Home | History | Annotate | Download | only in CodeGen
      1 //===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the LiveInterval analysis pass which is used
     11 // by the Linear Scan Register allocator. This pass linearizes the
     12 // basic blocks of the function in DFS order and uses the
     13 // LiveVariables pass to conservatively compute live intervals for
     14 // each virtual and physical register.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 
     18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     19 #include "LiveRangeCalc.h"
     20 #include "llvm/ADT/DenseSet.h"
     21 #include "llvm/ADT/STLExtras.h"
     22 #include "llvm/Analysis/AliasAnalysis.h"
     23 #include "llvm/CodeGen/LiveVariables.h"
     24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
     25 #include "llvm/CodeGen/MachineDominators.h"
     26 #include "llvm/CodeGen/MachineInstr.h"
     27 #include "llvm/CodeGen/MachineRegisterInfo.h"
     28 #include "llvm/CodeGen/Passes.h"
     29 #include "llvm/CodeGen/VirtRegMap.h"
     30 #include "llvm/IR/Value.h"
     31 #include "llvm/Support/BlockFrequency.h"
     32 #include "llvm/Support/CommandLine.h"
     33 #include "llvm/Support/Debug.h"
     34 #include "llvm/Support/ErrorHandling.h"
     35 #include "llvm/Support/raw_ostream.h"
     36 #include "llvm/Target/TargetInstrInfo.h"
     37 #include "llvm/Target/TargetRegisterInfo.h"
     38 #include "llvm/Target/TargetSubtargetInfo.h"
     39 #include <algorithm>
     40 #include <cmath>
     41 #include <limits>
     42 using namespace llvm;
     43 
     44 #define DEBUG_TYPE "regalloc"
     45 
     46 char LiveIntervals::ID = 0;
     47 char &llvm::LiveIntervalsID = LiveIntervals::ID;
     48 INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
     49                 "Live Interval Analysis", false, false)
     50 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
     51 INITIALIZE_PASS_DEPENDENCY(LiveVariables)
     52 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
     53 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
     54 INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
     55                 "Live Interval Analysis", false, false)
     56 
     57 #ifndef NDEBUG
     58 static cl::opt<bool> EnablePrecomputePhysRegs(
     59   "precompute-phys-liveness", cl::Hidden,
     60   cl::desc("Eagerly compute live intervals for all physreg units."));
     61 #else
     62 static bool EnablePrecomputePhysRegs = false;
     63 #endif // NDEBUG
     64 
     65 static cl::opt<bool> EnableSubRegLiveness(
     66   "enable-subreg-liveness", cl::Hidden, cl::init(true),
     67   cl::desc("Enable subregister liveness tracking."));
     68 
     69 namespace llvm {
     70 cl::opt<bool> UseSegmentSetForPhysRegs(
     71     "use-segment-set-for-physregs", cl::Hidden, cl::init(true),
     72     cl::desc(
     73         "Use segment set for the computation of the live ranges of physregs."));
     74 }
     75 
     76 void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
     77   AU.setPreservesCFG();
     78   AU.addRequired<AAResultsWrapperPass>();
     79   AU.addPreserved<AAResultsWrapperPass>();
     80   // LiveVariables isn't really required by this analysis, it is only required
     81   // here to make sure it is live during TwoAddressInstructionPass and
     82   // PHIElimination. This is temporary.
     83   AU.addRequired<LiveVariables>();
     84   AU.addPreserved<LiveVariables>();
     85   AU.addPreservedID(MachineLoopInfoID);
     86   AU.addRequiredTransitiveID(MachineDominatorsID);
     87   AU.addPreservedID(MachineDominatorsID);
     88   AU.addPreserved<SlotIndexes>();
     89   AU.addRequiredTransitive<SlotIndexes>();
     90   MachineFunctionPass::getAnalysisUsage(AU);
     91 }
     92 
     93 LiveIntervals::LiveIntervals() : MachineFunctionPass(ID),
     94   DomTree(nullptr), LRCalc(nullptr) {
     95   initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
     96 }
     97 
     98 LiveIntervals::~LiveIntervals() {
     99   delete LRCalc;
    100 }
    101 
    102 void LiveIntervals::releaseMemory() {
    103   // Free the live intervals themselves.
    104   for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
    105     delete VirtRegIntervals[TargetRegisterInfo::index2VirtReg(i)];
    106   VirtRegIntervals.clear();
    107   RegMaskSlots.clear();
    108   RegMaskBits.clear();
    109   RegMaskBlocks.clear();
    110 
    111   for (unsigned i = 0, e = RegUnitRanges.size(); i != e; ++i)
    112     delete RegUnitRanges[i];
    113   RegUnitRanges.clear();
    114 
    115   // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
    116   VNInfoAllocator.Reset();
    117 }
    118 
    119 /// runOnMachineFunction - calculates LiveIntervals
    120 ///
    121 bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
    122   MF = &fn;
    123   MRI = &MF->getRegInfo();
    124   TRI = MF->getSubtarget().getRegisterInfo();
    125   TII = MF->getSubtarget().getInstrInfo();
    126   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
    127   Indexes = &getAnalysis<SlotIndexes>();
    128   DomTree = &getAnalysis<MachineDominatorTree>();
    129 
    130   if (EnableSubRegLiveness && MF->getSubtarget().enableSubRegLiveness())
    131     MRI->enableSubRegLiveness(true);
    132 
    133   if (!LRCalc)
    134     LRCalc = new LiveRangeCalc();
    135 
    136   // Allocate space for all virtual registers.
    137   VirtRegIntervals.resize(MRI->getNumVirtRegs());
    138 
    139   computeVirtRegs();
    140   computeRegMasks();
    141   computeLiveInRegUnits();
    142 
    143   if (EnablePrecomputePhysRegs) {
    144     // For stress testing, precompute live ranges of all physical register
    145     // units, including reserved registers.
    146     for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
    147       getRegUnit(i);
    148   }
    149   DEBUG(dump());
    150   return true;
    151 }
    152 
    153 /// print - Implement the dump method.
    154 void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
    155   OS << "********** INTERVALS **********\n";
    156 
    157   // Dump the regunits.
    158   for (unsigned i = 0, e = RegUnitRanges.size(); i != e; ++i)
    159     if (LiveRange *LR = RegUnitRanges[i])
    160       OS << PrintRegUnit(i, TRI) << ' ' << *LR << '\n';
    161 
    162   // Dump the virtregs.
    163   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    164     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    165     if (hasInterval(Reg))
    166       OS << getInterval(Reg) << '\n';
    167   }
    168 
    169   OS << "RegMasks:";
    170   for (unsigned i = 0, e = RegMaskSlots.size(); i != e; ++i)
    171     OS << ' ' << RegMaskSlots[i];
    172   OS << '\n';
    173 
    174   printInstrs(OS);
    175 }
    176 
    177 void LiveIntervals::printInstrs(raw_ostream &OS) const {
    178   OS << "********** MACHINEINSTRS **********\n";
    179   MF->print(OS, Indexes);
    180 }
    181 
    182 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    183 void LiveIntervals::dumpInstrs() const {
    184   printInstrs(dbgs());
    185 }
    186 #endif
    187 
    188 LiveInterval* LiveIntervals::createInterval(unsigned reg) {
    189   float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ?
    190                   llvm::huge_valf : 0.0F;
    191   return new LiveInterval(reg, Weight);
    192 }
    193 
    194 
    195 /// computeVirtRegInterval - Compute the live interval of a virtual register,
    196 /// based on defs and uses.
