1 /*------------------------------------------------------------------------- 2 * drawElements Quality Program OpenGL ES 3.0 Module 3 * ------------------------------------------------- 4 * 5 * Copyright 2014 The Android Open Source Project 6 * 7 * Licensed under the Apache License, Version 2.0 (the "License"); 8 * you may not use this file except in compliance with the License. 9 * You may obtain a copy of the License at 10 * 11 * http://www.apache.org/licenses/LICENSE-2.0 12 * 13 * Unless required by applicable law or agreed to in writing, software 14 * distributed under the License is distributed on an "AS IS" BASIS, 15 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 16 * See the License for the specific language governing permissions and 17 * limitations under the License. 18 * 19 *//*! 20 * \file 21 * \brief Shader derivate function tests. 22 * 23 * \todo [2013-06-25 pyry] Missing features: 24 * - lines and points 25 * - projected coordinates 26 * - continous non-trivial functions (sin, exp) 27 * - non-continous functions (step) 28 *//*--------------------------------------------------------------------*/ 29 30 #include "es3fShaderDerivateTests.hpp" 31 #include "gluShaderProgram.hpp" 32 #include "gluRenderContext.hpp" 33 #include "gluDrawUtil.hpp" 34 #include "gluPixelTransfer.hpp" 35 #include "gluShaderUtil.hpp" 36 #include "gluStrUtil.hpp" 37 #include "gluTextureUtil.hpp" 38 #include "gluTexture.hpp" 39 #include "tcuStringTemplate.hpp" 40 #include "tcuRenderTarget.hpp" 41 #include "tcuSurface.hpp" 42 #include "tcuTestLog.hpp" 43 #include "tcuVectorUtil.hpp" 44 #include "tcuTextureUtil.hpp" 45 #include "tcuRGBA.hpp" 46 #include "tcuFloat.hpp" 47 #include "tcuInterval.hpp" 48 #include "deRandom.hpp" 49 #include "deUniquePtr.hpp" 50 #include "deString.h" 51 #include "glwEnums.hpp" 52 #include "glwFunctions.hpp" 53 #include "glsShaderRenderCase.hpp" // gls::setupDefaultUniforms() 54 55 #include <sstream> 56 57 namespace deqp 58 { 59 namespace gles3 60 { 61 namespace Functional 62 { 63 64 using std::vector; 65 using std::string; 66 using std::map; 67 using tcu::TestLog; 68 using std::ostringstream; 69 70 enum 71 { 72 VIEWPORT_WIDTH = 167, 73 VIEWPORT_HEIGHT = 103, 74 FBO_WIDTH = 99, 75 FBO_HEIGHT = 133, 76 MAX_FAILED_MESSAGES = 10 77 }; 78 79 enum DerivateFunc 80 { 81 DERIVATE_DFDX = 0, 82 DERIVATE_DFDY, 83 DERIVATE_FWIDTH, 84 85 DERIVATE_LAST 86 }; 87 88 enum SurfaceType 89 { 90 SURFACETYPE_DEFAULT_FRAMEBUFFER = 0, 91 SURFACETYPE_UNORM_FBO, 92 SURFACETYPE_FLOAT_FBO, // \note Uses RGBA32UI fbo actually, since FP rendertargets are not in core spec. 93 94 SURFACETYPE_LAST 95 }; 96 97 // Utilities 98 99 namespace 100 { 101 102 class AutoFbo 103 { 104 public: 105 AutoFbo (const glw::Functions& gl) 106 : m_gl (gl) 107 , m_fbo (0) 108 { 109 } 110 111 ~AutoFbo (void) 112 { 113 if (m_fbo) 114 m_gl.deleteFramebuffers(1, &m_fbo); 115 } 116 117 void gen (void) 118 { 119 DE_ASSERT(!m_fbo); 120 m_gl.genFramebuffers(1, &m_fbo); 121 } 122 123 deUint32 operator* (void) const { return m_fbo; } 124 125 private: 126 const glw::Functions& m_gl; 127 deUint32 m_fbo; 128 }; 129 130 class AutoRbo 131 { 132 public: 133 AutoRbo (const glw::Functions& gl) 134 : m_gl (gl) 135 , m_rbo (0) 136 { 137 } 138 139 ~AutoRbo (void) 140 { 141 if (m_rbo) 142 m_gl.deleteRenderbuffers(1, &m_rbo); 143 } 144 145 void gen (void) 146 { 147 DE_ASSERT(!m_rbo); 148 m_gl.genRenderbuffers(1, &m_rbo); 149 } 150 151 deUint32 operator* (void) const { return m_rbo; } 152 153 private: 154 const glw::Functions& m_gl; 155 deUint32 m_rbo; 156 }; 157 158 } // anonymous 159 160 static const char* getDerivateFuncName (DerivateFunc func) 161 { 162 switch (func) 163 { 164 case DERIVATE_DFDX: return "dFdx"; 165 case DERIVATE_DFDY: return "dFdy"; 166 case DERIVATE_FWIDTH: return "fwidth"; 167 default: 168 DE_ASSERT(false); 169 return DE_NULL; 170 } 171 } 172 173 static const char* getDerivateFuncCaseName (DerivateFunc func) 174 { 175 switch (func) 176 { 177 case DERIVATE_DFDX: return "dfdx"; 178 case DERIVATE_DFDY: return "dfdy"; 179 case DERIVATE_FWIDTH: return "fwidth"; 180 default: 181 DE_ASSERT(false); 182 return DE_NULL; 183 } 184 } 185 186 static inline tcu::BVec4 getDerivateMask (glu::DataType type) 187 { 188 switch (type) 189 { 190 case glu::TYPE_FLOAT: return tcu::BVec4(true, false, false, false); 191 case glu::TYPE_FLOAT_VEC2: return tcu::BVec4(true, true, false, false); 192 case glu::TYPE_FLOAT_VEC3: return tcu::BVec4(true, true, true, false); 193 case glu::TYPE_FLOAT_VEC4: return tcu::BVec4(true, true, true, true); 194 default: 195 DE_ASSERT(false); 196 return tcu::BVec4(true); 197 } 198 } 199 200 static inline tcu::Vec4 readDerivate (const tcu::ConstPixelBufferAccess& surface, const tcu::Vec4& derivScale, const tcu::Vec4& derivBias, int x, int y) 201 { 202 return (surface.getPixel(x, y) - derivBias) / derivScale; 203 } 204 205 static inline tcu::UVec4 getCompExpBits (const tcu::Vec4& v) 206 { 207 return tcu::UVec4(tcu::Float32(v[0]).exponentBits(), 208 tcu::Float32(v[1]).exponentBits(), 209 tcu::Float32(v[2]).exponentBits(), 210 tcu::Float32(v[3]).exponentBits()); 211 } 212 213 float computeFloatingPointError (const float value, const int numAccurateBits) 214 { 215 const int numGarbageBits = 23-numAccurateBits; 216 const deUint32 mask = (1u<<numGarbageBits)-1u; 217 const int exp = tcu::Float32(value).exponent(); 218 219 return tcu::Float32::construct(+1, exp, (1u<<23) | mask).asFloat() - tcu::Float32::construct(+1, exp, 1u<<23).asFloat(); 220 } 221 222 static int getNumMantissaBits (const glu::Precision precision) 223 { 224 switch (precision) 225 { 226 case glu::PRECISION_HIGHP: return 23; 227 case glu::PRECISION_MEDIUMP: return 10; 228 case glu::PRECISION_LOWP: return 6; 229 default: 230 DE_ASSERT(false); 231 return 0; 232 } 233 } 234 235 static int getMinExponent (const glu::Precision precision) 236 { 237 switch (precision) 238 { 239 case glu::PRECISION_HIGHP: return -126; 240 case glu::PRECISION_MEDIUMP: return -14; 241 case glu::PRECISION_LOWP: return -8; 242 default: 243 DE_ASSERT(false); 244 return 0; 245 } 246 } 247 248 static float getSingleULPForExponent (int exp, int numMantissaBits) 249 { 250 if (numMantissaBits > 0) 251 { 252 DE_ASSERT(numMantissaBits <= 23); 253 254 const int ulpBitNdx = 23-numMantissaBits; 255 return tcu::Float32::construct(+1, exp, (1<<23) | (1 << ulpBitNdx)).asFloat() - tcu::Float32::construct(+1, exp, (1<<23)).asFloat(); 256 } 257 else 258 { 259 DE_ASSERT(numMantissaBits == 0); 260 return tcu::Float32::construct(+1, exp, (1<<23)).asFloat(); 261 } 262 } 263 264 static float getSingleULPForValue (float value, int numMantissaBits) 265 { 266 const int exp = tcu::Float32(value).exponent(); 267 return getSingleULPForExponent(exp, numMantissaBits); 268 } 269 270 static float convertFloatFlushToZeroRtn (float value, int minExponent, int numAccurateBits) 271 { 272 if (value == 0.0f) 273 { 274 return 0.0f; 275 } 276 else 277 { 278 const tcu::Float32 inputFloat = tcu::Float32(value); 279 const int numTruncatedBits = 23-numAccurateBits; 280 const deUint32 truncMask = (1u<<numTruncatedBits)-1u; 281 282 if (value > 0.0f) 283 { 284 if (value > 0.0f && tcu::Float32(value).exponent() < minExponent) 285 { 286 // flush to zero if possible 287 return 0.0f; 288 } 289 else 290 { 291 // just mask away non-representable bits 292 return tcu::Float32::construct(+1, inputFloat.exponent(), inputFloat.mantissa() & ~truncMask).asFloat(); 293 } 294 } 295 else 296 { 297 if (inputFloat.mantissa() & truncMask) 298 { 299 // decrement one ulp if truncated bits are non-zero (i.e. if value is not representable) 300 return tcu::Float32::construct(-1, inputFloat.exponent(), inputFloat.mantissa() & ~truncMask).asFloat() - getSingleULPForExponent(inputFloat.exponent(), numAccurateBits); 301 } 302 else 303 { 304 // value is representable, no need to do anything 305 return value; 306 } 307 } 308 } 309 } 310 311 static float convertFloatFlushToZeroRtp (float value, int minExponent, int numAccurateBits) 312 { 313 return -convertFloatFlushToZeroRtn(-value, minExponent, numAccurateBits); 314 } 315 316 static float addErrorUlp (float value, float numUlps, int numMantissaBits) 317 { 318 return value + numUlps * getSingleULPForValue(value, numMantissaBits); 319 } 320 321 enum 322 { 323 INTERPOLATION_LOST_BITS = 3, // number mantissa of bits allowed to be lost in varying interpolation 324 }; 325 326 static inline tcu::Vec4 getDerivateThreshold (const glu::Precision precision, const tcu::Vec4& valueMin, const tcu::Vec4& valueMax, const tcu::Vec4& expectedDerivate) 327 { 328 const int baseBits = getNumMantissaBits(precision); 329 const tcu::UVec4 derivExp = getCompExpBits(expectedDerivate); 330 const tcu::UVec4 maxValueExp = max(getCompExpBits(valueMin), getCompExpBits(valueMax)); 331 const tcu::UVec4 numBitsLost = maxValueExp - min(maxValueExp, derivExp); 332 const tcu::IVec4 numAccurateBits = max(baseBits - numBitsLost.asInt() - (int)INTERPOLATION_LOST_BITS, tcu::IVec4(0)); 333 334 return tcu::Vec4(computeFloatingPointError(expectedDerivate[0], numAccurateBits[0]), 335 computeFloatingPointError(expectedDerivate[1], numAccurateBits[1]), 336 computeFloatingPointError(expectedDerivate[2], numAccurateBits[2]), 337 computeFloatingPointError(expectedDerivate[3], numAccurateBits[3])); 338 } 339 340 namespace 341 { 342 343 struct LogVecComps 344 { 345 const tcu::Vec4& v; 346 int numComps; 347 348 LogVecComps (const tcu::Vec4& v_, int numComps_) 349 : v (v_) 350 , numComps (numComps_) 351 { 352 } 353 }; 354 355 std::ostream& operator<< (std::ostream& str, const LogVecComps& v) 356 { 357 DE_ASSERT(de::inRange(v.numComps, 1, 4)); 358 if (v.numComps == 1) return str << v.v[0]; 359 else if (v.numComps == 2) return str << v.v.toWidth<2>(); 360 else if (v.numComps == 3) return str << v.v.toWidth<3>(); 361 else return str << v.v; 362 } 363 364 } // anonymous 365 366 enum VerificationLogging 367 { 368 LOG_ALL = 0, 369 LOG_NOTHING 370 }; 371 372 static bool verifyConstantDerivate (tcu::TestLog& log, 373 const tcu::ConstPixelBufferAccess& result, 374 const tcu::PixelBufferAccess& errorMask, 375 glu::DataType dataType, 376 const tcu::Vec4& reference, 377 const tcu::Vec4& threshold, 378 const tcu::Vec4& scale, 379 const tcu::Vec4& bias, 380 VerificationLogging logPolicy = LOG_ALL) 381 { 382 const int numComps = glu::getDataTypeFloatScalars(dataType); 383 const tcu::BVec4 mask = tcu::logicalNot(getDerivateMask(dataType)); 384 int numFailedPixels = 0; 385 386 if (logPolicy == LOG_ALL) 387 log << TestLog::Message << "Expecting " << LogVecComps(reference, numComps) << " with threshold " << LogVecComps(threshold, numComps) << TestLog::EndMessage; 388 389 for (int y = 0; y < result.getHeight(); y++) 390 { 391 for (int x = 0; x < result.getWidth(); x++) 392 { 393 const tcu::Vec4 resDerivate = readDerivate(result, scale, bias, x, y); 394 const bool isOk = tcu::allEqual(tcu::logicalOr(tcu::lessThanEqual(tcu::abs(reference - resDerivate), threshold), mask), tcu::BVec4(true)); 395 396 if (!isOk) 397 { 398 if (numFailedPixels < MAX_FAILED_MESSAGES && logPolicy == LOG_ALL) 399 log << TestLog::Message << "FAIL: got " << LogVecComps(resDerivate, numComps) 400 << ", diff = " << LogVecComps(tcu::abs(reference - resDerivate), numComps) 401 << ", at x = " << x << ", y = " << y 402 << TestLog::EndMessage; 403 numFailedPixels += 1; 404 errorMask.setPixel(tcu::RGBA::red().toVec(), x, y); 405 } 406 } 407 } 408 409 if (numFailedPixels >= MAX_FAILED_MESSAGES && logPolicy == LOG_ALL) 410 log << TestLog::Message << "..." << TestLog::EndMessage; 411 412 if (numFailedPixels > 0 && logPolicy == LOG_ALL) 413 log << TestLog::Message << "FAIL: found " << numFailedPixels << " failed pixels" << TestLog::EndMessage; 414 415 return numFailedPixels == 0; 416 } 417 418 struct Linear2DFunctionEvaluator 419 { 420 tcu::Matrix<float, 4, 3> matrix; 421 422 // .-----. 423 // | s_x | 424 // M x | s_y | 425 // | 1.0 | 426 // '-----' 427 tcu::Vec4 evaluateAt (float screenX, float screenY) const; 428 }; 429 430 tcu::Vec4 Linear2DFunctionEvaluator::evaluateAt (float screenX, float screenY) const 431 { 432 const tcu::Vec3 position(screenX, screenY, 1.0f); 433 return matrix * position; 434 } 435 436 static bool reverifyConstantDerivateWithFlushRelaxations (tcu::TestLog& log, 437 const tcu::ConstPixelBufferAccess& result, 438 const tcu::PixelBufferAccess& errorMask, 439 glu::DataType dataType, 440 glu::Precision precision, 441 const tcu::Vec4& derivScale, 442 const tcu::Vec4& derivBias, 443 const tcu::Vec4& surfaceThreshold, 444 DerivateFunc derivateFunc, 445 const Linear2DFunctionEvaluator& function) 446 { 447 DE_ASSERT(result.getWidth() == errorMask.getWidth()); 448 DE_ASSERT(result.getHeight() == errorMask.getHeight()); 449 DE_ASSERT(derivateFunc == DERIVATE_DFDX || derivateFunc == DERIVATE_DFDY); 450 451 const tcu::IVec4 red (255, 0, 0, 255); 452 const tcu::IVec4 green (0, 255, 0, 255); 453 const float divisionErrorUlps = 2.5f; 454 455 const int numComponents = glu::getDataTypeFloatScalars(dataType); 456 const int numBits = getNumMantissaBits(precision); 457 const int minExponent = getMinExponent(precision); 458 459 const int numVaryingSampleBits = numBits - INTERPOLATION_LOST_BITS; 460 int numFailedPixels = 0; 461 462 tcu::clear(errorMask, green); 463 464 // search for failed pixels 465 for (int y = 0; y < result.getHeight(); ++y) 466 for (int x = 0; x < result.getWidth(); ++x) 467 { 468 // flushToZero?(f2z?(functionValueCurrent) - f2z?(functionValueBefore)) 469 // flushToZero? ( ------------------------------------------------------------------------ +- 2.5 ULP ) 470 // dx 471 472 const tcu::Vec4 resultDerivative = readDerivate(result, derivScale, derivBias, x, y); 473 474 // sample at the front of the back pixel and the back of the front pixel to cover the whole area of 475 // legal sample positions. In general case this is NOT OK, but we know that the target funtion is 476 // (mostly*) linear which allows us to take the sample points at arbitrary points. This gets us the 477 // maximum difference possible in exponents which are used in error bound calculations. 478 // * non-linearity may happen around zero or with very high function values due to subnorms not 479 // behaving well. 480 const tcu::Vec4 functionValueForward = (derivateFunc == DERIVATE_DFDX) 481 ? (function.evaluateAt((float)x + 2.0f, (float)y + 0.5f)) 482 : (function.evaluateAt((float)x + 0.5f, (float)y + 2.0f)); 483 const tcu::Vec4 functionValueBackward = (derivateFunc == DERIVATE_DFDX) 484 ? (function.evaluateAt((float)x - 1.0f, (float)y + 0.5f)) 485 : (function.evaluateAt((float)x + 0.5f, (float)y - 1.0f)); 486 487 bool anyComponentFailed = false; 488 489 // check components separately 490 for (int c = 0; c < numComponents; ++c) 491 { 492 // Simulate interpolation. Add allowed interpolation error and round to target precision. Allow one half ULP (i.e. correct rounding) 493 const tcu::Interval forwardComponent (convertFloatFlushToZeroRtn(addErrorUlp((float)functionValueForward[c], -0.5f, numVaryingSampleBits), minExponent, numBits), 494 convertFloatFlushToZeroRtp(addErrorUlp((float)functionValueForward[c], +0.5f, numVaryingSampleBits), minExponent, numBits)); 495 const tcu::Interval backwardComponent (convertFloatFlushToZeroRtn(addErrorUlp((float)functionValueBackward[c], -0.5f, numVaryingSampleBits), minExponent, numBits), 496 convertFloatFlushToZeroRtp(addErrorUlp((float)functionValueBackward[c], +0.5f, numVaryingSampleBits), minExponent, numBits)); 497 const int maxValueExp = de::max(de::max(tcu::Float32(forwardComponent.lo()).exponent(), tcu::Float32(forwardComponent.hi()).exponent()), 498 de::max(tcu::Float32(backwardComponent.lo()).exponent(), tcu::Float32(backwardComponent.hi()).exponent())); 499 500 // subtraction in numerator will likely cause a cancellation of the most 501 // significant bits. Apply error bounds. 502 503 const tcu::Interval numerator (forwardComponent - backwardComponent); 504 const int numeratorLoExp = tcu::Float32(numerator.lo()).exponent(); 505 const int numeratorHiExp = tcu::Float32(numerator.hi()).exponent(); 506 const int numeratorLoBitsLost = de::max(0, maxValueExp - numeratorLoExp); //!< must clamp to zero since if forward and backward components have different 507 const int numeratorHiBitsLost = de::max(0, maxValueExp - numeratorHiExp); //!< sign, numerator might have larger exponent than its operands. 