Home | History | Annotate | Download | only in Analysis
      1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the primary stateless implementation of the
     11 // Alias Analysis interface that implements identities (two different
     12 // globals cannot alias, etc), but does no stateful analysis.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "llvm/Analysis/BasicAliasAnalysis.h"
     17 #include "llvm/ADT/SmallVector.h"
     18 #include "llvm/ADT/Statistic.h"
     19 #include "llvm/Analysis/AliasAnalysis.h"
     20 #include "llvm/Analysis/CFG.h"
     21 #include "llvm/Analysis/CaptureTracking.h"
     22 #include "llvm/Analysis/InstructionSimplify.h"
     23 #include "llvm/Analysis/LoopInfo.h"
     24 #include "llvm/Analysis/MemoryBuiltins.h"
     25 #include "llvm/Analysis/ValueTracking.h"
     26 #include "llvm/Analysis/AssumptionCache.h"
     27 #include "llvm/IR/Constants.h"
     28 #include "llvm/IR/DataLayout.h"
     29 #include "llvm/IR/DerivedTypes.h"
     30 #include "llvm/IR/Dominators.h"
     31 #include "llvm/IR/GlobalAlias.h"
     32 #include "llvm/IR/GlobalVariable.h"
     33 #include "llvm/IR/Instructions.h"
     34 #include "llvm/IR/IntrinsicInst.h"
     35 #include "llvm/IR/LLVMContext.h"
     36 #include "llvm/IR/Operator.h"
     37 #include "llvm/Pass.h"
     38 #include "llvm/Support/ErrorHandling.h"
     39 #include <algorithm>
     40 using namespace llvm;
     41 
     42 /// Enable analysis of recursive PHI nodes.
     43 static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden,
     44                                           cl::init(false));
     45 
     46 /// SearchLimitReached / SearchTimes shows how often the limit of
     47 /// to decompose GEPs is reached. It will affect the precision
     48 /// of basic alias analysis.
     49 #define DEBUG_TYPE "basicaa"
     50 STATISTIC(SearchLimitReached, "Number of times the limit to "
     51                               "decompose GEPs is reached");
     52 STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
     53 
     54 /// Cutoff after which to stop analysing a set of phi nodes potentially involved
     55 /// in a cycle. Because we are analysing 'through' phi nodes we need to be
     56 /// careful with value equivalence. We use reachability to make sure a value
     57 /// cannot be involved in a cycle.
     58 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
     59 
     60 // The max limit of the search depth in DecomposeGEPExpression() and
     61 // GetUnderlyingObject(), both functions need to use the same search
     62 // depth otherwise the algorithm in aliasGEP will assert.
     63 static const unsigned MaxLookupSearchDepth = 6;
     64 
     65 //===----------------------------------------------------------------------===//
     66 // Useful predicates
     67 //===----------------------------------------------------------------------===//
     68 
     69 /// Returns true if the pointer is to a function-local object that never
     70 /// escapes from the function.
     71 static bool isNonEscapingLocalObject(const Value *V) {
     72   // If this is a local allocation, check to see if it escapes.
     73   if (isa<AllocaInst>(V) || isNoAliasCall(V))
     74     // Set StoreCaptures to True so that we can assume in our callers that the
     75     // pointer is not the result of a load instruction. Currently
     76     // PointerMayBeCaptured doesn't have any special analysis for the
     77     // StoreCaptures=false case; if it did, our callers could be refined to be
     78     // more precise.
     79     return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
     80 
     81   // If this is an argument that corresponds to a byval or noalias argument,
     82   // then it has not escaped before entering the function.  Check if it escapes
     83   // inside the function.
     84   if (const Argument *A = dyn_cast<Argument>(V))
     85     if (A->hasByValAttr() || A->hasNoAliasAttr())
     86       // Note even if the argument is marked nocapture we still need to check
     87       // for copies made inside the function. The nocapture attribute only
     88       // specifies that there are no copies made that outlive the function.
     89       return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
     90 
     91   return false;
     92 }
     93 
     94 /// Returns true if the pointer is one which would have been considered an
     95 /// escape by isNonEscapingLocalObject.
     96 static bool isEscapeSource(const Value *V) {
     97   if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
     98     return true;
     99 
    100   // The load case works because isNonEscapingLocalObject considers all
    101   // stores to be escapes (it passes true for the StoreCaptures argument
    102   // to PointerMayBeCaptured).
    103   if (isa<LoadInst>(V))
    104     return true;
    105 
    106   return false;
    107 }
    108 
    109 /// Returns the size of the object specified by V, or UnknownSize if unknown.
    110 static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
    111                               const TargetLibraryInfo &TLI,
    112                               bool RoundToAlign = false) {
    113   uint64_t Size;
    114   if (getObjectSize(V, Size, DL, &TLI, RoundToAlign))
    115     return Size;
    116   return MemoryLocation::UnknownSize;
    117 }
    118 
    119 /// Returns true if we can prove that the object specified by V is smaller than
    120 /// Size.
    121 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
    122                                 const DataLayout &DL,
    123                                 const TargetLibraryInfo &TLI) {
    124   // Note that the meanings of the "object" are slightly different in the
    125   // following contexts:
    126   //    c1: llvm::getObjectSize()
    127   //    c2: llvm.objectsize() intrinsic
    128   //    c3: isObjectSmallerThan()
    129   // c1 and c2 share the same meaning; however, the meaning of "object" in c3
    130   // refers to the "entire object".
    131   //
    132   //  Consider this example:
    133   //     char *p = (char*)malloc(100)
    134   //     char *q = p+80;
    135   //
    136   //  In the context of c1 and c2, the "object" pointed by q refers to the
    137   // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
    138   //
    139   //  However, in the context of c3, the "object" refers to the chunk of memory
    140   // being allocated. So, the "object" has 100 bytes, and q points to the middle
    141   // the "object". In case q is passed to isObjectSmallerThan() as the 1st
    142   // parameter, before the llvm::getObjectSize() is called to get the size of
    143   // entire object, we should:
    144   //    - either rewind the pointer q to the base-address of the object in
    145   //      question (in this case rewind to p), or
    146   //    - just give up. It is up to caller to make sure the pointer is pointing
    147   //      to the base address the object.
    148   //
    149   // We go for 2nd option for simplicity.
    150   if (!isIdentifiedObject(V))
    151     return false;
    152 
    153   // This function needs to use the aligned object size because we allow
    154   // reads a bit past the end given sufficient alignment.
    155   uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/ true);
    156 
    157   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
    158 }
    159 
    160 /// Returns true if we can prove that the object specified by V has size Size.
    161 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
    162                          const TargetLibraryInfo &TLI) {
    163   uint64_t ObjectSize = getObjectSize(V, DL, TLI);
    164   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
    165 }
    166 
    167 //===----------------------------------------------------------------------===//
    168 // GetElementPtr Instruction Decomposition and Analysis
    169 //===----------------------------------------------------------------------===//
    170 
    171 /// Analyzes the specified value as a linear expression: "A*V + B", where A and
    172 /// B are constant integers.
    173 ///
    174 /// Returns the scale and offset values as APInts and return V as a Value*, and
    175 /// return whether we looked through any sign or zero extends.  The incoming
    176 /// Value is known to have IntegerType and it may already be sign or zero
    177 /// extended.
    178 ///
    179 /// Note that this looks through extends, so the high bits may not be
    180 /// represented in the result.
    181 /*static*/ const Value *BasicAAResult::GetLinearExpression(
    182     const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits,
    183     unsigned &SExtBits, const DataLayout &DL, unsigned Depth,
    184     AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) {
    185   assert(V->getType()->isIntegerTy() && "Not an integer value");
    186 
    187   // Limit our recursion depth.
    188   if (Depth == 6) {
    189     Scale = 1;
    190     Offset = 0;
    191     return V;
    192   }
    193 
    194   if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
    195     // if it's a constant, just convert it to an offset and remove the variable.
    196     // If we've been called recursively the Offset bit width will be greater
    197     // than the constant's (the Offset's always as wide as the outermost call),
    198     // so we'll zext here and process any extension in the isa<SExtInst> &
    199     // isa<ZExtInst> cases below.
