Home | History | Annotate | Download | only in mips
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #if V8_TARGET_ARCH_MIPS
      6 
      7 #include "src/base/bits.h"
      8 #include "src/bootstrapper.h"
      9 #include "src/code-stubs.h"
     10 #include "src/codegen.h"
     11 #include "src/ic/handler-compiler.h"
     12 #include "src/ic/ic.h"
     13 #include "src/ic/stub-cache.h"
     14 #include "src/isolate.h"
     15 #include "src/mips/code-stubs-mips.h"
     16 #include "src/regexp/jsregexp.h"
     17 #include "src/regexp/regexp-macro-assembler.h"
     18 #include "src/runtime/runtime.h"
     19 
     20 namespace v8 {
     21 namespace internal {
     22 
     23 
     24 static void InitializeArrayConstructorDescriptor(
     25     Isolate* isolate, CodeStubDescriptor* descriptor,
     26     int constant_stack_parameter_count) {
     27   Address deopt_handler = Runtime::FunctionForId(
     28       Runtime::kArrayConstructor)->entry;
     29 
     30   if (constant_stack_parameter_count == 0) {
     31     descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
     32                            JS_FUNCTION_STUB_MODE);
     33   } else {
     34     descriptor->Initialize(a0, deopt_handler, constant_stack_parameter_count,
     35                            JS_FUNCTION_STUB_MODE);
     36   }
     37 }
     38 
     39 
     40 static void InitializeInternalArrayConstructorDescriptor(
     41     Isolate* isolate, CodeStubDescriptor* descriptor,
     42     int constant_stack_parameter_count) {
     43   Address deopt_handler = Runtime::FunctionForId(
     44       Runtime::kInternalArrayConstructor)->entry;
     45 
     46   if (constant_stack_parameter_count == 0) {
     47     descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
     48                            JS_FUNCTION_STUB_MODE);
     49   } else {
     50     descriptor->Initialize(a0, deopt_handler, constant_stack_parameter_count,
     51                            JS_FUNCTION_STUB_MODE);
     52   }
     53 }
     54 
     55 
     56 void ArrayNoArgumentConstructorStub::InitializeDescriptor(
     57     CodeStubDescriptor* descriptor) {
     58   InitializeArrayConstructorDescriptor(isolate(), descriptor, 0);
     59 }
     60 
     61 
     62 void ArraySingleArgumentConstructorStub::InitializeDescriptor(
     63     CodeStubDescriptor* descriptor) {
     64   InitializeArrayConstructorDescriptor(isolate(), descriptor, 1);
     65 }
     66 
     67 
     68 void ArrayNArgumentsConstructorStub::InitializeDescriptor(
     69     CodeStubDescriptor* descriptor) {
     70   InitializeArrayConstructorDescriptor(isolate(), descriptor, -1);
     71 }
     72 
     73 
     74 void InternalArrayNoArgumentConstructorStub::InitializeDescriptor(
     75     CodeStubDescriptor* descriptor) {
     76   InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 0);
     77 }
     78 
     79 
     80 void InternalArraySingleArgumentConstructorStub::InitializeDescriptor(
     81     CodeStubDescriptor* descriptor) {
     82   InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 1);
     83 }
     84 
     85 
     86 void InternalArrayNArgumentsConstructorStub::InitializeDescriptor(
     87     CodeStubDescriptor* descriptor) {
     88   InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, -1);
     89 }
     90 
     91 
     92 #define __ ACCESS_MASM(masm)
     93 
     94 
     95 static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
     96                                           Condition cc, Strength strength);
     97 static void EmitSmiNonsmiComparison(MacroAssembler* masm,
     98                                     Register lhs,
     99                                     Register rhs,
    100                                     Label* rhs_not_nan,
    101                                     Label* slow,
    102                                     bool strict);
    103 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
    104                                            Register lhs,
    105                                            Register rhs);
    106 
    107 
    108 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
    109                                                ExternalReference miss) {
    110   // Update the static counter each time a new code stub is generated.
    111   isolate()->counters()->code_stubs()->Increment();
    112 
    113   CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
    114   int param_count = descriptor.GetRegisterParameterCount();
    115   {
    116     // Call the runtime system in a fresh internal frame.
    117     FrameScope scope(masm, StackFrame::INTERNAL);
    118     DCHECK(param_count == 0 ||
    119            a0.is(descriptor.GetRegisterParameter(param_count - 1)));
    120     // Push arguments, adjust sp.
    121     __ Subu(sp, sp, Operand(param_count * kPointerSize));
    122     for (int i = 0; i < param_count; ++i) {
    123       // Store argument to stack.
    124       __ sw(descriptor.GetRegisterParameter(i),
    125             MemOperand(sp, (param_count - 1 - i) * kPointerSize));
    126     }
    127     __ CallExternalReference(miss, param_count);
    128   }
    129 
    130   __ Ret();
    131 }
    132 
    133 
    134 void DoubleToIStub::Generate(MacroAssembler* masm) {
    135   Label out_of_range, only_low, negate, done;
    136   Register input_reg = source();
    137   Register result_reg = destination();
    138 
    139   int double_offset = offset();
    140   // Account for saved regs if input is sp.
    141   if (input_reg.is(sp)) double_offset += 3 * kPointerSize;
    142 
    143   Register scratch =
    144       GetRegisterThatIsNotOneOf(input_reg, result_reg);
    145   Register scratch2 =
    146       GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch);
    147   Register scratch3 =
    148       GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch2);
    149   DoubleRegister double_scratch = kLithiumScratchDouble;
    150 
    151   __ Push(scratch, scratch2, scratch3);
    152 
    153   if (!skip_fastpath()) {
    154     // Load double input.
    155     __ ldc1(double_scratch, MemOperand(input_reg, double_offset));
    156 
    157     // Clear cumulative exception flags and save the FCSR.
    158     __ cfc1(scratch2, FCSR);
    159     __ ctc1(zero_reg, FCSR);
    160 
    161     // Try a conversion to a signed integer.
    162     __ Trunc_w_d(double_scratch, double_scratch);
    163     // Move the converted value into the result register.
    164     __ mfc1(scratch3, double_scratch);
    165 
    166     // Retrieve and restore the FCSR.
    167     __ cfc1(scratch, FCSR);
    168     __ ctc1(scratch2, FCSR);
    169 
    170     // Check for overflow and NaNs.
    171     __ And(
    172         scratch, scratch,
    173         kFCSROverflowFlagMask | kFCSRUnderflowFlagMask
    174            | kFCSRInvalidOpFlagMask);
    175     // If we had no exceptions then set result_reg and we are done.
    176     Label error;
    177     __ Branch(&error, ne, scratch, Operand(zero_reg));
    178     __ Move(result_reg, scratch3);
    179     __ Branch(&done);
    180     __ bind(&error);
    181   }
    182 
    183   // Load the double value and perform a manual truncation.
    184   Register input_high = scratch2;
    185   Register input_low = scratch3;
    186 
    187   __ lw(input_low,
    188       MemOperand(input_reg, double_offset + Register::kMantissaOffset));
    189   __ lw(input_high,
    190       MemOperand(input_reg, double_offset + Register::kExponentOffset));
    191 
    192   Label normal_exponent, restore_sign;
    193   // Extract the biased exponent in result.
    194   __ Ext(result_reg,
    195          input_high,
    196          HeapNumber::kExponentShift,
    197          HeapNumber::kExponentBits);
    198 
    199   // Check for Infinity and NaNs, which should return 0.
    200   __ Subu(scratch, result_reg, HeapNumber::kExponentMask);
    201   __ Movz(result_reg, zero_reg, scratch);
    202   __ Branch(&done, eq, scratch, Operand(zero_reg));
    203 
    204   // Express exponent as delta to (number of mantissa bits + 31).
    205   __ Subu(result_reg,
    206           result_reg,
    207           Operand(HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 31));
    208 
    209   // If the delta is strictly positive, all bits would be shifted away,
    210   // which means that we can return 0.
    211   __ Branch(&normal_exponent, le, result_reg, Operand(zero_reg));
    212   __ mov(result_reg, zero_reg);
    213   __ Branch(&done);
    214 
    215   __ bind(&normal_exponent);
    216   const int kShiftBase = HeapNumber::kNonMantissaBitsInTopWord - 1;
    217   // Calculate shift.
    218   __ Addu(scratch, result_reg, Operand(kShiftBase + HeapNumber::kMantissaBits));
    219 
    220   // Save the sign.
    221   Register sign = result_reg;
    222   result_reg = no_reg;
    223   __ And(sign, input_high, Operand(HeapNumber::kSignMask));
    224 
    225   // On ARM shifts > 31 bits are valid and will result in zero. On MIPS we need
    226   // to check for this specific case.
    227   Label high_shift_needed, high_shift_done;
    228   __ Branch(&high_shift_needed, lt, scratch, Operand(32));
    229   __ mov(input_high, zero_reg);
    230   __ Branch(&high_shift_done);
    231   __ bind(&high_shift_needed);
    232 
    233   // Set the implicit 1 before the mantissa part in input_high.
    234   __ Or(input_high,
    235         input_high,
    236         Operand(1 << HeapNumber::kMantissaBitsInTopWord));
    237   // Shift the mantissa bits to the correct position.
    238   // We don't need to clear non-mantissa bits as they will be shifted away.
    239   // If they weren't, it would mean that the answer is in the 32bit range.
    240   __ sllv(input_high, input_high, scratch);
    241 
    242   __ bind(&high_shift_done);
    243 
    244   // Replace the shifted bits with bits from the lower mantissa word.
    245   Label pos_shift, shift_done;
    246   __ li(at, 32);
    247   __ subu(scratch, at, scratch);
    248   __ Branch(&pos_shift, ge, scratch, Operand(zero_reg));
    249 
    250   // Negate scratch.
    251   __ Subu(scratch, zero_reg, scratch);
    252   __ sllv(input_low, input_low, scratch);
    253   __ Branch(&shift_done);
    254 
    255   __ bind(&pos_shift);
    256   __ srlv(input_low, input_low, scratch);
    257 
    258   __ bind(&shift_done);
    259   __ Or(input_high, input_high, Operand(input_low));
    260   // Restore sign if necessary.
    261   __ mov(scratch, sign);
    262   result_reg = sign;
    263   sign = no_reg;
    264   __ Subu(result_reg, zero_reg, input_high);
    265   __ Movz(result_reg, input_high, scratch);
    266 
    267   __ bind(&done);
    268 
    269   __ Pop(scratch, scratch2, scratch3);
    270   __ Ret();
    271 }
    272 
    273 
    274 // Handle the case where the lhs and rhs are the same object.
    275 // Equality is almost reflexive (everything but NaN), so this is a test
    276 // for "identity and not NaN".
    277 static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
    278                                           Condition cc, Strength strength) {
    279   Label not_identical;
    280   Label heap_number, return_equal;
    281   Register exp_mask_reg = t5;
    282 
    283   __ Branch(&not_identical, ne, a0, Operand(a1));
    284 
    285   __ li(exp_mask_reg, Operand(HeapNumber::kExponentMask));
    286 
    287   // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
    288   // so we do the second best thing - test it ourselves.
    289   // They are both equal and they are not both Smis so both of them are not
    290   // Smis. If it's not a heap number, then return equal.
    291   __ GetObjectType(a0, t4, t4);
    292   if (cc == less || cc == greater) {
    293     // Call runtime on identical JSObjects.
    294     __ Branch(slow, greater, t4, Operand(FIRST_JS_RECEIVER_TYPE));
    295     // Call runtime on identical symbols since we need to throw a TypeError.
    296     __ Branch(slow, eq, t4, Operand(SYMBOL_TYPE));
    297     // Call runtime on identical SIMD values since we must throw a TypeError.
    298     __ Branch(slow, eq, t4, Operand(SIMD128_VALUE_TYPE));
    299     if (is_strong(strength)) {
    300       // Call the runtime on anything that is converted in the semantics, since
    301       // we need to throw a TypeError. Smis have already been ruled out.
    302       __ Branch(&return_equal, eq, t4, Operand(HEAP_NUMBER_TYPE));
    303       __ And(t4, t4, Operand(kIsNotStringMask));
    304       __ Branch(slow, ne, t4, Operand(zero_reg));
    305     }
    306   } else {
    307     __ Branch(&heap_number, eq, t4, Operand(HEAP_NUMBER_TYPE));
    308     // Comparing JS objects with <=, >= is complicated.
    309     if (cc != eq) {
    310     __ Branch(slow, greater, t4, Operand(FIRST_JS_RECEIVER_TYPE));
    311     // Call runtime on identical symbols since we need to throw a TypeError.
    312     __ Branch(slow, eq, t4, Operand(SYMBOL_TYPE));
    313     // Call runtime on identical SIMD values since we must throw a TypeError.
    314     __ Branch(slow, eq, t4, Operand(SIMD128_VALUE_TYPE));
    315     if (is_strong(strength)) {
    316       // Call the runtime on anything that is converted in the semantics,
    317       // since we need to throw a TypeError. Smis and heap numbers have
    318       // already been ruled out.
    319       __ And(t4, t4, Operand(kIsNotStringMask));
    320       __ Branch(slow, ne, t4, Operand(zero_reg));
    321     }
    322       // Normally here we fall through to return_equal, but undefined is
    323       // special: (undefined == undefined) == true, but
    324       // (undefined <= undefined) == false!  See ECMAScript 11.8.5.
    325       if (cc == less_equal || cc == greater_equal) {
    326         __ Branch(&return_equal, ne, t4, Operand(ODDBALL_TYPE));
    327         __ LoadRoot(t2, Heap::kUndefinedValueRootIndex);
    328         __ Branch(&return_equal, ne, a0, Operand(t2));
    329         DCHECK(is_int16(GREATER) && is_int16(LESS));
    330         __ Ret(USE_DELAY_SLOT);
    331         if (cc == le) {
    332           // undefined <= undefined should fail.
    333           __ li(v0, Operand(GREATER));
    334         } else  {
    335           // undefined >= undefined should fail.
    336           __ li(v0, Operand(LESS));
    337         }
    338       }
    339     }
    340   }
    341 
    342   __ bind(&return_equal);
    343   DCHECK(is_int16(GREATER) && is_int16(LESS));
    344   __ Ret(USE_DELAY_SLOT);
    345   if (cc == less) {
    346     __ li(v0, Operand(GREATER));  // Things aren't less than themselves.
    347   } else if (cc == greater) {
    348     __ li(v0, Operand(LESS));     // Things aren't greater than themselves.
    349   } else {
    350     __ mov(v0, zero_reg);         // Things are <=, >=, ==, === themselves.
    351   }
    352 
    353   // For less and greater we don't have to check for NaN since the result of
    354   // x < x is false regardless.  For the others here is some code to check
    355   // for NaN.
    356   if (cc != lt && cc != gt) {
    357     __ bind(&heap_number);
    358     // It is a heap number, so return non-equal if it's NaN and equal if it's
    359     // not NaN.
    360 
    361     // The representation of NaN values has all exponent bits (52..62) set,
    362     // and not all mantissa bits (0..51) clear.
    363     // Read top bits of double representation (second word of value).
    364     __ lw(t2, FieldMemOperand(a0, HeapNumber::kExponentOffset));
    365     // Test that exponent bits are all set.
    366     __ And(t3, t2, Operand(exp_mask_reg));
    367     // If all bits not set (ne cond), then not a NaN, objects are equal.
    368     __ Branch(&return_equal, ne, t3, Operand(exp_mask_reg));
    369 
    370     // Shift out flag and all exponent bits, retaining only mantissa.
    371     __ sll(t2, t2, HeapNumber::kNonMantissaBitsInTopWord);
    372     // Or with all low-bits of mantissa.
    373     __ lw(t3, FieldMemOperand(a0, HeapNumber::kMantissaOffset));
    374     __ Or(v0, t3, Operand(t2));
    375     // For equal we already have the right value in v0:  Return zero (equal)
    376     // if all bits in mantissa are zero (it's an Infinity) and non-zero if
    377     // not (it's a NaN).  For <= and >= we need to load v0 with the failing
    378     // value if it's a NaN.
    379     if (cc != eq) {
    380       // All-zero means Infinity means equal.
    381       __ Ret(eq, v0, Operand(zero_reg));
    382       DCHECK(is_int16(GREATER) && is_int16(LESS));
    383       __ Ret(USE_DELAY_SLOT);
    384       if (cc == le) {
    385         __ li(v0, Operand(GREATER));  // NaN <= NaN should fail.
    386       } else {
    387         __ li(v0, Operand(LESS));     // NaN >= NaN should fail.
    388       }
    389     }
    390   }
    391   // No fall through here.
    392 
    393   __ bind(&not_identical);
    394 }
    395 
    396 
    397 static void EmitSmiNonsmiComparison(MacroAssembler* masm,
    398                                     Register lhs,
    399                                     Register rhs,
    400                                     Label* both_loaded_as_doubles,
    401                                     Label* slow,
    402                                     bool strict) {
    403   DCHECK((lhs.is(a0) && rhs.is(a1)) ||
    404          (lhs.is(a1) && rhs.is(a0)));
    405 
    406   Label lhs_is_smi;
    407   __ JumpIfSmi(lhs, &lhs_is_smi);
    408   // Rhs is a Smi.
    409   // Check whether the non-smi is a heap number.
    410   __ GetObjectType(lhs, t4, t4);
    411   if (strict) {
    412     // If lhs was not a number and rhs was a Smi then strict equality cannot
    413     // succeed. Return non-equal (lhs is already not zero).
    414     __ Ret(USE_DELAY_SLOT, ne, t4, Operand(HEAP_NUMBER_TYPE));
    415     __ mov(v0, lhs);
    416   } else {
    417     // Smi compared non-strictly with a non-Smi non-heap-number. Call
    418     // the runtime.
    419     __ Branch(slow, ne, t4, Operand(HEAP_NUMBER_TYPE));
    420   }
    421 
    422   // Rhs is a smi, lhs is a number.