508 const int numeratorLoBits = de::max(0, numBits - numeratorLoBitsLost); 509 const int numeratorHiBits = de::max(0, numBits - numeratorHiBitsLost); 510 511 const tcu::Interval numeratorRange (convertFloatFlushToZeroRtn((float)numerator.lo(), minExponent, numeratorLoBits), 512 convertFloatFlushToZeroRtp((float)numerator.hi(), minExponent, numeratorHiBits)); 513 514 const tcu::Interval divisionRange = numeratorRange / 3.0f; // legal sample area is anywhere within this and neighboring pixels (i.e. size = 3) 515 const tcu::Interval divisionResultRange (convertFloatFlushToZeroRtn(addErrorUlp((float)divisionRange.lo(), -divisionErrorUlps, numBits), minExponent, numBits), 516 convertFloatFlushToZeroRtp(addErrorUlp((float)divisionRange.hi(), +divisionErrorUlps, numBits), minExponent, numBits)); 517 const tcu::Interval finalResultRange (divisionResultRange.lo() - surfaceThreshold[c], divisionResultRange.hi() + surfaceThreshold[c]); 518 519 if (resultDerivative[c] >= finalResultRange.lo() && resultDerivative[c] <= finalResultRange.hi()) 520 { 521 // value ok 522 } 523 else 524 { 525 if (numFailedPixels < MAX_FAILED_MESSAGES) 526 log << tcu::TestLog::Message 527 << "Error in pixel at " << x << ", " << y << " with component " << c << " (channel " << ("rgba"[c]) << ")\n" 528 << "\tGot pixel value " << result.getPixelInt(x, y) << "\n" 529 << "\t\tdFd" << ((derivateFunc == DERIVATE_DFDX) ? ('x') : ('y')) << " ~= " << resultDerivative[c] << "\n" 530 << "\t\tdifference to a valid range: " 531 << ((resultDerivative[c] < finalResultRange.lo()) ? ("-") : ("+")) 532 << ((resultDerivative[c] < finalResultRange.lo()) ? (finalResultRange.lo() - resultDerivative[c]) : (resultDerivative[c] - finalResultRange.hi())) 533 << "\n" 534 << "\tDerivative value range:\n" 535 << "\t\tMin: " << finalResultRange.lo() << "\n" 536 << "\t\tMax: " << finalResultRange.hi() << "\n" 537 << tcu::TestLog::EndMessage; 538 539 ++numFailedPixels; 540 anyComponentFailed = true; 541 } 542 } 543 544 if (anyComponentFailed) 545 errorMask.setPixel(red, x, y); 546 } 547 548 if (numFailedPixels >= MAX_FAILED_MESSAGES) 549 log << TestLog::Message << "..." << TestLog::EndMessage; 550 551 if (numFailedPixels > 0) 552 log << TestLog::Message << "FAIL: found " << numFailedPixels << " failed pixels" << TestLog::EndMessage; 553 554 return numFailedPixels == 0; 555 } 556 557 // TriangleDerivateCase 558 559 class TriangleDerivateCase : public TestCase 560 { 561 public: 562 TriangleDerivateCase (Context& context, const char* name, const char* description); 563 ~TriangleDerivateCase (void); 564 565 IterateResult iterate (void); 566 567 protected: 568 virtual void setupRenderState (deUint32 program) { DE_UNREF(program); } 569 virtual bool verify (const tcu::ConstPixelBufferAccess& result, const tcu::PixelBufferAccess& errorMask) = DE_NULL; 570 571 tcu::IVec2 getViewportSize (void) const; 572 tcu::Vec4 getSurfaceThreshold (void) const; 573 574 glu::DataType m_dataType; 575 glu::Precision m_precision; 576 577 glu::DataType m_coordDataType; 578 glu::Precision m_coordPrecision; 579 580 std::string m_fragmentSrc; 581 582 tcu::Vec4 m_coordMin; 583 tcu::Vec4 m_coordMax; 584 tcu::Vec4 m_derivScale; 585 tcu::Vec4 m_derivBias; 586 587 SurfaceType m_surfaceType; 588 int m_numSamples; 589 deUint32 m_hint; 590 }; 591 592 TriangleDerivateCase::TriangleDerivateCase (Context& context, const char* name, const char* description) 593 : TestCase (context, name, description) 594 , m_dataType (glu::TYPE_LAST) 595 , m_precision (glu::PRECISION_LAST) 596 , m_coordDataType (glu::TYPE_LAST) 597 , m_coordPrecision (glu::PRECISION_LAST) 598 , m_surfaceType (SURFACETYPE_DEFAULT_FRAMEBUFFER) 599 , m_numSamples (0) 600 , m_hint (GL_DONT_CARE) 601 { 602 DE_ASSERT(m_surfaceType != SURFACETYPE_DEFAULT_FRAMEBUFFER || m_numSamples == 0); 603 } 604 605 TriangleDerivateCase::~TriangleDerivateCase (void) 606 { 607 TriangleDerivateCase::deinit(); 608 } 609 610 static std::string genVertexSource (glu::DataType coordType, glu::Precision precision) 611 { 612 DE_ASSERT(glu::isDataTypeFloatOrVec(coordType)); 613 614 const char* vertexTmpl = 615 "#version 300 es\n" 616 "in highp vec4 a_position;\n" 617 "in ${PRECISION} ${DATATYPE} a_coord;\n" 618 "out ${PRECISION} ${DATATYPE} v_coord;\n" 619 "void main (void)\n" 620 "{\n" 621 " gl_Position = a_position;\n" 622 " v_coord = a_coord;\n" 623 "}\n"; 624 625 map<string, string> vertexParams; 626 627 vertexParams["PRECISION"] = glu::getPrecisionName(precision); 628 vertexParams["DATATYPE"] = glu::getDataTypeName(coordType); 629 630 return tcu::StringTemplate(vertexTmpl).specialize(vertexParams); 631 } 632 633 inline tcu::IVec2 TriangleDerivateCase::getViewportSize (void) const 634 { 635 if (m_surfaceType == SURFACETYPE_DEFAULT_FRAMEBUFFER) 636 { 637 const int width = de::min<int>(m_context.getRenderTarget().getWidth(), VIEWPORT_WIDTH); 638 const int height = de::min<int>(m_context.getRenderTarget().getHeight(), VIEWPORT_HEIGHT); 639 return tcu::IVec2(width, height); 640 } 641 else 642 return tcu::IVec2(FBO_WIDTH, FBO_HEIGHT); 643 } 644 645 TriangleDerivateCase::IterateResult TriangleDerivateCase::iterate (void) 646 { 647 const glw::Functions& gl = m_context.getRenderContext().getFunctions(); 648 const glu::ShaderProgram program (m_context.getRenderContext(), glu::makeVtxFragSources(genVertexSource(m_coordDataType, m_coordPrecision), m_fragmentSrc)); 649 de::Random rnd (deStringHash(getName()) ^ 0xbbc24); 650 const bool useFbo = m_surfaceType != SURFACETYPE_DEFAULT_FRAMEBUFFER; 651 const deUint32 fboFormat = m_surfaceType == SURFACETYPE_FLOAT_FBO ? GL_RGBA32UI : GL_RGBA8; 652 const tcu::IVec2 viewportSize = getViewportSize(); 653 const int viewportX = useFbo ? 0 : rnd.getInt(0, m_context.getRenderTarget().getWidth() - viewportSize.x()); 654 const int viewportY = useFbo ? 0 : rnd.getInt(0, m_context.getRenderTarget().getHeight() - viewportSize.y()); 655 AutoFbo fbo (gl); 656 AutoRbo rbo (gl); 657 tcu::TextureLevel result; 658 659 m_testCtx.getLog() << program; 660 661 if (!program.isOk()) 662 TCU_FAIL("Compile failed"); 663 664 if (useFbo) 665 { 666 m_testCtx.getLog() << TestLog::Message 667 << "Rendering to FBO, format = " << glu::getTextureFormatStr(fboFormat) 668 << ", samples = " << m_numSamples 669 << TestLog::EndMessage; 670 671 fbo.gen(); 672 rbo.gen(); 673 674 gl.bindRenderbuffer(GL_RENDERBUFFER, *rbo); 675 gl.renderbufferStorageMultisample(GL_RENDERBUFFER, m_numSamples, fboFormat, viewportSize.x(), viewportSize.y()); 676 gl.bindFramebuffer(GL_FRAMEBUFFER, *fbo); 677 gl.framebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, *rbo); 678 TCU_CHECK(gl.checkFramebufferStatus(GL_FRAMEBUFFER) == GL_FRAMEBUFFER_COMPLETE); 679 } 680 else 681 { 682 const tcu::PixelFormat pixelFormat = m_context.getRenderTarget().getPixelFormat(); 683 684 m_testCtx.getLog() 685 << TestLog::Message 686 << "Rendering to default framebuffer\n" 687 << "\tColor depth: R=" << pixelFormat.redBits << ", G=" << pixelFormat.greenBits << ", B=" << pixelFormat.blueBits << ", A=" << pixelFormat.alphaBits 688 << TestLog::EndMessage; 689 } 690 691 m_testCtx.getLog() << TestLog::Message << "in: " << m_coordMin << " -> " << m_coordMax << "\n" 692 << "v_coord.x = in.x * x\n" 693 << "v_coord.y = in.y * y\n" 694 << "v_coord.z = in.z * (x+y)/2\n" 695 << "v_coord.w = in.w * (1 - (x+y)/2)\n" 696 << TestLog::EndMessage 697 << TestLog::Message << "u_scale: " << m_derivScale << ", u_bias: " << m_derivBias << " (displayed values have scale/bias removed)" << TestLog::EndMessage 698 << TestLog::Message << "Viewport: " << viewportSize.x() << "x" << viewportSize.y() << TestLog::EndMessage 699 << TestLog::Message << "GL_FRAGMENT_SHADER_DERIVATE_HINT: " << glu::getHintModeStr(m_hint) << TestLog::EndMessage; 700 701 // Draw 702 { 703 const float positions[] = 704 { 705 -1.0f, -1.0f, 0.0f, 1.0f, 706 -1.0f, 1.0f, 0.0f, 1.0f, 707 1.0f, -1.0f, 0.0f, 1.0f, 708 1.0f, 1.0f, 0.0f, 1.0f 709 }; 710 const float coords[] = 711 { 712 m_coordMin.x(), m_coordMin.y(), m_coordMin.z(), m_coordMax.w(), 713 m_coordMin.x(), m_coordMax.y(), (m_coordMin.z()+m_coordMax.z())*0.5f, (m_coordMin.w()+m_coordMax.w())*0.5f, 714 m_coordMax.x(), m_coordMin.y(), (m_coordMin.z()+m_coordMax.z())*0.5f, (m_coordMin.w()+m_coordMax.w())*0.5f, 