    200     Offset += Const->getValue().zextOrSelf(Offset.getBitWidth());
    201     assert(Scale == 0 && "Constant values don't have a scale");
    202     return V;
    203   }
    204 
    205   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
    206     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
    207 
    208       // If we've been called recursively then Offset and Scale will be wider
    209       // that the BOp operands. We'll always zext it here as we'll process sign
    210       // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
    211       APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth());
    212 
    213       switch (BOp->getOpcode()) {
    214       default:
    215         // We don't understand this instruction, so we can't decompose it any
    216         // further.
    217         Scale = 1;
    218         Offset = 0;
    219         return V;
    220       case Instruction::Or:
    221         // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
    222         // analyze it.
    223         if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
    224                                BOp, DT)) {
    225           Scale = 1;
    226           Offset = 0;
    227           return V;
    228         }
    229       // FALL THROUGH.
    230       case Instruction::Add:
    231         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
    232                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
    233         Offset += RHS;
    234         break;
    235       case Instruction::Sub:
    236         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
    237                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
    238         Offset -= RHS;
    239         break;
    240       case Instruction::Mul:
    241         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
    242                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
    243         Offset *= RHS;
    244         Scale *= RHS;
    245         break;
    246       case Instruction::Shl:
    247         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
    248                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
    249         Offset <<= RHS.getLimitedValue();
    250         Scale <<= RHS.getLimitedValue();
    251         // the semantics of nsw and nuw for left shifts don't match those of
    252         // multiplications, so we won't propagate them.
    253         NSW = NUW = false;
    254         return V;
    255       }
    256 
    257       if (isa<OverflowingBinaryOperator>(BOp)) {
    258         NUW &= BOp->hasNoUnsignedWrap();
    259         NSW &= BOp->hasNoSignedWrap();
    260       }
    261       return V;
    262     }
    263   }
    264 
    265   // Since GEP indices are sign extended anyway, we don't care about the high
    266   // bits of a sign or zero extended value - just scales and offsets.  The
    267   // extensions have to be consistent though.
    268   if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
    269     Value *CastOp = cast<CastInst>(V)->getOperand(0);
    270     unsigned NewWidth = V->getType()->getPrimitiveSizeInBits();
    271     unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
    272     unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits;
    273     const Value *Result =
    274         GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL,
    275                             Depth + 1, AC, DT, NSW, NUW);
    276 
    277     // zext(zext(%x)) == zext(%x), and similiarly for sext; we'll handle this
    278     // by just incrementing the number of bits we've extended by.
    279     unsigned ExtendedBy = NewWidth - SmallWidth;
    280 
    281     if (isa<SExtInst>(V) && ZExtBits == 0) {
    282       // sext(sext(%x, a), b) == sext(%x, a + b)
    283 
    284       if (NSW) {
    285         // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
    286         // into sext(%x) + sext(c). We'll sext the Offset ourselves:
    287         unsigned OldWidth = Offset.getBitWidth();
    288         Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth);
    289       } else {
    290         // We may have signed-wrapped, so don't decompose sext(%x + c) into
    291         // sext(%x) + sext(c)
    292         Scale = 1;
    293         Offset = 0;
    294         Result = CastOp;
    295         ZExtBits = OldZExtBits;
    296         SExtBits = OldSExtBits;
    297       }
    298       SExtBits += ExtendedBy;
    299     } else {
    300       // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
    301 
    302       if (!NUW) {
    303         // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
    304         // zext(%x) + zext(c)
    305         Scale = 1;
    306         Offset = 0;
    307         Result = CastOp;
    308         ZExtBits = OldZExtBits;
    309         SExtBits = OldSExtBits;
    310       }
    311       ZExtBits += ExtendedBy;
    312     }
    313 
    314     return Result;
    315   }
    316 
    317   Scale = 1;
    318   Offset = 0;
    319   return V;
    320 }
    321 
    322 /// If V is a symbolic pointer expression, decompose it into a base pointer
    323 /// with a constant offset and a number of scaled symbolic offsets.
    324 ///
    325 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
    326 /// in the VarIndices vector) are Value*'s that are known to be scaled by the
    327 /// specified amount, but which may have other unrepresented high bits. As
    328 /// such, the gep cannot necessarily be reconstructed from its decomposed form.
    329 ///
    330 /// When DataLayout is around, this function is capable of analyzing everything
    331 /// that GetUnderlyingObject can look through. To be able to do that
    332 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search
    333 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks
    334 /// through pointer casts.
    335 /*static*/ const Value *BasicAAResult::DecomposeGEPExpression(
    336     const Value *V, int64_t &BaseOffs,
    337     SmallVectorImpl<VariableGEPIndex> &VarIndices, bool &MaxLookupReached,
    338     const DataLayout &DL, AssumptionCache *AC, DominatorTree *DT) {
    339   // Limit recursion depth to limit compile time in crazy cases.
    340   unsigned MaxLookup = MaxLookupSearchDepth;
    341   MaxLookupReached = false;
    342   SearchTimes++;
    343 
    344   BaseOffs = 0;
    345   do {
    346     // See if this is a bitcast or GEP.
    347     const Operator *Op = dyn_cast<Operator>(V);
    348     if (!Op) {
    349       // The only non-operator case we can handle are GlobalAliases.
    350       if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
    351         if (!GA->mayBeOverridden()) {
    352           V = GA->getAliasee();
    353           continue;
    354         }
    355       }
    356       return V;
    357     }
    358 
    359     if (Op->getOpcode() == Instruction::BitCast ||
    360         Op->getOpcode() == Instruction::AddrSpaceCast) {
    361       V = Op->getOperand(0);
    362       continue;
    363     }
    364 
    365     const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
    366     if (!GEPOp) {
    367       // If it's not a GEP, hand it off to SimplifyInstruction to see if it
    368       // can come up with something. This matches what GetUnderlyingObject does.
    369       if (const Instruction *I = dyn_cast<Instruction>(V))
    370         // TODO: Get a DominatorTree and AssumptionCache and use them here
    371         // (these are both now available in this function, but this should be
    372         // updated when GetUnderlyingObject is updated). TLI should be
    373         // provided also.
    374         if (const Value *Simplified =
    375                 SimplifyInstruction(const_cast<Instruction *>(I), DL)) {
    376           V = Simplified;
    377           continue;
    378         }
    379 
    380       return V;
    381     }
    382 
    383     // Don't attempt to analyze GEPs over unsized objects.
    384     if (!GEPOp->getOperand(0)->getType()->getPointerElementType()->isSized())
    385       return V;
    386 
    387     unsigned AS = GEPOp->getPointerAddressSpace();
    388     // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
    389     gep_type_iterator GTI = gep_type_begin(GEPOp);
    390     for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
    391          I != E; ++I) {
    392       const Value *Index = *I;
    393       // Compute the (potentially symbolic) offset in bytes for this index.
    394       if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
    395         // For a struct, add the member offset.
    396         unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
    397         if (FieldNo == 0)
    398           continue;
    399 
    400         BaseOffs += DL.getStructLayout(STy)->getElementOffset(FieldNo);
    401         continue;
    402       }
    403 
    404       // For an array/pointer, add the element offset, explicitly scaled.
    405       if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
    406         if (CIdx->isZero())
    407           continue;
    408         BaseOffs += DL.getTypeAllocSize(*GTI) * CIdx->getSExtValue();
    409         continue;
    410       }
    411 
    412       uint64_t Scale = DL.getTypeAllocSize(*GTI);
    413       unsigned ZExtBits = 0, SExtBits = 0;
    414 
    415       // If the integer type is smaller than the pointer size, it is implicitly
    416       // sign extended to pointer size.
