lo, Hi); 2681 unsigned LocRegLo = VA.getLocReg(); 2682 unsigned LocRegHigh = getNextIntArgReg(LocRegLo); 2683 RegsToPass.push_back(std::make_pair(LocRegLo, Lo)); 2684 RegsToPass.push_back(std::make_pair(LocRegHigh, Hi)); 2685 continue; 2686 } 2687 } 2688 break; 2689 case CCValAssign::BCvt: 2690 Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg); 2691 break; 2692 case CCValAssign::SExtUpper: 2693 UseUpperBits = true; 2694 // Fallthrough 2695 case CCValAssign::SExt: 2696 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg); 2697 break; 2698 case CCValAssign::ZExtUpper: 2699 UseUpperBits = true; 2700 // Fallthrough 2701 case CCValAssign::ZExt: 2702 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg); 2703 break; 2704 case CCValAssign::AExtUpper: 2705 UseUpperBits = true; 2706 // Fallthrough 2707 case CCValAssign::AExt: 2708 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg); 2709 break; 2710 } 2711 2712 if (UseUpperBits) { 2713 unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits(); 2714 unsigned LocSizeInBits = VA.getLocVT().getSizeInBits(); 2715 Arg = DAG.getNode( 2716 ISD::SHL, DL, VA.getLocVT(), Arg, 2717 DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT())); 2718 } 2719 2720 // Arguments that can be passed on register must be kept at 2721 // RegsToPass vector 2722 if (VA.isRegLoc()) { 2723 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 2724 continue; 2725 } 2726 2727 // Register can't get to this point... 2728 assert(VA.isMemLoc()); 2729 2730 // emit ISD::STORE whichs stores the 2731 // parameter value to a stack Location 2732 MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(), 2733 Chain, Arg, DL, IsTailCall, DAG)); 2734 } 2735 2736 // Transform all store nodes into one single node because all store 2737 // nodes are independent of each other. 2738 if (!MemOpChains.empty()) 2739 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 2740 2741 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every 2742 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol 2743 // node so that legalize doesn't hack it. 2744 bool IsPICCall = (ABI.IsN64() || IsPIC); // true if calls are translated to 2745 // jalr $25 2746 bool GlobalOrExternal = false, InternalLinkage = false, IsCallReloc = false; 2747 SDValue CalleeLo; 2748 EVT Ty = Callee.getValueType(); 2749 2750 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 2751 if (IsPICCall) { 2752 const GlobalValue *Val = G->getGlobal(); 2753 InternalLinkage = Val->hasInternalLinkage(); 2754 2755 if (InternalLinkage) 2756 Callee = getAddrLocal(G, DL, Ty, DAG, ABI.IsN32() || ABI.IsN64()); 2757 else if (LargeGOT) { 2758 Callee = getAddrGlobalLargeGOT(G, DL, Ty, DAG, MipsII::MO_CALL_HI16, 2759 MipsII::MO_CALL_LO16, Chain, 2760 FuncInfo->callPtrInfo(Val)); 2761 IsCallReloc = true; 2762 } else { 2763 Callee = getAddrGlobal(G, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain, 2764 FuncInfo->callPtrInfo(Val)); 2765 IsCallReloc = true; 2766 } 2767 } else 2768 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, 2769 getPointerTy(DAG.getDataLayout()), 0, 2770 MipsII::MO_NO_FLAG); 2771 GlobalOrExternal = true; 2772 } 2773 else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 2774 const char *Sym = S->getSymbol(); 2775 2776 if (!ABI.IsN64() && !IsPIC) // !N64 && static 2777 Callee = DAG.getTargetExternalSymbol( 2778 Sym, getPointerTy(DAG.getDataLayout()), MipsII::MO_NO_FLAG); 2779 else if (LargeGOT) { 2780 Callee = getAddrGlobalLargeGOT(S, DL, Ty, DAG, MipsII::MO_CALL_HI16, 2781 MipsII::MO_CALL_LO16, Chain, 2782 FuncInfo->callPtrInfo(Sym)); 2783 IsCallReloc = true; 2784 } else { // N64 || PIC 2785 Callee = getAddrGlobal(S, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain, 2786 FuncInfo->callPtrInfo(Sym)); 2787 IsCallReloc = true; 2788 } 2789 2790 GlobalOrExternal = true; 2791 } 2792 2793 SmallVector<SDValue, 8> Ops(1, Chain); 2794 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2795 2796 getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal, InternalLinkage, 2797 IsCallReloc, CLI, Callee, Chain); 2798 2799 if (IsTailCall) 2800 return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, Ops); 2801 2802 Chain = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, Ops); 2803 SDValue InFlag = Chain.getValue(1); 2804 2805 // Create the CALLSEQ_END node. 2806 Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal, 2807 DAG.getIntPtrConstant(0, DL, true), InFlag, DL); 2808 InFlag = Chain.getValue(1); 2809 2810 // Handle result values, copying them out of physregs into vregs that we 2811 // return. 2812 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, 2813 InVals, CLI); 2814 } 2815 2816 /// LowerCallResult - Lower the result values of a call into the 2817 /// appropriate copies out of appropriate physical registers. 2818 SDValue MipsTargetLowering::LowerCallResult( 2819 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg, 2820 const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG, 2821 SmallVectorImpl<SDValue> &InVals, 2822 TargetLowering::CallLoweringInfo &CLI) const { 2823 // Assign locations to each value returned by this call. 2824 SmallVector<CCValAssign, 16> RVLocs; 2825 MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 2826 *DAG.getContext()); 2827 CCInfo.AnalyzeCallResult(Ins, RetCC_Mips, CLI); 2828 2829 // Copy all of the result registers out of their specified physreg. 