Home | History | Annotate | Download | only in CodeGen
      1 //===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file declares the SDNode class and derived classes, which are used to
     11 // represent the nodes and operations present in a SelectionDAG.  These nodes
     12 // and operations are machine code level operations, with some similarities to
     13 // the GCC RTL representation.
     14 //
     15 // Clients should include the SelectionDAG.h file instead of this file directly.
     16 //
     17 //===----------------------------------------------------------------------===//
     18 
     19 #ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
     20 #define LLVM_CODEGEN_SELECTIONDAGNODES_H
     21 
     22 #include "llvm/ADT/BitVector.h"
     23 #include "llvm/ADT/FoldingSet.h"
     24 #include "llvm/ADT/GraphTraits.h"
     25 #include "llvm/ADT/STLExtras.h"
     26 #include "llvm/ADT/SmallPtrSet.h"
     27 #include "llvm/ADT/SmallVector.h"
     28 #include "llvm/ADT/ilist_node.h"
     29 #include "llvm/ADT/iterator_range.h"
     30 #include "llvm/CodeGen/ISDOpcodes.h"
     31 #include "llvm/CodeGen/MachineMemOperand.h"
     32 #include "llvm/CodeGen/ValueTypes.h"
     33 #include "llvm/IR/Constants.h"
     34 #include "llvm/IR/DebugLoc.h"
     35 #include "llvm/IR/Instructions.h"
     36 #include "llvm/Support/DataTypes.h"
     37 #include "llvm/Support/MathExtras.h"
     38 #include <cassert>
     39 
     40 namespace llvm {
     41 
     42 class SelectionDAG;
     43 class GlobalValue;
     44 class MachineBasicBlock;
     45 class MachineConstantPoolValue;
     46 class SDNode;
     47 class BinaryWithFlagsSDNode;
     48 class Value;
     49 class MCSymbol;
     50 template <typename T> struct DenseMapInfo;
     51 template <typename T> struct simplify_type;
     52 template <typename T> struct ilist_traits;
     53 
     54 void checkForCycles(const SDNode *N, const SelectionDAG *DAG = nullptr,
     55                     bool force = false);
     56 
     57 /// This represents a list of ValueType's that has been intern'd by
     58 /// a SelectionDAG.  Instances of this simple value class are returned by
     59 /// SelectionDAG::getVTList(...).
     60 ///
     61 struct SDVTList {
     62   const EVT *VTs;
     63   unsigned int NumVTs;
     64 };
     65 
     66 namespace ISD {
     67   /// Node predicates
     68 
     69   /// Return true if the specified node is a
     70   /// BUILD_VECTOR where all of the elements are ~0 or undef.
     71   bool isBuildVectorAllOnes(const SDNode *N);
     72 
     73   /// Return true if the specified node is a
     74   /// BUILD_VECTOR where all of the elements are 0 or undef.
     75   bool isBuildVectorAllZeros(const SDNode *N);
     76 
     77   /// \brief Return true if the specified node is a BUILD_VECTOR node of
     78   /// all ConstantSDNode or undef.
     79   bool isBuildVectorOfConstantSDNodes(const SDNode *N);
     80 
     81   /// \brief Return true if the specified node is a BUILD_VECTOR node of
     82   /// all ConstantFPSDNode or undef.
     83   bool isBuildVectorOfConstantFPSDNodes(const SDNode *N);
     84 
     85   /// Return true if the node has at least one operand
     86   /// and all operands of the specified node are ISD::UNDEF.
     87   bool allOperandsUndef(const SDNode *N);
     88 }  // end llvm:ISD namespace
     89 
     90 //===----------------------------------------------------------------------===//
     91 /// Unlike LLVM values, Selection DAG nodes may return multiple
     92 /// values as the result of a computation.  Many nodes return multiple values,
     93 /// from loads (which define a token and a return value) to ADDC (which returns
     94 /// a result and a carry value), to calls (which may return an arbitrary number
     95 /// of values).
     96 ///
     97 /// As such, each use of a SelectionDAG computation must indicate the node that
     98 /// computes it as well as which return value to use from that node.  This pair
     99 /// of information is represented with the SDValue value type.
    100 ///
    101 class SDValue {
    102   friend struct DenseMapInfo<SDValue>;
    103 
    104   SDNode *Node;       // The node defining the value we are using.
    105   unsigned ResNo;     // Which return value of the node we are using.
    106 public:
    107   SDValue() : Node(nullptr), ResNo(0) {}
    108   SDValue(SDNode *node, unsigned resno);
    109 
    110   /// get the index which selects a specific result in the SDNode
    111   unsigned getResNo() const { return ResNo; }
    112 
    113   /// get the SDNode which holds the desired result
    114   SDNode *getNode() const { return Node; }
    115 
    116   /// set the SDNode
    117   void setNode(SDNode *N) { Node = N; }
    118 
    119   inline SDNode *operator->() const { return Node; }
    120 
    121   bool operator==(const SDValue &O) const {
    122     return Node == O.Node && ResNo == O.ResNo;
    123   }
    124   bool operator!=(const SDValue &O) const {
    125     return !operator==(O);
    126   }
    127   bool operator<(const SDValue &O) const {
    128     return std::tie(Node, ResNo) < std::tie(O.Node, O.ResNo);
    129   }
    130   explicit operator bool() const {
    131     return Node != nullptr;
    132   }
    133 
    134   SDValue getValue(unsigned R) const {
    135     return SDValue(Node, R);
    136   }
    137 
    138   /// Return true if this node is an operand of N.
    139   bool isOperandOf(const SDNode *N) const;
    140 
    141   /// Return the ValueType of the referenced return value.
    142   inline EVT getValueType() const;
    143 
    144   /// Return the simple ValueType of the referenced return value.
    145   MVT getSimpleValueType() const {
    146     return getValueType().getSimpleVT();
    147   }
    148 
    149   /// Returns the size of the value in bits.
    150   unsigned getValueSizeInBits() const {
    151     return getValueType().getSizeInBits();
    152   }
    153 
    154   unsigned getScalarValueSizeInBits() const {
    155     return getValueType().getScalarType().getSizeInBits();
    156   }
    157 
    158   // Forwarding methods - These forward to the corresponding methods in SDNode.
    159   inline unsigned getOpcode() const;
    160   inline unsigned getNumOperands() const;
    161   inline const SDValue &getOperand(unsigned i) const;
    162   inline uint64_t getConstantOperandVal(unsigned i) const;
    163   inline bool isTargetMemoryOpcode() const;
    164   inline bool isTargetOpcode() const;
    165   inline bool isMachineOpcode() const;
    166   inline bool isUndef() const;
    167   inline unsigned getMachineOpcode() const;
    168   inline const DebugLoc &getDebugLoc() const;
    169   inline void dump() const;
    170   inline void dumpr() const;
    171 
    172   /// Return true if this operand (which must be a chain) reaches the
    173   /// specified operand without crossing any side-effecting instructions.
    174   /// In practice, this looks through token factors and non-volatile loads.
    175   /// In order to remain efficient, this only
    176   /// looks a couple of nodes in, it does not do an exhaustive search.
    177   bool reachesChainWithoutSideEffects(SDValue Dest,
    178                                       unsigned Depth = 2) const;
    179 
    180   /// Return true if there are no nodes using value ResNo of Node.
    181   inline bool use_empty() const;
    182 
    183   /// Return true if there is exactly one node using value ResNo of Node.
    184   inline bool hasOneUse() const;
    185 };
    186 
    187 
    188 template<> struct DenseMapInfo<SDValue> {
    189   static inline SDValue getEmptyKey() {
    190     SDValue V;
    191     V.ResNo = -1U;
    192     return V;
    193   }
    194   static inline SDValue getTombstoneKey() {
    195     SDValue V;
    196     V.ResNo = -2U;
    197     return V;
    198   }
    199   static unsigned getHashValue(const SDValue &Val) {
    200     return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
    201             (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
    202   }
    203   static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
    204     return LHS == RHS;
    205   }
    206 };
    207 template <> struct isPodLike<SDValue> { static const bool value = true; };
    208 
    209 
    210 /// Allow casting operators to work directly on
    211 /// SDValues as if they were SDNode*'s.
    212 template<> struct simplify_type<SDValue> {
    213   typedef SDNode* SimpleType;
    214   static SimpleType getSimplifiedValue(SDValue &Val) {
    215     return Val.getNode();
    216   }
    217 };
    218 template<> struct simplify_type<const SDValue> {
    219   typedef /*const*/ SDNode* SimpleType;
    220   static SimpleType getSimplifiedValue(const SDValue &Val) {
    221     return Val.getNode();
    222   }
    223 };
    224 
    225 /// Represents a use of a SDNode. This class holds an SDValue,
    226 /// which records the SDNode being used and the result number, a
    227 /// pointer to the SDNode using the value, and Next and Prev pointers,
    228 /// which link together all the uses of an SDNode.
    229 ///
    230 class SDUse {
    231   /// Val - The value being used.
    232   SDValue Val;
    233   /// User - The user of this value.
    234   SDNode *User;
    235   /// Prev, Next - Pointers to the uses list of the SDNode referred by
    236   /// this operand.
    237   SDUse **Prev, *Next;
    238 
    239   SDUse(const SDUse &U) = delete;
    240   void operator=(const SDUse &U) = delete;
    241 
    242 public:
    243   SDUse() : Val(), User(nullptr), Prev(nullptr), Next(nullptr) {}
    244 
    245   /// Normally SDUse will just implicitly convert to an SDValue that it holds.
    246   operator const SDValue&() const { return Val; }
    247 
    248   /// If implicit conversion to SDValue doesn't work, the get() method returns
    249   /// the SDValue.
    250   const SDValue &get() const { return Val; }
    251 
    252   /// This returns the SDNode that contains this Use.
    253   SDNode *getUser() { return User; }
    254 
    255   /// Get the next SDUse in the use list.
    256   SDUse *getNext() const { return Next; }
    257 
    258   /// Convenience function for get().getNode().
    259   SDNode *getNode() const { return Val.getNode(); }
    260   /// Convenience function for get().getResNo().
    261   unsigned getResNo() const { return Val.getResNo(); }
    262   /// Convenience function for get().getValueType().
    263   EVT getValueType() const { return Val.getValueType(); }
    264 
    265   /// Convenience function for get().operator==
    266   bool operator==(const SDValue &V) const {
    267     return Val == V;
    268   }
    269 
    270   /// Convenience function for get().operator!=
    271   bool operator!=(const SDValue &V) const {
    272     return Val != V;
    273   }
    274 
    275   /// Convenience function for get().operator<
    276   bool operator<(const SDValue &V) const {
    277     return Val < V;
    278   }
    279 
    280 private:
    281   friend class SelectionDAG;
    282   friend class SDNode;
    283 
    284   void setUser(SDNode *p) { User = p; }
    285 
    286   /// Remove this use from its existing use list, assign it the
    287   /// given value, and add it to the new value's node's use list.
    288   inline void set(const SDValue &V);
    289   /// Like set, but only supports initializing a newly-allocated
    290   /// SDUse with a non-null value.
    291   inline void setInitial(const SDValue &V);
    292   /// Like set, but only sets the Node portion of the value,
    293   /// leaving the ResNo portion unmodified.
    294   inline void setNode(SDNode *N);
    295 
    296   void addToList(SDUse **List) {
    297     Next = *List;
    298     if (Next) Next->Prev = &Next;
    299     Prev = List;
    300     *List = this;
    301   }
    302 
    303   void removeFromList() {
    304     *Prev = Next;
    305     if (Next) Next->Prev = Prev;
    306   }
    307 };
    308 
    309 /// simplify_type specializations - Allow casting operators to work directly on
    310 /// SDValues as if they were SDNode*'s.
    311 template<> struct simplify_type<SDUse> {
    312   typedef SDNode* SimpleType;
    313   static SimpleType getSimplifiedValue(SDUse &Val) {
    314     return Val.getNode();
    315   }
    316 };
    317 
    318 /// These are IR-level optimization flags that may be propagated to SDNodes.
    319 /// TODO: This data structure should be shared by the IR optimizer and the
    320 /// the backend.
