Home | History | Annotate | Download | only in Scalar
      1 //===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass transforms loops that contain branches on loop-invariant conditions
     11 // to have multiple loops.  For example, it turns the left into the right code:
     12 //
     13 //  for (...)                  if (lic)
     14 //    A                          for (...)
     15 //    if (lic)                     A; B; C
     16 //      B                      else
     17 //    C                          for (...)
     18 //                                 A; C
     19 //
     20 // This can increase the size of the code exponentially (doubling it every time
     21 // a loop is unswitched) so we only unswitch if the resultant code will be
     22 // smaller than a threshold.
     23 //
     24 // This pass expects LICM to be run before it to hoist invariant conditions out
     25 // of the loop, to make the unswitching opportunity obvious.
     26 //
     27 //===----------------------------------------------------------------------===//
     28 
     29 #include "llvm/Transforms/Scalar.h"
     30 #include "llvm/ADT/STLExtras.h"
     31 #include "llvm/ADT/SmallPtrSet.h"
     32 #include "llvm/ADT/Statistic.h"
     33 #include "llvm/Analysis/GlobalsModRef.h"
     34 #include "llvm/Analysis/AssumptionCache.h"
     35 #include "llvm/Analysis/CodeMetrics.h"
     36 #include "llvm/Analysis/InstructionSimplify.h"
     37 #include "llvm/Analysis/LoopInfo.h"
     38 #include "llvm/Analysis/LoopPass.h"
     39 #include "llvm/Analysis/ScalarEvolution.h"
     40 #include "llvm/Analysis/TargetTransformInfo.h"
     41 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
     42 #include "llvm/Analysis/BlockFrequencyInfo.h"
     43 #include "llvm/Analysis/BranchProbabilityInfo.h"
     44 #include "llvm/Support/BranchProbability.h"
     45 #include "llvm/IR/Constants.h"
     46 #include "llvm/IR/DerivedTypes.h"
     47 #include "llvm/IR/Dominators.h"
     48 #include "llvm/IR/Function.h"
     49 #include "llvm/IR/Instructions.h"
     50 #include "llvm/IR/Module.h"
     51 #include "llvm/IR/MDBuilder.h"
     52 #include "llvm/Support/CommandLine.h"
     53 #include "llvm/Support/Debug.h"
     54 #include "llvm/Support/raw_ostream.h"
     55 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     56 #include "llvm/Transforms/Utils/Cloning.h"
     57 #include "llvm/Transforms/Utils/Local.h"
     58 #include <algorithm>
     59 #include <map>
     60 #include <set>
     61 using namespace llvm;
     62 
     63 #define DEBUG_TYPE "loop-unswitch"
     64 
     65 STATISTIC(NumBranches, "Number of branches unswitched");
     66 STATISTIC(NumSwitches, "Number of switches unswitched");
     67 STATISTIC(NumSelects , "Number of selects unswitched");
     68 STATISTIC(NumTrivial , "Number of unswitches that are trivial");
     69 STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
     70 STATISTIC(TotalInsts,  "Total number of instructions analyzed");
     71 
     72 // The specific value of 100 here was chosen based only on intuition and a
     73 // few specific examples.
     74 static cl::opt<unsigned>
     75 Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
     76           cl::init(100), cl::Hidden);
     77 
     78 static cl::opt<bool>
     79 LoopUnswitchWithBlockFrequency("loop-unswitch-with-block-frequency",
     80     cl::init(false), cl::Hidden,
     81     cl::desc("Enable the use of the block frequency analysis to access PGO "
     82              "heuristics to minimize code growth in cold regions."));
     83 
     84 static cl::opt<unsigned>
     85 ColdnessThreshold("loop-unswitch-coldness-threshold", cl::init(1), cl::Hidden,
     86     cl::desc("Coldness threshold in percentage. The loop header frequency "
     87              "(relative to the entry frequency) is compared with this "
     88              "threshold to determine if non-trivial unswitching should be "
     89              "enabled."));
     90 
     91 namespace {
     92 
     93   class LUAnalysisCache {
     94 
     95     typedef DenseMap<const SwitchInst*, SmallPtrSet<const Value *, 8> >
     96       UnswitchedValsMap;
     97 
     98     typedef UnswitchedValsMap::iterator UnswitchedValsIt;
     99 
    100     struct LoopProperties {
    101       unsigned CanBeUnswitchedCount;
    102       unsigned WasUnswitchedCount;
    103       unsigned SizeEstimation;
    104       UnswitchedValsMap UnswitchedVals;
    105     };
    106 
    107     // Here we use std::map instead of DenseMap, since we need to keep valid
    108     // LoopProperties pointer for current loop for better performance.
    109     typedef std::map<const Loop*, LoopProperties> LoopPropsMap;
    110     typedef LoopPropsMap::iterator LoopPropsMapIt;
    111 
    112     LoopPropsMap LoopsProperties;
    113     UnswitchedValsMap *CurLoopInstructions;
    114     LoopProperties *CurrentLoopProperties;
    115 
    116     // A loop unswitching with an estimated cost above this threshold
    117     // is not performed. MaxSize is turned into unswitching quota for
    118     // the current loop, and reduced correspondingly, though note that
    119     // the quota is returned by releaseMemory() when the loop has been
    120     // processed, so that MaxSize will return to its previous
    121     // value. So in most cases MaxSize will equal the Threshold flag
    122     // when a new loop is processed. An exception to that is that
    123     // MaxSize will have a smaller value while processing nested loops
    124     // that were introduced due to loop unswitching of an outer loop.
    125     //
    126     // FIXME: The way that MaxSize works is subtle and depends on the
    127     // pass manager processing loops and calling releaseMemory() in a
    128     // specific order. It would be good to find a more straightforward
    129     // way of doing what MaxSize does.
    130     unsigned MaxSize;
    131 
    132   public:
    133     LUAnalysisCache()
    134         : CurLoopInstructions(nullptr), CurrentLoopProperties(nullptr),
    135           MaxSize(Threshold) {}
    136 
    137     // Analyze loop. Check its size, calculate is it possible to unswitch
    138     // it. Returns true if we can unswitch this loop.
    139     bool countLoop(const Loop *L, const TargetTransformInfo &TTI,
    140                    AssumptionCache *AC);
    141 
    142     // Clean all data related to given loop.
    143     void forgetLoop(const Loop *L);
    144 
    145     // Mark case value as unswitched.
    146     // Since SI instruction can be partly unswitched, in order to avoid
    147     // extra unswitching in cloned loops keep track all unswitched values.
    148     void setUnswitched(const SwitchInst *SI, const Value *V);
    149 
    150     // Check was this case value unswitched before or not.
    151     bool isUnswitched(const SwitchInst *SI, const Value *V);
    152 
    153     // Returns true if another unswitching could be done within the cost
    154     // threshold.
    155     bool CostAllowsUnswitching();
    156 
    157     // Clone all loop-unswitch related loop properties.
    158     // Redistribute unswitching quotas.
    159     // Note, that new loop data is stored inside the VMap.