2830 for (unsigned i = 0; i != RVLocs.size(); ++i) { 2831 CCValAssign &VA = RVLocs[i]; 2832 assert(VA.isRegLoc() && "Can only return in registers!"); 2833 2834 SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(), 2835 RVLocs[i].getLocVT(), InFlag); 2836 Chain = Val.getValue(1); 2837 InFlag = Val.getValue(2); 2838 2839 if (VA.isUpperBitsInLoc()) { 2840 unsigned ValSizeInBits = Ins[i].ArgVT.getSizeInBits(); 2841 unsigned LocSizeInBits = VA.getLocVT().getSizeInBits(); 2842 unsigned Shift = 2843 VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA; 2844 Val = DAG.getNode( 2845 Shift, DL, VA.getLocVT(), Val, 2846 DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT())); 2847 } 2848 2849 switch (VA.getLocInfo()) { 2850 default: 2851 llvm_unreachable("Unknown loc info!"); 2852 case CCValAssign::Full: 2853 break; 2854 case CCValAssign::BCvt: 2855 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 2856 break; 2857 case CCValAssign::AExt: 2858 case CCValAssign::AExtUpper: 2859 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 2860 break; 2861 case CCValAssign::ZExt: 2862 case CCValAssign::ZExtUpper: 2863 Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val, 2864 DAG.getValueType(VA.getValVT())); 2865 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 2866 break; 2867 case CCValAssign::SExt: 2868 case CCValAssign::SExtUpper: 2869 Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val, 2870 DAG.getValueType(VA.getValVT())); 2871 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 2872 break; 2873 } 2874 2875 InVals.push_back(Val); 2876 } 2877 2878 return Chain; 2879 } 2880 2881 static SDValue UnpackFromArgumentSlot(SDValue Val, const CCValAssign &VA, 2882 EVT ArgVT, SDLoc DL, SelectionDAG &DAG) { 2883 MVT LocVT = VA.getLocVT(); 2884 EVT ValVT = VA.getValVT(); 2885 2886 // Shift into the upper bits if necessary. 2887 switch (VA.getLocInfo()) { 2888 default: 2889 break; 2890 case CCValAssign::AExtUpper: 2891 case CCValAssign::SExtUpper: 2892 case CCValAssign::ZExtUpper: { 2893 unsigned ValSizeInBits = ArgVT.getSizeInBits(); 2894 unsigned LocSizeInBits = VA.getLocVT().getSizeInBits(); 2895 unsigned Opcode = 2896 VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA; 2897 Val = DAG.getNode( 2898 Opcode, DL, VA.getLocVT(), Val, 2899 DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT())); 2900 break; 2901 } 2902 } 2903 2904 // If this is an value smaller than the argument slot size (32-bit for O32, 2905 // 64-bit for N32/N64), it has been promoted in some way to the argument slot 2906 // size. Extract the value and insert any appropriate assertions regarding 2907 // sign/zero extension. 2908 switch (VA.getLocInfo()) { 2909 default: 2910 llvm_unreachable("Unknown loc info!"); 2911 case CCValAssign::Full: 2912 break; 2913 case CCValAssign::AExtUpper: 2914 case CCValAssign::AExt: 2915 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 2916 break; 2917 case CCValAssign::SExtUpper: 2918 case CCValAssign::SExt: 2919 Val = DAG.getNode(ISD::AssertSext, DL, LocVT, Val, DAG.getValueType(ValVT)); 2920 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 2921 break; 2922 case CCValAssign::ZExtUpper: 2923 case CCValAssign::ZExt: 2924 Val = DAG.getNode(ISD::AssertZext, DL, LocVT, Val, DAG.getValueType(ValVT)); 2925 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); 2926 break; 2927 case CCValAssign::BCvt: 2928 Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val); 2929 break; 2930 } 2931 2932 return Val; 2933 } 2934 2935 //===----------------------------------------------------------------------===// 2936 // Formal Arguments Calling Convention Implementation 2937 //===----------------------------------------------------------------------===// 2938 /// LowerFormalArguments - transform physical registers into virtual registers 2939 /// and generate load operations for arguments places on the stack. 2940 SDValue 2941 MipsTargetLowering::LowerFormalArguments(SDValue Chain, 2942 CallingConv::ID CallConv, 2943 bool IsVarArg, 2944 const SmallVectorImpl<ISD::InputArg> &Ins, 2945 SDLoc DL, SelectionDAG &DAG, 2946 SmallVectorImpl<SDValue> &InVals) 2947 const { 2948 MachineFunction &MF = DAG.getMachineFunction(); 2949 MachineFrameInfo *MFI = MF.getFrameInfo(); 2950 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); 2951 2952 MipsFI->setVarArgsFrameIndex(0); 2953 2954 // Used with vargs to acumulate store chains. 2955 std::vector<SDValue> OutChains; 2956 2957 // Assign locations to all of the incoming arguments. 2958 SmallVector<CCValAssign, 16> ArgLocs; 2959 MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, 2960 *DAG.getContext()); 2961 CCInfo.AllocateStack(ABI.GetCalleeAllocdArgSizeInBytes(CallConv), 1); 2962 const Function *Func = DAG.getMachineFunction().getFunction(); 2963 Function::const_arg_iterator FuncArg = Func->arg_begin(); 2964 2965 if (Func->hasFnAttribute("interrupt") && !Func->arg_empty()) 2966 report_fatal_error( 2967 "Functions with the interrupt attribute cannot have arguments!"); 2968 2969 CCInfo.AnalyzeFormalArguments(Ins, CC_Mips_FixedArg); 2970 MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(), 2971 CCInfo.getInRegsParamsCount() > 0); 2972 2973 unsigned CurArgIdx = 0; 2974 CCInfo.rewindByValRegsInfo(); 2975 2976 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 2977 CCValAssign &VA = ArgLocs[i]; 2978 if (Ins[i].isOrigArg()) { 2979 std::advance(FuncArg, Ins[i].getOrigArgIndex() - CurArgIdx); 2980 CurArgIdx = Ins[i].getOrigArgIndex(); 2981 } 2982 EVT ValVT = VA.getValVT(); 2983 ISD::ArgFlagsTy Flags = Ins[i].Flags; 2984 bool IsRegLoc = VA.isRegLoc(); 2985 2986 if (Flags.isByVal()) { 2987 assert(Ins[i].isOrigArg() && "Byval arguments cannot be implicit"); 2988 unsigned FirstByValReg, LastByValReg; 2989 unsigned ByValIdx = CCInfo.getInRegsParamsProcessed(); 2990 CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg); 2991 2992 assert(Flags.getByValSize() && 2993 "ByVal args of size 0 should have been ignored by front-end."); 2994 assert(ByValIdx < CCInfo.getInRegsParamsCount()); 2995 copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg, 2996 FirstByValReg, LastByValReg, VA, CCInfo); 2997 CCInfo.nextInRegsParam(); 2998 continue; 2999 } 3000 3001 // Arguments stored on registers 3002 if (IsRegLoc) { 3003 MVT RegVT = VA.getLocVT(); 3004 unsigned ArgReg = VA.getLocReg(); 3005 const TargetRegisterClass *RC = getRegClassFor(RegVT); 3006 3007 // Transform the arguments stored on 3008 // physical registers into virtual ones 3009 unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC); 3010 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT); 3011 3012 ArgValue = UnpackFromArgumentSlot(ArgValue, VA, Ins[i].ArgVT, DL, DAG); 3013 3014 // Handle floating point arguments passed in integer registers and 3015 // long double arguments passed in floating point registers. 