1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the primary stateless implementation of the 11 // Alias Analysis interface that implements identities (two different 12 // globals cannot alias, etc), but does no stateful analysis. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/BasicAliasAnalysis.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/CFG.h" 21 #include "llvm/Analysis/CaptureTracking.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LoopInfo.h" 24 #include "llvm/Analysis/MemoryBuiltins.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Analysis/AssumptionCache.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/GlobalAlias.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include <algorithm> 40 using namespace llvm; 41 42 /// Enable analysis of recursive PHI nodes. 43 static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden, 44 cl::init(false)); 45 46 /// SearchLimitReached / SearchTimes shows how often the limit of 47 /// to decompose GEPs is reached. It will affect the precision 48 /// of basic alias analysis. 49 #define DEBUG_TYPE "basicaa" 50 STATISTIC(SearchLimitReached, "Number of times the limit to " 51 "decompose GEPs is reached"); 52 STATISTIC(SearchTimes, "Number of times a GEP is decomposed"); 53 54 /// Cutoff after which to stop analysing a set of phi nodes potentially involved 55 /// in a cycle. Because we are analysing 'through' phi nodes we need to be 56 /// careful with value equivalence. We use reachability to make sure a value 57 /// cannot be involved in a cycle. 58 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; 59 60 // The max limit of the search depth in DecomposeGEPExpression() and 61 // GetUnderlyingObject(), both functions need to use the same search 62 // depth otherwise the algorithm in aliasGEP will assert. 63 static const unsigned MaxLookupSearchDepth = 6; 64 65 //===----------------------------------------------------------------------===// 66 // Useful predicates 67 //===----------------------------------------------------------------------===// 68 69 /// Returns true if the pointer is to a function-local object that never 70 /// escapes from the function. 71 static bool isNonEscapingLocalObject(const Value *V) { 72 // If this is a local allocation, check to see if it escapes. 73 if (isa<AllocaInst>(V) || isNoAliasCall(V)) 74 // Set StoreCaptures to True so that we can assume in our callers that the 75 // pointer is not the result of a load instruction. Currently 76 // PointerMayBeCaptured doesn't have any special analysis for the 77 // StoreCaptures=false case; if it did, our callers could be refined to be 78 // more precise. 79 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 80 81 // If this is an argument that corresponds to a byval or noalias argument, 82 // then it has not escaped before entering the function. Check if it escapes 83 // inside the function. 84 if (const Argument *A = dyn_cast<Argument>(V)) 85 if (A->hasByValAttr() || A->hasNoAliasAttr()) 86 // Note even if the argument is marked nocapture we still need to check 87 // for copies made inside the function. The nocapture attribute only 88 // specifies that there are no copies made that outlive the function. 89 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 90 91 return false; 92 } 93 94 /// Returns true if the pointer is one which would have been considered an 95 /// escape by isNonEscapingLocalObject. 96 static bool isEscapeSource(const Value *V) { 97 if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V)) 98 return true; 99 100 // The load case works because isNonEscapingLocalObject considers all 101 // stores to be escapes (it passes true for the StoreCaptures argument 102 // to PointerMayBeCaptured). 103 if (isa<LoadInst>(V)) 104 return true; 105 106 return false; 107 } 108 109 /// Returns the size of the object specified by V, or UnknownSize if unknown. 110 static uint64_t getObjectSize(const Value *V, const DataLayout &DL, 111 const TargetLibraryInfo &TLI, 112 bool RoundToAlign = false) { 113 uint64_t Size; 114 if (getObjectSize(V, Size, DL, &TLI, RoundToAlign)) 115 return Size; 116 return MemoryLocation::UnknownSize; 117 } 118 119 /// Returns true if we can prove that the object specified by V is smaller than 120 /// Size. 121 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 122 const DataLayout &DL, 123 const TargetLibraryInfo &TLI) { 124 // Note that the meanings of the "object" are slightly different in the 125 // following contexts: 126 // c1: llvm::getObjectSize() 127 // c2: llvm.objectsize() intrinsic 128 // c3: isObjectSmallerThan() 129 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 130 // refers to the "entire object". 131 // 132 // Consider this example: 133 // char *p = (char*)malloc(100) 134 // char *q = p+80; 135 // 136 // In the context of c1 and c2, the "object" pointed by q refers to the 137 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 138 // 139 // However, in the context of c3, the "object" refers to the chunk of memory 140 // being allocated. So, the "object" has 100 bytes, and q points to the middle 141 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 142 // parameter, before the llvm::getObjectSize() is called to get the size of 143 // entire object, we should: 144 // - either rewind the pointer q to the base-address of the object in 145 // question (in this case rewind to p), or 146 // - just give up. It is up to caller to make sure the pointer is pointing 147 // to the base address the object. 148 // 149 // We go for 2nd option for simplicity. 150 if (!isIdentifiedObject(V)) 151 return false; 152 153 // This function needs to use the aligned object size because we allow 154 // reads a bit past the end given sufficient alignment. 155 uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/ true); 156 157 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size; 158 } 159 160 /// Returns true if we can prove that the object specified by V has size Size. 161 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL, 162 const TargetLibraryInfo &TLI) { 163 uint64_t ObjectSize = getObjectSize(V, DL, TLI); 164 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size; 165 } 166 167 //===----------------------------------------------------------------------===// 168 // GetElementPtr Instruction Decomposition and Analysis 169 //===----------------------------------------------------------------------===// 170 171 /// Analyzes the specified value as a linear expression: "A*V + B", where A and 172 /// B are constant integers. 173 /// 174 /// Returns the scale and offset values as APInts and return V as a Value*, and 175 /// return whether we looked through any sign or zero extends. The incoming 176 /// Value is known to have IntegerType and it may already be sign or zero 177 /// extended. 178 /// 179 /// Note that this looks through extends, so the high bits may not be 180 /// represented in the result. 181 /*static*/ const Value *BasicAAResult::GetLinearExpression( 182 const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits, 183 unsigned &SExtBits, const DataLayout &DL, unsigned Depth, 184 AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) { 185 assert(V->getType()->isIntegerTy() && "Not an integer value"); 186 187 // Limit our recursion depth. 188 if (Depth == 6) { 189 Scale = 1; 190 Offset = 0; 191 return V; 192 } 193 194 if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) { 195 // if it's a constant, just convert it to an offset and remove the variable. 196 // If we've been called recursively the Offset bit width will be greater 197 // than the constant's (the Offset's always as wide as the outermost call), 198 // so we'll zext here and process any extension in the isa<SExtInst> & 199 // isa<ZExtInst> cases below. 