    321 struct SDNodeFlags {
    322 private:
    323   bool NoUnsignedWrap : 1;
    324   bool NoSignedWrap : 1;
    325   bool Exact : 1;
    326   bool UnsafeAlgebra : 1;
    327   bool NoNaNs : 1;
    328   bool NoInfs : 1;
    329   bool NoSignedZeros : 1;
    330   bool AllowReciprocal : 1;
    331 
    332 public:
    333   /// Default constructor turns off all optimization flags.
    334   SDNodeFlags() {
    335     NoUnsignedWrap = false;
    336     NoSignedWrap = false;
    337     Exact = false;
    338     UnsafeAlgebra = false;
    339     NoNaNs = false;
    340     NoInfs = false;
    341     NoSignedZeros = false;
    342     AllowReciprocal = false;
    343   }
    344 
    345   // These are mutators for each flag.
    346   void setNoUnsignedWrap(bool b) { NoUnsignedWrap = b; }
    347   void setNoSignedWrap(bool b) { NoSignedWrap = b; }
    348   void setExact(bool b) { Exact = b; }
    349   void setUnsafeAlgebra(bool b) { UnsafeAlgebra = b; }
    350   void setNoNaNs(bool b) { NoNaNs = b; }
    351   void setNoInfs(bool b) { NoInfs = b; }
    352   void setNoSignedZeros(bool b) { NoSignedZeros = b; }
    353   void setAllowReciprocal(bool b) { AllowReciprocal = b; }
    354 
    355   // These are accessors for each flag.
    356   bool hasNoUnsignedWrap() const { return NoUnsignedWrap; }
    357   bool hasNoSignedWrap() const { return NoSignedWrap; }
    358   bool hasExact() const { return Exact; }
    359   bool hasUnsafeAlgebra() const { return UnsafeAlgebra; }
    360   bool hasNoNaNs() const { return NoNaNs; }
    361   bool hasNoInfs() const { return NoInfs; }
    362   bool hasNoSignedZeros() const { return NoSignedZeros; }
    363   bool hasAllowReciprocal() const { return AllowReciprocal; }
    364 
    365   /// Return a raw encoding of the flags.
    366   /// This function should only be used to add data to the NodeID value.
    367   unsigned getRawFlags() const {
    368     return (NoUnsignedWrap << 0) | (NoSignedWrap << 1) | (Exact << 2) |
    369     (UnsafeAlgebra << 3) | (NoNaNs << 4) | (NoInfs << 5) |
    370     (NoSignedZeros << 6) | (AllowReciprocal << 7);
    371   }
    372 };
    373 
    374 /// Represents one node in the SelectionDAG.
    375 ///
    376 class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
    377 private:
    378   /// The operation that this node performs.
    379   int16_t NodeType;
    380 
    381   /// This is true if OperandList was new[]'d.  If true,
    382   /// then they will be delete[]'d when the node is destroyed.
    383   uint16_t OperandsNeedDelete : 1;
    384 
    385   /// This tracks whether this node has one or more dbg_value
    386   /// nodes corresponding to it.
    387   uint16_t HasDebugValue : 1;
    388 
    389 protected:
    390   /// This member is defined by this class, but is not used for
    391   /// anything.  Subclasses can use it to hold whatever state they find useful.
    392   /// This field is initialized to zero by the ctor.
    393   uint16_t SubclassData : 14;
    394 
    395 private:
    396   /// Unique id per SDNode in the DAG.
    397   int NodeId;
    398 
    399   /// The values that are used by this operation.
    400   SDUse *OperandList;
    401 
    402   /// The types of the values this node defines.  SDNode's may
    403   /// define multiple values simultaneously.
    404   const EVT *ValueList;
    405 
    406   /// List of uses for this SDNode.
    407   SDUse *UseList;
    408 
    409   /// The number of entries in the Operand/Value list.
    410   unsigned short NumOperands, NumValues;
    411 
    412   // The ordering of the SDNodes. It roughly corresponds to the ordering of the
    413   // original LLVM instructions.
    414   // This is used for turning off scheduling, because we'll forgo
    415   // the normal scheduling algorithms and output the instructions according to
    416   // this ordering.
    417   unsigned IROrder;
    418 
    419   /// Source line information.
    420   DebugLoc debugLoc;
    421 
    422   /// Return a pointer to the specified value type.
    423   static const EVT *getValueTypeList(EVT VT);
    424 
    425   friend class SelectionDAG;
    426   friend struct ilist_traits<SDNode>;
    427 
    428 public:
    429   /// Unique and persistent id per SDNode in the DAG.
    430   /// Used for debug printing.
    431   uint16_t PersistentId;
    432 
    433   //===--------------------------------------------------------------------===//
    434   //  Accessors
    435   //
    436 
    437   /// Return the SelectionDAG opcode value for this node. For
    438   /// pre-isel nodes (those for which isMachineOpcode returns false), these
    439   /// are the opcode values in the ISD and <target>ISD namespaces. For
    440   /// post-isel opcodes, see getMachineOpcode.
    441   unsigned getOpcode()  const { return (unsigned short)NodeType; }
    442 
    443   /// Test if this node has a target-specific opcode (in the
    444   /// \<target\>ISD namespace).
    445   bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
    446 
    447   /// Test if this node has a target-specific
    448   /// memory-referencing opcode (in the \<target\>ISD namespace and
    449   /// greater than FIRST_TARGET_MEMORY_OPCODE).
    450   bool isTargetMemoryOpcode() const {
    451     return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE;
    452   }
    453 
    454   /// Return true if the type of the node type undefined.
    455   bool isUndef() const { return NodeType == ISD::UNDEF; }
    456 
    457   /// Test if this node is a memory intrinsic (with valid pointer information).
    458   /// INTRINSIC_W_CHAIN and INTRINSIC_VOID nodes are sometimes created for
    459   /// non-memory intrinsics (with chains) that are not really instances of
    460   /// MemSDNode. For such nodes, we need some extra state to determine the
    461   /// proper classof relationship.
    462   bool isMemIntrinsic() const {
    463     return (NodeType == ISD::INTRINSIC_W_CHAIN ||
    464             NodeType == ISD::INTRINSIC_VOID) && ((SubclassData >> 13) & 1);
    465   }
    466 
    467   /// Test if this node has a post-isel opcode, directly
    468   /// corresponding to a MachineInstr opcode.
    469   bool isMachineOpcode() const { return NodeType < 0; }
    470 
    471   /// This may only be called if isMachineOpcode returns
    472   /// true. It returns the MachineInstr opcode value that the node's opcode
    473   /// corresponds to.
    474   unsigned getMachineOpcode() const {
    475     assert(isMachineOpcode() && "Not a MachineInstr opcode!");
    476     return ~NodeType;
    477   }
    478 
    479   /// Get this bit.
    480   bool getHasDebugValue() const { return HasDebugValue; }
    481 
    482   /// Set this bit.
    483   void setHasDebugValue(bool b) { HasDebugValue = b; }
    484 
    485   /// Return true if there are no uses of this node.
    486   bool use_empty() const { return UseList == nullptr; }
    487 
    488   /// Return true if there is exactly one use of this node.
    489   bool hasOneUse() const {
    490     return !use_empty() && std::next(use_begin()) == use_end();
    491   }
    492 
    493   /// Return the number of uses of this node. This method takes
    494   /// time proportional to the number of uses.
    495   size_t use_size() const { return std::distance(use_begin(), use_end()); }
    496 
    497   /// Return the unique node id.
    498   int getNodeId() const { return NodeId; }
    499 
    500   /// Set unique node id.
    501   void setNodeId(int Id) { NodeId = Id; }
    502 
    503   /// Return the node ordering.
    504   unsigned getIROrder() const { return IROrder; }
    505 
    506   /// Set the node ordering.
    507   void setIROrder(unsigned Order) { IROrder = Order; }
    508 
    509   /// Return the source location info.
    510   const DebugLoc &getDebugLoc() const { return debugLoc; }
    511 
    512   /// Set source location info.  Try to avoid this, putting
    513   /// it in the constructor is preferable.
    514   void setDebugLoc(DebugLoc dl) { debugLoc = std::move(dl); }
    515 
    516   /// This class provides iterator support for SDUse
    517   /// operands that use a specific SDNode.
    518   class use_iterator
    519     : public std::iterator<std::forward_iterator_tag, SDUse, ptrdiff_t> {
    520     SDUse *Op;
    521     explicit use_iterator(SDUse *op) : Op(op) {
    522     }
    523     friend class SDNode;
    524   public:
    525     typedef std::iterator<std::forward_iterator_tag,
    526                           SDUse, ptrdiff_t>::reference reference;
    527     typedef std::iterator<std::forward_iterator_tag,
    528                           SDUse, ptrdiff_t>::pointer pointer;
    529 
    530     use_iterator(const use_iterator &I) : Op(I.Op) {}
    531     use_iterator() : Op(nullptr) {}
    532 
    533     bool operator==(const use_iterator &x) const {
    534       return Op == x.Op;
    535     }
    536     bool operator!=(const use_iterator &x) const {
    537       return !operator==(x);
    538     }
    539 
    540     /// Return true if this iterator is at the end of uses list.
    541     bool atEnd() const { return Op == nullptr; }
    542 
    543     // Iterator traversal: forward iteration only.
    544     use_iterator &operator++() {          // Preincrement
    545       assert(Op && "Cannot increment end iterator!");
    546       Op = Op->getNext();
    547       return *this;
    548     }
    549 
    550     use_iterator operator++(int) {        // Postincrement
    551       use_iterator tmp = *this; ++*this; return tmp;
    552     }
    553 
    554     /// Retrieve a pointer to the current user node.
    555     SDNode *operator*() const {
    556       assert(Op && "Cannot dereference end iterator!");
    557       return Op->getUser();
    558     }
    559 
    560     SDNode *operator->() const { return operator*(); }
    561 
    562     SDUse &getUse() const { return *Op; }
    563 
    564     /// Retrieve the operand # of this use in its user.
    565     unsigned getOperandNo() const {
    566       assert(Op && "Cannot dereference end iterator!");
    567       return (unsigned)(Op - Op->getUser()->OperandList);
    568     }
    569   };
    570 
    571   /// Provide iteration support to walk over all uses of an SDNode.
    572   use_iterator use_begin() const {
    573     return use_iterator(UseList);
    574   }
    575 
    576   static use_iterator use_end() { return use_iterator(nullptr); }
    577 
    578   inline iterator_range<use_iterator> uses() {
    579     return make_range(use_begin(), use_end());
    580   }
    581   inline iterator_range<use_iterator> uses() const {
    582     return make_range(use_begin(), use_end());
    583   }
    584 
    585   /// Return true if there are exactly NUSES uses of the indicated value.
    586   /// This method ignores uses of other values defined by this operation.
    587   bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
    588 
    589   /// Return true if there are any use of the indicated value.
    590   /// This method ignores uses of other values defined by this operation.
    591   bool hasAnyUseOfValue(unsigned Value) const;
    592 
    593   /// Return true if this node is the only use of N.
    594   bool isOnlyUserOf(const SDNode *N) const;
    595 
    596   /// Return true if this node is an operand of N.
    597   bool isOperandOf(const SDNode *N) const;
    598 
    599   /// Return true if this node is a predecessor of N.
    600   /// NOTE: Implemented on top of hasPredecessor and every bit as
    601   /// expensive. Use carefully.
    602   bool isPredecessorOf(const SDNode *N) const {
    603     return N->hasPredecessor(this);
    604   }
    605 
    606   /// Return true if N is a predecessor of this node.
    607   /// N is either an operand of this node, or can be reached by recursively
    608   /// traversing up the operands.
    609   /// NOTE: This is an expensive method. Use it carefully.
    610   bool hasPredecessor(const SDNode *N) const;
    611 
    612   /// Return true if N is a predecessor of this node.
    613   /// N is either an operand of this node, or can be reached by recursively
    614   /// traversing up the operands.
    615   /// In this helper the Visited and worklist sets are held externally to
    616   /// cache predecessors over multiple invocations. If you want to test for
    617   /// multiple predecessors this method is preferable to multiple calls to
    618   /// hasPredecessor. Be sure to clear Visited and Worklist if the DAG
    619   /// changes.
    620   /// NOTE: This is still very expensive. Use carefully.
