Home | History | Annotate | Download | only in MSP430
      1 //===-- MSP430ISelLowering.cpp - MSP430 DAG Lowering Implementation  ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the MSP430TargetLowering class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "MSP430ISelLowering.h"
     15 #include "MSP430.h"
     16 #include "MSP430MachineFunctionInfo.h"
     17 #include "MSP430Subtarget.h"
     18 #include "MSP430TargetMachine.h"
     19 #include "llvm/CodeGen/CallingConvLower.h"
     20 #include "llvm/CodeGen/MachineFrameInfo.h"
     21 #include "llvm/CodeGen/MachineFunction.h"
     22 #include "llvm/CodeGen/MachineInstrBuilder.h"
     23 #include "llvm/CodeGen/MachineRegisterInfo.h"
     24 #include "llvm/CodeGen/SelectionDAGISel.h"
     25 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
     26 #include "llvm/CodeGen/ValueTypes.h"
     27 #include "llvm/IR/CallingConv.h"
     28 #include "llvm/IR/DerivedTypes.h"
     29 #include "llvm/IR/Function.h"
     30 #include "llvm/IR/GlobalAlias.h"
     31 #include "llvm/IR/GlobalVariable.h"
     32 #include "llvm/IR/Intrinsics.h"
     33 #include "llvm/Support/CommandLine.h"
     34 #include "llvm/Support/Debug.h"
     35 #include "llvm/Support/ErrorHandling.h"
     36 #include "llvm/Support/raw_ostream.h"
     37 using namespace llvm;
     38 
     39 #define DEBUG_TYPE "msp430-lower"
     40 
     41 typedef enum {
     42   NoHWMult,
     43   HWMultIntr,
     44   HWMultNoIntr
     45 } HWMultUseMode;
     46 
     47 static cl::opt<HWMultUseMode>
     48 HWMultMode("msp430-hwmult-mode", cl::Hidden,
     49            cl::desc("Hardware multiplier use mode"),
     50            cl::init(HWMultNoIntr),
     51            cl::values(
     52              clEnumValN(NoHWMult, "no",
     53                 "Do not use hardware multiplier"),
     54              clEnumValN(HWMultIntr, "interrupts",
     55                 "Assume hardware multiplier can be used inside interrupts"),
     56              clEnumValN(HWMultNoIntr, "use",
     57                 "Assume hardware multiplier cannot be used inside interrupts"),
     58              clEnumValEnd));
     59 
     60 MSP430TargetLowering::MSP430TargetLowering(const TargetMachine &TM,
     61                                            const MSP430Subtarget &STI)
     62     : TargetLowering(TM) {
     63 
     64   // Set up the register classes.
     65   addRegisterClass(MVT::i8,  &MSP430::GR8RegClass);
     66   addRegisterClass(MVT::i16, &MSP430::GR16RegClass);
     67 
     68   // Compute derived properties from the register classes
     69   computeRegisterProperties(STI.getRegisterInfo());
     70 
     71   // Provide all sorts of operation actions
     72   setStackPointerRegisterToSaveRestore(MSP430::SP);
     73   setBooleanContents(ZeroOrOneBooleanContent);
     74   setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
     75 
     76   // We have post-incremented loads / stores.
     77   setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal);
     78   setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal);
     79 
     80   for (MVT VT : MVT::integer_valuetypes()) {
     81     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1,  Promote);
     82     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1,  Promote);
     83     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1,  Promote);
     84     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8,  Expand);
     85     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Expand);
     86   }
     87 
     88   // We don't have any truncstores
     89   setTruncStoreAction(MVT::i16, MVT::i8, Expand);
     90 
     91   setOperationAction(ISD::SRA,              MVT::i8,    Custom);
     92   setOperationAction(ISD::SHL,              MVT::i8,    Custom);
     93   setOperationAction(ISD::SRL,              MVT::i8,    Custom);
     94   setOperationAction(ISD::SRA,              MVT::i16,   Custom);
     95   setOperationAction(ISD::SHL,              MVT::i16,   Custom);
     96   setOperationAction(ISD::SRL,              MVT::i16,   Custom);
     97   setOperationAction(ISD::ROTL,             MVT::i8,    Expand);
     98   setOperationAction(ISD::ROTR,             MVT::i8,    Expand);
     99   setOperationAction(ISD::ROTL,             MVT::i16,   Expand);
    100   setOperationAction(ISD::ROTR,             MVT::i16,   Expand);
    101   setOperationAction(ISD::GlobalAddress,    MVT::i16,   Custom);
    102   setOperationAction(ISD::ExternalSymbol,   MVT::i16,   Custom);
    103   setOperationAction(ISD::BlockAddress,     MVT::i16,   Custom);
    104   setOperationAction(ISD::BR_JT,            MVT::Other, Expand);
    105   setOperationAction(ISD::BR_CC,            MVT::i8,    Custom);
    106   setOperationAction(ISD::BR_CC,            MVT::i16,   Custom);
    107   setOperationAction(ISD::BRCOND,           MVT::Other, Expand);
    108   setOperationAction(ISD::SETCC,            MVT::i8,    Custom);
    109   setOperationAction(ISD::SETCC,            MVT::i16,   Custom);
    110   setOperationAction(ISD::SELECT,           MVT::i8,    Expand);
    111   setOperationAction(ISD::SELECT,           MVT::i16,   Expand);
    112   setOperationAction(ISD::SELECT_CC,        MVT::i8,    Custom);
    113   setOperationAction(ISD::SELECT_CC,        MVT::i16,   Custom);
    114   setOperationAction(ISD::SIGN_EXTEND,      MVT::i16,   Custom);
    115   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i8, Expand);
    116   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i16, Expand);
    117 
    118   setOperationAction(ISD::CTTZ,             MVT::i8,    Expand);
    119   setOperationAction(ISD::CTTZ,             MVT::i16,   Expand);
    120   setOperationAction(ISD::CTTZ_ZERO_UNDEF,  MVT::i8,    Expand);
    121   setOperationAction(ISD::CTTZ_ZERO_UNDEF,  MVT::i16,   Expand);
    122   setOperationAction(ISD::CTLZ,             MVT::i8,    Expand);
    123   setOperationAction(ISD::CTLZ,             MVT::i16,   Expand);
    124   setOperationAction(ISD::CTLZ_ZERO_UNDEF,  MVT::i8,    Expand);
    125   setOperationAction(ISD::CTLZ_ZERO_UNDEF,  MVT::i16,   Expand);
    126   setOperationAction(ISD::CTPOP,            MVT::i8,    Expand);
    127   setOperationAction(ISD::CTPOP,            MVT::i16,   Expand);
    128 
    129   setOperationAction(ISD::SHL_PARTS,        MVT::i8,    Expand);
    130   setOperationAction(ISD::SHL_PARTS,        MVT::i16,   Expand);
    131   setOperationAction(ISD::SRL_PARTS,        MVT::i8,    Expand);
    132   setOperationAction(ISD::SRL_PARTS,        MVT::i16,   Expand);
    133   setOperationAction(ISD::SRA_PARTS,        MVT::i8,    Expand);
    134   setOperationAction(ISD::SRA_PARTS,        MVT::i16,   Expand);
    135 
    136   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,   Expand);
    137 
    138   // FIXME: Implement efficiently multiplication by a constant
    139   setOperationAction(ISD::MUL,              MVT::i8,    Expand);
    140   setOperationAction(ISD::MULHS,            MVT::i8,    Expand);
    141   setOperationAction(ISD::MULHU,            MVT::i8,    Expand);
    142   setOperationAction(ISD::SMUL_LOHI,        MVT::i8,    Expand);
    143   setOperationAction(ISD::UMUL_LOHI,        MVT::i8,    Expand);
    144   setOperationAction(ISD::MUL,              MVT::i16,   Expand);
    145   setOperationAction(ISD::MULHS,            MVT::i16,   Expand);
    146   setOperationAction(ISD::MULHU,            MVT::i16,   Expand);
    147   setOperationAction(ISD::SMUL_LOHI,        MVT::i16,   Expand);
    148   setOperationAction(ISD::UMUL_LOHI,        MVT::i16,   Expand);
    149 
    150   setOperationAction(ISD::UDIV,             MVT::i8,    Expand);
    151   setOperationAction(ISD::UDIVREM,          MVT::i8,    Expand);
    152   setOperationAction(ISD::UREM,             MVT::i8,    Expand);
    153   setOperationAction(ISD::SDIV,             MVT::i8,    Expand);
    154   setOperationAction(ISD::SDIVREM,          MVT::i8,    Expand);
    155   setOperationAction(ISD::SREM,             MVT::i8,    Expand);
    156   setOperationAction(ISD::UDIV,             MVT::i16,   Expand);
    157   setOperationAction(ISD::UDIVREM,          MVT::i16,   Expand);
    158   setOperationAction(ISD::UREM,             MVT::i16,   Expand);
    159   setOperationAction(ISD::SDIV,             MVT::i16,   Expand);
    160   setOperationAction(ISD::SDIVREM,          MVT::i16,   Expand);
    161   setOperationAction(ISD::SREM,             MVT::i16,   Expand);
    162 
    163   // varargs support
    164   setOperationAction(ISD::VASTART,          MVT::Other, Custom);
    165   setOperationAction(ISD::VAARG,            MVT::Other, Expand);
    166   setOperationAction(ISD::VAEND,            MVT::Other, Expand);
    167   setOperationAction(ISD::VACOPY,           MVT::Other, Expand);
    168   setOperationAction(ISD::JumpTable,        MVT::i16,   Custom);
    169 
    170   // Libcalls names.