3016 if ((RegVT == MVT::i32 && ValVT == MVT::f32) || 3017 (RegVT == MVT::i64 && ValVT == MVT::f64) || 3018 (RegVT == MVT::f64 && ValVT == MVT::i64)) 3019 ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue); 3020 else if (ABI.IsO32() && RegVT == MVT::i32 && 3021 ValVT == MVT::f64) { 3022 unsigned Reg2 = addLiveIn(DAG.getMachineFunction(), 3023 getNextIntArgReg(ArgReg), RC); 3024 SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT); 3025 if (!Subtarget.isLittle()) 3026 std::swap(ArgValue, ArgValue2); 3027 ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, 3028 ArgValue, ArgValue2); 3029 } 3030 3031 InVals.push_back(ArgValue); 3032 } else { // VA.isRegLoc() 3033 MVT LocVT = VA.getLocVT(); 3034 3035 if (ABI.IsO32()) { 3036 // We ought to be able to use LocVT directly but O32 sets it to i32 3037 // when allocating floating point values to integer registers. 3038 // This shouldn't influence how we load the value into registers unless 3039 // we are targeting softfloat. 3040 if (VA.getValVT().isFloatingPoint() && !Subtarget.useSoftFloat()) 3041 LocVT = VA.getValVT(); 3042 } 3043 3044 // sanity check 3045 assert(VA.isMemLoc()); 3046 3047 // The stack pointer offset is relative to the caller stack frame. 3048 int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8, 3049 VA.getLocMemOffset(), true); 3050 3051 // Create load nodes to retrieve arguments from the stack 3052 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 3053 SDValue ArgValue = DAG.getLoad( 3054 LocVT, DL, Chain, FIN, 3055 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 3056 false, false, false, 0); 3057 OutChains.push_back(ArgValue.getValue(1)); 3058 3059 ArgValue = UnpackFromArgumentSlot(ArgValue, VA, Ins[i].ArgVT, DL, DAG); 3060 3061 InVals.push_back(ArgValue); 3062 } 3063 } 3064 3065 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3066 // The mips ABIs for returning structs by value requires that we copy 3067 // the sret argument into $v0 for the return. Save the argument into 3068 // a virtual register so that we can access it from the return points. 3069 if (Ins[i].Flags.isSRet()) { 3070 unsigned Reg = MipsFI->getSRetReturnReg(); 3071 if (!Reg) { 3072 Reg = MF.getRegInfo().createVirtualRegister( 3073 getRegClassFor(ABI.IsN64() ? MVT::i64 : MVT::i32)); 3074 MipsFI->setSRetReturnReg(Reg); 3075 } 3076 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[i]); 3077 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain); 3078 break; 3079 } 3080 } 3081 3082 if (IsVarArg) 3083 writeVarArgRegs(OutChains, Chain, DL, DAG, CCInfo); 3084 3085 // All stores are grouped in one node to allow the matching between 3086 // the size of Ins and InVals. This only happens when on varg functions 3087 if (!OutChains.empty()) { 3088 OutChains.push_back(Chain); 3089 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 3090 } 3091 3092 return Chain; 3093 } 3094 3095 //===----------------------------------------------------------------------===// 3096 // Return Value Calling Convention Implementation 3097 //===----------------------------------------------------------------------===// 3098 3099 bool 3100 MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 3101 MachineFunction &MF, bool IsVarArg, 3102 const SmallVectorImpl<ISD::OutputArg> &Outs, 3103 LLVMContext &Context) const { 3104 SmallVector<CCValAssign, 16> RVLocs; 3105 MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 3106 return CCInfo.CheckReturn(Outs, RetCC_Mips); 3107 } 3108 3109 bool 3110 MipsTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 3111 if (Subtarget.hasMips3() && Subtarget.useSoftFloat()) { 3112 if (Type == MVT::i32) 3113 return true; 3114 } 3115 return IsSigned; 3116 } 3117 3118 SDValue 3119 MipsTargetLowering::LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps, 3120 SDLoc DL, SelectionDAG &DAG) const { 3121 3122 MachineFunction &MF = DAG.getMachineFunction(); 3123 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); 3124 3125 MipsFI->setISR(); 3126 3127 return DAG.getNode(MipsISD::ERet, DL, MVT::Other, RetOps); 3128 } 3129 3130 SDValue 3131 MipsTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 3132 bool IsVarArg, 3133 const SmallVectorImpl<ISD::OutputArg> &Outs, 3134 const SmallVectorImpl<SDValue> &OutVals, 3135 SDLoc DL, SelectionDAG &DAG) const { 3136 // CCValAssign - represent the assignment of 3137 // the return value to a location 3138 SmallVector<CCValAssign, 16> RVLocs; 3139 MachineFunction &MF = DAG.getMachineFunction(); 3140 3141 // CCState - Info about the registers and stack slot. 3142 MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 3143 3144 // Analyze return values. 3145 CCInfo.AnalyzeReturn(Outs, RetCC_Mips); 3146 3147 SDValue Flag; 3148 SmallVector<SDValue, 4> RetOps(1, Chain); 3149 3150 // Copy the result values into the output registers. 