    160     void cloneData(const Loop *NewLoop, const Loop *OldLoop,
    161                    const ValueToValueMapTy &VMap);
    162   };
    163 
    164   class LoopUnswitch : public LoopPass {
    165     LoopInfo *LI;  // Loop information
    166     LPPassManager *LPM;
    167     AssumptionCache *AC;
    168 
    169     // Used to check if second loop needs processing after
    170     // RewriteLoopBodyWithConditionConstant rewrites first loop.
    171     std::vector<Loop*> LoopProcessWorklist;
    172 
    173     LUAnalysisCache BranchesInfo;
    174 
    175     bool EnabledPGO;
    176 
    177     // BFI and ColdEntryFreq are only used when PGO and
    178     // LoopUnswitchWithBlockFrequency are enabled.
    179     BlockFrequencyInfo BFI;
    180     BlockFrequency ColdEntryFreq;
    181 
    182     bool OptimizeForSize;
    183     bool redoLoop;
    184 
    185     Loop *currentLoop;
    186     DominatorTree *DT;
    187     BasicBlock *loopHeader;
    188     BasicBlock *loopPreheader;
    189 
    190     // LoopBlocks contains all of the basic blocks of the loop, including the
    191     // preheader of the loop, the body of the loop, and the exit blocks of the
    192     // loop, in that order.
    193     std::vector<BasicBlock*> LoopBlocks;
    194     // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
    195     std::vector<BasicBlock*> NewBlocks;
    196 
    197   public:
    198     static char ID; // Pass ID, replacement for typeid
    199     explicit LoopUnswitch(bool Os = false) :
    200       LoopPass(ID), OptimizeForSize(Os), redoLoop(false),
    201       currentLoop(nullptr), DT(nullptr), loopHeader(nullptr),
    202       loopPreheader(nullptr) {
    203         initializeLoopUnswitchPass(*PassRegistry::getPassRegistry());
    204       }
    205 
    206     bool runOnLoop(Loop *L, LPPassManager &LPM) override;
    207     bool processCurrentLoop();
    208 
    209     /// This transformation requires natural loop information & requires that
    210     /// loop preheaders be inserted into the CFG.
    211     ///
    212     void getAnalysisUsage(AnalysisUsage &AU) const override {
    213       AU.addRequired<AssumptionCacheTracker>();
    214       AU.addRequiredID(LoopSimplifyID);
    215       AU.addPreservedID(LoopSimplifyID);
    216       AU.addRequired<LoopInfoWrapperPass>();
    217       AU.addPreserved<LoopInfoWrapperPass>();
    218       AU.addRequiredID(LCSSAID);
    219       AU.addPreservedID(LCSSAID);
    220       AU.addRequired<DominatorTreeWrapperPass>();
    221       AU.addPreserved<DominatorTreeWrapperPass>();
    222       AU.addPreserved<ScalarEvolutionWrapperPass>();
    223       AU.addRequired<TargetTransformInfoWrapperPass>();
    224       AU.addPreserved<GlobalsAAWrapperPass>();
    225     }
    226 
    227   private:
    228 
    229     void releaseMemory() override {
    230       BranchesInfo.forgetLoop(currentLoop);
    231     }
    232 
    233     void initLoopData() {
    234       loopHeader = currentLoop->getHeader();
    235       loopPreheader = currentLoop->getLoopPreheader();
    236     }
    237 
    238     /// Split all of the edges from inside the loop to their exit blocks.
    239     /// Update the appropriate Phi nodes as we do so.
    240     void SplitExitEdges(Loop *L,
    241                         const SmallVectorImpl<BasicBlock *> &ExitBlocks);
    242 
    243     bool TryTrivialLoopUnswitch(bool &Changed);
    244 
    245     bool UnswitchIfProfitable(Value *LoopCond, Constant *Val,
    246                               TerminatorInst *TI = nullptr);
    247     void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
    248                                   BasicBlock *ExitBlock, TerminatorInst *TI);
    249     void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L,
    250                                      TerminatorInst *TI);
    251 
    252     void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
    253                                               Constant *Val, bool isEqual);
    254 
    255     void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
    256                                         BasicBlock *TrueDest,
    257                                         BasicBlock *FalseDest,
    258                                         Instruction *InsertPt,
    259                                         TerminatorInst *TI);
    260 
    261     void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
    262   };
    263 }
    264 
    265 // Analyze loop. Check its size, calculate is it possible to unswitch
    266 // it. Returns true if we can unswitch this loop.
    267 bool LUAnalysisCache::countLoop(const Loop *L, const TargetTransformInfo &TTI,
    268                                 AssumptionCache *AC) {
    269 
    270   LoopPropsMapIt PropsIt;
    271   bool Inserted;
    272   std::tie(PropsIt, Inserted) =
    273       LoopsProperties.insert(std::make_pair(L, LoopProperties()));
    274 
    275   LoopProperties &Props = PropsIt->second;
    276 
    277   if (Inserted) {
    278     // New loop.
    279 
    280     // Limit the number of instructions to avoid causing significant code
    281     // expansion, and the number of basic blocks, to avoid loops with
    282     // large numbers of branches which cause loop unswitching to go crazy.
    283     // This is a very ad-hoc heuristic.
    284 
    285     SmallPtrSet<const Value *, 32> EphValues;
    286     CodeMetrics::collectEphemeralValues(L, AC, EphValues);
    287 
    288     // FIXME: This is overly conservative because it does not take into
    289     // consideration code simplification opportunities and code that can
    290     // be shared by the resultant unswitched loops.
    291     CodeMetrics Metrics;
    292     for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E;
    293          ++I)
    294       Metrics.analyzeBasicBlock(*I, TTI, EphValues);
    295 
    296     Props.SizeEstimation = Metrics.NumInsts;
    297     Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation);
    298     Props.WasUnswitchedCount = 0;
    299     MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount;
    300 
    301     if (Metrics.notDuplicatable) {
    302       DEBUG(dbgs() << "NOT unswitching loop %"
    303                    << L->getHeader()->getName() << ", contents cannot be "
    304                    << "duplicated!\n");
    305       return false;
    306     }
    307   }
    308 
    309   // Be careful. This links are good only before new loop addition.
    310   CurrentLoopProperties = &Props;
    311   CurLoopInstructions = &Props.UnswitchedVals;
    312 
    313   return true;
    314 }
    315 
    316 // Clean all data related to given loop.
    317 void LUAnalysisCache::forgetLoop(const Loop *L) {
    318 
    319   LoopPropsMapIt LIt = LoopsProperties.find(L);
    320 
    321   if (LIt != LoopsProperties.end()) {
    322     LoopProperties &Props = LIt->second;
    323     MaxSize += (Props.CanBeUnswitchedCount + Props.WasUnswitchedCount) *
    324                Props.SizeEstimation;
    325     LoopsProperties.erase(LIt);
    326   }
    327 
    328   CurrentLoopProperties = nullptr;
    329   CurLoopInstructions = nullptr;
    330 }
    331 
    332 // Mark case value as unswitched.