    621   bool hasPredecessorHelper(const SDNode *N,
    622                             SmallPtrSetImpl<const SDNode *> &Visited,
    623                             SmallVectorImpl<const SDNode *> &Worklist) const;
    624 
    625   /// Return the number of values used by this operation.
    626   unsigned getNumOperands() const { return NumOperands; }
    627 
    628   /// Helper method returns the integer value of a ConstantSDNode operand.
    629   uint64_t getConstantOperandVal(unsigned Num) const;
    630 
    631   const SDValue &getOperand(unsigned Num) const {
    632     assert(Num < NumOperands && "Invalid child # of SDNode!");
    633     return OperandList[Num];
    634   }
    635 
    636   typedef SDUse* op_iterator;
    637   op_iterator op_begin() const { return OperandList; }
    638   op_iterator op_end() const { return OperandList+NumOperands; }
    639   ArrayRef<SDUse> ops() const { return makeArrayRef(op_begin(), op_end()); }
    640 
    641   /// Iterator for directly iterating over the operand SDValue's.
    642   struct value_op_iterator
    643       : iterator_adaptor_base<value_op_iterator, op_iterator,
    644                               std::random_access_iterator_tag, SDValue,
    645                               ptrdiff_t, value_op_iterator *,
    646                               value_op_iterator *> {
    647     explicit value_op_iterator(SDUse *U = nullptr)
    648       : iterator_adaptor_base(U) {}
    649 
    650     const SDValue &operator*() const { return I->get(); }
    651   };
    652 
    653   iterator_range<value_op_iterator> op_values() const {
    654     return make_range(value_op_iterator(op_begin()),
    655                       value_op_iterator(op_end()));
    656   }
    657 
    658   SDVTList getVTList() const {
    659     SDVTList X = { ValueList, NumValues };
    660     return X;
    661   }
    662 
    663   /// If this node has a glue operand, return the node
    664   /// to which the glue operand points. Otherwise return NULL.
    665   SDNode *getGluedNode() const {
    666     if (getNumOperands() != 0 &&
    667         getOperand(getNumOperands()-1).getValueType() == MVT::Glue)
    668       return getOperand(getNumOperands()-1).getNode();
    669     return nullptr;
    670   }
    671 
    672   /// If this node has a glue value with a user, return
    673   /// the user (there is at most one). Otherwise return NULL.
    674   SDNode *getGluedUser() const {
    675     for (use_iterator UI = use_begin(), UE = use_end(); UI != UE; ++UI)
    676       if (UI.getUse().get().getValueType() == MVT::Glue)
    677         return *UI;
    678     return nullptr;
    679   }
    680 
    681   /// This could be defined as a virtual function and implemented more simply
    682   /// and directly, but it is not to avoid creating a vtable for this class.
    683   const SDNodeFlags *getFlags() const;
    684 
    685   /// Return the number of values defined/returned by this operator.
    686   unsigned getNumValues() const { return NumValues; }
    687 
    688   /// Return the type of a specified result.
    689   EVT getValueType(unsigned ResNo) const {
    690     assert(ResNo < NumValues && "Illegal result number!");
    691     return ValueList[ResNo];
    692   }
    693 
    694   /// Return the type of a specified result as a simple type.
    695   MVT getSimpleValueType(unsigned ResNo) const {
    696     return getValueType(ResNo).getSimpleVT();
    697   }
    698 
    699   /// Returns MVT::getSizeInBits(getValueType(ResNo)).
    700   unsigned getValueSizeInBits(unsigned ResNo) const {
    701     return getValueType(ResNo).getSizeInBits();
    702   }
    703 
    704   typedef const EVT* value_iterator;
    705   value_iterator value_begin() const { return ValueList; }
    706   value_iterator value_end() const { return ValueList+NumValues; }
    707 
    708   /// Return the opcode of this operation for printing.
    709   std::string getOperationName(const SelectionDAG *G = nullptr) const;
    710   static const char* getIndexedModeName(ISD::MemIndexedMode AM);
    711   void print_types(raw_ostream &OS, const SelectionDAG *G) const;
    712   void print_details(raw_ostream &OS, const SelectionDAG *G) const;
    713   void print(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
    714   void printr(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
    715 
    716   /// Print a SelectionDAG node and all children down to
    717   /// the leaves.  The given SelectionDAG allows target-specific nodes
    718   /// to be printed in human-readable form.  Unlike printr, this will
    719   /// print the whole DAG, including children that appear multiple
    720   /// times.
    721   ///
    722   void printrFull(raw_ostream &O, const SelectionDAG *G = nullptr) const;
    723 
    724   /// Print a SelectionDAG node and children up to
    725   /// depth "depth."  The given SelectionDAG allows target-specific
    726   /// nodes to be printed in human-readable form.  Unlike printr, this
    727   /// will print children that appear multiple times wherever they are
    728   /// used.
    729   ///
    730   void printrWithDepth(raw_ostream &O, const SelectionDAG *G = nullptr,
    731                        unsigned depth = 100) const;
    732 
    733 
    734   /// Dump this node, for debugging.
    735   void dump() const;
    736 
    737   /// Dump (recursively) this node and its use-def subgraph.
    738   void dumpr() const;
    739 
    740   /// Dump this node, for debugging.
    741   /// The given SelectionDAG allows target-specific nodes to be printed
    742   /// in human-readable form.
    743   void dump(const SelectionDAG *G) const;
    744 
    745   /// Dump (recursively) this node and its use-def subgraph.
    746   /// The given SelectionDAG allows target-specific nodes to be printed
    747   /// in human-readable form.
    748   void dumpr(const SelectionDAG *G) const;
    749 
    750   /// printrFull to dbgs().  The given SelectionDAG allows
    751   /// target-specific nodes to be printed in human-readable form.
    752   /// Unlike dumpr, this will print the whole DAG, including children
    753   /// that appear multiple times.
    754   void dumprFull(const SelectionDAG *G = nullptr) const;
    755 
    756   /// printrWithDepth to dbgs().  The given
    757   /// SelectionDAG allows target-specific nodes to be printed in
    758   /// human-readable form.  Unlike dumpr, this will print children
    759   /// that appear multiple times wherever they are used.
    760   ///
    761   void dumprWithDepth(const SelectionDAG *G = nullptr,
    762                       unsigned depth = 100) const;
    763 
    764   /// Gather unique data for the node.
    765   void Profile(FoldingSetNodeID &ID) const;
    766 
    767   /// This method should only be used by the SDUse class.
    768   void addUse(SDUse &U) { U.addToList(&UseList); }
    769 
    770 protected:
    771   static SDVTList getSDVTList(EVT VT) {
    772     SDVTList Ret = { getValueTypeList(VT), 1 };
    773     return Ret;
    774   }
    775 
    776   SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
    777          ArrayRef<SDValue> Ops)
    778       : NodeType(Opc), OperandsNeedDelete(true), HasDebugValue(false),
    779         SubclassData(0), NodeId(-1),
    780         OperandList(Ops.size() ? new SDUse[Ops.size()] : nullptr),
    781         ValueList(VTs.VTs), UseList(nullptr), NumOperands(Ops.size()),
    782         NumValues(VTs.NumVTs), IROrder(Order), debugLoc(std::move(dl)) {
    783     assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
    784     assert(NumOperands == Ops.size() &&
    785            "NumOperands wasn't wide enough for its operands!");
    786     assert(NumValues == VTs.NumVTs &&
    787            "NumValues wasn't wide enough for its operands!");
    788     for (unsigned i = 0; i != Ops.size(); ++i) {
    789       assert(OperandList && "no operands available");
    790       OperandList[i].setUser(this);
    791       OperandList[i].setInitial(Ops[i]);
    792     }
    793     checkForCycles(this);
    794   }
    795 
    796   /// This constructor adds no operands itself; operands can be
    797   /// set later with InitOperands.
    798   SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
    799       : NodeType(Opc), OperandsNeedDelete(false), HasDebugValue(false),
    800         SubclassData(0), NodeId(-1), OperandList(nullptr), ValueList(VTs.VTs),
    801         UseList(nullptr), NumOperands(0), NumValues(VTs.NumVTs),
    802         IROrder(Order), debugLoc(std::move(dl)) {
    803     assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
    804     assert(NumValues == VTs.NumVTs &&
    805            "NumValues wasn't wide enough for its operands!");
    806   }
    807 
    808   /// Initialize the operands list of this with 1 operand.
    809   void InitOperands(SDUse *Ops, const SDValue &Op0) {
    810     Ops[0].setUser(this);
    811     Ops[0].setInitial(Op0);
    812     NumOperands = 1;
    813     OperandList = Ops;
    814     checkForCycles(this);
    815   }
    816 
    817   /// Initialize the operands list of this with 2 operands.
    818   void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1) {
    819     Ops[0].setUser(this);
    820     Ops[0].setInitial(Op0);
    821     Ops[1].setUser(this);
    822     Ops[1].setInitial(Op1);
    823     NumOperands = 2;
    824     OperandList = Ops;
    825     checkForCycles(this);
    826   }
    827 
    828   /// Initialize the operands list of this with 3 operands.
    829   void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
    830                     const SDValue &Op2) {
    831     Ops[0].setUser(this);
    832     Ops[0].setInitial(Op0);
    833     Ops[1].setUser(this);
    834     Ops[1].setInitial(Op1);
    835     Ops[2].setUser(this);
    836     Ops[2].setInitial(Op2);
    837     NumOperands = 3;
    838     OperandList = Ops;
    839     checkForCycles(this);
    840   }
    841 
    842   /// Initialize the operands list of this with 4 operands.
    843   void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
    844                     const SDValue &Op2, const SDValue &Op3) {
    845     Ops[0].setUser(this);
    846     Ops[0].setInitial(Op0);
    847     Ops[1].setUser(this);
    848     Ops[1].setInitial(Op1);
    849     Ops[2].setUser(this);
    850     Ops[2].setInitial(Op2);
    851     Ops[3].setUser(this);
    852     Ops[3].setInitial(Op3);
    853     NumOperands = 4;
    854     OperandList = Ops;
    855     checkForCycles(this);
    856   }
    857 
    858   /// Initialize the operands list of this with N operands.
    859   void InitOperands(SDUse *Ops, const SDValue *Vals, unsigned N) {
    860     for (unsigned i = 0; i != N; ++i) {
    861       Ops[i].setUser(this);
    862       Ops[i].setInitial(Vals[i]);
    863     }
    864     NumOperands = N;
    865     assert(NumOperands == N &&
    866            "NumOperands wasn't wide enough for its operands!");
    867     OperandList = Ops;
    868     checkForCycles(this);
    869   }
    870 
    871   /// Release the operands and set this node to have zero operands.
    872   void DropOperands();
    873 };
    874 
    875 /// Wrapper class for IR location info (IR ordering and DebugLoc) to be passed
    876 /// into SDNode creation functions.
    877 /// When an SDNode is created from the DAGBuilder, the DebugLoc is extracted
    878 /// from the original Instruction, and IROrder is the ordinal position of
    879 /// the instruction.
    880 /// When an SDNode is created after the DAG is being built, both DebugLoc and
    881 /// the IROrder are propagated from the original SDNode.
    882 /// So SDLoc class provides two constructors besides the default one, one to
    883 /// be used by the DAGBuilder, the other to be used by others.
    884 class SDLoc {
    885 private:
    886   // Ptr could be used for either Instruction* or SDNode*. It is used for
    887   // Instruction* if IROrder is not -1.
    888   const void *Ptr;
    889   int IROrder;
    890 
    891 public:
    892   SDLoc() : Ptr(nullptr), IROrder(0) {}
    893   SDLoc(const SDNode *N) : Ptr(N), IROrder(-1) {
    894     assert(N && "null SDNode");
    895   }
    896   SDLoc(const SDValue V) : Ptr(V.getNode()), IROrder(-1) {
    897     assert(Ptr && "null SDNode");
    898   }
    899   SDLoc(const Instruction *I, int Order) : Ptr(I), IROrder(Order) {
    900     assert(Order >= 0 && "bad IROrder");
    901   }
    902   unsigned getIROrder() {
    903     if (IROrder >= 0 || Ptr == nullptr) {
    904       return (unsigned)IROrder;
    905     }
    906     const SDNode *N = (const SDNode*)(Ptr);
    907     return N->getIROrder();
    908   }
    909   DebugLoc getDebugLoc() {
    910     if (!Ptr) {
    911       return DebugLoc();
    912     }
    913     if (IROrder >= 0) {
    914       const Instruction *I = (const Instruction*)(Ptr);
    915       return I->getDebugLoc();
    916     }
    917     const SDNode *N = (const SDNode*)(Ptr);
    918     return N->getDebugLoc();
    919   }
    920 };
    921 
    922 
    923 // Define inline functions from the SDValue class.