    171   if (HWMultMode == HWMultIntr) {
    172     setLibcallName(RTLIB::MUL_I8,  "__mulqi3hw");
    173     setLibcallName(RTLIB::MUL_I16, "__mulhi3hw");
    174   } else if (HWMultMode == HWMultNoIntr) {
    175     setLibcallName(RTLIB::MUL_I8,  "__mulqi3hw_noint");
    176     setLibcallName(RTLIB::MUL_I16, "__mulhi3hw_noint");
    177   }
    178 
    179   setMinFunctionAlignment(1);
    180   setPrefFunctionAlignment(2);
    181 }
    182 
    183 SDValue MSP430TargetLowering::LowerOperation(SDValue Op,
    184                                              SelectionDAG &DAG) const {
    185   switch (Op.getOpcode()) {
    186   case ISD::SHL: // FALLTHROUGH
    187   case ISD::SRL:
    188   case ISD::SRA:              return LowerShifts(Op, DAG);
    189   case ISD::GlobalAddress:    return LowerGlobalAddress(Op, DAG);
    190   case ISD::BlockAddress:     return LowerBlockAddress(Op, DAG);
    191   case ISD::ExternalSymbol:   return LowerExternalSymbol(Op, DAG);
    192   case ISD::SETCC:            return LowerSETCC(Op, DAG);
    193   case ISD::BR_CC:            return LowerBR_CC(Op, DAG);
    194   case ISD::SELECT_CC:        return LowerSELECT_CC(Op, DAG);
    195   case ISD::SIGN_EXTEND:      return LowerSIGN_EXTEND(Op, DAG);
    196   case ISD::RETURNADDR:       return LowerRETURNADDR(Op, DAG);
    197   case ISD::FRAMEADDR:        return LowerFRAMEADDR(Op, DAG);
    198   case ISD::VASTART:          return LowerVASTART(Op, DAG);
    199   case ISD::JumpTable:        return LowerJumpTable(Op, DAG);
    200   default:
    201     llvm_unreachable("unimplemented operand");
    202   }
    203 }
    204 
    205 //===----------------------------------------------------------------------===//
    206 //                       MSP430 Inline Assembly Support
    207 //===----------------------------------------------------------------------===//
    208 
    209 /// getConstraintType - Given a constraint letter, return the type of
    210 /// constraint it is for this target.
    211 TargetLowering::ConstraintType
    212 MSP430TargetLowering::getConstraintType(StringRef Constraint) const {
    213   if (Constraint.size() == 1) {
    214     switch (Constraint[0]) {
    215     case 'r':
    216       return C_RegisterClass;
    217     default:
    218       break;
    219     }
    220   }
    221   return TargetLowering::getConstraintType(Constraint);
    222 }
    223 
    224 std::pair<unsigned, const TargetRegisterClass *>
    225 MSP430TargetLowering::getRegForInlineAsmConstraint(
    226     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
    227   if (Constraint.size() == 1) {
    228     // GCC Constraint Letters
    229     switch (Constraint[0]) {
    230     default: break;
    231     case 'r':   // GENERAL_REGS
    232       if (VT == MVT::i8)
    233         return std::make_pair(0U, &MSP430::GR8RegClass);
    234 
    235       return std::make_pair(0U, &MSP430::GR16RegClass);
    236     }
    237   }
    238 
    239   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
    240 }
    241 
    242 //===----------------------------------------------------------------------===//
    243 //                      Calling Convention Implementation
    244 //===----------------------------------------------------------------------===//
    245 
    246 #include "MSP430GenCallingConv.inc"
    247 
    248 /// For each argument in a function store the number of pieces it is composed
    249 /// of.
    250 template<typename ArgT>
    251 static void ParseFunctionArgs(const SmallVectorImpl<ArgT> &Args,
    252                               SmallVectorImpl<unsigned> &Out) {
    253   unsigned CurrentArgIndex = ~0U;
    254   for (unsigned i = 0, e = Args.size(); i != e; i++) {
    255     if (CurrentArgIndex == Args[i].OrigArgIndex) {
    256       Out.back()++;
    257     } else {
    258       Out.push_back(1);
    259       CurrentArgIndex++;
    260     }
    261   }
    262 }
    263 
    264 static void AnalyzeVarArgs(CCState &State,
    265                            const SmallVectorImpl<ISD::OutputArg> &Outs) {
    266   State.AnalyzeCallOperands(Outs, CC_MSP430_AssignStack);
    267 }
    268 
    269 static void AnalyzeVarArgs(CCState &State,
    270                            const SmallVectorImpl<ISD::InputArg> &Ins) {
    271   State.AnalyzeFormalArguments(Ins, CC_MSP430_AssignStack);
    272 }
    273 
    274 /// Analyze incoming and outgoing function arguments. We need custom C++ code
    275 /// to handle special constraints in the ABI like reversing the order of the
    276 /// pieces of splitted arguments. In addition, all pieces of a certain argument
    277 /// have to be passed either using registers or the stack but never mixing both.