    197 void LiveIntervals::computeVirtRegInterval(LiveInterval &LI) {
    198   assert(LRCalc && "LRCalc not initialized.");
    199   assert(LI.empty() && "Should only compute empty intervals.");
    200   bool ShouldTrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(LI.reg);
    201   LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
    202   LRCalc->calculate(LI, ShouldTrackSubRegLiveness);
    203   bool SeparatedComponents = computeDeadValues(LI, nullptr);
    204   if (SeparatedComponents) {
    205     assert(ShouldTrackSubRegLiveness
    206            && "Separated components should only occur for unused subreg defs");
    207     SmallVector<LiveInterval*, 8> SplitLIs;
    208     splitSeparateComponents(LI, SplitLIs);
    209   }
    210 }
    211 
    212 void LiveIntervals::computeVirtRegs() {
    213   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    214     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    215     if (MRI->reg_nodbg_empty(Reg))
    216       continue;
    217     createAndComputeVirtRegInterval(Reg);
    218   }
    219 }
    220 
    221 void LiveIntervals::computeRegMasks() {
    222   RegMaskBlocks.resize(MF->getNumBlockIDs());
    223 
    224   // Find all instructions with regmask operands.
    225   for (MachineBasicBlock &MBB : *MF) {
    226     std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB.getNumber()];
    227     RMB.first = RegMaskSlots.size();
    228 
    229     // Some block starts, such as EH funclets, create masks.
    230     if (const uint32_t *Mask = MBB.getBeginClobberMask(TRI)) {
    231       RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB));
    232       RegMaskBits.push_back(Mask);
    233     }
    234 
    235     for (MachineInstr &MI : MBB) {
    236       for (const MachineOperand &MO : MI.operands()) {
    237         if (!MO.isRegMask())
    238           continue;
    239         RegMaskSlots.push_back(Indexes->getInstructionIndex(&MI).getRegSlot());
    240         RegMaskBits.push_back(MO.getRegMask());
    241       }
    242     }
    243 
    244     // Some block ends, such as funclet returns, create masks.
    245     if (const uint32_t *Mask = MBB.getEndClobberMask(TRI)) {
    246       RegMaskSlots.push_back(Indexes->getMBBEndIdx(&MBB));
    247       RegMaskBits.push_back(Mask);
    248     }
    249 
    250     // Compute the number of register mask instructions in this block.
    251     RMB.second = RegMaskSlots.size() - RMB.first;
    252   }
    253 }
    254 
    255 //===----------------------------------------------------------------------===//
    256 //                           Register Unit Liveness
    257 //===----------------------------------------------------------------------===//
    258 //
    259 // Fixed interference typically comes from ABI boundaries: Function arguments
    260 // and return values are passed in fixed registers, and so are exception
    261 // pointers entering landing pads. Certain instructions require values to be
    262 // present in specific registers. That is also represented through fixed
    263 // interference.
    264 //
    265 
    266 /// computeRegUnitInterval - Compute the live range of a register unit, based
    267 /// on the uses and defs of aliasing registers.  The range should be empty,
    268 /// or contain only dead phi-defs from ABI blocks.
    269 void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) {
    270   assert(LRCalc && "LRCalc not initialized.");
    271   LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
    272 
    273   // The physregs aliasing Unit are the roots and their super-registers.
    274   // Create all values as dead defs before extending to uses. Note that roots
    275   // may share super-registers. That's OK because createDeadDefs() is
    276   // idempotent. It is very rare for a register unit to have multiple roots, so
    277   // uniquing super-registers is probably not worthwhile.
    278   for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
    279     for (MCSuperRegIterator Supers(*Roots, TRI, /*IncludeSelf=*/true);
    280          Supers.isValid(); ++Supers) {
    281       if (!MRI->reg_empty(*Supers))
    282         LRCalc->createDeadDefs(LR, *Supers);
    283     }
    284   }
    285 
    286   // Now extend LR to reach all uses.
    287   // Ignore uses of reserved registers. We only track defs of those.
    288   for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
    289     for (MCSuperRegIterator Supers(*Roots, TRI, /*IncludeSelf=*/true);
    290          Supers.isValid(); ++Supers) {
    291       unsigned Reg = *Supers;
    292       if (!MRI->isReserved(Reg) && !MRI->reg_empty(Reg))
    293         LRCalc->extendToUses(LR, Reg);
    294     }
    295   }
    296 
    297   // Flush the segment set to the segment vector.
    298   if (UseSegmentSetForPhysRegs)
    299     LR.flushSegmentSet();
    300 }
    301 
    302 
    303 /// computeLiveInRegUnits - Precompute the live ranges of any register units
    304 /// that are live-in to an ABI block somewhere. Register values can appear
    305 /// without a corresponding def when entering the entry block or a landing pad.
    306 ///
    307 void LiveIntervals::computeLiveInRegUnits() {
    308   RegUnitRanges.resize(TRI->getNumRegUnits());
    309   DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
    310 
    311   // Keep track of the live range sets allocated.
    312   SmallVector<unsigned, 8> NewRanges;
    313 
    314   // Check all basic blocks for live-ins.
    315   for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
    316        MFI != MFE; ++MFI) {
    317     const MachineBasicBlock *MBB = &*MFI;
    318 
    319     // We only care about ABI blocks: Entry + landing pads.
    320     if ((MFI != MF->begin() && !MBB->isEHPad()) || MBB->livein_empty())
    321       continue;
    322 
    323     // Create phi-defs at Begin for all live-in registers.
    324     SlotIndex Begin = Indexes->getMBBStartIdx(MBB);
    325     DEBUG(dbgs() << Begin << "\tBB#" << MBB->getNumber());
    326     for (const auto &LI : MBB->liveins()) {
    327       for (MCRegUnitIterator Units(LI.PhysReg, TRI); Units.isValid(); ++Units) {
    328         unsigned Unit = *Units;
    329         LiveRange *LR = RegUnitRanges[Unit];
    330         if (!LR) {
    331           // Use segment set to speed-up initial computation of the live range.
    332           LR = RegUnitRanges[Unit] = new LiveRange(UseSegmentSetForPhysRegs);
    333           NewRanges.push_back(Unit);
    334         }
    335         VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator());
    336         (void)VNI;
    337         DEBUG(dbgs() << ' ' << PrintRegUnit(Unit, TRI) << '#' << VNI->id);
    338       }
    339     }
    340     DEBUG(dbgs() << '\n');
    341   }
    342   DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n");
    343 
    344   // Compute the 'normal' part of the ranges.
    345   for (unsigned i = 0, e = NewRanges.size(); i != e; ++i) {
    346     unsigned Unit = NewRanges[i];
    347     computeRegUnitRange(*RegUnitRanges[Unit], Unit);
    348   }
    349 }
    350 
    351 
    352 static void createSegmentsForValues(LiveRange &LR,
    353       iterator_range<LiveInterval::vni_iterator> VNIs) {
    354   for (auto VNI : VNIs) {
    355     if (VNI->isUnused())
    356       continue;
    357     SlotIndex Def = VNI->def;
    358     LR.addSegment(LiveRange::Segment(Def, Def.getDeadSlot(), VNI));
    359   }
    360 }
    361 
    362 typedef SmallVector<std::pair<SlotIndex, VNInfo*>, 16> ShrinkToUsesWorkList;
    363 
    364 static void extendSegmentsToUses(LiveRange &LR, const SlotIndexes &Indexes,
    365                                  ShrinkToUsesWorkList &WorkList,
    366                                  const LiveRange &OldRange) {
    367   // Keep track of the PHIs that are in use.
    368   SmallPtrSet<VNInfo*, 8> UsedPHIs;
    369   // Blocks that have already been added to WorkList as live-out.
    370   SmallPtrSet<MachineBasicBlock*, 16> LiveOut;
    371 
    372   // Extend intervals to reach all uses in WorkList.
    373   while (!WorkList.empty()) {
    374     SlotIndex Idx = WorkList.back().first;
    375     VNInfo *VNI = WorkList.back().second;
    376     WorkList.pop_back();
    377     const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(Idx.getPrevSlot());
    378     SlotIndex BlockStart = Indexes.getMBBStartIdx(MBB);
    379 
    380     // Extend the live range for VNI to be live at Idx.