    924 
    925 inline SDValue::SDValue(SDNode *node, unsigned resno)
    926     : Node(node), ResNo(resno) {
    927   assert((!Node || ResNo < Node->getNumValues()) &&
    928          "Invalid result number for the given node!");
    929   assert(ResNo < -2U && "Cannot use result numbers reserved for DenseMaps.");
    930 }
    931 
    932 inline unsigned SDValue::getOpcode() const {
    933   return Node->getOpcode();
    934 }
    935 inline EVT SDValue::getValueType() const {
    936   return Node->getValueType(ResNo);
    937 }
    938 inline unsigned SDValue::getNumOperands() const {
    939   return Node->getNumOperands();
    940 }
    941 inline const SDValue &SDValue::getOperand(unsigned i) const {
    942   return Node->getOperand(i);
    943 }
    944 inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
    945   return Node->getConstantOperandVal(i);
    946 }
    947 inline bool SDValue::isTargetOpcode() const {
    948   return Node->isTargetOpcode();
    949 }
    950 inline bool SDValue::isTargetMemoryOpcode() const {
    951   return Node->isTargetMemoryOpcode();
    952 }
    953 inline bool SDValue::isMachineOpcode() const {
    954   return Node->isMachineOpcode();
    955 }
    956 inline unsigned SDValue::getMachineOpcode() const {
    957   return Node->getMachineOpcode();
    958 }
    959 inline bool SDValue::isUndef() const {
    960   return Node->isUndef();
    961 }
    962 inline bool SDValue::use_empty() const {
    963   return !Node->hasAnyUseOfValue(ResNo);
    964 }
    965 inline bool SDValue::hasOneUse() const {
    966   return Node->hasNUsesOfValue(1, ResNo);
    967 }
    968 inline const DebugLoc &SDValue::getDebugLoc() const {
    969   return Node->getDebugLoc();
    970 }
    971 inline void SDValue::dump() const {
    972   return Node->dump();
    973 }
    974 inline void SDValue::dumpr() const {
    975   return Node->dumpr();
    976 }
    977 // Define inline functions from the SDUse class.
    978 
    979 inline void SDUse::set(const SDValue &V) {
    980   if (Val.getNode()) removeFromList();
    981   Val = V;
    982   if (V.getNode()) V.getNode()->addUse(*this);
    983 }
    984 
    985 inline void SDUse::setInitial(const SDValue &V) {
    986   Val = V;
    987   V.getNode()->addUse(*this);
    988 }
    989 
    990 inline void SDUse::setNode(SDNode *N) {
    991   if (Val.getNode()) removeFromList();
    992   Val.setNode(N);
    993   if (N) N->addUse(*this);
    994 }
    995 
    996 /// This class is used for single-operand SDNodes.  This is solely
    997 /// to allow co-allocation of node operands with the node itself.
    998 class UnarySDNode : public SDNode {
    999   SDUse Op;
   1000 public:
   1001   UnarySDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
   1002               SDValue X)
   1003     : SDNode(Opc, Order, dl, VTs) {
   1004     InitOperands(&Op, X);
   1005   }
   1006 };
   1007 
   1008 /// This class is used for two-operand SDNodes.  This is solely
   1009 /// to allow co-allocation of node operands with the node itself.
   1010 class BinarySDNode : public SDNode {
   1011   SDUse Ops[2];
   1012 public:
   1013   BinarySDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
   1014                SDValue X, SDValue Y)
   1015     : SDNode(Opc, Order, dl, VTs) {
   1016     InitOperands(Ops, X, Y);
   1017   }
   1018 };
   1019 
   1020 /// Returns true if the opcode is a binary operation with flags.
   1021 static bool isBinOpWithFlags(unsigned Opcode) {
   1022   switch (Opcode) {
   1023   case ISD::SDIV:
   1024   case ISD::UDIV:
   1025   case ISD::SRA:
   1026   case ISD::SRL:
   1027   case ISD::MUL:
   1028   case ISD::ADD:
   1029   case ISD::SUB:
   1030   case ISD::SHL:
   1031   case ISD::FADD:
   1032   case ISD::FDIV:
   1033   case ISD::FMUL:
   1034   case ISD::FREM:
   1035   case ISD::FSUB:
   1036     return true;
   1037   default:
   1038     return false;
   1039   }
   1040 }
   1041 
   1042 /// This class is an extension of BinarySDNode
   1043 /// used from those opcodes that have associated extra flags.
   1044 class BinaryWithFlagsSDNode : public BinarySDNode {
   1045 public:
   1046   SDNodeFlags Flags;
   1047   BinaryWithFlagsSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
   1048                         SDValue X, SDValue Y, const SDNodeFlags &NodeFlags)
   1049       : BinarySDNode(Opc, Order, dl, VTs, X, Y), Flags(NodeFlags) {}
   1050   static bool classof(const SDNode *N) {
   1051     return isBinOpWithFlags(N->getOpcode());
   1052   }
   1053 };
   1054 
   1055 /// This class is used for three-operand SDNodes. This is solely
   1056 /// to allow co-allocation of node operands with the node itself.
   1057 class TernarySDNode : public SDNode {
   1058   SDUse Ops[3];
   1059 public:
   1060   TernarySDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
   1061                 SDValue X, SDValue Y, SDValue Z)
   1062     : SDNode(Opc, Order, dl, VTs) {
   1063     InitOperands(Ops, X, Y, Z);
   1064   }
   1065 };
   1066 
   1067 
   1068 /// This class is used to form a handle around another node that
   1069 /// is persistent and is updated across invocations of replaceAllUsesWith on its
   1070 /// operand.  This node should be directly created by end-users and not added to
   1071 /// the AllNodes list.
   1072 class HandleSDNode : public SDNode {
   1073   SDUse Op;
   1074 public:
   1075   explicit HandleSDNode(SDValue X)
   1076     : SDNode(ISD::HANDLENODE, 0, DebugLoc(), getSDVTList(MVT::Other)) {
   1077     // HandleSDNodes are never inserted into the DAG, so they won't be
   1078     // auto-numbered. Use ID 65535 as a sentinel.
   1079     PersistentId = 0xffff;
   1080     InitOperands(&Op, X);
   1081   }
   1082   ~HandleSDNode();
   1083   const SDValue &getValue() const { return Op; }
   1084 };
   1085 
   1086 class AddrSpaceCastSDNode : public UnarySDNode {
   1087 private:
   1088   unsigned SrcAddrSpace;
   1089   unsigned DestAddrSpace;
   1090 
   1091 public:
   1092   AddrSpaceCastSDNode(unsigned Order, DebugLoc dl, EVT VT, SDValue X,
   1093                       unsigned SrcAS, unsigned DestAS);
   1094 
   1095   unsigned getSrcAddressSpace() const { return SrcAddrSpace; }
   1096   unsigned getDestAddressSpace() const { return DestAddrSpace; }
   1097 
   1098   static bool classof(const SDNode *N) {
   1099     return N->getOpcode() == ISD::ADDRSPACECAST;
   1100   }
   1101 };
   1102 
   1103 /// This is an abstract virtual class for memory operations.
   1104 class MemSDNode : public SDNode {
   1105 private:
   1106   // VT of in-memory value.
   1107   EVT MemoryVT;
   1108 
   1109 protected:
   1110   /// Memory reference information.
   1111   MachineMemOperand *MMO;
   1112 
   1113 public:
   1114   MemSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
   1115             EVT MemoryVT, MachineMemOperand *MMO);
   1116 
   1117   MemSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
   1118             ArrayRef<SDValue> Ops, EVT MemoryVT, MachineMemOperand *MMO);
   1119 
   1120   bool readMem() const { return MMO->isLoad(); }
   1121   bool writeMem() const { return MMO->isStore(); }
   1122 
   1123   /// Returns alignment and volatility of the memory access
   1124   unsigned getOriginalAlignment() const {
   1125     return MMO->getBaseAlignment();
   1126   }
   1127   unsigned getAlignment() const {
   1128     return MMO->getAlignment();
   1129   }
   1130 
   1131   /// Return the SubclassData value, which contains an
   1132   /// encoding of the volatile flag, as well as bits used by subclasses. This
   1133   /// function should only be used to compute a FoldingSetNodeID value.
   1134   unsigned getRawSubclassData() const {
   1135     return SubclassData;
   1136   }
   1137 
   1138   // We access subclass data here so that we can check consistency
   1139   // with MachineMemOperand information.
   1140   bool isVolatile() const { return (SubclassData >> 5) & 1; }
   1141   bool isNonTemporal() const { return (SubclassData >> 6) & 1; }
   1142   bool isInvariant() const { return (SubclassData >> 7) & 1; }
   1143 
   1144   AtomicOrdering getOrdering() const {
   1145     return AtomicOrdering((SubclassData >> 8) & 15);
   1146   }
   1147   SynchronizationScope getSynchScope() const {
   1148     return SynchronizationScope((SubclassData >> 12) & 1);
   1149   }
   1150 
   1151   // Returns the offset from the location of the access.
   1152   int64_t getSrcValueOffset() const { return MMO->getOffset(); }
   1153 
   1154   /// Returns the AA info that describes the dereference.
   1155   AAMDNodes getAAInfo() const { return MMO->getAAInfo(); }
   1156 
   1157   /// Returns the Ranges that describes the dereference.
   1158   const MDNode *getRanges() const { return MMO->getRanges(); }
   1159 
   1160   /// Return the type of the in-memory value.
   1161   EVT getMemoryVT() const { return MemoryVT; }
   1162 
   1163   /// Return a MachineMemOperand object describing the memory
   1164   /// reference performed by operation.
   1165   MachineMemOperand *getMemOperand() const { return MMO; }
   1166 
   1167   const MachinePointerInfo &getPointerInfo() const {
   1168     return MMO->getPointerInfo();
   1169   }
   1170 
   1171   /// Return the address space for the associated pointer
   1172   unsigned getAddressSpace() const {
   1173     return getPointerInfo().getAddrSpace();
   1174   }
   1175 
   1176   /// Update this MemSDNode's MachineMemOperand information
   1177   /// to reflect the alignment of NewMMO, if it has a greater alignment.
   1178   /// This must only be used when the new alignment applies to all users of
   1179   /// this MachineMemOperand.
   1180   void refineAlignment(const MachineMemOperand *NewMMO) {
   1181     MMO->refineAlignment(NewMMO);
   1182   }
   1183 
   1184   const SDValue &getChain() const { return getOperand(0); }
   1185   const SDValue &getBasePtr() const {
   1186     return getOperand(getOpcode() == ISD::STORE ? 2 : 1);
   1187   }
   1188 
   1189   // Methods to support isa and dyn_cast
   1190   static bool classof(const SDNode *N) {
   1191     // For some targets, we lower some target intrinsics to a MemIntrinsicNode
   1192     // with either an intrinsic or a target opcode.
   1193     return N->getOpcode() == ISD::LOAD                ||
   1194            N->getOpcode() == ISD::STORE               ||
   1195            N->getOpcode() == ISD::PREFETCH            ||
   1196            N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
   1197            N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
   1198            N->getOpcode() == ISD::ATOMIC_SWAP         ||
   1199            N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
   1200            N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
   1201            N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
   1202            N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
   1203            N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
   1204            N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
   1205            N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
   1206            N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
   1207            N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
   1208            N->getOpcode() == ISD::ATOMIC_LOAD_UMAX    ||
   1209            N->getOpcode() == ISD::ATOMIC_LOAD         ||
   1210            N->getOpcode() == ISD::ATOMIC_STORE        ||
   1211            N->getOpcode() == ISD::MLOAD               ||
   1212            N->getOpcode() == ISD::MSTORE              ||
   1213            N->getOpcode() == ISD::MGATHER             ||
   1214            N->getOpcode() == ISD::MSCATTER            ||
   1215            N->isMemIntrinsic()                        ||
   1216            N->isTargetMemoryOpcode();
   1217   }
   1218 };
   1219 
   1220 /// This is an SDNode representing atomic operations.