    278 template<typename ArgT>
    279 static void AnalyzeArguments(CCState &State,
    280                              SmallVectorImpl<CCValAssign> &ArgLocs,
    281                              const SmallVectorImpl<ArgT> &Args) {
    282   static const MCPhysReg RegList[] = {
    283     MSP430::R15, MSP430::R14, MSP430::R13, MSP430::R12
    284   };
    285   static const unsigned NbRegs = array_lengthof(RegList);
    286 
    287   if (State.isVarArg()) {
    288     AnalyzeVarArgs(State, Args);
    289     return;
    290   }
    291 
    292   SmallVector<unsigned, 4> ArgsParts;
    293   ParseFunctionArgs(Args, ArgsParts);
    294 
    295   unsigned RegsLeft = NbRegs;
    296   bool UseStack = false;
    297   unsigned ValNo = 0;
    298 
    299   for (unsigned i = 0, e = ArgsParts.size(); i != e; i++) {
    300     MVT ArgVT = Args[ValNo].VT;
    301     ISD::ArgFlagsTy ArgFlags = Args[ValNo].Flags;
    302     MVT LocVT = ArgVT;
    303     CCValAssign::LocInfo LocInfo = CCValAssign::Full;
    304 
    305     // Promote i8 to i16
    306     if (LocVT == MVT::i8) {
    307       LocVT = MVT::i16;
    308       if (ArgFlags.isSExt())
    309           LocInfo = CCValAssign::SExt;
    310       else if (ArgFlags.isZExt())
    311           LocInfo = CCValAssign::ZExt;
    312       else
    313           LocInfo = CCValAssign::AExt;
    314     }
    315 
    316     // Handle byval arguments
    317     if (ArgFlags.isByVal()) {
    318       State.HandleByVal(ValNo++, ArgVT, LocVT, LocInfo, 2, 2, ArgFlags);
    319       continue;
    320     }
    321 
    322     unsigned Parts = ArgsParts[i];
    323 
    324     if (!UseStack && Parts <= RegsLeft) {
    325       unsigned FirstVal = ValNo;
    326       for (unsigned j = 0; j < Parts; j++) {
    327         unsigned Reg = State.AllocateReg(RegList);
    328         State.addLoc(CCValAssign::getReg(ValNo++, ArgVT, Reg, LocVT, LocInfo));
    329         RegsLeft--;
    330       }
    331 
    332       // Reverse the order of the pieces to agree with the "big endian" format
    333       // required in the calling convention ABI.
    334       SmallVectorImpl<CCValAssign>::iterator B = ArgLocs.begin() + FirstVal;
    335       std::reverse(B, B + Parts);
    336     } else {
    337       UseStack = true;
    338       for (unsigned j = 0; j < Parts; j++)
    339         CC_MSP430_AssignStack(ValNo++, ArgVT, LocVT, LocInfo, ArgFlags, State);
    340     }
    341   }
    342 }
    343 
    344 static void AnalyzeRetResult(CCState &State,
    345                              const SmallVectorImpl<ISD::InputArg> &Ins) {
    346   State.AnalyzeCallResult(Ins, RetCC_MSP430);
    347 }
    348 
    349 static void AnalyzeRetResult(CCState &State,
    350                              const SmallVectorImpl<ISD::OutputArg> &Outs) {
    351   State.AnalyzeReturn(Outs, RetCC_MSP430);
    352 }
    353 
    354 template<typename ArgT>
    355 static void AnalyzeReturnValues(CCState &State,
    356                                 SmallVectorImpl<CCValAssign> &RVLocs,
    357                                 const SmallVectorImpl<ArgT> &Args) {
    358   AnalyzeRetResult(State, Args);
    359 
    360   // Reverse splitted return values to get the "big endian" format required
    361   // to agree with the calling convention ABI.
    362   std::reverse(RVLocs.begin(), RVLocs.end());
    363 }
    364 
    365 SDValue
    366 MSP430TargetLowering::LowerFormalArguments(SDValue Chain,
    367                                            CallingConv::ID CallConv,
    368                                            bool isVarArg,
    369                                            const SmallVectorImpl<ISD::InputArg>
    370                                              &Ins,
    371                                            SDLoc dl,
    372                                            SelectionDAG &DAG,
    373                                            SmallVectorImpl<SDValue> &InVals)
    374                                              const {
    375 
    376   switch (CallConv) {
    377   default:
    378     llvm_unreachable("Unsupported calling convention");
    379   case CallingConv::C:
    380   case CallingConv::Fast:
    381     return LowerCCCArguments(Chain, CallConv, isVarArg, Ins, dl, DAG, InVals);
    382   case CallingConv::MSP430_INTR:
    383     if (Ins.empty())
    384       return Chain;
    385     report_fatal_error("ISRs cannot have arguments");
    386   }
    387 }
    388 
    389 SDValue
    390 MSP430TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
    391                                 SmallVectorImpl<SDValue> &InVals) const {
    392   SelectionDAG &DAG                     = CLI.DAG;
    393   SDLoc &dl                             = CLI.DL;
    394   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
    395   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
    396   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
    397   SDValue Chain                         = CLI.Chain;
    398   SDValue Callee                        = CLI.Callee;
    399   bool &isTailCall                      = CLI.IsTailCall;
    400   CallingConv::ID CallConv              = CLI.CallConv;
    401   bool isVarArg                         = CLI.IsVarArg;
    402 
    403   // MSP430 target does not yet support tail call optimization.
    404   isTailCall = false;
    405 
    406   switch (CallConv) {
    407   default:
    408     llvm_unreachable("Unsupported calling convention");
    409   case CallingConv::Fast:
    410   case CallingConv::C:
    411     return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
    412                           Outs, OutVals, Ins, dl, DAG, InVals);
    413   case CallingConv::MSP430_INTR:
    414     report_fatal_error("ISRs cannot be called directly");
    415   }
    416 }
    417 
    418 /// LowerCCCArguments - transform physical registers into virtual registers and
    419 /// generate load operations for arguments places on the stack.
    420 // FIXME: struct return stuff
    421 SDValue
    422 MSP430TargetLowering::LowerCCCArguments(SDValue Chain,
    423                                         CallingConv::ID CallConv,
    424                                         bool isVarArg,
    425                                         const SmallVectorImpl<ISD::InputArg>
    426                                           &Ins,
    427                                         SDLoc dl,
    428                                         SelectionDAG &DAG,
    429                                         SmallVectorImpl<SDValue> &InVals)
    430                                           const {
    431   MachineFunction &MF = DAG.getMachineFunction();
    432   MachineFrameInfo *MFI = MF.getFrameInfo();
    433   MachineRegisterInfo &RegInfo = MF.getRegInfo();
    434   MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
    435 
    436   // Assign locations to all of the incoming arguments.
    437   SmallVector<CCValAssign, 16> ArgLocs;
    438   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
    439                  *DAG.getContext());
    440   AnalyzeArguments(CCInfo, ArgLocs, Ins);
    441 
    442   // Create frame index for the start of the first vararg value
    443   if (isVarArg) {
    444     unsigned Offset = CCInfo.getNextStackOffset();
    445     FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, Offset, true));
    446   }
    447 
    448   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    449     CCValAssign &VA = ArgLocs[i];
    450     if (VA.isRegLoc()) {
    451       // Arguments passed in registers
    452       EVT RegVT = VA.getLocVT();
    453       switch (RegVT.getSimpleVT().SimpleTy) {
    454       default:
    455         {
    456 #ifndef NDEBUG
    457           errs() << "LowerFormalArguments Unhandled argument type: "
    458                << RegVT.getSimpleVT().SimpleTy << "\n";
    459 #endif
    460           llvm_unreachable(nullptr);
    461         }
    462       case MVT::i16:
    463         unsigned VReg = RegInfo.createVirtualRegister(&MSP430::GR16RegClass);
    464         RegInfo.addLiveIn(VA.getLocReg(), VReg);
    465         SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
    466 
    467         // If this is an 8-bit value, it is really passed promoted to 16
    468         // bits. Insert an assert[sz]ext to capture this, then truncate to the
    469         // right size.