715 m_coordMax.x(), m_coordMax.y(), m_coordMax.z(), m_coordMin.w() 716 }; 717 const glu::VertexArrayBinding vertexArrays[] = 718 { 719 glu::va::Float("a_position", 4, 4, 0, &positions[0]), 720 glu::va::Float("a_coord", 4, 4, 0, &coords[0]) 721 }; 722 const deUint16 indices[] = { 0, 2, 1, 2, 3, 1 }; 723 724 gl.clearColor(0.125f, 0.25f, 0.5f, 1.0f); 725 gl.clear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT|GL_STENCIL_BUFFER_BIT); 726 gl.disable(GL_DITHER); 727 728 gl.useProgram(program.getProgram()); 729 730 { 731 const int scaleLoc = gl.getUniformLocation(program.getProgram(), "u_scale"); 732 const int biasLoc = gl.getUniformLocation(program.getProgram(), "u_bias"); 733 734 switch (m_dataType) 735 { 736 case glu::TYPE_FLOAT: 737 gl.uniform1f(scaleLoc, m_derivScale.x()); 738 gl.uniform1f(biasLoc, m_derivBias.x()); 739 break; 740 741 case glu::TYPE_FLOAT_VEC2: 742 gl.uniform2fv(scaleLoc, 1, m_derivScale.getPtr()); 743 gl.uniform2fv(biasLoc, 1, m_derivBias.getPtr()); 744 break; 745 746 case glu::TYPE_FLOAT_VEC3: 747 gl.uniform3fv(scaleLoc, 1, m_derivScale.getPtr()); 748 gl.uniform3fv(biasLoc, 1, m_derivBias.getPtr()); 749 break; 750 751 case glu::TYPE_FLOAT_VEC4: 752 gl.uniform4fv(scaleLoc, 1, m_derivScale.getPtr()); 753 gl.uniform4fv(biasLoc, 1, m_derivBias.getPtr()); 754 break; 755 756 default: 757 DE_ASSERT(false); 758 } 759 } 760 761 gls::setupDefaultUniforms(m_context.getRenderContext(), program.getProgram()); 762 setupRenderState(program.getProgram()); 763 764 gl.hint(GL_FRAGMENT_SHADER_DERIVATIVE_HINT, m_hint); 765 GLU_EXPECT_NO_ERROR(gl.getError(), "Setup program state"); 766 767 gl.viewport(viewportX, viewportY, viewportSize.x(), viewportSize.y()); 768 glu::draw(m_context.getRenderContext(), program.getProgram(), DE_LENGTH_OF_ARRAY(vertexArrays), &vertexArrays[0], 769 glu::pr::Triangles(DE_LENGTH_OF_ARRAY(indices), &indices[0])); 770 GLU_EXPECT_NO_ERROR(gl.getError(), "Draw"); 771 } 772 773 // Read back results 774 { 775 const bool isMSAA = useFbo && m_numSamples > 0; 776 AutoFbo resFbo (gl); 777 AutoRbo resRbo (gl); 778 779 // Resolve if necessary 780 if (isMSAA) 781 { 782 resFbo.gen(); 783 resRbo.gen(); 784 785 gl.bindRenderbuffer(GL_RENDERBUFFER, *resRbo); 786 gl.renderbufferStorageMultisample(GL_RENDERBUFFER, 0, fboFormat, viewportSize.x(), viewportSize.y()); 787 gl.bindFramebuffer(GL_DRAW_FRAMEBUFFER, *resFbo); 788 gl.framebufferRenderbuffer(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, *resRbo); 789 TCU_CHECK(gl.checkFramebufferStatus(GL_FRAMEBUFFER) == GL_FRAMEBUFFER_COMPLETE); 790 791 gl.blitFramebuffer(0, 0, viewportSize.x(), viewportSize.y(), 0, 0, viewportSize.x(), viewportSize.y(), GL_COLOR_BUFFER_BIT, GL_NEAREST); 792 GLU_EXPECT_NO_ERROR(gl.getError(), "Resolve blit"); 793 794 gl.bindFramebuffer(GL_READ_FRAMEBUFFER, *resFbo); 795 } 796 797 switch (m_surfaceType) 798 { 799 case SURFACETYPE_DEFAULT_FRAMEBUFFER: 800 case SURFACETYPE_UNORM_FBO: 801 result.setStorage(tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8), viewportSize.x(), viewportSize.y()); 802 glu::readPixels(m_context.getRenderContext(), viewportX, viewportY, result); 803 break; 804 805 case SURFACETYPE_FLOAT_FBO: 806 { 807 const tcu::TextureFormat dataFormat (tcu::TextureFormat::RGBA, tcu::TextureFormat::FLOAT); 808 const tcu::TextureFormat transferFormat (tcu::TextureFormat::RGBA, tcu::TextureFormat::UNSIGNED_INT32); 809 810 result.setStorage(dataFormat, viewportSize.x(), viewportSize.y()); 811 glu::readPixels(m_context.getRenderContext(), viewportX, viewportY, 812 tcu::PixelBufferAccess(transferFormat, result.getWidth(), result.getHeight(), result.getDepth(), result.getAccess().getDataPtr())); 813 break; 814 } 815 816 default: 817 DE_ASSERT(false); 818 } 819 820 GLU_EXPECT_NO_ERROR(gl.getError(), "Read pixels"); 821 } 822 823 // Verify 824 { 825 tcu::Surface errorMask(result.getWidth(), result.getHeight()); 826 tcu::clear(errorMask.getAccess(), tcu::RGBA::green().toVec()); 827 828 const bool isOk = verify(result.getAccess(), errorMask.getAccess()); 829 830 m_testCtx.getLog() << TestLog::ImageSet("Result", "Result images") 831 << TestLog::Image("Rendered", "Rendered image", result); 832 833 if (!isOk) 834 m_testCtx.getLog() << TestLog::Image("ErrorMask", "Error mask", errorMask); 835 836 m_testCtx.getLog() << TestLog::EndImageSet; 837 838 m_testCtx.setTestResult(isOk ? QP_TEST_RESULT_PASS : QP_TEST_RESULT_FAIL, 839 isOk ? "Pass" : "Image comparison failed"); 840 } 841 842 return STOP; 843 } 844 845 tcu::Vec4 TriangleDerivateCase::getSurfaceThreshold (void) const 846 { 847 switch (m_surfaceType) 848 { 849 case SURFACETYPE_DEFAULT_FRAMEBUFFER: 850 { 851 const tcu::PixelFormat pixelFormat = m_context.getRenderTarget().getPixelFormat(); 852 const tcu::IVec4 channelBits (pixelFormat.redBits, pixelFormat.greenBits, pixelFormat.blueBits, pixelFormat.alphaBits); 853 const tcu::IVec4 intThreshold = tcu::IVec4(1) << (8 - channelBits); 854 const tcu::Vec4 normThreshold = intThreshold.asFloat() / 255.0f; 855 856 return normThreshold; 857 } 858 859 case SURFACETYPE_UNORM_FBO: return tcu::IVec4(1).asFloat() / 255.0f; 860 case SURFACETYPE_FLOAT_FBO: return tcu::Vec4(0.0f); 861 default: 862 DE_ASSERT(false); 863 return tcu::Vec4(0.0f); 864 } 865 } 866 867 // ConstantDerivateCase 868 869 class ConstantDerivateCase : public TriangleDerivateCase 870 { 871 public: 872 ConstantDerivateCase (Context& context, const char* name, const char* description, DerivateFunc func, glu::DataType type); 873 ~ConstantDerivateCase (void) {} 874 875 void init (void); 876 877 protected: 878 bool verify (const tcu::ConstPixelBufferAccess& result, const tcu::PixelBufferAccess& errorMask); 879 880 private: 881 DerivateFunc m_func; 882 }; 883 884 ConstantDerivateCase::ConstantDerivateCase (Context& context, const char* name, const char* description, DerivateFunc func, glu::DataType type) 885 : TriangleDerivateCase (context, name, description) 886 , m_func (func) 887 { 888 m_dataType = type; 889 m_precision = glu::PRECISION_HIGHP; 890 m_coordDataType = m_dataType; 891 m_coordPrecision = m_precision; 892 } 893 894 void ConstantDerivateCase::init (void) 895 { 896 const char* fragmentTmpl = 897 "#version 300 es\n" 898 "layout(location = 0) out mediump vec4 o_color;\n" 899 "uniform ${PRECISION} ${DATATYPE} u_scale;\n" 900 "uniform ${PRECISION} ${DATATYPE} u_bias;\n" 901 "void main (void)\n" 902 "{\n" 903 " ${PRECISION} ${DATATYPE} res = ${FUNC}(${VALUE}) * u_scale + u_bias;\n" 904 " o_color = ${CAST_TO_OUTPUT};\n" 905 "}\n"; 906 map<string, string> fragmentParams; 907 fragmentParams["PRECISION"] = glu::getPrecisionName(m_precision); 908 fragmentParams["DATATYPE"] = glu::getDataTypeName(m_dataType); 909 fragmentParams["FUNC"] = getDerivateFuncName(m_func); 910 fragmentParams["VALUE"] = m_dataType == glu::TYPE_FLOAT_VEC4 ? "vec4(1.0, 7.2, -1e5, 0.0)" : 911 m_dataType == glu::TYPE_FLOAT_VEC3 ? "vec3(1e2, 8.0, 0.01)" : 912 m_dataType == glu::TYPE_FLOAT_VEC2 ? "vec2(-0.0, 2.7)" : 913 /* TYPE_FLOAT */ "7.7"; 914 fragmentParams["CAST_TO_OUTPUT"] = m_dataType == glu::TYPE_FLOAT_VEC4 ? "res" : 915 m_dataType == glu::TYPE_FLOAT_VEC3 ? "vec4(res, 1.0)" : 916 m_dataType == glu::TYPE_FLOAT_VEC2 ? "vec4(res, 0.0, 1.0)" : 917 /* TYPE_FLOAT */ "vec4(res, 0.0, 0.0, 1.0)"; 918 919 m_fragmentSrc = tcu::StringTemplate(fragmentTmpl).specialize(fragmentParams); 920 921 m_derivScale = tcu::Vec4(1e3f, 1e3f, 1e3f, 1e3f); 922 m_derivBias = tcu::Vec4(0.5f, 0.5f, 0.5f, 0.5f); 923 } 924 925 bool ConstantDerivateCase::verify (const tcu::ConstPixelBufferAccess& result, const tcu::PixelBufferAccess& errorMask) 926 { 927 const tcu::Vec4 reference (0.0f); // Derivate of constant argument should always be 0 928 const tcu::Vec4 threshold = getSurfaceThreshold() / abs(m_derivScale); 929 930 return verifyConstantDerivate(m_testCtx.getLog(), result, errorMask, m_dataType, 931 reference, threshold, m_derivScale, m_derivBias); 932 } 933 934 // LinearDerivateCase 935 936 class LinearDerivateCase : public TriangleDerivateCase 937 { 938 public: 939 LinearDerivateCase (Context& context, const char* name, const char* description, DerivateFunc func, glu::DataType type, glu::Precision precision, deUint32 hint, SurfaceType