   1221 class AtomicSDNode : public MemSDNode {
   1222   SDUse Ops[4];
   1223 
   1224   /// For cmpxchg instructions, the ordering requirements when a store does not
   1225   /// occur.
   1226   AtomicOrdering FailureOrdering;
   1227 
   1228   void InitAtomic(AtomicOrdering SuccessOrdering,
   1229                   AtomicOrdering FailureOrdering,
   1230                   SynchronizationScope SynchScope) {
   1231     // This must match encodeMemSDNodeFlags() in SelectionDAG.cpp.
   1232     assert((SuccessOrdering & 15) == SuccessOrdering &&
   1233            "Ordering may not require more than 4 bits!");
   1234     assert((FailureOrdering & 15) == FailureOrdering &&
   1235            "Ordering may not require more than 4 bits!");
   1236     assert((SynchScope & 1) == SynchScope &&
   1237            "SynchScope may not require more than 1 bit!");
   1238     SubclassData |= SuccessOrdering << 8;
   1239     SubclassData |= SynchScope << 12;
   1240     this->FailureOrdering = FailureOrdering;
   1241     assert(getSuccessOrdering() == SuccessOrdering &&
   1242            "Ordering encoding error!");
   1243     assert(getFailureOrdering() == FailureOrdering &&
   1244            "Ordering encoding error!");
   1245     assert(getSynchScope() == SynchScope && "Synch-scope encoding error!");
   1246   }
   1247 
   1248 public:
   1249   // Opc:   opcode for atomic
   1250   // VTL:    value type list
   1251   // Chain:  memory chain for operaand
   1252   // Ptr:    address to update as a SDValue
   1253   // Cmp:    compare value
   1254   // Swp:    swap value
   1255   // SrcVal: address to update as a Value (used for MemOperand)
   1256   // Align:  alignment of memory
   1257   AtomicSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTL,
   1258                EVT MemVT, SDValue Chain, SDValue Ptr, SDValue Cmp, SDValue Swp,
   1259                MachineMemOperand *MMO, AtomicOrdering Ordering,
   1260                SynchronizationScope SynchScope)
   1261       : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
   1262     InitAtomic(Ordering, Ordering, SynchScope);
   1263     InitOperands(Ops, Chain, Ptr, Cmp, Swp);
   1264   }
   1265   AtomicSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTL,
   1266                EVT MemVT,
   1267                SDValue Chain, SDValue Ptr,
   1268                SDValue Val, MachineMemOperand *MMO,
   1269                AtomicOrdering Ordering, SynchronizationScope SynchScope)
   1270     : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
   1271     InitAtomic(Ordering, Ordering, SynchScope);
   1272     InitOperands(Ops, Chain, Ptr, Val);
   1273   }
   1274   AtomicSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTL,
   1275                EVT MemVT,
   1276                SDValue Chain, SDValue Ptr,
   1277                MachineMemOperand *MMO,
   1278                AtomicOrdering Ordering, SynchronizationScope SynchScope)
   1279     : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
   1280     InitAtomic(Ordering, Ordering, SynchScope);
   1281     InitOperands(Ops, Chain, Ptr);
   1282   }
   1283   AtomicSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTL, EVT MemVT,
   1284                const SDValue* AllOps, SDUse *DynOps, unsigned NumOps,
   1285                MachineMemOperand *MMO,
   1286                AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
   1287                SynchronizationScope SynchScope)
   1288     : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
   1289     InitAtomic(SuccessOrdering, FailureOrdering, SynchScope);
   1290     assert((DynOps || NumOps <= array_lengthof(Ops)) &&
   1291            "Too many ops for internal storage!");
   1292     InitOperands(DynOps ? DynOps : Ops, AllOps, NumOps);
   1293   }
   1294 
   1295   const SDValue &getBasePtr() const { return getOperand(1); }
   1296   const SDValue &getVal() const { return getOperand(2); }
   1297 
   1298   AtomicOrdering getSuccessOrdering() const {
   1299     return getOrdering();
   1300   }
   1301 
   1302   // Not quite enough room in SubclassData for everything, so failure gets its
   1303   // own field.
   1304   AtomicOrdering getFailureOrdering() const {
   1305     return FailureOrdering;
   1306   }
   1307 
   1308   bool isCompareAndSwap() const {
   1309     unsigned Op = getOpcode();
   1310     return Op == ISD::ATOMIC_CMP_SWAP || Op == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS;
   1311   }
   1312 
   1313   // Methods to support isa and dyn_cast
   1314   static bool classof(const SDNode *N) {
   1315     return N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
   1316            N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
   1317            N->getOpcode() == ISD::ATOMIC_SWAP         ||
   1318            N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
   1319            N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
   1320            N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
   1321            N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
   1322            N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
   1323            N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
   1324            N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
   1325            N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
   1326            N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
   1327            N->getOpcode() == ISD::ATOMIC_LOAD_UMAX    ||
   1328            N->getOpcode() == ISD::ATOMIC_LOAD         ||
   1329            N->getOpcode() == ISD::ATOMIC_STORE;
   1330   }
   1331 };
   1332 
   1333 /// This SDNode is used for target intrinsics that touch
   1334 /// memory and need an associated MachineMemOperand. Its opcode may be
   1335 /// INTRINSIC_VOID, INTRINSIC_W_CHAIN, PREFETCH, or a target-specific opcode
   1336 /// with a value not less than FIRST_TARGET_MEMORY_OPCODE.
   1337 class MemIntrinsicSDNode : public MemSDNode {
   1338 public:
   1339   MemIntrinsicSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
   1340                      ArrayRef<SDValue> Ops, EVT MemoryVT,
   1341                      MachineMemOperand *MMO)
   1342     : MemSDNode(Opc, Order, dl, VTs, Ops, MemoryVT, MMO) {
   1343     SubclassData |= 1u << 13;
   1344   }
   1345 
   1346   // Methods to support isa and dyn_cast
   1347   static bool classof(const SDNode *N) {
   1348     // We lower some target intrinsics to their target opcode
   1349     // early a node with a target opcode can be of this class
   1350     return N->isMemIntrinsic()             ||
   1351            N->getOpcode() == ISD::PREFETCH ||
   1352            N->isTargetMemoryOpcode();
   1353   }
   1354 };
   1355 
   1356 /// This SDNode is used to implement the code generator
   1357 /// support for the llvm IR shufflevector instruction.  It combines elements
   1358 /// from two input vectors into a new input vector, with the selection and
   1359 /// ordering of elements determined by an array of integers, referred to as
   1360 /// the shuffle mask.  For input vectors of width N, mask indices of 0..N-1
   1361 /// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
   1362 /// An index of -1 is treated as undef, such that the code generator may put
   1363 /// any value in the corresponding element of the result.
   1364 class ShuffleVectorSDNode : public SDNode {
   1365   SDUse Ops[2];
   1366 
   1367   // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
   1368   // is freed when the SelectionDAG object is destroyed.
   1369   const int *Mask;
   1370 protected:
   1371   friend class SelectionDAG;
   1372   ShuffleVectorSDNode(EVT VT, unsigned Order, DebugLoc dl, SDValue N1,
   1373                       SDValue N2, const int *M)
   1374     : SDNode(ISD::VECTOR_SHUFFLE, Order, dl, getSDVTList(VT)), Mask(M) {
   1375     InitOperands(Ops, N1, N2);
   1376   }
   1377 public:
   1378 
   1379   ArrayRef<int> getMask() const {
   1380     EVT VT = getValueType(0);
   1381     return makeArrayRef(Mask, VT.getVectorNumElements());
   1382   }
   1383   int getMaskElt(unsigned Idx) const {
   1384     assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!");
   1385     return Mask[Idx];
   1386   }
   1387 
   1388   bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
   1389   int  getSplatIndex() const {
   1390     assert(isSplat() && "Cannot get splat index for non-splat!");
   1391     EVT VT = getValueType(0);
   1392     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
   1393       if (Mask[i] >= 0)
   1394         return Mask[i];
   1395     }
   1396     llvm_unreachable("Splat with all undef indices?");
   1397   }
   1398   static bool isSplatMask(const int *Mask, EVT VT);
   1399 
   1400   /// Change values in a shuffle permute mask assuming
   1401   /// the two vector operands have swapped position.
   1402   static void commuteMask(SmallVectorImpl<int> &Mask) {
   1403     unsigned NumElems = Mask.size();
   1404     for (unsigned i = 0; i != NumElems; ++i) {
   1405       int idx = Mask[i];
   1406       if (idx < 0)
   1407         continue;
   1408       else if (idx < (int)NumElems)
   1409         Mask[i] = idx + NumElems;
   1410       else
   1411         Mask[i] = idx - NumElems;
   1412     }
   1413   }
   1414 
   1415   static bool classof(const SDNode *N) {
   1416     return N->getOpcode() == ISD::VECTOR_SHUFFLE;
   1417   }
   1418 };
   1419 
   1420 class ConstantSDNode : public SDNode {
   1421   const ConstantInt *Value;
   1422   friend class SelectionDAG;
   1423   ConstantSDNode(bool isTarget, bool isOpaque, const ConstantInt *val,
   1424                  DebugLoc DL, EVT VT)
   1425     : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant,
   1426              0, DL, getSDVTList(VT)), Value(val) {
   1427     SubclassData |= (uint16_t)isOpaque;
   1428   }
   1429 public:
   1430 
   1431   const ConstantInt *getConstantIntValue() const { return Value; }
   1432   const APInt &getAPIntValue() const { return Value->getValue(); }
   1433   uint64_t getZExtValue() const { return Value->getZExtValue(); }
   1434   int64_t getSExtValue() const { return Value->getSExtValue(); }
   1435 
   1436   bool isOne() const { return Value->isOne(); }
   1437   bool isNullValue() const { return Value->isNullValue(); }
   1438   bool isAllOnesValue() const { return Value->isAllOnesValue(); }
   1439 
   1440   bool isOpaque() const { return SubclassData & 1; }
   1441 
   1442   static bool classof(const SDNode *N) {
   1443     return N->getOpcode() == ISD::Constant ||
   1444            N->getOpcode() == ISD::TargetConstant;
   1445   }
   1446 };
   1447 
   1448 class ConstantFPSDNode : public SDNode {
   1449   const ConstantFP *Value;
   1450   friend class SelectionDAG;
   1451   ConstantFPSDNode(bool isTarget, const ConstantFP *val, DebugLoc DL, EVT VT)
   1452     : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP,
   1453              0, DL, getSDVTList(VT)), Value(val) {
   1454   }
   1455 public:
   1456 
   1457   const APFloat& getValueAPF() const { return Value->getValueAPF(); }
   1458   const ConstantFP *getConstantFPValue() const { return Value; }
   1459 
   1460   /// Return true if the value is positive or negative zero.
   1461   bool isZero() const { return Value->isZero(); }
   1462 
   1463   /// Return true if the value is a NaN.
   1464   bool isNaN() const { return Value->isNaN(); }
   1465 
   1466   /// Return true if the value is an infinity
   1467   bool isInfinity() const { return Value->isInfinity(); }
   1468 
   1469   /// Return true if the value is negative.
   1470   bool isNegative() const { return Value->isNegative(); }
   1471 
   1472   /// We don't rely on operator== working on double values, as
   1473   /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
   1474   /// As such, this method can be used to do an exact bit-for-bit comparison of
   1475   /// two floating point values.
   1476 
   1477   /// We leave the version with the double argument here because it's just so
   1478   /// convenient to write "2.0" and the like.  Without this function we'd
   1479   /// have to duplicate its logic everywhere it's called.
   1480   bool isExactlyValue(double V) const {
   1481     bool ignored;
   1482     APFloat Tmp(V);
   1483     Tmp.convert(Value->getValueAPF().getSemantics(),
   1484                 APFloat::rmNearestTiesToEven, &ignored);
   1485     return isExactlyValue(Tmp);
   1486   }
   1487   bool isExactlyValue(const APFloat& V) const;
   1488 
   1489   static bool isValueValidForType(EVT VT, const APFloat& Val);
   1490 
   1491   static bool classof(const SDNode *N) {
   1492     return N->getOpcode() == ISD::ConstantFP ||
   1493            N->getOpcode() == ISD::TargetConstantFP;
   1494   }
   1495 };
   1496 
   1497 /// Returns true if \p V is a constant integer zero.