    423   // Convert smi rhs to double.
    424   __ sra(at, rhs, kSmiTagSize);
    425   __ mtc1(at, f14);
    426   __ cvt_d_w(f14, f14);
    427   __ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset));
    428 
    429   // We now have both loaded as doubles.
    430   __ jmp(both_loaded_as_doubles);
    431 
    432   __ bind(&lhs_is_smi);
    433   // Lhs is a Smi.  Check whether the non-smi is a heap number.
    434   __ GetObjectType(rhs, t4, t4);
    435   if (strict) {
    436     // If lhs was not a number and rhs was a Smi then strict equality cannot
    437     // succeed. Return non-equal.
    438     __ Ret(USE_DELAY_SLOT, ne, t4, Operand(HEAP_NUMBER_TYPE));
    439     __ li(v0, Operand(1));
    440   } else {
    441     // Smi compared non-strictly with a non-Smi non-heap-number. Call
    442     // the runtime.
    443     __ Branch(slow, ne, t4, Operand(HEAP_NUMBER_TYPE));
    444   }
    445 
    446   // Lhs is a smi, rhs is a number.
    447   // Convert smi lhs to double.
    448   __ sra(at, lhs, kSmiTagSize);
    449   __ mtc1(at, f12);
    450   __ cvt_d_w(f12, f12);
    451   __ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset));
    452   // Fall through to both_loaded_as_doubles.
    453 }
    454 
    455 
    456 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
    457                                            Register lhs,
    458                                            Register rhs) {
    459     // If either operand is a JS object or an oddball value, then they are
    460     // not equal since their pointers are different.
    461     // There is no test for undetectability in strict equality.
    462     STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
    463     Label first_non_object;
    464     // Get the type of the first operand into a2 and compare it with
    465     // FIRST_JS_RECEIVER_TYPE.
    466     __ GetObjectType(lhs, a2, a2);
    467     __ Branch(&first_non_object, less, a2, Operand(FIRST_JS_RECEIVER_TYPE));
    468 
    469     // Return non-zero.
    470     Label return_not_equal;
    471     __ bind(&return_not_equal);
    472     __ Ret(USE_DELAY_SLOT);
    473     __ li(v0, Operand(1));
    474 
    475     __ bind(&first_non_object);
    476     // Check for oddballs: true, false, null, undefined.
    477     __ Branch(&return_not_equal, eq, a2, Operand(ODDBALL_TYPE));
    478 
    479     __ GetObjectType(rhs, a3, a3);
    480     __ Branch(&return_not_equal, greater, a3, Operand(FIRST_JS_RECEIVER_TYPE));
    481 
    482     // Check for oddballs: true, false, null, undefined.
    483     __ Branch(&return_not_equal, eq, a3, Operand(ODDBALL_TYPE));
    484 
    485     // Now that we have the types we might as well check for
    486     // internalized-internalized.
    487     STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
    488     __ Or(a2, a2, Operand(a3));
    489     __ And(at, a2, Operand(kIsNotStringMask | kIsNotInternalizedMask));
    490     __ Branch(&return_not_equal, eq, at, Operand(zero_reg));
    491 }
    492 
    493 
    494 static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
    495                                        Register lhs,
    496                                        Register rhs,
    497                                        Label* both_loaded_as_doubles,
    498                                        Label* not_heap_numbers,
    499                                        Label* slow) {
    500   __ GetObjectType(lhs, a3, a2);
    501   __ Branch(not_heap_numbers, ne, a2, Operand(HEAP_NUMBER_TYPE));
    502   __ lw(a2, FieldMemOperand(rhs, HeapObject::kMapOffset));
    503   // If first was a heap number & second wasn't, go to slow case.
    504   __ Branch(slow, ne, a3, Operand(a2));
    505 
    506   // Both are heap numbers. Load them up then jump to the code we have
    507   // for that.
    508   __ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset));
    509   __ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset));
    510 
    511   __ jmp(both_loaded_as_doubles);
    512 }
    513 
    514 
    515 // Fast negative check for internalized-to-internalized equality.
    516 static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm,
    517                                                      Register lhs,
    518                                                      Register rhs,
    519                                                      Label* possible_strings,
    520                                                      Label* not_both_strings) {
    521   DCHECK((lhs.is(a0) && rhs.is(a1)) ||
    522          (lhs.is(a1) && rhs.is(a0)));
    523 
    524   // a2 is object type of rhs.
    525   Label object_test;
    526   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
    527   __ And(at, a2, Operand(kIsNotStringMask));
    528   __ Branch(&object_test, ne, at, Operand(zero_reg));
    529   __ And(at, a2, Operand(kIsNotInternalizedMask));
    530   __ Branch(possible_strings, ne, at, Operand(zero_reg));
    531   __ GetObjectType(rhs, a3, a3);
    532   __ Branch(not_both_strings, ge, a3, Operand(FIRST_NONSTRING_TYPE));
    533   __ And(at, a3, Operand(kIsNotInternalizedMask));
    534   __ Branch(possible_strings, ne, at, Operand(zero_reg));
    535 
    536   // Both are internalized strings. We already checked they weren't the same
    537   // pointer so they are not equal.
    538   __ Ret(USE_DELAY_SLOT);
    539   __ li(v0, Operand(1));   // Non-zero indicates not equal.
    540 
    541   __ bind(&object_test);
    542   __ Branch(not_both_strings, lt, a2, Operand(FIRST_JS_RECEIVER_TYPE));
    543   __ GetObjectType(rhs, a2, a3);
    544   __ Branch(not_both_strings, lt, a3, Operand(FIRST_JS_RECEIVER_TYPE));
    545 
    546   // If both objects are undetectable, they are equal.  Otherwise, they
    547   // are not equal, since they are different objects and an object is not
    548   // equal to undefined.
    549   __ lw(a3, FieldMemOperand(lhs, HeapObject::kMapOffset));
    550   __ lbu(a2, FieldMemOperand(a2, Map::kBitFieldOffset));
    551   __ lbu(a3, FieldMemOperand(a3, Map::kBitFieldOffset));
    552   __ and_(a0, a2, a3);
    553   __ And(a0, a0, Operand(1 << Map::kIsUndetectable));
    554   __ Ret(USE_DELAY_SLOT);
    555   __ xori(v0, a0, 1 << Map::kIsUndetectable);
    556 }
    557 
    558 
    559 static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input,
    560                                          Register scratch,
    561                                          CompareICState::State expected,
    562                                          Label* fail) {
    563   Label ok;
    564   if (expected == CompareICState::SMI) {
    565     __ JumpIfNotSmi(input, fail);
    566   } else if (expected == CompareICState::NUMBER) {
    567     __ JumpIfSmi(input, &ok);
    568     __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail,
    569                 DONT_DO_SMI_CHECK);
    570   }
    571   // We could be strict about internalized/string here, but as long as
    572   // hydrogen doesn't care, the stub doesn't have to care either.
    573   __ bind(&ok);
    574 }
    575 
    576 
    577 // On entry a1 and a2 are the values to be compared.
    578 // On exit a0 is 0, positive or negative to indicate the result of
    579 // the comparison.
    580 void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
    581   Register lhs = a1;
    582   Register rhs = a0;
    583   Condition cc = GetCondition();
    584 
    585   Label miss;
    586   CompareICStub_CheckInputType(masm, lhs, a2, left(), &miss);
    587   CompareICStub_CheckInputType(masm, rhs, a3, right(), &miss);
    588 
    589   Label slow;  // Call builtin.
    590   Label not_smis, both_loaded_as_doubles;
    591 
    592   Label not_two_smis, smi_done;
    593   __ Or(a2, a1, a0);
    594   __ JumpIfNotSmi(a2, &not_two_smis);
    595   __ sra(a1, a1, 1);
    596   __ sra(a0, a0, 1);
    597   __ Ret(USE_DELAY_SLOT);
    598   __ subu(v0, a1, a0);
    599   __ bind(&not_two_smis);
    600 
    601   // NOTICE! This code is only reached after a smi-fast-case check, so
    602   // it is certain that at least one operand isn't a smi.
    603 
    604   // Handle the case where the objects are identical.  Either returns the answer
    605   // or goes to slow.  Only falls through if the objects were not identical.
    606   EmitIdenticalObjectComparison(masm, &slow, cc, strength());
    607 
    608   // If either is a Smi (we know that not both are), then they can only
    609   // be strictly equal if the other is a HeapNumber.
    610   STATIC_ASSERT(kSmiTag == 0);
    611   DCHECK_EQ(static_cast<Smi*>(0), Smi::FromInt(0));
    612   __ And(t2, lhs, Operand(rhs));
    613   __ JumpIfNotSmi(t2, &not_smis, t0);
    614   // One operand is a smi. EmitSmiNonsmiComparison generates code that can:
    615   // 1) Return the answer.
    616   // 2) Go to slow.
    617   // 3) Fall through to both_loaded_as_doubles.
    618   // 4) Jump to rhs_not_nan.
    619   // In cases 3 and 4 we have found out we were dealing with a number-number
    620   // comparison and the numbers have been loaded into f12 and f14 as doubles,
    621   // or in GP registers (a0, a1, a2, a3) depending on the presence of the FPU.
    622   EmitSmiNonsmiComparison(masm, lhs, rhs,
    623                           &both_loaded_as_doubles, &slow, strict());
    624 
    625   __ bind(&both_loaded_as_doubles);
    626   // f12, f14 are the double representations of the left hand side
    627   // and the right hand side if we have FPU. Otherwise a2, a3 represent
    628   // left hand side and a0, a1 represent right hand side.
    629   Label nan;
    630   __ li(t0, Operand(LESS));
    631   __ li(t1, Operand(GREATER));
    632   __ li(t2, Operand(EQUAL));
    633 
    634   // Check if either rhs or lhs is NaN.
    635   __ BranchF(NULL, &nan, eq, f12, f14);
    636 
    637   // Check if LESS condition is satisfied. If true, move conditionally
    638   // result to v0.
    639   if (!IsMipsArchVariant(kMips32r6)) {
    640     __ c(OLT, D, f12, f14);
    641     __ Movt(v0, t0);
    642     // Use previous check to store conditionally to v0 oposite condition
    643     // (GREATER). If rhs is equal to lhs, this will be corrected in next
    644     // check.
    645     __ Movf(v0, t1);
    646     // Check if EQUAL condition is satisfied. If true, move conditionally
    647     // result to v0.
    648     __ c(EQ, D, f12, f14);
    649     __ Movt(v0, t2);
    650   } else {
    651     Label skip;
    652     __ BranchF(USE_DELAY_SLOT, &skip, NULL, lt, f12, f14);
    653     __ mov(v0, t0);  // Return LESS as result.
    654 
    655     __ BranchF(USE_DELAY_SLOT, &skip, NULL, eq, f12, f14);
    656     __ mov(v0, t2);  // Return EQUAL as result.
    657 
    658     __ mov(v0, t1);  // Return GREATER as result.
    659     __ bind(&skip);
    660   }
    661 
    662   __ Ret();
    663 
    664   __ bind(&nan);
    665   // NaN comparisons always fail.
    666   // Load whatever we need in v0 to make the comparison fail.
    667   DCHECK(is_int16(GREATER) && is_int16(LESS));
    668   __ Ret(USE_DELAY_SLOT);
    669   if (cc == lt || cc == le) {
    670     __ li(v0, Operand(GREATER));
    671   } else {
    672     __ li(v0, Operand(LESS));
    673   }
    674 
    675 
    676   __ bind(&not_smis);
    677   // At this point we know we are dealing with two different objects,
    678   // and neither of them is a Smi. The objects are in lhs_ and rhs_.
    679   if (strict()) {
    680     // This returns non-equal for some object types, or falls through if it
    681     // was not lucky.
    682     EmitStrictTwoHeapObjectCompare(masm, lhs, rhs);
    683   }
    684 
    685   Label check_for_internalized_strings;
    686   Label flat_string_check;
    687   // Check for heap-number-heap-number comparison. Can jump to slow case,
    688   // or load both doubles and jump to the code that handles
    689   // that case. If the inputs are not doubles then jumps to
    690   // check_for_internalized_strings.
    691   // In this case a2 will contain the type of lhs_.
    692   EmitCheckForTwoHeapNumbers(masm,
    693                              lhs,
    694                              rhs,
    695                              &both_loaded_as_doubles,
    696                              &check_for_internalized_strings,
    697                              &flat_string_check);
    698 
    699   __ bind(&check_for_internalized_strings);
    700   if (cc == eq && !strict()) {
    701     // Returns an answer for two internalized strings or two
    702     // detectable objects.
    703     // Otherwise jumps to string case or not both strings case.
    704     // Assumes that a2 is the type of lhs_ on entry.
    705     EmitCheckForInternalizedStringsOrObjects(
    706         masm, lhs, rhs, &flat_string_check, &slow);
    707   }
    708 
    709   // Check for both being sequential one-byte strings,
    710   // and inline if that is the case.
    711   __ bind(&flat_string_check);
    712 
    713   __ JumpIfNonSmisNotBothSequentialOneByteStrings(lhs, rhs, a2, a3, &slow);
    714 
    715   __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, a2,
    716                       a3);
    717   if (cc == eq) {
    718     StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, a2, a3, t0);
    719   } else {
    720     StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, a2, a3, t0,
    721                                                     t1);
    722   }
    723   // Never falls through to here.
    724 
    725   __ bind(&slow);
    726   // Prepare for call to builtin. Push object pointers, a0 (lhs) first,
    727   // a1 (rhs) second.
    728   __ Push(lhs, rhs);
    729   // Figure out which native to call and setup the arguments.
    730   if (cc == eq) {
    731     __ TailCallRuntime(strict() ? Runtime::kStrictEquals : Runtime::kEquals);
    732   } else {
    733     int ncr;  // NaN compare result.
    734     if (cc == lt || cc == le) {
    735       ncr = GREATER;
    736     } else {
    737       DCHECK(cc == gt || cc == ge);  // Remaining cases.
    738       ncr = LESS;
    739     }
    740     __ li(a0, Operand(Smi::FromInt(ncr)));
    741     __ push(a0);
    742 
    743     // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
    744     // tagged as a small integer.
    745     __ TailCallRuntime(is_strong(strength()) ? Runtime::kCompare_Strong
    746                                              : Runtime::kCompare);
    747   }
    748 
    749   __ bind(&miss);
    750   GenerateMiss(masm);
    751 }
    752 
    753 
    754 void StoreRegistersStateStub::Generate(MacroAssembler* masm) {
    755   __ mov(t9, ra);
    756   __ pop(ra);
    757   __ PushSafepointRegisters();
    758   __ Jump(t9);
    759 }
    760 
    761 
    762 void RestoreRegistersStateStub::Generate(MacroAssembler* masm) {
    763   __ mov(t9, ra);
    764   __ pop(ra);
    765   __ PopSafepointRegisters();
    766   __ Jump(t9);
    767 }
    768 
    769 
    770 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
    771   // We don't allow a GC during a store buffer overflow so there is no need to
    772   // store the registers in any particular way, but we do have to store and
    773   // restore them.
    774   __ MultiPush(kJSCallerSaved | ra.bit());
    775   if (save_doubles()) {
    776     __ MultiPushFPU(kCallerSavedFPU);
    777   }
    778   const int argument_count = 1;
    779   const int fp_argument_count = 0;
    780   const Register scratch = a1;
    781 
    782   AllowExternalCallThatCantCauseGC scope(masm);
    783   __ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
    784   __ li(a0, Operand(ExternalReference::isolate_address(isolate())));
    785   __ CallCFunction(
    786       ExternalReference::store_buffer_overflow_function(isolate()),
    787       argument_count);
    788   if (save_doubles()) {
    789     __ MultiPopFPU(kCallerSavedFPU);
    790   }
    791 
    792   __ MultiPop(kJSCallerSaved | ra.bit());
    793   __ Ret();
    794 }
    795 
    796 
    797 void MathPowStub::Generate(MacroAssembler* masm) {
    798   const Register base = a1;
    799   const Register exponent = MathPowTaggedDescriptor::exponent();
    800   DCHECK(exponent.is(a2));
    801   const Register heapnumbermap = t1;
    802   const Register heapnumber = v0;
    803   const DoubleRegister double_base = f2;
    804   const DoubleRegister double_exponent = f4;
    805   const DoubleRegister double_result = f0;
    806   const DoubleRegister double_scratch = f6;
    807   const FPURegister single_scratch = f8;
    808   const Register scratch = t5;
    809   const Register scratch2 = t3;
    810 
    811   Label call_runtime, done, int_exponent;
    812   if (exponent_type() == ON_STACK) {
    813     Label base_is_smi, unpack_exponent;
    814     // The exponent and base are supplied as arguments on the stack.
    815     // This can only happen if the stub is called from non-optimized code.
    816     // Load input parameters from stack to double registers.
    817     __ lw(base, MemOperand(sp, 1 * kPointerSize));
    818     __ lw(exponent, MemOperand(sp, 0 * kPointerSize));
    819 
    820     __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex);
    821 
    822     __ UntagAndJumpIfSmi(scratch, base, &base_is_smi);
    823     __ lw(scratch, FieldMemOperand(base, JSObject::kMapOffset));
    824     __ Branch(&call_runtime, ne, scratch, Operand(heapnumbermap));
    825 
    826     __ ldc1(double_base, FieldMemOperand(base, HeapNumber::kValueOffset));
    827     __ jmp(&unpack_exponent);
    828 
    829     __ bind(&base_is_smi);
    830     __ mtc1(scratch, single_scratch);
    831     __ cvt_d_w(double_base, single_scratch);
    832     __ bind(&unpack_exponent);
    833 
    834     __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
    835 
    836     __ lw(scratch, FieldMemOperand(exponent, JSObject::kMapOffset));
    837     __ Branch(&call_runtime, ne, scratch, Operand(heapnumbermap));
    838     __ ldc1(double_exponent,
    839             FieldMemOperand(exponent, HeapNumber::kValueOffset));
    840   } else if (exponent_type() == TAGGED) {
    841     // Base is already in double_base.