    470         if (VA.getLocInfo() == CCValAssign::SExt)
    471           ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
    472                                  DAG.getValueType(VA.getValVT()));
    473         else if (VA.getLocInfo() == CCValAssign::ZExt)
    474           ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
    475                                  DAG.getValueType(VA.getValVT()));
    476 
    477         if (VA.getLocInfo() != CCValAssign::Full)
    478           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
    479 
    480         InVals.push_back(ArgValue);
    481       }
    482     } else {
    483       // Sanity check
    484       assert(VA.isMemLoc());
    485 
    486       SDValue InVal;
    487       ISD::ArgFlagsTy Flags = Ins[i].Flags;
    488 
    489       if (Flags.isByVal()) {
    490         int FI = MFI->CreateFixedObject(Flags.getByValSize(),
    491                                         VA.getLocMemOffset(), true);
    492         InVal = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
    493       } else {
    494         // Load the argument to a virtual register
    495         unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
    496         if (ObjSize > 2) {
    497             errs() << "LowerFormalArguments Unhandled argument type: "
    498                 << EVT(VA.getLocVT()).getEVTString()
    499                 << "\n";
    500         }
    501         // Create the frame index object for this incoming parameter...
    502         int FI = MFI->CreateFixedObject(ObjSize, VA.getLocMemOffset(), true);
    503 
    504         // Create the SelectionDAG nodes corresponding to a load
    505         //from this parameter
    506         SDValue FIN = DAG.getFrameIndex(FI, MVT::i16);
    507         InVal = DAG.getLoad(
    508             VA.getLocVT(), dl, Chain, FIN,
    509             MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
    510             false, false, false, 0);
    511       }
    512 
    513       InVals.push_back(InVal);
    514     }
    515   }
    516 
    517   return Chain;
    518 }
    519 
    520 SDValue
    521 MSP430TargetLowering::LowerReturn(SDValue Chain,
    522                                   CallingConv::ID CallConv, bool isVarArg,
    523                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
    524                                   const SmallVectorImpl<SDValue> &OutVals,
    525                                   SDLoc dl, SelectionDAG &DAG) const {
    526 
    527   // CCValAssign - represent the assignment of the return value to a location
    528   SmallVector<CCValAssign, 16> RVLocs;
    529 
    530   // ISRs cannot return any value.
    531   if (CallConv == CallingConv::MSP430_INTR && !Outs.empty())
    532     report_fatal_error("ISRs cannot return any value");
    533 
    534   // CCState - Info about the registers and stack slot.
    535   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
    536                  *DAG.getContext());
    537 
    538   // Analize return values.
    539   AnalyzeReturnValues(CCInfo, RVLocs, Outs);
    540 
    541   SDValue Flag;
    542   SmallVector<SDValue, 4> RetOps(1, Chain);
    543 
    544   // Copy the result values into the output registers.
    545   for (unsigned i = 0; i != RVLocs.size(); ++i) {
    546     CCValAssign &VA = RVLocs[i];
    547     assert(VA.isRegLoc() && "Can only return in registers!");
    548 
    549     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
    550                              OutVals[i], Flag);
    551 
    552     // Guarantee that all emitted copies are stuck together,
    553     // avoiding something bad.
    554     Flag = Chain.getValue(1);
    555     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
    556   }
    557 
    558   unsigned Opc = (CallConv == CallingConv::MSP430_INTR ?
    559                   MSP430ISD::RETI_FLAG : MSP430ISD::RET_FLAG);
    560 
    561   RetOps[0] = Chain;  // Update chain.
    562 
    563   // Add the flag if we have it.
    564   if (Flag.getNode())
    565     RetOps.push_back(Flag);
    566 
    567   return DAG.getNode(Opc, dl, MVT::Other, RetOps);
    568 }
    569 
    570 /// LowerCCCCallTo - functions arguments are copied from virtual regs to
    571 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
    572 // TODO: sret.
    573 SDValue
    574 MSP430TargetLowering::LowerCCCCallTo(SDValue Chain, SDValue Callee,
    575                                      CallingConv::ID CallConv, bool isVarArg,
    576                                      bool isTailCall,
    577                                      const SmallVectorImpl<ISD::OutputArg>
    578                                        &Outs,
    579                                      const SmallVectorImpl<SDValue> &OutVals,
    580                                      const SmallVectorImpl<ISD::InputArg> &Ins,
    581                                      SDLoc dl, SelectionDAG &DAG,
    582                                      SmallVectorImpl<SDValue> &InVals) const {
    583   // Analyze operands of the call, assigning locations to each operand.
    584   SmallVector<CCValAssign, 16> ArgLocs;
    585   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
    586                  *DAG.getContext());
    587   AnalyzeArguments(CCInfo, ArgLocs, Outs);
    588 
    589   // Get a count of how many bytes are to be pushed on the stack.
    590   unsigned NumBytes = CCInfo.getNextStackOffset();
    591   auto PtrVT = getPointerTy(DAG.getDataLayout());
    592 
    593   Chain = DAG.getCALLSEQ_START(Chain,
    594                                DAG.getConstant(NumBytes, dl, PtrVT, true), dl);
    595 
    596   SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
    597   SmallVector<SDValue, 12> MemOpChains;
    598   SDValue StackPtr;
    599 
    600   // Walk the register/memloc assignments, inserting copies/loads.
    601   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    602     CCValAssign &VA = ArgLocs[i];
    603 
    604     SDValue Arg = OutVals[i];
    605 
    606     // Promote the value if needed.
    607     switch (VA.getLocInfo()) {
    608       default: llvm_unreachable("Unknown loc info!");
    609       case CCValAssign::Full: break;
    610       case CCValAssign::SExt:
    611         Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
    612         break;
    613       case CCValAssign::ZExt:
    614         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
    615         break;
    616       case CCValAssign::AExt:
    617         Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
    618         break;
    619     }
    620 
    621     // Arguments that can be passed on register must be kept at RegsToPass
    622     // vector
    623     if (VA.isRegLoc()) {
    624       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
    625     } else {
    626       assert(VA.isMemLoc());
    627 
    628       if (!StackPtr.getNode())
    629         StackPtr = DAG.getCopyFromReg(Chain, dl, MSP430::SP, PtrVT);
    630 
    631       SDValue PtrOff =
    632           DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
    633                       DAG.getIntPtrConstant(VA.getLocMemOffset(), dl));
    634 
    635       SDValue MemOp;
    636       ISD::ArgFlagsTy Flags = Outs[i].Flags;
    637 
    638       if (Flags.isByVal()) {
    639         SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i16);
    640         MemOp = DAG.getMemcpy(Chain, dl, PtrOff, Arg, SizeNode,
    641                               Flags.getByValAlign(),
    642                               /*isVolatile*/false,
    643                               /*AlwaysInline=*/true,
    644                               /*isTailCall=*/false,
    645                               MachinePointerInfo(),
    646                               MachinePointerInfo());
    647       } else {
    648         MemOp = DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo(),
    649                              false, false, 0);
    650       }
    651 
    652       MemOpChains.push_back(MemOp);
    653     }
    654   }
    655 
    656   // Transform all store nodes into one single node because all store nodes are
    657   // independent of each other.
    658   if (!MemOpChains.empty())
    659     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
    660 
    661   // Build a sequence of copy-to-reg nodes chained together with token chain and
    662   // flag operands which copy the outgoing args into registers.  The InFlag in
    663   // necessary since all emitted instructions must be stuck together.
    664   SDValue InFlag;
    665   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
    666     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
    667                              RegsToPass[i].second, InFlag);
    668     InFlag = Chain.getValue(1);
    669   }
    670 
    671   // If the callee is a GlobalAddress node (quite common, every direct call is)
    672   // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
    673   // Likewise ExternalSymbol -> TargetExternalSymbol.