3151 for (unsigned i = 0; i != RVLocs.size(); ++i) { 3152 SDValue Val = OutVals[i]; 3153 CCValAssign &VA = RVLocs[i]; 3154 assert(VA.isRegLoc() && "Can only return in registers!"); 3155 bool UseUpperBits = false; 3156 3157 switch (VA.getLocInfo()) { 3158 default: 3159 llvm_unreachable("Unknown loc info!"); 3160 case CCValAssign::Full: 3161 break; 3162 case CCValAssign::BCvt: 3163 Val = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Val); 3164 break; 3165 case CCValAssign::AExtUpper: 3166 UseUpperBits = true; 3167 // Fallthrough 3168 case CCValAssign::AExt: 3169 Val = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Val); 3170 break; 3171 case CCValAssign::ZExtUpper: 3172 UseUpperBits = true; 3173 // Fallthrough 3174 case CCValAssign::ZExt: 3175 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Val); 3176 break; 3177 case CCValAssign::SExtUpper: 3178 UseUpperBits = true; 3179 // Fallthrough 3180 case CCValAssign::SExt: 3181 Val = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Val); 3182 break; 3183 } 3184 3185 if (UseUpperBits) { 3186 unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits(); 3187 unsigned LocSizeInBits = VA.getLocVT().getSizeInBits(); 3188 Val = DAG.getNode( 3189 ISD::SHL, DL, VA.getLocVT(), Val, 3190 DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT())); 3191 } 3192 3193 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag); 3194 3195 // Guarantee that all emitted copies are stuck together with flags. 3196 Flag = Chain.getValue(1); 3197 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 3198 } 3199 3200 // The mips ABIs for returning structs by value requires that we copy 3201 // the sret argument into $v0 for the return. We saved the argument into 3202 // a virtual register in the entry block, so now we copy the value out 3203 // and into $v0. 3204 if (MF.getFunction()->hasStructRetAttr()) { 3205 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); 3206 unsigned Reg = MipsFI->getSRetReturnReg(); 3207 3208 if (!Reg) 3209 llvm_unreachable("sret virtual register not created in the entry block"); 3210 SDValue Val = 3211 DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(DAG.getDataLayout())); 3212 unsigned V0 = ABI.IsN64() ? Mips::V0_64 : Mips::V0; 3213 3214 Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag); 3215 Flag = Chain.getValue(1); 3216 RetOps.push_back(DAG.getRegister(V0, getPointerTy(DAG.getDataLayout()))); 3217 } 3218 3219 RetOps[0] = Chain; // Update chain. 3220 3221 // Add the flag if we have it. 3222 if (Flag.getNode()) 3223 RetOps.push_back(Flag); 3224 3225 // ISRs must use "eret". 3226 if (DAG.getMachineFunction().getFunction()->hasFnAttribute("interrupt")) 3227 return LowerInterruptReturn(RetOps, DL, DAG); 3228 3229 // Standard return on Mips is a "jr $ra" 3230 return DAG.getNode(MipsISD::Ret, DL, MVT::Other, RetOps); 3231 } 3232 3233 //===----------------------------------------------------------------------===// 3234 // Mips Inline Assembly Support 3235 //===----------------------------------------------------------------------===// 3236 3237 /// getConstraintType - Given a constraint letter, return the type of 3238 /// constraint it is for this target. 3239 MipsTargetLowering::ConstraintType 3240 MipsTargetLowering::getConstraintType(StringRef Constraint) const { 3241 // Mips specific constraints 3242 // GCC config/mips/constraints.md 3243 // 3244 // 'd' : An address register. Equivalent to r 3245 // unless generating MIPS16 code. 3246 // 'y' : Equivalent to r; retained for 3247 // backwards compatibility. 3248 // 'c' : A register suitable for use in an indirect 3249 // jump. This will always be $25 for -mabicalls. 3250 // 'l' : The lo register. 1 word storage. 3251 // 'x' : The hilo register pair. Double word storage. 3252 if (Constraint.size() == 1) { 3253 switch (Constraint[0]) { 3254 default : break; 3255 case 'd': 3256 case 'y': 3257 case 'f': 3258 case 'c': 3259 case 'l': 3260 case 'x': 3261 return C_RegisterClass; 3262 case 'R': 3263 return C_Memory; 3264 } 3265 } 3266 3267 if (Constraint == "ZC") 3268 return C_Memory; 3269 3270 return TargetLowering::getConstraintType(Constraint); 3271 } 3272 3273 /// Examine constraint type and operand type and determine a weight value. 3274 /// This object must already have been set up with the operand type 3275 /// and the current alternative constraint selected. 3276 TargetLowering::ConstraintWeight 3277 MipsTargetLowering::getSingleConstraintMatchWeight( 3278 AsmOperandInfo &info, const char *constraint) const { 3279 ConstraintWeight weight = CW_Invalid; 3280 Value *CallOperandVal = info.CallOperandVal; 3281 // If we don't have a value, we can't do a match, 3282 // but allow it at the lowest weight. 3283 if (!CallOperandVal) 3284 return CW_Default; 3285 Type *type = CallOperandVal->getType(); 3286 // Look at the constraint type. 3287 switch (*constraint) { 3288 default: 3289 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 3290 break; 3291 case 'd': 3292 case 'y': 3293 if (type->isIntegerTy()) 3294 weight = CW_Register; 3295 break; 3296 case 'f': // FPU or MSA register 3297 if (Subtarget.hasMSA() && type->isVectorTy() && 3298 cast<VectorType>(type)->getBitWidth() == 128) 3299 weight = CW_Register; 3300 else if (type->isFloatTy()) 3301 weight = CW_Register; 3302 break; 3303 case 'c': // $25 for indirect jumps 3304 case 'l': // lo register 3305 case 'x': // hilo register pair 3306 if (type->isIntegerTy()) 3307 weight = CW_SpecificReg; 3308 break; 3309 case 'I': // signed 16 bit immediate 3310 case 'J': // integer zero 3311 case 'K': // unsigned 16 bit immediate 3312 case 'L': // signed 32 bit immediate where lower 16 bits are 0 3313 case 'N': // immediate in the range of -65535 to -1 (inclusive) 3314 case 'O': // signed 15 bit immediate (+- 16383) 3315 case 'P': // immediate in the range of 65535 to 1 (inclusive) 3316 if (isa<ConstantInt>(CallOperandVal)) 3317 weight = CW_Constant; 3318 break; 3319 case 'R': 3320 weight = CW_Memory; 3321 break; 3322 } 3323 return weight; 3324 } 3325 3326 /// This is a helper function to parse a physical register string and split it 3327 /// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag 3328 /// that is returned indicates whether parsing was successful. The second flag 3329 /// is true if the numeric part exists. 