    842     __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
    843 
    844     __ ldc1(double_exponent,
    845             FieldMemOperand(exponent, HeapNumber::kValueOffset));
    846   }
    847 
    848   if (exponent_type() != INTEGER) {
    849     Label int_exponent_convert;
    850     // Detect integer exponents stored as double.
    851     __ EmitFPUTruncate(kRoundToMinusInf,
    852                        scratch,
    853                        double_exponent,
    854                        at,
    855                        double_scratch,
    856                        scratch2,
    857                        kCheckForInexactConversion);
    858     // scratch2 == 0 means there was no conversion error.
    859     __ Branch(&int_exponent_convert, eq, scratch2, Operand(zero_reg));
    860 
    861     if (exponent_type() == ON_STACK) {
    862       // Detect square root case.  Crankshaft detects constant +/-0.5 at
    863       // compile time and uses DoMathPowHalf instead.  We then skip this check
    864       // for non-constant cases of +/-0.5 as these hardly occur.
    865       Label not_plus_half;
    866       // Test for 0.5.
    867       __ Move(double_scratch, 0.5);
    868       __ BranchF(USE_DELAY_SLOT,
    869                  &not_plus_half,
    870                  NULL,
    871                  ne,
    872                  double_exponent,
    873                  double_scratch);
    874       // double_scratch can be overwritten in the delay slot.
    875       // Calculates square root of base.  Check for the special case of
    876       // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
    877       __ Move(double_scratch, static_cast<double>(-V8_INFINITY));
    878       __ BranchF(USE_DELAY_SLOT, &done, NULL, eq, double_base, double_scratch);
    879       __ neg_d(double_result, double_scratch);
    880 
    881       // Add +0 to convert -0 to +0.
    882       __ add_d(double_scratch, double_base, kDoubleRegZero);
    883       __ sqrt_d(double_result, double_scratch);
    884       __ jmp(&done);
    885 
    886       __ bind(&not_plus_half);
    887       __ Move(double_scratch, -0.5);
    888       __ BranchF(USE_DELAY_SLOT,
    889                  &call_runtime,
    890                  NULL,
    891                  ne,
    892                  double_exponent,
    893                  double_scratch);
    894       // double_scratch can be overwritten in the delay slot.
    895       // Calculates square root of base.  Check for the special case of
    896       // Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
    897       __ Move(double_scratch, static_cast<double>(-V8_INFINITY));
    898       __ BranchF(USE_DELAY_SLOT, &done, NULL, eq, double_base, double_scratch);
    899       __ Move(double_result, kDoubleRegZero);
    900 
    901       // Add +0 to convert -0 to +0.
    902       __ add_d(double_scratch, double_base, kDoubleRegZero);
    903       __ Move(double_result, 1.);
    904       __ sqrt_d(double_scratch, double_scratch);
    905       __ div_d(double_result, double_result, double_scratch);
    906       __ jmp(&done);
    907     }
    908 
    909     __ push(ra);
    910     {
    911       AllowExternalCallThatCantCauseGC scope(masm);
    912       __ PrepareCallCFunction(0, 2, scratch2);
    913       __ MovToFloatParameters(double_base, double_exponent);
    914       __ CallCFunction(
    915           ExternalReference::power_double_double_function(isolate()),
    916           0, 2);
    917     }
    918     __ pop(ra);
    919     __ MovFromFloatResult(double_result);
    920     __ jmp(&done);
    921 
    922     __ bind(&int_exponent_convert);
    923   }
    924 
    925   // Calculate power with integer exponent.
    926   __ bind(&int_exponent);
    927 
    928   // Get two copies of exponent in the registers scratch and exponent.
    929   if (exponent_type() == INTEGER) {
    930     __ mov(scratch, exponent);
    931   } else {
    932     // Exponent has previously been stored into scratch as untagged integer.
    933     __ mov(exponent, scratch);
    934   }
    935 
    936   __ mov_d(double_scratch, double_base);  // Back up base.
    937   __ Move(double_result, 1.0);
    938 
    939   // Get absolute value of exponent.
    940   Label positive_exponent;
    941   __ Branch(&positive_exponent, ge, scratch, Operand(zero_reg));
    942   __ Subu(scratch, zero_reg, scratch);
    943   __ bind(&positive_exponent);
    944 
    945   Label while_true, no_carry, loop_end;
    946   __ bind(&while_true);
    947 
    948   __ And(scratch2, scratch, 1);
    949 
    950   __ Branch(&no_carry, eq, scratch2, Operand(zero_reg));
    951   __ mul_d(double_result, double_result, double_scratch);
    952   __ bind(&no_carry);
    953 
    954   __ sra(scratch, scratch, 1);
    955 
    956   __ Branch(&loop_end, eq, scratch, Operand(zero_reg));
    957   __ mul_d(double_scratch, double_scratch, double_scratch);
    958 
    959   __ Branch(&while_true);
    960 
    961   __ bind(&loop_end);
    962 
    963   __ Branch(&done, ge, exponent, Operand(zero_reg));
    964   __ Move(double_scratch, 1.0);
    965   __ div_d(double_result, double_scratch, double_result);
    966   // Test whether result is zero.  Bail out to check for subnormal result.
    967   // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
    968   __ BranchF(&done, NULL, ne, double_result, kDoubleRegZero);
    969 
    970   // double_exponent may not contain the exponent value if the input was a
    971   // smi.  We set it with exponent value before bailing out.
    972   __ mtc1(exponent, single_scratch);
    973   __ cvt_d_w(double_exponent, single_scratch);
    974 
    975   // Returning or bailing out.
    976   Counters* counters = isolate()->counters();
    977   if (exponent_type() == ON_STACK) {
    978     // The arguments are still on the stack.
    979     __ bind(&call_runtime);
    980     __ TailCallRuntime(Runtime::kMathPowRT);
    981 
    982     // The stub is called from non-optimized code, which expects the result
    983     // as heap number in exponent.
    984     __ bind(&done);
    985     __ AllocateHeapNumber(
    986         heapnumber, scratch, scratch2, heapnumbermap, &call_runtime);
    987     __ sdc1(double_result,
    988             FieldMemOperand(heapnumber, HeapNumber::kValueOffset));
    989     DCHECK(heapnumber.is(v0));
    990     __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
    991     __ DropAndRet(2);
    992   } else {
    993     __ push(ra);
    994     {
    995       AllowExternalCallThatCantCauseGC scope(masm);
    996       __ PrepareCallCFunction(0, 2, scratch);
    997       __ MovToFloatParameters(double_base, double_exponent);
    998       __ CallCFunction(
    999           ExternalReference::power_double_double_function(isolate()),
   1000           0, 2);
   1001     }
   1002     __ pop(ra);
   1003     __ MovFromFloatResult(double_result);
   1004 
   1005     __ bind(&done);
   1006     __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
   1007     __ Ret();
   1008   }
   1009 }
   1010 
   1011 
   1012 bool CEntryStub::NeedsImmovableCode() {
   1013   return true;
   1014 }
   1015 
   1016 
   1017 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
   1018   CEntryStub::GenerateAheadOfTime(isolate);
   1019   StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
   1020   StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
   1021   ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
   1022   CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
   1023   CreateWeakCellStub::GenerateAheadOfTime(isolate);
   1024   BinaryOpICStub::GenerateAheadOfTime(isolate);
   1025   StoreRegistersStateStub::GenerateAheadOfTime(isolate);
   1026   RestoreRegistersStateStub::GenerateAheadOfTime(isolate);
   1027   BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
   1028   StoreFastElementStub::GenerateAheadOfTime(isolate);
   1029   TypeofStub::GenerateAheadOfTime(isolate);
   1030 }
   1031 
   1032 
   1033 void StoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
   1034   StoreRegistersStateStub stub(isolate);
   1035   stub.GetCode();
   1036 }
   1037 
   1038 
   1039 void RestoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
   1040   RestoreRegistersStateStub stub(isolate);
   1041   stub.GetCode();
   1042 }
   1043 
   1044 
   1045 void CodeStub::GenerateFPStubs(Isolate* isolate) {
   1046   // Generate if not already in cache.
   1047   SaveFPRegsMode mode = kSaveFPRegs;
   1048   CEntryStub(isolate, 1, mode).GetCode();
   1049   StoreBufferOverflowStub(isolate, mode).GetCode();
   1050   isolate->set_fp_stubs_generated(true);
   1051 }
   1052 
   1053 
   1054 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
   1055   CEntryStub stub(isolate, 1, kDontSaveFPRegs);
   1056   stub.GetCode();
   1057 }
   1058 
   1059 
   1060 void CEntryStub::Generate(MacroAssembler* masm) {
   1061   // Called from JavaScript; parameters are on stack as if calling JS function
   1062   // a0: number of arguments including receiver
   1063   // a1: pointer to builtin function
   1064   // fp: frame pointer    (restored after C call)
   1065   // sp: stack pointer    (restored as callee's sp after C call)
   1066   // cp: current context  (C callee-saved)
   1067   //
   1068   // If argv_in_register():
   1069   // a2: pointer to the first argument
   1070 
   1071   ProfileEntryHookStub::MaybeCallEntryHook(masm);
   1072 
   1073   if (argv_in_register()) {
   1074     // Move argv into the correct register.
   1075     __ mov(s1, a2);
   1076   } else {
   1077     // Compute the argv pointer in a callee-saved register.
   1078     __ sll(s1, a0, kPointerSizeLog2);
   1079     __ Addu(s1, sp, s1);
   1080     __ Subu(s1, s1, kPointerSize);
   1081   }
   1082 
   1083   // Enter the exit frame that transitions from JavaScript to C++.
   1084   FrameScope scope(masm, StackFrame::MANUAL);
   1085   __ EnterExitFrame(save_doubles());
   1086 
   1087   // s0: number of arguments  including receiver (C callee-saved)
   1088   // s1: pointer to first argument (C callee-saved)
   1089   // s2: pointer to builtin function (C callee-saved)
   1090 
   1091   // Prepare arguments for C routine.
   1092   // a0 = argc
   1093   __ mov(s0, a0);
   1094   __ mov(s2, a1);
   1095   // a1 = argv (set in the delay slot after find_ra below).
   1096 
   1097   // We are calling compiled C/C++ code. a0 and a1 hold our two arguments. We
   1098   // also need to reserve the 4 argument slots on the stack.
   1099 
   1100   __ AssertStackIsAligned();
   1101 
   1102   __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
   1103 
   1104   // To let the GC traverse the return address of the exit frames, we need to
   1105   // know where the return address is. The CEntryStub is unmovable, so
   1106   // we can store the address on the stack to be able to find it again and
   1107   // we never have to restore it, because it will not change.
   1108   { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm);
   1109     // This branch-and-link sequence is needed to find the current PC on mips,
   1110     // saved to the ra register.
   1111     // Use masm-> here instead of the double-underscore macro since extra
   1112     // coverage code can interfere with the proper calculation of ra.
   1113     Label find_ra;
   1114     masm->bal(&find_ra);  // bal exposes branch delay slot.
   1115     masm->mov(a1, s1);
   1116     masm->bind(&find_ra);
   1117 
   1118     // Adjust the value in ra to point to the correct return location, 2nd
   1119     // instruction past the real call into C code (the jalr(t9)), and push it.
   1120     // This is the return address of the exit frame.
   1121     const int kNumInstructionsToJump = 5;
   1122     masm->Addu(ra, ra, kNumInstructionsToJump * kPointerSize);
   1123     masm->sw(ra, MemOperand(sp));  // This spot was reserved in EnterExitFrame.
   1124     // Stack space reservation moved to the branch delay slot below.
   1125     // Stack is still aligned.
   1126 
   1127     // Call the C routine.
   1128     masm->mov(t9, s2);  // Function pointer to t9 to conform to ABI for PIC.
   1129     masm->jalr(t9);
   1130     // Set up sp in the delay slot.
   1131     masm->addiu(sp, sp, -kCArgsSlotsSize);
   1132     // Make sure the stored 'ra' points to this position.
   1133     DCHECK_EQ(kNumInstructionsToJump,
   1134               masm->InstructionsGeneratedSince(&find_ra));
   1135   }
   1136 
   1137 
   1138   // Check result for exception sentinel.
   1139   Label exception_returned;
   1140   __ LoadRoot(t0, Heap::kExceptionRootIndex);
   1141   __ Branch(&exception_returned, eq, t0, Operand(v0));
   1142 
   1143   // Check that there is no pending exception, otherwise we
   1144   // should have returned the exception sentinel.
   1145   if (FLAG_debug_code) {
   1146     Label okay;
   1147     ExternalReference pending_exception_address(
   1148         Isolate::kPendingExceptionAddress, isolate());
   1149     __ li(a2, Operand(pending_exception_address));
   1150     __ lw(a2, MemOperand(a2));
   1151     __ LoadRoot(t0, Heap::kTheHoleValueRootIndex);
   1152     // Cannot use check here as it attempts to generate call into runtime.
   1153     __ Branch(&okay, eq, t0, Operand(a2));
   1154     __ stop("Unexpected pending exception");
   1155     __ bind(&okay);
   1156   }
   1157 
   1158   // Exit C frame and return.
   1159   // v0:v1: result
   1160   // sp: stack pointer
   1161   // fp: frame pointer
   1162   Register argc;
   1163   if (argv_in_register()) {
   1164     // We don't want to pop arguments so set argc to no_reg.
   1165     argc = no_reg;
   1166   } else {
   1167     // s0: still holds argc (callee-saved).
   1168     argc = s0;
   1169   }
   1170   __ LeaveExitFrame(save_doubles(), argc, true, EMIT_RETURN);
   1171 
   1172   // Handling of exception.
   1173   __ bind(&exception_returned);
   1174 
   1175   ExternalReference pending_handler_context_address(
   1176       Isolate::kPendingHandlerContextAddress, isolate());
   1177   ExternalReference pending_handler_code_address(
   1178       Isolate::kPendingHandlerCodeAddress, isolate());
   1179   ExternalReference pending_handler_offset_address(
   1180       Isolate::kPendingHandlerOffsetAddress, isolate());
   1181   ExternalReference pending_handler_fp_address(
   1182       Isolate::kPendingHandlerFPAddress, isolate());
   1183   ExternalReference pending_handler_sp_address(
   1184       Isolate::kPendingHandlerSPAddress, isolate());
   1185 
   1186   // Ask the runtime for help to determine the handler. This will set v0 to
   1187   // contain the current pending exception, don't clobber it.
   1188   ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
   1189                                  isolate());
   1190   {
   1191     FrameScope scope(masm, StackFrame::MANUAL);
   1192     __ PrepareCallCFunction(3, 0, a0);
   1193     __ mov(a0, zero_reg);
   1194     __ mov(a1, zero_reg);
   1195     __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
   1196     __ CallCFunction(find_handler, 3);
   1197   }
   1198 
   1199   // Retrieve the handler context, SP and FP.
   1200   __ li(cp, Operand(pending_handler_context_address));
   1201   __ lw(cp, MemOperand(cp));
   1202   __ li(sp, Operand(pending_handler_sp_address));
   1203   __ lw(sp, MemOperand(sp));
   1204   __ li(fp, Operand(pending_handler_fp_address));
   1205   __ lw(fp, MemOperand(fp));
   1206 
   1207   // If the handler is a JS frame, restore the context to the frame. Note that
   1208   // the context will be set to (cp == 0) for non-JS frames.
   1209   Label zero;
   1210   __ Branch(&zero, eq, cp, Operand(zero_reg));
   1211   __ sw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
   1212   __ bind(&zero);
   1213 
   1214   // Compute the handler entry address and jump to it.
   1215   __ li(a1, Operand(pending_handler_code_address));
   1216   __ lw(a1, MemOperand(a1));
   1217   __ li(a2, Operand(pending_handler_offset_address));
   1218   __ lw(a2, MemOperand(a2));
   1219   __ Addu(a1, a1, Operand(Code::kHeaderSize - kHeapObjectTag));
   1220   __ Addu(t9, a1, a2);
   1221   __ Jump(t9);
   1222 }
   1223 
   1224 
   1225 void JSEntryStub::Generate(MacroAssembler* masm) {
   1226   Label invoke, handler_entry, exit;
   1227   Isolate* isolate = masm->isolate();
   1228 
   1229   // Registers:
   1230   // a0: entry address
   1231   // a1: function
   1232   // a2: receiver
   1233   // a3: argc
   1234   //
   1235   // Stack:
   1236   // 4 args slots
   1237   // args
   1238 
   1239   ProfileEntryHookStub::MaybeCallEntryHook(masm);
   1240 
   1241   // Save callee saved registers on the stack.
   1242   __ MultiPush(kCalleeSaved | ra.bit());
   1243 
   1244   // Save callee-saved FPU registers.
   1245   __ MultiPushFPU(kCalleeSavedFPU);
   1246   // Set up the reserved register for 0.0.
   1247   __ Move(kDoubleRegZero, 0.0);
   1248 
   1249 
   1250   // Load argv in s0 register.
   1251   int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize;
   1252   offset_to_argv += kNumCalleeSavedFPU * kDoubleSize;
   1253 
   1254   __ InitializeRootRegister();
   1255   __ lw(s0, MemOperand(sp, offset_to_argv + kCArgsSlotsSize));
   1256 
   1257   // We build an EntryFrame.
   1258   __ li(t3, Operand(-1));  // Push a bad frame pointer to fail if it is used.
   1259   int marker = type();
   1260   __ li(t2, Operand(Smi::FromInt(marker)));
   1261   __ li(t1, Operand(Smi::FromInt(marker)));
   1262   __ li(t0, Operand(ExternalReference(Isolate::kCEntryFPAddress,
   1263                                       isolate)));
   1264   __ lw(t0, MemOperand(t0));
   1265   __ Push(t3, t2, t1, t0);
   1266   // Set up frame pointer for the frame to be pushed.