    333 // Since SI instruction can be partly unswitched, in order to avoid
    334 // extra unswitching in cloned loops keep track all unswitched values.
    335 void LUAnalysisCache::setUnswitched(const SwitchInst *SI, const Value *V) {
    336   (*CurLoopInstructions)[SI].insert(V);
    337 }
    338 
    339 // Check was this case value unswitched before or not.
    340 bool LUAnalysisCache::isUnswitched(const SwitchInst *SI, const Value *V) {
    341   return (*CurLoopInstructions)[SI].count(V);
    342 }
    343 
    344 bool LUAnalysisCache::CostAllowsUnswitching() {
    345   return CurrentLoopProperties->CanBeUnswitchedCount > 0;
    346 }
    347 
    348 // Clone all loop-unswitch related loop properties.
    349 // Redistribute unswitching quotas.
    350 // Note, that new loop data is stored inside the VMap.
    351 void LUAnalysisCache::cloneData(const Loop *NewLoop, const Loop *OldLoop,
    352                                 const ValueToValueMapTy &VMap) {
    353 
    354   LoopProperties &NewLoopProps = LoopsProperties[NewLoop];
    355   LoopProperties &OldLoopProps = *CurrentLoopProperties;
    356   UnswitchedValsMap &Insts = OldLoopProps.UnswitchedVals;
    357 
    358   // Reallocate "can-be-unswitched quota"
    359 
    360   --OldLoopProps.CanBeUnswitchedCount;
    361   ++OldLoopProps.WasUnswitchedCount;
    362   NewLoopProps.WasUnswitchedCount = 0;
    363   unsigned Quota = OldLoopProps.CanBeUnswitchedCount;
    364   NewLoopProps.CanBeUnswitchedCount = Quota / 2;
    365   OldLoopProps.CanBeUnswitchedCount = Quota - Quota / 2;
    366 
    367   NewLoopProps.SizeEstimation = OldLoopProps.SizeEstimation;
    368 
    369   // Clone unswitched values info:
    370   // for new loop switches we clone info about values that was
    371   // already unswitched and has redundant successors.
    372   for (UnswitchedValsIt I = Insts.begin(); I != Insts.end(); ++I) {
    373     const SwitchInst *OldInst = I->first;
    374     Value *NewI = VMap.lookup(OldInst);
    375     const SwitchInst *NewInst = cast_or_null<SwitchInst>(NewI);
    376     assert(NewInst && "All instructions that are in SrcBB must be in VMap.");
    377 
    378     NewLoopProps.UnswitchedVals[NewInst] = OldLoopProps.UnswitchedVals[OldInst];
    379   }
    380 }
    381 
    382 char LoopUnswitch::ID = 0;
    383 INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops",
    384                       false, false)
    385 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
    386 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
    387 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
    388 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
    389 INITIALIZE_PASS_DEPENDENCY(LCSSA)
    390 INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops",
    391                       false, false)
    392 
    393 Pass *llvm::createLoopUnswitchPass(bool Os) {
    394   return new LoopUnswitch(Os);
    395 }
    396 
    397 /// Cond is a condition that occurs in L. If it is invariant in the loop, or has
    398 /// an invariant piece, return the invariant. Otherwise, return null.
    399 static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
    400 
    401   // We started analyze new instruction, increment scanned instructions counter.
    402   ++TotalInsts;
    403 
    404   // We can never unswitch on vector conditions.
    405   if (Cond->getType()->isVectorTy())
    406     return nullptr;
    407 
    408   // Constants should be folded, not unswitched on!
    409   if (isa<Constant>(Cond)) return nullptr;
    410 
    411   // TODO: Handle: br (VARIANT|INVARIANT).
    412 
    413   // Hoist simple values out.
    414   if (L->makeLoopInvariant(Cond, Changed))
    415     return Cond;
    416 
    417   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
    418     if (BO->getOpcode() == Instruction::And ||
    419         BO->getOpcode() == Instruction::Or) {
    420       // If either the left or right side is invariant, we can unswitch on this,
    421       // which will cause the branch to go away in one loop and the condition to
    422       // simplify in the other one.
    423       if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed))
    424         return LHS;
    425       if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed))
    426         return RHS;
    427     }
    428 
    429   return nullptr;
    430 }
    431 
    432 bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
    433   if (skipOptnoneFunction(L))
    434     return false;
    435 
    436   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
    437       *L->getHeader()->getParent());
    438   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    439   LPM = &LPM_Ref;
    440   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    441   currentLoop = L;
    442   Function *F = currentLoop->getHeader()->getParent();
    443 
    444   EnabledPGO = F->getEntryCount().hasValue();
    445 
    446   if (LoopUnswitchWithBlockFrequency && EnabledPGO) {
    447     BranchProbabilityInfo BPI(*F, *LI);
    448     BFI.calculate(*L->getHeader()->getParent(), BPI, *LI);
    449 
    450     // Use BranchProbability to compute a minimum frequency based on
    451     // function entry baseline frequency. Loops with headers below this
    452     // frequency are considered as cold.
    453     const BranchProbability ColdProb(ColdnessThreshold, 100);
    454     ColdEntryFreq = BlockFrequency(BFI.getEntryFreq()) * ColdProb;
    455   }
    456 
    457   bool Changed = false;
    458   do {
    459     assert(currentLoop->isLCSSAForm(*DT));
    460     redoLoop = false;
    461     Changed |= processCurrentLoop();
    462   } while(redoLoop);
    463 
    464   // FIXME: Reconstruct dom info, because it is not preserved properly.
    465   if (Changed)
    466     DT->recalculate(*F);
    467   return Changed;
    468 }
    469 
    470 /// Do actual work and unswitch loop if possible and profitable.
    471 bool LoopUnswitch::processCurrentLoop() {
    472   bool Changed = false;
    473 
    474   initLoopData();
    475 
    476   // If LoopSimplify was unable to form a preheader, don't do any unswitching.
    477   if (!loopPreheader)
    478     return false;
    479 
    480   // Loops with indirectbr cannot be cloned.
    481   if (!currentLoop->isSafeToClone())
    482     return false;
    483 
    484   // Without dedicated exits, splitting the exit edge may fail.
    485   if (!currentLoop->hasDedicatedExits())
    486     return false;
    487 
    488   LLVMContext &Context = loopHeader->getContext();
    489 
    490   // Analyze loop cost, and stop unswitching if loop content can not be duplicated.
    491   if (!BranchesInfo.countLoop(
    492           currentLoop, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
    493                            *currentLoop->getHeader()->getParent()),
    494           AC))
    495     return false;
    496 
    497   // Try trivial unswitch first before loop over other basic blocks in the loop.
    498   if (TryTrivialLoopUnswitch(Changed)) {
    499     return true;
    500   }
    501 
    502   // Do not unswitch loops containing convergent operations, as we might be
    503   // making them control dependent on the unswitch value when they were not
    504   // before.
    505   // FIXME: This could be refined to only bail if the convergent operation is
    506   // not already control-dependent on the unswitch value.