    381     if (VNInfo *ExtVNI = LR.extendInBlock(BlockStart, Idx)) {
    382       assert(ExtVNI == VNI && "Unexpected existing value number");
    383       (void)ExtVNI;
    384       // Is this a PHIDef we haven't seen before?
    385       if (!VNI->isPHIDef() || VNI->def != BlockStart ||
    386           !UsedPHIs.insert(VNI).second)
    387         continue;
    388       // The PHI is live, make sure the predecessors are live-out.
    389       for (auto &Pred : MBB->predecessors()) {
    390         if (!LiveOut.insert(Pred).second)
    391           continue;
    392         SlotIndex Stop = Indexes.getMBBEndIdx(Pred);
    393         // A predecessor is not required to have a live-out value for a PHI.
    394         if (VNInfo *PVNI = OldRange.getVNInfoBefore(Stop))
    395           WorkList.push_back(std::make_pair(Stop, PVNI));
    396       }
    397       continue;
    398     }
    399 
    400     // VNI is live-in to MBB.
    401     DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
    402     LR.addSegment(LiveRange::Segment(BlockStart, Idx, VNI));
    403 
    404     // Make sure VNI is live-out from the predecessors.
    405     for (auto &Pred : MBB->predecessors()) {
    406       if (!LiveOut.insert(Pred).second)
    407         continue;
    408       SlotIndex Stop = Indexes.getMBBEndIdx(Pred);
    409       assert(OldRange.getVNInfoBefore(Stop) == VNI &&
    410              "Wrong value out of predecessor");
    411       WorkList.push_back(std::make_pair(Stop, VNI));
    412     }
    413   }
    414 }
    415 
    416 bool LiveIntervals::shrinkToUses(LiveInterval *li,
    417                                  SmallVectorImpl<MachineInstr*> *dead) {
    418   DEBUG(dbgs() << "Shrink: " << *li << '\n');
    419   assert(TargetRegisterInfo::isVirtualRegister(li->reg)
    420          && "Can only shrink virtual registers");
    421 
    422   // Shrink subregister live ranges.
    423   bool NeedsCleanup = false;
    424   for (LiveInterval::SubRange &S : li->subranges()) {
    425     shrinkToUses(S, li->reg);
    426     if (S.empty())
    427       NeedsCleanup = true;
    428   }
    429   if (NeedsCleanup)
    430     li->removeEmptySubRanges();
    431 
    432   // Find all the values used, including PHI kills.
    433   ShrinkToUsesWorkList WorkList;
    434 
    435   // Visit all instructions reading li->reg.
    436   for (MachineRegisterInfo::reg_instr_iterator
    437        I = MRI->reg_instr_begin(li->reg), E = MRI->reg_instr_end();
    438        I != E; ) {
    439     MachineInstr *UseMI = &*(I++);
    440     if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg))
    441       continue;
    442     SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
    443     LiveQueryResult LRQ = li->Query(Idx);
    444     VNInfo *VNI = LRQ.valueIn();
    445     if (!VNI) {
    446       // This shouldn't happen: readsVirtualRegister returns true, but there is
    447       // no live value. It is likely caused by a target getting <undef> flags
    448       // wrong.
    449       DEBUG(dbgs() << Idx << '\t' << *UseMI
    450                    << "Warning: Instr claims to read non-existent value in "
    451                     << *li << '\n');
    452       continue;
    453     }
    454     // Special case: An early-clobber tied operand reads and writes the
    455     // register one slot early.
    456     if (VNInfo *DefVNI = LRQ.valueDefined())
    457       Idx = DefVNI->def;
    458 
    459     WorkList.push_back(std::make_pair(Idx, VNI));
    460   }
    461 
    462   // Create new live ranges with only minimal live segments per def.
    463   LiveRange NewLR;
    464   createSegmentsForValues(NewLR, make_range(li->vni_begin(), li->vni_end()));
    465   extendSegmentsToUses(NewLR, *Indexes, WorkList, *li);
    466 
    467   // Move the trimmed segments back.
    468   li->segments.swap(NewLR.segments);
    469 
    470   // Handle dead values.
    471   bool CanSeparate = computeDeadValues(*li, dead);
    472   DEBUG(dbgs() << "Shrunk: " << *li << '\n');
    473   return CanSeparate;
    474 }
    475 
    476 bool LiveIntervals::computeDeadValues(LiveInterval &LI,
    477                                       SmallVectorImpl<MachineInstr*> *dead) {
    478   bool MayHaveSplitComponents = false;
    479   for (auto VNI : LI.valnos) {
    480     if (VNI->isUnused())
    481       continue;
    482     SlotIndex Def = VNI->def;
    483     LiveRange::iterator I = LI.FindSegmentContaining(Def);
    484     assert(I != LI.end() && "Missing segment for VNI");
    485 
    486     // Is the register live before? Otherwise we may have to add a read-undef
    487     // flag for subregister defs.
    488     bool DeadBeforeDef = false;
    489     unsigned VReg = LI.reg;
    490     if (MRI->shouldTrackSubRegLiveness(VReg)) {
    491       if ((I == LI.begin() || std::prev(I)->end < Def) && !VNI->isPHIDef()) {
    492         MachineInstr *MI = getInstructionFromIndex(Def);
    493         MI->setRegisterDefReadUndef(VReg);
    494         DeadBeforeDef = true;
    495       }
    496     }
    497 
    498     if (I->end != Def.getDeadSlot())
    499       continue;
    500     if (VNI->isPHIDef()) {
    501       // This is a dead PHI. Remove it.
    502       VNI->markUnused();
    503       LI.removeSegment(I);
    504       DEBUG(dbgs() << "Dead PHI at " << Def << " may separate interval\n");
    505       MayHaveSplitComponents = true;
    506     } else {
    507       // This is a dead def. Make sure the instruction knows.
    508       MachineInstr *MI = getInstructionFromIndex(Def);
    509       assert(MI && "No instruction defining live value");
    510       MI->addRegisterDead(VReg, TRI);
    511 
    512       // If we have a dead def that is completely separate from the rest of
    513       // the liverange then we rewrite it to use a different VReg to not violate
    514       // the rule that the liveness of a virtual register forms a connected
    515       // component. This should only happen if subregister liveness is tracked.
    516       if (DeadBeforeDef)
    517         MayHaveSplitComponents = true;
    518 
    519       if (dead && MI->allDefsAreDead()) {
    520         DEBUG(dbgs() << "All defs dead: " << Def << '\t' << *MI);
    521         dead->push_back(MI);
    522       }
    523     }
    524   }
    525   return MayHaveSplitComponents;
    526 }
    527 
    528 void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, unsigned Reg)
    529 {
    530   DEBUG(dbgs() << "Shrink: " << SR << '\n');
    531   assert(TargetRegisterInfo::isVirtualRegister(Reg)
    532          && "Can only shrink virtual registers");
    533   // Find all the values used, including PHI kills.
    534   ShrinkToUsesWorkList WorkList;
    535 
    536   // Visit all instructions reading Reg.
    537   SlotIndex LastIdx;
    538   for (MachineOperand &MO : MRI->reg_operands(Reg)) {
    539     MachineInstr *UseMI = MO.getParent();
    540     if (UseMI->isDebugValue())
    541       continue;
    542     // Maybe the operand is for a subregister we don't care about.
    543     unsigned SubReg = MO.getSubReg();
    544     if (SubReg != 0) {
    545       LaneBitmask LaneMask = TRI->getSubRegIndexLaneMask(SubReg);
    546       if ((LaneMask & SR.LaneMask) == 0)
    547         continue;
    548     }
    549     // We only need to visit each instruction once.
    550     SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
    551     if (Idx == LastIdx)
    552       continue;
    553     LastIdx = Idx;
    554 
    555     LiveQueryResult LRQ = SR.Query(Idx);
    556     VNInfo *VNI = LRQ.valueIn();
    557     // For Subranges it is possible that only undef values are left in that
    558     // part of the subregister, so there is no real liverange at the use
    559     if (!VNI)
    560       continue;
    561 
    562     // Special case: An early-clobber tied operand reads and writes the
    563     // register one slot early.