    674   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
    675     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i16);
    676   else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
    677     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i16);
    678 
    679   // Returns a chain & a flag for retval copy to use.
    680   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
    681   SmallVector<SDValue, 8> Ops;
    682   Ops.push_back(Chain);
    683   Ops.push_back(Callee);
    684 
    685   // Add argument registers to the end of the list so that they are
    686   // known live into the call.
    687   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
    688     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
    689                                   RegsToPass[i].second.getValueType()));
    690 
    691   if (InFlag.getNode())
    692     Ops.push_back(InFlag);
    693 
    694   Chain = DAG.getNode(MSP430ISD::CALL, dl, NodeTys, Ops);
    695   InFlag = Chain.getValue(1);
    696 
    697   // Create the CALLSEQ_END node.
    698   Chain = DAG.getCALLSEQ_END(Chain, DAG.getConstant(NumBytes, dl, PtrVT, true),
    699                              DAG.getConstant(0, dl, PtrVT, true), InFlag, dl);
    700   InFlag = Chain.getValue(1);
    701 
    702   // Handle result values, copying them out of physregs into vregs that we
    703   // return.
    704   return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl,
    705                          DAG, InVals);
    706 }
    707 
    708 /// LowerCallResult - Lower the result values of a call into the
    709 /// appropriate copies out of appropriate physical registers.
    710 ///
    711 SDValue
    712 MSP430TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
    713                                       CallingConv::ID CallConv, bool isVarArg,
    714                                       const SmallVectorImpl<ISD::InputArg> &Ins,
    715                                       SDLoc dl, SelectionDAG &DAG,
    716                                       SmallVectorImpl<SDValue> &InVals) const {
    717 
    718   // Assign locations to each value returned by this call.
    719   SmallVector<CCValAssign, 16> RVLocs;
    720   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
    721                  *DAG.getContext());
    722 
    723   AnalyzeReturnValues(CCInfo, RVLocs, Ins);
    724 
    725   // Copy all of the result registers out of their specified physreg.
    726   for (unsigned i = 0; i != RVLocs.size(); ++i) {
    727     Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
    728                                RVLocs[i].getValVT(), InFlag).getValue(1);
    729     InFlag = Chain.getValue(2);
    730     InVals.push_back(Chain.getValue(0));
    731   }
    732 
    733   return Chain;
    734 }
    735 
    736 SDValue MSP430TargetLowering::LowerShifts(SDValue Op,
    737                                           SelectionDAG &DAG) const {
    738   unsigned Opc = Op.getOpcode();
    739   SDNode* N = Op.getNode();
    740   EVT VT = Op.getValueType();
    741   SDLoc dl(N);
    742 
    743   // Expand non-constant shifts to loops:
    744   if (!isa<ConstantSDNode>(N->getOperand(1)))
    745     switch (Opc) {
    746     default: llvm_unreachable("Invalid shift opcode!");
    747     case ISD::SHL:
    748       return DAG.getNode(MSP430ISD::SHL, dl,
    749                          VT, N->getOperand(0), N->getOperand(1));
    750     case ISD::SRA:
    751       return DAG.getNode(MSP430ISD::SRA, dl,
    752                          VT, N->getOperand(0), N->getOperand(1));
    753     case ISD::SRL:
    754       return DAG.getNode(MSP430ISD::SRL, dl,
    755                          VT, N->getOperand(0), N->getOperand(1));
    756     }
    757 
    758   uint64_t ShiftAmount = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
    759 
    760   // Expand the stuff into sequence of shifts.
    761   // FIXME: for some shift amounts this might be done better!
    762   // E.g.: foo >> (8 + N) => sxt(swpb(foo)) >> N
    763   SDValue Victim = N->getOperand(0);
    764 
    765   if (Opc == ISD::SRL && ShiftAmount) {
    766     // Emit a special goodness here:
    767     // srl A, 1 => clrc; rrc A
    768     Victim = DAG.getNode(MSP430ISD::RRC, dl, VT, Victim);
    769     ShiftAmount -= 1;
    770   }
    771 
    772   while (ShiftAmount--)
    773     Victim = DAG.getNode((Opc == ISD::SHL ? MSP430ISD::RLA : MSP430ISD::RRA),
    774                          dl, VT, Victim);
    775 
    776   return Victim;
    777 }
    778 
    779 SDValue MSP430TargetLowering::LowerGlobalAddress(SDValue Op,
    780                                                  SelectionDAG &DAG) const {
    781   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
    782   int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
    783   auto PtrVT = getPointerTy(DAG.getDataLayout());
    784 
    785   // Create the TargetGlobalAddress node, folding in the constant offset.
    786   SDValue Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op), PtrVT, Offset);
    787   return DAG.getNode(MSP430ISD::Wrapper, SDLoc(Op), PtrVT, Result);
    788 }
    789 
    790 SDValue MSP430TargetLowering::LowerExternalSymbol(SDValue Op,
    791                                                   SelectionDAG &DAG) const {
    792   SDLoc dl(Op);
    793   const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
    794   auto PtrVT = getPointerTy(DAG.getDataLayout());
    795   SDValue Result = DAG.getTargetExternalSymbol(Sym, PtrVT);
    796 
    797   return DAG.getNode(MSP430ISD::Wrapper, dl, PtrVT, Result);
    798 }
    799 
    800 SDValue MSP430TargetLowering::LowerBlockAddress(SDValue Op,
    801                                                 SelectionDAG &DAG) const {
    802   SDLoc dl(Op);
    803   auto PtrVT = getPointerTy(DAG.getDataLayout());
    804   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
    805   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT);
    806 
    807   return DAG.getNode(MSP430ISD::Wrapper, dl, PtrVT, Result);
    808 }
    809 
    810 static SDValue EmitCMP(SDValue &LHS, SDValue &RHS, SDValue &TargetCC,
    811                        ISD::CondCode CC,
    812                        SDLoc dl, SelectionDAG &DAG) {
    813   // FIXME: Handle bittests someday
    814   assert(!LHS.getValueType().isFloatingPoint() && "We don't handle FP yet");
    815 
    816   // FIXME: Handle jump negative someday
    817   MSP430CC::CondCodes TCC = MSP430CC::COND_INVALID;
    818   switch (CC) {
    819   default: llvm_unreachable("Invalid integer condition!");
    820   case ISD::SETEQ:
    821     TCC = MSP430CC::COND_E;     // aka COND_Z
    822     // Minor optimization: if LHS is a constant, swap operands, then the
    823     // constant can be folded into comparison.
    824     if (LHS.getOpcode() == ISD::Constant)
    825       std::swap(LHS, RHS);
    826     break;
    827   case ISD::SETNE:
    828     TCC = MSP430CC::COND_NE;    // aka COND_NZ
    829     // Minor optimization: if LHS is a constant, swap operands, then the
    830     // constant can be folded into comparison.
    831     if (LHS.getOpcode() == ISD::Constant)
    832       std::swap(LHS, RHS);
    833     break;
    834   case ISD::SETULE:
    835     std::swap(LHS, RHS);        // FALLTHROUGH
    836   case ISD::SETUGE:
    837     // Turn lhs u>= rhs with lhs constant into rhs u< lhs+1, this allows us to
    838     // fold constant into instruction.
    839     if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
    840       LHS = RHS;
    841       RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
    842       TCC = MSP430CC::COND_LO;
    843       break;
    844     }
    845     TCC = MSP430CC::COND_HS;    // aka COND_C
    846     break;
    847   case ISD::SETUGT:
    848     std::swap(LHS, RHS);        // FALLTHROUGH
    849   case ISD::SETULT:
    850     // Turn lhs u< rhs with lhs constant into rhs u>= lhs+1, this allows us to
    851     // fold constant into instruction.