    507   for (const auto BB : currentLoop->blocks()) {
    508     for (auto &I : *BB) {
    509       auto CS = CallSite(&I);
    510       if (!CS) continue;
    511       if (CS.hasFnAttr(Attribute::Convergent))
    512         return false;
    513     }
    514   }
    515 
    516   // Do not do non-trivial unswitch while optimizing for size.
    517   // FIXME: Use Function::optForSize().
    518   if (OptimizeForSize ||
    519       loopHeader->getParent()->hasFnAttribute(Attribute::OptimizeForSize))
    520     return false;
    521 
    522   if (LoopUnswitchWithBlockFrequency && EnabledPGO) {
    523     // Compute the weighted frequency of the hottest block in the
    524     // loop (loopHeader in this case since inner loops should be
    525     // processed before outer loop). If it is less than ColdFrequency,
    526     // we should not unswitch.
    527     BlockFrequency LoopEntryFreq = BFI.getBlockFreq(loopHeader);
    528     if (LoopEntryFreq < ColdEntryFreq)
    529       return false;
    530   }
    531 
    532   // Loop over all of the basic blocks in the loop.  If we find an interior
    533   // block that is branching on a loop-invariant condition, we can unswitch this
    534   // loop.
    535   for (Loop::block_iterator I = currentLoop->block_begin(),
    536          E = currentLoop->block_end(); I != E; ++I) {
    537     TerminatorInst *TI = (*I)->getTerminator();
    538     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
    539       // If this isn't branching on an invariant condition, we can't unswitch
    540       // it.
    541       if (BI->isConditional()) {
    542         // See if this, or some part of it, is loop invariant.  If so, we can
    543         // unswitch on it if we desire.
    544         Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
    545                                                currentLoop, Changed);
    546         if (LoopCond &&
    547             UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context), TI)) {
    548           ++NumBranches;
    549           return true;
    550         }
    551       }
    552     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    553       Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
    554                                              currentLoop, Changed);
    555       unsigned NumCases = SI->getNumCases();
    556       if (LoopCond && NumCases) {
    557         // Find a value to unswitch on:
    558         // FIXME: this should chose the most expensive case!
    559         // FIXME: scan for a case with a non-critical edge?
    560         Constant *UnswitchVal = nullptr;
    561 
    562         // Do not process same value again and again.
    563         // At this point we have some cases already unswitched and
    564         // some not yet unswitched. Let's find the first not yet unswitched one.
    565         for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
    566              i != e; ++i) {
    567           Constant *UnswitchValCandidate = i.getCaseValue();
    568           if (!BranchesInfo.isUnswitched(SI, UnswitchValCandidate)) {
    569             UnswitchVal = UnswitchValCandidate;
    570             break;
    571           }
    572         }
    573 
    574         if (!UnswitchVal)
    575           continue;
    576 
    577         if (UnswitchIfProfitable(LoopCond, UnswitchVal)) {
    578           ++NumSwitches;
    579           return true;
    580         }
    581       }
    582     }
    583 
    584     // Scan the instructions to check for unswitchable values.
    585     for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
    586          BBI != E; ++BBI)
    587       if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
    588         Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
    589                                                currentLoop, Changed);
    590         if (LoopCond && UnswitchIfProfitable(LoopCond,
    591                                              ConstantInt::getTrue(Context))) {
    592           ++NumSelects;
    593           return true;
    594         }
    595       }
    596   }
    597   return Changed;
    598 }
    599 
    600 /// Check to see if all paths from BB exit the loop with no side effects
    601 /// (including infinite loops).
    602 ///
    603 /// If true, we return true and set ExitBB to the block we
    604 /// exit through.
    605 ///
    606 static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
    607                                          BasicBlock *&ExitBB,
    608                                          std::set<BasicBlock*> &Visited) {
    609   if (!Visited.insert(BB).second) {
    610     // Already visited. Without more analysis, this could indicate an infinite
    611     // loop.
    612     return false;
    613   }
    614   if (!L->contains(BB)) {
    615     // Otherwise, this is a loop exit, this is fine so long as this is the
    616     // first exit.
    617     if (ExitBB) return false;
    618     ExitBB = BB;
    619     return true;
    620   }
    621 
    622   // Otherwise, this is an unvisited intra-loop node.  Check all successors.
    623   for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
    624     // Check to see if the successor is a trivial loop exit.
    625     if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
    626       return false;
    627   }
    628 
    629   // Okay, everything after this looks good, check to make sure that this block
    630   // doesn't include any side effects.
    631   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
    632     if (I->mayHaveSideEffects())
    633       return false;
    634 
    635   return true;
    636 }
    637 
    638 /// Return true if the specified block unconditionally leads to an exit from
    639 /// the specified loop, and has no side-effects in the process. If so, return
    640 /// the block that is exited to, otherwise return null.
    641 static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
    642   std::set<BasicBlock*> Visited;
    643   Visited.insert(L->getHeader());  // Branches to header make infinite loops.
    644   BasicBlock *ExitBB = nullptr;
    645   if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
    646     return ExitBB;
    647   return nullptr;
    648 }
    649 
    650 /// We have found that we can unswitch currentLoop when LoopCond == Val to
    651 /// simplify the loop.  If we decide that this is profitable,
    652 /// unswitch the loop, reprocess the pieces, then return true.
    653 bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val,
    654                                         TerminatorInst *TI) {
    655   // Check to see if it would be profitable to unswitch current loop.
    656   if (!BranchesInfo.CostAllowsUnswitching()) {
    657     DEBUG(dbgs() << "NOT unswitching loop %"
    658                  << currentLoop->getHeader()->getName()
    659                  << " at non-trivial condition '" << *Val
    660                  << "' == " << *LoopCond << "\n"
    661                  << ". Cost too high.\n");
    662     return false;
    663   }
    664 
    665   UnswitchNontrivialCondition(LoopCond, Val, currentLoop, TI);
    666   return true;
    667 }
    668 
    669 /// Recursively clone the specified loop and all of its children,
    670 /// mapping the blocks with the specified map.
    671 static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
    672                        LoopInfo *LI, LPPassManager *LPM) {
    673   Loop &New = LPM->addLoop(PL);
    674 
    675   // Add all of the blocks in L to the new loop.
    676   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
    677        I != E; ++I)
    678     if (LI->getLoopFor(*I) == L)
    679       New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
    680 
    681   // Add all of the subloops to the new loop.