   1267   __ addiu(fp, sp, -EntryFrameConstants::kCallerFPOffset);
   1268 
   1269   // Registers:
   1270   // a0: entry_address
   1271   // a1: function
   1272   // a2: receiver_pointer
   1273   // a3: argc
   1274   // s0: argv
   1275   //
   1276   // Stack:
   1277   // caller fp          |
   1278   // function slot      | entry frame
   1279   // context slot       |
   1280   // bad fp (0xff...f)  |
   1281   // callee saved registers + ra
   1282   // 4 args slots
   1283   // args
   1284 
   1285   // If this is the outermost JS call, set js_entry_sp value.
   1286   Label non_outermost_js;
   1287   ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate);
   1288   __ li(t1, Operand(ExternalReference(js_entry_sp)));
   1289   __ lw(t2, MemOperand(t1));
   1290   __ Branch(&non_outermost_js, ne, t2, Operand(zero_reg));
   1291   __ sw(fp, MemOperand(t1));
   1292   __ li(t0, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
   1293   Label cont;
   1294   __ b(&cont);
   1295   __ nop();   // Branch delay slot nop.
   1296   __ bind(&non_outermost_js);
   1297   __ li(t0, Operand(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
   1298   __ bind(&cont);
   1299   __ push(t0);
   1300 
   1301   // Jump to a faked try block that does the invoke, with a faked catch
   1302   // block that sets the pending exception.
   1303   __ jmp(&invoke);
   1304   __ bind(&handler_entry);
   1305   handler_offset_ = handler_entry.pos();
   1306   // Caught exception: Store result (exception) in the pending exception
   1307   // field in the JSEnv and return a failure sentinel.  Coming in here the
   1308   // fp will be invalid because the PushStackHandler below sets it to 0 to
   1309   // signal the existence of the JSEntry frame.
   1310   __ li(t0, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
   1311                                       isolate)));
   1312   __ sw(v0, MemOperand(t0));  // We come back from 'invoke'. result is in v0.
   1313   __ LoadRoot(v0, Heap::kExceptionRootIndex);
   1314   __ b(&exit);  // b exposes branch delay slot.
   1315   __ nop();   // Branch delay slot nop.
   1316 
   1317   // Invoke: Link this frame into the handler chain.
   1318   __ bind(&invoke);
   1319   __ PushStackHandler();
   1320   // If an exception not caught by another handler occurs, this handler
   1321   // returns control to the code after the bal(&invoke) above, which
   1322   // restores all kCalleeSaved registers (including cp and fp) to their
   1323   // saved values before returning a failure to C.
   1324 
   1325   // Clear any pending exceptions.
   1326   __ LoadRoot(t1, Heap::kTheHoleValueRootIndex);
   1327   __ li(t0, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
   1328                                       isolate)));
   1329   __ sw(t1, MemOperand(t0));
   1330 
   1331   // Invoke the function by calling through JS entry trampoline builtin.
   1332   // Notice that we cannot store a reference to the trampoline code directly in
   1333   // this stub, because runtime stubs are not traversed when doing GC.
   1334 
   1335   // Registers:
   1336   // a0: entry_address
   1337   // a1: function
   1338   // a2: receiver_pointer
   1339   // a3: argc
   1340   // s0: argv
   1341   //
   1342   // Stack:
   1343   // handler frame
   1344   // entry frame
   1345   // callee saved registers + ra
   1346   // 4 args slots
   1347   // args
   1348 
   1349   if (type() == StackFrame::ENTRY_CONSTRUCT) {
   1350     ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
   1351                                       isolate);
   1352     __ li(t0, Operand(construct_entry));
   1353   } else {
   1354     ExternalReference entry(Builtins::kJSEntryTrampoline, masm->isolate());
   1355     __ li(t0, Operand(entry));
   1356   }
   1357   __ lw(t9, MemOperand(t0));  // Deref address.
   1358 
   1359   // Call JSEntryTrampoline.
   1360   __ addiu(t9, t9, Code::kHeaderSize - kHeapObjectTag);
   1361   __ Call(t9);
   1362 
   1363   // Unlink this frame from the handler chain.
   1364   __ PopStackHandler();
   1365 
   1366   __ bind(&exit);  // v0 holds result
   1367   // Check if the current stack frame is marked as the outermost JS frame.
   1368   Label non_outermost_js_2;
   1369   __ pop(t1);
   1370   __ Branch(&non_outermost_js_2,
   1371             ne,
   1372             t1,
   1373             Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
   1374   __ li(t1, Operand(ExternalReference(js_entry_sp)));
   1375   __ sw(zero_reg, MemOperand(t1));
   1376   __ bind(&non_outermost_js_2);
   1377 
   1378   // Restore the top frame descriptors from the stack.
   1379   __ pop(t1);
   1380   __ li(t0, Operand(ExternalReference(Isolate::kCEntryFPAddress,
   1381                                       isolate)));
   1382   __ sw(t1, MemOperand(t0));
   1383 
   1384   // Reset the stack to the callee saved registers.
   1385   __ addiu(sp, sp, -EntryFrameConstants::kCallerFPOffset);
   1386 
   1387   // Restore callee-saved fpu registers.
   1388   __ MultiPopFPU(kCalleeSavedFPU);
   1389 
   1390   // Restore callee saved registers from the stack.
   1391   __ MultiPop(kCalleeSaved | ra.bit());
   1392   // Return.
   1393   __ Jump(ra);
   1394 }
   1395 
   1396 
   1397 void LoadIndexedStringStub::Generate(MacroAssembler* masm) {
   1398   // Return address is in ra.
   1399   Label miss;
   1400 
   1401   Register receiver = LoadDescriptor::ReceiverRegister();
   1402   Register index = LoadDescriptor::NameRegister();
   1403   Register scratch = t1;
   1404   Register result = v0;
   1405   DCHECK(!scratch.is(receiver) && !scratch.is(index));
   1406   DCHECK(!scratch.is(LoadWithVectorDescriptor::VectorRegister()));
   1407 
   1408   StringCharAtGenerator char_at_generator(receiver, index, scratch, result,
   1409                                           &miss,  // When not a string.
   1410                                           &miss,  // When not a number.
   1411                                           &miss,  // When index out of range.
   1412                                           STRING_INDEX_IS_ARRAY_INDEX,
   1413                                           RECEIVER_IS_STRING);
   1414   char_at_generator.GenerateFast(masm);
   1415   __ Ret();
   1416 
   1417   StubRuntimeCallHelper call_helper;
   1418   char_at_generator.GenerateSlow(masm, PART_OF_IC_HANDLER, call_helper);
   1419 
   1420   __ bind(&miss);
   1421   PropertyAccessCompiler::TailCallBuiltin(
   1422       masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
   1423 }
   1424 
   1425 
   1426 void InstanceOfStub::Generate(MacroAssembler* masm) {
   1427   Register const object = a1;              // Object (lhs).
   1428   Register const function = a0;            // Function (rhs).
   1429   Register const object_map = a2;          // Map of {object}.
   1430   Register const function_map = a3;        // Map of {function}.
   1431   Register const function_prototype = t0;  // Prototype of {function}.
   1432   Register const scratch = t1;
   1433 
   1434   DCHECK(object.is(InstanceOfDescriptor::LeftRegister()));
   1435   DCHECK(function.is(InstanceOfDescriptor::RightRegister()));
   1436 
   1437   // Check if {object} is a smi.
   1438   Label object_is_smi;
   1439   __ JumpIfSmi(object, &object_is_smi);
   1440 
   1441   // Lookup the {function} and the {object} map in the global instanceof cache.
   1442   // Note: This is safe because we clear the global instanceof cache whenever
   1443   // we change the prototype of any object.
   1444   Label fast_case, slow_case;
   1445   __ lw(object_map, FieldMemOperand(object, HeapObject::kMapOffset));
   1446   __ LoadRoot(at, Heap::kInstanceofCacheFunctionRootIndex);
   1447   __ Branch(&fast_case, ne, function, Operand(at));
   1448   __ LoadRoot(at, Heap::kInstanceofCacheMapRootIndex);
   1449   __ Branch(&fast_case, ne, object_map, Operand(at));
   1450   __ Ret(USE_DELAY_SLOT);
   1451   __ LoadRoot(v0, Heap::kInstanceofCacheAnswerRootIndex);  // In delay slot.
   1452 
   1453   // If {object} is a smi we can safely return false if {function} is a JS
   1454   // function, otherwise we have to miss to the runtime and throw an exception.
   1455   __ bind(&object_is_smi);
   1456   __ JumpIfSmi(function, &slow_case);
   1457   __ GetObjectType(function, function_map, scratch);
   1458   __ Branch(&slow_case, ne, scratch, Operand(JS_FUNCTION_TYPE));
   1459   __ Ret(USE_DELAY_SLOT);
   1460   __ LoadRoot(v0, Heap::kFalseValueRootIndex);  // In delay slot.
   1461 
   1462   // Fast-case: The {function} must be a valid JSFunction.
   1463   __ bind(&fast_case);
   1464   __ JumpIfSmi(function, &slow_case);
   1465   __ GetObjectType(function, function_map, scratch);
   1466   __ Branch(&slow_case, ne, scratch, Operand(JS_FUNCTION_TYPE));
   1467 
   1468   // Ensure that {function} has an instance prototype.
   1469   __ lbu(scratch, FieldMemOperand(function_map, Map::kBitFieldOffset));
   1470   __ And(at, scratch, Operand(1 << Map::kHasNonInstancePrototype));
   1471   __ Branch(&slow_case, ne, at, Operand(zero_reg));
   1472 
   1473   // Get the "prototype" (or initial map) of the {function}.
   1474   __ lw(function_prototype,
   1475         FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
   1476   __ AssertNotSmi(function_prototype);
   1477 
   1478   // Resolve the prototype if the {function} has an initial map.  Afterwards the
   1479   // {function_prototype} will be either the JSReceiver prototype object or the
   1480   // hole value, which means that no instances of the {function} were created so
   1481   // far and hence we should return false.
   1482   Label function_prototype_valid;
   1483   __ GetObjectType(function_prototype, scratch, scratch);
   1484   __ Branch(&function_prototype_valid, ne, scratch, Operand(MAP_TYPE));
   1485   __ lw(function_prototype,
   1486         FieldMemOperand(function_prototype, Map::kPrototypeOffset));
   1487   __ bind(&function_prototype_valid);
   1488   __ AssertNotSmi(function_prototype);
   1489 
   1490   // Update the global instanceof cache with the current {object} map and
   1491   // {function}.  The cached answer will be set when it is known below.
   1492   __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
   1493   __ StoreRoot(object_map, Heap::kInstanceofCacheMapRootIndex);
   1494 
   1495   // Loop through the prototype chain looking for the {function} prototype.
   1496   // Assume true, and change to false if not found.
   1497   Register const object_instance_type = function_map;
   1498   Register const map_bit_field = function_map;
   1499   Register const null = scratch;
   1500   Register const result = v0;
   1501 
   1502   Label done, loop, fast_runtime_fallback;
   1503   __ LoadRoot(result, Heap::kTrueValueRootIndex);
   1504   __ LoadRoot(null, Heap::kNullValueRootIndex);
   1505   __ bind(&loop);
   1506 
   1507   // Check if the object needs to be access checked.
   1508   __ lbu(map_bit_field, FieldMemOperand(object_map, Map::kBitFieldOffset));
   1509   __ And(map_bit_field, map_bit_field, Operand(1 << Map::kIsAccessCheckNeeded));
   1510   __ Branch(&fast_runtime_fallback, ne, map_bit_field, Operand(zero_reg));
   1511   // Check if the current object is a Proxy.
   1512   __ lbu(object_instance_type,
   1513          FieldMemOperand(object_map, Map::kInstanceTypeOffset));
   1514   __ Branch(&fast_runtime_fallback, eq, object_instance_type,
   1515             Operand(JS_PROXY_TYPE));
   1516 
   1517   __ lw(object, FieldMemOperand(object_map, Map::kPrototypeOffset));
   1518   __ Branch(&done, eq, object, Operand(function_prototype));
   1519   __ Branch(USE_DELAY_SLOT, &loop, ne, object, Operand(null));
   1520   __ lw(object_map,
   1521         FieldMemOperand(object, HeapObject::kMapOffset));  // In delay slot.
   1522   __ LoadRoot(result, Heap::kFalseValueRootIndex);
   1523   __ bind(&done);
   1524   __ Ret(USE_DELAY_SLOT);
   1525   __ StoreRoot(result,
   1526                Heap::kInstanceofCacheAnswerRootIndex);  // In delay slot.
   1527 
   1528   // Found Proxy or access check needed: Call the runtime
   1529   __ bind(&fast_runtime_fallback);
   1530   __ Push(object, function_prototype);
   1531   // Invalidate the instanceof cache.
   1532   DCHECK(Smi::FromInt(0) == 0);
   1533   __ StoreRoot(zero_reg, Heap::kInstanceofCacheFunctionRootIndex);
   1534   __ TailCallRuntime(Runtime::kHasInPrototypeChain);
   1535 
   1536   // Slow-case: Call the %InstanceOf runtime function.
   1537   __ bind(&slow_case);
   1538   __ Push(object, function);
   1539   __ TailCallRuntime(Runtime::kInstanceOf);
   1540 }
   1541 
   1542 
   1543 void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
   1544   Label miss;
   1545   Register receiver = LoadDescriptor::ReceiverRegister();
   1546   // Ensure that the vector and slot registers won't be clobbered before
   1547   // calling the miss handler.
   1548   DCHECK(!AreAliased(t0, t1, LoadWithVectorDescriptor::VectorRegister(),
   1549                      LoadWithVectorDescriptor::SlotRegister()));
   1550 
   1551   NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, t0,
   1552                                                           t1, &miss);
   1553   __ bind(&miss);
   1554   PropertyAccessCompiler::TailCallBuiltin(
   1555       masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
   1556 }
   1557 
   1558 
   1559 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
   1560   // The displacement is the offset of the last parameter (if any)
   1561   // relative to the frame pointer.
   1562   const int kDisplacement =
   1563       StandardFrameConstants::kCallerSPOffset - kPointerSize;
   1564   DCHECK(a1.is(ArgumentsAccessReadDescriptor::index()));
   1565   DCHECK(a0.is(ArgumentsAccessReadDescriptor::parameter_count()));
   1566 
   1567   // Check that the key is a smiGenerateReadElement.
   1568   Label slow;
   1569   __ JumpIfNotSmi(a1, &slow);
   1570 
   1571   // Check if the calling frame is an arguments adaptor frame.
   1572   Label adaptor;
   1573   __ lw(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
   1574   __ lw(a3, MemOperand(a2, StandardFrameConstants::kContextOffset));
   1575   __ Branch(&adaptor,
   1576             eq,
   1577             a3,
   1578             Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
   1579 
   1580   // Check index (a1) against formal parameters count limit passed in
   1581   // through register a0. Use unsigned comparison to get negative
   1582   // check for free.
   1583   __ Branch(&slow, hs, a1, Operand(a0));
   1584 
   1585   // Read the argument from the stack and return it.
   1586   __ subu(a3, a0, a1);
   1587   __ sll(t3, a3, kPointerSizeLog2 - kSmiTagSize);
   1588   __ Addu(a3, fp, Operand(t3));
   1589   __ Ret(USE_DELAY_SLOT);
   1590   __ lw(v0, MemOperand(a3, kDisplacement));
   1591 
   1592   // Arguments adaptor case: Check index (a1) against actual arguments
   1593   // limit found in the arguments adaptor frame. Use unsigned
   1594   // comparison to get negative check for free.
   1595   __ bind(&adaptor);
   1596   __ lw(a0, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset));
   1597   __ Branch(&slow, Ugreater_equal, a1, Operand(a0));
   1598 
   1599   // Read the argument from the adaptor frame and return it.
   1600   __ subu(a3, a0, a1);
   1601   __ sll(t3, a3, kPointerSizeLog2 - kSmiTagSize);
   1602   __ Addu(a3, a2, Operand(t3));
   1603   __ Ret(USE_DELAY_SLOT);
   1604   __ lw(v0, MemOperand(a3, kDisplacement));
   1605 
   1606   // Slow-case: Handle non-smi or out-of-bounds access to arguments
   1607   // by calling the runtime system.
   1608   __ bind(&slow);
   1609   __ push(a1);
   1610   __ TailCallRuntime(Runtime::kArguments);
   1611 }
   1612 
   1613 
   1614 void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) {
   1615   // a1 : function
   1616   // a2 : number of parameters (tagged)
   1617   // a3 : parameters pointer
   1618 
   1619   DCHECK(a1.is(ArgumentsAccessNewDescriptor::function()));
   1620   DCHECK(a2.is(ArgumentsAccessNewDescriptor::parameter_count()));
   1621   DCHECK(a3.is(ArgumentsAccessNewDescriptor::parameter_pointer()));
   1622 
   1623   // Check if the calling frame is an arguments adaptor frame.
   1624   Label runtime;
   1625   __ lw(t0, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
   1626   __ lw(a0, MemOperand(t0, StandardFrameConstants::kContextOffset));
   1627   __ Branch(&runtime, ne, a0,
   1628             Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
   1629 
   1630   // Patch the arguments.length and the parameters pointer in the current frame.
   1631   __ lw(a2, MemOperand(t0, ArgumentsAdaptorFrameConstants::kLengthOffset));
   1632   __ sll(t3, a2, 1);
   1633   __ Addu(t0, t0, Operand(t3));
   1634   __ addiu(a3, t0, StandardFrameConstants::kCallerSPOffset);
   1635 
   1636   __ bind(&runtime);
   1637   __ Push(a1, a3, a2);
   1638   __ TailCallRuntime(Runtime::kNewSloppyArguments);
   1639 }
   1640 
   1641 
   1642 void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) {
   1643   // a1 : function
   1644   // a2 : number of parameters (tagged)
   1645   // a3 : parameters pointer
   1646   // Registers used over whole function:
   1647   //  t1 : arguments count (tagged)
   1648   //  t2 : mapped parameter count (tagged)
   1649 
   1650   DCHECK(a1.is(ArgumentsAccessNewDescriptor::function()));
   1651   DCHECK(a2.is(ArgumentsAccessNewDescriptor::parameter_count()));
   1652   DCHECK(a3.is(ArgumentsAccessNewDescriptor::parameter_pointer()));
   1653 
   1654   // Check if the calling frame is an arguments adaptor frame.