    852     if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
    853       LHS = RHS;
    854       RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
    855       TCC = MSP430CC::COND_HS;
    856       break;
    857     }
    858     TCC = MSP430CC::COND_LO;    // aka COND_NC
    859     break;
    860   case ISD::SETLE:
    861     std::swap(LHS, RHS);        // FALLTHROUGH
    862   case ISD::SETGE:
    863     // Turn lhs >= rhs with lhs constant into rhs < lhs+1, this allows us to
    864     // fold constant into instruction.
    865     if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
    866       LHS = RHS;
    867       RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
    868       TCC = MSP430CC::COND_L;
    869       break;
    870     }
    871     TCC = MSP430CC::COND_GE;
    872     break;
    873   case ISD::SETGT:
    874     std::swap(LHS, RHS);        // FALLTHROUGH
    875   case ISD::SETLT:
    876     // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to
    877     // fold constant into instruction.
    878     if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
    879       LHS = RHS;
    880       RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
    881       TCC = MSP430CC::COND_GE;
    882       break;
    883     }
    884     TCC = MSP430CC::COND_L;
    885     break;
    886   }
    887 
    888   TargetCC = DAG.getConstant(TCC, dl, MVT::i8);
    889   return DAG.getNode(MSP430ISD::CMP, dl, MVT::Glue, LHS, RHS);
    890 }
    891 
    892 
    893 SDValue MSP430TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
    894   SDValue Chain = Op.getOperand(0);
    895   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
    896   SDValue LHS   = Op.getOperand(2);
    897   SDValue RHS   = Op.getOperand(3);
    898   SDValue Dest  = Op.getOperand(4);
    899   SDLoc dl  (Op);
    900 
    901   SDValue TargetCC;
    902   SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
    903 
    904   return DAG.getNode(MSP430ISD::BR_CC, dl, Op.getValueType(),
    905                      Chain, Dest, TargetCC, Flag);
    906 }
    907 
    908 SDValue MSP430TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
    909   SDValue LHS   = Op.getOperand(0);
    910   SDValue RHS   = Op.getOperand(1);
    911   SDLoc dl  (Op);
    912 
    913   // If we are doing an AND and testing against zero, then the CMP
    914   // will not be generated.  The AND (or BIT) will generate the condition codes,
    915   // but they are different from CMP.
    916   // FIXME: since we're doing a post-processing, use a pseudoinstr here, so
    917   // lowering & isel wouldn't diverge.
    918   bool andCC = false;
    919   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
    920     if (RHSC->isNullValue() && LHS.hasOneUse() &&
    921         (LHS.getOpcode() == ISD::AND ||
    922          (LHS.getOpcode() == ISD::TRUNCATE &&
    923           LHS.getOperand(0).getOpcode() == ISD::AND))) {
    924       andCC = true;
    925     }
    926   }
    927   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
    928   SDValue TargetCC;
    929   SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
    930 
    931   // Get the condition codes directly from the status register, if its easy.
    932   // Otherwise a branch will be generated.  Note that the AND and BIT
    933   // instructions generate different flags than CMP, the carry bit can be used
    934   // for NE/EQ.
    935   bool Invert = false;
    936   bool Shift = false;
    937   bool Convert = true;
    938   switch (cast<ConstantSDNode>(TargetCC)->getZExtValue()) {
    939    default:
    940     Convert = false;
    941     break;
    942    case MSP430CC::COND_HS:
    943      // Res = SR & 1, no processing is required
    944      break;
    945    case MSP430CC::COND_LO:
    946      // Res = ~(SR & 1)
    947      Invert = true;
    948      break;
    949    case MSP430CC::COND_NE:
    950      if (andCC) {
    951        // C = ~Z, thus Res = SR & 1, no processing is required
    952      } else {
    953        // Res = ~((SR >> 1) & 1)
    954        Shift = true;
    955        Invert = true;
    956      }
    957      break;
    958    case MSP430CC::COND_E:
    959      Shift = true;
    960      // C = ~Z for AND instruction, thus we can put Res = ~(SR & 1), however,
    961      // Res = (SR >> 1) & 1 is 1 word shorter.
    962      break;
    963   }
    964   EVT VT = Op.getValueType();
    965   SDValue One  = DAG.getConstant(1, dl, VT);
    966   if (Convert) {
    967     SDValue SR = DAG.getCopyFromReg(DAG.getEntryNode(), dl, MSP430::SR,
    968                                     MVT::i16, Flag);
    969     if (Shift)
    970       // FIXME: somewhere this is turned into a SRL, lower it MSP specific?
    971       SR = DAG.getNode(ISD::SRA, dl, MVT::i16, SR, One);
    972     SR = DAG.getNode(ISD::AND, dl, MVT::i16, SR, One);
    973     if (Invert)
    974       SR = DAG.getNode(ISD::XOR, dl, MVT::i16, SR, One);
    975     return SR;
    976   } else {
    977     SDValue Zero = DAG.getConstant(0, dl, VT);
    978     SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
    979     SDValue Ops[] = {One, Zero, TargetCC, Flag};
    980     return DAG.getNode(MSP430ISD::SELECT_CC, dl, VTs, Ops);
    981   }
    982 }
    983 
    984 SDValue MSP430TargetLowering::LowerSELECT_CC(SDValue Op,
    985                                              SelectionDAG &DAG) const {
    986   SDValue LHS    = Op.getOperand(0);
    987   SDValue RHS    = Op.getOperand(1);
    988   SDValue TrueV  = Op.getOperand(2);
    989   SDValue FalseV = Op.getOperand(3);
    990   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
    991   SDLoc dl   (Op);
    992 
    993   SDValue TargetCC;
    994   SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
    995 
    996   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
    997   SDValue Ops[] = {TrueV, FalseV, TargetCC, Flag};
    998 
    999   return DAG.getNode(MSP430ISD::SELECT_CC, dl, VTs, Ops);
   1000 }
   1001 
   1002 SDValue MSP430TargetLowering::LowerSIGN_EXTEND(SDValue Op,
   1003                                                SelectionDAG &DAG) const {
   1004   SDValue Val = Op.getOperand(0);
   1005   EVT VT      = Op.getValueType();
   1006   SDLoc dl(Op);
   1007 
   1008   assert(VT == MVT::i16 && "Only support i16 for now!");
   1009 
   1010   return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT,
   1011                      DAG.getNode(ISD::ANY_EXTEND, dl, VT, Val),
   1012                      DAG.getValueType(Val.getValueType()));
   1013 }
   1014 
   1015 SDValue
   1016 MSP430TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
   1017   MachineFunction &MF = DAG.getMachineFunction();
   1018   MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
   1019   int ReturnAddrIndex = FuncInfo->getRAIndex();
   1020   auto PtrVT = getPointerTy(MF.getDataLayout());
   1021 
   1022   if (ReturnAddrIndex == 0) {
   1023     // Set up a frame object for the return address.
   1024     uint64_t SlotSize = MF.getDataLayout().getPointerSize();
   1025     ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
   1026                                                            true);
   1027     FuncInfo->setRAIndex(ReturnAddrIndex);
   1028   }
   1029 
   1030   return DAG.getFrameIndex(ReturnAddrIndex, PtrVT);
   1031 }
   1032 
   1033 SDValue MSP430TargetLowering::LowerRETURNADDR(SDValue Op,
   1034                                               SelectionDAG &DAG) const {
   1035   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   1036   MFI->setReturnAddressIsTaken(true);
   1037 
   1038   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
   1039     return SDValue();
   1040 
   1041   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   1042   SDLoc dl(Op);
   1043   auto PtrVT = getPointerTy(DAG.getDataLayout());
   1044 
   1045   if (Depth > 0) {
   1046     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
   1047     SDValue Offset =
   1048         DAG.getConstant(DAG.getDataLayout().getPointerSize(), dl, MVT::i16);
   1049     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
   1050                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
   1051                        MachinePointerInfo(), false, false, false, 0);
   1052   }
   1053 
   1054   // Just load the return address.