surfaceType, int numSamples, const char* fragmentSrcTmpl); 940 ~LinearDerivateCase (void) {} 941 942 void init (void); 943 944 protected: 945 bool verify (const tcu::ConstPixelBufferAccess& result, const tcu::PixelBufferAccess& errorMask); 946 947 private: 948 DerivateFunc m_func; 949 std::string m_fragmentTmpl; 950 }; 951 952 LinearDerivateCase::LinearDerivateCase (Context& context, const char* name, const char* description, DerivateFunc func, glu::DataType type, glu::Precision precision, deUint32 hint, SurfaceType surfaceType, int numSamples, const char* fragmentSrcTmpl) 953 : TriangleDerivateCase (context, name, description) 954 , m_func (func) 955 , m_fragmentTmpl (fragmentSrcTmpl) 956 { 957 m_dataType = type; 958 m_precision = precision; 959 m_coordDataType = m_dataType; 960 m_coordPrecision = m_precision; 961 m_hint = hint; 962 m_surfaceType = surfaceType; 963 m_numSamples = numSamples; 964 } 965 966 void LinearDerivateCase::init (void) 967 { 968 const tcu::IVec2 viewportSize = getViewportSize(); 969 const float w = float(viewportSize.x()); 970 const float h = float(viewportSize.y()); 971 const bool packToInt = m_surfaceType == SURFACETYPE_FLOAT_FBO; 972 map<string, string> fragmentParams; 973 974 fragmentParams["OUTPUT_TYPE"] = glu::getDataTypeName(packToInt ? glu::TYPE_UINT_VEC4 : glu::TYPE_FLOAT_VEC4); 975 fragmentParams["OUTPUT_PREC"] = glu::getPrecisionName(packToInt ? glu::PRECISION_HIGHP : m_precision); 976 fragmentParams["PRECISION"] = glu::getPrecisionName(m_precision); 977 fragmentParams["DATATYPE"] = glu::getDataTypeName(m_dataType); 978 fragmentParams["FUNC"] = getDerivateFuncName(m_func); 979 980 if (packToInt) 981 { 982 fragmentParams["CAST_TO_OUTPUT"] = m_dataType == glu::TYPE_FLOAT_VEC4 ? "floatBitsToUint(res)" : 983 m_dataType == glu::TYPE_FLOAT_VEC3 ? "floatBitsToUint(vec4(res, 1.0))" : 984 m_dataType == glu::TYPE_FLOAT_VEC2 ? "floatBitsToUint(vec4(res, 0.0, 1.0))" : 985 /* TYPE_FLOAT */ "floatBitsToUint(vec4(res, 0.0, 0.0, 1.0))"; 986 } 987 else 988 { 989 fragmentParams["CAST_TO_OUTPUT"] = m_dataType == glu::TYPE_FLOAT_VEC4 ? "res" : 990 m_dataType == glu::TYPE_FLOAT_VEC3 ? "vec4(res, 1.0)" : 991 m_dataType == glu::TYPE_FLOAT_VEC2 ? "vec4(res, 0.0, 1.0)" : 992 /* TYPE_FLOAT */ "vec4(res, 0.0, 0.0, 1.0)"; 993 } 994 995 m_fragmentSrc = tcu::StringTemplate(m_fragmentTmpl.c_str()).specialize(fragmentParams); 996 997 switch (m_precision) 998 { 999 case glu::PRECISION_HIGHP: 1000 m_coordMin = tcu::Vec4(-97.f, 0.2f, 71.f, 74.f); 1001 m_coordMax = tcu::Vec4(-13.2f, -77.f, 44.f, 76.f); 1002 break; 1003 1004 case glu::PRECISION_MEDIUMP: 1005 m_coordMin = tcu::Vec4(-37.0f, 47.f, -7.f, 0.0f); 1006 m_coordMax = tcu::Vec4(-1.0f, 12.f, 7.f, 19.f); 1007 break; 1008 1009 case glu::PRECISION_LOWP: 1010 m_coordMin = tcu::Vec4(0.0f, -1.0f, 0.0f, 1.0f); 1011 m_coordMax = tcu::Vec4(1.0f, 1.0f, -1.0f, -1.0f); 1012 break; 1013 1014 default: 1015 DE_ASSERT(false); 1016 } 1017 1018 if (m_surfaceType == SURFACETYPE_FLOAT_FBO) 1019 { 1020 // No scale or bias used for accuracy. 1021 m_derivScale = tcu::Vec4(1.0f); 1022 m_derivBias = tcu::Vec4(0.0f); 1023 } 1024 else 1025 { 1026 // Compute scale - bias that normalizes to 0..1 range. 1027 const tcu::Vec4 dx = (m_coordMax - m_coordMin) / tcu::Vec4(w, w, w*0.5f, -w*0.5f); 1028 const tcu::Vec4 dy = (m_coordMax - m_coordMin) / tcu::Vec4(h, h, h*0.5f, -h*0.5f); 1029 1030 switch (m_func) 1031 { 1032 case DERIVATE_DFDX: 1033 m_derivScale = 0.5f / dx; 1034 break; 1035 1036 case DERIVATE_DFDY: 1037 m_derivScale = 0.5f / dy; 1038 break; 1039 1040 case DERIVATE_FWIDTH: 1041 m_derivScale = 0.5f / (tcu::abs(dx) + tcu::abs(dy)); 1042 break; 1043 1044 default: 1045 DE_ASSERT(false); 1046 } 1047 1048 m_derivBias = tcu::Vec4(0.0f, 0.0f, 0.0f, 0.0f); 1049 } 1050 } 1051 1052 bool LinearDerivateCase::verify (const tcu::ConstPixelBufferAccess& result, const tcu::PixelBufferAccess& errorMask) 1053 { 1054 const tcu::Vec4 xScale = tcu::Vec4(1.0f, 0.0f, 0.5f, -0.5f); 1055 const tcu::Vec4 yScale = tcu::Vec4(0.0f, 1.0f, 0.5f, -0.5f); 1056 const tcu::Vec4 surfaceThreshold = getSurfaceThreshold() / abs(m_derivScale); 1057 1058 if (m_func == DERIVATE_DFDX || m_func == DERIVATE_DFDY) 1059 { 1060 const bool isX = m_func == DERIVATE_DFDX; 1061 const float div = isX ? float(result.getWidth()) : float(result.getHeight()); 1062 const tcu::Vec4 scale = isX ? xScale : yScale; 1063 const tcu::Vec4 reference = ((m_coordMax - m_coordMin) / div) * scale; 1064 const tcu::Vec4 opThreshold = getDerivateThreshold(m_precision, m_coordMin*scale, m_coordMax*scale, reference); 1065 const tcu::Vec4 threshold = max(surfaceThreshold, opThreshold); 1066 const int numComps = glu::getDataTypeFloatScalars(m_dataType); 1067 1068 m_testCtx.getLog() 1069 << tcu::TestLog::Message 1070 << "Verifying result image.\n" 1071 << "\tValid derivative is " << LogVecComps(reference, numComps) << " with threshold " << LogVecComps(threshold, numComps) 1072 << tcu::TestLog::EndMessage; 1073 1074 // short circuit if result is strictly within the normal value error bounds. 1075 // This improves performance significantly. 1076 if (verifyConstantDerivate(m_testCtx.getLog(), result, errorMask, m_dataType, 1077 reference, threshold, m_derivScale, m_derivBias, 1078 LOG_NOTHING)) 1079 { 1080 m_testCtx.getLog() 1081 << tcu::TestLog::Message 1082 << "No incorrect derivatives found, result valid." 1083 << tcu::TestLog::EndMessage; 1084 1085 return true; 1086 } 1087 1088 // some pixels exceed error bounds calculated for normal values. Verify that these 1089 // potentially invalid pixels are in fact valid due to (for example) subnorm flushing. 1090 1091 m_testCtx.getLog() 1092 << tcu::TestLog::Message 1093 << "Initial verification failed, verifying image by calculating accurate error bounds for each result pixel.\n" 1094 << "\tVerifying each result derivative is within its range of legal result values." 1095 << tcu::TestLog::EndMessage; 1096 1097 { 1098 const tcu::IVec2 viewportSize = getViewportSize(); 1099 const float w = float(viewportSize.x()); 1100 const float h = float(viewportSize.y()); 1101 const tcu::Vec4 valueRamp = (m_coordMax - m_coordMin); 1102 Linear2DFunctionEvaluator function; 1103 1104 function.matrix.setRow(0, tcu::Vec3(valueRamp.x() / w, 0.0f, m_coordMin.x())); 1105 function.matrix.setRow(1, tcu::Vec3(0.0f, valueRamp.y() / h, m_coordMin.y())); 1106 function.matrix.setRow(2, tcu::Vec3(valueRamp.z() / w, valueRamp.z() / h, m_coordMin.z() + m_coordMin.z()) / 2.0f); 1107 function.matrix.setRow(3, tcu::Vec3(-valueRamp.w() / w, -valueRamp.w() / h, m_coordMax.w() + m_coordMax.w()) / 2.0f); 1108 1109 return reverifyConstantDerivateWithFlushRelaxations(m_testCtx.getLog(), result, errorMask, 1110 m_dataType, m_precision, m_derivScale, 1111 m_derivBias, surfaceThreshold, m_func, 1112 function); 1113 } 1114 } 1115 else 1116 { 1117 DE_ASSERT(m_func == DERIVATE_FWIDTH); 1118 const float w = float(result.getWidth()); 1119 const float h = float(result.getHeight()); 1120 1121 const tcu::Vec4 dx = ((m_coordMax - m_coordMin) / w) * xScale; 1122 const tcu::Vec4 dy = ((m_coordMax - m_coordMin) / h) * yScale; 1123 const tcu::Vec4 reference = tcu::abs(dx) + tcu::abs(dy); 1124 const tcu::Vec4 dxThreshold = getDerivateThreshold(m_precision, m_coordMin*xScale, m_coordMax*xScale, dx); 1125 const tcu::Vec4 dyThreshold = getDerivateThreshold(m_precision, m_coordMin*yScale, m_coordMax*yScale, dy); 1126 const tcu::Vec4 threshold = max(surfaceThreshold, max(dxThreshold, dyThreshold)); 1127 1128 return verifyConstantDerivate(m_testCtx.getLog(), result, errorMask, m_dataType, 1129 reference, threshold, m_derivScale, m_derivBias); 1130 } 1131 } 1132 1133 // TextureDerivateCase 1134 1135 class TextureDerivateCase : public TriangleDerivateCase 1136 { 1137 public: 1138 TextureDerivateCase (Context& context, const char* name, const char* description, DerivateFunc func, glu::DataType type, glu::Precision precision, deUint32 hint, SurfaceType surfaceType, int numSamples); 1139 ~TextureDerivateCase (void); 1140 1141 void init (void); 1142 void deinit (void); 1143 1144 protected: 1145 void setupRenderState (deUint32 program); 1146 bool verify (const tcu::ConstPixelBufferAccess& result, const tcu::PixelBufferAccess& errorMask); 