   1655   Label adaptor_frame, try_allocate, runtime;
   1656   __ lw(t0, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
   1657   __ lw(a0, MemOperand(t0, StandardFrameConstants::kContextOffset));
   1658   __ Branch(&adaptor_frame, eq, a0,
   1659             Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
   1660 
   1661   // No adaptor, parameter count = argument count.
   1662   __ mov(t1, a2);
   1663   __ Branch(USE_DELAY_SLOT, &try_allocate);
   1664   __ mov(t2, a2);  // In delay slot.
   1665 
   1666   // We have an adaptor frame. Patch the parameters pointer.
   1667   __ bind(&adaptor_frame);
   1668   __ lw(t1, MemOperand(t0, ArgumentsAdaptorFrameConstants::kLengthOffset));
   1669   __ sll(t6, t1, 1);
   1670   __ Addu(t0, t0, Operand(t6));
   1671   __ Addu(a3, t0, Operand(StandardFrameConstants::kCallerSPOffset));
   1672 
   1673   // t1 = argument count (tagged)
   1674   // t2 = parameter count (tagged)
   1675   // Compute the mapped parameter count = min(t2, t1) in t2.
   1676   __ mov(t2, a2);
   1677   __ Branch(&try_allocate, le, t2, Operand(t1));
   1678   __ mov(t2, t1);
   1679 
   1680   __ bind(&try_allocate);
   1681 
   1682   // Compute the sizes of backing store, parameter map, and arguments object.
   1683   // 1. Parameter map, has 2 extra words containing context and backing store.
   1684   const int kParameterMapHeaderSize =
   1685       FixedArray::kHeaderSize + 2 * kPointerSize;
   1686   // If there are no mapped parameters, we do not need the parameter_map.
   1687   Label param_map_size;
   1688   DCHECK_EQ(static_cast<Smi*>(0), Smi::FromInt(0));
   1689   __ Branch(USE_DELAY_SLOT, &param_map_size, eq, t2, Operand(zero_reg));
   1690   __ mov(t5, zero_reg);  // In delay slot: param map size = 0 when t2 == 0.
   1691   __ sll(t5, t2, 1);
   1692   __ addiu(t5, t5, kParameterMapHeaderSize);
   1693   __ bind(&param_map_size);
   1694 
   1695   // 2. Backing store.
   1696   __ sll(t6, t1, 1);
   1697   __ Addu(t5, t5, Operand(t6));
   1698   __ Addu(t5, t5, Operand(FixedArray::kHeaderSize));
   1699 
   1700   // 3. Arguments object.
   1701   __ Addu(t5, t5, Operand(Heap::kSloppyArgumentsObjectSize));
   1702 
   1703   // Do the allocation of all three objects in one go.
   1704   __ Allocate(t5, v0, t5, t0, &runtime, TAG_OBJECT);
   1705 
   1706   // v0 = address of new object(s) (tagged)
   1707   // a2 = argument count (smi-tagged)
   1708   // Get the arguments boilerplate from the current native context into t0.
   1709   const int kNormalOffset =
   1710       Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX);
   1711   const int kAliasedOffset =
   1712       Context::SlotOffset(Context::FAST_ALIASED_ARGUMENTS_MAP_INDEX);
   1713 
   1714   __ lw(t0, NativeContextMemOperand());
   1715   Label skip2_ne, skip2_eq;
   1716   __ Branch(&skip2_ne, ne, t2, Operand(zero_reg));
   1717   __ lw(t0, MemOperand(t0, kNormalOffset));
   1718   __ bind(&skip2_ne);
   1719 
   1720   __ Branch(&skip2_eq, eq, t2, Operand(zero_reg));
   1721   __ lw(t0, MemOperand(t0, kAliasedOffset));
   1722   __ bind(&skip2_eq);
   1723 
   1724   // v0 = address of new object (tagged)
   1725   // a2 = argument count (smi-tagged)
   1726   // t0 = address of arguments map (tagged)
   1727   // t2 = mapped parameter count (tagged)
   1728   __ sw(t0, FieldMemOperand(v0, JSObject::kMapOffset));
   1729   __ LoadRoot(t5, Heap::kEmptyFixedArrayRootIndex);
   1730   __ sw(t5, FieldMemOperand(v0, JSObject::kPropertiesOffset));
   1731   __ sw(t5, FieldMemOperand(v0, JSObject::kElementsOffset));
   1732 
   1733   // Set up the callee in-object property.
   1734   STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
   1735   __ AssertNotSmi(a1);
   1736   const int kCalleeOffset = JSObject::kHeaderSize +
   1737       Heap::kArgumentsCalleeIndex * kPointerSize;
   1738   __ sw(a1, FieldMemOperand(v0, kCalleeOffset));
   1739 
   1740   // Use the length (smi tagged) and set that as an in-object property too.
   1741   __ AssertSmi(t1);
   1742   STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
   1743   const int kLengthOffset = JSObject::kHeaderSize +
   1744       Heap::kArgumentsLengthIndex * kPointerSize;
   1745   __ sw(t1, FieldMemOperand(v0, kLengthOffset));
   1746 
   1747   // Set up the elements pointer in the allocated arguments object.
   1748   // If we allocated a parameter map, t0 will point there, otherwise
   1749   // it will point to the backing store.
   1750   __ Addu(t0, v0, Operand(Heap::kSloppyArgumentsObjectSize));
   1751   __ sw(t0, FieldMemOperand(v0, JSObject::kElementsOffset));
   1752 
   1753   // v0 = address of new object (tagged)
   1754   // a2 = argument count (tagged)
   1755   // t0 = address of parameter map or backing store (tagged)
   1756   // t2 = mapped parameter count (tagged)
   1757   // Initialize parameter map. If there are no mapped arguments, we're done.
   1758   Label skip_parameter_map;
   1759   Label skip3;
   1760   __ Branch(&skip3, ne, t2, Operand(Smi::FromInt(0)));
   1761   // Move backing store address to a1, because it is
   1762   // expected there when filling in the unmapped arguments.
   1763   __ mov(a1, t0);
   1764   __ bind(&skip3);
   1765 
   1766   __ Branch(&skip_parameter_map, eq, t2, Operand(Smi::FromInt(0)));
   1767 
   1768   __ LoadRoot(t1, Heap::kSloppyArgumentsElementsMapRootIndex);
   1769   __ sw(t1, FieldMemOperand(t0, FixedArray::kMapOffset));
   1770   __ Addu(t1, t2, Operand(Smi::FromInt(2)));
   1771   __ sw(t1, FieldMemOperand(t0, FixedArray::kLengthOffset));
   1772   __ sw(cp, FieldMemOperand(t0, FixedArray::kHeaderSize + 0 * kPointerSize));
   1773   __ sll(t6, t2, 1);
   1774   __ Addu(t1, t0, Operand(t6));
   1775   __ Addu(t1, t1, Operand(kParameterMapHeaderSize));
   1776   __ sw(t1, FieldMemOperand(t0, FixedArray::kHeaderSize + 1 * kPointerSize));
   1777 
   1778   // Copy the parameter slots and the holes in the arguments.
   1779   // We need to fill in mapped_parameter_count slots. They index the context,
   1780   // where parameters are stored in reverse order, at
   1781   //   MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
   1782   // The mapped parameter thus need to get indices
   1783   //   MIN_CONTEXT_SLOTS+parameter_count-1 ..
   1784   //       MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
   1785   // We loop from right to left.
   1786   Label parameters_loop, parameters_test;
   1787   __ mov(t1, t2);
   1788   __ Addu(t5, a2, Operand(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
   1789   __ Subu(t5, t5, Operand(t2));
   1790   __ LoadRoot(t3, Heap::kTheHoleValueRootIndex);
   1791   __ sll(t6, t1, 1);
   1792   __ Addu(a1, t0, Operand(t6));
   1793   __ Addu(a1, a1, Operand(kParameterMapHeaderSize));
   1794 
   1795   // a1 = address of backing store (tagged)
   1796   // t0 = address of parameter map (tagged)
   1797   // a0 = temporary scratch (a.o., for address calculation)
   1798   // t1 = loop variable (tagged)
   1799   // t3 = the hole value
   1800   __ jmp(&parameters_test);
   1801 
   1802   __ bind(&parameters_loop);
   1803   __ Subu(t1, t1, Operand(Smi::FromInt(1)));
   1804   __ sll(a0, t1, 1);
   1805   __ Addu(a0, a0, Operand(kParameterMapHeaderSize - kHeapObjectTag));
   1806   __ Addu(t6, t0, a0);
   1807   __ sw(t5, MemOperand(t6));
   1808   __ Subu(a0, a0, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize));
   1809   __ Addu(t6, a1, a0);
   1810   __ sw(t3, MemOperand(t6));
   1811   __ Addu(t5, t5, Operand(Smi::FromInt(1)));
   1812   __ bind(&parameters_test);
   1813   __ Branch(&parameters_loop, ne, t1, Operand(Smi::FromInt(0)));
   1814 
   1815   // t1 = argument count (tagged).
   1816   __ lw(t1, FieldMemOperand(v0, kLengthOffset));
   1817 
   1818   __ bind(&skip_parameter_map);
   1819   // v0 = address of new object (tagged)
   1820   // a1 = address of backing store (tagged)
   1821   // t1 = argument count (tagged)
   1822   // t2 = mapped parameter count (tagged)
   1823   // t5 = scratch
   1824   // Copy arguments header and remaining slots (if there are any).
   1825   __ LoadRoot(t5, Heap::kFixedArrayMapRootIndex);
   1826   __ sw(t5, FieldMemOperand(a1, FixedArray::kMapOffset));
   1827   __ sw(t1, FieldMemOperand(a1, FixedArray::kLengthOffset));
   1828 
   1829   Label arguments_loop, arguments_test;
   1830   __ sll(t6, t2, 1);
   1831   __ Subu(a3, a3, Operand(t6));
   1832   __ jmp(&arguments_test);
   1833 
   1834   __ bind(&arguments_loop);
   1835   __ Subu(a3, a3, Operand(kPointerSize));
   1836   __ lw(t0, MemOperand(a3, 0));
   1837   __ sll(t6, t2, 1);
   1838   __ Addu(t5, a1, Operand(t6));
   1839   __ sw(t0, FieldMemOperand(t5, FixedArray::kHeaderSize));
   1840   __ Addu(t2, t2, Operand(Smi::FromInt(1)));
   1841 
   1842   __ bind(&arguments_test);
   1843   __ Branch(&arguments_loop, lt, t2, Operand(t1));
   1844 
   1845   // Return.
   1846   __ Ret();
   1847 
   1848   // Do the runtime call to allocate the arguments object.
   1849   // t1 = argument count (tagged)
   1850   __ bind(&runtime);
   1851   __ Push(a1, a3, t1);
   1852   __ TailCallRuntime(Runtime::kNewSloppyArguments);
   1853 }
   1854 
   1855 
   1856 void LoadIndexedInterceptorStub::Generate(MacroAssembler* masm) {
   1857   // Return address is in ra.
   1858   Label slow;
   1859 
   1860   Register receiver = LoadDescriptor::ReceiverRegister();
   1861   Register key = LoadDescriptor::NameRegister();
   1862 
   1863   // Check that the key is an array index, that is Uint32.
   1864   __ And(t0, key, Operand(kSmiTagMask | kSmiSignMask));
   1865   __ Branch(&slow, ne, t0, Operand(zero_reg));
   1866 
   1867   // Everything is fine, call runtime.
   1868   __ Push(receiver, key);  // Receiver, key.
   1869 
   1870   // Perform tail call to the entry.
   1871   __ TailCallRuntime(Runtime::kLoadElementWithInterceptor);
   1872 
   1873   __ bind(&slow);
   1874   PropertyAccessCompiler::TailCallBuiltin(
   1875       masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
   1876 }
   1877 
   1878 
   1879 void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
   1880   // a1 : function
   1881   // a2 : number of parameters (tagged)
   1882   // a3 : parameters pointer
   1883 
   1884   DCHECK(a1.is(ArgumentsAccessNewDescriptor::function()));
   1885   DCHECK(a2.is(ArgumentsAccessNewDescriptor::parameter_count()));
   1886   DCHECK(a3.is(ArgumentsAccessNewDescriptor::parameter_pointer()));
   1887 
   1888   // Check if the calling frame is an arguments adaptor frame.
   1889   Label try_allocate, runtime;
   1890   __ lw(t0, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
   1891   __ lw(a0, MemOperand(t0, StandardFrameConstants::kContextOffset));
   1892   __ Branch(&try_allocate, ne, a0,
   1893             Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
   1894 
   1895   // Patch the arguments.length and the parameters pointer.
   1896   __ lw(a2, MemOperand(t0, ArgumentsAdaptorFrameConstants::kLengthOffset));
   1897   __ sll(at, a2, kPointerSizeLog2 - kSmiTagSize);
   1898   __ Addu(t0, t0, Operand(at));
   1899   __ Addu(a3, t0, Operand(StandardFrameConstants::kCallerSPOffset));
   1900 
   1901   // Try the new space allocation. Start out with computing the size
   1902   // of the arguments object and the elements array in words.
   1903   Label add_arguments_object;
   1904   __ bind(&try_allocate);
   1905   __ SmiUntag(t5, a2);
   1906   __ Branch(&add_arguments_object, eq, a2, Operand(zero_reg));
   1907 
   1908   __ Addu(t5, t5, Operand(FixedArray::kHeaderSize / kPointerSize));
   1909   __ bind(&add_arguments_object);
   1910   __ Addu(t5, t5, Operand(Heap::kStrictArgumentsObjectSize / kPointerSize));
   1911 
   1912   // Do the allocation of both objects in one go.
   1913   __ Allocate(t5, v0, t0, t1, &runtime,
   1914               static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
   1915 
   1916   // Get the arguments boilerplate from the current native context.
   1917   __ LoadNativeContextSlot(Context::STRICT_ARGUMENTS_MAP_INDEX, t0);
   1918 
   1919   __ sw(t0, FieldMemOperand(v0, JSObject::kMapOffset));
   1920   __ LoadRoot(t1, Heap::kEmptyFixedArrayRootIndex);
   1921   __ sw(t1, FieldMemOperand(v0, JSObject::kPropertiesOffset));
   1922   __ sw(t1, FieldMemOperand(v0, JSObject::kElementsOffset));
   1923 
   1924   // Get the length (smi tagged) and set that as an in-object property too.
   1925   STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
   1926   __ AssertSmi(a2);
   1927   __ sw(a2,
   1928         FieldMemOperand(v0, JSObject::kHeaderSize +
   1929                                 Heap::kArgumentsLengthIndex * kPointerSize));
   1930 
   1931   Label done;
   1932   __ Branch(&done, eq, a2, Operand(zero_reg));
   1933 
   1934   // Set up the elements pointer in the allocated arguments object and
   1935   // initialize the header in the elements fixed array.
   1936   __ Addu(t0, v0, Operand(Heap::kStrictArgumentsObjectSize));
   1937   __ sw(t0, FieldMemOperand(v0, JSObject::kElementsOffset));
   1938   __ LoadRoot(t1, Heap::kFixedArrayMapRootIndex);
   1939   __ sw(t1, FieldMemOperand(t0, FixedArray::kMapOffset));
   1940   __ sw(a2, FieldMemOperand(t0, FixedArray::kLengthOffset));
   1941   __ SmiUntag(a2);
   1942 
   1943   // Copy the fixed array slots.
   1944   Label loop;
   1945   // Set up t0 to point to the first array slot.
   1946   __ Addu(t0, t0, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
   1947   __ bind(&loop);
   1948   // Pre-decrement a3 with kPointerSize on each iteration.
   1949   // Pre-decrement in order to skip receiver.
   1950   __ Addu(a3, a3, Operand(-kPointerSize));
   1951   __ lw(t1, MemOperand(a3));
   1952   // Post-increment t0 with kPointerSize on each iteration.
   1953   __ sw(t1, MemOperand(t0));
   1954   __ Addu(t0, t0, Operand(kPointerSize));
   1955   __ Subu(a2, a2, Operand(1));
   1956   __ Branch(&loop, ne, a2, Operand(zero_reg));
   1957 
   1958   // Return.
   1959   __ bind(&done);
   1960   __ Ret();
   1961 
   1962   // Do the runtime call to allocate the arguments object.
   1963   __ bind(&runtime);
   1964   __ Push(a1, a3, a2);
   1965   __ TailCallRuntime(Runtime::kNewStrictArguments);
   1966 }
   1967 
   1968 
   1969 void RestParamAccessStub::GenerateNew(MacroAssembler* masm) {
   1970   // a2 : number of parameters (tagged)
   1971   // a3 : parameters pointer
   1972   // a1 : rest parameter index (tagged)
   1973   // Check if the calling frame is an arguments adaptor frame.
   1974 
   1975   Label runtime;
   1976   __ lw(t0, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
   1977   __ lw(t1, MemOperand(t0, StandardFrameConstants::kContextOffset));
   1978   __ Branch(&runtime, ne, t1,
   1979             Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
   1980 
   1981   // Patch the arguments.length and the parameters pointer.
   1982   __ lw(a2, MemOperand(t0, ArgumentsAdaptorFrameConstants::kLengthOffset));
   1983   __ sll(t1, a2, kPointerSizeLog2 - kSmiTagSize);
   1984   __ Addu(a3, t0, Operand(t1));
   1985   __ Addu(a3, a3, Operand(StandardFrameConstants::kCallerSPOffset));
   1986 
   1987   // Do the runtime call to allocate the arguments object.