200 Offset += Const->getValue().zextOrSelf(Offset.getBitWidth()); 201 assert(Scale == 0 && "Constant values don't have a scale"); 202 return V; 203 } 204 205 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { 206 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 207 208 // If we've been called recursively then Offset and Scale will be wider 209 // that the BOp operands. We'll always zext it here as we'll process sign 210 // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases). 211 APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth()); 212 213 switch (BOp->getOpcode()) { 214 default: 215 // We don't understand this instruction, so we can't decompose it any 216 // further. 217 Scale = 1; 218 Offset = 0; 219 return V; 220 case Instruction::Or: 221 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 222 // analyze it. 223 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC, 224 BOp, DT)) { 225 Scale = 1; 226 Offset = 0; 227 return V; 228 } 229 // FALL THROUGH. 230 case Instruction::Add: 231 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 232 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 233 Offset += RHS; 234 break; 235 case Instruction::Sub: 236 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 237 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 238 Offset -= RHS; 239 break; 240 case Instruction::Mul: 241 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 242 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 243 Offset *= RHS; 244 Scale *= RHS; 245 break; 246 case Instruction::Shl: 247 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 248 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 249 Offset <<= RHS.getLimitedValue(); 250 Scale <<= RHS.getLimitedValue(); 251 // the semantics of nsw and nuw for left shifts don't match those of 252 // multiplications, so we won't propagate them. 253 NSW = NUW = false; 254 return V; 255 } 256 257 if (isa<OverflowingBinaryOperator>(BOp)) { 258 NUW &= BOp->hasNoUnsignedWrap(); 259 NSW &= BOp->hasNoSignedWrap(); 260 } 261 return V; 262 } 263 } 264 265 // Since GEP indices are sign extended anyway, we don't care about the high 266 // bits of a sign or zero extended value - just scales and offsets. The 267 // extensions have to be consistent though. 268 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) { 269 Value *CastOp = cast<CastInst>(V)->getOperand(0); 270 unsigned NewWidth = V->getType()->getPrimitiveSizeInBits(); 271 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); 272 unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits; 273 const Value *Result = 274 GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL, 275 Depth + 1, AC, DT, NSW, NUW); 276 277 // zext(zext(%x)) == zext(%x), and similiarly for sext; we'll handle this 278 // by just incrementing the number of bits we've extended by. 279 unsigned ExtendedBy = NewWidth - SmallWidth; 280 281 if (isa<SExtInst>(V) && ZExtBits == 0) { 282 // sext(sext(%x, a), b) == sext(%x, a + b) 283 284 if (NSW) { 285 // We haven't sign-wrapped, so it's valid to decompose sext(%x + c) 286 // into sext(%x) + sext(c). We'll sext the Offset ourselves: 287 unsigned OldWidth = Offset.getBitWidth(); 288 Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth); 289 } else { 290 // We may have signed-wrapped, so don't decompose sext(%x + c) into 291 // sext(%x) + sext(c) 292 Scale = 1; 293 Offset = 0; 294 Result = CastOp; 295 ZExtBits = OldZExtBits; 296 SExtBits = OldSExtBits; 297 } 298 SExtBits += ExtendedBy; 299 } else { 300 // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b) 301 302 if (!NUW) { 303 // We may have unsigned-wrapped, so don't decompose zext(%x + c) into 304 // zext(%x) + zext(c) 305 Scale = 1; 306 Offset = 0; 307 Result = CastOp; 308 ZExtBits = OldZExtBits; 309 SExtBits = OldSExtBits; 310 } 311 ZExtBits += ExtendedBy; 312 } 313 314 return Result; 315 } 316 317 Scale = 1; 318 Offset = 0; 319 return V; 320 } 321 322 /// If V is a symbolic pointer expression, decompose it into a base pointer 323 /// with a constant offset and a number of scaled symbolic offsets. 324 /// 325 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale 326 /// in the VarIndices vector) are Value*'s that are known to be scaled by the 327 /// specified amount, but which may have other unrepresented high bits. As 328 /// such, the gep cannot necessarily be reconstructed from its decomposed form. 329 /// 330 /// When DataLayout is around, this function is capable of analyzing everything 331 /// that GetUnderlyingObject can look through. To be able to do that 332 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search 333 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks 334 /// through pointer casts. 335 /*static*/ const Value *BasicAAResult::DecomposeGEPExpression( 336 const Value *V, int64_t &BaseOffs, 337 SmallVectorImpl<VariableGEPIndex> &VarIndices, bool &MaxLookupReached, 338 const DataLayout &DL, AssumptionCache *AC, DominatorTree *DT) { 339 // Limit recursion depth to limit compile time in crazy cases. 340 unsigned MaxLookup = MaxLookupSearchDepth; 341 MaxLookupReached = false; 342 SearchTimes++; 343 344 BaseOffs = 0; 345 do { 346 // See if this is a bitcast or GEP. 347 const Operator *Op = dyn_cast<Operator>(V); 348 if (!Op) { 349 // The only non-operator case we can handle are GlobalAliases. 350 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 351 if (!GA->mayBeOverridden()) { 352 V = GA->getAliasee(); 353 continue; 354 } 355 } 356 return V; 357 } 358 359 if (Op->getOpcode() == Instruction::BitCast || 360 Op->getOpcode() == Instruction::AddrSpaceCast) { 361 V = Op->getOperand(0); 362 continue; 363 } 364 365 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 366 if (!GEPOp) { 367 // If it's not a GEP, hand it off to SimplifyInstruction to see if it 368 // can come up with something. This matches what GetUnderlyingObject does. 369 if (const Instruction *I = dyn_cast<Instruction>(V)) 370 // TODO: Get a DominatorTree and AssumptionCache and use them here 371 // (these are both now available in this function, but this should be 372 // updated when GetUnderlyingObject is updated). TLI should be 373 // provided also. 374 if (const Value *Simplified = 375 SimplifyInstruction(const_cast<Instruction *>(I), DL)) { 376 V = Simplified; 377 continue; 378 } 379 380 return V; 381 } 382 383 // Don't attempt to analyze GEPs over unsized objects. 384 if (!GEPOp->getOperand(0)->getType()->getPointerElementType()->isSized()) 385 return V; 386 387 unsigned AS = GEPOp->getPointerAddressSpace(); 388 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 389 gep_type_iterator GTI = gep_type_begin(GEPOp); 390 for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end(); 391 I != E; ++I) { 392 const Value *Index = *I; 393 // Compute the (potentially symbolic) offset in bytes for this index. 394 if (StructType *STy = dyn_cast<StructType>(*GTI++)) { 395 // For a struct, add the member offset. 396 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 397 if (FieldNo == 0) 398 continue; 399 400 BaseOffs += DL.getStructLayout(STy)->getElementOffset(FieldNo); 401 continue; 402 } 403 404 // For an array/pointer, add the element offset, explicitly scaled. 