3330 static std::pair<bool, bool> parsePhysicalReg(StringRef C, StringRef &Prefix, 3331 unsigned long long &Reg) { 3332 if (C.front() != '{' || C.back() != '}') 3333 return std::make_pair(false, false); 3334 3335 // Search for the first numeric character. 3336 StringRef::const_iterator I, B = C.begin() + 1, E = C.end() - 1; 3337 I = std::find_if(B, E, isdigit); 3338 3339 Prefix = StringRef(B, I - B); 3340 3341 // The second flag is set to false if no numeric characters were found. 3342 if (I == E) 3343 return std::make_pair(true, false); 3344 3345 // Parse the numeric characters. 3346 return std::make_pair(!getAsUnsignedInteger(StringRef(I, E - I), 10, Reg), 3347 true); 3348 } 3349 3350 std::pair<unsigned, const TargetRegisterClass *> MipsTargetLowering:: 3351 parseRegForInlineAsmConstraint(StringRef C, MVT VT) const { 3352 const TargetRegisterInfo *TRI = 3353 Subtarget.getRegisterInfo(); 3354 const TargetRegisterClass *RC; 3355 StringRef Prefix; 3356 unsigned long long Reg; 3357 3358 std::pair<bool, bool> R = parsePhysicalReg(C, Prefix, Reg); 3359 3360 if (!R.first) 3361 return std::make_pair(0U, nullptr); 3362 3363 if ((Prefix == "hi" || Prefix == "lo")) { // Parse hi/lo. 3364 // No numeric characters follow "hi" or "lo". 3365 if (R.second) 3366 return std::make_pair(0U, nullptr); 3367 3368 RC = TRI->getRegClass(Prefix == "hi" ? 3369 Mips::HI32RegClassID : Mips::LO32RegClassID); 3370 return std::make_pair(*(RC->begin()), RC); 3371 } else if (Prefix.startswith("$msa")) { 3372 // Parse $msa(ir|csr|access|save|modify|request|map|unmap) 3373 3374 // No numeric characters follow the name. 3375 if (R.second) 3376 return std::make_pair(0U, nullptr); 3377 3378 Reg = StringSwitch<unsigned long long>(Prefix) 3379 .Case("$msair", Mips::MSAIR) 3380 .Case("$msacsr", Mips::MSACSR) 3381 .Case("$msaaccess", Mips::MSAAccess) 3382 .Case("$msasave", Mips::MSASave) 3383 .Case("$msamodify", Mips::MSAModify) 3384 .Case("$msarequest", Mips::MSARequest) 3385 .Case("$msamap", Mips::MSAMap) 3386 .Case("$msaunmap", Mips::MSAUnmap) 3387 .Default(0); 3388 3389 if (!Reg) 3390 return std::make_pair(0U, nullptr); 3391 3392 RC = TRI->getRegClass(Mips::MSACtrlRegClassID); 3393 return std::make_pair(Reg, RC); 3394 } 3395 3396 if (!R.second) 3397 return std::make_pair(0U, nullptr); 3398 3399 if (Prefix == "$f") { // Parse $f0-$f31. 3400 // If the size of FP registers is 64-bit or Reg is an even number, select 3401 // the 64-bit register class. Otherwise, select the 32-bit register class. 3402 if (VT == MVT::Other) 3403 VT = (Subtarget.isFP64bit() || !(Reg % 2)) ? MVT::f64 : MVT::f32; 3404 3405 RC = getRegClassFor(VT); 3406 3407 if (RC == &Mips::AFGR64RegClass) { 3408 assert(Reg % 2 == 0); 3409 Reg >>= 1; 3410 } 3411 } else if (Prefix == "$fcc") // Parse $fcc0-$fcc7. 3412 RC = TRI->getRegClass(Mips::FCCRegClassID); 3413 else if (Prefix == "$w") { // Parse $w0-$w31. 3414 RC = getRegClassFor((VT == MVT::Other) ? MVT::v16i8 : VT); 3415 } else { // Parse $0-$31. 3416 assert(Prefix == "$"); 3417 RC = getRegClassFor((VT == MVT::Other) ? MVT::i32 : VT); 3418 } 3419 3420 assert(Reg < RC->getNumRegs()); 3421 return std::make_pair(*(RC->begin() + Reg), RC); 3422 } 3423 3424 /// Given a register class constraint, like 'r', if this corresponds directly 3425 /// to an LLVM register class, return a register of 0 and the register class 3426 /// pointer. 3427 std::pair<unsigned, const TargetRegisterClass *> 3428 MipsTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 3429 StringRef Constraint, 3430 MVT VT) const { 3431 if (Constraint.size() == 1) { 3432 switch (Constraint[0]) { 3433 case 'd': // Address register. Same as 'r' unless generating MIPS16 code. 3434 case 'y': // Same as 'r'. Exists for compatibility. 3435 case 'r': 3436 if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) { 3437 if (Subtarget.inMips16Mode()) 3438 return std::make_pair(0U, &Mips::CPU16RegsRegClass); 3439 return std::make_pair(0U, &Mips::GPR32RegClass); 3440 } 3441 if (VT == MVT::i64 && !Subtarget.isGP64bit()) 3442 return std::make_pair(0U, &Mips::GPR32RegClass); 3443 if (VT == MVT::i64 && Subtarget.isGP64bit()) 3444 return std::make_pair(0U, &Mips::GPR64RegClass); 3445 // This will generate an error message 3446 return std::make_pair(0U, nullptr); 3447 case 'f': // FPU or MSA register 3448 if (VT == MVT::v16i8) 3449 return std::make_pair(0U, &Mips::MSA128BRegClass); 3450 else if (VT == MVT::v8i16 || VT == MVT::v8f16) 3451 return std::make_pair(0U, &Mips::MSA128HRegClass); 3452 else if (VT == MVT::v4i32 || VT == MVT::v4f32) 3453 return std::make_pair(0U, &Mips::MSA128WRegClass); 3454 else if (VT == MVT::v2i64 || VT == MVT::v2f64) 3455 return std::make_pair(0U, &Mips::MSA128DRegClass); 3456 else if (VT == MVT::f32) 3457 return std::make_pair(0U, &Mips::FGR32RegClass); 3458 else if ((VT == MVT::f64) && (!Subtarget.isSingleFloat())) { 3459 if (Subtarget.isFP64bit()) 3460 return std::make_pair(0U, &Mips::FGR64RegClass); 3461 return std::make_pair(0U, &Mips::AFGR64RegClass); 3462 } 3463 break; 3464 case 'c': // register suitable for indirect jump 3465 if (VT == MVT::i32) 3466 return std::make_pair((unsigned)Mips::T9, &Mips::GPR32RegClass); 3467 assert(VT == MVT::i64 && "Unexpected type."); 3468 return std::make_pair((unsigned)Mips::T9_64, &Mips::GPR64RegClass); 3469 case 'l': // register suitable for indirect jump 3470 if (VT == MVT::i32) 3471 return std::make_pair((unsigned)Mips::LO0, &Mips::LO32RegClass); 3472 return std::make_pair((unsigned)Mips::LO0_64, &Mips::LO64RegClass); 3473 case 'x': // register suitable for indirect jump 3474 // Fixme: Not triggering the use of both hi and low 3475 // This will generate an error message 3476 return std::make_pair(0U, nullptr); 3477 } 3478 } 3479 3480 std::pair<unsigned, const TargetRegisterClass *> R; 3481 R = parseRegForInlineAsmConstraint(Constraint, VT); 3482 3483 if (R.second) 3484 return R; 3485 3486 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 3487 } 3488 3489 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 3490 /// vector. If it is invalid, don't add anything to Ops. 3491 void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 3492 std::string &Constraint, 3493 std::vector<SDValue>&Ops, 3494 SelectionDAG &DAG) const { 3495 SDLoc DL(Op); 3496 SDValue Result; 3497 3498 // Only support length 1 constraints for now. 3499 if (Constraint.length() > 1) return; 3500 3501 char ConstraintLetter = Constraint[0]; 3502 switch (ConstraintLetter) { 3503 default: break; // This will fall through to the generic implementation 3504 case 'I': // Signed 16 bit constant 3505 // If this fails, the parent routine will give an error 3506 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 3507 EVT Type = Op.getValueType(); 3508 int64_t Val = C->getSExtValue(); 3509 if (isInt<16>(Val)) { 3510 Result = DAG.getTargetConstant(Val, DL, Type); 3511 break; 3512 } 3513 } 3514 return; 3515 case 'J': // integer zero 3516 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 3517 EVT Type = Op.getValueType(); 3518 int64_t Val = C->getZExtValue(); 3519 if (Val == 0) { 3520 Result = DAG.getTargetConstant(0, DL, Type); 3521 break; 3522 } 3523 } 3524 return; 3525 case 'K': // unsigned 16 bit immediate 3526 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 3527 EVT Type = Op.getValueType(); 3528 uint64_t Val = (uint64_t)C->getZExtValue(); 3529 if (isUInt<16>(Val)) { 3530 Result = DAG.getTargetConstant(Val, DL, Type); 3531 break; 3532 } 3533 } 3534 return; 3535 case 'L': // signed 32 bit immediate where lower 16 bits are 0 3536 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 3537 EVT Type = Op.getValueType(); 3538 int64_t Val = C->getSExtValue(); 3539 if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){ 3540 Result = DAG.getTargetConstant(Val, DL, Type); 3541 break; 3542 } 3543 } 3544 return; 3545 case 'N': // immediate in the range of -65535 to -1 (inclusive) 3546 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 3547 EVT Type = Op.getValueType(); 3548 int64_t Val = C->getSExtValue(); 3549 if ((Val >= -65535) && (Val <= -1)) { 3550 Result = DAG.getTargetConstant(Val, DL, Type); 3551 break; 3552 } 3553 } 3554 return; 3555 case 'O': // signed 15 bit immediate 3556 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 3557 EVT Type = Op.getValueType(); 3558 int64_t Val = C->getSExtValue(); 3559 if ((isInt<15>(Val))) { 3560 Result = DAG.getTargetConstant(Val, DL, Type); 3561 break; 3562 } 3563 } 3564 return; 3565 case 'P': // immediate in the range of 1 to 65535 (inclusive) 3566 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 3567 EVT Type = Op.getValueType(); 3568 int64_t Val = C->getSExtValue(); 3569 if ((Val <= 65535) && (Val >= 1)) { 3570 Result = DAG.getTargetConstant(Val, DL, Type); 3571 break; 3572 } 3573 } 3574 return; 3575 } 3576 3577 if (Result.getNode()) { 3578 Ops.push_back(Result); 3579 return; 3580 } 3581 3582 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 3583 } 3584 3585 bool MipsTargetLowering::isLegalAddressingMode(const DataLayout &DL, 3586 const AddrMode &AM, Type *Ty, 3587 unsigned AS) const { 3588 // No global is ever allowed as a base. 3589 if (AM.BaseGV) 3590 return false; 3591 3592 switch (AM.Scale) { 3593 case 0: // "r+i" or just "i", depending on HasBaseReg. 3594 break; 3595 case 1: 3596 if (!AM.HasBaseReg) // allow "r+i". 3597 break; 3598 return false; // disallow "r+r" or "r+r+i". 3599 default: 3600 return false; 3601 } 3602 3603 return true; 3604 } 3605 3606 bool 3607 MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 3608 // The Mips target isn't yet aware of offsets. 3609 return false; 3610 } 3611 3612 EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign, 3613 unsigned SrcAlign, 3614 bool IsMemset, bool ZeroMemset, 3615 bool MemcpyStrSrc, 3616 MachineFunction &MF) const { 3617 if (Subtarget.hasMips64()) 3618 return MVT::i64; 3619 3620 return MVT::i32; 3621 } 3622 3623 bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 3624 if (VT != MVT::f32 && VT != MVT::f64) 3625 return false; 3626 if (Imm.isNegZero()) 3627 return false; 3628 return Imm.isZero(); 3629 } 3630 3631 unsigned MipsTargetLowering::getJumpTableEncoding() const { 3632 if (ABI.IsN64()) 3633 return MachineJumpTableInfo::EK_GPRel64BlockAddress; 3634 3635 return TargetLowering::getJumpTableEncoding(); 3636 } 3637 3638 bool MipsTargetLowering::useSoftFloat() const { 3639 return Subtarget.useSoftFloat(); 3640 } 3641 3642 void MipsTargetLowering::copyByValRegs( 3643 SDValue Chain, SDLoc DL, std::vector<SDValue> &OutChains, SelectionDAG &DAG, 3644 const ISD::ArgFlagsTy &Flags, SmallVectorImpl<SDValue> &InVals, 3645 const Argument *FuncArg, unsigned FirstReg, unsigned LastReg, 3646 const CCValAssign &VA, MipsCCState &State) const { 3647 MachineFunction &MF = DAG.getMachineFunction(); 3648 MachineFrameInfo *MFI = MF.getFrameInfo(); 3649 unsigned GPRSizeInBytes = Subtarget.getGPRSizeInBytes(); 3650 unsigned NumRegs = LastReg - FirstReg; 3651 unsigned RegAreaSize = NumRegs * GPRSizeInBytes; 3652 unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize); 3653 int FrameObjOffset; 3654 ArrayRef<MCPhysReg> ByValArgRegs = ABI.GetByValArgRegs(); 3655 3656 if (RegAreaSize) 3657 FrameObjOffset = 3658 (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) - 3659 (int)((ByValArgRegs.size() - FirstReg) * GPRSizeInBytes); 3660 else 3661 FrameObjOffset = VA.getLocMemOffset(); 3662 3663 // Create frame object. 3664 EVT PtrTy = getPointerTy(DAG.getDataLayout()); 3665 int FI = MFI->CreateFixedObject(FrameObjSize, FrameObjOffset, true); 3666 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 3667 InVals.push_back(FIN); 3668 3669 if (!NumRegs) 3670 return; 3671 3672 // Copy arg registers. 