    417       unsigned Width = Index->getType()->getIntegerBitWidth();
    418       unsigned PointerSize = DL.getPointerSizeInBits(AS);
    419       if (PointerSize > Width)
    420         SExtBits += PointerSize - Width;
    421 
    422       // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
    423       APInt IndexScale(Width, 0), IndexOffset(Width, 0);
    424       bool NSW = true, NUW = true;
    425       Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits,
    426                                   SExtBits, DL, 0, AC, DT, NSW, NUW);
    427 
    428       // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
    429       // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
    430       BaseOffs += IndexOffset.getSExtValue() * Scale;
    431       Scale *= IndexScale.getSExtValue();
    432 
    433       // If we already had an occurrence of this index variable, merge this
    434       // scale into it.  For example, we want to handle:
    435       //   A[x][x] -> x*16 + x*4 -> x*20
    436       // This also ensures that 'x' only appears in the index list once.
    437       for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
    438         if (VarIndices[i].V == Index && VarIndices[i].ZExtBits == ZExtBits &&
    439             VarIndices[i].SExtBits == SExtBits) {
    440           Scale += VarIndices[i].Scale;
    441           VarIndices.erase(VarIndices.begin() + i);
    442           break;
    443         }
    444       }
    445 
    446       // Make sure that we have a scale that makes sense for this target's
    447       // pointer size.
    448       if (unsigned ShiftBits = 64 - PointerSize) {
    449         Scale <<= ShiftBits;
    450         Scale = (int64_t)Scale >> ShiftBits;
    451       }
    452 
    453       if (Scale) {
    454         VariableGEPIndex Entry = {Index, ZExtBits, SExtBits,
    455                                   static_cast<int64_t>(Scale)};
    456         VarIndices.push_back(Entry);
    457       }
    458     }
    459 
    460     // Analyze the base pointer next.
    461     V = GEPOp->getOperand(0);
    462   } while (--MaxLookup);
    463 
    464   // If the chain of expressions is too deep, just return early.
    465   MaxLookupReached = true;
    466   SearchLimitReached++;
    467   return V;
    468 }
    469 
    470 /// Returns whether the given pointer value points to memory that is local to
    471 /// the function, with global constants being considered local to all
    472 /// functions.
    473 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
    474                                            bool OrLocal) {
    475   assert(Visited.empty() && "Visited must be cleared after use!");
    476 
    477   unsigned MaxLookup = 8;
    478   SmallVector<const Value *, 16> Worklist;
    479   Worklist.push_back(Loc.Ptr);
    480   do {
    481     const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL);
    482     if (!Visited.insert(V).second) {
    483       Visited.clear();
    484       return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
    485     }
    486 
    487     // An alloca instruction defines local memory.
    488     if (OrLocal && isa<AllocaInst>(V))
    489       continue;
    490 
    491     // A global constant counts as local memory for our purposes.
    492     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
    493       // Note: this doesn't require GV to be "ODR" because it isn't legal for a
    494       // global to be marked constant in some modules and non-constant in
    495       // others.  GV may even be a declaration, not a definition.
    496       if (!GV->isConstant()) {
    497         Visited.clear();
    498         return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
    499       }
    500       continue;
    501     }
    502 
    503     // If both select values point to local memory, then so does the select.
    504     if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
    505       Worklist.push_back(SI->getTrueValue());
    506       Worklist.push_back(SI->getFalseValue());
    507       continue;
    508     }
    509 
    510     // If all values incoming to a phi node point to local memory, then so does
    511     // the phi.
    512     if (const PHINode *PN = dyn_cast<PHINode>(V)) {
    513       // Don't bother inspecting phi nodes with many operands.
    514       if (PN->getNumIncomingValues() > MaxLookup) {
    515         Visited.clear();
    516         return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
    517       }
    518       for (Value *IncValue : PN->incoming_values())
    519         Worklist.push_back(IncValue);
    520       continue;
    521     }
    522 
    523     // Otherwise be conservative.
    524     Visited.clear();
    525     return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
    526 
    527   } while (!Worklist.empty() && --MaxLookup);
    528 
    529   Visited.clear();
    530   return Worklist.empty();
    531 }
    532 
    533 // FIXME: This code is duplicated with MemoryLocation and should be hoisted to
    534 // some common utility location.
    535 static bool isMemsetPattern16(const Function *MS,
    536                               const TargetLibraryInfo &TLI) {
    537   if (TLI.has(LibFunc::memset_pattern16) &&
    538       MS->getName() == "memset_pattern16") {
    539     FunctionType *MemsetType = MS->getFunctionType();
    540     if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 &&
    541         isa<PointerType>(MemsetType->getParamType(0)) &&
    542         isa<PointerType>(MemsetType->getParamType(1)) &&
    543         isa<IntegerType>(MemsetType->getParamType(2)))
    544       return true;
    545   }
    546 
    547   return false;
    548 }
    549 
    550 /// Returns the behavior when calling the given call site.
    551 FunctionModRefBehavior BasicAAResult::getModRefBehavior(ImmutableCallSite CS) {
    552   if (CS.doesNotAccessMemory())
    553     // Can't do better than this.
    554     return FMRB_DoesNotAccessMemory;
    555 
    556   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
    557 
    558   // If the callsite knows it only reads memory, don't return worse
    559   // than that.
    560   if (CS.onlyReadsMemory())
    561     Min = FMRB_OnlyReadsMemory;
    562 
    563   if (CS.onlyAccessesArgMemory())
    564     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
    565 
    566   // The AAResultBase base class has some smarts, lets use them.
    567   return FunctionModRefBehavior(AAResultBase::getModRefBehavior(CS) & Min);
    568 }
    569 
    570 /// Returns the behavior when calling the given function. For use when the call
    571 /// site is not known.
    572 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
    573   // If the function declares it doesn't access memory, we can't do better.
    574   if (F->doesNotAccessMemory())
    575     return FMRB_DoesNotAccessMemory;
    576 
    577   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
    578 
    579   // If the function declares it only reads memory, go with that.
    580   if (F->onlyReadsMemory())
    581     Min = FMRB_OnlyReadsMemory;
    582 
    583   if (F->onlyAccessesArgMemory())
    584     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
    585 
    586   if (isMemsetPattern16(F, TLI))
    587     Min = FMRB_OnlyAccessesArgumentPointees;
    588 
    589   // Otherwise be conservative.
    590   return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F) & Min);
    591 }
    592 
    593 ModRefInfo BasicAAResult::getArgModRefInfo(ImmutableCallSite CS,
    594                                            unsigned ArgIdx) {
    595   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()))
    596     switch (II->getIntrinsicID()) {
    597     default:
    598       break;
    599     case Intrinsic::memset:
    600     case Intrinsic::memcpy:
    601     case Intrinsic::memmove:
    602       assert((ArgIdx == 0 || ArgIdx == 1) &&
    603              "Invalid argument index for memory intrinsic");
    604       return ArgIdx ? MRI_Ref : MRI_Mod;
    605     }
    606 
    607   // We can bound the aliasing properties of memset_pattern16 just as we can
    608   // for memcpy/memset.  This is particularly important because the
    609   // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
    610   // whenever possible.
    611   if (CS.getCalledFunction() &&
    612       isMemsetPattern16(CS.getCalledFunction(), TLI)) {
    613     assert((ArgIdx == 0 || ArgIdx == 1) &&
    614            "Invalid argument index for memset_pattern16");
    615     return ArgIdx ? MRI_Ref : MRI_Mod;
    616   }
    617   // FIXME: Handle memset_pattern4 and memset_pattern8 also.
    618 
    619   if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadOnly))
    620     return MRI_Ref;
    621 
    622   if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadNone))
    623     return MRI_NoModRef;
    624 
    625   return AAResultBase::getArgModRefInfo(CS, ArgIdx);
    626 }
    627 
    628 static bool isAssumeIntrinsic(ImmutableCallSite CS) {
    629   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
    630   return II && II->getIntrinsicID() == Intrinsic::assume;
    631 }
    632 
    633 #ifndef NDEBUG
    634 static const Function *getParent(const Value *V) {
    635   if (const Instruction *inst = dyn_cast<Instruction>(V))
    636     return inst->getParent()->getParent();
    637 
    638   if (const Argument *arg = dyn_cast<Argument>(V))
    639     return arg->getParent();
    640 
    641   return nullptr;
    642 }
    643 
    644 static bool notDifferentParent(const Value *O1, const Value *O2) {
    645 
    646   const Function *F1 = getParent(O1);
    647   const Function *F2 = getParent(O2);
    648 
    649   return !F1 || !F2 || F1 == F2;
    650 }
    651 #endif
    652 
    653 AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
    654                                  const MemoryLocation &LocB) {
    655   assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
    656          "BasicAliasAnalysis doesn't support interprocedural queries.");
    657 
    658   // If we have a directly cached entry for these locations, we have recursed
    659   // through this once, so just return the cached results. Notably, when this
    660   // happens, we don't clear the cache.