    564     if (VNInfo *DefVNI = LRQ.valueDefined())
    565       Idx = DefVNI->def;
    566 
    567     WorkList.push_back(std::make_pair(Idx, VNI));
    568   }
    569 
    570   // Create a new live ranges with only minimal live segments per def.
    571   LiveRange NewLR;
    572   createSegmentsForValues(NewLR, make_range(SR.vni_begin(), SR.vni_end()));
    573   extendSegmentsToUses(NewLR, *Indexes, WorkList, SR);
    574 
    575   // Move the trimmed ranges back.
    576   SR.segments.swap(NewLR.segments);
    577 
    578   // Remove dead PHI value numbers
    579   for (auto VNI : SR.valnos) {
    580     if (VNI->isUnused())
    581       continue;
    582     const LiveRange::Segment *Segment = SR.getSegmentContaining(VNI->def);
    583     assert(Segment != nullptr && "Missing segment for VNI");
    584     if (Segment->end != VNI->def.getDeadSlot())
    585       continue;
    586     if (VNI->isPHIDef()) {
    587       // This is a dead PHI. Remove it.
    588       VNI->markUnused();
    589       SR.removeSegment(*Segment);
    590       DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n");
    591     }
    592   }
    593 
    594   DEBUG(dbgs() << "Shrunk: " << SR << '\n');
    595 }
    596 
    597 void LiveIntervals::extendToIndices(LiveRange &LR,
    598                                     ArrayRef<SlotIndex> Indices) {
    599   assert(LRCalc && "LRCalc not initialized.");
    600   LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
    601   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
    602     LRCalc->extend(LR, Indices[i]);
    603 }
    604 
    605 void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill,
    606                                SmallVectorImpl<SlotIndex> *EndPoints) {
    607   LiveQueryResult LRQ = LR.Query(Kill);
    608   VNInfo *VNI = LRQ.valueOutOrDead();
    609   if (!VNI)
    610     return;
    611 
    612   MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
    613   SlotIndex MBBEnd = Indexes->getMBBEndIdx(KillMBB);
    614 
    615   // If VNI isn't live out from KillMBB, the value is trivially pruned.
    616   if (LRQ.endPoint() < MBBEnd) {
    617     LR.removeSegment(Kill, LRQ.endPoint());
    618     if (EndPoints) EndPoints->push_back(LRQ.endPoint());
    619     return;
    620   }
    621 
    622   // VNI is live out of KillMBB.
    623   LR.removeSegment(Kill, MBBEnd);
    624   if (EndPoints) EndPoints->push_back(MBBEnd);
    625 
    626   // Find all blocks that are reachable from KillMBB without leaving VNI's live
    627   // range. It is possible that KillMBB itself is reachable, so start a DFS
    628   // from each successor.
    629   typedef SmallPtrSet<MachineBasicBlock*, 9> VisitedTy;
    630   VisitedTy Visited;
    631   for (MachineBasicBlock::succ_iterator
    632        SuccI = KillMBB->succ_begin(), SuccE = KillMBB->succ_end();
    633        SuccI != SuccE; ++SuccI) {
    634     for (df_ext_iterator<MachineBasicBlock*, VisitedTy>
    635          I = df_ext_begin(*SuccI, Visited), E = df_ext_end(*SuccI, Visited);
    636          I != E;) {
    637       MachineBasicBlock *MBB = *I;
    638 
    639       // Check if VNI is live in to MBB.
    640       SlotIndex MBBStart, MBBEnd;
    641       std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
    642       LiveQueryResult LRQ = LR.Query(MBBStart);
    643       if (LRQ.valueIn() != VNI) {
    644         // This block isn't part of the VNI segment. Prune the search.
    645         I.skipChildren();
    646         continue;
    647       }
    648 
    649       // Prune the search if VNI is killed in MBB.
    650       if (LRQ.endPoint() < MBBEnd) {
    651         LR.removeSegment(MBBStart, LRQ.endPoint());
    652         if (EndPoints) EndPoints->push_back(LRQ.endPoint());
    653         I.skipChildren();
    654         continue;
    655       }
    656 
    657       // VNI is live through MBB.
    658       LR.removeSegment(MBBStart, MBBEnd);
    659       if (EndPoints) EndPoints->push_back(MBBEnd);
    660       ++I;
    661     }
    662   }
    663 }
    664 
    665 //===----------------------------------------------------------------------===//
    666 // Register allocator hooks.
    667 //
    668 
    669 void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
    670   // Keep track of regunit ranges.
    671   SmallVector<std::pair<const LiveRange*, LiveRange::const_iterator>, 8> RU;
    672   // Keep track of subregister ranges.
    673   SmallVector<std::pair<const LiveInterval::SubRange*,
    674                         LiveRange::const_iterator>, 4> SRs;
    675 
    676   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    677     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    678     if (MRI->reg_nodbg_empty(Reg))
    679       continue;
    680     const LiveInterval &LI = getInterval(Reg);
    681     if (LI.empty())
    682       continue;
    683 
    684     // Find the regunit intervals for the assigned register. They may overlap
    685     // the virtual register live range, cancelling any kills.
    686     RU.clear();
    687     for (MCRegUnitIterator Units(VRM->getPhys(Reg), TRI); Units.isValid();
    688          ++Units) {
    689       const LiveRange &RURange = getRegUnit(*Units);
    690       if (RURange.empty())
    691         continue;
    692       RU.push_back(std::make_pair(&RURange, RURange.find(LI.begin()->end)));
    693     }
    694 
    695     if (MRI->subRegLivenessEnabled()) {
    696       SRs.clear();
    697       for (const LiveInterval::SubRange &SR : LI.subranges()) {
    698         SRs.push_back(std::make_pair(&SR, SR.find(LI.begin()->end)));
    699       }
    700     }
    701 
    702     // Every instruction that kills Reg corresponds to a segment range end
    703     // point.
    704     for (LiveInterval::const_iterator RI = LI.begin(), RE = LI.end(); RI != RE;
    705          ++RI) {
    706       // A block index indicates an MBB edge.
    707       if (RI->end.isBlock())
    708         continue;
    709       MachineInstr *MI = getInstructionFromIndex(RI->end);
    710       if (!MI)
    711         continue;
    712 
    713       // Check if any of the regunits are live beyond the end of RI. That could
    714       // happen when a physreg is defined as a copy of a virtreg:
    715       //
    716       //   %EAX = COPY %vreg5
    717       //   FOO %vreg5         <--- MI, cancel kill because %EAX is live.
    718       //   BAR %EAX<kill>
    719       //
    720       // There should be no kill flag on FOO when %vreg5 is rewritten as %EAX.
    721       for (auto &RUP : RU) {
    722         const LiveRange &RURange = *RUP.first;
    723         LiveRange::const_iterator &I = RUP.second;
    724         if (I == RURange.end())
    725           continue;
    726         I = RURange.advanceTo(I, RI->end);
    727         if (I == RURange.end() || I->start >= RI->end)
    728           continue;
    729         // I is overlapping RI.
    730         goto CancelKill;
    731       }
    732 
    733       if (MRI->subRegLivenessEnabled()) {
    734         // When reading a partial undefined value we must not add a kill flag.
    735         // The regalloc might have used the undef lane for something else.
    736         // Example:
    737         //     %vreg1 = ...              ; R32: %vreg1
    738         //     %vreg2:high16 = ...       ; R64: %vreg2
    739         //        = read %vreg2<kill>    ; R64: %vreg2
    740         //        = read %vreg1          ; R32: %vreg1
    741         // The <kill> flag is correct for %vreg2, but the register allocator may
    742         // assign R0L to %vreg1, and R0 to %vreg2 because the low 32bits of R0
    743         // are actually never written by %vreg2. After assignment the <kill>
    744         // flag at the read instruction is invalid.