3673 MVT RegTy = MVT::getIntegerVT(GPRSizeInBytes * 8); 3674 const TargetRegisterClass *RC = getRegClassFor(RegTy); 3675 3676 for (unsigned I = 0; I < NumRegs; ++I) { 3677 unsigned ArgReg = ByValArgRegs[FirstReg + I]; 3678 unsigned VReg = addLiveIn(MF, ArgReg, RC); 3679 unsigned Offset = I * GPRSizeInBytes; 3680 SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN, 3681 DAG.getConstant(Offset, DL, PtrTy)); 3682 SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy), 3683 StorePtr, MachinePointerInfo(FuncArg, Offset), 3684 false, false, 0); 3685 OutChains.push_back(Store); 3686 } 3687 } 3688 3689 // Copy byVal arg to registers and stack. 3690 void MipsTargetLowering::passByValArg( 3691 SDValue Chain, SDLoc DL, 3692 std::deque<std::pair<unsigned, SDValue>> &RegsToPass, 3693 SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr, 3694 MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg, unsigned FirstReg, 3695 unsigned LastReg, const ISD::ArgFlagsTy &Flags, bool isLittle, 3696 const CCValAssign &VA) const { 3697 unsigned ByValSizeInBytes = Flags.getByValSize(); 3698 unsigned OffsetInBytes = 0; // From beginning of struct 3699 unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes(); 3700 unsigned Alignment = std::min(Flags.getByValAlign(), RegSizeInBytes); 3701 EVT PtrTy = getPointerTy(DAG.getDataLayout()), 3702 RegTy = MVT::getIntegerVT(RegSizeInBytes * 8); 3703 unsigned NumRegs = LastReg - FirstReg; 3704 3705 if (NumRegs) { 3706 ArrayRef<MCPhysReg> ArgRegs = ABI.GetByValArgRegs(); 3707 bool LeftoverBytes = (NumRegs * RegSizeInBytes > ByValSizeInBytes); 3708 unsigned I = 0; 3709 3710 // Copy words to registers. 3711 for (; I < NumRegs - LeftoverBytes; ++I, OffsetInBytes += RegSizeInBytes) { 3712 SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg, 3713 DAG.getConstant(OffsetInBytes, DL, PtrTy)); 3714 SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr, 3715 MachinePointerInfo(), false, false, false, 3716 Alignment); 3717 MemOpChains.push_back(LoadVal.getValue(1)); 3718 unsigned ArgReg = ArgRegs[FirstReg + I]; 3719 RegsToPass.push_back(std::make_pair(ArgReg, LoadVal)); 3720 } 3721 3722 // Return if the struct has been fully copied. 3723 if (ByValSizeInBytes == OffsetInBytes) 3724 return; 3725 3726 // Copy the remainder of the byval argument with sub-word loads and shifts. 3727 if (LeftoverBytes) { 3728 SDValue Val; 3729 3730 for (unsigned LoadSizeInBytes = RegSizeInBytes / 2, TotalBytesLoaded = 0; 3731 OffsetInBytes < ByValSizeInBytes; LoadSizeInBytes /= 2) { 3732 unsigned RemainingSizeInBytes = ByValSizeInBytes - OffsetInBytes; 3733 3734 if (RemainingSizeInBytes < LoadSizeInBytes) 3735 continue; 3736 3737 // Load subword. 3738 SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg, 3739 DAG.getConstant(OffsetInBytes, DL, 3740 PtrTy)); 3741 SDValue LoadVal = DAG.getExtLoad( 3742 ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr, MachinePointerInfo(), 3743 MVT::getIntegerVT(LoadSizeInBytes * 8), false, false, false, 3744 Alignment); 3745 MemOpChains.push_back(LoadVal.getValue(1)); 3746 3747 // Shift the loaded value. 3748 unsigned Shamt; 3749 3750 if (isLittle) 3751 Shamt = TotalBytesLoaded * 8; 3752 else 3753 Shamt = (RegSizeInBytes - (TotalBytesLoaded + LoadSizeInBytes)) * 8; 3754 3755 SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal, 3756 DAG.getConstant(Shamt, DL, MVT::i32)); 3757 3758 if (Val.getNode()) 3759 Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift); 3760 else 3761 Val = Shift; 3762 3763 OffsetInBytes += LoadSizeInBytes; 3764 TotalBytesLoaded += LoadSizeInBytes; 3765 Alignment = std::min(Alignment, LoadSizeInBytes); 3766 } 3767 3768 unsigned ArgReg = ArgRegs[FirstReg + I]; 3769 RegsToPass.push_back(std::make_pair(ArgReg, Val)); 3770 return; 3771 } 3772 } 3773 3774 // Copy remainder of byval arg to it with memcpy. 3775 unsigned MemCpySize = ByValSizeInBytes - OffsetInBytes; 3776 SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg, 3777 DAG.getConstant(OffsetInBytes, DL, PtrTy)); 3778 SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr, 3779 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 3780 Chain = DAG.getMemcpy(Chain, DL, Dst, Src, 3781 DAG.getConstant(MemCpySize, DL, PtrTy), 3782 Alignment, /*isVolatile=*/false, /*AlwaysInline=*/false, 3783 /*isTailCall=*/false, 3784 MachinePointerInfo(), MachinePointerInfo()); 3785 MemOpChains.push_back(Chain); 3786 } 3787 3788 void MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains, 3789 SDValue Chain, SDLoc DL, 3790 SelectionDAG &DAG, 3791 CCState &State) const { 3792 ArrayRef<MCPhysReg> ArgRegs = ABI.GetVarArgRegs(); 3793 unsigned Idx = State.getFirstUnallocated(ArgRegs); 3794 unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes(); 3795 MVT RegTy = MVT::getIntegerVT(RegSizeInBytes * 8); 3796 const TargetRegisterClass *RC = getRegClassFor(RegTy); 3797 MachineFunction &MF = DAG.getMachineFunction(); 3798 MachineFrameInfo *MFI = MF.getFrameInfo(); 3799 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); 3800 3801 // Offset of the first variable argument from stack pointer. 3802 int VaArgOffset; 3803 3804 if (ArgRegs.size() == Idx) 3805 VaArgOffset = 3806 RoundUpToAlignment(State.getNextStackOffset(), RegSizeInBytes); 3807 else { 3808 VaArgOffset = 3809 (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) - 3810 (int)(RegSizeInBytes * (ArgRegs.size() - Idx)); 3811 } 3812 3813 // Record the frame index of the first variable argument 3814 // which is a value necessary to VASTART. 3815 int FI = MFI->CreateFixedObject(RegSizeInBytes, VaArgOffset, true); 3816 MipsFI->setVarArgsFrameIndex(FI); 3817 3818 // Copy the integer registers that have not been used for argument passing 3819 // to the argument register save area. For O32, the save area is allocated 3820 // in the caller's stack frame, while for N32/64, it is allocated in the 3821 // callee's stack frame. 