    661   auto CacheIt = AliasCache.find(LocPair(LocA, LocB));
    662   if (CacheIt != AliasCache.end())
    663     return CacheIt->second;
    664 
    665   AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr,
    666                                  LocB.Size, LocB.AATags);
    667   // AliasCache rarely has more than 1 or 2 elements, always use
    668   // shrink_and_clear so it quickly returns to the inline capacity of the
    669   // SmallDenseMap if it ever grows larger.
    670   // FIXME: This should really be shrink_to_inline_capacity_and_clear().
    671   AliasCache.shrink_and_clear();
    672   VisitedPhiBBs.clear();
    673   return Alias;
    674 }
    675 
    676 /// Checks to see if the specified callsite can clobber the specified memory
    677 /// object.
    678 ///
    679 /// Since we only look at local properties of this function, we really can't
    680 /// say much about this query.  We do, however, use simple "address taken"
    681 /// analysis on local objects.
    682 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS,
    683                                         const MemoryLocation &Loc) {
    684   assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
    685          "AliasAnalysis query involving multiple functions!");
    686 
    687   const Value *Object = GetUnderlyingObject(Loc.Ptr, DL);
    688 
    689   // If this is a tail call and Loc.Ptr points to a stack location, we know that
    690   // the tail call cannot access or modify the local stack.
    691   // We cannot exclude byval arguments here; these belong to the caller of
    692   // the current function not to the current function, and a tail callee
    693   // may reference them.
    694   if (isa<AllocaInst>(Object))
    695     if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
    696       if (CI->isTailCall())
    697         return MRI_NoModRef;
    698 
    699   // If the pointer is to a locally allocated object that does not escape,
    700   // then the call can not mod/ref the pointer unless the call takes the pointer
    701   // as an argument, and itself doesn't capture it.
    702   if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
    703       isNonEscapingLocalObject(Object)) {
    704     bool PassedAsArg = false;
    705     unsigned ArgNo = 0;
    706     for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
    707          CI != CE; ++CI, ++ArgNo) {
    708       // Only look at the no-capture or byval pointer arguments.  If this
    709       // pointer were passed to arguments that were neither of these, then it
    710       // couldn't be no-capture.
    711       if (!(*CI)->getType()->isPointerTy() ||
    712           (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo)))
    713         continue;
    714 
    715       // If this is a no-capture pointer argument, see if we can tell that it
    716       // is impossible to alias the pointer we're checking.  If not, we have to
    717       // assume that the call could touch the pointer, even though it doesn't
    718       // escape.
    719       AliasResult AR =
    720           getBestAAResults().alias(MemoryLocation(*CI), MemoryLocation(Object));
    721       if (AR) {
    722         PassedAsArg = true;
    723         break;
    724       }
    725     }
    726 
    727     if (!PassedAsArg)
    728       return MRI_NoModRef;
    729   }
    730 
    731   // While the assume intrinsic is marked as arbitrarily writing so that
    732   // proper control dependencies will be maintained, it never aliases any
    733   // particular memory location.
    734   if (isAssumeIntrinsic(CS))
    735     return MRI_NoModRef;
    736 
    737   // The AAResultBase base class has some smarts, lets use them.
    738   return AAResultBase::getModRefInfo(CS, Loc);
    739 }
    740 
    741 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS1,
    742                                         ImmutableCallSite CS2) {
    743   // While the assume intrinsic is marked as arbitrarily writing so that
    744   // proper control dependencies will be maintained, it never aliases any
    745   // particular memory location.
    746   if (isAssumeIntrinsic(CS1) || isAssumeIntrinsic(CS2))
    747     return MRI_NoModRef;
    748 
    749   // The AAResultBase base class has some smarts, lets use them.
    750   return AAResultBase::getModRefInfo(CS1, CS2);
    751 }
    752 
    753 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators,
    754 /// both having the exact same pointer operand.
    755 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1,
    756                                             uint64_t V1Size,
    757                                             const GEPOperator *GEP2,
    758                                             uint64_t V2Size,
    759                                             const DataLayout &DL) {
    760 
    761   assert(GEP1->getPointerOperand() == GEP2->getPointerOperand() &&
    762          "Expected GEPs with the same pointer operand");
    763 
    764   // Try to determine whether GEP1 and GEP2 index through arrays, into structs,
    765   // such that the struct field accesses provably cannot alias.
    766   // We also need at least two indices (the pointer, and the struct field).
    767   if (GEP1->getNumIndices() != GEP2->getNumIndices() ||
    768       GEP1->getNumIndices() < 2)
    769     return MayAlias;
    770 
    771   // If we don't know the size of the accesses through both GEPs, we can't
    772   // determine whether the struct fields accessed can't alias.
    773   if (V1Size == MemoryLocation::UnknownSize ||
    774       V2Size == MemoryLocation::UnknownSize)
    775     return MayAlias;
    776 
    777   ConstantInt *C1 =
    778       dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1));
    779   ConstantInt *C2 =
    780       dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1));
    781 
    782   // If the last (struct) indices are constants and are equal, the other indices
    783   // might be also be dynamically equal, so the GEPs can alias.
    784   if (C1 && C2 && C1 == C2)
    785     return MayAlias;
    786 
    787   // Find the last-indexed type of the GEP, i.e., the type you'd get if
    788   // you stripped the last index.
    789   // On the way, look at each indexed type.  If there's something other
    790   // than an array, different indices can lead to different final types.
    791   SmallVector<Value *, 8> IntermediateIndices;
    792 
    793   // Insert the first index; we don't need to check the type indexed
    794   // through it as it only drops the pointer indirection.
    795   assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine");
    796   IntermediateIndices.push_back(GEP1->getOperand(1));
    797 
    798   // Insert all the remaining indices but the last one.
    799   // Also, check that they all index through arrays.
    800   for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) {
    801     if (!isa<ArrayType>(GetElementPtrInst::getIndexedType(
    802             GEP1->getSourceElementType(), IntermediateIndices)))
    803       return MayAlias;
    804     IntermediateIndices.push_back(GEP1->getOperand(i + 1));
    805   }
    806 
    807   auto *Ty = GetElementPtrInst::getIndexedType(
    808     GEP1->getSourceElementType(), IntermediateIndices);
    809   StructType *LastIndexedStruct = dyn_cast<StructType>(Ty);
    810 
    811   if (isa<SequentialType>(Ty)) {
    812     // We know that:
    813     // - both GEPs begin indexing from the exact same pointer;
    814     // - the last indices in both GEPs are constants, indexing into a sequential
    815     //   type (array or pointer);
    816     // - both GEPs only index through arrays prior to that.
    817     //
    818     // Because array indices greater than the number of elements are valid in
    819     // GEPs, unless we know the intermediate indices are identical between
    820     // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't
    821     // partially overlap. We also need to check that the loaded size matches
    822     // the element size, otherwise we could still have overlap.
    823     const uint64_t ElementSize =
    824         DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType());
    825     if (V1Size != ElementSize || V2Size != ElementSize)
    826       return MayAlias;
    827 
    828     for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i)
    829       if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1))
    830         return MayAlias;
    831 
    832     // Now we know that the array/pointer that GEP1 indexes into and that
    833     // that GEP2 indexes into must either precisely overlap or be disjoint.
    834     // Because they cannot partially overlap and because fields in an array
    835     // cannot overlap, if we can prove the final indices are different between
    836     // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias.
    837 
    838     // If the last indices are constants, we've already checked they don't
    839     // equal each other so we can exit early.