405 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 406 if (CIdx->isZero()) 407 continue; 408 BaseOffs += DL.getTypeAllocSize(*GTI) * CIdx->getSExtValue(); 409 continue; 410 } 411 412 uint64_t Scale = DL.getTypeAllocSize(*GTI); 413 unsigned ZExtBits = 0, SExtBits = 0; 414 415 // If the integer type is smaller than the pointer size, it is implicitly 416 // sign extended to pointer size. 417 unsigned Width = Index->getType()->getIntegerBitWidth(); 418 unsigned PointerSize = DL.getPointerSizeInBits(AS); 419 if (PointerSize > Width) 420 SExtBits += PointerSize - Width; 421 422 // Use GetLinearExpression to decompose the index into a C1*V+C2 form. 423 APInt IndexScale(Width, 0), IndexOffset(Width, 0); 424 bool NSW = true, NUW = true; 425 Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits, 426 SExtBits, DL, 0, AC, DT, NSW, NUW); 427 428 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 429 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 430 BaseOffs += IndexOffset.getSExtValue() * Scale; 431 Scale *= IndexScale.getSExtValue(); 432 433 // If we already had an occurrence of this index variable, merge this 434 // scale into it. For example, we want to handle: 435 // A[x][x] -> x*16 + x*4 -> x*20 436 // This also ensures that 'x' only appears in the index list once. 437 for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) { 438 if (VarIndices[i].V == Index && VarIndices[i].ZExtBits == ZExtBits && 439 VarIndices[i].SExtBits == SExtBits) { 440 Scale += VarIndices[i].Scale; 441 VarIndices.erase(VarIndices.begin() + i); 442 break; 443 } 444 } 445 446 // Make sure that we have a scale that makes sense for this target's 447 // pointer size. 448 if (unsigned ShiftBits = 64 - PointerSize) { 449 Scale <<= ShiftBits; 450 Scale = (int64_t)Scale >> ShiftBits; 451 } 452 453 if (Scale) { 454 VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, 455 static_cast<int64_t>(Scale)}; 456 VarIndices.push_back(Entry); 457 } 458 } 459 460 // Analyze the base pointer next. 461 V = GEPOp->getOperand(0); 462 } while (--MaxLookup); 463 464 // If the chain of expressions is too deep, just return early. 465 MaxLookupReached = true; 466 SearchLimitReached++; 467 return V; 468 } 469 470 /// Returns whether the given pointer value points to memory that is local to 471 /// the function, with global constants being considered local to all 472 /// functions. 473 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc, 474 bool OrLocal) { 475 assert(Visited.empty() && "Visited must be cleared after use!"); 476 477 unsigned MaxLookup = 8; 478 SmallVector<const Value *, 16> Worklist; 479 Worklist.push_back(Loc.Ptr); 480 do { 481 const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL); 482 if (!Visited.insert(V).second) { 483 Visited.clear(); 484 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 485 } 486 487 // An alloca instruction defines local memory. 488 if (OrLocal && isa<AllocaInst>(V)) 489 continue; 490 491 // A global constant counts as local memory for our purposes. 492 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 493 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 494 // global to be marked constant in some modules and non-constant in 495 // others. GV may even be a declaration, not a definition. 496 if (!GV->isConstant()) { 497 Visited.clear(); 498 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 499 } 500 continue; 501 } 502 503 // If both select values point to local memory, then so does the select. 504 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 505 Worklist.push_back(SI->getTrueValue()); 506 Worklist.push_back(SI->getFalseValue()); 507 continue; 508 } 509 510 // If all values incoming to a phi node point to local memory, then so does 511 // the phi. 512 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 513 // Don't bother inspecting phi nodes with many operands. 514 if (PN->getNumIncomingValues() > MaxLookup) { 515 Visited.clear(); 516 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 517 } 518 for (Value *IncValue : PN->incoming_values()) 519 Worklist.push_back(IncValue); 520 continue; 521 } 522 523 // Otherwise be conservative. 524 Visited.clear(); 525 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 526 527 } while (!Worklist.empty() && --MaxLookup); 528 529 Visited.clear(); 530 return Worklist.empty(); 531 } 532 533 // FIXME: This code is duplicated with MemoryLocation and should be hoisted to 534 // some common utility location. 535 static bool isMemsetPattern16(const Function *MS, 536 const TargetLibraryInfo &TLI) { 537 if (TLI.has(LibFunc::memset_pattern16) && 538 MS->getName() == "memset_pattern16") { 539 FunctionType *MemsetType = MS->getFunctionType(); 540 if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 && 541 isa<PointerType>(MemsetType->getParamType(0)) && 542 isa<PointerType>(MemsetType->getParamType(1)) && 543 isa<IntegerType>(MemsetType->getParamType(2))) 544 return true; 545 } 546 547 return false; 548 } 549 550 /// Returns the behavior when calling the given call site. 551 FunctionModRefBehavior BasicAAResult::getModRefBehavior(ImmutableCallSite CS) { 552 if (CS.doesNotAccessMemory()) 553 // Can't do better than this. 554 return FMRB_DoesNotAccessMemory; 555 556 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 557 558 // If the callsite knows it only reads memory, don't return worse 559 // than that. 560 if (CS.onlyReadsMemory()) 561 Min = FMRB_OnlyReadsMemory; 562 563 if (CS.onlyAccessesArgMemory()) 564 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 565 566 // The AAResultBase base class has some smarts, lets use them. 567 return FunctionModRefBehavior(AAResultBase::getModRefBehavior(CS) & Min); 568 } 569 570 /// Returns the behavior when calling the given function. For use when the call 571 /// site is not known. 572 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) { 573 // If the function declares it doesn't access memory, we can't do better. 574 if (F->doesNotAccessMemory()) 575 return FMRB_DoesNotAccessMemory; 576 577 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 578 579 // If the function declares it only reads memory, go with that. 580 if (F->onlyReadsMemory()) 581 Min = FMRB_OnlyReadsMemory; 582 583 if (F->onlyAccessesArgMemory()) 584 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 585 586 if (isMemsetPattern16(F, TLI)) 587 Min = FMRB_OnlyAccessesArgumentPointees; 588 589 // Otherwise be conservative. 590 return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F) & Min); 591 } 592 593 ModRefInfo BasicAAResult::getArgModRefInfo(ImmutableCallSite CS, 594 unsigned ArgIdx) { 595 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) 596 switch (II->getIntrinsicID()) { 597 default: 598 break; 599 case Intrinsic::memset: 600 case Intrinsic::memcpy: 601 case Intrinsic::memmove: 602 assert((ArgIdx == 0 || ArgIdx == 1) && 603 "Invalid argument index for memory intrinsic"); 604 return ArgIdx ? MRI_Ref : MRI_Mod; 605 } 606 607 // We can bound the aliasing properties of memset_pattern16 just as we can 608 // for memcpy/memset. This is particularly important because the 609 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 610 // whenever possible. 611 if (CS.getCalledFunction() && 612 isMemsetPattern16(CS.getCalledFunction(), TLI)) { 613 assert((ArgIdx == 0 || ArgIdx == 1) && 614 "Invalid argument index for memset_pattern16"); 615 return ArgIdx ? MRI_Ref : MRI_Mod; 616 } 617 // FIXME: Handle memset_pattern4 and memset_pattern8 also. 618 619 if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadOnly)) 620 return MRI_Ref; 621 622 if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadNone)) 623 return MRI_NoModRef; 624 625 return AAResultBase::getArgModRefInfo(CS, ArgIdx); 626 } 627 628 static bool isAssumeIntrinsic(ImmutableCallSite CS) { 629 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()); 630 return II && II->getIntrinsicID() == Intrinsic::assume; 631 } 632 633 #ifndef NDEBUG 634 static const Function *getParent(const Value *V) { 635 if (const Instruction *inst = dyn_cast<Instruction>(V)) 636 return inst->getParent()->getParent(); 637 638 if (const Argument *arg = dyn_cast<Argument>(V)) 639 return arg->getParent(); 640 641 return nullptr; 642 } 643 644 static bool notDifferentParent(const Value *O1, const Value *O2) { 645 646 const Function *F1 = getParent(O1); 647 const Function *F2 = getParent(O2); 648 649 return !F1 || !F2 || F1 == F2; 650 } 651 #endif 652 653 AliasResult BasicAAResult::alias(const MemoryLocation &LocA, 654 const MemoryLocation &LocB) { 655 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 656 "BasicAliasAnalysis doesn't support interprocedural queries."); 657 658 // If we have a directly cached entry for these locations, we have recursed 659 // through this once, so just return the cached results. Notably, when this 660 // happens, we don't clear the cache. 