   1498 bool isNullConstant(SDValue V);
   1499 /// Returns true if \p V is an FP constant with a value of positive zero.
   1500 bool isNullFPConstant(SDValue V);
   1501 /// Returns true if \p V is an integer constant with all bits set.
   1502 bool isAllOnesConstant(SDValue V);
   1503 /// Returns true if \p V is a constant integer one.
   1504 bool isOneConstant(SDValue V);
   1505 
   1506 class GlobalAddressSDNode : public SDNode {
   1507   const GlobalValue *TheGlobal;
   1508   int64_t Offset;
   1509   unsigned char TargetFlags;
   1510   friend class SelectionDAG;
   1511   GlobalAddressSDNode(unsigned Opc, unsigned Order, DebugLoc DL,
   1512                       const GlobalValue *GA, EVT VT, int64_t o,
   1513                       unsigned char TargetFlags);
   1514 public:
   1515 
   1516   const GlobalValue *getGlobal() const { return TheGlobal; }
   1517   int64_t getOffset() const { return Offset; }
   1518   unsigned char getTargetFlags() const { return TargetFlags; }
   1519   // Return the address space this GlobalAddress belongs to.
   1520   unsigned getAddressSpace() const;
   1521 
   1522   static bool classof(const SDNode *N) {
   1523     return N->getOpcode() == ISD::GlobalAddress ||
   1524            N->getOpcode() == ISD::TargetGlobalAddress ||
   1525            N->getOpcode() == ISD::GlobalTLSAddress ||
   1526            N->getOpcode() == ISD::TargetGlobalTLSAddress;
   1527   }
   1528 };
   1529 
   1530 class FrameIndexSDNode : public SDNode {
   1531   int FI;
   1532   friend class SelectionDAG;
   1533   FrameIndexSDNode(int fi, EVT VT, bool isTarg)
   1534     : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
   1535       0, DebugLoc(), getSDVTList(VT)), FI(fi) {
   1536   }
   1537 public:
   1538 
   1539   int getIndex() const { return FI; }
   1540 
   1541   static bool classof(const SDNode *N) {
   1542     return N->getOpcode() == ISD::FrameIndex ||
   1543            N->getOpcode() == ISD::TargetFrameIndex;
   1544   }
   1545 };
   1546 
   1547 class JumpTableSDNode : public SDNode {
   1548   int JTI;
   1549   unsigned char TargetFlags;
   1550   friend class SelectionDAG;
   1551   JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned char TF)
   1552     : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
   1553       0, DebugLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) {
   1554   }
   1555 public:
   1556 
   1557   int getIndex() const { return JTI; }
   1558   unsigned char getTargetFlags() const { return TargetFlags; }
   1559 
   1560   static bool classof(const SDNode *N) {
   1561     return N->getOpcode() == ISD::JumpTable ||
   1562            N->getOpcode() == ISD::TargetJumpTable;
   1563   }
   1564 };
   1565 
   1566 class ConstantPoolSDNode : public SDNode {
   1567   union {
   1568     const Constant *ConstVal;
   1569     MachineConstantPoolValue *MachineCPVal;
   1570   } Val;
   1571   int Offset;  // It's a MachineConstantPoolValue if top bit is set.
   1572   unsigned Alignment;  // Minimum alignment requirement of CP (not log2 value).
   1573   unsigned char TargetFlags;
   1574   friend class SelectionDAG;
   1575   ConstantPoolSDNode(bool isTarget, const Constant *c, EVT VT, int o,
   1576                      unsigned Align, unsigned char TF)
   1577     : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
   1578              DebugLoc(), getSDVTList(VT)), Offset(o), Alignment(Align),
   1579              TargetFlags(TF) {
   1580     assert(Offset >= 0 && "Offset is too large");
   1581     Val.ConstVal = c;
   1582   }
   1583   ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
   1584                      EVT VT, int o, unsigned Align, unsigned char TF)
   1585     : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
   1586              DebugLoc(), getSDVTList(VT)), Offset(o), Alignment(Align),
   1587              TargetFlags(TF) {
   1588     assert(Offset >= 0 && "Offset is too large");
   1589     Val.MachineCPVal = v;
   1590     Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1);
   1591   }
   1592 public:
   1593 
   1594   bool isMachineConstantPoolEntry() const {
   1595     return Offset < 0;
   1596   }
   1597 
   1598   const Constant *getConstVal() const {
   1599     assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
   1600     return Val.ConstVal;
   1601   }
   1602 
   1603   MachineConstantPoolValue *getMachineCPVal() const {
   1604     assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
   1605     return Val.MachineCPVal;
   1606   }
   1607 
   1608   int getOffset() const {
   1609     return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1));
   1610   }
   1611 
   1612   // Return the alignment of this constant pool object, which is either 0 (for
   1613   // default alignment) or the desired value.
   1614   unsigned getAlignment() const { return Alignment; }
   1615   unsigned char getTargetFlags() const { return TargetFlags; }
   1616 
   1617   Type *getType() const;
   1618 
   1619   static bool classof(const SDNode *N) {
   1620     return N->getOpcode() == ISD::ConstantPool ||
   1621            N->getOpcode() == ISD::TargetConstantPool;
   1622   }
   1623 };
   1624 
   1625 /// Completely target-dependent object reference.
   1626 class TargetIndexSDNode : public SDNode {
   1627   unsigned char TargetFlags;
   1628   int Index;
   1629   int64_t Offset;
   1630   friend class SelectionDAG;
   1631 public:
   1632 
   1633   TargetIndexSDNode(int Idx, EVT VT, int64_t Ofs, unsigned char TF)
   1634     : SDNode(ISD::TargetIndex, 0, DebugLoc(), getSDVTList(VT)),
   1635       TargetFlags(TF), Index(Idx), Offset(Ofs) {}
   1636 public:
   1637 
   1638   unsigned char getTargetFlags() const { return TargetFlags; }
   1639   int getIndex() const { return Index; }
   1640   int64_t getOffset() const { return Offset; }
   1641 
   1642   static bool classof(const SDNode *N) {
   1643     return N->getOpcode() == ISD::TargetIndex;
   1644   }
   1645 };
   1646 
   1647 class BasicBlockSDNode : public SDNode {
   1648   MachineBasicBlock *MBB;
   1649   friend class SelectionDAG;
   1650   /// Debug info is meaningful and potentially useful here, but we create
   1651   /// blocks out of order when they're jumped to, which makes it a bit
   1652   /// harder.  Let's see if we need it first.
   1653   explicit BasicBlockSDNode(MachineBasicBlock *mbb)
   1654     : SDNode(ISD::BasicBlock, 0, DebugLoc(), getSDVTList(MVT::Other)), MBB(mbb)
   1655   {}
   1656 public:
   1657 
   1658   MachineBasicBlock *getBasicBlock() const { return MBB; }
   1659 
   1660   static bool classof(const SDNode *N) {
   1661     return N->getOpcode() == ISD::BasicBlock;
   1662   }
   1663 };
   1664 
   1665 /// A "pseudo-class" with methods for operating on BUILD_VECTORs.
   1666 class BuildVectorSDNode : public SDNode {
   1667   // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
   1668   explicit BuildVectorSDNode() = delete;
   1669 public:
   1670   /// Check if this is a constant splat, and if so, find the
   1671   /// smallest element size that splats the vector.  If MinSplatBits is
   1672   /// nonzero, the element size must be at least that large.  Note that the
   1673   /// splat element may be the entire vector (i.e., a one element vector).
   1674   /// Returns the splat element value in SplatValue.  Any undefined bits in
   1675   /// that value are zero, and the corresponding bits in the SplatUndef mask
   1676   /// are set.  The SplatBitSize value is set to the splat element size in
   1677   /// bits.  HasAnyUndefs is set to true if any bits in the vector are
   1678   /// undefined.  isBigEndian describes the endianness of the target.
   1679   bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
   1680                        unsigned &SplatBitSize, bool &HasAnyUndefs,
   1681                        unsigned MinSplatBits = 0,
   1682                        bool isBigEndian = false) const;
   1683 
   1684   /// \brief Returns the splatted value or a null value if this is not a splat.
   1685   ///
   1686   /// If passed a non-null UndefElements bitvector, it will resize it to match
   1687   /// the vector width and set the bits where elements are undef.
   1688   SDValue getSplatValue(BitVector *UndefElements = nullptr) const;
   1689 
   1690   /// \brief Returns the splatted constant or null if this is not a constant
   1691   /// splat.
   1692   ///
   1693   /// If passed a non-null UndefElements bitvector, it will resize it to match
   1694   /// the vector width and set the bits where elements are undef.
   1695   ConstantSDNode *
   1696   getConstantSplatNode(BitVector *UndefElements = nullptr) const;
   1697 
   1698   /// \brief Returns the splatted constant FP or null if this is not a constant
   1699   /// FP splat.
   1700   ///
   1701   /// If passed a non-null UndefElements bitvector, it will resize it to match
   1702   /// the vector width and set the bits where elements are undef.
   1703   ConstantFPSDNode *
   1704   getConstantFPSplatNode(BitVector *UndefElements = nullptr) const;
   1705 
   1706   /// \brief If this is a constant FP splat and the splatted constant FP is an
   1707   /// exact power or 2, return the log base 2 integer value.  Otherwise,
   1708   /// return -1.
   1709   ///
   1710   /// The BitWidth specifies the necessary bit precision.
   1711   int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
   1712                                           uint32_t BitWidth) const;
   1713 
   1714   bool isConstant() const;
   1715 
   1716   static inline bool classof(const SDNode *N) {
   1717     return N->getOpcode() == ISD::BUILD_VECTOR;
   1718   }
   1719 };
   1720 
   1721 /// An SDNode that holds an arbitrary LLVM IR Value. This is
   1722 /// used when the SelectionDAG needs to make a simple reference to something
   1723 /// in the LLVM IR representation.
   1724 ///
   1725 class SrcValueSDNode : public SDNode {
   1726   const Value *V;
   1727   friend class SelectionDAG;
   1728   /// Create a SrcValue for a general value.
   1729   explicit SrcValueSDNode(const Value *v)
   1730     : SDNode(ISD::SRCVALUE, 0, DebugLoc(), getSDVTList(MVT::Other)), V(v) {}
   1731 
   1732 public:
   1733   /// Return the contained Value.
   1734   const Value *getValue() const { return V; }
   1735 
   1736   static bool classof(const SDNode *N) {
   1737     return N->getOpcode() == ISD::SRCVALUE;
   1738   }
   1739 };
   1740 
   1741 class MDNodeSDNode : public SDNode {
   1742   const MDNode *MD;
   1743   friend class SelectionDAG;
   1744   explicit MDNodeSDNode(const MDNode *md)
   1745   : SDNode(ISD::MDNODE_SDNODE, 0, DebugLoc(), getSDVTList(MVT::Other)), MD(md)
   1746   {}
   1747 public:
   1748 
   1749   const MDNode *getMD() const { return MD; }
   1750 
   1751   static bool classof(const SDNode *N) {
   1752     return N->getOpcode() == ISD::MDNODE_SDNODE;
   1753   }
   1754 };
   1755 
   1756 class RegisterSDNode : public SDNode {
   1757   unsigned Reg;
   1758   friend class SelectionDAG;
   1759   RegisterSDNode(unsigned reg, EVT VT)
   1760     : SDNode(ISD::Register, 0, DebugLoc(), getSDVTList(VT)), Reg(reg) {
   1761   }
   1762 public:
   1763 
   1764   unsigned getReg() const { return Reg; }
   1765 
   1766   static bool classof(const SDNode *N) {
   1767     return N->getOpcode() == ISD::Register;
   1768   }
   1769 };
   1770 
   1771 class RegisterMaskSDNode : public SDNode {
   1772   // The memory for RegMask is not owned by the node.