    840     if (C1 && C2)
    841       return NoAlias;
    842     if (isKnownNonEqual(GEP1->getOperand(GEP1->getNumOperands() - 1),
    843                         GEP2->getOperand(GEP2->getNumOperands() - 1),
    844                         DL))
    845       return NoAlias;
    846     return MayAlias;
    847   } else if (!LastIndexedStruct || !C1 || !C2) {
    848     return MayAlias;
    849   }
    850 
    851   // We know that:
    852   // - both GEPs begin indexing from the exact same pointer;
    853   // - the last indices in both GEPs are constants, indexing into a struct;
    854   // - said indices are different, hence, the pointed-to fields are different;
    855   // - both GEPs only index through arrays prior to that.
    856   //
    857   // This lets us determine that the struct that GEP1 indexes into and the
    858   // struct that GEP2 indexes into must either precisely overlap or be
    859   // completely disjoint.  Because they cannot partially overlap, indexing into
    860   // different non-overlapping fields of the struct will never alias.
    861 
    862   // Therefore, the only remaining thing needed to show that both GEPs can't
    863   // alias is that the fields are not overlapping.
    864   const StructLayout *SL = DL.getStructLayout(LastIndexedStruct);
    865   const uint64_t StructSize = SL->getSizeInBytes();
    866   const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue());
    867   const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue());
    868 
    869   auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size,
    870                                       uint64_t V2Off, uint64_t V2Size) {
    871     return V1Off < V2Off && V1Off + V1Size <= V2Off &&
    872            ((V2Off + V2Size <= StructSize) ||
    873             (V2Off + V2Size - StructSize <= V1Off));
    874   };
    875 
    876   if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) ||
    877       EltsDontOverlap(V2Off, V2Size, V1Off, V1Size))
    878     return NoAlias;
    879 
    880   return MayAlias;
    881 }
    882 
    883 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
    884 /// another pointer.
    885 ///
    886 /// We know that V1 is a GEP, but we don't know anything about V2.
    887 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for
    888 /// V2.
    889 AliasResult BasicAAResult::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
    890                                     const AAMDNodes &V1AAInfo, const Value *V2,
    891                                     uint64_t V2Size, const AAMDNodes &V2AAInfo,
    892                                     const Value *UnderlyingV1,
    893                                     const Value *UnderlyingV2) {
    894   int64_t GEP1BaseOffset;
    895   bool GEP1MaxLookupReached;
    896   SmallVector<VariableGEPIndex, 4> GEP1VariableIndices;
    897 
    898   // If we have two gep instructions with must-alias or not-alias'ing base
    899   // pointers, figure out if the indexes to the GEP tell us anything about the
    900   // derived pointer.
    901   if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
    902     // Do the base pointers alias?
    903     AliasResult BaseAlias =
    904         aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, AAMDNodes(),
    905                    UnderlyingV2, MemoryLocation::UnknownSize, AAMDNodes());
    906 
    907     // Check for geps of non-aliasing underlying pointers where the offsets are
    908     // identical.
    909     if ((BaseAlias == MayAlias) && V1Size == V2Size) {
    910       // Do the base pointers alias assuming type and size.
    911       AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, V1AAInfo,
    912                                                 UnderlyingV2, V2Size, V2AAInfo);
    913       if (PreciseBaseAlias == NoAlias) {
    914         // See if the computed offset from the common pointer tells us about the
    915         // relation of the resulting pointer.
    916         int64_t GEP2BaseOffset;
    917         bool GEP2MaxLookupReached;
    918         SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
    919         const Value *GEP2BasePtr =
    920             DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
    921                                    GEP2MaxLookupReached, DL, &AC, DT);
    922         const Value *GEP1BasePtr =
    923             DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
    924                                    GEP1MaxLookupReached, DL, &AC, DT);
    925         // DecomposeGEPExpression and GetUnderlyingObject should return the
    926         // same result except when DecomposeGEPExpression has no DataLayout.
    927         // FIXME: They always have a DataLayout so this should become an
    928         // assert.
    929         if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
    930           return MayAlias;
    931         }
    932         // If the max search depth is reached the result is undefined
    933         if (GEP2MaxLookupReached || GEP1MaxLookupReached)
    934           return MayAlias;
    935 
    936         // Same offsets.
    937         if (GEP1BaseOffset == GEP2BaseOffset &&
    938             GEP1VariableIndices == GEP2VariableIndices)
    939           return NoAlias;
    940         GEP1VariableIndices.clear();
    941       }
    942     }
    943 
    944     // If we get a No or May, then return it immediately, no amount of analysis
    945     // will improve this situation.
    946     if (BaseAlias != MustAlias)
    947       return BaseAlias;
    948 
    949     // Otherwise, we have a MustAlias.  Since the base pointers alias each other
    950     // exactly, see if the computed offset from the common pointer tells us
    951     // about the relation of the resulting pointer.
    952     const Value *GEP1BasePtr =
    953         DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
    954                                GEP1MaxLookupReached, DL, &AC, DT);
    955 
    956     int64_t GEP2BaseOffset;
    957     bool GEP2MaxLookupReached;
    958     SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
    959     const Value *GEP2BasePtr =
    960         DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
    961                                GEP2MaxLookupReached, DL, &AC, DT);
    962 
    963     // DecomposeGEPExpression and GetUnderlyingObject should return the
    964     // same result except when DecomposeGEPExpression has no DataLayout.
    965     // FIXME: They always have a DataLayout so this should become an assert.
    966     if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
    967       return MayAlias;
    968     }
    969 
    970     // If we know the two GEPs are based off of the exact same pointer (and not
    971     // just the same underlying object), see if that tells us anything about
    972     // the resulting pointers.
    973     if (GEP1->getPointerOperand() == GEP2->getPointerOperand()) {
    974       AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL);
    975       // If we couldn't find anything interesting, don't abandon just yet.
    976       if (R != MayAlias)
    977         return R;
    978     }
    979 
    980     // If the max search depth is reached the result is undefined
    981     if (GEP2MaxLookupReached || GEP1MaxLookupReached)
    982       return MayAlias;
    983 
    984     // Subtract the GEP2 pointer from the GEP1 pointer to find out their
    985     // symbolic difference.
    986     GEP1BaseOffset -= GEP2BaseOffset;
    987     GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices);
    988 
    989   } else {
    990     // Check to see if these two pointers are related by the getelementptr
    991     // instruction.  If one pointer is a GEP with a non-zero index of the other
    992     // pointer, we know they cannot alias.
    993 
    994     // If both accesses are unknown size, we can't do anything useful here.
    995     if (V1Size == MemoryLocation::UnknownSize &&
    996         V2Size == MemoryLocation::UnknownSize)
    997       return MayAlias;
    998 
    999     AliasResult R = aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize,
   1000                                AAMDNodes(), V2, V2Size, V2AAInfo);
   1001     if (R != MustAlias)
   1002       // If V2 may alias GEP base pointer, conservatively returns MayAlias.
   1003       // If V2 is known not to alias GEP base pointer, then the two values
   1004       // cannot alias per GEP semantics: "A pointer value formed from a
   1005       // getelementptr instruction is associated with the addresses associated
   1006       // with the first operand of the getelementptr".
   1007       return R;
   1008 
   1009     const Value *GEP1BasePtr =
   1010         DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
   1011                                GEP1MaxLookupReached, DL, &AC, DT);
   1012 
   1013     // DecomposeGEPExpression and GetUnderlyingObject should return the
   1014     // same result except when DecomposeGEPExpression has no DataLayout.
   1015     // FIXME: They always have a DataLayout so this should become an assert.
   1016     if (GEP1BasePtr != UnderlyingV1) {
   1017       return MayAlias;
   1018     }
   1019     // If the max search depth is reached the result is undefined
   1020     if (GEP1MaxLookupReached)
   1021       return MayAlias;
   1022   }
   1023 
   1024   // In the two GEP Case, if there is no difference in the offsets of the
   1025   // computed pointers, the resultant pointers are a must alias.  This
   1026   // hapens when we have two lexically identical GEP's (for example).