661 auto CacheIt = AliasCache.find(LocPair(LocA, LocB)); 662 if (CacheIt != AliasCache.end()) 663 return CacheIt->second; 664 665 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr, 666 LocB.Size, LocB.AATags); 667 // AliasCache rarely has more than 1 or 2 elements, always use 668 // shrink_and_clear so it quickly returns to the inline capacity of the 669 // SmallDenseMap if it ever grows larger. 670 // FIXME: This should really be shrink_to_inline_capacity_and_clear(). 671 AliasCache.shrink_and_clear(); 672 VisitedPhiBBs.clear(); 673 return Alias; 674 } 675 676 /// Checks to see if the specified callsite can clobber the specified memory 677 /// object. 678 /// 679 /// Since we only look at local properties of this function, we really can't 680 /// say much about this query. We do, however, use simple "address taken" 681 /// analysis on local objects. 682 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS, 683 const MemoryLocation &Loc) { 684 assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) && 685 "AliasAnalysis query involving multiple functions!"); 686 687 const Value *Object = GetUnderlyingObject(Loc.Ptr, DL); 688 689 // If this is a tail call and Loc.Ptr points to a stack location, we know that 690 // the tail call cannot access or modify the local stack. 691 // We cannot exclude byval arguments here; these belong to the caller of 692 // the current function not to the current function, and a tail callee 693 // may reference them. 694 if (isa<AllocaInst>(Object)) 695 if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) 696 if (CI->isTailCall()) 697 return MRI_NoModRef; 698 699 // If the pointer is to a locally allocated object that does not escape, 700 // then the call can not mod/ref the pointer unless the call takes the pointer 701 // as an argument, and itself doesn't capture it. 702 if (!isa<Constant>(Object) && CS.getInstruction() != Object && 703 isNonEscapingLocalObject(Object)) { 704 bool PassedAsArg = false; 705 unsigned ArgNo = 0; 706 for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end(); 707 CI != CE; ++CI, ++ArgNo) { 708 // Only look at the no-capture or byval pointer arguments. If this 709 // pointer were passed to arguments that were neither of these, then it 710 // couldn't be no-capture. 711 if (!(*CI)->getType()->isPointerTy() || 712 (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo))) 713 continue; 714 715 // If this is a no-capture pointer argument, see if we can tell that it 716 // is impossible to alias the pointer we're checking. If not, we have to 717 // assume that the call could touch the pointer, even though it doesn't 718 // escape. 719 AliasResult AR = 720 getBestAAResults().alias(MemoryLocation(*CI), MemoryLocation(Object)); 721 if (AR) { 722 PassedAsArg = true; 723 break; 724 } 725 } 726 727 if (!PassedAsArg) 728 return MRI_NoModRef; 729 } 730 731 // While the assume intrinsic is marked as arbitrarily writing so that 732 // proper control dependencies will be maintained, it never aliases any 733 // particular memory location. 734 if (isAssumeIntrinsic(CS)) 735 return MRI_NoModRef; 736 737 // The AAResultBase base class has some smarts, lets use them. 738 return AAResultBase::getModRefInfo(CS, Loc); 739 } 740 741 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS1, 742 ImmutableCallSite CS2) { 743 // While the assume intrinsic is marked as arbitrarily writing so that 744 // proper control dependencies will be maintained, it never aliases any 745 // particular memory location. 746 if (isAssumeIntrinsic(CS1) || isAssumeIntrinsic(CS2)) 747 return MRI_NoModRef; 748 749 // The AAResultBase base class has some smarts, lets use them. 750 return AAResultBase::getModRefInfo(CS1, CS2); 751 } 752 753 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators, 754 /// both having the exact same pointer operand. 755 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1, 756 uint64_t V1Size, 757 const GEPOperator *GEP2, 758 uint64_t V2Size, 759 const DataLayout &DL) { 760 761 assert(GEP1->getPointerOperand() == GEP2->getPointerOperand() && 762 "Expected GEPs with the same pointer operand"); 763 764 // Try to determine whether GEP1 and GEP2 index through arrays, into structs, 765 // such that the struct field accesses provably cannot alias. 766 // We also need at least two indices (the pointer, and the struct field). 767 if (GEP1->getNumIndices() != GEP2->getNumIndices() || 768 GEP1->getNumIndices() < 2) 769 return MayAlias; 770 771 // If we don't know the size of the accesses through both GEPs, we can't 772 // determine whether the struct fields accessed can't alias. 773 if (V1Size == MemoryLocation::UnknownSize || 774 V2Size == MemoryLocation::UnknownSize) 775 return MayAlias; 776 777 ConstantInt *C1 = 778 dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1)); 779 ConstantInt *C2 = 780 dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1)); 781 782 // If the last (struct) indices are constants and are equal, the other indices 783 // might be also be dynamically equal, so the GEPs can alias. 784 if (C1 && C2 && C1 == C2) 785 return MayAlias; 786 787 // Find the last-indexed type of the GEP, i.e., the type you'd get if 788 // you stripped the last index. 789 // On the way, look at each indexed type. If there's something other 790 // than an array, different indices can lead to different final types. 791 SmallVector<Value *, 8> IntermediateIndices; 792 793 // Insert the first index; we don't need to check the type indexed 794 // through it as it only drops the pointer indirection. 795 assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine"); 796 IntermediateIndices.push_back(GEP1->getOperand(1)); 797 798 // Insert all the remaining indices but the last one. 799 // Also, check that they all index through arrays. 800 for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) { 801 if (!isa<ArrayType>(GetElementPtrInst::getIndexedType( 802 GEP1->getSourceElementType(), IntermediateIndices))) 803 return MayAlias; 804 IntermediateIndices.push_back(GEP1->getOperand(i + 1)); 805 } 806 807 auto *Ty = GetElementPtrInst::getIndexedType( 808 GEP1->getSourceElementType(), IntermediateIndices); 809 StructType *LastIndexedStruct = dyn_cast<StructType>(Ty); 810 811 if (isa<SequentialType>(Ty)) { 812 // We know that: 813 // - both GEPs begin indexing from the exact same pointer; 814 // - the last indices in both GEPs are constants, indexing into a sequential 815 // type (array or pointer); 816 // - both GEPs only index through arrays prior to that. 817 // 818 // Because array indices greater than the number of elements are valid in 819 // GEPs, unless we know the intermediate indices are identical between 820 // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't 821 // partially overlap. We also need to check that the loaded size matches 822 // the element size, otherwise we could still have overlap. 823 const uint64_t ElementSize = 824 DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType()); 825 if (V1Size != ElementSize || V2Size != ElementSize) 826 return MayAlias; 827 828 for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i) 829 if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1)) 830 return MayAlias; 831 832 // Now we know that the array/pointer that GEP1 indexes into and that 833 // that GEP2 indexes into must either precisely overlap or be disjoint. 834 // Because they cannot partially overlap and because fields in an array 835 // cannot overlap, if we can prove the final indices are different between 836 // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias. 837 838 // If the last indices are constants, we've already checked they don't 839 // equal each other so we can exit early. 