    745         LaneBitmask DefinedLanesMask;
    746         if (!SRs.empty()) {
    747           // Compute a mask of lanes that are defined.
    748           DefinedLanesMask = 0;
    749           for (auto &SRP : SRs) {
    750             const LiveInterval::SubRange &SR = *SRP.first;
    751             LiveRange::const_iterator &I = SRP.second;
    752             if (I == SR.end())
    753               continue;
    754             I = SR.advanceTo(I, RI->end);
    755             if (I == SR.end() || I->start >= RI->end)
    756               continue;
    757             // I is overlapping RI
    758             DefinedLanesMask |= SR.LaneMask;
    759           }
    760         } else
    761           DefinedLanesMask = ~0u;
    762 
    763         bool IsFullWrite = false;
    764         for (const MachineOperand &MO : MI->operands()) {
    765           if (!MO.isReg() || MO.getReg() != Reg)
    766             continue;
    767           if (MO.isUse()) {
    768             // Reading any undefined lanes?
    769             LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
    770             if ((UseMask & ~DefinedLanesMask) != 0)
    771               goto CancelKill;
    772           } else if (MO.getSubReg() == 0) {
    773             // Writing to the full register?
    774             assert(MO.isDef());
    775             IsFullWrite = true;
    776           }
    777         }
    778 
    779         // If an instruction writes to a subregister, a new segment starts in
    780         // the LiveInterval. But as this is only overriding part of the register
    781         // adding kill-flags is not correct here after registers have been
    782         // assigned.
    783         if (!IsFullWrite) {
    784           // Next segment has to be adjacent in the subregister write case.
    785           LiveRange::const_iterator N = std::next(RI);
    786           if (N != LI.end() && N->start == RI->end)
    787             goto CancelKill;
    788         }
    789       }
    790 
    791       MI->addRegisterKilled(Reg, nullptr);
    792       continue;
    793 CancelKill:
    794       MI->clearRegisterKills(Reg, nullptr);
    795     }
    796   }
    797 }
    798 
    799 MachineBasicBlock*
    800 LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
    801   // A local live range must be fully contained inside the block, meaning it is
    802   // defined and killed at instructions, not at block boundaries. It is not
    803   // live in or or out of any block.
    804   //
    805   // It is technically possible to have a PHI-defined live range identical to a
    806   // single block, but we are going to return false in that case.
    807 
    808   SlotIndex Start = LI.beginIndex();
    809   if (Start.isBlock())
    810     return nullptr;
    811 
    812   SlotIndex Stop = LI.endIndex();
    813   if (Stop.isBlock())
    814     return nullptr;
    815 
    816   // getMBBFromIndex doesn't need to search the MBB table when both indexes
    817   // belong to proper instructions.
    818   MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
    819   MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
    820   return MBB1 == MBB2 ? MBB1 : nullptr;
    821 }
    822 
    823 bool
    824 LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
    825   for (const VNInfo *PHI : LI.valnos) {
    826     if (PHI->isUnused() || !PHI->isPHIDef())
    827       continue;
    828     const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
    829     // Conservatively return true instead of scanning huge predecessor lists.
    830     if (PHIMBB->pred_size() > 100)
    831       return true;
    832     for (MachineBasicBlock::const_pred_iterator
    833          PI = PHIMBB->pred_begin(), PE = PHIMBB->pred_end(); PI != PE; ++PI)
    834       if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(*PI)))
    835         return true;
    836   }
    837   return false;
    838 }
    839 
    840 float
    841 LiveIntervals::getSpillWeight(bool isDef, bool isUse,
    842                               const MachineBlockFrequencyInfo *MBFI,
    843                               const MachineInstr *MI) {
    844   BlockFrequency Freq = MBFI->getBlockFreq(MI->getParent());
    845   const float Scale = 1.0f / MBFI->getEntryFreq();
    846   return (isDef + isUse) * (Freq.getFrequency() * Scale);
    847 }
    848 
    849 LiveRange::Segment
    850 LiveIntervals::addSegmentToEndOfBlock(unsigned reg, MachineInstr* startInst) {
    851   LiveInterval& Interval = createEmptyInterval(reg);
    852   VNInfo* VN = Interval.getNextValue(
    853     SlotIndex(getInstructionIndex(startInst).getRegSlot()),
    854     getVNInfoAllocator());
    855   LiveRange::Segment S(
    856      SlotIndex(getInstructionIndex(startInst).getRegSlot()),
    857      getMBBEndIdx(startInst->getParent()), VN);
    858   Interval.addSegment(S);
    859 
    860   return S;
    861 }
    862 
    863 
    864 //===----------------------------------------------------------------------===//
    865 //                          Register mask functions
    866 //===----------------------------------------------------------------------===//
    867 
    868 bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
    869                                              BitVector &UsableRegs) {
    870   if (LI.empty())
    871     return false;
    872   LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();
    873 
    874   // Use a smaller arrays for local live ranges.
    875   ArrayRef<SlotIndex> Slots;
    876   ArrayRef<const uint32_t*> Bits;
    877   if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
    878     Slots = getRegMaskSlotsInBlock(MBB->getNumber());
    879     Bits = getRegMaskBitsInBlock(MBB->getNumber());
    880   } else {
    881     Slots = getRegMaskSlots();
    882     Bits = getRegMaskBits();
    883   }
    884 
    885   // We are going to enumerate all the register mask slots contained in LI.
    886   // Start with a binary search of RegMaskSlots to find a starting point.
    887   ArrayRef<SlotIndex>::iterator SlotI =
    888     std::lower_bound(Slots.begin(), Slots.end(), LiveI->start);
    889   ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
    890 
    891   // No slots in range, LI begins after the last call.
    892   if (SlotI == SlotE)
    893     return false;
    894 
    895   bool Found = false;
    896   for (;;) {
    897     assert(*SlotI >= LiveI->start);
    898     // Loop over all slots overlapping this segment.
    899     while (*SlotI < LiveI->end) {
    900       // *SlotI overlaps LI. Collect mask bits.
    901       if (!Found) {
    902         // This is the first overlap. Initialize UsableRegs to all ones.
    903         UsableRegs.clear();
    904         UsableRegs.resize(TRI->getNumRegs(), true);
    905         Found = true;
    906       }
    907       // Remove usable registers clobbered by this mask.
    908       UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]);
    909       if (++SlotI == SlotE)
    910         return Found;
    911     }
    912     // *SlotI is beyond the current LI segment.
    913     LiveI = LI.advanceTo(LiveI, *SlotI);
    914     if (LiveI == LiveE)
    915       return Found;
    916     // Advance SlotI until it overlaps.
    917     while (*SlotI < LiveI->start)
    918       if (++SlotI == SlotE)
    919         return Found;
    920   }
    921 }
    922 
    923 //===----------------------------------------------------------------------===//
    924 //                         IntervalUpdate class.
    925 //===----------------------------------------------------------------------===//
    926 
    927 // HMEditor is a toolkit used by handleMove to trim or extend live intervals.
    928 class LiveIntervals::HMEditor {
    929 private:
    930   LiveIntervals& LIS;
    931   const MachineRegisterInfo& MRI;
    932   const TargetRegisterInfo& TRI;
    933   SlotIndex OldIdx;
    934   SlotIndex NewIdx;
    935   SmallPtrSet<LiveRange*, 8> Updated;
    936   bool UpdateFlags;
    937 
    938 public:
    939   HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
    940            const TargetRegisterInfo& TRI,
    941            SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags)
    942     : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx),
    943       UpdateFlags(UpdateFlags) {}
    944 
    945   // FIXME: UpdateFlags is a workaround that creates live intervals for all
    946   // physregs, even those that aren't needed for regalloc, in order to update
    947   // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
    948   // flags, and postRA passes will use a live register utility instead.