1147 1148 private: 1149 DerivateFunc m_func; 1150 1151 tcu::Vec4 m_texValueMin; 1152 tcu::Vec4 m_texValueMax; 1153 glu::Texture2D* m_texture; 1154 }; 1155 1156 TextureDerivateCase::TextureDerivateCase (Context& context, const char* name, const char* description, DerivateFunc func, glu::DataType type, glu::Precision precision, deUint32 hint, SurfaceType surfaceType, int numSamples) 1157 : TriangleDerivateCase (context, name, description) 1158 , m_func (func) 1159 , m_texture (DE_NULL) 1160 { 1161 m_dataType = type; 1162 m_precision = precision; 1163 m_coordDataType = glu::TYPE_FLOAT_VEC2; 1164 m_coordPrecision = glu::PRECISION_HIGHP; 1165 m_hint = hint; 1166 m_surfaceType = surfaceType; 1167 m_numSamples = numSamples; 1168 } 1169 1170 TextureDerivateCase::~TextureDerivateCase (void) 1171 { 1172 delete m_texture; 1173 } 1174 1175 void TextureDerivateCase::init (void) 1176 { 1177 // Generate shader 1178 { 1179 const char* fragmentTmpl = 1180 "#version 300 es\n" 1181 "in highp vec2 v_coord;\n" 1182 "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n" 1183 "uniform ${PRECISION} sampler2D u_sampler;\n" 1184 "uniform ${PRECISION} ${DATATYPE} u_scale;\n" 1185 "uniform ${PRECISION} ${DATATYPE} u_bias;\n" 1186 "void main (void)\n" 1187 "{\n" 1188 " ${PRECISION} vec4 tex = texture(u_sampler, v_coord);\n" 1189 " ${PRECISION} ${DATATYPE} res = ${FUNC}(tex${SWIZZLE}) * u_scale + u_bias;\n" 1190 " o_color = ${CAST_TO_OUTPUT};\n" 1191 "}\n"; 1192 1193 const bool packToInt = m_surfaceType == SURFACETYPE_FLOAT_FBO; 1194 map<string, string> fragmentParams; 1195 1196 fragmentParams["OUTPUT_TYPE"] = glu::getDataTypeName(packToInt ? glu::TYPE_UINT_VEC4 : glu::TYPE_FLOAT_VEC4); 1197 fragmentParams["OUTPUT_PREC"] = glu::getPrecisionName(packToInt ? glu::PRECISION_HIGHP : m_precision); 1198 fragmentParams["PRECISION"] = glu::getPrecisionName(m_precision); 1199 fragmentParams["DATATYPE"] = glu::getDataTypeName(m_dataType); 1200 fragmentParams["FUNC"] = getDerivateFuncName(m_func); 1201 fragmentParams["SWIZZLE"] = m_dataType == glu::TYPE_FLOAT_VEC4 ? "" : 1202 m_dataType == glu::TYPE_FLOAT_VEC3 ? ".xyz" : 1203 m_dataType == glu::TYPE_FLOAT_VEC2 ? ".xy" : 1204 /* TYPE_FLOAT */ ".x"; 1205 1206 if (packToInt) 1207 { 1208 fragmentParams["CAST_TO_OUTPUT"] = m_dataType == glu::TYPE_FLOAT_VEC4 ? "floatBitsToUint(res)" : 1209 m_dataType == glu::TYPE_FLOAT_VEC3 ? "floatBitsToUint(vec4(res, 1.0))" : 1210 m_dataType == glu::TYPE_FLOAT_VEC2 ? "floatBitsToUint(vec4(res, 0.0, 1.0))" : 1211 /* TYPE_FLOAT */ "floatBitsToUint(vec4(res, 0.0, 0.0, 1.0))"; 1212 } 1213 else 1214 { 1215 fragmentParams["CAST_TO_OUTPUT"] = m_dataType == glu::TYPE_FLOAT_VEC4 ? "res" : 1216 m_dataType == glu::TYPE_FLOAT_VEC3 ? "vec4(res, 1.0)" : 1217 m_dataType == glu::TYPE_FLOAT_VEC2 ? "vec4(res, 0.0, 1.0)" : 1218 /* TYPE_FLOAT */ "vec4(res, 0.0, 0.0, 1.0)"; 1219 } 1220 1221 m_fragmentSrc = tcu::StringTemplate(fragmentTmpl).specialize(fragmentParams); 1222 } 1223 1224 // Texture size matches viewport and nearest sampling is used. Thus texture sampling 1225 // is equal to just interpolating the texture value range. 1226 1227 // Determine value range for texture. 1228 1229 switch (m_precision) 1230 { 1231 case glu::PRECISION_HIGHP: 1232 m_texValueMin = tcu::Vec4(-97.f, 0.2f, 71.f, 74.f); 1233 m_texValueMax = tcu::Vec4(-13.2f, -77.f, 44.f, 76.f); 1234 break; 1235 1236 case glu::PRECISION_MEDIUMP: 1237 m_texValueMin = tcu::Vec4(-37.0f, 47.f, -7.f, 0.0f); 1238 m_texValueMax = tcu::Vec4(-1.0f, 12.f, 7.f, 19.f); 1239 break; 1240 1241 case glu::PRECISION_LOWP: 1242 m_texValueMin = tcu::Vec4(0.0f, -1.0f, 0.0f, 1.0f); 1243 m_texValueMax = tcu::Vec4(1.0f, 1.0f, -1.0f, -1.0f); 1244 break; 1245 1246 default: 1247 DE_ASSERT(false); 1248 } 1249 1250 // Lowp and mediump cases use RGBA16F format, while highp uses RGBA32F. 1251 { 1252 const tcu::IVec2 viewportSize = getViewportSize(); 1253 DE_ASSERT(!m_texture); 1254 m_texture = new glu::Texture2D(m_context.getRenderContext(), m_precision == glu::PRECISION_HIGHP ? GL_RGBA32F : GL_RGBA16F, viewportSize.x(), viewportSize.y()); 1255 m_texture->getRefTexture().allocLevel(0); 1256 } 1257 1258 // Texture coordinates 1259 m_coordMin = tcu::Vec4(0.0f); 1260 m_coordMax = tcu::Vec4(1.0f); 1261 1262 // Fill with gradients. 1263 { 1264 const tcu::PixelBufferAccess level0 = m_texture->getRefTexture().getLevel(0); 1265 for (int y = 0; y < level0.getHeight(); y++) 1266 { 1267 for (int x = 0; x < level0.getWidth(); x++) 1268 { 1269 const float xf = (float(x)+0.5f) / float(level0.getWidth()); 1270 const float yf = (float(y)+0.5f) / float(level0.getHeight()); 1271 const tcu::Vec4 s = tcu::Vec4(xf, yf, (xf+yf)/2.0f, 1.0f - (xf+yf)/2.0f); 1272 1273 level0.setPixel(m_texValueMin + (m_texValueMax - m_texValueMin)*s, x, y); 1274 } 1275 } 1276 } 1277 1278 m_texture->upload(); 1279 1280 if (m_surfaceType == SURFACETYPE_FLOAT_FBO) 1281 { 1282 // No scale or bias used for accuracy. 1283 m_derivScale = tcu::Vec4(1.0f); 1284 m_derivBias = tcu::Vec4(0.0f); 1285 } 1286 else 1287 { 1288 // Compute scale - bias that normalizes to 0..1 range. 1289 const tcu::IVec2 viewportSize = getViewportSize(); 1290 const float w = float(viewportSize.x()); 1291 const float h = float(viewportSize.y()); 1292 const tcu::Vec4 dx = (m_texValueMax - m_texValueMin) / tcu::Vec4(w, w, w*0.5f, -w*0.5f); 1293 const tcu::Vec4 dy = (m_texValueMax - m_texValueMin) / tcu::Vec4(h, h, h*0.5f, -h*0.5f); 1294 1295 switch (m_func) 1296 { 1297 case DERIVATE_DFDX: 1298 m_derivScale = 0.5f / dx; 1299 break; 1300 1301 case DERIVATE_DFDY: 1302 m_derivScale = 0.5f / dy; 1303 break; 1304 1305 case DERIVATE_FWIDTH: 1306 m_derivScale = 0.5f / (tcu::abs(dx) + tcu::abs(dy)); 1307 break; 1308 1309 default: 1310 DE_ASSERT(false); 1311 } 1312 1313 m_derivBias = tcu::Vec4(0.0f, 0.0f, 0.0f, 0.0f); 1314 } 1315 } 1316 1317 void TextureDerivateCase::deinit (void) 1318 { 1319 delete m_texture; 1320 m_texture = DE_NULL; 1321 } 1322 1323 void TextureDerivateCase::setupRenderState (deUint32 program) 1324 { 1325 const glw::Functions& gl = m_context.getRenderContext().getFunctions(); 1326 const int texUnit = 1; 1327 1328 gl.activeTexture (GL_TEXTURE0+texUnit); 1329 gl.bindTexture (GL_TEXTURE_2D, m_texture->getGLTexture()); 1330 gl.texParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); 1331 gl.texParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); 1332 gl.texParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); 1333 gl.texParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); 1334 1335 gl.uniform1i (gl.getUniformLocation(program, "u_sampler"), texUnit); 1336 } 1337 1338 bool TextureDerivateCase::verify (const tcu::ConstPixelBufferAccess& result, const tcu::PixelBufferAccess& errorMask) 1339 { 1340 // \note Edges are ignored in comparison 1341 if (result.getWidth() < 2 || result.getHeight() < 2) 1342 throw tcu::NotSupportedError("Too small viewport"); 1343 1344 tcu::ConstPixelBufferAccess compareArea = tcu::getSubregion(result, 1, 1, result.getWidth()-2, result.getHeight()-2); 1345 tcu::PixelBufferAccess maskArea = tcu::getSubregion(errorMask, 1, 1, errorMask.getWidth()-2, errorMask.getHeight()-2); 1346 const tcu::Vec4 xScale = tcu::Vec4(1.0f, 0.0f, 0.5f, -0.5f); 1347 const tcu::Vec4 yScale = tcu::Vec4(0.0f, 1.0f, 0.5f, -0.5f); 1348 const float w = float(result.getWidth()); 1349 const float h = float(result.getHeight()); 1350 1351 const tcu::Vec4 surfaceThreshold = getSurfaceThreshold() / abs(m_derivScale); 1352 1353 if (m_func == DERIVATE_DFDX || m_func == DERIVATE_DFDY) 1354 { 1355 const bool isX = m_func == DERIVATE_DFDX; 1356 const float div = isX ? w : h; 1357 const tcu::Vec4 scale = isX ? xScale : yScale; 1358 const tcu::Vec4 reference = ((m_texValueMax - m_texValueMin) / div) * scale; 1359 const tcu::Vec4 opThreshold = getDerivateThreshold(m_precision, m_texValueMin*scale, m_texValueMax*scale, reference); 1360 const tcu::Vec4 threshold = max(surfaceThreshold, opThreshold); 1361 const int numComps = glu::getDataTypeFloatScalars(m_dataType); 1362 1363 m_testCtx.getLog() 1364 << tcu::TestLog::Message 1365 << "Verifying result image.