    682   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
    683     CloneLoop(*I, &New, VM, LI, LPM);
    684 
    685   return &New;
    686 }
    687 
    688 static void copyMetadata(Instruction *DstInst, const Instruction *SrcInst,
    689                          bool Swapped) {
    690   if (!SrcInst || !SrcInst->hasMetadata())
    691     return;
    692 
    693   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
    694   SrcInst->getAllMetadata(MDs);
    695   for (auto &MD : MDs) {
    696     switch (MD.first) {
    697     default:
    698       break;
    699     case LLVMContext::MD_prof:
    700       if (Swapped && MD.second->getNumOperands() == 3 &&
    701           isa<MDString>(MD.second->getOperand(0))) {
    702         MDString *MDName = cast<MDString>(MD.second->getOperand(0));
    703         if (MDName->getString() == "branch_weights") {
    704           auto *ValT = cast_or_null<ConstantAsMetadata>(
    705                            MD.second->getOperand(1))->getValue();
    706           auto *ValF = cast_or_null<ConstantAsMetadata>(
    707                            MD.second->getOperand(2))->getValue();
    708           assert(ValT && ValF && "Invalid Operands of branch_weights");
    709           auto NewMD =
    710               MDBuilder(DstInst->getParent()->getContext())
    711                   .createBranchWeights(cast<ConstantInt>(ValF)->getZExtValue(),
    712                                        cast<ConstantInt>(ValT)->getZExtValue());
    713           MD.second = NewMD;
    714         }
    715       }
    716       // fallthrough.
    717     case LLVMContext::MD_make_implicit:
    718     case LLVMContext::MD_dbg:
    719       DstInst->setMetadata(MD.first, MD.second);
    720     }
    721   }
    722 }
    723 
    724 /// Emit a conditional branch on two values if LIC == Val, branch to TrueDst,
    725 /// otherwise branch to FalseDest. Insert the code immediately before InsertPt.
    726 void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
    727                                                   BasicBlock *TrueDest,
    728                                                   BasicBlock *FalseDest,
    729                                                   Instruction *InsertPt,
    730                                                   TerminatorInst *TI) {
    731   // Insert a conditional branch on LIC to the two preheaders.  The original
    732   // code is the true version and the new code is the false version.
    733   Value *BranchVal = LIC;
    734   bool Swapped = false;
    735   if (!isa<ConstantInt>(Val) ||
    736       Val->getType() != Type::getInt1Ty(LIC->getContext()))
    737     BranchVal = new ICmpInst(InsertPt, ICmpInst::ICMP_EQ, LIC, Val);
    738   else if (Val != ConstantInt::getTrue(Val->getContext())) {
    739     // We want to enter the new loop when the condition is true.
    740     std::swap(TrueDest, FalseDest);
    741     Swapped = true;
    742   }
    743 
    744   // Insert the new branch.
    745   BranchInst *BI = BranchInst::Create(TrueDest, FalseDest, BranchVal, InsertPt);
    746   copyMetadata(BI, TI, Swapped);
    747 
    748   // If either edge is critical, split it. This helps preserve LoopSimplify
    749   // form for enclosing loops.
    750   auto Options = CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA();
    751   SplitCriticalEdge(BI, 0, Options);
    752   SplitCriticalEdge(BI, 1, Options);
    753 }
    754 
    755 /// Given a loop that has a trivial unswitchable condition in it (a cond branch
    756 /// from its header block to its latch block, where the path through the loop
    757 /// that doesn't execute its body has no side-effects), unswitch it. This
    758 /// doesn't involve any code duplication, just moving the conditional branch
    759 /// outside of the loop and updating loop info.
    760 void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
    761                                             BasicBlock *ExitBlock,
    762                                             TerminatorInst *TI) {
    763   DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
    764                << loopHeader->getName() << " [" << L->getBlocks().size()
    765                << " blocks] in Function "
    766                << L->getHeader()->getParent()->getName() << " on cond: " << *Val
    767                << " == " << *Cond << "\n");
    768 
    769   // First step, split the preheader, so that we know that there is a safe place
    770   // to insert the conditional branch.  We will change loopPreheader to have a
    771   // conditional branch on Cond.
    772   BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, DT, LI);
    773 
    774   // Now that we have a place to insert the conditional branch, create a place
    775   // to branch to: this is the exit block out of the loop that we should
    776   // short-circuit to.
    777 
    778   // Split this block now, so that the loop maintains its exit block, and so
    779   // that the jump from the preheader can execute the contents of the exit block
    780   // without actually branching to it (the exit block should be dominated by the
    781   // loop header, not the preheader).
    782   assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
    783   BasicBlock *NewExit = SplitBlock(ExitBlock, &ExitBlock->front(), DT, LI);
    784 
    785   // Okay, now we have a position to branch from and a position to branch to,
    786   // insert the new conditional branch.
    787   EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH,
    788                                  loopPreheader->getTerminator(), TI);
    789   LPM->deleteSimpleAnalysisValue(loopPreheader->getTerminator(), L);
    790   loopPreheader->getTerminator()->eraseFromParent();
    791 
    792   // We need to reprocess this loop, it could be unswitched again.
    793   redoLoop = true;
    794 
    795   // Now that we know that the loop is never entered when this condition is a
    796   // particular value, rewrite the loop with this info.  We know that this will
    797   // at least eliminate the old branch.
    798   RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
    799   ++NumTrivial;
    800 }
    801 
    802 /// Check if the first non-constant condition starting from the loop header is
    803 /// a trivial unswitch condition: that is, a condition controls whether or not
    804 /// the loop does anything at all. If it is a trivial condition, unswitching
    805 /// produces no code duplications (equivalently, it produces a simpler loop and
    806 /// a new empty loop, which gets deleted). Therefore always unswitch trivial
    807 /// condition.
    808 bool LoopUnswitch::TryTrivialLoopUnswitch(bool &Changed) {
    809   BasicBlock *CurrentBB = currentLoop->getHeader();
    810   TerminatorInst *CurrentTerm = CurrentBB->getTerminator();
    811   LLVMContext &Context = CurrentBB->getContext();
    812 
    813   // If loop header has only one reachable successor (currently via an
    814   // unconditional branch or constant foldable conditional branch, but
    815   // should also consider adding constant foldable switch instruction in
    816   // future), we should keep looking for trivial condition candidates in
    817   // the successor as well. An alternative is to constant fold conditions
    818   // and merge successors into loop header (then we only need to check header's
    819   // terminator). The reason for not doing this in LoopUnswitch pass is that
    820   // it could potentially break LoopPassManager's invariants. Folding dead
    821   // branches could either eliminate the current loop or make other loops
    822   // unreachable. LCSSA form might also not be preserved after deleting
    823   // branches. The following code keeps traversing loop header's successors
    824   // until it finds the trivial condition candidate (condition that is not a
    825   // constant). Since unswitching generates branches with constant conditions,
    826   // this scenario could be very common in practice.
    827   SmallSet<BasicBlock*, 8> Visited;
    828 
    829   while (true) {
    830     // If we exit loop or reach a previous visited block, then
    831     // we can not reach any trivial condition candidates (unfoldable
    832     // branch instructions or switch instructions) and no unswitch
    833     // can happen. Exit and return false.
    834     if (!currentLoop->contains(CurrentBB) || !Visited.insert(CurrentBB).second)
    835       return false;
    836 
    837     // Check if this loop will execute any side-effecting instructions (e.g.
    838     // stores, calls, volatile loads) in the part of the loop that the code
    839     // *would* execute. Check the header first.
    840     for (Instruction &I : *CurrentBB)
    841       if (I.mayHaveSideEffects())
    842         return false;
    843 
    844     // FIXME: add check for constant foldable switch instructions.