840 if (C1 && C2) 841 return NoAlias; 842 if (isKnownNonEqual(GEP1->getOperand(GEP1->getNumOperands() - 1), 843 GEP2->getOperand(GEP2->getNumOperands() - 1), 844 DL)) 845 return NoAlias; 846 return MayAlias; 847 } else if (!LastIndexedStruct || !C1 || !C2) { 848 return MayAlias; 849 } 850 851 // We know that: 852 // - both GEPs begin indexing from the exact same pointer; 853 // - the last indices in both GEPs are constants, indexing into a struct; 854 // - said indices are different, hence, the pointed-to fields are different; 855 // - both GEPs only index through arrays prior to that. 856 // 857 // This lets us determine that the struct that GEP1 indexes into and the 858 // struct that GEP2 indexes into must either precisely overlap or be 859 // completely disjoint. Because they cannot partially overlap, indexing into 860 // different non-overlapping fields of the struct will never alias. 861 862 // Therefore, the only remaining thing needed to show that both GEPs can't 863 // alias is that the fields are not overlapping. 864 const StructLayout *SL = DL.getStructLayout(LastIndexedStruct); 865 const uint64_t StructSize = SL->getSizeInBytes(); 866 const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue()); 867 const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue()); 868 869 auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size, 870 uint64_t V2Off, uint64_t V2Size) { 871 return V1Off < V2Off && V1Off + V1Size <= V2Off && 872 ((V2Off + V2Size <= StructSize) || 873 (V2Off + V2Size - StructSize <= V1Off)); 874 }; 875 876 if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) || 877 EltsDontOverlap(V2Off, V2Size, V1Off, V1Size)) 878 return NoAlias; 879 880 return MayAlias; 881 } 882 883 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against 884 /// another pointer. 885 /// 886 /// We know that V1 is a GEP, but we don't know anything about V2. 887 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for 888 /// V2. 889 AliasResult BasicAAResult::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size, 890 const AAMDNodes &V1AAInfo, const Value *V2, 891 uint64_t V2Size, const AAMDNodes &V2AAInfo, 892 const Value *UnderlyingV1, 893 const Value *UnderlyingV2) { 894 int64_t GEP1BaseOffset; 895 bool GEP1MaxLookupReached; 896 SmallVector<VariableGEPIndex, 4> GEP1VariableIndices; 897 898 // If we have two gep instructions with must-alias or not-alias'ing base 899 // pointers, figure out if the indexes to the GEP tell us anything about the 900 // derived pointer. 901 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { 902 // Do the base pointers alias? 903 AliasResult BaseAlias = 904 aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, AAMDNodes(), 905 UnderlyingV2, MemoryLocation::UnknownSize, AAMDNodes()); 906 907 // Check for geps of non-aliasing underlying pointers where the offsets are 908 // identical. 909 if ((BaseAlias == MayAlias) && V1Size == V2Size) { 910 // Do the base pointers alias assuming type and size. 911 AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, V1AAInfo, 912 UnderlyingV2, V2Size, V2AAInfo); 913 if (PreciseBaseAlias == NoAlias) { 914 // See if the computed offset from the common pointer tells us about the 915 // relation of the resulting pointer. 916 int64_t GEP2BaseOffset; 917 bool GEP2MaxLookupReached; 918 SmallVector<VariableGEPIndex, 4> GEP2VariableIndices; 919 const Value *GEP2BasePtr = 920 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, 921 GEP2MaxLookupReached, DL, &AC, DT); 922 const Value *GEP1BasePtr = 923 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, 924 GEP1MaxLookupReached, DL, &AC, DT); 925 // DecomposeGEPExpression and GetUnderlyingObject should return the 926 // same result except when DecomposeGEPExpression has no DataLayout. 927 // FIXME: They always have a DataLayout so this should become an 928 // assert. 929 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { 930 return MayAlias; 931 } 932 // If the max search depth is reached the result is undefined 933 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 934 return MayAlias; 935 936 // Same offsets. 937 if (GEP1BaseOffset == GEP2BaseOffset && 938 GEP1VariableIndices == GEP2VariableIndices) 939 return NoAlias; 940 GEP1VariableIndices.clear(); 941 } 942 } 943 944 // If we get a No or May, then return it immediately, no amount of analysis 945 // will improve this situation. 946 if (BaseAlias != MustAlias) 947 return BaseAlias; 948 949 // Otherwise, we have a MustAlias. Since the base pointers alias each other 950 // exactly, see if the computed offset from the common pointer tells us 951 // about the relation of the resulting pointer. 952 const Value *GEP1BasePtr = 953 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, 954 GEP1MaxLookupReached, DL, &AC, DT); 955 956 int64_t GEP2BaseOffset; 957 bool GEP2MaxLookupReached; 958 SmallVector<VariableGEPIndex, 4> GEP2VariableIndices; 959 const Value *GEP2BasePtr = 960 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, 961 GEP2MaxLookupReached, DL, &AC, DT); 962 963 // DecomposeGEPExpression and GetUnderlyingObject should return the 964 // same result except when DecomposeGEPExpression has no DataLayout. 965 // FIXME: They always have a DataLayout so this should become an assert. 966 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { 967 return MayAlias; 968 } 969 970 // If we know the two GEPs are based off of the exact same pointer (and not 971 // just the same underlying object), see if that tells us anything about 972 // the resulting pointers. 973 if (GEP1->getPointerOperand() == GEP2->getPointerOperand()) { 974 AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL); 975 // If we couldn't find anything interesting, don't abandon just yet. 976 if (R != MayAlias) 977 return R; 978 } 979 980 // If the max search depth is reached the result is undefined 981 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 982 return MayAlias; 983 984 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 985 // symbolic difference. 986 GEP1BaseOffset -= GEP2BaseOffset; 987 GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices); 988 989 } else { 990 // Check to see if these two pointers are related by the getelementptr 991 // instruction. If one pointer is a GEP with a non-zero index of the other 992 // pointer, we know they cannot alias. 993 994 // If both accesses are unknown size, we can't do anything useful here. 995 if (V1Size == MemoryLocation::UnknownSize && 996 V2Size == MemoryLocation::UnknownSize) 997 return MayAlias; 998 999 AliasResult R = aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, 1000 AAMDNodes(), V2, V2Size, V2AAInfo); 1001 if (R != MustAlias) 1002 // If V2 may alias GEP base pointer, conservatively returns MayAlias. 1003 // If V2 is known not to alias GEP base pointer, then the two values 1004 // cannot alias per GEP semantics: "A pointer value formed from a 1005 // getelementptr instruction is associated with the addresses associated 1006 // with the first operand of the getelementptr". 1007 return R; 1008 1009 const Value *GEP1BasePtr = 1010 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, 1011 GEP1MaxLookupReached, DL, &AC, DT); 1012 1013 // DecomposeGEPExpression and GetUnderlyingObject should return the 1014 // same result except when DecomposeGEPExpression has no DataLayout. 1015 // FIXME: They always have a DataLayout so this should become an assert. 1016 if (GEP1BasePtr != UnderlyingV1) { 1017 return MayAlias; 1018 } 1019 // If the max search depth is reached the result is undefined 1020 if (GEP1MaxLookupReached) 1021 return MayAlias; 1022 } 1023 1024 // In the two GEP Case, if there is no difference in the offsets of the 1025 // computed pointers, the resultant pointers are a must alias. This 1026 // hapens when we have two lexically identical GEP's (for example). 