   1027   //
   1028   // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
   1029   // must aliases the GEP, the end result is a must alias also.
   1030   if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty())
   1031     return MustAlias;
   1032 
   1033   // If there is a constant difference between the pointers, but the difference
   1034   // is less than the size of the associated memory object, then we know
   1035   // that the objects are partially overlapping.  If the difference is
   1036   // greater, we know they do not overlap.
   1037   if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) {
   1038     if (GEP1BaseOffset >= 0) {
   1039       if (V2Size != MemoryLocation::UnknownSize) {
   1040         if ((uint64_t)GEP1BaseOffset < V2Size)
   1041           return PartialAlias;
   1042         return NoAlias;
   1043       }
   1044     } else {
   1045       // We have the situation where:
   1046       // +                +
   1047       // | BaseOffset     |
   1048       // ---------------->|
   1049       // |-->V1Size       |-------> V2Size
   1050       // GEP1             V2
   1051       // We need to know that V2Size is not unknown, otherwise we might have
   1052       // stripped a gep with negative index ('gep <ptr>, -1, ...).
   1053       if (V1Size != MemoryLocation::UnknownSize &&
   1054           V2Size != MemoryLocation::UnknownSize) {
   1055         if (-(uint64_t)GEP1BaseOffset < V1Size)
   1056           return PartialAlias;
   1057         return NoAlias;
   1058       }
   1059     }
   1060   }
   1061 
   1062   if (!GEP1VariableIndices.empty()) {
   1063     uint64_t Modulo = 0;
   1064     bool AllPositive = true;
   1065     for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i) {
   1066 
   1067       // Try to distinguish something like &A[i][1] against &A[42][0].
   1068       // Grab the least significant bit set in any of the scales. We
   1069       // don't need std::abs here (even if the scale's negative) as we'll
   1070       // be ^'ing Modulo with itself later.
   1071       Modulo |= (uint64_t)GEP1VariableIndices[i].Scale;
   1072 
   1073       if (AllPositive) {
   1074         // If the Value could change between cycles, then any reasoning about
   1075         // the Value this cycle may not hold in the next cycle. We'll just
   1076         // give up if we can't determine conditions that hold for every cycle:
   1077         const Value *V = GEP1VariableIndices[i].V;
   1078 
   1079         bool SignKnownZero, SignKnownOne;
   1080         ComputeSignBit(const_cast<Value *>(V), SignKnownZero, SignKnownOne, DL,
   1081                        0, &AC, nullptr, DT);
   1082 
   1083         // Zero-extension widens the variable, and so forces the sign
   1084         // bit to zero.
   1085         bool IsZExt = GEP1VariableIndices[i].ZExtBits > 0 || isa<ZExtInst>(V);
   1086         SignKnownZero |= IsZExt;
   1087         SignKnownOne &= !IsZExt;
   1088 
   1089         // If the variable begins with a zero then we know it's
   1090         // positive, regardless of whether the value is signed or
   1091         // unsigned.
   1092         int64_t Scale = GEP1VariableIndices[i].Scale;
   1093         AllPositive =
   1094             (SignKnownZero && Scale >= 0) || (SignKnownOne && Scale < 0);
   1095       }
   1096     }
   1097 
   1098     Modulo = Modulo ^ (Modulo & (Modulo - 1));
   1099 
   1100     // We can compute the difference between the two addresses
   1101     // mod Modulo. Check whether that difference guarantees that the
   1102     // two locations do not alias.
   1103     uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1);
   1104     if (V1Size != MemoryLocation::UnknownSize &&
   1105         V2Size != MemoryLocation::UnknownSize && ModOffset >= V2Size &&
   1106         V1Size <= Modulo - ModOffset)
   1107       return NoAlias;
   1108 
   1109     // If we know all the variables are positive, then GEP1 >= GEP1BasePtr.
   1110     // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers
   1111     // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr.
   1112     if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t)GEP1BaseOffset)
   1113       return NoAlias;
   1114 
   1115     if (constantOffsetHeuristic(GEP1VariableIndices, V1Size, V2Size,
   1116                                 GEP1BaseOffset, &AC, DT))
   1117       return NoAlias;
   1118   }
   1119 
   1120   // Statically, we can see that the base objects are the same, but the
   1121   // pointers have dynamic offsets which we can't resolve. And none of our
   1122   // little tricks above worked.
   1123   //
   1124   // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the
   1125   // practical effect of this is protecting TBAA in the case of dynamic
   1126   // indices into arrays of unions or malloc'd memory.
   1127   return PartialAlias;
   1128 }
   1129 
   1130 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
   1131   // If the results agree, take it.
   1132   if (A == B)
   1133     return A;
   1134   // A mix of PartialAlias and MustAlias is PartialAlias.
   1135   if ((A == PartialAlias && B == MustAlias) ||
   1136       (B == PartialAlias && A == MustAlias))
   1137     return PartialAlias;
   1138   // Otherwise, we don't know anything.
   1139   return MayAlias;
   1140 }
   1141 
   1142 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
   1143 /// against another.
   1144 AliasResult BasicAAResult::aliasSelect(const SelectInst *SI, uint64_t SISize,
   1145                                        const AAMDNodes &SIAAInfo,
   1146                                        const Value *V2, uint64_t V2Size,
   1147                                        const AAMDNodes &V2AAInfo) {
   1148   // If the values are Selects with the same condition, we can do a more precise
   1149   // check: just check for aliases between the values on corresponding arms.
   1150   if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
   1151     if (SI->getCondition() == SI2->getCondition()) {
   1152       AliasResult Alias = aliasCheck(SI->getTrueValue(), SISize, SIAAInfo,
   1153                                      SI2->getTrueValue(), V2Size, V2AAInfo);
   1154       if (Alias == MayAlias)
   1155         return MayAlias;
   1156       AliasResult ThisAlias =
   1157           aliasCheck(SI->getFalseValue(), SISize, SIAAInfo,
   1158                      SI2->getFalseValue(), V2Size, V2AAInfo);
   1159       return MergeAliasResults(ThisAlias, Alias);
   1160     }
   1161 
   1162   // If both arms of the Select node NoAlias or MustAlias V2, then returns
   1163   // NoAlias / MustAlias. Otherwise, returns MayAlias.
   1164   AliasResult Alias =
   1165       aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), SISize, SIAAInfo);
   1166   if (Alias == MayAlias)
   1167     return MayAlias;
   1168 
   1169   AliasResult ThisAlias =
   1170       aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo);
   1171   return MergeAliasResults(ThisAlias, Alias);
   1172 }
   1173 
   1174 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
   1175 /// another.
   1176 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, uint64_t PNSize,
   1177                                     const AAMDNodes &PNAAInfo, const Value *V2,
   1178                                     uint64_t V2Size,
   1179                                     const AAMDNodes &V2AAInfo) {
   1180   // Track phi nodes we have visited. We use this information when we determine
   1181   // value equivalence.
   1182   VisitedPhiBBs.insert(PN->getParent());
   1183 
   1184   // If the values are PHIs in the same block, we can do a more precise
   1185   // as well as efficient check: just check for aliases between the values
   1186   // on corresponding edges.
   1187   if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
   1188     if (PN2->getParent() == PN->getParent()) {
   1189       LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo),
   1190                    MemoryLocation(V2, V2Size, V2AAInfo));
   1191       if (PN > V2)
   1192         std::swap(Locs.first, Locs.second);
   1193       // Analyse the PHIs' inputs under the assumption that the PHIs are
   1194       // NoAlias.
   1195       // If the PHIs are May/MustAlias there must be (recursively) an input
   1196       // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
   1197       // there must be an operation on the PHIs within the PHIs' value cycle
   1198       // that causes a MayAlias.
   1199       // Pretend the phis do not alias.
   1200       AliasResult Alias = NoAlias;
   1201       assert(AliasCache.count(Locs) &&
   1202              "There must exist an entry for the phi node");
   1203       AliasResult OrigAliasResult = AliasCache[Locs];
   1204       AliasCache[Locs] = NoAlias;
   1205 
   1206       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   1207         AliasResult ThisAlias =
   1208             aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo,
   1209                        PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
   1210                        V2Size, V2AAInfo);
   1211         Alias = MergeAliasResults(ThisAlias, Alias);
   1212         if (Alias == MayAlias)
   1213           break;
   1214       }
   1215 
   1216       // Reset if speculation failed.