3822 for (unsigned I = Idx; I < ArgRegs.size(); 3823 ++I, VaArgOffset += RegSizeInBytes) { 3824 unsigned Reg = addLiveIn(MF, ArgRegs[I], RC); 3825 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy); 3826 FI = MFI->CreateFixedObject(RegSizeInBytes, VaArgOffset, true); 3827 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 3828 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 3829 MachinePointerInfo(), false, false, 0); 3830 cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue( 3831 (Value *)nullptr); 3832 OutChains.push_back(Store); 3833 } 3834 } 3835 3836 void MipsTargetLowering::HandleByVal(CCState *State, unsigned &Size, 3837 unsigned Align) const { 3838 const TargetFrameLowering *TFL = Subtarget.getFrameLowering(); 3839 3840 assert(Size && "Byval argument's size shouldn't be 0."); 3841 3842 Align = std::min(Align, TFL->getStackAlignment()); 3843 3844 unsigned FirstReg = 0; 3845 unsigned NumRegs = 0; 3846 3847 if (State->getCallingConv() != CallingConv::Fast) { 3848 unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes(); 3849 ArrayRef<MCPhysReg> IntArgRegs = ABI.GetByValArgRegs(); 3850 // FIXME: The O32 case actually describes no shadow registers. 3851 const MCPhysReg *ShadowRegs = 3852 ABI.IsO32() ? IntArgRegs.data() : Mips64DPRegs; 3853 3854 // We used to check the size as well but we can't do that anymore since 3855 // CCState::HandleByVal() rounds up the size after calling this function. 3856 assert(!(Align % RegSizeInBytes) && 3857 "Byval argument's alignment should be a multiple of" 3858 "RegSizeInBytes."); 3859 3860 FirstReg = State->getFirstUnallocated(IntArgRegs); 3861 3862 // If Align > RegSizeInBytes, the first arg register must be even. 3863 // FIXME: This condition happens to do the right thing but it's not the 3864 // right way to test it. We want to check that the stack frame offset 3865 // of the register is aligned. 3866 if ((Align > RegSizeInBytes) && (FirstReg % 2)) { 3867 State->AllocateReg(IntArgRegs[FirstReg], ShadowRegs[FirstReg]); 3868 ++FirstReg; 3869 } 3870 3871 // Mark the registers allocated. 3872 Size = RoundUpToAlignment(Size, RegSizeInBytes); 3873 for (unsigned I = FirstReg; Size > 0 && (I < IntArgRegs.size()); 3874 Size -= RegSizeInBytes, ++I, ++NumRegs) 3875 State->AllocateReg(IntArgRegs[I], ShadowRegs[I]); 3876 } 3877 3878 State->addInRegsParamInfo(FirstReg, FirstReg + NumRegs); 3879 } 3880 3881 MachineBasicBlock * 3882 MipsTargetLowering::emitPseudoSELECT(MachineInstr *MI, MachineBasicBlock *BB, 3883 bool isFPCmp, unsigned Opc) const { 3884 assert(!(Subtarget.hasMips4() || Subtarget.hasMips32()) && 3885 "Subtarget already supports SELECT nodes with the use of" 3886 "conditional-move instructions."); 3887 3888 const TargetInstrInfo *TII = 3889 Subtarget.getInstrInfo(); 3890 DebugLoc DL = MI->getDebugLoc(); 3891 3892 // To "insert" a SELECT instruction, we actually have to insert the 3893 // diamond control-flow pattern. The incoming instruction knows the 3894 // destination vreg to set, the condition code register to branch on, the 3895 // true/false values to select between, and a branch opcode to use. 3896 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 3897 MachineFunction::iterator It = ++BB->getIterator(); 3898 3899 // thisMBB: 3900 // ... 3901 // TrueVal = ... 3902 // setcc r1, r2, r3 3903 // bNE r1, r0, copy1MBB 3904 // fallthrough --> copy0MBB 3905 MachineBasicBlock *thisMBB = BB; 3906 MachineFunction *F = BB->getParent(); 3907 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 3908 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 3909 F->insert(It, copy0MBB); 3910 F->insert(It, sinkMBB); 3911 3912 // Transfer the remainder of BB and its successor edges to sinkMBB. 3913 sinkMBB->splice(sinkMBB->begin(), BB, 3914 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 3915 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 3916 3917 // Next, add the true and fallthrough blocks as its successors. 3918 BB->addSuccessor(copy0MBB); 3919 BB->addSuccessor(sinkMBB); 3920 3921 if (isFPCmp) { 3922 // bc1[tf] cc, sinkMBB 3923 BuildMI(BB, DL, TII->get(Opc)) 3924 .addReg(MI->getOperand(1).getReg()) 3925 .addMBB(sinkMBB); 3926 } else { 3927 // bne rs, $0, sinkMBB 3928 BuildMI(BB, DL, TII->get(Opc)) 3929 .addReg(MI->getOperand(1).getReg()) 3930 .addReg(Mips::ZERO) 3931 .addMBB(sinkMBB); 3932 } 3933 3934 // copy0MBB: 3935 // %FalseValue = ... 3936 // # fallthrough to sinkMBB 3937 BB = copy0MBB; 3938 3939 // Update machine-CFG edges 3940 BB->addSuccessor(sinkMBB); 3941 3942 // sinkMBB: 3943 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ] 3944 // ... 3945 BB = sinkMBB; 3946 3947 BuildMI(*BB, BB->begin(), DL, 3948 TII->get(Mips::PHI), MI->getOperand(0).getReg()) 3949 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB) 3950 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB); 3951 3952 MI->eraseFromParent(); // The pseudo instruction is gone now. 3953 3954 return BB; 3955 } 3956 3957 // FIXME? Maybe this could be a TableGen attribute on some registers and 3958 // this table could be generated automatically from RegInfo. 3959 unsigned MipsTargetLowering::getRegisterByName(const char* RegName, EVT VT, 3960 SelectionDAG &DAG) const { 3961 // Named registers is expected to be fairly rare. For now, just support $28 3962 // since the linux kernel uses it. 3963 if (Subtarget.isGP64bit()) { 3964 unsigned Reg = StringSwitch<unsigned>(RegName) 3965 .Case("$28", Mips::GP_64) 3966 .Default(0); 3967 if (Reg) 3968 return Reg; 3969 } else { 3970 unsigned Reg = StringSwitch<unsigned>(RegName) 3971 .Case("$28", Mips::GP) 3972 .Default(0); 3973 if (Reg) 3974 return Reg; 3975 } 3976 report_fatal_error("Invalid register name global variable"); 3977 } 3978