    845     if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
    846       if (BI->isUnconditional()) {
    847         CurrentBB = BI->getSuccessor(0);
    848       } else if (BI->getCondition() == ConstantInt::getTrue(Context)) {
    849         CurrentBB = BI->getSuccessor(0);
    850       } else if (BI->getCondition() == ConstantInt::getFalse(Context)) {
    851         CurrentBB = BI->getSuccessor(1);
    852       } else {
    853         // Found a trivial condition candidate: non-foldable conditional branch.
    854         break;
    855       }
    856     } else {
    857       break;
    858     }
    859 
    860     CurrentTerm = CurrentBB->getTerminator();
    861   }
    862 
    863   // CondVal is the condition that controls the trivial condition.
    864   // LoopExitBB is the BasicBlock that loop exits when meets trivial condition.
    865   Constant *CondVal = nullptr;
    866   BasicBlock *LoopExitBB = nullptr;
    867 
    868   if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
    869     // If this isn't branching on an invariant condition, we can't unswitch it.
    870     if (!BI->isConditional())
    871       return false;
    872 
    873     Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
    874                                            currentLoop, Changed);
    875 
    876     // Unswitch only if the trivial condition itself is an LIV (not
    877     // partial LIV which could occur in and/or)
    878     if (!LoopCond || LoopCond != BI->getCondition())
    879       return false;
    880 
    881     // Check to see if a successor of the branch is guaranteed to
    882     // exit through a unique exit block without having any
    883     // side-effects.  If so, determine the value of Cond that causes
    884     // it to do this.
    885     if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
    886                                              BI->getSuccessor(0)))) {
    887       CondVal = ConstantInt::getTrue(Context);
    888     } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
    889                                                     BI->getSuccessor(1)))) {
    890       CondVal = ConstantInt::getFalse(Context);
    891     }
    892 
    893     // If we didn't find a single unique LoopExit block, or if the loop exit
    894     // block contains phi nodes, this isn't trivial.
    895     if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
    896       return false;   // Can't handle this.
    897 
    898     UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB,
    899                              CurrentTerm);
    900     ++NumBranches;
    901     return true;
    902   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
    903     // If this isn't switching on an invariant condition, we can't unswitch it.
    904     Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
    905                                            currentLoop, Changed);
    906 
    907     // Unswitch only if the trivial condition itself is an LIV (not
    908     // partial LIV which could occur in and/or)
    909     if (!LoopCond || LoopCond != SI->getCondition())
    910       return false;
    911 
    912     // Check to see if a successor of the switch is guaranteed to go to the
    913     // latch block or exit through a one exit block without having any
    914     // side-effects.  If so, determine the value of Cond that causes it to do
    915     // this.
    916     // Note that we can't trivially unswitch on the default case or
    917     // on already unswitched cases.
    918     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
    919          i != e; ++i) {
    920       BasicBlock *LoopExitCandidate;
    921       if ((LoopExitCandidate = isTrivialLoopExitBlock(currentLoop,
    922                                                i.getCaseSuccessor()))) {
    923         // Okay, we found a trivial case, remember the value that is trivial.
    924         ConstantInt *CaseVal = i.getCaseValue();
    925 
    926         // Check that it was not unswitched before, since already unswitched
    927         // trivial vals are looks trivial too.
    928         if (BranchesInfo.isUnswitched(SI, CaseVal))
    929           continue;
    930         LoopExitBB = LoopExitCandidate;
    931         CondVal = CaseVal;
    932         break;
    933       }
    934     }
    935 
    936     // If we didn't find a single unique LoopExit block, or if the loop exit
    937     // block contains phi nodes, this isn't trivial.
    938     if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
    939       return false;   // Can't handle this.
    940 
    941     UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB,
    942                              nullptr);
    943     ++NumSwitches;
    944     return true;
    945   }
    946   return false;
    947 }
    948 
    949 /// Split all of the edges from inside the loop to their exit blocks.
    950 /// Update the appropriate Phi nodes as we do so.
    951 void LoopUnswitch::SplitExitEdges(Loop *L,
    952                                const SmallVectorImpl<BasicBlock *> &ExitBlocks){
    953 
    954   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
    955     BasicBlock *ExitBlock = ExitBlocks[i];
    956     SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
    957                                        pred_end(ExitBlock));
    958 
    959     // Although SplitBlockPredecessors doesn't preserve loop-simplify in
    960     // general, if we call it on all predecessors of all exits then it does.
    961     SplitBlockPredecessors(ExitBlock, Preds, ".us-lcssa", DT, LI,
    962                            /*PreserveLCSSA*/ true);
    963   }
    964 }
    965 
    966 /// We determined that the loop is profitable to unswitch when LIC equal Val.
    967 /// Split it into loop versions and test the condition outside of either loop.
    968 /// Return the loops created as Out1/Out2.
    969 void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
    970                                                Loop *L, TerminatorInst *TI) {
    971   Function *F = loopHeader->getParent();
    972   DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
    973         << loopHeader->getName() << " [" << L->getBlocks().size()
    974         << " blocks] in Function " << F->getName()
    975         << " when '" << *Val << "' == " << *LIC << "\n");
    976 
    977   if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>())
    978     SEWP->getSE().forgetLoop(L);
    979 
    980   LoopBlocks.clear();
    981   NewBlocks.clear();
    982 
    983   // First step, split the preheader and exit blocks, and add these blocks to
    984   // the LoopBlocks list.
    985   BasicBlock *NewPreheader = SplitEdge(loopPreheader, loopHeader, DT, LI);
    986   LoopBlocks.push_back(NewPreheader);
    987 
    988   // We want the loop to come after the preheader, but before the exit blocks.
    989   LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
    990 
    991   SmallVector<BasicBlock*, 8> ExitBlocks;
    992   L->getUniqueExitBlocks(ExitBlocks);
    993 
    994   // Split all of the edges from inside the loop to their exit blocks.  Update
    995   // the appropriate Phi nodes as we do so.
    996   SplitExitEdges(L, ExitBlocks);
    997 
    998   // The exit blocks may have been changed due to edge splitting, recompute.
    999   ExitBlocks.clear();
   1000   L->getUniqueExitBlocks(ExitBlocks);
   1001 
   1002   // Add exit blocks to the loop blocks.
   1003   LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
   1004 
   1005   // Next step, clone all of the basic blocks that make up the loop (including
   1006   // the loop preheader and exit blocks), keeping track of the mapping between
   1007   // the instructions and blocks.
   1008   NewBlocks.reserve(LoopBlocks.size());
   1009   ValueToValueMapTy VMap;
   1010   for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
   1011     BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F);
   1012 
   1013     NewBlocks.push_back(NewBB);
   1014     VMap[LoopBlocks[i]] = NewBB;  // Keep the BB mapping.
   1015     LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L);
   1016   }
   1017 
   1018   // Splice the newly inserted blocks into the function right before the
   1019   // original preheader.