    949   LiveRange *getRegUnitLI(unsigned Unit) {
    950     if (UpdateFlags)
    951       return &LIS.getRegUnit(Unit);
    952     return LIS.getCachedRegUnit(Unit);
    953   }
    954 
    955   /// Update all live ranges touched by MI, assuming a move from OldIdx to
    956   /// NewIdx.
    957   void updateAllRanges(MachineInstr *MI) {
    958     DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": " << *MI);
    959     bool hasRegMask = false;
    960     for (MachineOperand &MO : MI->operands()) {
    961       if (MO.isRegMask())
    962         hasRegMask = true;
    963       if (!MO.isReg())
    964         continue;
    965       // Aggressively clear all kill flags.
    966       // They are reinserted by VirtRegRewriter.
    967       if (MO.isUse())
    968         MO.setIsKill(false);
    969 
    970       unsigned Reg = MO.getReg();
    971       if (!Reg)
    972         continue;
    973       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
    974         LiveInterval &LI = LIS.getInterval(Reg);
    975         if (LI.hasSubRanges()) {
    976           unsigned SubReg = MO.getSubReg();
    977           LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubReg);
    978           for (LiveInterval::SubRange &S : LI.subranges()) {
    979             if ((S.LaneMask & LaneMask) == 0)
    980               continue;
    981             updateRange(S, Reg, S.LaneMask);
    982           }
    983         }
    984         updateRange(LI, Reg, 0);
    985         continue;
    986       }
    987 
    988       // For physregs, only update the regunits that actually have a
    989       // precomputed live range.
    990       for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units)
    991         if (LiveRange *LR = getRegUnitLI(*Units))
    992           updateRange(*LR, *Units, 0);
    993     }
    994     if (hasRegMask)
    995       updateRegMaskSlots();
    996   }
    997 
    998 private:
    999   /// Update a single live range, assuming an instruction has been moved from
   1000   /// OldIdx to NewIdx.
   1001   void updateRange(LiveRange &LR, unsigned Reg, LaneBitmask LaneMask) {
   1002     if (!Updated.insert(&LR).second)
   1003       return;
   1004     DEBUG({
   1005       dbgs() << "     ";
   1006       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
   1007         dbgs() << PrintReg(Reg);
   1008         if (LaneMask != 0)
   1009           dbgs() << " L" << PrintLaneMask(LaneMask);
   1010       } else {
   1011         dbgs() << PrintRegUnit(Reg, &TRI);
   1012       }
   1013       dbgs() << ":\t" << LR << '\n';
   1014     });
   1015     if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
   1016       handleMoveDown(LR);
   1017     else
   1018       handleMoveUp(LR, Reg, LaneMask);
   1019     DEBUG(dbgs() << "        -->\t" << LR << '\n');
   1020     LR.verify();
   1021   }
   1022 
   1023   /// Update LR to reflect an instruction has been moved downwards from OldIdx
   1024   /// to NewIdx.
   1025   ///
   1026   /// 1. Live def at OldIdx:
   1027   ///    Move def to NewIdx, assert endpoint after NewIdx.
   1028   ///
   1029   /// 2. Live def at OldIdx, killed at NewIdx:
   1030   ///    Change to dead def at NewIdx.
   1031   ///    (Happens when bundling def+kill together).
   1032   ///
   1033   /// 3. Dead def at OldIdx:
   1034   ///    Move def to NewIdx, possibly across another live value.
   1035   ///
   1036   /// 4. Def at OldIdx AND at NewIdx:
   1037   ///    Remove segment [OldIdx;NewIdx) and value defined at OldIdx.
   1038   ///    (Happens when bundling multiple defs together).
   1039   ///
   1040   /// 5. Value read at OldIdx, killed before NewIdx:
   1041   ///    Extend kill to NewIdx.
   1042   ///
   1043   void handleMoveDown(LiveRange &LR) {
   1044     // First look for a kill at OldIdx.
   1045     LiveRange::iterator I = LR.find(OldIdx.getBaseIndex());
   1046     LiveRange::iterator E = LR.end();
   1047     // Is LR even live at OldIdx?
   1048     if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start))
   1049       return;
   1050 
   1051     // Handle a live-in value.
   1052     if (!SlotIndex::isSameInstr(I->start, OldIdx)) {
   1053       bool isKill = SlotIndex::isSameInstr(OldIdx, I->end);
   1054       // If the live-in value already extends to NewIdx, there is nothing to do.
   1055       if (!SlotIndex::isEarlierInstr(I->end, NewIdx))
   1056         return;
   1057       // Aggressively remove all kill flags from the old kill point.
   1058       // Kill flags shouldn't be used while live intervals exist, they will be
   1059       // reinserted by VirtRegRewriter.
   1060       if (MachineInstr *KillMI = LIS.getInstructionFromIndex(I->end))
   1061         for (MIBundleOperands MO(KillMI); MO.isValid(); ++MO)
   1062           if (MO->isReg() && MO->isUse())
   1063             MO->setIsKill(false);
   1064       // Adjust I->end to reach NewIdx. This may temporarily make LR invalid by
   1065       // overlapping ranges. Case 5 above.
   1066       I->end = NewIdx.getRegSlot(I->end.isEarlyClobber());
   1067       // If this was a kill, there may also be a def. Otherwise we're done.
   1068       if (!isKill)
   1069         return;
   1070       ++I;
   1071     }
   1072 
   1073     // Check for a def at OldIdx.
   1074     if (I == E || !SlotIndex::isSameInstr(OldIdx, I->start))
   1075       return;
   1076     // We have a def at OldIdx.
   1077     VNInfo *DefVNI = I->valno;
   1078     assert(DefVNI->def == I->start && "Inconsistent def");
   1079     DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber());
   1080     // If the defined value extends beyond NewIdx, just move the def down.
   1081     // This is case 1 above.
   1082     if (SlotIndex::isEarlierInstr(NewIdx, I->end)) {
   1083       I->start = DefVNI->def;
   1084       return;
   1085     }
   1086     // The remaining possibilities are now:
   1087     // 2. Live def at OldIdx, killed at NewIdx: isSameInstr(I->end, NewIdx).
   1088     // 3. Dead def at OldIdx: I->end = OldIdx.getDeadSlot().
   1089     // In either case, it is possible that there is an existing def at NewIdx.
   1090     assert((I->end == OldIdx.getDeadSlot() ||
   1091             SlotIndex::isSameInstr(I->end, NewIdx)) &&
   1092             "Cannot move def below kill");
   1093     LiveRange::iterator NewI = LR.advanceTo(I, NewIdx.getRegSlot());
   1094     if (NewI != E && SlotIndex::isSameInstr(NewI->start, NewIdx)) {
   1095       // There is an existing def at NewIdx, case 4 above. The def at OldIdx is
   1096       // coalesced into that value.
   1097       assert(NewI->valno != DefVNI && "Multiple defs of value?");
   1098       LR.removeValNo(DefVNI);
   1099       return;
   1100     }
   1101     // There was no existing def at NewIdx. Turn *I into a dead def at NewIdx.
   1102     // If the def at OldIdx was dead, we allow it to be moved across other LR
   1103     // values. The new range should be placed immediately before NewI, move any
   1104     // intermediate ranges up.
   1105     assert(NewI != I && "Inconsistent iterators");
   1106     std::copy(std::next(I), NewI, I);
   1107     *std::prev(NewI)
   1108       = LiveRange::Segment(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
   1109   }
   1110 
   1111   /// Update LR to reflect an instruction has been moved upwards from OldIdx
   1112   /// to NewIdx.
   1113   ///
   1114   /// 1. Live def at OldIdx:
   1115   ///    Hoist def to NewIdx.
   1116   ///
   1117   /// 2. Dead def at OldIdx:
   1118   ///    Hoist def+end to NewIdx, possibly move across other values.
   1119   ///
   1120   /// 3. Dead def at OldIdx AND existing def at NewIdx:
   1121   ///    Remove value defined at OldIdx, coalescing it with existing value.