   1988   __ bind(&runtime);
   1989   __ Push(a2, a3, a1);
   1990   __ TailCallRuntime(Runtime::kNewRestParam);
   1991 }
   1992 
   1993 
   1994 void RegExpExecStub::Generate(MacroAssembler* masm) {
   1995   // Just jump directly to runtime if native RegExp is not selected at compile
   1996   // time or if regexp entry in generated code is turned off runtime switch or
   1997   // at compilation.
   1998 #ifdef V8_INTERPRETED_REGEXP
   1999   __ TailCallRuntime(Runtime::kRegExpExec);
   2000 #else  // V8_INTERPRETED_REGEXP
   2001 
   2002   // Stack frame on entry.
   2003   //  sp[0]: last_match_info (expected JSArray)
   2004   //  sp[4]: previous index
   2005   //  sp[8]: subject string
   2006   //  sp[12]: JSRegExp object
   2007 
   2008   const int kLastMatchInfoOffset = 0 * kPointerSize;
   2009   const int kPreviousIndexOffset = 1 * kPointerSize;
   2010   const int kSubjectOffset = 2 * kPointerSize;
   2011   const int kJSRegExpOffset = 3 * kPointerSize;
   2012 
   2013   Label runtime;
   2014   // Allocation of registers for this function. These are in callee save
   2015   // registers and will be preserved by the call to the native RegExp code, as
   2016   // this code is called using the normal C calling convention. When calling
   2017   // directly from generated code the native RegExp code will not do a GC and
   2018   // therefore the content of these registers are safe to use after the call.
   2019   // MIPS - using s0..s2, since we are not using CEntry Stub.
   2020   Register subject = s0;
   2021   Register regexp_data = s1;
   2022   Register last_match_info_elements = s2;
   2023 
   2024   // Ensure that a RegExp stack is allocated.
   2025   ExternalReference address_of_regexp_stack_memory_address =
   2026       ExternalReference::address_of_regexp_stack_memory_address(
   2027           isolate());
   2028   ExternalReference address_of_regexp_stack_memory_size =
   2029       ExternalReference::address_of_regexp_stack_memory_size(isolate());
   2030   __ li(a0, Operand(address_of_regexp_stack_memory_size));
   2031   __ lw(a0, MemOperand(a0, 0));
   2032   __ Branch(&runtime, eq, a0, Operand(zero_reg));
   2033 
   2034   // Check that the first argument is a JSRegExp object.
   2035   __ lw(a0, MemOperand(sp, kJSRegExpOffset));
   2036   STATIC_ASSERT(kSmiTag == 0);
   2037   __ JumpIfSmi(a0, &runtime);
   2038   __ GetObjectType(a0, a1, a1);
   2039   __ Branch(&runtime, ne, a1, Operand(JS_REGEXP_TYPE));
   2040 
   2041   // Check that the RegExp has been compiled (data contains a fixed array).
   2042   __ lw(regexp_data, FieldMemOperand(a0, JSRegExp::kDataOffset));
   2043   if (FLAG_debug_code) {
   2044     __ SmiTst(regexp_data, t0);
   2045     __ Check(nz,
   2046              kUnexpectedTypeForRegExpDataFixedArrayExpected,
   2047              t0,
   2048              Operand(zero_reg));
   2049     __ GetObjectType(regexp_data, a0, a0);
   2050     __ Check(eq,
   2051              kUnexpectedTypeForRegExpDataFixedArrayExpected,
   2052              a0,
   2053              Operand(FIXED_ARRAY_TYPE));
   2054   }
   2055 
   2056   // regexp_data: RegExp data (FixedArray)
   2057   // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
   2058   __ lw(a0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
   2059   __ Branch(&runtime, ne, a0, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));
   2060 
   2061   // regexp_data: RegExp data (FixedArray)
   2062   // Check that the number of captures fit in the static offsets vector buffer.
   2063   __ lw(a2,
   2064          FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
   2065   // Check (number_of_captures + 1) * 2 <= offsets vector size
   2066   // Or          number_of_captures * 2 <= offsets vector size - 2
   2067   // Multiplying by 2 comes for free since a2 is smi-tagged.
   2068   STATIC_ASSERT(kSmiTag == 0);
   2069   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
   2070   STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
   2071   __ Branch(
   2072       &runtime, hi, a2, Operand(Isolate::kJSRegexpStaticOffsetsVectorSize - 2));
   2073 
   2074   // Reset offset for possibly sliced string.
   2075   __ mov(t0, zero_reg);
   2076   __ lw(subject, MemOperand(sp, kSubjectOffset));
   2077   __ JumpIfSmi(subject, &runtime);
   2078   __ mov(a3, subject);  // Make a copy of the original subject string.
   2079   __ lw(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
   2080   __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
   2081   // subject: subject string
   2082   // a3: subject string
   2083   // a0: subject string instance type
   2084   // regexp_data: RegExp data (FixedArray)
   2085   // Handle subject string according to its encoding and representation:
   2086   // (1) Sequential string?  If yes, go to (5).
   2087   // (2) Anything but sequential or cons?  If yes, go to (6).
   2088   // (3) Cons string.  If the string is flat, replace subject with first string.
   2089   //     Otherwise bailout.
   2090   // (4) Is subject external?  If yes, go to (7).
   2091   // (5) Sequential string.  Load regexp code according to encoding.
   2092   // (E) Carry on.
   2093   /// [...]
   2094 
   2095   // Deferred code at the end of the stub:
   2096   // (6) Not a long external string?  If yes, go to (8).
   2097   // (7) External string.  Make it, offset-wise, look like a sequential string.
   2098   //     Go to (5).
   2099   // (8) Short external string or not a string?  If yes, bail out to runtime.
   2100   // (9) Sliced string.  Replace subject with parent.  Go to (4).
   2101 
   2102   Label seq_string /* 5 */, external_string /* 7 */,
   2103         check_underlying /* 4 */, not_seq_nor_cons /* 6 */,
   2104         not_long_external /* 8 */;
   2105 
   2106   // (1) Sequential string?  If yes, go to (5).
   2107   __ And(a1,
   2108          a0,
   2109          Operand(kIsNotStringMask |
   2110                  kStringRepresentationMask |
   2111                  kShortExternalStringMask));
   2112   STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
   2113   __ Branch(&seq_string, eq, a1, Operand(zero_reg));  // Go to (5).
   2114 
   2115   // (2) Anything but sequential or cons?  If yes, go to (6).
   2116   STATIC_ASSERT(kConsStringTag < kExternalStringTag);
   2117   STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
   2118   STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
   2119   STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
   2120   // Go to (6).
   2121   __ Branch(&not_seq_nor_cons, ge, a1, Operand(kExternalStringTag));
   2122 
   2123   // (3) Cons string.  Check that it's flat.
   2124   // Replace subject with first string and reload instance type.
   2125   __ lw(a0, FieldMemOperand(subject, ConsString::kSecondOffset));
   2126   __ LoadRoot(a1, Heap::kempty_stringRootIndex);
   2127   __ Branch(&runtime, ne, a0, Operand(a1));
   2128   __ lw(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
   2129 
   2130   // (4) Is subject external?  If yes, go to (7).
   2131   __ bind(&check_underlying);
   2132   __ lw(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
   2133   __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
   2134   STATIC_ASSERT(kSeqStringTag == 0);
   2135   __ And(at, a0, Operand(kStringRepresentationMask));
   2136   // The underlying external string is never a short external string.
   2137   STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength);
   2138   STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength);
   2139   __ Branch(&external_string, ne, at, Operand(zero_reg));  // Go to (7).
   2140 
   2141   // (5) Sequential string.  Load regexp code according to encoding.
   2142   __ bind(&seq_string);
   2143   // subject: sequential subject string (or look-alike, external string)
   2144   // a3: original subject string
   2145   // Load previous index and check range before a3 is overwritten.  We have to
   2146   // use a3 instead of subject here because subject might have been only made
   2147   // to look like a sequential string when it actually is an external string.
   2148   __ lw(a1, MemOperand(sp, kPreviousIndexOffset));
   2149   __ JumpIfNotSmi(a1, &runtime);
   2150   __ lw(a3, FieldMemOperand(a3, String::kLengthOffset));
   2151   __ Branch(&runtime, ls, a3, Operand(a1));
   2152   __ sra(a1, a1, kSmiTagSize);  // Untag the Smi.
   2153 
   2154   STATIC_ASSERT(kStringEncodingMask == 4);
   2155   STATIC_ASSERT(kOneByteStringTag == 4);
   2156   STATIC_ASSERT(kTwoByteStringTag == 0);
   2157   __ And(a0, a0, Operand(kStringEncodingMask));  // Non-zero for one-byte.
   2158   __ lw(t9, FieldMemOperand(regexp_data, JSRegExp::kDataOneByteCodeOffset));
   2159   __ sra(a3, a0, 2);  // a3 is 1 for ASCII, 0 for UC16 (used below).
   2160   __ lw(t1, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset));
   2161   __ Movz(t9, t1, a0);  // If UC16 (a0 is 0), replace t9 w/kDataUC16CodeOffset.
   2162 
   2163   // (E) Carry on.  String handling is done.
   2164   // t9: irregexp code
   2165   // Check that the irregexp code has been generated for the actual string
   2166   // encoding. If it has, the field contains a code object otherwise it contains
   2167   // a smi (code flushing support).
   2168   __ JumpIfSmi(t9, &runtime);
   2169 
   2170   // a1: previous index
   2171   // a3: encoding of subject string (1 if one_byte, 0 if two_byte);
   2172   // t9: code
   2173   // subject: Subject string
   2174   // regexp_data: RegExp data (FixedArray)
   2175   // All checks done. Now push arguments for native regexp code.
   2176   __ IncrementCounter(isolate()->counters()->regexp_entry_native(),
   2177                       1, a0, a2);
   2178 
   2179   // Isolates: note we add an additional parameter here (isolate pointer).
   2180   const int kRegExpExecuteArguments = 9;
   2181   const int kParameterRegisters = 4;
   2182   __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
   2183 
   2184   // Stack pointer now points to cell where return address is to be written.
   2185   // Arguments are before that on the stack or in registers, meaning we
   2186   // treat the return address as argument 5. Thus every argument after that
   2187   // needs to be shifted back by 1. Since DirectCEntryStub will handle
   2188   // allocating space for the c argument slots, we don't need to calculate
   2189   // that into the argument positions on the stack. This is how the stack will
   2190   // look (sp meaning the value of sp at this moment):
   2191   // [sp + 5] - Argument 9
   2192   // [sp + 4] - Argument 8
   2193   // [sp + 3] - Argument 7
   2194   // [sp + 2] - Argument 6
   2195   // [sp + 1] - Argument 5
   2196   // [sp + 0] - saved ra
   2197 
   2198   // Argument 9: Pass current isolate address.
   2199   // CFunctionArgumentOperand handles MIPS stack argument slots.
   2200   __ li(a0, Operand(ExternalReference::isolate_address(isolate())));
   2201   __ sw(a0, MemOperand(sp, 5 * kPointerSize));
   2202 
   2203   // Argument 8: Indicate that this is a direct call from JavaScript.
   2204   __ li(a0, Operand(1));
   2205   __ sw(a0, MemOperand(sp, 4 * kPointerSize));
   2206 
   2207   // Argument 7: Start (high end) of backtracking stack memory area.
   2208   __ li(a0, Operand(address_of_regexp_stack_memory_address));
   2209   __ lw(a0, MemOperand(a0, 0));
   2210   __ li(a2, Operand(address_of_regexp_stack_memory_size));
   2211   __ lw(a2, MemOperand(a2, 0));
   2212   __ addu(a0, a0, a2);
   2213   __ sw(a0, MemOperand(sp, 3 * kPointerSize));
   2214 
   2215   // Argument 6: Set the number of capture registers to zero to force global
   2216   // regexps to behave as non-global.  This does not affect non-global regexps.
   2217   __ mov(a0, zero_reg);
   2218   __ sw(a0, MemOperand(sp, 2 * kPointerSize));
   2219 
   2220   // Argument 5: static offsets vector buffer.
   2221   __ li(a0, Operand(
   2222         ExternalReference::address_of_static_offsets_vector(isolate())));
   2223   __ sw(a0, MemOperand(sp, 1 * kPointerSize));
   2224 
   2225   // For arguments 4 and 3 get string length, calculate start of string data
   2226   // calculate the shift of the index (0 for one-byte and 1 for two-byte).
   2227   __ Addu(t2, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
   2228   __ Xor(a3, a3, Operand(1));  // 1 for 2-byte str, 0 for 1-byte.
   2229   // Load the length from the original subject string from the previous stack
   2230   // frame. Therefore we have to use fp, which points exactly to two pointer
   2231   // sizes below the previous sp. (Because creating a new stack frame pushes
   2232   // the previous fp onto the stack and moves up sp by 2 * kPointerSize.)
   2233   __ lw(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
   2234   // If slice offset is not 0, load the length from the original sliced string.
   2235   // Argument 4, a3: End of string data
   2236   // Argument 3, a2: Start of string data
   2237   // Prepare start and end index of the input.
   2238   __ sllv(t1, t0, a3);
   2239   __ addu(t0, t2, t1);
   2240   __ sllv(t1, a1, a3);
   2241   __ addu(a2, t0, t1);
   2242 
   2243   __ lw(t2, FieldMemOperand(subject, String::kLengthOffset));
   2244   __ sra(t2, t2, kSmiTagSize);
   2245   __ sllv(t1, t2, a3);
   2246   __ addu(a3, t0, t1);
   2247   // Argument 2 (a1): Previous index.
   2248   // Already there
   2249 
   2250   // Argument 1 (a0): Subject string.
   2251   __ mov(a0, subject);
   2252 
   2253   // Locate the code entry and call it.
   2254   __ Addu(t9, t9, Operand(Code::kHeaderSize - kHeapObjectTag));
   2255   DirectCEntryStub stub(isolate());
   2256   stub.GenerateCall(masm, t9);
   2257 
   2258   __ LeaveExitFrame(false, no_reg, true);
   2259 
   2260   // v0: result
   2261   // subject: subject string (callee saved)
   2262   // regexp_data: RegExp data (callee saved)
   2263   // last_match_info_elements: Last match info elements (callee saved)
   2264   // Check the result.
   2265   Label success;
   2266   __ Branch(&success, eq, v0, Operand(1));
   2267   // We expect exactly one result since we force the called regexp to behave
   2268   // as non-global.
   2269   Label failure;
   2270   __ Branch(&failure, eq, v0, Operand(NativeRegExpMacroAssembler::FAILURE));
   2271   // If not exception it can only be retry. Handle that in the runtime system.
   2272   __ Branch(&runtime, ne, v0, Operand(NativeRegExpMacroAssembler::EXCEPTION));
   2273   // Result must now be exception. If there is no pending exception already a
   2274   // stack overflow (on the backtrack stack) was detected in RegExp code but
   2275   // haven't created the exception yet. Handle that in the runtime system.
   2276   // TODO(592): Rerunning the RegExp to get the stack overflow exception.
   2277   __ li(a1, Operand(isolate()->factory()->the_hole_value()));
   2278   __ li(a2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
   2279                                       isolate())));
   2280   __ lw(v0, MemOperand(a2, 0));
   2281   __ Branch(&runtime, eq, v0, Operand(a1));
   2282 
   2283   // For exception, throw the exception again.
   2284   __ TailCallRuntime(Runtime::kRegExpExecReThrow);
   2285 
   2286   __ bind(&failure);
   2287   // For failure and exception return null.
   2288   __ li(v0, Operand(isolate()->factory()->null_value()));
   2289   __ DropAndRet(4);
   2290 
   2291   // Process the result from the native regexp code.
   2292   __ bind(&success);
   2293   __ lw(a1,
   2294          FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
   2295   // Calculate number of capture registers (number_of_captures + 1) * 2.
   2296   // Multiplying by 2 comes for free since r1 is smi-tagged.
   2297   STATIC_ASSERT(kSmiTag == 0);
   2298   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
   2299   __ Addu(a1, a1, Operand(2));  // a1 was a smi.
   2300 
   2301   __ lw(a0, MemOperand(sp, kLastMatchInfoOffset));
   2302   __ JumpIfSmi(a0, &runtime);
   2303   __ GetObjectType(a0, a2, a2);
   2304   __ Branch(&runtime, ne, a2, Operand(JS_ARRAY_TYPE));
   2305   // Check that the JSArray is in fast case.
   2306   __ lw(last_match_info_elements,
   2307         FieldMemOperand(a0, JSArray::kElementsOffset));
   2308   __ lw(a0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
   2309   __ LoadRoot(at, Heap::kFixedArrayMapRootIndex);
   2310   __ Branch(&runtime, ne, a0, Operand(at));
   2311   // Check that the last match info has space for the capture registers and the
   2312   // additional information.
   2313   __ lw(a0,
   2314         FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
   2315   __ Addu(a2, a1, Operand(RegExpImpl::kLastMatchOverhead));
   2316   __ sra(at, a0, kSmiTagSize);
   2317   __ Branch(&runtime, gt, a2, Operand(at));
   2318 
   2319   // a1: number of capture registers
   2320   // subject: subject string
   2321   // Store the capture count.
   2322   __ sll(a2, a1, kSmiTagSize + kSmiShiftSize);  // To smi.
   2323   __ sw(a2, FieldMemOperand(last_match_info_elements,
   2324                              RegExpImpl::kLastCaptureCountOffset));
   2325   // Store last subject and last input.