   1020   F->getBasicBlockList().splice(NewPreheader->getIterator(),
   1021                                 F->getBasicBlockList(),
   1022                                 NewBlocks[0]->getIterator(), F->end());
   1023 
   1024   // FIXME: We could register any cloned assumptions instead of clearing the
   1025   // whole function's cache.
   1026   AC->clear();
   1027 
   1028   // Now we create the new Loop object for the versioned loop.
   1029   Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM);
   1030 
   1031   // Recalculate unswitching quota, inherit simplified switches info for NewBB,
   1032   // Probably clone more loop-unswitch related loop properties.
   1033   BranchesInfo.cloneData(NewLoop, L, VMap);
   1034 
   1035   Loop *ParentLoop = L->getParentLoop();
   1036   if (ParentLoop) {
   1037     // Make sure to add the cloned preheader and exit blocks to the parent loop
   1038     // as well.
   1039     ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI);
   1040   }
   1041 
   1042   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
   1043     BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]);
   1044     // The new exit block should be in the same loop as the old one.
   1045     if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
   1046       ExitBBLoop->addBasicBlockToLoop(NewExit, *LI);
   1047 
   1048     assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
   1049            "Exit block should have been split to have one successor!");
   1050     BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
   1051 
   1052     // If the successor of the exit block had PHI nodes, add an entry for
   1053     // NewExit.
   1054     for (BasicBlock::iterator I = ExitSucc->begin();
   1055          PHINode *PN = dyn_cast<PHINode>(I); ++I) {
   1056       Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
   1057       ValueToValueMapTy::iterator It = VMap.find(V);
   1058       if (It != VMap.end()) V = It->second;
   1059       PN->addIncoming(V, NewExit);
   1060     }
   1061 
   1062     if (LandingPadInst *LPad = NewExit->getLandingPadInst()) {
   1063       PHINode *PN = PHINode::Create(LPad->getType(), 0, "",
   1064                                     &*ExitSucc->getFirstInsertionPt());
   1065 
   1066       for (pred_iterator I = pred_begin(ExitSucc), E = pred_end(ExitSucc);
   1067            I != E; ++I) {
   1068         BasicBlock *BB = *I;
   1069         LandingPadInst *LPI = BB->getLandingPadInst();
   1070         LPI->replaceAllUsesWith(PN);
   1071         PN->addIncoming(LPI, BB);
   1072       }
   1073     }
   1074   }
   1075 
   1076   // Rewrite the code to refer to itself.
   1077   for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
   1078     for (BasicBlock::iterator I = NewBlocks[i]->begin(),
   1079            E = NewBlocks[i]->end(); I != E; ++I)
   1080       RemapInstruction(&*I, VMap,
   1081                        RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
   1082 
   1083   // Rewrite the original preheader to select between versions of the loop.
   1084   BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator());
   1085   assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
   1086          "Preheader splitting did not work correctly!");
   1087 
   1088   // Emit the new branch that selects between the two versions of this loop.
   1089   EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR,
   1090                                  TI);
   1091   LPM->deleteSimpleAnalysisValue(OldBR, L);
   1092   OldBR->eraseFromParent();
   1093 
   1094   LoopProcessWorklist.push_back(NewLoop);
   1095   redoLoop = true;
   1096 
   1097   // Keep a WeakVH holding onto LIC.  If the first call to RewriteLoopBody
   1098   // deletes the instruction (for example by simplifying a PHI that feeds into
   1099   // the condition that we're unswitching on), we don't rewrite the second
   1100   // iteration.
   1101   WeakVH LICHandle(LIC);
   1102 
   1103   // Now we rewrite the original code to know that the condition is true and the
   1104   // new code to know that the condition is false.
   1105   RewriteLoopBodyWithConditionConstant(L, LIC, Val, false);
   1106 
   1107   // It's possible that simplifying one loop could cause the other to be
   1108   // changed to another value or a constant.  If its a constant, don't simplify
   1109   // it.
   1110   if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop &&
   1111       LICHandle && !isa<Constant>(LICHandle))
   1112     RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true);
   1113 }
   1114 
   1115 /// Remove all instances of I from the worklist vector specified.
   1116 static void RemoveFromWorklist(Instruction *I,
   1117                                std::vector<Instruction*> &Worklist) {
   1118 
   1119   Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), I),
   1120                  Worklist.end());
   1121 }
   1122 
   1123 /// When we find that I really equals V, remove I from the
   1124 /// program, replacing all uses with V and update the worklist.
   1125 static void ReplaceUsesOfWith(Instruction *I, Value *V,
   1126                               std::vector<Instruction*> &Worklist,
   1127                               Loop *L, LPPassManager *LPM) {
   1128   DEBUG(dbgs() << "Replace with '" << *V << "': " << *I);
   1129 
   1130   // Add uses to the worklist, which may be dead now.
   1131   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
   1132     if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
   1133       Worklist.push_back(Use);
   1134 
   1135   // Add users to the worklist which may be simplified now.
   1136   for (User *U : I->users())
   1137     Worklist.push_back(cast<Instruction>(U));
   1138   LPM->deleteSimpleAnalysisValue(I, L);
   1139   RemoveFromWorklist(I, Worklist);
   1140   I->replaceAllUsesWith(V);
   1141   I->eraseFromParent();
   1142   ++NumSimplify;
   1143 }
   1144 
   1145 /// We know either that the value LIC has the value specified by Val in the
   1146 /// specified loop, or we know it does NOT have that value.
   1147 /// Rewrite any uses of LIC or of properties correlated to it.
   1148 void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
   1149                                                         Constant *Val,
   1150                                                         bool IsEqual) {
   1151   assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
   1152 
   1153   // FIXME: Support correlated properties, like:
   1154   //  for (...)
   1155   //    if (li1 < li2)
   1156   //      ...
   1157   //    if (li1 > li2)
   1158   //      ...
   1159 
   1160   // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches,
   1161   // selects, switches.
   1162   std::vector<Instruction*> Worklist;
   1163   LLVMContext &Context = Val->getContext();
   1164 
   1165   // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
   1166   // in the loop with the appropriate one directly.
   1167   if (IsEqual || (isa<ConstantInt>(Val) &&
   1168       Val->getType()->isIntegerTy(1))) {
   1169     Value *Replacement;
   1170     if (IsEqual)
   1171       Replacement = Val;
   1172     else
   1173       Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()),
   1174                                      !cast<ConstantInt>(Val)->getZExtValue());
   1175 
   1176     for (User *U : LIC->users()) {
   1177       Instruction *UI = dyn_cast<Instruction>(U);
   1178       if (!UI || !L->contains(UI))
   1179         continue;
   1180       Worklist.push_back(UI);
   1181     }
   1182 
   1183     for (std::vector<Instruction*>::iterator UI = Worklist.begin(),
   1184          UE = Worklist.end(); UI != UE; ++UI)
   1185       (*UI)->replaceUsesOfWith(LIC, Replacement);
   1186 
   1187     SimplifyCode(Worklist, L);
   1188     return;
   1189   }
   1190 
   1191   // Otherwise, we don't know the precise value of LIC, but we do know that it
   1192   // is certainly NOT "Val".  As such, simplify any uses in the loop that we
   1193   // can.  This case occurs when we unswitch switch statements.