   1217       if (Alias != NoAlias)
   1218         AliasCache[Locs] = OrigAliasResult;
   1219 
   1220       return Alias;
   1221     }
   1222 
   1223   SmallPtrSet<Value *, 4> UniqueSrc;
   1224   SmallVector<Value *, 4> V1Srcs;
   1225   bool isRecursive = false;
   1226   for (Value *PV1 : PN->incoming_values()) {
   1227     if (isa<PHINode>(PV1))
   1228       // If any of the source itself is a PHI, return MayAlias conservatively
   1229       // to avoid compile time explosion. The worst possible case is if both
   1230       // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
   1231       // and 'n' are the number of PHI sources.
   1232       return MayAlias;
   1233 
   1234     if (EnableRecPhiAnalysis)
   1235       if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) {
   1236         // Check whether the incoming value is a GEP that advances the pointer
   1237         // result of this PHI node (e.g. in a loop). If this is the case, we
   1238         // would recurse and always get a MayAlias. Handle this case specially
   1239         // below.
   1240         if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 &&
   1241             isa<ConstantInt>(PV1GEP->idx_begin())) {
   1242           isRecursive = true;
   1243           continue;
   1244         }
   1245       }
   1246 
   1247     if (UniqueSrc.insert(PV1).second)
   1248       V1Srcs.push_back(PV1);
   1249   }
   1250 
   1251   // If this PHI node is recursive, set the size of the accessed memory to
   1252   // unknown to represent all the possible values the GEP could advance the
   1253   // pointer to.
   1254   if (isRecursive)
   1255     PNSize = MemoryLocation::UnknownSize;
   1256 
   1257   AliasResult Alias =
   1258       aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], PNSize, PNAAInfo);
   1259 
   1260   // Early exit if the check of the first PHI source against V2 is MayAlias.
   1261   // Other results are not possible.
   1262   if (Alias == MayAlias)
   1263     return MayAlias;
   1264 
   1265   // If all sources of the PHI node NoAlias or MustAlias V2, then returns
   1266   // NoAlias / MustAlias. Otherwise, returns MayAlias.
   1267   for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
   1268     Value *V = V1Srcs[i];
   1269 
   1270     AliasResult ThisAlias =
   1271         aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo);
   1272     Alias = MergeAliasResults(ThisAlias, Alias);
   1273     if (Alias == MayAlias)
   1274       break;
   1275   }
   1276 
   1277   return Alias;
   1278 }
   1279 
   1280 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
   1281 /// array references.
   1282 AliasResult BasicAAResult::aliasCheck(const Value *V1, uint64_t V1Size,
   1283                                       AAMDNodes V1AAInfo, const Value *V2,
   1284                                       uint64_t V2Size, AAMDNodes V2AAInfo) {
   1285   // If either of the memory references is empty, it doesn't matter what the
   1286   // pointer values are.
   1287   if (V1Size == 0 || V2Size == 0)
   1288     return NoAlias;
   1289 
   1290   // Strip off any casts if they exist.
   1291   V1 = V1->stripPointerCasts();
   1292   V2 = V2->stripPointerCasts();
   1293 
   1294   // If V1 or V2 is undef, the result is NoAlias because we can always pick a
   1295   // value for undef that aliases nothing in the program.
   1296   if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
   1297     return NoAlias;
   1298 
   1299   // Are we checking for alias of the same value?
   1300   // Because we look 'through' phi nodes we could look at "Value" pointers from
   1301   // different iterations. We must therefore make sure that this is not the
   1302   // case. The function isValueEqualInPotentialCycles ensures that this cannot
   1303   // happen by looking at the visited phi nodes and making sure they cannot
   1304   // reach the value.
   1305   if (isValueEqualInPotentialCycles(V1, V2))
   1306     return MustAlias;
   1307 
   1308   if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
   1309     return NoAlias; // Scalars cannot alias each other
   1310 
   1311   // Figure out what objects these things are pointing to if we can.
   1312   const Value *O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth);
   1313   const Value *O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth);
   1314 
   1315   // Null values in the default address space don't point to any object, so they
   1316   // don't alias any other pointer.
   1317   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
   1318     if (CPN->getType()->getAddressSpace() == 0)
   1319       return NoAlias;
   1320   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
   1321     if (CPN->getType()->getAddressSpace() == 0)
   1322       return NoAlias;
   1323 
   1324   if (O1 != O2) {
   1325     // If V1/V2 point to two different objects we know that we have no alias.
   1326     if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
   1327       return NoAlias;
   1328 
   1329     // Constant pointers can't alias with non-const isIdentifiedObject objects.
   1330     if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
   1331         (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
   1332       return NoAlias;
   1333 
   1334     // Function arguments can't alias with things that are known to be
   1335     // unambigously identified at the function level.
   1336     if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
   1337         (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
   1338       return NoAlias;
   1339 
   1340     // Most objects can't alias null.
   1341     if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) ||
   1342         (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2)))
   1343       return NoAlias;
   1344 
   1345     // If one pointer is the result of a call/invoke or load and the other is a
   1346     // non-escaping local object within the same function, then we know the
   1347     // object couldn't escape to a point where the call could return it.
   1348     //
   1349     // Note that if the pointers are in different functions, there are a
   1350     // variety of complications. A call with a nocapture argument may still
   1351     // temporary store the nocapture argument's value in a temporary memory
   1352     // location if that memory location doesn't escape. Or it may pass a
   1353     // nocapture value to other functions as long as they don't capture it.
   1354     if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
   1355       return NoAlias;
   1356     if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
   1357       return NoAlias;
   1358   }
   1359 
   1360   // If the size of one access is larger than the entire object on the other
   1361   // side, then we know such behavior is undefined and can assume no alias.
   1362   if ((V1Size != MemoryLocation::UnknownSize &&
   1363        isObjectSmallerThan(O2, V1Size, DL, TLI)) ||
   1364       (V2Size != MemoryLocation::UnknownSize &&
   1365        isObjectSmallerThan(O1, V2Size, DL, TLI)))
   1366     return NoAlias;
   1367 
   1368   // Check the cache before climbing up use-def chains. This also terminates
   1369   // otherwise infinitely recursive queries.
   1370   LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo),
   1371                MemoryLocation(V2, V2Size, V2AAInfo));
   1372   if (V1 > V2)
   1373     std::swap(Locs.first, Locs.second);
   1374   std::pair<AliasCacheTy::iterator, bool> Pair =
   1375       AliasCache.insert(std::make_pair(Locs, MayAlias));
   1376   if (!Pair.second)
   1377     return Pair.first->second;
   1378 
   1379   // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
   1380   // GEP can't simplify, we don't even look at the PHI cases.
   1381   if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
   1382     std::swap(V1, V2);
   1383     std::swap(V1Size, V2Size);
   1384     std::swap(O1, O2);
   1385     std::swap(V1AAInfo, V2AAInfo);
   1386   }
   1387   if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
   1388     AliasResult Result =
   1389         aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2);
   1390     if (Result != MayAlias)
   1391       return AliasCache[Locs] = Result;
   1392   }
   1393 
   1394   if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
   1395     std::swap(V1, V2);
   1396     std::swap(V1Size, V2Size);
   1397     std::swap(V1AAInfo, V2AAInfo);
   1398   }
   1399   if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
   1400     AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo);
   1401     if (Result != MayAlias)
   1402       return AliasCache[Locs] = Result;
   1403   }
   1404 
   1405   if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
   1406     std::swap(V1, V2);
   1407     std::swap(V1Size, V2Size);
   1408     std::swap(V1AAInfo, V2AAInfo);
   1409   }
   1410   if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
   1411     AliasResult Result =
   1412         aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo);
   1413     if (Result != MayAlias)
   1414       return AliasCache[Locs] = Result;
   1415   }
   1416 
   1417   // If both pointers are pointing into the same object and one of them
   1418   // accesses is accessing the entire object, then the accesses must
   1419   // overlap in some way.