   1773   const uint32_t *RegMask;
   1774   friend class SelectionDAG;
   1775   RegisterMaskSDNode(const uint32_t *mask)
   1776     : SDNode(ISD::RegisterMask, 0, DebugLoc(), getSDVTList(MVT::Untyped)),
   1777       RegMask(mask) {}
   1778 public:
   1779 
   1780   const uint32_t *getRegMask() const { return RegMask; }
   1781 
   1782   static bool classof(const SDNode *N) {
   1783     return N->getOpcode() == ISD::RegisterMask;
   1784   }
   1785 };
   1786 
   1787 class BlockAddressSDNode : public SDNode {
   1788   const BlockAddress *BA;
   1789   int64_t Offset;
   1790   unsigned char TargetFlags;
   1791   friend class SelectionDAG;
   1792   BlockAddressSDNode(unsigned NodeTy, EVT VT, const BlockAddress *ba,
   1793                      int64_t o, unsigned char Flags)
   1794     : SDNode(NodeTy, 0, DebugLoc(), getSDVTList(VT)),
   1795              BA(ba), Offset(o), TargetFlags(Flags) {
   1796   }
   1797 public:
   1798   const BlockAddress *getBlockAddress() const { return BA; }
   1799   int64_t getOffset() const { return Offset; }
   1800   unsigned char getTargetFlags() const { return TargetFlags; }
   1801 
   1802   static bool classof(const SDNode *N) {
   1803     return N->getOpcode() == ISD::BlockAddress ||
   1804            N->getOpcode() == ISD::TargetBlockAddress;
   1805   }
   1806 };
   1807 
   1808 class EHLabelSDNode : public SDNode {
   1809   SDUse Chain;
   1810   MCSymbol *Label;
   1811   friend class SelectionDAG;
   1812   EHLabelSDNode(unsigned Order, DebugLoc dl, SDValue ch, MCSymbol *L)
   1813     : SDNode(ISD::EH_LABEL, Order, dl, getSDVTList(MVT::Other)), Label(L) {
   1814     InitOperands(&Chain, ch);
   1815   }
   1816 public:
   1817   MCSymbol *getLabel() const { return Label; }
   1818 
   1819   static bool classof(const SDNode *N) {
   1820     return N->getOpcode() == ISD::EH_LABEL;
   1821   }
   1822 };
   1823 
   1824 class ExternalSymbolSDNode : public SDNode {
   1825   const char *Symbol;
   1826   unsigned char TargetFlags;
   1827 
   1828   friend class SelectionDAG;
   1829   ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned char TF, EVT VT)
   1830     : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
   1831              0, DebugLoc(), getSDVTList(VT)), Symbol(Sym), TargetFlags(TF) {
   1832   }
   1833 public:
   1834 
   1835   const char *getSymbol() const { return Symbol; }
   1836   unsigned char getTargetFlags() const { return TargetFlags; }
   1837 
   1838   static bool classof(const SDNode *N) {
   1839     return N->getOpcode() == ISD::ExternalSymbol ||
   1840            N->getOpcode() == ISD::TargetExternalSymbol;
   1841   }
   1842 };
   1843 
   1844 class MCSymbolSDNode : public SDNode {
   1845   MCSymbol *Symbol;
   1846 
   1847   friend class SelectionDAG;
   1848   MCSymbolSDNode(MCSymbol *Symbol, EVT VT)
   1849       : SDNode(ISD::MCSymbol, 0, DebugLoc(), getSDVTList(VT)), Symbol(Symbol) {}
   1850 
   1851 public:
   1852   MCSymbol *getMCSymbol() const { return Symbol; }
   1853 
   1854   static bool classof(const SDNode *N) {
   1855     return N->getOpcode() == ISD::MCSymbol;
   1856   }
   1857 };
   1858 
   1859 class CondCodeSDNode : public SDNode {
   1860   ISD::CondCode Condition;
   1861   friend class SelectionDAG;
   1862   explicit CondCodeSDNode(ISD::CondCode Cond)
   1863     : SDNode(ISD::CONDCODE, 0, DebugLoc(), getSDVTList(MVT::Other)),
   1864       Condition(Cond) {
   1865   }
   1866 public:
   1867 
   1868   ISD::CondCode get() const { return Condition; }
   1869 
   1870   static bool classof(const SDNode *N) {
   1871     return N->getOpcode() == ISD::CONDCODE;
   1872   }
   1873 };
   1874 
   1875 /// NOTE: avoid using this node as this may disappear in the
   1876 /// future and most targets don't support it.
   1877 class CvtRndSatSDNode : public SDNode {
   1878   ISD::CvtCode CvtCode;
   1879   friend class SelectionDAG;
   1880   explicit CvtRndSatSDNode(EVT VT, unsigned Order, DebugLoc dl,
   1881                            ArrayRef<SDValue> Ops, ISD::CvtCode Code)
   1882     : SDNode(ISD::CONVERT_RNDSAT, Order, dl, getSDVTList(VT), Ops),
   1883       CvtCode(Code) {
   1884     assert(Ops.size() == 5 && "wrong number of operations");
   1885   }
   1886 public:
   1887   ISD::CvtCode getCvtCode() const { return CvtCode; }
   1888 
   1889   static bool classof(const SDNode *N) {
   1890     return N->getOpcode() == ISD::CONVERT_RNDSAT;
   1891   }
   1892 };
   1893 
   1894 /// This class is used to represent EVT's, which are used
   1895 /// to parameterize some operations.
   1896 class VTSDNode : public SDNode {
   1897   EVT ValueType;
   1898   friend class SelectionDAG;
   1899   explicit VTSDNode(EVT VT)
   1900     : SDNode(ISD::VALUETYPE, 0, DebugLoc(), getSDVTList(MVT::Other)),
   1901       ValueType(VT) {
   1902   }
   1903 public:
   1904 
   1905   EVT getVT() const { return ValueType; }
   1906 
   1907   static bool classof(const SDNode *N) {
   1908     return N->getOpcode() == ISD::VALUETYPE;
   1909   }
   1910 };
   1911 
   1912 /// Base class for LoadSDNode and StoreSDNode
   1913 class LSBaseSDNode : public MemSDNode {
   1914   //! Operand array for load and store
   1915   /*!
   1916     \note Moving this array to the base class captures more
   1917     common functionality shared between LoadSDNode and
   1918     StoreSDNode
   1919    */
   1920   SDUse Ops[4];
   1921 public:
   1922   LSBaseSDNode(ISD::NodeType NodeTy, unsigned Order, DebugLoc dl,
   1923                SDValue *Operands, unsigned numOperands,
   1924                SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT,
   1925                MachineMemOperand *MMO)
   1926     : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
   1927     SubclassData |= AM << 2;
   1928     assert(getAddressingMode() == AM && "MemIndexedMode encoding error!");
   1929     InitOperands(Ops, Operands, numOperands);
   1930     assert((getOffset().getOpcode() == ISD::UNDEF || isIndexed()) &&
   1931            "Only indexed loads and stores have a non-undef offset operand");
   1932   }
   1933 
   1934   const SDValue &getOffset() const {
   1935     return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
   1936   }
   1937 
   1938   /// Return the addressing mode for this load or store:
   1939   /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
   1940   ISD::MemIndexedMode getAddressingMode() const {
   1941     return ISD::MemIndexedMode((SubclassData >> 2) & 7);
   1942   }
   1943 
   1944   /// Return true if this is a pre/post inc/dec load/store.
   1945   bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
   1946 
   1947   /// Return true if this is NOT a pre/post inc/dec load/store.
   1948   bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
   1949 
   1950   static bool classof(const SDNode *N) {
   1951     return N->getOpcode() == ISD::LOAD ||
   1952            N->getOpcode() == ISD::STORE;
   1953   }
   1954 };
   1955 
   1956 /// This class is used to represent ISD::LOAD nodes.
   1957 class LoadSDNode : public LSBaseSDNode {
   1958   friend class SelectionDAG;
   1959   LoadSDNode(SDValue *ChainPtrOff, unsigned Order, DebugLoc dl, SDVTList VTs,
   1960              ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT,
   1961              MachineMemOperand *MMO)
   1962     : LSBaseSDNode(ISD::LOAD, Order, dl, ChainPtrOff, 3, VTs, AM, MemVT, MMO) {
   1963     SubclassData |= (unsigned short)ETy;
   1964     assert(getExtensionType() == ETy && "LoadExtType encoding error!");
   1965     assert(readMem() && "Load MachineMemOperand is not a load!");
   1966     assert(!writeMem() && "Load MachineMemOperand is a store!");
   1967   }
   1968 public:
   1969 
   1970   /// Return whether this is a plain node,
   1971   /// or one of the varieties of value-extending loads.
   1972   ISD::LoadExtType getExtensionType() const {
   1973     return ISD::LoadExtType(SubclassData & 3);
   1974   }
   1975 
   1976   const SDValue &getBasePtr() const { return getOperand(1); }
   1977   const SDValue &getOffset() const { return getOperand(2); }
   1978 
   1979   static bool classof(const SDNode *N) {
   1980     return N->getOpcode() == ISD::LOAD;
   1981   }
   1982 };
   1983 
   1984 /// This class is used to represent ISD::STORE nodes.
   1985 class StoreSDNode : public LSBaseSDNode {
   1986   friend class SelectionDAG;
   1987   StoreSDNode(SDValue *ChainValuePtrOff, unsigned Order, DebugLoc dl,
   1988               SDVTList VTs, ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT,
   1989               MachineMemOperand *MMO)
   1990     : LSBaseSDNode(ISD::STORE, Order, dl, ChainValuePtrOff, 4,
   1991                    VTs, AM, MemVT, MMO) {
   1992     SubclassData |= (unsigned short)isTrunc;
   1993     assert(isTruncatingStore() == isTrunc && "isTrunc encoding error!");
   1994     assert(!readMem() && "Store MachineMemOperand is a load!");
   1995     assert(writeMem() && "Store MachineMemOperand is not a store!");
   1996   }
   1997 public:
   1998 
   1999   /// Return true if the op does a truncation before store.
   2000   /// For integers this is the same as doing a TRUNCATE and storing the result.
   2001   /// For floats, it is the same as doing an FP_ROUND and storing the result.
   2002   bool isTruncatingStore() const { return SubclassData & 1; }
   2003 
   2004   const SDValue &getValue() const { return getOperand(1); }
   2005   const SDValue &getBasePtr() const { return getOperand(2); }
   2006   const SDValue &getOffset() const { return getOperand(3); }
   2007 
   2008   static bool classof(const SDNode *N) {
   2009     return N->getOpcode() == ISD::STORE;
   2010   }
   2011 };
   2012 
   2013 /// This base class is used to represent MLOAD and MSTORE nodes
   2014 class MaskedLoadStoreSDNode : public MemSDNode {
   2015   // Operands
   2016   SDUse Ops[4];
   2017 public:
   2018   friend class SelectionDAG;
   2019   MaskedLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order, DebugLoc dl,
   2020                         SDValue *Operands, unsigned numOperands, SDVTList VTs,
   2021                         EVT MemVT, MachineMemOperand *MMO)
   2022       : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
   2023     InitOperands(Ops, Operands, numOperands);
   2024   }
   2025 
   2026   // In the both nodes address is Op1, mask is Op2:
   2027   // MaskedLoadSDNode (Chain, ptr, mask, src0), src0 is a passthru value
   2028   // MaskedStoreSDNode (Chain, ptr, mask, data)
   2029   // Mask is a vector of i1 elements
   2030   const SDValue &getBasePtr() const { return getOperand(1); }
   2031   const SDValue &getMask() const    { return getOperand(2); }
   2032 
   2033   static bool classof(const SDNode *N) {
   2034     return N->getOpcode() == ISD::MLOAD ||
   2035            N->getOpcode() == ISD::MSTORE;
   2036   }
   2037 };
   2038 
   2039 /// This class is used to represent an MLOAD node
   2040 class MaskedLoadSDNode : public MaskedLoadStoreSDNode {
   2041 public:
   2042   friend class SelectionDAG;
   2043   MaskedLoadSDNode(unsigned Order, DebugLoc dl, SDValue *Operands,
   2044                    unsigned numOperands, SDVTList VTs, ISD::LoadExtType ETy,
   2045                    EVT MemVT, MachineMemOperand *MMO)
   2046     : MaskedLoadStoreSDNode(ISD::MLOAD, Order, dl, Operands, numOperands,
   2047                             VTs, MemVT, MMO) {
   2048     SubclassData |= (unsigned short)ETy;
   2049   }
   2050 
   2051   ISD::LoadExtType getExtensionType() const {
   2052     return ISD::LoadExtType(SubclassData & 3);
   2053   }
   2054   const SDValue &getSrc0() const { return getOperand(3); }
   2055   static bool classof(const SDNode *N) {
   2056     return N->getOpcode() == ISD::MLOAD;
   2057   }
   2058 };
   2059 
   2060 /// This class is used to represent an MSTORE node
   2061 class MaskedStoreSDNode : public MaskedLoadStoreSDNode {
   2062 
   2063 public:
   2064   friend class SelectionDAG;
   2065   MaskedStoreSDNode(unsigned Order, DebugLoc dl, SDValue *Operands,
   2066                     unsigned numOperands, SDVTList VTs, bool isTrunc, EVT MemVT,
   2067                     MachineMemOperand *MMO)
   2068     : MaskedLoadStoreSDNode(ISD::MSTORE, Order, dl, Operands, numOperands,
   2069                             VTs, MemVT, MMO) {
   2070       SubclassData |= (unsigned short)isTrunc;
   2071   }
   2072   /// Return true if the op does a truncation before store.