   1122   ///
   1123   /// 4. Live def at OldIdx AND existing def at NewIdx:
   1124   ///    Remove value defined at NewIdx, hoist OldIdx def to NewIdx.
   1125   ///    (Happens when bundling multiple defs together).
   1126   ///
   1127   /// 5. Value killed at OldIdx:
   1128   ///    Hoist kill to NewIdx, then scan for last kill between NewIdx and
   1129   ///    OldIdx.
   1130   ///
   1131   void handleMoveUp(LiveRange &LR, unsigned Reg, LaneBitmask LaneMask) {
   1132     // First look for a kill at OldIdx.
   1133     LiveRange::iterator I = LR.find(OldIdx.getBaseIndex());
   1134     LiveRange::iterator E = LR.end();
   1135     // Is LR even live at OldIdx?
   1136     if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start))
   1137       return;
   1138 
   1139     // Handle a live-in value.
   1140     if (!SlotIndex::isSameInstr(I->start, OldIdx)) {
   1141       // If the live-in value isn't killed here, there is nothing to do.
   1142       if (!SlotIndex::isSameInstr(OldIdx, I->end))
   1143         return;
   1144       // Adjust I->end to end at NewIdx. If we are hoisting a kill above
   1145       // another use, we need to search for that use. Case 5 above.
   1146       I->end = NewIdx.getRegSlot(I->end.isEarlyClobber());
   1147       ++I;
   1148       // If OldIdx also defines a value, there couldn't have been another use.
   1149       if (I == E || !SlotIndex::isSameInstr(I->start, OldIdx)) {
   1150         // No def, search for the new kill.
   1151         // This can never be an early clobber kill since there is no def.
   1152         std::prev(I)->end = findLastUseBefore(Reg, LaneMask).getRegSlot();
   1153         return;
   1154       }
   1155     }
   1156 
   1157     // Now deal with the def at OldIdx.
   1158     assert(I != E && SlotIndex::isSameInstr(I->start, OldIdx) && "No def?");
   1159     VNInfo *DefVNI = I->valno;
   1160     assert(DefVNI->def == I->start && "Inconsistent def");
   1161     DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber());
   1162 
   1163     // Check for an existing def at NewIdx.
   1164     LiveRange::iterator NewI = LR.find(NewIdx.getRegSlot());
   1165     if (SlotIndex::isSameInstr(NewI->start, NewIdx)) {
   1166       assert(NewI->valno != DefVNI && "Same value defined more than once?");
   1167       // There is an existing def at NewIdx.
   1168       if (I->end.isDead()) {
   1169         // Case 3: Remove the dead def at OldIdx.
   1170         LR.removeValNo(DefVNI);
   1171         return;
   1172       }
   1173       // Case 4: Replace def at NewIdx with live def at OldIdx.
   1174       I->start = DefVNI->def;
   1175       LR.removeValNo(NewI->valno);
   1176       return;
   1177     }
   1178 
   1179     // There is no existing def at NewIdx. Hoist DefVNI.
   1180     if (!I->end.isDead()) {
   1181       // Leave the end point of a live def.
   1182       I->start = DefVNI->def;
   1183       return;
   1184     }
   1185 
   1186     // DefVNI is a dead def. It may have been moved across other values in LR,
   1187     // so move I up to NewI. Slide [NewI;I) down one position.
   1188     std::copy_backward(NewI, I, std::next(I));
   1189     *NewI = LiveRange::Segment(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
   1190   }
   1191 
   1192   void updateRegMaskSlots() {
   1193     SmallVectorImpl<SlotIndex>::iterator RI =
   1194       std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(),
   1195                        OldIdx);
   1196     assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() &&
   1197            "No RegMask at OldIdx.");
   1198     *RI = NewIdx.getRegSlot();
   1199     assert((RI == LIS.RegMaskSlots.begin() ||
   1200             SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) &&
   1201            "Cannot move regmask instruction above another call");
   1202     assert((std::next(RI) == LIS.RegMaskSlots.end() ||
   1203             SlotIndex::isEarlierInstr(*RI, *std::next(RI))) &&
   1204            "Cannot move regmask instruction below another call");
   1205   }
   1206 
   1207   // Return the last use of reg between NewIdx and OldIdx.
   1208   SlotIndex findLastUseBefore(unsigned Reg, LaneBitmask LaneMask) {
   1209 
   1210     if (TargetRegisterInfo::isVirtualRegister(Reg)) {
   1211       SlotIndex LastUse = NewIdx;
   1212       for (MachineOperand &MO : MRI.use_nodbg_operands(Reg)) {
   1213         unsigned SubReg = MO.getSubReg();
   1214         if (SubReg != 0 && LaneMask != 0
   1215             && (TRI.getSubRegIndexLaneMask(SubReg) & LaneMask) == 0)
   1216           continue;
   1217 
   1218         const MachineInstr *MI = MO.getParent();
   1219         SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
   1220         if (InstSlot > LastUse && InstSlot < OldIdx)
   1221           LastUse = InstSlot;
   1222       }
   1223       return LastUse;
   1224     }
   1225 
   1226     // This is a regunit interval, so scanning the use list could be very
   1227     // expensive. Scan upwards from OldIdx instead.
   1228     assert(NewIdx < OldIdx && "Expected upwards move");
   1229     SlotIndexes *Indexes = LIS.getSlotIndexes();
   1230     MachineBasicBlock *MBB = Indexes->getMBBFromIndex(NewIdx);
   1231 
   1232     // OldIdx may not correspond to an instruction any longer, so set MII to
   1233     // point to the next instruction after OldIdx, or MBB->end().
   1234     MachineBasicBlock::iterator MII = MBB->end();
   1235     if (MachineInstr *MI = Indexes->getInstructionFromIndex(
   1236                            Indexes->getNextNonNullIndex(OldIdx)))
   1237       if (MI->getParent() == MBB)
   1238         MII = MI;
   1239 
   1240     MachineBasicBlock::iterator Begin = MBB->begin();
   1241     while (MII != Begin) {
   1242       if ((--MII)->isDebugValue())
   1243         continue;
   1244       SlotIndex Idx = Indexes->getInstructionIndex(MII);
   1245 
   1246       // Stop searching when NewIdx is reached.
   1247       if (!SlotIndex::isEarlierInstr(NewIdx, Idx))
   1248         return NewIdx;
   1249 
   1250       // Check if MII uses Reg.
   1251       for (MIBundleOperands MO(MII); MO.isValid(); ++MO)
   1252         if (MO->isReg() &&
   1253             TargetRegisterInfo::isPhysicalRegister(MO->getReg()) &&
   1254             TRI.hasRegUnit(MO->getReg(), Reg))
   1255           return Idx;
   1256     }
   1257     // Didn't reach NewIdx. It must be the first instruction in the block.
   1258     return NewIdx;
   1259   }
   1260 };
   1261 
   1262 void LiveIntervals::handleMove(MachineInstr* MI, bool UpdateFlags) {
   1263   assert(!MI->isBundled() && "Can't handle bundled instructions yet.");
   1264   SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
   1265   Indexes->removeMachineInstrFromMaps(MI);
   1266   SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI);
   1267   assert(getMBBStartIdx(MI->getParent()) <= OldIndex &&
   1268          OldIndex < getMBBEndIdx(MI->getParent()) &&
   1269          "Cannot handle moves across basic block boundaries.");
   1270 
   1271   HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
   1272   HME.updateAllRanges(MI);
   1273 }
   1274 
   1275 void LiveIntervals::handleMoveIntoBundle(MachineInstr* MI,
   1276                                          MachineInstr* BundleStart,
   1277                                          bool UpdateFlags) {
   1278   SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
   1279   SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart);
   1280   HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
   1281   HME.updateAllRanges(MI);
   1282 }
   1283 
   1284 void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin,
   1285                                         const MachineBasicBlock::iterator End,
   1286                                         const SlotIndex endIdx,
   1287                                         LiveRange &LR, const unsigned Reg,
   1288                                         LaneBitmask LaneMask) {
   1289   LiveInterval::iterator LII = LR.find(endIdx);
   1290   SlotIndex lastUseIdx;
   1291   if (LII != LR.end() && LII->start < endIdx)
   1292     lastUseIdx = LII->end;
   1293   else
   1294     --LII;
   1295 
   1296   for (MachineBasicBlock::iterator I = End; I != Begin;) {
   1297     --I;
   1298     MachineInstr *MI = I;
   1299     if (MI->isDebugValue())
   1300       continue;
   1301 
   1302     SlotIndex instrIdx = getInstructionIndex(MI);
   1303     bool isStartValid = getInstructionFromIndex(LII->start);
   1304     bool isEndValid = getInstructionFromIndex(LII->end);
   1305 
   1306     // FIXME: This doesn't currently handle early-clobber or multiple removed
   1307     // defs inside of the region to repair.