1027 // 1028 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 1029 // must aliases the GEP, the end result is a must alias also. 1030 if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty()) 1031 return MustAlias; 1032 1033 // If there is a constant difference between the pointers, but the difference 1034 // is less than the size of the associated memory object, then we know 1035 // that the objects are partially overlapping. If the difference is 1036 // greater, we know they do not overlap. 1037 if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) { 1038 if (GEP1BaseOffset >= 0) { 1039 if (V2Size != MemoryLocation::UnknownSize) { 1040 if ((uint64_t)GEP1BaseOffset < V2Size) 1041 return PartialAlias; 1042 return NoAlias; 1043 } 1044 } else { 1045 // We have the situation where: 1046 // + + 1047 // | BaseOffset | 1048 // ---------------->| 1049 // |-->V1Size |-------> V2Size 1050 // GEP1 V2 1051 // We need to know that V2Size is not unknown, otherwise we might have 1052 // stripped a gep with negative index ('gep <ptr>, -1, ...). 1053 if (V1Size != MemoryLocation::UnknownSize && 1054 V2Size != MemoryLocation::UnknownSize) { 1055 if (-(uint64_t)GEP1BaseOffset < V1Size) 1056 return PartialAlias; 1057 return NoAlias; 1058 } 1059 } 1060 } 1061 1062 if (!GEP1VariableIndices.empty()) { 1063 uint64_t Modulo = 0; 1064 bool AllPositive = true; 1065 for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i) { 1066 1067 // Try to distinguish something like &A[i][1] against &A[42][0]. 1068 // Grab the least significant bit set in any of the scales. We 1069 // don't need std::abs here (even if the scale's negative) as we'll 1070 // be ^'ing Modulo with itself later. 1071 Modulo |= (uint64_t)GEP1VariableIndices[i].Scale; 1072 1073 if (AllPositive) { 1074 // If the Value could change between cycles, then any reasoning about 1075 // the Value this cycle may not hold in the next cycle. We'll just 1076 // give up if we can't determine conditions that hold for every cycle: 1077 const Value *V = GEP1VariableIndices[i].V; 1078 1079 bool SignKnownZero, SignKnownOne; 1080 ComputeSignBit(const_cast<Value *>(V), SignKnownZero, SignKnownOne, DL, 1081 0, &AC, nullptr, DT); 1082 1083 // Zero-extension widens the variable, and so forces the sign 1084 // bit to zero. 1085 bool IsZExt = GEP1VariableIndices[i].ZExtBits > 0 || isa<ZExtInst>(V); 1086 SignKnownZero |= IsZExt; 1087 SignKnownOne &= !IsZExt; 1088 1089 // If the variable begins with a zero then we know it's 1090 // positive, regardless of whether the value is signed or 1091 // unsigned. 1092 int64_t Scale = GEP1VariableIndices[i].Scale; 1093 AllPositive = 1094 (SignKnownZero && Scale >= 0) || (SignKnownOne && Scale < 0); 1095 } 1096 } 1097 1098 Modulo = Modulo ^ (Modulo & (Modulo - 1)); 1099 1100 // We can compute the difference between the two addresses 1101 // mod Modulo. Check whether that difference guarantees that the 1102 // two locations do not alias. 1103 uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1); 1104 if (V1Size != MemoryLocation::UnknownSize && 1105 V2Size != MemoryLocation::UnknownSize && ModOffset >= V2Size && 1106 V1Size <= Modulo - ModOffset) 1107 return NoAlias; 1108 1109 // If we know all the variables are positive, then GEP1 >= GEP1BasePtr. 1110 // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers 1111 // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr. 1112 if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t)GEP1BaseOffset) 1113 return NoAlias; 1114 1115 if (constantOffsetHeuristic(GEP1VariableIndices, V1Size, V2Size, 1116 GEP1BaseOffset, &AC, DT)) 1117 return NoAlias; 1118 } 1119 1120 // Statically, we can see that the base objects are the same, but the 1121 // pointers have dynamic offsets which we can't resolve. And none of our 1122 // little tricks above worked. 1123 // 1124 // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the 1125 // practical effect of this is protecting TBAA in the case of dynamic 1126 // indices into arrays of unions or malloc'd memory. 1127 return PartialAlias; 1128 } 1129 1130 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) { 1131 // If the results agree, take it. 1132 if (A == B) 1133 return A; 1134 // A mix of PartialAlias and MustAlias is PartialAlias. 1135 if ((A == PartialAlias && B == MustAlias) || 1136 (B == PartialAlias && A == MustAlias)) 1137 return PartialAlias; 1138 // Otherwise, we don't know anything. 1139 return MayAlias; 1140 } 1141 1142 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction 1143 /// against another. 1144 AliasResult BasicAAResult::aliasSelect(const SelectInst *SI, uint64_t SISize, 1145 const AAMDNodes &SIAAInfo, 1146 const Value *V2, uint64_t V2Size, 1147 const AAMDNodes &V2AAInfo) { 1148 // If the values are Selects with the same condition, we can do a more precise 1149 // check: just check for aliases between the values on corresponding arms. 1150 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1151 if (SI->getCondition() == SI2->getCondition()) { 1152 AliasResult Alias = aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, 1153 SI2->getTrueValue(), V2Size, V2AAInfo); 1154 if (Alias == MayAlias) 1155 return MayAlias; 1156 AliasResult ThisAlias = 1157 aliasCheck(SI->getFalseValue(), SISize, SIAAInfo, 1158 SI2->getFalseValue(), V2Size, V2AAInfo); 1159 return MergeAliasResults(ThisAlias, Alias); 1160 } 1161 1162 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1163 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1164 AliasResult Alias = 1165 aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), SISize, SIAAInfo); 1166 if (Alias == MayAlias) 1167 return MayAlias; 1168 1169 AliasResult ThisAlias = 1170 aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo); 1171 return MergeAliasResults(ThisAlias, Alias); 1172 } 1173 1174 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against 1175 /// another. 1176 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, uint64_t PNSize, 1177 const AAMDNodes &PNAAInfo, const Value *V2, 1178 uint64_t V2Size, 1179 const AAMDNodes &V2AAInfo) { 1180 // Track phi nodes we have visited. We use this information when we determine 1181 // value equivalence. 1182 VisitedPhiBBs.insert(PN->getParent()); 1183 1184 // If the values are PHIs in the same block, we can do a more precise 1185 // as well as efficient check: just check for aliases between the values 1186 // on corresponding edges. 1187 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1188 if (PN2->getParent() == PN->getParent()) { 1189 LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo), 1190 MemoryLocation(V2, V2Size, V2AAInfo)); 1191 if (PN > V2) 1192 std::swap(Locs.first, Locs.second); 1193 // Analyse the PHIs' inputs under the assumption that the PHIs are 1194 // NoAlias. 1195 // If the PHIs are May/MustAlias there must be (recursively) an input 1196 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or 1197 // there must be an operation on the PHIs within the PHIs' value cycle 1198 // that causes a MayAlias. 1199 // Pretend the phis do not alias. 1200 AliasResult Alias = NoAlias; 1201 assert(AliasCache.count(Locs) && 1202 "There must exist an entry for the phi node"); 1203 AliasResult OrigAliasResult = AliasCache[Locs]; 1204 AliasCache[Locs] = NoAlias; 1205 1206 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1207 AliasResult ThisAlias = 1208 aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo, 1209 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), 1210 V2Size, V2AAInfo); 1211 Alias = MergeAliasResults(ThisAlias, Alias); 1212 if (Alias == MayAlias) 1213 break; 1214 } 1215 1216 // Reset if speculation failed. 