   2326   __ sw(subject,
   2327          FieldMemOperand(last_match_info_elements,
   2328                          RegExpImpl::kLastSubjectOffset));
   2329   __ mov(a2, subject);
   2330   __ RecordWriteField(last_match_info_elements,
   2331                       RegExpImpl::kLastSubjectOffset,
   2332                       subject,
   2333                       t3,
   2334                       kRAHasNotBeenSaved,
   2335                       kDontSaveFPRegs);
   2336   __ mov(subject, a2);
   2337   __ sw(subject,
   2338          FieldMemOperand(last_match_info_elements,
   2339                          RegExpImpl::kLastInputOffset));
   2340   __ RecordWriteField(last_match_info_elements,
   2341                       RegExpImpl::kLastInputOffset,
   2342                       subject,
   2343                       t3,
   2344                       kRAHasNotBeenSaved,
   2345                       kDontSaveFPRegs);
   2346 
   2347   // Get the static offsets vector filled by the native regexp code.
   2348   ExternalReference address_of_static_offsets_vector =
   2349       ExternalReference::address_of_static_offsets_vector(isolate());
   2350   __ li(a2, Operand(address_of_static_offsets_vector));
   2351 
   2352   // a1: number of capture registers
   2353   // a2: offsets vector
   2354   Label next_capture, done;
   2355   // Capture register counter starts from number of capture registers and
   2356   // counts down until wrapping after zero.
   2357   __ Addu(a0,
   2358          last_match_info_elements,
   2359          Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag));
   2360   __ bind(&next_capture);
   2361   __ Subu(a1, a1, Operand(1));
   2362   __ Branch(&done, lt, a1, Operand(zero_reg));
   2363   // Read the value from the static offsets vector buffer.
   2364   __ lw(a3, MemOperand(a2, 0));
   2365   __ addiu(a2, a2, kPointerSize);
   2366   // Store the smi value in the last match info.
   2367   __ sll(a3, a3, kSmiTagSize);  // Convert to Smi.
   2368   __ sw(a3, MemOperand(a0, 0));
   2369   __ Branch(&next_capture, USE_DELAY_SLOT);
   2370   __ addiu(a0, a0, kPointerSize);  // In branch delay slot.
   2371 
   2372   __ bind(&done);
   2373 
   2374   // Return last match info.
   2375   __ lw(v0, MemOperand(sp, kLastMatchInfoOffset));
   2376   __ DropAndRet(4);
   2377 
   2378   // Do the runtime call to execute the regexp.
   2379   __ bind(&runtime);
   2380   __ TailCallRuntime(Runtime::kRegExpExec);
   2381 
   2382   // Deferred code for string handling.
   2383   // (6) Not a long external string?  If yes, go to (8).
   2384   __ bind(&not_seq_nor_cons);
   2385   // Go to (8).
   2386   __ Branch(&not_long_external, gt, a1, Operand(kExternalStringTag));
   2387 
   2388   // (7) External string.  Make it, offset-wise, look like a sequential string.
   2389   __ bind(&external_string);
   2390   __ lw(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
   2391   __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
   2392   if (FLAG_debug_code) {
   2393     // Assert that we do not have a cons or slice (indirect strings) here.
   2394     // Sequential strings have already been ruled out.
   2395     __ And(at, a0, Operand(kIsIndirectStringMask));
   2396     __ Assert(eq,
   2397               kExternalStringExpectedButNotFound,
   2398               at,
   2399               Operand(zero_reg));
   2400   }
   2401   __ lw(subject,
   2402         FieldMemOperand(subject, ExternalString::kResourceDataOffset));
   2403   // Move the pointer so that offset-wise, it looks like a sequential string.
   2404   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
   2405   __ Subu(subject,
   2406           subject,
   2407           SeqTwoByteString::kHeaderSize - kHeapObjectTag);
   2408   __ jmp(&seq_string);    // Go to (5).
   2409 
   2410   // (8) Short external string or not a string?  If yes, bail out to runtime.
   2411   __ bind(&not_long_external);
   2412   STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
   2413   __ And(at, a1, Operand(kIsNotStringMask | kShortExternalStringMask));
   2414   __ Branch(&runtime, ne, at, Operand(zero_reg));
   2415 
   2416   // (9) Sliced string.  Replace subject with parent.  Go to (4).
   2417   // Load offset into t0 and replace subject string with parent.
   2418   __ lw(t0, FieldMemOperand(subject, SlicedString::kOffsetOffset));
   2419   __ sra(t0, t0, kSmiTagSize);
   2420   __ lw(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
   2421   __ jmp(&check_underlying);  // Go to (4).
   2422 #endif  // V8_INTERPRETED_REGEXP
   2423 }
   2424 
   2425 
   2426 static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub) {
   2427   // a0 : number of arguments to the construct function
   2428   // a2 : feedback vector
   2429   // a3 : slot in feedback vector (Smi)
   2430   // a1 : the function to call
   2431   FrameScope scope(masm, StackFrame::INTERNAL);
   2432   const RegList kSavedRegs = 1 << 4 |  // a0
   2433                              1 << 5 |  // a1
   2434                              1 << 6 |  // a2
   2435                              1 << 7;   // a3
   2436 
   2437   // Number-of-arguments register must be smi-tagged to call out.
   2438   __ SmiTag(a0);
   2439   __ MultiPush(kSavedRegs);
   2440 
   2441   __ CallStub(stub);
   2442 
   2443   __ MultiPop(kSavedRegs);
   2444   __ SmiUntag(a0);
   2445 }
   2446 
   2447 
   2448 static void GenerateRecordCallTarget(MacroAssembler* masm) {
   2449   // Cache the called function in a feedback vector slot.  Cache states
   2450   // are uninitialized, monomorphic (indicated by a JSFunction), and
   2451   // megamorphic.
   2452   // a0 : number of arguments to the construct function
   2453   // a1 : the function to call
   2454   // a2 : feedback vector
   2455   // a3 : slot in feedback vector (Smi)
   2456   Label initialize, done, miss, megamorphic, not_array_function;
   2457 
   2458   DCHECK_EQ(*TypeFeedbackVector::MegamorphicSentinel(masm->isolate()),
   2459             masm->isolate()->heap()->megamorphic_symbol());
   2460   DCHECK_EQ(*TypeFeedbackVector::UninitializedSentinel(masm->isolate()),
   2461             masm->isolate()->heap()->uninitialized_symbol());
   2462 
   2463   // Load the cache state into t2.
   2464   __ sll(t2, a3, kPointerSizeLog2 - kSmiTagSize);
   2465   __ Addu(t2, a2, Operand(t2));
   2466   __ lw(t2, FieldMemOperand(t2, FixedArray::kHeaderSize));
   2467 
   2468   // A monomorphic cache hit or an already megamorphic state: invoke the
   2469   // function without changing the state.
   2470   // We don't know if t2 is a WeakCell or a Symbol, but it's harmless to read at
   2471   // this position in a symbol (see static asserts in type-feedback-vector.h).
   2472   Label check_allocation_site;
   2473   Register feedback_map = t1;
   2474   Register weak_value = t4;
   2475   __ lw(weak_value, FieldMemOperand(t2, WeakCell::kValueOffset));
   2476   __ Branch(&done, eq, a1, Operand(weak_value));
   2477   __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex);
   2478   __ Branch(&done, eq, t2, Operand(at));
   2479   __ lw(feedback_map, FieldMemOperand(t2, HeapObject::kMapOffset));
   2480   __ LoadRoot(at, Heap::kWeakCellMapRootIndex);
   2481   __ Branch(&check_allocation_site, ne, feedback_map, Operand(at));
   2482 
   2483   // If the weak cell is cleared, we have a new chance to become monomorphic.
   2484   __ JumpIfSmi(weak_value, &initialize);
   2485   __ jmp(&megamorphic);
   2486 
   2487   __ bind(&check_allocation_site);
   2488   // If we came here, we need to see if we are the array function.
   2489   // If we didn't have a matching function, and we didn't find the megamorph
   2490   // sentinel, then we have in the slot either some other function or an
   2491   // AllocationSite.
   2492   __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
   2493   __ Branch(&miss, ne, feedback_map, Operand(at));
   2494 
   2495   // Make sure the function is the Array() function
   2496   __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, t2);
   2497   __ Branch(&megamorphic, ne, a1, Operand(t2));
   2498   __ jmp(&done);
   2499 
   2500   __ bind(&miss);
   2501 
   2502   // A monomorphic miss (i.e, here the cache is not uninitialized) goes
   2503   // megamorphic.
   2504   __ LoadRoot(at, Heap::kuninitialized_symbolRootIndex);
   2505   __ Branch(&initialize, eq, t2, Operand(at));
   2506   // MegamorphicSentinel is an immortal immovable object (undefined) so no
   2507   // write-barrier is needed.
   2508   __ bind(&megamorphic);
   2509   __ sll(t2, a3, kPointerSizeLog2 - kSmiTagSize);
   2510   __ Addu(t2, a2, Operand(t2));
   2511   __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex);
   2512   __ sw(at, FieldMemOperand(t2, FixedArray::kHeaderSize));
   2513   __ jmp(&done);
   2514 
   2515   // An uninitialized cache is patched with the function.
   2516   __ bind(&initialize);
   2517   // Make sure the function is the Array() function.
   2518   __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, t2);
   2519   __ Branch(&not_array_function, ne, a1, Operand(t2));
   2520 
   2521   // The target function is the Array constructor,
   2522   // Create an AllocationSite if we don't already have it, store it in the
   2523   // slot.
   2524   CreateAllocationSiteStub create_stub(masm->isolate());
   2525   CallStubInRecordCallTarget(masm, &create_stub);
   2526   __ Branch(&done);
   2527 
   2528   __ bind(&not_array_function);
   2529   CreateWeakCellStub weak_cell_stub(masm->isolate());
   2530   CallStubInRecordCallTarget(masm, &weak_cell_stub);
   2531   __ bind(&done);
   2532 }
   2533 
   2534 
   2535 void CallConstructStub::Generate(MacroAssembler* masm) {
   2536   // a0 : number of arguments
   2537   // a1 : the function to call
   2538   // a2 : feedback vector
   2539   // a3 : slot in feedback vector (Smi, for RecordCallTarget)
   2540 
   2541   Label non_function;
   2542   // Check that the function is not a smi.
   2543   __ JumpIfSmi(a1, &non_function);
   2544   // Check that the function is a JSFunction.
   2545   __ GetObjectType(a1, t1, t1);
   2546   __ Branch(&non_function, ne, t1, Operand(JS_FUNCTION_TYPE));
   2547 
   2548   GenerateRecordCallTarget(masm);
   2549 
   2550   __ sll(at, a3, kPointerSizeLog2 - kSmiTagSize);
   2551   __ Addu(t1, a2, at);
   2552   Label feedback_register_initialized;
   2553   // Put the AllocationSite from the feedback vector into a2, or undefined.
   2554   __ lw(a2, FieldMemOperand(t1, FixedArray::kHeaderSize));
   2555   __ lw(t1, FieldMemOperand(a2, AllocationSite::kMapOffset));
   2556   __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
   2557   __ Branch(&feedback_register_initialized, eq, t1, Operand(at));
   2558   __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
   2559   __ bind(&feedback_register_initialized);
   2560 
   2561   __ AssertUndefinedOrAllocationSite(a2, t1);
   2562 
   2563   // Pass function as new target.
   2564   __ mov(a3, a1);
   2565 
   2566   // Tail call to the function-specific construct stub (still in the caller
   2567   // context at this point).
   2568   __ lw(t0, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
   2569   __ lw(t0, FieldMemOperand(t0, SharedFunctionInfo::kConstructStubOffset));
   2570   __ Addu(at, t0, Operand(Code::kHeaderSize - kHeapObjectTag));
   2571   __ Jump(at);
   2572 
   2573   __ bind(&non_function);
   2574   __ mov(a3, a1);
   2575   __ Jump(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
   2576 }
   2577 
   2578 
   2579 void CallICStub::HandleArrayCase(MacroAssembler* masm, Label* miss) {
   2580   // a1 - function
   2581   // a3 - slot id
   2582   // a2 - vector
   2583   // t0 - loaded from vector[slot]
   2584   __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, at);
   2585   __ Branch(miss, ne, a1, Operand(at));
   2586 
   2587   __ li(a0, Operand(arg_count()));
   2588 
   2589   // Increment the call count for monomorphic function calls.
   2590   __ sll(at, a3, kPointerSizeLog2 - kSmiTagSize);
   2591   __ Addu(at, a2, Operand(at));
   2592   __ lw(a3, FieldMemOperand(at, FixedArray::kHeaderSize + kPointerSize));
   2593   __ Addu(a3, a3, Operand(Smi::FromInt(CallICNexus::kCallCountIncrement)));
   2594   __ sw(a3, FieldMemOperand(at, FixedArray::kHeaderSize + kPointerSize));
   2595 
   2596   __ mov(a2, t0);
   2597   __ mov(a3, a1);
   2598   ArrayConstructorStub stub(masm->isolate(), arg_count());
   2599   __ TailCallStub(&stub);
   2600 }
   2601 
   2602 
   2603 void CallICStub::Generate(MacroAssembler* masm) {
   2604   // a1 - function
   2605   // a3 - slot id (Smi)
   2606   // a2 - vector
   2607   Label extra_checks_or_miss, call, call_function;
   2608   int argc = arg_count();
   2609   ParameterCount actual(argc);
   2610 
   2611   // The checks. First, does r1 match the recorded monomorphic target?
   2612   __ sll(t0, a3, kPointerSizeLog2 - kSmiTagSize);
   2613   __ Addu(t0, a2, Operand(t0));
   2614   __ lw(t0, FieldMemOperand(t0, FixedArray::kHeaderSize));
   2615 
   2616   // We don't know that we have a weak cell. We might have a private symbol
   2617   // or an AllocationSite, but the memory is safe to examine.
   2618   // AllocationSite::kTransitionInfoOffset - contains a Smi or pointer to
   2619   // FixedArray.
   2620   // WeakCell::kValueOffset - contains a JSFunction or Smi(0)
   2621   // Symbol::kHashFieldSlot - if the low bit is 1, then the hash is not
   2622   // computed, meaning that it can't appear to be a pointer. If the low bit is
   2623   // 0, then hash is computed, but the 0 bit prevents the field from appearing
   2624   // to be a pointer.
   2625   STATIC_ASSERT(WeakCell::kSize >= kPointerSize);
   2626   STATIC_ASSERT(AllocationSite::kTransitionInfoOffset ==
   2627                     WeakCell::kValueOffset &&
   2628                 WeakCell::kValueOffset == Symbol::kHashFieldSlot);
   2629 
   2630   __ lw(t1, FieldMemOperand(t0, WeakCell::kValueOffset));
   2631   __ Branch(&extra_checks_or_miss, ne, a1, Operand(t1));
   2632 
   2633   // The compare above could have been a SMI/SMI comparison. Guard against this
   2634   // convincing us that we have a monomorphic JSFunction.
   2635   __ JumpIfSmi(a1, &extra_checks_or_miss);
   2636 
   2637   // Increment the call count for monomorphic function calls.
   2638   __ sll(at, a3, kPointerSizeLog2 - kSmiTagSize);
   2639   __ Addu(at, a2, Operand(at));
   2640   __ lw(a3, FieldMemOperand(at, FixedArray::kHeaderSize + kPointerSize));
   2641   __ Addu(a3, a3, Operand(Smi::FromInt(CallICNexus::kCallCountIncrement)));
   2642   __ sw(a3, FieldMemOperand(at, FixedArray::kHeaderSize + kPointerSize));
   2643 
   2644   __ bind(&call_function);
   2645   __ Jump(masm->isolate()->builtins()->CallFunction(convert_mode()),
   2646           RelocInfo::CODE_TARGET, al, zero_reg, Operand(zero_reg),
   2647           USE_DELAY_SLOT);
   2648   __ li(a0, Operand(argc));  // In delay slot.
   2649 
   2650   __ bind(&extra_checks_or_miss);
   2651   Label uninitialized, miss, not_allocation_site;
   2652 
   2653   __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex);
   2654   __ Branch(&call, eq, t0, Operand(at));
   2655 
   2656   // Verify that t0 contains an AllocationSite
   2657   __ lw(t1, FieldMemOperand(t0, HeapObject::kMapOffset));
   2658   __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
   2659   __ Branch(&not_allocation_site, ne, t1, Operand(at));
   2660 
   2661   HandleArrayCase(masm, &miss);
   2662 
   2663   __ bind(&not_allocation_site);
   2664 
   2665   // The following cases attempt to handle MISS cases without going to the
   2666   // runtime.
   2667   if (FLAG_trace_ic) {
   2668     __ Branch(&miss);
   2669   }
   2670 
   2671   __ LoadRoot(at, Heap::kuninitialized_symbolRootIndex);
   2672   __ Branch(&uninitialized, eq, t0, Operand(at));
   2673 
   2674   // We are going megamorphic. If the feedback is a JSFunction, it is fine
   2675   // to handle it here. More complex cases are dealt with in the runtime.
   2676   __ AssertNotSmi(t0);
   2677   __ GetObjectType(t0, t1, t1);
   2678   __ Branch(&miss, ne, t1, Operand(JS_FUNCTION_TYPE));
   2679   __ sll(t0, a3, kPointerSizeLog2 - kSmiTagSize);
   2680   __ Addu(t0, a2, Operand(t0));
   2681   __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex);
   2682   __ sw(at, FieldMemOperand(t0, FixedArray::kHeaderSize));
   2683 
   2684   __ bind(&call);
   2685   __ Jump(masm->isolate()->builtins()->Call(convert_mode()),
   2686           RelocInfo::CODE_TARGET, al, zero_reg, Operand(zero_reg),
   2687           USE_DELAY_SLOT);
   2688   __ li(a0, Operand(argc));  // In delay slot.
   2689 
   2690   __ bind(&uninitialized);
   2691 
   2692   // We are going monomorphic, provided we actually have a JSFunction.
   2693   __ JumpIfSmi(a1, &miss);
   2694 
   2695   // Goto miss case if we do not have a function.