   2073   /// For integers this is the same as doing a TRUNCATE and storing the result.
   2074   /// For floats, it is the same as doing an FP_ROUND and storing the result.
   2075   bool isTruncatingStore() const { return SubclassData & 1; }
   2076 
   2077   const SDValue &getValue() const { return getOperand(3); }
   2078 
   2079   static bool classof(const SDNode *N) {
   2080     return N->getOpcode() == ISD::MSTORE;
   2081   }
   2082 };
   2083 
   2084 /// This is a base class used to represent
   2085 /// MGATHER and MSCATTER nodes
   2086 ///
   2087 class MaskedGatherScatterSDNode : public MemSDNode {
   2088   // Operands
   2089   SDUse Ops[5];
   2090 public:
   2091   friend class SelectionDAG;
   2092   MaskedGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order, DebugLoc dl,
   2093                             ArrayRef<SDValue> Operands, SDVTList VTs, EVT MemVT,
   2094                             MachineMemOperand *MMO)
   2095     : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
   2096     assert(Operands.size() == 5 && "Incompatible number of operands");
   2097     InitOperands(Ops, Operands.data(), Operands.size());
   2098   }
   2099 
   2100   // In the both nodes address is Op1, mask is Op2:
   2101   // MaskedGatherSDNode  (Chain, src0, mask, base, index), src0 is a passthru value
   2102   // MaskedScatterSDNode (Chain, value, mask, base, index)
   2103   // Mask is a vector of i1 elements
   2104   const SDValue &getBasePtr() const { return getOperand(3); }
   2105   const SDValue &getIndex()   const { return getOperand(4); }
   2106   const SDValue &getMask()    const { return getOperand(2); }
   2107   const SDValue &getValue()   const { return getOperand(1); }
   2108 
   2109   static bool classof(const SDNode *N) {
   2110     return N->getOpcode() == ISD::MGATHER ||
   2111            N->getOpcode() == ISD::MSCATTER;
   2112   }
   2113 };
   2114 
   2115 /// This class is used to represent an MGATHER node
   2116 ///
   2117 class MaskedGatherSDNode : public MaskedGatherScatterSDNode {
   2118 public:
   2119   friend class SelectionDAG;
   2120   MaskedGatherSDNode(unsigned Order, DebugLoc dl, ArrayRef<SDValue> Operands,
   2121                      SDVTList VTs, EVT MemVT, MachineMemOperand *MMO)
   2122     : MaskedGatherScatterSDNode(ISD::MGATHER, Order, dl, Operands, VTs, MemVT,
   2123                                 MMO) {
   2124     assert(getValue().getValueType() == getValueType(0) &&
   2125            "Incompatible type of the PassThru value in MaskedGatherSDNode");
   2126     assert(getMask().getValueType().getVectorNumElements() ==
   2127            getValueType(0).getVectorNumElements() &&
   2128            "Vector width mismatch between mask and data");
   2129     assert(getIndex().getValueType().getVectorNumElements() ==
   2130            getValueType(0).getVectorNumElements() &&
   2131            "Vector width mismatch between index and data");
   2132   }
   2133 
   2134   static bool classof(const SDNode *N) {
   2135     return N->getOpcode() == ISD::MGATHER;
   2136   }
   2137 };
   2138 
   2139 /// This class is used to represent an MSCATTER node
   2140 ///
   2141 class MaskedScatterSDNode : public MaskedGatherScatterSDNode {
   2142 
   2143 public:
   2144   friend class SelectionDAG;
   2145   MaskedScatterSDNode(unsigned Order, DebugLoc dl,ArrayRef<SDValue> Operands,
   2146                       SDVTList VTs, EVT MemVT, MachineMemOperand *MMO)
   2147     : MaskedGatherScatterSDNode(ISD::MSCATTER, Order, dl, Operands, VTs, MemVT,
   2148                                 MMO) {
   2149     assert(getMask().getValueType().getVectorNumElements() ==
   2150            getValue().getValueType().getVectorNumElements() &&
   2151            "Vector width mismatch between mask and data");
   2152     assert(getIndex().getValueType().getVectorNumElements() ==
   2153            getValue().getValueType().getVectorNumElements() &&
   2154            "Vector width mismatch between index and data");
   2155   }
   2156 
   2157   static bool classof(const SDNode *N) {
   2158     return N->getOpcode() == ISD::MSCATTER;
   2159   }
   2160 };
   2161 
   2162 /// An SDNode that represents everything that will be needed
   2163 /// to construct a MachineInstr. These nodes are created during the
   2164 /// instruction selection proper phase.
   2165 class MachineSDNode : public SDNode {
   2166 public:
   2167   typedef MachineMemOperand **mmo_iterator;
   2168 
   2169 private:
   2170   friend class SelectionDAG;
   2171   MachineSDNode(unsigned Opc, unsigned Order, const DebugLoc DL, SDVTList VTs)
   2172     : SDNode(Opc, Order, DL, VTs), MemRefs(nullptr), MemRefsEnd(nullptr) {}
   2173 
   2174   /// Operands for this instruction, if they fit here. If
   2175   /// they don't, this field is unused.
   2176   SDUse LocalOperands[4];
   2177 
   2178   /// Memory reference descriptions for this instruction.
   2179   mmo_iterator MemRefs;
   2180   mmo_iterator MemRefsEnd;
   2181 
   2182 public:
   2183   mmo_iterator memoperands_begin() const { return MemRefs; }
   2184   mmo_iterator memoperands_end() const { return MemRefsEnd; }
   2185   bool memoperands_empty() const { return MemRefsEnd == MemRefs; }
   2186 
   2187   /// Assign this MachineSDNodes's memory reference descriptor
   2188   /// list. This does not transfer ownership.
   2189   void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
   2190     for (mmo_iterator MMI = NewMemRefs, MME = NewMemRefsEnd; MMI != MME; ++MMI)
   2191       assert(*MMI && "Null mem ref detected!");
   2192     MemRefs = NewMemRefs;
   2193     MemRefsEnd = NewMemRefsEnd;
   2194   }
   2195 
   2196   static bool classof(const SDNode *N) {
   2197     return N->isMachineOpcode();
   2198   }
   2199 };
   2200 
   2201 class SDNodeIterator : public std::iterator<std::forward_iterator_tag,
   2202                                             SDNode, ptrdiff_t> {
   2203   const SDNode *Node;
   2204   unsigned Operand;
   2205 
   2206   SDNodeIterator(const SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
   2207 public:
   2208   bool operator==(const SDNodeIterator& x) const {
   2209     return Operand == x.Operand;
   2210   }
   2211   bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
   2212 
   2213   pointer operator*() const {
   2214     return Node->getOperand(Operand).getNode();
   2215   }
   2216   pointer operator->() const { return operator*(); }
   2217 
   2218   SDNodeIterator& operator++() {                // Preincrement
   2219     ++Operand;
   2220     return *this;
   2221   }
   2222   SDNodeIterator operator++(int) { // Postincrement
   2223     SDNodeIterator tmp = *this; ++*this; return tmp;
   2224   }
   2225   size_t operator-(SDNodeIterator Other) const {
   2226     assert(Node == Other.Node &&
   2227            "Cannot compare iterators of two different nodes!");
   2228     return Operand - Other.Operand;
   2229   }
   2230 
   2231   static SDNodeIterator begin(const SDNode *N) { return SDNodeIterator(N, 0); }
   2232   static SDNodeIterator end  (const SDNode *N) {
   2233     return SDNodeIterator(N, N->getNumOperands());
   2234   }
   2235 
   2236   unsigned getOperand() const { return Operand; }
   2237   const SDNode *getNode() const { return Node; }
   2238 };
   2239 
   2240 template <> struct GraphTraits<SDNode*> {
   2241   typedef SDNode NodeType;
   2242   typedef SDNodeIterator ChildIteratorType;
   2243   static inline NodeType *getEntryNode(SDNode *N) { return N; }
   2244   static inline ChildIteratorType child_begin(NodeType *N) {
   2245     return SDNodeIterator::begin(N);
   2246   }
   2247   static inline ChildIteratorType child_end(NodeType *N) {
   2248     return SDNodeIterator::end(N);
   2249   }
   2250 };
   2251 
   2252 /// The largest SDNode class.
   2253 typedef MaskedGatherScatterSDNode LargestSDNode;
   2254 
   2255 /// The SDNode class with the greatest alignment requirement.
   2256 typedef GlobalAddressSDNode MostAlignedSDNode;
   2257 
   2258 namespace ISD {
   2259   /// Returns true if the specified node is a non-extending and unindexed load.
   2260   inline bool isNormalLoad(const SDNode *N) {
   2261     const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
   2262     return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
   2263       Ld->getAddressingMode() == ISD::UNINDEXED;
   2264   }
   2265 
   2266   /// Returns true if the specified node is a non-extending load.
   2267   inline bool isNON_EXTLoad(const SDNode *N) {
   2268     return isa<LoadSDNode>(N) &&
   2269       cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
   2270   }
   2271 
   2272   /// Returns true if the specified node is a EXTLOAD.
   2273   inline bool isEXTLoad(const SDNode *N) {
   2274     return isa<LoadSDNode>(N) &&
   2275       cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
   2276   }
   2277 
   2278   /// Returns true if the specified node is a SEXTLOAD.
   2279   inline bool isSEXTLoad(const SDNode *N) {
   2280     return isa<LoadSDNode>(N) &&
   2281       cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
   2282   }
   2283 
   2284   /// Returns true if the specified node is a ZEXTLOAD.
   2285   inline bool isZEXTLoad(const SDNode *N) {
   2286     return isa<LoadSDNode>(N) &&
   2287       cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
   2288   }
   2289 
   2290   /// Returns true if the specified node is an unindexed load.
   2291   inline bool isUNINDEXEDLoad(const SDNode *N) {
   2292     return isa<LoadSDNode>(N) &&
   2293       cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
   2294   }
   2295 
   2296   /// Returns true if the specified node is a non-truncating
   2297   /// and unindexed store.
   2298   inline bool isNormalStore(const SDNode *N) {
   2299     const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
   2300     return St && !St->isTruncatingStore() &&
   2301       St->getAddressingMode() == ISD::UNINDEXED;
   2302   }
   2303 
   2304   /// Returns true if the specified node is a non-truncating store.
   2305   inline bool isNON_TRUNCStore(const SDNode *N) {
   2306     return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
   2307   }
   2308 
   2309   /// Returns true if the specified node is a truncating store.
   2310   inline bool isTRUNCStore(const SDNode *N) {
   2311     return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
   2312   }
   2313 
   2314   /// Returns true if the specified node is an unindexed store.
   2315   inline bool isUNINDEXEDStore(const SDNode *N) {
   2316     return isa<StoreSDNode>(N) &&
   2317       cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
   2318   }
   2319 }
   2320 
   2321 } // end llvm namespace
   2322 
   2323 #endif
   2324