\n" 1366 << "\tValid derivative is " << LogVecComps(reference, numComps) << " with threshold " << LogVecComps(threshold, numComps) 1367 << tcu::TestLog::EndMessage; 1368 1369 // short circuit if result is strictly within the normal value error bounds. 1370 // This improves performance significantly. 1371 if (verifyConstantDerivate(m_testCtx.getLog(), compareArea, maskArea, m_dataType, 1372 reference, threshold, m_derivScale, m_derivBias, 1373 LOG_NOTHING)) 1374 { 1375 m_testCtx.getLog() 1376 << tcu::TestLog::Message 1377 << "No incorrect derivatives found, result valid." 1378 << tcu::TestLog::EndMessage; 1379 1380 return true; 1381 } 1382 1383 // some pixels exceed error bounds calculated for normal values. Verify that these 1384 // potentially invalid pixels are in fact valid due to (for example) subnorm flushing. 1385 1386 m_testCtx.getLog() 1387 << tcu::TestLog::Message 1388 << "Initial verification failed, verifying image by calculating accurate error bounds for each result pixel.\n" 1389 << "\tVerifying each result derivative is within its range of legal result values." 1390 << tcu::TestLog::EndMessage; 1391 1392 { 1393 const tcu::Vec4 valueRamp = (m_texValueMax - m_texValueMin); 1394 Linear2DFunctionEvaluator function; 1395 1396 function.matrix.setRow(0, tcu::Vec3(valueRamp.x() / w, 0.0f, m_texValueMin.x())); 1397 function.matrix.setRow(1, tcu::Vec3(0.0f, valueRamp.y() / h, m_texValueMin.y())); 1398 function.matrix.setRow(2, tcu::Vec3(valueRamp.z() / w, valueRamp.z() / h, m_texValueMin.z() + m_texValueMin.z()) / 2.0f); 1399 function.matrix.setRow(3, tcu::Vec3(-valueRamp.w() / w, -valueRamp.w() / h, m_texValueMax.w() + m_texValueMax.w()) / 2.0f); 1400 1401 return reverifyConstantDerivateWithFlushRelaxations(m_testCtx.getLog(), compareArea, maskArea, 1402 m_dataType, m_precision, m_derivScale, 1403 m_derivBias, surfaceThreshold, m_func, 1404 function); 1405 } 1406 } 1407 else 1408 { 1409 DE_ASSERT(m_func == DERIVATE_FWIDTH); 1410 const tcu::Vec4 dx = ((m_texValueMax - m_texValueMin) / w) * xScale; 1411 const tcu::Vec4 dy = ((m_texValueMax - m_texValueMin) / h) * yScale; 1412 const tcu::Vec4 reference = tcu::abs(dx) + tcu::abs(dy); 1413 const tcu::Vec4 dxThreshold = getDerivateThreshold(m_precision, m_texValueMin*xScale, m_texValueMax*xScale, dx); 1414 const tcu::Vec4 dyThreshold = getDerivateThreshold(m_precision, m_texValueMin*yScale, m_texValueMax*yScale, dy); 1415 const tcu::Vec4 threshold = max(surfaceThreshold, max(dxThreshold, dyThreshold)); 1416 1417 return verifyConstantDerivate(m_testCtx.getLog(), compareArea, maskArea, m_dataType, 1418 reference, threshold, m_derivScale, m_derivBias); 1419 } 1420 } 1421 1422 ShaderDerivateTests::ShaderDerivateTests (Context& context) 1423 : TestCaseGroup(context, "derivate", "Derivate Function Tests") 1424 { 1425 } 1426 1427 ShaderDerivateTests::~ShaderDerivateTests (void) 1428 { 1429 } 1430 1431 struct FunctionSpec 1432 { 1433 std::string name; 1434 DerivateFunc function; 1435 glu::DataType dataType; 1436 glu::Precision precision; 1437 1438 FunctionSpec (const std::string& name_, DerivateFunc function_, glu::DataType dataType_, glu::Precision precision_) 1439 : name (name_) 1440 , function (function_) 1441 , dataType (dataType_) 1442 , precision (precision_) 1443 { 1444 } 1445 }; 1446 1447 void ShaderDerivateTests::init (void) 1448 { 1449 static const struct 1450 { 1451 const char* name; 1452 const char* description; 1453 const char* source; 1454 } s_linearDerivateCases[] = 1455 { 1456 { 1457 "linear", 1458 "Basic derivate of linearly interpolated argument", 1459 1460 "#version 300 es\n" 1461 "in ${PRECISION} ${DATATYPE} v_coord;\n" 1462 "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n" 1463 "uniform ${PRECISION} ${DATATYPE} u_scale;\n" 1464 "uniform ${PRECISION} ${DATATYPE} u_bias;\n" 1465 "void main (void)\n" 1466 "{\n" 1467 " ${PRECISION} ${DATATYPE} res = ${FUNC}(v_coord) * u_scale + u_bias;\n" 1468 " o_color = ${CAST_TO_OUTPUT};\n" 1469 "}\n" 1470 }, 1471 { 1472 "in_function", 1473 "Derivate of linear function argument", 1474 1475 "#version 300 es\n" 1476 "in ${PRECISION} ${DATATYPE} v_coord;\n" 1477 "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n" 1478 "uniform ${PRECISION} ${DATATYPE} u_scale;\n" 1479 "uniform ${PRECISION} ${DATATYPE} u_bias;\n" 1480 "\n" 1481 "${PRECISION} ${DATATYPE} computeRes (${PRECISION} ${DATATYPE} value)\n" 1482 "{\n" 1483 " return ${FUNC}(v_coord) * u_scale + u_bias;\n" 1484 "}\n" 1485 "\n" 1486 "void main (void)\n" 1487 "{\n" 1488 " ${PRECISION} ${DATATYPE} res = computeRes(v_coord);\n" 1489 " o_color = ${CAST_TO_OUTPUT};\n" 1490 "}\n" 1491 }, 1492 { 1493 "static_if", 1494 "Derivate of linearly interpolated value in static if", 1495 1496 "#version 300 es\n" 1497 "in ${PRECISION} ${DATATYPE} v_coord;\n" 1498 "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n" 1499 "uniform ${PRECISION} ${DATATYPE} u_scale;\n" 1500 "uniform ${PRECISION} ${DATATYPE} u_bias;\n" 1501 "void main (void)\n" 1502 "{\n" 1503 " ${PRECISION} ${DATATYPE} res;\n" 1504 " if (false)\n" 1505 " res = ${FUNC}(-v_coord) * u_scale + u_bias;\n" 1506 " else\n" 1507 " res = ${FUNC}(v_coord) * u_scale + u_bias;\n" 1508 " o_color = ${CAST_TO_OUTPUT};\n" 1509 "}\n" 1510 }, 1511 { 1512 "static_loop", 1513 "Derivate of linearly interpolated value in static loop", 1514 1515 "#version 300 es\n" 1516 "in ${PRECISION} ${DATATYPE} v_coord;\n" 1517 "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n" 1518 "uniform ${PRECISION} ${DATATYPE} u_scale;\n" 1519 "uniform ${PRECISION} ${DATATYPE} u_bias;\n" 1520 "void main (void)\n" 1521 "{\n" 1522 " ${PRECISION} ${DATATYPE} res = ${DATATYPE}(0.0);\n" 1523 " for (int i = 0; i < 2; i++)\n" 1524 " res += ${FUNC}(v_coord * float(i));\n" 1525 " res = res * u_scale + u_bias;\n" 1526 " o_color = ${CAST_TO_OUTPUT};\n" 1527 "}\n" 1528 }, 1529 { 1530 "static_switch", 1531 "Derivate of linearly interpolated value in static switch", 1532 1533 "#version 300 es\n" 1534 "in ${PRECISION} ${DATATYPE} v_coord;\n" 1535 "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n" 1536 "uniform ${PRECISION} ${DATATYPE} u_scale;\n" 1537 "uniform ${PRECISION} ${DATATYPE} u_bias;\n" 1538 "void main (void)\n" 1539 "{\n" 1540 " ${PRECISION} ${DATATYPE} res;\n" 1541 " switch (1)\n" 1542 " {\n" 1543 " case 0: res = ${FUNC}(-v_coord) * u_scale + u_bias; break;\n" 1544 " case 1: res = ${FUNC}(v_coord) * u_scale + u_bias; break;\n" 1545 " }\n" 1546 " o_color = ${CAST_TO_OUTPUT};\n" 1547 "}\n" 1548 }, 1549 { 1550 "uniform_if", 1551 "Derivate of linearly interpolated value in uniform if", 1552 1553 "#version 300 es\n" 1554 "in ${PRECISION} ${DATATYPE} v_coord;\n" 1555 "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n" 1556 "uniform ${PRECISION} ${DATATYPE} u_scale;\n" 1557 "uniform ${PRECISION} ${DATATYPE} u_bias;\n" 1558 "uniform bool ub_true;\n" 1559 "void main (void)\n" 1560 "{\n" 1561 " ${PRECISION} ${DATATYPE} res;\n" 1562 " if (ub_true)" 1563 " res = ${FUNC}(v_coord) * u_scale + u_bias;\n" 1564 " else\n" 1565 " res = ${FUNC}(-v_coord) * u_scale + u_bias;\n" 1566 " o_color = ${CAST_TO_OUTPUT};\n" 1567 "}\n" 1568 }, 1569 { 1570 "uniform_loop", 1571 "Derivate of linearly interpolated value in uniform loop", 1572 1573 "#version 300 es\n" 1574 "in ${PRECISION} ${DATATYPE} v_coord;\n" 1575 "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n" 1576 "uniform ${PRECISION} ${DATATYPE} u_scale;\n" 1577 "uniform ${PRECISION} ${DATATYPE} u_bias;\n" 1578 "uniform int ui_two;\n" 1579 "void main (void)\n" 1580 "{\n" 1581 " ${PRECISION} ${DATATYPE} res = ${DATATYPE}(0.0);\n" 1582 " for (int i = 0; i < ui_two; i++)\n" 1583 " res += ${FUNC}(v_coord * float(i));\n" 1584 " res = res * u_scale + u_bias;\n" 1585 " o_color = ${CAST_TO_OUTPUT};\n" 1586 "}\n" 1587 }, 1588 { 1589 "uniform_switch", 1590 "Derivate of linearly interpolated value in uniform switch", 1591 1592 "#version 300 es\n" 1593 "in ${PRECISION} ${DATATYPE} v_coord;\n" 1594 "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n" 1595 "uniform ${PRECISION} ${DATATYPE} u_scale;\n" 1596 "uniform ${PRECISION} ${DATATYPE} u_bias;\n" 1597 "uniform int ui_one;\n" 1598 "void main (void)\n" 1599 "{\n" 1600 " ${PRECISION} ${DATATYPE} res;\n" 1601 " switch (ui_one)\n" 1602 " {\n" 1603 " case 0: res = ${FUNC}(-v_coord) * u_scale + u_bias; break;\n" 1604 " case 