   1055   SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
   1056   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
   1057                      MachinePointerInfo(), false, false, false, 0);
   1058 }
   1059 
   1060 SDValue MSP430TargetLowering::LowerFRAMEADDR(SDValue Op,
   1061                                              SelectionDAG &DAG) const {
   1062   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   1063   MFI->setFrameAddressIsTaken(true);
   1064 
   1065   EVT VT = Op.getValueType();
   1066   SDLoc dl(Op);  // FIXME probably not meaningful
   1067   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   1068   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
   1069                                          MSP430::FP, VT);
   1070   while (Depth--)
   1071     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
   1072                             MachinePointerInfo(),
   1073                             false, false, false, 0);
   1074   return FrameAddr;
   1075 }
   1076 
   1077 SDValue MSP430TargetLowering::LowerVASTART(SDValue Op,
   1078                                            SelectionDAG &DAG) const {
   1079   MachineFunction &MF = DAG.getMachineFunction();
   1080   MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
   1081   auto PtrVT = getPointerTy(DAG.getDataLayout());
   1082 
   1083   // Frame index of first vararg argument
   1084   SDValue FrameIndex =
   1085       DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   1086   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   1087 
   1088   // Create a store of the frame index to the location operand
   1089   return DAG.getStore(Op.getOperand(0), SDLoc(Op), FrameIndex,
   1090                       Op.getOperand(1), MachinePointerInfo(SV),
   1091                       false, false, 0);
   1092 }
   1093 
   1094 SDValue MSP430TargetLowering::LowerJumpTable(SDValue Op,
   1095                                              SelectionDAG &DAG) const {
   1096     JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
   1097     auto PtrVT = getPointerTy(DAG.getDataLayout());
   1098     SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
   1099     return DAG.getNode(MSP430ISD::Wrapper, SDLoc(JT), PtrVT, Result);
   1100 }
   1101 
   1102 /// getPostIndexedAddressParts - returns true by value, base pointer and
   1103 /// offset pointer and addressing mode by reference if this node can be
   1104 /// combined with a load / store to form a post-indexed load / store.
   1105 bool MSP430TargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
   1106                                                       SDValue &Base,
   1107                                                       SDValue &Offset,
   1108                                                       ISD::MemIndexedMode &AM,
   1109                                                       SelectionDAG &DAG) const {
   1110 
   1111   LoadSDNode *LD = cast<LoadSDNode>(N);
   1112   if (LD->getExtensionType() != ISD::NON_EXTLOAD)
   1113     return false;
   1114 
   1115   EVT VT = LD->getMemoryVT();
   1116   if (VT != MVT::i8 && VT != MVT::i16)
   1117     return false;
   1118 
   1119   if (Op->getOpcode() != ISD::ADD)
   1120     return false;
   1121 
   1122   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
   1123     uint64_t RHSC = RHS->getZExtValue();
   1124     if ((VT == MVT::i16 && RHSC != 2) ||
   1125         (VT == MVT::i8 && RHSC != 1))
   1126       return false;
   1127 
   1128     Base = Op->getOperand(0);
   1129     Offset = DAG.getConstant(RHSC, SDLoc(N), VT);
   1130     AM = ISD::POST_INC;
   1131     return true;
   1132   }
   1133 
   1134   return false;
   1135 }
   1136 
   1137 
   1138 const char *MSP430TargetLowering::getTargetNodeName(unsigned Opcode) const {
   1139   switch ((MSP430ISD::NodeType)Opcode) {
   1140   case MSP430ISD::FIRST_NUMBER:       break;
   1141   case MSP430ISD::RET_FLAG:           return "MSP430ISD::RET_FLAG";
   1142   case MSP430ISD::RETI_FLAG:          return "MSP430ISD::RETI_FLAG";
   1143   case MSP430ISD::RRA:                return "MSP430ISD::RRA";
   1144   case MSP430ISD::RLA:                return "MSP430ISD::RLA";
   1145   case MSP430ISD::RRC:                return "MSP430ISD::RRC";
   1146   case MSP430ISD::CALL:               return "MSP430ISD::CALL";
   1147   case MSP430ISD::Wrapper:            return "MSP430ISD::Wrapper";
   1148   case MSP430ISD::BR_CC:              return "MSP430ISD::BR_CC";
   1149   case MSP430ISD::CMP:                return "MSP430ISD::CMP";
   1150   case MSP430ISD::SETCC:              return "MSP430ISD::SETCC";
   1151   case MSP430ISD::SELECT_CC:          return "MSP430ISD::SELECT_CC";
   1152   case MSP430ISD::SHL:                return "MSP430ISD::SHL";
   1153   case MSP430ISD::SRA:                return "MSP430ISD::SRA";
   1154   case MSP430ISD::SRL:                return "MSP430ISD::SRL";
   1155   }
   1156   return nullptr;
   1157 }
   1158 
   1159 bool MSP430TargetLowering::isTruncateFree(Type *Ty1,
   1160                                           Type *Ty2) const {
   1161   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
   1162     return false;
   1163 
   1164   return (Ty1->getPrimitiveSizeInBits() > Ty2->getPrimitiveSizeInBits());
   1165 }
   1166 
   1167 bool MSP430TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
   1168   if (!VT1.isInteger() || !VT2.isInteger())
   1169     return false;
   1170 
   1171   return (VT1.getSizeInBits() > VT2.getSizeInBits());
   1172 }
   1173 
   1174 bool MSP430TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
   1175   // MSP430 implicitly zero-extends 8-bit results in 16-bit registers.
   1176   return 0 && Ty1->isIntegerTy(8) && Ty2->isIntegerTy(16);
   1177 }
   1178 
   1179 bool MSP430TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
   1180   // MSP430 implicitly zero-extends 8-bit results in 16-bit registers.
   1181   return 0 && VT1 == MVT::i8 && VT2 == MVT::i16;
   1182 }
   1183 
   1184 bool MSP430TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
   1185   return isZExtFree(Val.getValueType(), VT2);
   1186 }
   1187 
   1188 //===----------------------------------------------------------------------===//
   1189 //  Other Lowering Code
   1190 //===----------------------------------------------------------------------===//
   1191 
   1192 MachineBasicBlock*
   1193 MSP430TargetLowering::EmitShiftInstr(MachineInstr *MI,
   1194                                      MachineBasicBlock *BB) const {
   1195   MachineFunction *F = BB->getParent();
   1196   MachineRegisterInfo &RI = F->getRegInfo();
   1197   DebugLoc dl = MI->getDebugLoc();
   1198   const TargetInstrInfo &TII = *F->getSubtarget().getInstrInfo();
   1199 
   1200   unsigned Opc;
   1201   const TargetRegisterClass * RC;
   1202   switch (MI->getOpcode()) {
   1203   default: llvm_unreachable("Invalid shift opcode!");
   1204   case MSP430::Shl8:
   1205    Opc = MSP430::SHL8r1;
   1206    RC = &MSP430::GR8RegClass;
   1207    break;
   1208   case MSP430::Shl16:
   1209    Opc = MSP430::SHL16r1;
   1210    RC = &MSP430::GR16RegClass;
   1211    break;
   1212   case MSP430::Sra8:
   1213    Opc = MSP430::SAR8r1;
   1214    RC = &MSP430::GR8RegClass;
   1215    break;
   1216   case MSP430::Sra16:
   1217    Opc = MSP430::SAR16r1;
   1218    RC = &MSP430::GR16RegClass;
   1219    break;
   1220   case MSP430::Srl8:
   1221    Opc = MSP430::SAR8r1c;
   1222    RC = &MSP430::GR8RegClass;
   1223    break;
   1224   case MSP430::Srl16:
   1225    Opc = MSP430::SAR16r1c;
   1226    RC = &MSP430::GR16RegClass;
   1227    break;
   1228   }
   1229 
   1230   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   1231   MachineFunction::iterator I = ++BB->getIterator();
   1232 
   1233   // Create loop block
   1234   MachineBasicBlock *LoopBB = F->CreateMachineBasicBlock(LLVM_BB);
   1235   MachineBasicBlock *RemBB  = F->CreateMachineBasicBlock(LLVM_BB);
   1236 
   1237   F->insert(I, LoopBB);
   1238   F->insert(I, RemBB);
   1239 
   1240   // Update machine-CFG edges by transferring all successors of the current
   1241   // block to the block containing instructions after shift.