   1194   for (User *U : LIC->users()) {
   1195     Instruction *UI = dyn_cast<Instruction>(U);
   1196     if (!UI || !L->contains(UI))
   1197       continue;
   1198 
   1199     Worklist.push_back(UI);
   1200 
   1201     // TODO: We could do other simplifications, for example, turning
   1202     // 'icmp eq LIC, Val' -> false.
   1203 
   1204     // If we know that LIC is not Val, use this info to simplify code.
   1205     SwitchInst *SI = dyn_cast<SwitchInst>(UI);
   1206     if (!SI || !isa<ConstantInt>(Val)) continue;
   1207 
   1208     SwitchInst::CaseIt DeadCase = SI->findCaseValue(cast<ConstantInt>(Val));
   1209     // Default case is live for multiple values.
   1210     if (DeadCase == SI->case_default()) continue;
   1211 
   1212     // Found a dead case value.  Don't remove PHI nodes in the
   1213     // successor if they become single-entry, those PHI nodes may
   1214     // be in the Users list.
   1215 
   1216     BasicBlock *Switch = SI->getParent();
   1217     BasicBlock *SISucc = DeadCase.getCaseSuccessor();
   1218     BasicBlock *Latch = L->getLoopLatch();
   1219 
   1220     BranchesInfo.setUnswitched(SI, Val);
   1221 
   1222     if (!SI->findCaseDest(SISucc)) continue;  // Edge is critical.
   1223     // If the DeadCase successor dominates the loop latch, then the
   1224     // transformation isn't safe since it will delete the sole predecessor edge
   1225     // to the latch.
   1226     if (Latch && DT->dominates(SISucc, Latch))
   1227       continue;
   1228 
   1229     // FIXME: This is a hack.  We need to keep the successor around
   1230     // and hooked up so as to preserve the loop structure, because
   1231     // trying to update it is complicated.  So instead we preserve the
   1232     // loop structure and put the block on a dead code path.
   1233     SplitEdge(Switch, SISucc, DT, LI);
   1234     // Compute the successors instead of relying on the return value
   1235     // of SplitEdge, since it may have split the switch successor
   1236     // after PHI nodes.
   1237     BasicBlock *NewSISucc = DeadCase.getCaseSuccessor();
   1238     BasicBlock *OldSISucc = *succ_begin(NewSISucc);
   1239     // Create an "unreachable" destination.
   1240     BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
   1241                                            Switch->getParent(),
   1242                                            OldSISucc);
   1243     new UnreachableInst(Context, Abort);
   1244     // Force the new case destination to branch to the "unreachable"
   1245     // block while maintaining a (dead) CFG edge to the old block.
   1246     NewSISucc->getTerminator()->eraseFromParent();
   1247     BranchInst::Create(Abort, OldSISucc,
   1248                        ConstantInt::getTrue(Context), NewSISucc);
   1249     // Release the PHI operands for this edge.
   1250     for (BasicBlock::iterator II = NewSISucc->begin();
   1251          PHINode *PN = dyn_cast<PHINode>(II); ++II)
   1252       PN->setIncomingValue(PN->getBasicBlockIndex(Switch),
   1253                            UndefValue::get(PN->getType()));
   1254     // Tell the domtree about the new block. We don't fully update the
   1255     // domtree here -- instead we force it to do a full recomputation
   1256     // after the pass is complete -- but we do need to inform it of
   1257     // new blocks.
   1258     DT->addNewBlock(Abort, NewSISucc);
   1259   }
   1260 
   1261   SimplifyCode(Worklist, L);
   1262 }
   1263 
   1264 /// Now that we have simplified some instructions in the loop, walk over it and
   1265 /// constant prop, dce, and fold control flow where possible. Note that this is
   1266 /// effectively a very simple loop-structure-aware optimizer. During processing
   1267 /// of this loop, L could very well be deleted, so it must not be used.
   1268 ///
   1269 /// FIXME: When the loop optimizer is more mature, separate this out to a new
   1270 /// pass.
   1271 ///
   1272 void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
   1273   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
   1274   while (!Worklist.empty()) {
   1275     Instruction *I = Worklist.back();
   1276     Worklist.pop_back();
   1277 
   1278     // Simple DCE.
   1279     if (isInstructionTriviallyDead(I)) {
   1280       DEBUG(dbgs() << "Remove dead instruction '" << *I);
   1281 
   1282       // Add uses to the worklist, which may be dead now.
   1283       for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
   1284         if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
   1285           Worklist.push_back(Use);
   1286       LPM->deleteSimpleAnalysisValue(I, L);
   1287       RemoveFromWorklist(I, Worklist);
   1288       I->eraseFromParent();
   1289       ++NumSimplify;
   1290       continue;
   1291     }
   1292 
   1293     // See if instruction simplification can hack this up.  This is common for
   1294     // things like "select false, X, Y" after unswitching made the condition be
   1295     // 'false'.  TODO: update the domtree properly so we can pass it here.
   1296     if (Value *V = SimplifyInstruction(I, DL))
   1297       if (LI->replacementPreservesLCSSAForm(I, V)) {
   1298         ReplaceUsesOfWith(I, V, Worklist, L, LPM);
   1299         continue;
   1300       }
   1301 
   1302     // Special case hacks that appear commonly in unswitched code.
   1303     if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
   1304       if (BI->isUnconditional()) {
   1305         // If BI's parent is the only pred of the successor, fold the two blocks
   1306         // together.
   1307         BasicBlock *Pred = BI->getParent();
   1308         BasicBlock *Succ = BI->getSuccessor(0);
   1309         BasicBlock *SinglePred = Succ->getSinglePredecessor();
   1310         if (!SinglePred) continue;  // Nothing to do.
   1311         assert(SinglePred == Pred && "CFG broken");
   1312 
   1313         DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- "
   1314               << Succ->getName() << "\n");
   1315 
   1316         // Resolve any single entry PHI nodes in Succ.
   1317         while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
   1318           ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM);
   1319 
   1320         // If Succ has any successors with PHI nodes, update them to have
   1321         // entries coming from Pred instead of Succ.
   1322         Succ->replaceAllUsesWith(Pred);
   1323 
   1324         // Move all of the successor contents from Succ to Pred.
   1325         Pred->getInstList().splice(BI->getIterator(), Succ->getInstList(),
   1326                                    Succ->begin(), Succ->end());
   1327         LPM->deleteSimpleAnalysisValue(BI, L);
   1328         BI->eraseFromParent();
   1329         RemoveFromWorklist(BI, Worklist);
   1330 
   1331         // Remove Succ from the loop tree.
   1332         LI->removeBlock(Succ);
   1333         LPM->deleteSimpleAnalysisValue(Succ, L);
   1334         Succ->eraseFromParent();
   1335         ++NumSimplify;
   1336         continue;
   1337       }
   1338 
   1339       continue;
   1340     }
   1341   }
   1342 }
   1343