   1420   if (O1 == O2)
   1421     if ((V1Size != MemoryLocation::UnknownSize &&
   1422          isObjectSize(O1, V1Size, DL, TLI)) ||
   1423         (V2Size != MemoryLocation::UnknownSize &&
   1424          isObjectSize(O2, V2Size, DL, TLI)))
   1425       return AliasCache[Locs] = PartialAlias;
   1426 
   1427   // Recurse back into the best AA results we have, potentially with refined
   1428   // memory locations. We have already ensured that BasicAA has a MayAlias
   1429   // cache result for these, so any recursion back into BasicAA won't loop.
   1430   AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second);
   1431   return AliasCache[Locs] = Result;
   1432 }
   1433 
   1434 /// Check whether two Values can be considered equivalent.
   1435 ///
   1436 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
   1437 /// they can not be part of a cycle in the value graph by looking at all
   1438 /// visited phi nodes an making sure that the phis cannot reach the value. We
   1439 /// have to do this because we are looking through phi nodes (That is we say
   1440 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
   1441 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
   1442                                                   const Value *V2) {
   1443   if (V != V2)
   1444     return false;
   1445 
   1446   const Instruction *Inst = dyn_cast<Instruction>(V);
   1447   if (!Inst)
   1448     return true;
   1449 
   1450   if (VisitedPhiBBs.empty())
   1451     return true;
   1452 
   1453   if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
   1454     return false;
   1455 
   1456   // Make sure that the visited phis cannot reach the Value. This ensures that
   1457   // the Values cannot come from different iterations of a potential cycle the
   1458   // phi nodes could be involved in.
   1459   for (auto *P : VisitedPhiBBs)
   1460     if (isPotentiallyReachable(&P->front(), Inst, DT, LI))
   1461       return false;
   1462 
   1463   return true;
   1464 }
   1465 
   1466 /// Computes the symbolic difference between two de-composed GEPs.
   1467 ///
   1468 /// Dest and Src are the variable indices from two decomposed GetElementPtr
   1469 /// instructions GEP1 and GEP2 which have common base pointers.
   1470 void BasicAAResult::GetIndexDifference(
   1471     SmallVectorImpl<VariableGEPIndex> &Dest,
   1472     const SmallVectorImpl<VariableGEPIndex> &Src) {
   1473   if (Src.empty())
   1474     return;
   1475 
   1476   for (unsigned i = 0, e = Src.size(); i != e; ++i) {
   1477     const Value *V = Src[i].V;
   1478     unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits;
   1479     int64_t Scale = Src[i].Scale;
   1480 
   1481     // Find V in Dest.  This is N^2, but pointer indices almost never have more
   1482     // than a few variable indexes.
   1483     for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
   1484       if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
   1485           Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits)
   1486         continue;
   1487 
   1488       // If we found it, subtract off Scale V's from the entry in Dest.  If it
   1489       // goes to zero, remove the entry.
   1490       if (Dest[j].Scale != Scale)
   1491         Dest[j].Scale -= Scale;
   1492       else
   1493         Dest.erase(Dest.begin() + j);
   1494       Scale = 0;
   1495       break;
   1496     }
   1497 
   1498     // If we didn't consume this entry, add it to the end of the Dest list.
   1499     if (Scale) {
   1500       VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale};
   1501       Dest.push_back(Entry);
   1502     }
   1503   }
   1504 }
   1505 
   1506 bool BasicAAResult::constantOffsetHeuristic(
   1507     const SmallVectorImpl<VariableGEPIndex> &VarIndices, uint64_t V1Size,
   1508     uint64_t V2Size, int64_t BaseOffset, AssumptionCache *AC,
   1509     DominatorTree *DT) {
   1510   if (VarIndices.size() != 2 || V1Size == MemoryLocation::UnknownSize ||
   1511       V2Size == MemoryLocation::UnknownSize)
   1512     return false;
   1513 
   1514   const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];
   1515 
   1516   if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
   1517       Var0.Scale != -Var1.Scale)
   1518     return false;
   1519 
   1520   unsigned Width = Var1.V->getType()->getIntegerBitWidth();
   1521 
   1522   // We'll strip off the Extensions of Var0 and Var1 and do another round
   1523   // of GetLinearExpression decomposition. In the example above, if Var0
   1524   // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
   1525 
   1526   APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0),
   1527       V1Offset(Width, 0);
   1528   bool NSW = true, NUW = true;
   1529   unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0;
   1530   const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits,
   1531                                         V0SExtBits, DL, 0, AC, DT, NSW, NUW);
   1532   NSW = true, NUW = true;
   1533   const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits,
   1534                                         V1SExtBits, DL, 0, AC, DT, NSW, NUW);
   1535 
   1536   if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits ||
   1537       V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1))
   1538     return false;
   1539 
   1540   // We have a hit - Var0 and Var1 only differ by a constant offset!
   1541 
   1542   // If we've been sext'ed then zext'd the maximum difference between Var0 and
   1543   // Var1 is possible to calculate, but we're just interested in the absolute
   1544   // minimum difference between the two. The minimum distance may occur due to
   1545   // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
   1546   // the minimum distance between %i and %i + 5 is 3.
   1547   APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff;
   1548   MinDiff = APIntOps::umin(MinDiff, Wrapped);
   1549   uint64_t MinDiffBytes = MinDiff.getZExtValue() * std::abs(Var0.Scale);
   1550 
   1551   // We can't definitely say whether GEP1 is before or after V2 due to wrapping
   1552   // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
   1553   // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
   1554   // V2Size can fit in the MinDiffBytes gap.
   1555   return V1Size + std::abs(BaseOffset) <= MinDiffBytes &&
   1556          V2Size + std::abs(BaseOffset) <= MinDiffBytes;
   1557 }
   1558 
   1559 //===----------------------------------------------------------------------===//
   1560 // BasicAliasAnalysis Pass
   1561 //===----------------------------------------------------------------------===//
   1562 
   1563 char BasicAA::PassID;
   1564 
   1565 BasicAAResult BasicAA::run(Function &F, AnalysisManager<Function> *AM) {
   1566   return BasicAAResult(F.getParent()->getDataLayout(),
   1567                        AM->getResult<TargetLibraryAnalysis>(F),
   1568                        AM->getResult<AssumptionAnalysis>(F),
   1569                        AM->getCachedResult<DominatorTreeAnalysis>(F),
   1570                        AM->getCachedResult<LoopAnalysis>(F));
   1571 }
   1572 
   1573 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
   1574     initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
   1575 }
   1576 
   1577 char BasicAAWrapperPass::ID = 0;
   1578 void BasicAAWrapperPass::anchor() {}
   1579 
   1580 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa",
   1581                       "Basic Alias Analysis (stateless AA impl)", true, true)
   1582 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
   1583 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
   1584 INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa",
   1585                     "Basic Alias Analysis (stateless AA impl)", true, true)
   1586 
   1587 FunctionPass *llvm::createBasicAAWrapperPass() {
   1588   return new BasicAAWrapperPass();
   1589 }
   1590 
   1591 bool BasicAAWrapperPass::runOnFunction(Function &F) {
   1592   auto &ACT = getAnalysis<AssumptionCacheTracker>();
   1593   auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
   1594   auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
   1595   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
   1596 
   1597   Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), TLIWP.getTLI(),
   1598                                  ACT.getAssumptionCache(F),
   1599                                  DTWP ? &DTWP->getDomTree() : nullptr,
   1600                                  LIWP ? &LIWP->getLoopInfo() : nullptr));
   1601 
   1602   return false;
   1603 }
   1604 
   1605 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
   1606   AU.setPreservesAll();
   1607   AU.addRequired<AssumptionCacheTracker>();
   1608   AU.addRequired<TargetLibraryInfoWrapperPass>();
   1609 }
   1610 
   1611 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
   1612   return BasicAAResult(
   1613       F.getParent()->getDataLayout(),
   1614       P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
   1615       P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
   1616 }
   1617