1217 if (Alias != NoAlias) 1218 AliasCache[Locs] = OrigAliasResult; 1219 1220 return Alias; 1221 } 1222 1223 SmallPtrSet<Value *, 4> UniqueSrc; 1224 SmallVector<Value *, 4> V1Srcs; 1225 bool isRecursive = false; 1226 for (Value *PV1 : PN->incoming_values()) { 1227 if (isa<PHINode>(PV1)) 1228 // If any of the source itself is a PHI, return MayAlias conservatively 1229 // to avoid compile time explosion. The worst possible case is if both 1230 // sides are PHI nodes. In which case, this is O(m x n) time where 'm' 1231 // and 'n' are the number of PHI sources. 1232 return MayAlias; 1233 1234 if (EnableRecPhiAnalysis) 1235 if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) { 1236 // Check whether the incoming value is a GEP that advances the pointer 1237 // result of this PHI node (e.g. in a loop). If this is the case, we 1238 // would recurse and always get a MayAlias. Handle this case specially 1239 // below. 1240 if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 && 1241 isa<ConstantInt>(PV1GEP->idx_begin())) { 1242 isRecursive = true; 1243 continue; 1244 } 1245 } 1246 1247 if (UniqueSrc.insert(PV1).second) 1248 V1Srcs.push_back(PV1); 1249 } 1250 1251 // If this PHI node is recursive, set the size of the accessed memory to 1252 // unknown to represent all the possible values the GEP could advance the 1253 // pointer to. 1254 if (isRecursive) 1255 PNSize = MemoryLocation::UnknownSize; 1256 1257 AliasResult Alias = 1258 aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], PNSize, PNAAInfo); 1259 1260 // Early exit if the check of the first PHI source against V2 is MayAlias. 1261 // Other results are not possible. 1262 if (Alias == MayAlias) 1263 return MayAlias; 1264 1265 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1266 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1267 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1268 Value *V = V1Srcs[i]; 1269 1270 AliasResult ThisAlias = 1271 aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo); 1272 Alias = MergeAliasResults(ThisAlias, Alias); 1273 if (Alias == MayAlias) 1274 break; 1275 } 1276 1277 return Alias; 1278 } 1279 1280 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as 1281 /// array references. 1282 AliasResult BasicAAResult::aliasCheck(const Value *V1, uint64_t V1Size, 1283 AAMDNodes V1AAInfo, const Value *V2, 1284 uint64_t V2Size, AAMDNodes V2AAInfo) { 1285 // If either of the memory references is empty, it doesn't matter what the 1286 // pointer values are. 1287 if (V1Size == 0 || V2Size == 0) 1288 return NoAlias; 1289 1290 // Strip off any casts if they exist. 1291 V1 = V1->stripPointerCasts(); 1292 V2 = V2->stripPointerCasts(); 1293 1294 // If V1 or V2 is undef, the result is NoAlias because we can always pick a 1295 // value for undef that aliases nothing in the program. 1296 if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) 1297 return NoAlias; 1298 1299 // Are we checking for alias of the same value? 1300 // Because we look 'through' phi nodes we could look at "Value" pointers from 1301 // different iterations. We must therefore make sure that this is not the 1302 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1303 // happen by looking at the visited phi nodes and making sure they cannot 1304 // reach the value. 1305 if (isValueEqualInPotentialCycles(V1, V2)) 1306 return MustAlias; 1307 1308 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1309 return NoAlias; // Scalars cannot alias each other 1310 1311 // Figure out what objects these things are pointing to if we can. 1312 const Value *O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth); 1313 const Value *O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth); 1314 1315 // Null values in the default address space don't point to any object, so they 1316 // don't alias any other pointer. 1317 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1318 if (CPN->getType()->getAddressSpace() == 0) 1319 return NoAlias; 1320 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1321 if (CPN->getType()->getAddressSpace() == 0) 1322 return NoAlias; 1323 1324 if (O1 != O2) { 1325 // If V1/V2 point to two different objects we know that we have no alias. 1326 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1327 return NoAlias; 1328 1329 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1330 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1331 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1332 return NoAlias; 1333 1334 // Function arguments can't alias with things that are known to be 1335 // unambigously identified at the function level. 1336 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1337 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1338 return NoAlias; 1339 1340 // Most objects can't alias null. 1341 if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) || 1342 (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2))) 1343 return NoAlias; 1344 1345 // If one pointer is the result of a call/invoke or load and the other is a 1346 // non-escaping local object within the same function, then we know the 1347 // object couldn't escape to a point where the call could return it. 1348 // 1349 // Note that if the pointers are in different functions, there are a 1350 // variety of complications. A call with a nocapture argument may still 1351 // temporary store the nocapture argument's value in a temporary memory 1352 // location if that memory location doesn't escape. Or it may pass a 1353 // nocapture value to other functions as long as they don't capture it. 1354 if (isEscapeSource(O1) && isNonEscapingLocalObject(O2)) 1355 return NoAlias; 1356 if (isEscapeSource(O2) && isNonEscapingLocalObject(O1)) 1357 return NoAlias; 1358 } 1359 1360 // If the size of one access is larger than the entire object on the other 1361 // side, then we know such behavior is undefined and can assume no alias. 1362 if ((V1Size != MemoryLocation::UnknownSize && 1363 isObjectSmallerThan(O2, V1Size, DL, TLI)) || 1364 (V2Size != MemoryLocation::UnknownSize && 1365 isObjectSmallerThan(O1, V2Size, DL, TLI))) 1366 return NoAlias; 1367 1368 // Check the cache before climbing up use-def chains. This also terminates 1369 // otherwise infinitely recursive queries. 1370 LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo), 1371 MemoryLocation(V2, V2Size, V2AAInfo)); 1372 if (V1 > V2) 1373 std::swap(Locs.first, Locs.second); 1374 std::pair<AliasCacheTy::iterator, bool> Pair = 1375 AliasCache.insert(std::make_pair(Locs, MayAlias)); 1376 if (!Pair.second) 1377 return Pair.first->second; 1378 1379 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the 1380 // GEP can't simplify, we don't even look at the PHI cases. 1381 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) { 1382 std::swap(V1, V2); 1383 std::swap(V1Size, V2Size); 1384 std::swap(O1, O2); 1385 std::swap(V1AAInfo, V2AAInfo); 1386 } 1387 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1388 AliasResult Result = 1389 aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2); 1390 if (Result != MayAlias) 1391 return AliasCache[Locs] = Result; 1392 } 1393 1394 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) { 1395 std::swap(V1, V2); 1396 std::swap(V1Size, V2Size); 1397 std::swap(V1AAInfo, V2AAInfo); 1398 } 1399 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1400 AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo); 1401 if (Result != MayAlias) 1402 return AliasCache[Locs] = Result; 1403 } 1404 1405 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) { 1406 std::swap(V1, V2); 1407 std::swap(V1Size, V2Size); 1408 std::swap(V1AAInfo, V2AAInfo); 1409 } 1410 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1411 AliasResult Result = 1412 aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo); 1413 if (Result != MayAlias) 1414 return AliasCache[Locs] = Result; 1415 } 1416 1417 // If both pointers are pointing into the same object and one of them 1418 // accesses is accessing the entire object, then the accesses must 1419 // overlap in some way. 1420 if (O1 == O2) 1421 if ((V1Size != MemoryLocation::UnknownSize && 1422 isObjectSize(O1, V1Size, DL, TLI)) || 1423 (V2Size != MemoryLocation::UnknownSize && 1424 isObjectSize(O2, V2Size, DL, TLI))) 1425 return AliasCache[Locs] = PartialAlias; 1426 1427 // Recurse back into the best AA results we have, potentially with refined 1428 // memory locations. We have already ensured that BasicAA has a MayAlias 1429 // cache result for these, so any recursion back into BasicAA won't loop. 1430 AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second); 1431 return AliasCache[Locs] = Result; 1432 } 1433 1434 /// Check whether two Values can be considered equivalent. 