   1308     for (MachineInstr::mop_iterator OI = MI->operands_begin(),
   1309          OE = MI->operands_end(); OI != OE; ++OI) {
   1310       const MachineOperand &MO = *OI;
   1311       if (!MO.isReg() || MO.getReg() != Reg)
   1312         continue;
   1313 
   1314       unsigned SubReg = MO.getSubReg();
   1315       LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubReg);
   1316       if ((Mask & LaneMask) == 0)
   1317         continue;
   1318 
   1319       if (MO.isDef()) {
   1320         if (!isStartValid) {
   1321           if (LII->end.isDead()) {
   1322             SlotIndex prevStart;
   1323             if (LII != LR.begin())
   1324               prevStart = std::prev(LII)->start;
   1325 
   1326             // FIXME: This could be more efficient if there was a
   1327             // removeSegment method that returned an iterator.
   1328             LR.removeSegment(*LII, true);
   1329             if (prevStart.isValid())
   1330               LII = LR.find(prevStart);
   1331             else
   1332               LII = LR.begin();
   1333           } else {
   1334             LII->start = instrIdx.getRegSlot();
   1335             LII->valno->def = instrIdx.getRegSlot();
   1336             if (MO.getSubReg() && !MO.isUndef())
   1337               lastUseIdx = instrIdx.getRegSlot();
   1338             else
   1339               lastUseIdx = SlotIndex();
   1340             continue;
   1341           }
   1342         }
   1343 
   1344         if (!lastUseIdx.isValid()) {
   1345           VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
   1346           LiveRange::Segment S(instrIdx.getRegSlot(),
   1347                                instrIdx.getDeadSlot(), VNI);
   1348           LII = LR.addSegment(S);
   1349         } else if (LII->start != instrIdx.getRegSlot()) {
   1350           VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
   1351           LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI);
   1352           LII = LR.addSegment(S);
   1353         }
   1354 
   1355         if (MO.getSubReg() && !MO.isUndef())
   1356           lastUseIdx = instrIdx.getRegSlot();
   1357         else
   1358           lastUseIdx = SlotIndex();
   1359       } else if (MO.isUse()) {
   1360         // FIXME: This should probably be handled outside of this branch,
   1361         // either as part of the def case (for defs inside of the region) or
   1362         // after the loop over the region.
   1363         if (!isEndValid && !LII->end.isBlock())
   1364           LII->end = instrIdx.getRegSlot();
   1365         if (!lastUseIdx.isValid())
   1366           lastUseIdx = instrIdx.getRegSlot();
   1367       }
   1368     }
   1369   }
   1370 }
   1371 
   1372 void
   1373 LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
   1374                                       MachineBasicBlock::iterator Begin,
   1375                                       MachineBasicBlock::iterator End,
   1376                                       ArrayRef<unsigned> OrigRegs) {
   1377   // Find anchor points, which are at the beginning/end of blocks or at
   1378   // instructions that already have indexes.
   1379   while (Begin != MBB->begin() && !Indexes->hasIndex(Begin))
   1380     --Begin;
   1381   while (End != MBB->end() && !Indexes->hasIndex(End))
   1382     ++End;
   1383 
   1384   SlotIndex endIdx;
   1385   if (End == MBB->end())
   1386     endIdx = getMBBEndIdx(MBB).getPrevSlot();
   1387   else
   1388     endIdx = getInstructionIndex(End);
   1389 
   1390   Indexes->repairIndexesInRange(MBB, Begin, End);
   1391 
   1392   for (MachineBasicBlock::iterator I = End; I != Begin;) {
   1393     --I;
   1394     MachineInstr *MI = I;
   1395     if (MI->isDebugValue())
   1396       continue;
   1397     for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(),
   1398          MOE = MI->operands_end(); MOI != MOE; ++MOI) {
   1399       if (MOI->isReg() &&
   1400           TargetRegisterInfo::isVirtualRegister(MOI->getReg()) &&
   1401           !hasInterval(MOI->getReg())) {
   1402         createAndComputeVirtRegInterval(MOI->getReg());
   1403       }
   1404     }
   1405   }
   1406 
   1407   for (unsigned i = 0, e = OrigRegs.size(); i != e; ++i) {
   1408     unsigned Reg = OrigRegs[i];
   1409     if (!TargetRegisterInfo::isVirtualRegister(Reg))
   1410       continue;
   1411 
   1412     LiveInterval &LI = getInterval(Reg);
   1413     // FIXME: Should we support undefs that gain defs?
   1414     if (!LI.hasAtLeastOneValue())
   1415       continue;
   1416 
   1417     for (LiveInterval::SubRange &S : LI.subranges()) {
   1418       repairOldRegInRange(Begin, End, endIdx, S, Reg, S.LaneMask);
   1419     }
   1420     repairOldRegInRange(Begin, End, endIdx, LI, Reg);
   1421   }
   1422 }
   1423 
   1424 void LiveIntervals::removePhysRegDefAt(unsigned Reg, SlotIndex Pos) {
   1425   for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
   1426     if (LiveRange *LR = getCachedRegUnit(*Units))
   1427       if (VNInfo *VNI = LR->getVNInfoAt(Pos))
   1428         LR->removeValNo(VNI);
   1429   }
   1430 }
   1431 
   1432 void LiveIntervals::removeVRegDefAt(LiveInterval &LI, SlotIndex Pos) {
   1433   VNInfo *VNI = LI.getVNInfoAt(Pos);
   1434   if (VNI == nullptr)
   1435     return;
   1436   LI.removeValNo(VNI);
   1437 
   1438   // Also remove the value in subranges.
   1439   for (LiveInterval::SubRange &S : LI.subranges()) {
   1440     if (VNInfo *SVNI = S.getVNInfoAt(Pos))
   1441       S.removeValNo(SVNI);
   1442   }
   1443   LI.removeEmptySubRanges();
   1444 }
   1445 
   1446 void LiveIntervals::splitSeparateComponents(LiveInterval &LI,
   1447     SmallVectorImpl<LiveInterval*> &SplitLIs) {
   1448   ConnectedVNInfoEqClasses ConEQ(*this);
   1449   unsigned NumComp = ConEQ.Classify(&LI);
   1450   if (NumComp <= 1)
   1451     return;
   1452   DEBUG(dbgs() << "  Split " << NumComp << " components: " << LI << '\n');
   1453   unsigned Reg = LI.reg;
   1454   const TargetRegisterClass *RegClass = MRI->getRegClass(Reg);
   1455   for (unsigned I = 1; I < NumComp; ++I) {
   1456     unsigned NewVReg = MRI->createVirtualRegister(RegClass);
   1457     LiveInterval &NewLI = createEmptyInterval(NewVReg);
   1458     SplitLIs.push_back(&NewLI);
   1459   }
   1460   ConEQ.Distribute(LI, SplitLIs.data(), *MRI);
   1461 }
   1462