   1242   RemBB->splice(RemBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
   1243                 BB->end());
   1244   RemBB->transferSuccessorsAndUpdatePHIs(BB);
   1245 
   1246   // Add adges BB => LoopBB => RemBB, BB => RemBB, LoopBB => LoopBB
   1247   BB->addSuccessor(LoopBB);
   1248   BB->addSuccessor(RemBB);
   1249   LoopBB->addSuccessor(RemBB);
   1250   LoopBB->addSuccessor(LoopBB);
   1251 
   1252   unsigned ShiftAmtReg = RI.createVirtualRegister(&MSP430::GR8RegClass);
   1253   unsigned ShiftAmtReg2 = RI.createVirtualRegister(&MSP430::GR8RegClass);
   1254   unsigned ShiftReg = RI.createVirtualRegister(RC);
   1255   unsigned ShiftReg2 = RI.createVirtualRegister(RC);
   1256   unsigned ShiftAmtSrcReg = MI->getOperand(2).getReg();
   1257   unsigned SrcReg = MI->getOperand(1).getReg();
   1258   unsigned DstReg = MI->getOperand(0).getReg();
   1259 
   1260   // BB:
   1261   // cmp 0, N
   1262   // je RemBB
   1263   BuildMI(BB, dl, TII.get(MSP430::CMP8ri))
   1264     .addReg(ShiftAmtSrcReg).addImm(0);
   1265   BuildMI(BB, dl, TII.get(MSP430::JCC))
   1266     .addMBB(RemBB)
   1267     .addImm(MSP430CC::COND_E);
   1268 
   1269   // LoopBB:
   1270   // ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB]
   1271   // ShiftAmt = phi [%N, BB],      [%ShiftAmt2, LoopBB]
   1272   // ShiftReg2 = shift ShiftReg
   1273   // ShiftAmt2 = ShiftAmt - 1;
   1274   BuildMI(LoopBB, dl, TII.get(MSP430::PHI), ShiftReg)
   1275     .addReg(SrcReg).addMBB(BB)
   1276     .addReg(ShiftReg2).addMBB(LoopBB);
   1277   BuildMI(LoopBB, dl, TII.get(MSP430::PHI), ShiftAmtReg)
   1278     .addReg(ShiftAmtSrcReg).addMBB(BB)
   1279     .addReg(ShiftAmtReg2).addMBB(LoopBB);
   1280   BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2)
   1281     .addReg(ShiftReg);
   1282   BuildMI(LoopBB, dl, TII.get(MSP430::SUB8ri), ShiftAmtReg2)
   1283     .addReg(ShiftAmtReg).addImm(1);
   1284   BuildMI(LoopBB, dl, TII.get(MSP430::JCC))
   1285     .addMBB(LoopBB)
   1286     .addImm(MSP430CC::COND_NE);
   1287 
   1288   // RemBB:
   1289   // DestReg = phi [%SrcReg, BB], [%ShiftReg, LoopBB]
   1290   BuildMI(*RemBB, RemBB->begin(), dl, TII.get(MSP430::PHI), DstReg)
   1291     .addReg(SrcReg).addMBB(BB)
   1292     .addReg(ShiftReg2).addMBB(LoopBB);
   1293 
   1294   MI->eraseFromParent();   // The pseudo instruction is gone now.
   1295   return RemBB;
   1296 }
   1297 
   1298 MachineBasicBlock*
   1299 MSP430TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
   1300                                                   MachineBasicBlock *BB) const {
   1301   unsigned Opc = MI->getOpcode();
   1302 
   1303   if (Opc == MSP430::Shl8 || Opc == MSP430::Shl16 ||
   1304       Opc == MSP430::Sra8 || Opc == MSP430::Sra16 ||
   1305       Opc == MSP430::Srl8 || Opc == MSP430::Srl16)
   1306     return EmitShiftInstr(MI, BB);
   1307 
   1308   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
   1309   DebugLoc dl = MI->getDebugLoc();
   1310 
   1311   assert((Opc == MSP430::Select16 || Opc == MSP430::Select8) &&
   1312          "Unexpected instr type to insert");
   1313 
   1314   // To "insert" a SELECT instruction, we actually have to insert the diamond
   1315   // control-flow pattern.  The incoming instruction knows the destination vreg
   1316   // to set, the condition code register to branch on, the true/false values to
   1317   // select between, and a branch opcode to use.
   1318   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   1319   MachineFunction::iterator I = ++BB->getIterator();
   1320 
   1321   //  thisMBB:
   1322   //  ...
   1323   //   TrueVal = ...
   1324   //   cmpTY ccX, r1, r2
   1325   //   jCC copy1MBB
   1326   //   fallthrough --> copy0MBB
   1327   MachineBasicBlock *thisMBB = BB;
   1328   MachineFunction *F = BB->getParent();
   1329   MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
   1330   MachineBasicBlock *copy1MBB = F->CreateMachineBasicBlock(LLVM_BB);
   1331   F->insert(I, copy0MBB);
   1332   F->insert(I, copy1MBB);
   1333   // Update machine-CFG edges by transferring all successors of the current
   1334   // block to the new block which will contain the Phi node for the select.
   1335   copy1MBB->splice(copy1MBB->begin(), BB,
   1336                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
   1337   copy1MBB->transferSuccessorsAndUpdatePHIs(BB);
   1338   // Next, add the true and fallthrough blocks as its successors.
   1339   BB->addSuccessor(copy0MBB);
   1340   BB->addSuccessor(copy1MBB);
   1341 
   1342   BuildMI(BB, dl, TII.get(MSP430::JCC))
   1343     .addMBB(copy1MBB)
   1344     .addImm(MI->getOperand(3).getImm());
   1345 
   1346   //  copy0MBB:
   1347   //   %FalseValue = ...
   1348   //   # fallthrough to copy1MBB
   1349   BB = copy0MBB;
   1350 
   1351   // Update machine-CFG edges
   1352   BB->addSuccessor(copy1MBB);
   1353 
   1354   //  copy1MBB:
   1355   //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
   1356   //  ...
   1357   BB = copy1MBB;
   1358   BuildMI(*BB, BB->begin(), dl, TII.get(MSP430::PHI),
   1359           MI->getOperand(0).getReg())
   1360     .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB)
   1361     .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB);
   1362 
   1363   MI->eraseFromParent();   // The pseudo instruction is gone now.
   1364   return BB;
   1365 }
   1366