1: res = ${FUNC}(v_coord) * u_scale + u_bias; break;\n" 1605 " }\n" 1606 " o_color = ${CAST_TO_OUTPUT};\n" 1607 "}\n" 1608 }, 1609 }; 1610 1611 static const struct 1612 { 1613 const char* name; 1614 SurfaceType surfaceType; 1615 int numSamples; 1616 } s_fboConfigs[] = 1617 { 1618 { "fbo", SURFACETYPE_DEFAULT_FRAMEBUFFER, 0 }, 1619 { "fbo_msaa2", SURFACETYPE_UNORM_FBO, 2 }, 1620 { "fbo_msaa4", SURFACETYPE_UNORM_FBO, 4 }, 1621 { "fbo_float", SURFACETYPE_FLOAT_FBO, 0 }, 1622 }; 1623 1624 static const struct 1625 { 1626 const char* name; 1627 deUint32 hint; 1628 } s_hints[] = 1629 { 1630 { "fastest", GL_FASTEST }, 1631 { "nicest", GL_NICEST }, 1632 }; 1633 1634 static const struct 1635 { 1636 const char* name; 1637 SurfaceType surfaceType; 1638 int numSamples; 1639 } s_hintFboConfigs[] = 1640 { 1641 { "default", SURFACETYPE_DEFAULT_FRAMEBUFFER, 0 }, 1642 { "fbo_msaa4", SURFACETYPE_UNORM_FBO, 4 }, 1643 { "fbo_float", SURFACETYPE_FLOAT_FBO, 0 } 1644 }; 1645 1646 static const struct 1647 { 1648 const char* name; 1649 SurfaceType surfaceType; 1650 int numSamples; 1651 deUint32 hint; 1652 } s_textureConfigs[] = 1653 { 1654 { "basic", SURFACETYPE_DEFAULT_FRAMEBUFFER, 0, GL_DONT_CARE }, 1655 { "msaa4", SURFACETYPE_UNORM_FBO, 4, GL_DONT_CARE }, 1656 { "float_fastest", SURFACETYPE_FLOAT_FBO, 0, GL_FASTEST }, 1657 { "float_nicest", SURFACETYPE_FLOAT_FBO, 0, GL_NICEST }, 1658 }; 1659 1660 // .dfdx, .dfdy, .fwidth 1661 for (int funcNdx = 0; funcNdx < DERIVATE_LAST; funcNdx++) 1662 { 1663 const DerivateFunc function = DerivateFunc(funcNdx); 1664 tcu::TestCaseGroup* const functionGroup = new tcu::TestCaseGroup(m_testCtx, getDerivateFuncCaseName(function), getDerivateFuncName(function)); 1665 addChild(functionGroup); 1666 1667 // .constant - no precision variants, checks that derivate of constant arguments is 0 1668 { 1669 tcu::TestCaseGroup* const constantGroup = new tcu::TestCaseGroup(m_testCtx, "constant", "Derivate of constant argument"); 1670 functionGroup->addChild(constantGroup); 1671 1672 for (int vecSize = 1; vecSize <= 4; vecSize++) 1673 { 1674 const glu::DataType dataType = vecSize > 1 ? glu::getDataTypeFloatVec(vecSize) : glu::TYPE_FLOAT; 1675 constantGroup->addChild(new ConstantDerivateCase(m_context, glu::getDataTypeName(dataType), "", function, dataType)); 1676 } 1677 } 1678 1679 // Cases based on LinearDerivateCase 1680 for (int caseNdx = 0; caseNdx < DE_LENGTH_OF_ARRAY(s_linearDerivateCases); caseNdx++) 1681 { 1682 tcu::TestCaseGroup* const linearCaseGroup = new tcu::TestCaseGroup(m_testCtx, s_linearDerivateCases[caseNdx].name, s_linearDerivateCases[caseNdx].description); 1683 const char* source = s_linearDerivateCases[caseNdx].source; 1684 functionGroup->addChild(linearCaseGroup); 1685 1686 for (int vecSize = 1; vecSize <= 4; vecSize++) 1687 { 1688 for (int precNdx = 0; precNdx < glu::PRECISION_LAST; precNdx++) 1689 { 1690 const glu::DataType dataType = vecSize > 1 ? glu::getDataTypeFloatVec(vecSize) : glu::TYPE_FLOAT; 1691 const glu::Precision precision = glu::Precision(precNdx); 1692 const SurfaceType surfaceType = SURFACETYPE_DEFAULT_FRAMEBUFFER; 1693 const int numSamples = 0; 1694 const deUint32 hint = GL_DONT_CARE; 1695 ostringstream caseName; 1696 1697 if (caseNdx != 0 && precision == glu::PRECISION_LOWP) 1698 continue; // Skip as lowp doesn't actually produce any bits when rendered to default FB. 1699 1700 caseName << glu::getDataTypeName(dataType) << "_" << glu::getPrecisionName(precision); 1701 1702 linearCaseGroup->addChild(new LinearDerivateCase(m_context, caseName.str().c_str(), "", function, dataType, precision, hint, surfaceType, numSamples, source)); 1703 } 1704 } 1705 } 1706 1707 // Fbo cases 1708 for (int caseNdx = 0; caseNdx < DE_LENGTH_OF_ARRAY(s_fboConfigs); caseNdx++) 1709 { 1710 tcu::TestCaseGroup* const fboGroup = new tcu::TestCaseGroup(m_testCtx, s_fboConfigs[caseNdx].name, "Derivate usage when rendering into FBO"); 1711 const char* source = s_linearDerivateCases[0].source; // use source from .linear group 1712 const SurfaceType surfaceType = s_fboConfigs[caseNdx].surfaceType; 1713 const int numSamples = s_fboConfigs[caseNdx].numSamples; 1714 functionGroup->addChild(fboGroup); 1715 1716 for (int vecSize = 1; vecSize <= 4; vecSize++) 1717 { 1718 for (int precNdx = 0; precNdx < glu::PRECISION_LAST; precNdx++) 1719 { 1720 const glu::DataType dataType = vecSize > 1 ? glu::getDataTypeFloatVec(vecSize) : glu::TYPE_FLOAT; 1721 const glu::Precision precision = glu::Precision(precNdx); 1722 const deUint32 hint = GL_DONT_CARE; 1723 ostringstream caseName; 1724 1725 if (surfaceType != SURFACETYPE_FLOAT_FBO && precision == glu::PRECISION_LOWP) 1726 continue; // Skip as lowp doesn't actually produce any bits when rendered to U8 RT. 1727 1728 caseName << glu::getDataTypeName(dataType) << "_" << glu::getPrecisionName(precision); 1729 1730 fboGroup->addChild(new LinearDerivateCase(m_context, caseName.str().c_str(), "", function, dataType, precision, hint, surfaceType, numSamples, source)); 1731 } 1732 } 1733 } 1734 1735 // .fastest, .nicest 1736 for (int hintCaseNdx = 0; hintCaseNdx < DE_LENGTH_OF_ARRAY(s_hints); hintCaseNdx++) 1737 { 1738 tcu::TestCaseGroup* const hintGroup = new tcu::TestCaseGroup(m_testCtx, s_hints[hintCaseNdx].name, "Shader derivate hints"); 1739 const char* source = s_linearDerivateCases[0].source; // use source from .linear group 1740 const deUint32 hint = s_hints[hintCaseNdx].hint; 1741 functionGroup->addChild(hintGroup); 1742 1743 for (int fboCaseNdx = 0; fboCaseNdx < DE_LENGTH_OF_ARRAY(s_hintFboConfigs); fboCaseNdx++) 1744 { 1745 tcu::TestCaseGroup* const fboGroup = new tcu::TestCaseGroup(m_testCtx, s_hintFboConfigs[fboCaseNdx].name, ""); 1746 const SurfaceType surfaceType = s_hintFboConfigs[fboCaseNdx].surfaceType; 1747 const int numSamples = s_hintFboConfigs[fboCaseNdx].numSamples; 1748 hintGroup->addChild(fboGroup); 1749 1750 for (int vecSize = 1; vecSize <= 4; vecSize++) 1751 { 1752 for (int precNdx = 0; precNdx < glu::PRECISION_LAST; precNdx++) 1753 { 1754 const glu::DataType dataType = vecSize > 1 ? glu::getDataTypeFloatVec(vecSize) : glu::TYPE_FLOAT; 1755 const glu::Precision precision = glu::Precision(precNdx); 1756 ostringstream caseName; 1757 1758 if (surfaceType != SURFACETYPE_FLOAT_FBO && precision == glu::PRECISION_LOWP) 1759 continue; // Skip as lowp doesn't actually produce any bits when rendered to U8 RT. 1760 1761 caseName << glu::getDataTypeName(dataType) << "_" << glu::getPrecisionName(precision); 1762 1763 fboGroup->addChild(new LinearDerivateCase(m_context, caseName.str().c_str(), "", function, dataType, precision, hint, surfaceType, numSamples, source)); 1764 } 1765 } 1766 } 1767 } 1768 1769 // .texture 1770 { 1771 tcu::TestCaseGroup* const textureGroup = new tcu::TestCaseGroup(m_testCtx, "texture", "Derivate of texture lookup result"); 1772 functionGroup->addChild(textureGroup); 1773 1774 for (int texCaseNdx = 0; texCaseNdx < DE_LENGTH_OF_ARRAY(s_textureConfigs); texCaseNdx++) 1775 { 1776 tcu::TestCaseGroup* const caseGroup = new tcu::TestCaseGroup(m_testCtx, s_textureConfigs[texCaseNdx].name, ""); 1777 const SurfaceType surfaceType = s_textureConfigs[texCaseNdx].surfaceType; 1778 const int numSamples = s_textureConfigs[texCaseNdx].numSamples; 1779 const deUint32 hint = s_textureConfigs[texCaseNdx].hint; 1780 textureGroup->addChild(caseGroup); 1781 1782 for (int vecSize = 1; vecSize <= 4; vecSize++) 1783 { 1784 for (int precNdx = 0; precNdx < glu::PRECISION_LAST; precNdx++) 1785 { 1786 const glu::DataType dataType = vecSize > 1 ? glu::getDataTypeFloatVec(vecSize) : glu::TYPE_FLOAT; 1787 const glu::Precision precision = glu::Precision(precNdx); 1788 ostringstream caseName; 1789 1790 if (surfaceType != SURFACETYPE_FLOAT_FBO && precision == glu::PRECISION_LOWP) 1791 continue; // Skip as lowp doesn't actually produce any bits when rendered to U8 RT. 1792 1793 caseName << glu::getDataTypeName(dataType) << "_" << glu::getPrecisionName(precision); 1794 1795 caseGroup->addChild(new TextureDerivateCase(m_context, caseName.str().c_str(), "", function, dataType, precision, hint, surfaceType, numSamples)); 1796 } 1797 } 1798 } 1799 } 1800 } 1801 } 1802 1803 } // Functional 1804 } // gles3 1805 } // deqp 1806