1435 /// 1436 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether 1437 /// they can not be part of a cycle in the value graph by looking at all 1438 /// visited phi nodes an making sure that the phis cannot reach the value. We 1439 /// have to do this because we are looking through phi nodes (That is we say 1440 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 1441 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V, 1442 const Value *V2) { 1443 if (V != V2) 1444 return false; 1445 1446 const Instruction *Inst = dyn_cast<Instruction>(V); 1447 if (!Inst) 1448 return true; 1449 1450 if (VisitedPhiBBs.empty()) 1451 return true; 1452 1453 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) 1454 return false; 1455 1456 // Make sure that the visited phis cannot reach the Value. This ensures that 1457 // the Values cannot come from different iterations of a potential cycle the 1458 // phi nodes could be involved in. 1459 for (auto *P : VisitedPhiBBs) 1460 if (isPotentiallyReachable(&P->front(), Inst, DT, LI)) 1461 return false; 1462 1463 return true; 1464 } 1465 1466 /// Computes the symbolic difference between two de-composed GEPs. 1467 /// 1468 /// Dest and Src are the variable indices from two decomposed GetElementPtr 1469 /// instructions GEP1 and GEP2 which have common base pointers. 1470 void BasicAAResult::GetIndexDifference( 1471 SmallVectorImpl<VariableGEPIndex> &Dest, 1472 const SmallVectorImpl<VariableGEPIndex> &Src) { 1473 if (Src.empty()) 1474 return; 1475 1476 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 1477 const Value *V = Src[i].V; 1478 unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits; 1479 int64_t Scale = Src[i].Scale; 1480 1481 // Find V in Dest. This is N^2, but pointer indices almost never have more 1482 // than a few variable indexes. 1483 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 1484 if (!isValueEqualInPotentialCycles(Dest[j].V, V) || 1485 Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits) 1486 continue; 1487 1488 // If we found it, subtract off Scale V's from the entry in Dest. If it 1489 // goes to zero, remove the entry. 1490 if (Dest[j].Scale != Scale) 1491 Dest[j].Scale -= Scale; 1492 else 1493 Dest.erase(Dest.begin() + j); 1494 Scale = 0; 1495 break; 1496 } 1497 1498 // If we didn't consume this entry, add it to the end of the Dest list. 1499 if (Scale) { 1500 VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale}; 1501 Dest.push_back(Entry); 1502 } 1503 } 1504 } 1505 1506 bool BasicAAResult::constantOffsetHeuristic( 1507 const SmallVectorImpl<VariableGEPIndex> &VarIndices, uint64_t V1Size, 1508 uint64_t V2Size, int64_t BaseOffset, AssumptionCache *AC, 1509 DominatorTree *DT) { 1510 if (VarIndices.size() != 2 || V1Size == MemoryLocation::UnknownSize || 1511 V2Size == MemoryLocation::UnknownSize) 1512 return false; 1513 1514 const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1]; 1515 1516 if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits || 1517 Var0.Scale != -Var1.Scale) 1518 return false; 1519 1520 unsigned Width = Var1.V->getType()->getIntegerBitWidth(); 1521 1522 // We'll strip off the Extensions of Var0 and Var1 and do another round 1523 // of GetLinearExpression decomposition. In the example above, if Var0 1524 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1. 1525 1526 APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0), 1527 V1Offset(Width, 0); 1528 bool NSW = true, NUW = true; 1529 unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0; 1530 const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits, 1531 V0SExtBits, DL, 0, AC, DT, NSW, NUW); 1532 NSW = true, NUW = true; 1533 const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits, 1534 V1SExtBits, DL, 0, AC, DT, NSW, NUW); 1535 1536 if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits || 1537 V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1)) 1538 return false; 1539 1540 // We have a hit - Var0 and Var1 only differ by a constant offset! 1541 1542 // If we've been sext'ed then zext'd the maximum difference between Var0 and 1543 // Var1 is possible to calculate, but we're just interested in the absolute 1544 // minimum difference between the two. The minimum distance may occur due to 1545 // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so 1546 // the minimum distance between %i and %i + 5 is 3. 1547 APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff; 1548 MinDiff = APIntOps::umin(MinDiff, Wrapped); 1549 uint64_t MinDiffBytes = MinDiff.getZExtValue() * std::abs(Var0.Scale); 1550 1551 // We can't definitely say whether GEP1 is before or after V2 due to wrapping 1552 // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other 1553 // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and 1554 // V2Size can fit in the MinDiffBytes gap. 1555 return V1Size + std::abs(BaseOffset) <= MinDiffBytes && 1556 V2Size + std::abs(BaseOffset) <= MinDiffBytes; 1557 } 1558 1559 //===----------------------------------------------------------------------===// 1560 // BasicAliasAnalysis Pass 1561 //===----------------------------------------------------------------------===// 1562 1563 char BasicAA::PassID; 1564 1565 BasicAAResult BasicAA::run(Function &F, AnalysisManager<Function> *AM) { 1566 return BasicAAResult(F.getParent()->getDataLayout(), 1567 AM->getResult<TargetLibraryAnalysis>(F), 1568 AM->getResult<AssumptionAnalysis>(F), 1569 AM->getCachedResult<DominatorTreeAnalysis>(F), 1570 AM->getCachedResult<LoopAnalysis>(F)); 1571 } 1572 1573 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) { 1574 initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry()); 1575 } 1576 1577 char BasicAAWrapperPass::ID = 0; 1578 void BasicAAWrapperPass::anchor() {} 1579 1580 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa", 1581 "Basic Alias Analysis (stateless AA impl)", true, true) 1582 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1583 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1584 INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa", 1585 "Basic Alias Analysis (stateless AA impl)", true, true) 1586 1587 FunctionPass *llvm::createBasicAAWrapperPass() { 1588 return new BasicAAWrapperPass(); 1589 } 1590 1591 bool BasicAAWrapperPass::runOnFunction(Function &F) { 1592 auto &ACT = getAnalysis<AssumptionCacheTracker>(); 1593 auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); 1594 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 1595 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 1596 1597 Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), TLIWP.getTLI(), 1598 ACT.getAssumptionCache(F), 1599 DTWP ? &DTWP->getDomTree() : nullptr, 1600 LIWP ? &LIWP->getLoopInfo() : nullptr)); 1601 1602 return false; 1603 } 1604 1605 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1606 AU.setPreservesAll(); 1607 AU.addRequired<AssumptionCacheTracker>(); 1608 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1609 } 1610 1611 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) { 1612 return BasicAAResult( 1613 F.getParent()->getDataLayout(), 1614 P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 1615 P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); 1616 } 1617