   2696   __ GetObjectType(a1, t0, t0);
   2697   __ Branch(&miss, ne, t0, Operand(JS_FUNCTION_TYPE));
   2698 
   2699   // Make sure the function is not the Array() function, which requires special
   2700   // behavior on MISS.
   2701   __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, t0);
   2702   __ Branch(&miss, eq, a1, Operand(t0));
   2703 
   2704   // Make sure the function belongs to the same native context.
   2705   __ lw(t0, FieldMemOperand(a1, JSFunction::kContextOffset));
   2706   __ lw(t0, ContextMemOperand(t0, Context::NATIVE_CONTEXT_INDEX));
   2707   __ lw(t1, NativeContextMemOperand());
   2708   __ Branch(&miss, ne, t0, Operand(t1));
   2709 
   2710   // Initialize the call counter.
   2711   __ sll(at, a3, kPointerSizeLog2 - kSmiTagSize);
   2712   __ Addu(at, a2, Operand(at));
   2713   __ li(t0, Operand(Smi::FromInt(CallICNexus::kCallCountIncrement)));
   2714   __ sw(t0, FieldMemOperand(at, FixedArray::kHeaderSize + kPointerSize));
   2715 
   2716   // Store the function. Use a stub since we need a frame for allocation.
   2717   // a2 - vector
   2718   // a3 - slot
   2719   // a1 - function
   2720   {
   2721     FrameScope scope(masm, StackFrame::INTERNAL);
   2722     CreateWeakCellStub create_stub(masm->isolate());
   2723     __ Push(a1);
   2724     __ CallStub(&create_stub);
   2725     __ Pop(a1);
   2726   }
   2727 
   2728   __ Branch(&call_function);
   2729 
   2730   // We are here because tracing is on or we encountered a MISS case we can't
   2731   // handle here.
   2732   __ bind(&miss);
   2733   GenerateMiss(masm);
   2734 
   2735   __ Branch(&call);
   2736 }
   2737 
   2738 
   2739 void CallICStub::GenerateMiss(MacroAssembler* masm) {
   2740   FrameScope scope(masm, StackFrame::INTERNAL);
   2741 
   2742   // Push the receiver and the function and feedback info.
   2743   __ Push(a1, a2, a3);
   2744 
   2745   // Call the entry.
   2746   __ CallRuntime(Runtime::kCallIC_Miss);
   2747 
   2748   // Move result to a1 and exit the internal frame.
   2749   __ mov(a1, v0);
   2750 }
   2751 
   2752 
   2753 // StringCharCodeAtGenerator.
   2754 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
   2755   DCHECK(!t0.is(index_));
   2756   DCHECK(!t0.is(result_));
   2757   DCHECK(!t0.is(object_));
   2758   if (check_mode_ == RECEIVER_IS_UNKNOWN) {
   2759     // If the receiver is a smi trigger the non-string case.
   2760     __ JumpIfSmi(object_, receiver_not_string_);
   2761 
   2762     // Fetch the instance type of the receiver into result register.
   2763     __ lw(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
   2764     __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
   2765     // If the receiver is not a string trigger the non-string case.
   2766     __ And(t0, result_, Operand(kIsNotStringMask));
   2767     __ Branch(receiver_not_string_, ne, t0, Operand(zero_reg));
   2768   }
   2769 
   2770   // If the index is non-smi trigger the non-smi case.
   2771   __ JumpIfNotSmi(index_, &index_not_smi_);
   2772 
   2773   __ bind(&got_smi_index_);
   2774 
   2775   // Check for index out of range.
   2776   __ lw(t0, FieldMemOperand(object_, String::kLengthOffset));
   2777   __ Branch(index_out_of_range_, ls, t0, Operand(index_));
   2778 
   2779   __ sra(index_, index_, kSmiTagSize);
   2780 
   2781   StringCharLoadGenerator::Generate(masm,
   2782                                     object_,
   2783                                     index_,
   2784                                     result_,
   2785                                     &call_runtime_);
   2786 
   2787   __ sll(result_, result_, kSmiTagSize);
   2788   __ bind(&exit_);
   2789 }
   2790 
   2791 
   2792 void StringCharCodeAtGenerator::GenerateSlow(
   2793     MacroAssembler* masm, EmbedMode embed_mode,
   2794     const RuntimeCallHelper& call_helper) {
   2795   __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
   2796 
   2797   // Index is not a smi.
   2798   __ bind(&index_not_smi_);
   2799   // If index is a heap number, try converting it to an integer.
   2800   __ CheckMap(index_,
   2801               result_,
   2802               Heap::kHeapNumberMapRootIndex,
   2803               index_not_number_,
   2804               DONT_DO_SMI_CHECK);
   2805   call_helper.BeforeCall(masm);
   2806   // Consumed by runtime conversion function:
   2807   if (embed_mode == PART_OF_IC_HANDLER) {
   2808     __ Push(LoadWithVectorDescriptor::VectorRegister(),
   2809             LoadWithVectorDescriptor::SlotRegister(), object_, index_);
   2810   } else {
   2811     __ Push(object_, index_);
   2812   }
   2813   if (index_flags_ == STRING_INDEX_IS_NUMBER) {
   2814     __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero);
   2815   } else {
   2816     DCHECK(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
   2817     // NumberToSmi discards numbers that are not exact integers.
   2818     __ CallRuntime(Runtime::kNumberToSmi);
   2819   }
   2820 
   2821   // Save the conversion result before the pop instructions below
   2822   // have a chance to overwrite it.
   2823   __ Move(index_, v0);
   2824   if (embed_mode == PART_OF_IC_HANDLER) {
   2825     __ Pop(LoadWithVectorDescriptor::VectorRegister(),
   2826            LoadWithVectorDescriptor::SlotRegister(), object_);
   2827   } else {
   2828     __ pop(object_);
   2829   }
   2830   // Reload the instance type.
   2831   __ lw(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
   2832   __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
   2833   call_helper.AfterCall(masm);
   2834   // If index is still not a smi, it must be out of range.
   2835   __ JumpIfNotSmi(index_, index_out_of_range_);
   2836   // Otherwise, return to the fast path.
   2837   __ Branch(&got_smi_index_);
   2838 
   2839   // Call runtime. We get here when the receiver is a string and the
   2840   // index is a number, but the code of getting the actual character
   2841   // is too complex (e.g., when the string needs to be flattened).
   2842   __ bind(&call_runtime_);
   2843   call_helper.BeforeCall(masm);
   2844   __ sll(index_, index_, kSmiTagSize);
   2845   __ Push(object_, index_);
   2846   __ CallRuntime(Runtime::kStringCharCodeAtRT);
   2847 
   2848   __ Move(result_, v0);
   2849 
   2850   call_helper.AfterCall(masm);
   2851   __ jmp(&exit_);
   2852 
   2853   __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
   2854 }
   2855 
   2856 
   2857 // -------------------------------------------------------------------------
   2858 // StringCharFromCodeGenerator
   2859 
   2860 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
   2861   // Fast case of Heap::LookupSingleCharacterStringFromCode.
   2862 
   2863   DCHECK(!t0.is(result_));
   2864   DCHECK(!t0.is(code_));
   2865 
   2866   STATIC_ASSERT(kSmiTag == 0);
   2867   STATIC_ASSERT(kSmiShiftSize == 0);
   2868   DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCodeU + 1));
   2869   __ And(t0, code_, Operand(kSmiTagMask |
   2870                             ((~String::kMaxOneByteCharCodeU) << kSmiTagSize)));
   2871   __ Branch(&slow_case_, ne, t0, Operand(zero_reg));
   2872 
   2873   __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
   2874   // At this point code register contains smi tagged one-byte char code.
   2875   STATIC_ASSERT(kSmiTag == 0);
   2876   __ sll(t0, code_, kPointerSizeLog2 - kSmiTagSize);
   2877   __ Addu(result_, result_, t0);
   2878   __ lw(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
   2879   __ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
   2880   __ Branch(&slow_case_, eq, result_, Operand(t0));
   2881   __ bind(&exit_);
   2882 }
   2883 
   2884 
   2885 void StringCharFromCodeGenerator::GenerateSlow(
   2886     MacroAssembler* masm,
   2887     const RuntimeCallHelper& call_helper) {
   2888   __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
   2889 
   2890   __ bind(&slow_case_);
   2891   call_helper.BeforeCall(masm);
   2892   __ push(code_);
   2893   __ CallRuntime(Runtime::kStringCharFromCode);
   2894   __ Move(result_, v0);
   2895 
   2896   call_helper.AfterCall(masm);
   2897   __ Branch(&exit_);
   2898 
   2899   __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
   2900 }
   2901 
   2902 
   2903 enum CopyCharactersFlags { COPY_ONE_BYTE = 1, DEST_ALWAYS_ALIGNED = 2 };
   2904 
   2905 
   2906 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
   2907                                           Register dest,
   2908                                           Register src,
   2909                                           Register count,
   2910                                           Register scratch,
   2911                                           String::Encoding encoding) {
   2912   if (FLAG_debug_code) {
   2913     // Check that destination is word aligned.
   2914     __ And(scratch, dest, Operand(kPointerAlignmentMask));
   2915     __ Check(eq,
   2916              kDestinationOfCopyNotAligned,
   2917              scratch,
   2918              Operand(zero_reg));
   2919   }
   2920 
   2921   // Assumes word reads and writes are little endian.
   2922   // Nothing to do for zero characters.
   2923   Label done;
   2924 
   2925   if (encoding == String::TWO_BYTE_ENCODING) {
   2926     __ Addu(count, count, count);
   2927   }
   2928 
   2929   Register limit = count;  // Read until dest equals this.
   2930   __ Addu(limit, dest, Operand(count));
   2931 
   2932   Label loop_entry, loop;
   2933   // Copy bytes from src to dest until dest hits limit.
   2934   __ Branch(&loop_entry);
   2935   __ bind(&loop);
   2936   __ lbu(scratch, MemOperand(src));
   2937   __ Addu(src, src, Operand(1));
   2938   __ sb(scratch, MemOperand(dest));
   2939   __ Addu(dest, dest, Operand(1));
   2940   __ bind(&loop_entry);
   2941   __ Branch(&loop, lt, dest, Operand(limit));
   2942 
   2943   __ bind(&done);
   2944 }
   2945 
   2946 
   2947 void SubStringStub::Generate(MacroAssembler* masm) {
   2948   Label runtime;
   2949   // Stack frame on entry.
   2950   //  ra: return address
   2951   //  sp[0]: to
   2952   //  sp[4]: from
   2953   //  sp[8]: string
   2954 
   2955   // This stub is called from the native-call %_SubString(...), so
   2956   // nothing can be assumed about the arguments. It is tested that:
   2957   //  "string" is a sequential string,
   2958   //  both "from" and "to" are smis, and
   2959   //  0 <= from <= to <= string.length.
   2960   // If any of these assumptions fail, we call the runtime system.
   2961 
   2962   const int kToOffset = 0 * kPointerSize;
   2963   const int kFromOffset = 1 * kPointerSize;
   2964   const int kStringOffset = 2 * kPointerSize;
   2965 
   2966   __ lw(a2, MemOperand(sp, kToOffset));
   2967   __ lw(a3, MemOperand(sp, kFromOffset));
   2968   STATIC_ASSERT(kFromOffset == kToOffset + 4);
   2969   STATIC_ASSERT(kSmiTag == 0);
   2970   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
   2971 
   2972   // Utilize delay slots. SmiUntag doesn't emit a jump, everything else is
   2973   // safe in this case.
   2974   __ UntagAndJumpIfNotSmi(a2, a2, &runtime);
   2975   __ UntagAndJumpIfNotSmi(a3, a3, &runtime);
   2976   // Both a2 and a3 are untagged integers.
   2977 
   2978   __ Branch(&runtime, lt, a3, Operand(zero_reg));  // From < 0.
   2979 
   2980   __ Branch(&runtime, gt, a3, Operand(a2));  // Fail if from > to.
   2981   __ Subu(a2, a2, a3);
   2982 
   2983   // Make sure first argument is a string.
   2984   __ lw(v0, MemOperand(sp, kStringOffset));
   2985   __ JumpIfSmi(v0, &runtime);
   2986   __ lw(a1, FieldMemOperand(v0, HeapObject::kMapOffset));
   2987   __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
   2988   __ And(t0, a1, Operand(kIsNotStringMask));
   2989 
   2990   __ Branch(&runtime, ne, t0, Operand(zero_reg));
   2991 
   2992   Label single_char;
   2993   __ Branch(&single_char, eq, a2, Operand(1));
   2994 
   2995   // Short-cut for the case of trivial substring.
   2996   Label return_v0;
   2997   // v0: original string
   2998   // a2: result string length
   2999   __ lw(t0, FieldMemOperand(v0, String::kLengthOffset));
   3000   __ sra(t0, t0, 1);
   3001   // Return original string.
   3002   __ Branch(&return_v0, eq, a2, Operand(t0));
   3003   // Longer than original string's length or negative: unsafe arguments.
   3004   __ Branch(&runtime, hi, a2, Operand(t0));
   3005   // Shorter than original string's length: an actual substring.
   3006 
   3007   // Deal with different string types: update the index if necessary
   3008   // and put the underlying string into t1.
   3009   // v0: original string
   3010   // a1: instance type
   3011   // a2: length
   3012   // a3: from index (untagged)
   3013   Label underlying_unpacked, sliced_string, seq_or_external_string;
   3014   // If the string is not indirect, it can only be sequential or external.
   3015   STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
   3016   STATIC_ASSERT(kIsIndirectStringMask != 0);
   3017   __ And(t0, a1, Operand(kIsIndirectStringMask));
   3018   __ Branch(USE_DELAY_SLOT, &seq_or_external_string, eq, t0, Operand(zero_reg));
   3019   // t0 is used as a scratch register and can be overwritten in either case.
   3020   __ And(t0, a1, Operand(kSlicedNotConsMask));
   3021   __ Branch(&sliced_string, ne, t0, Operand(zero_reg));
   3022   // Cons string.  Check whether it is flat, then fetch first part.
   3023   __ lw(t1, FieldMemOperand(v0, ConsString::kSecondOffset));
   3024   __ LoadRoot(t0, Heap::kempty_stringRootIndex);
   3025   __ Branch(&runtime, ne, t1, Operand(t0));
   3026   __ lw(t1, FieldMemOperand(v0, ConsString::kFirstOffset));
   3027   // Update instance type.
   3028   __ lw(a1, FieldMemOperand(t1, HeapObject::kMapOffset));
   3029   __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
   3030   __ jmp(&underlying_unpacked);
   3031 
   3032   __ bind(&sliced_string);
   3033   // Sliced string.  Fetch parent and correct start index by offset.
   3034   __ lw(t1, FieldMemOperand(v0, SlicedString::kParentOffset));
   3035   __ lw(t0, FieldMemOperand(v0, SlicedString::kOffsetOffset));
   3036   __ sra(t0, t0, 1);  // Add offset to index.
   3037   __ Addu(a3, a3, t0);
   3038   // Update instance type.
   3039   __ lw(a1, FieldMemOperand(t1, HeapObject::kMapOffset));
   3040   __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
   3041   __ jmp(&underlying_unpacked);
   3042 
   3043   __ bind(&seq_or_external_string);
   3044   // Sequential or external string.  Just move string to the expected register.
   3045   __ mov(t1, v0);
   3046 
   3047   __ bind(&underlying_unpacked);
   3048 
   3049   if (FLAG_string_slices) {
   3050     Label copy_routine;
   3051     // t1: underlying subject string
   3052     // a1: instance type of underlying subject string
   3053     // a2: length
   3054     // a3: adjusted start index (untagged)
   3055     // Short slice.  Copy instead of slicing.
   3056     __ Branch(&copy_routine, lt, a2, Operand(SlicedString::kMinLength));
   3057     // Allocate new sliced string.  At this point we do not reload the instance
   3058     // type including the string encoding because we simply rely on the info
   3059     // provided by the original string.  It does not matter if the original
   3060     // string's encoding is wrong because we always have to recheck encoding of
   3061     // the newly created string's parent anyways due to externalized strings.
   3062     Label two_byte_slice, set_slice_header;
   3063     STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
   3064     STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
   3065     __ And(t0, a1, Operand(kStringEncodingMask));
   3066     __ Branch(&two_byte_slice, eq, t0, Operand(zero_reg));
   3067     __ AllocateOneByteSlicedString(v0, a2, t2, t3, &runtime);
   3068     __ jmp(&set_slice_header);
   3069     __ bind(&two_byte_slice);
   3070     __ AllocateTwoByteSlicedString(v0, a2, t2, t3, &runtime);
   3071     __ bind(&set_slice_header);
   3072     __ sll(a3, a3, 1);
   3073     __ sw(t1, FieldMemOperand(v0, SlicedString::kParentOffset));
   3074     __ sw(a3, FieldMemOperand(v0, SlicedString::kOffsetOffset));
   3075     __ jmp(&return_v0);
   3076 
   3077     __ bind(&copy_routine);
   3078   }
   3079 
   3080   // t1: underlying subject string
   3081   // a1: instance type of underlying subject string
   3082   // a2: length
   3083   // a3: adjusted start index (untagged)
   3084   Label two_byte_sequential, sequential_string, allocate_result;
   3085   STATIC_ASSERT(kExternalStringTag != 0);
   3086   STATIC_ASSERT(kSeqStringTag == 0);
   3087   __ And(t0, a1, Operand(kExternalStringTag));
   3088   __ Branch(&sequential_string, eq, t0, Operand(zero_reg));
   3089 
   3090   // Handle external string.
   3091   // Rule out short external strings.
   3092   STATIC_ASSERT(kShortExternalStringTag != 0);
   3093   __ And(t0, a1, Operand(kShortExternalStringTag));
   3094   __ Branch(&runtime, ne, t0, Operand(zero_reg));
   3095   __ lw(t1, FieldMemOperand(t1, ExternalString::kResourceDataOffset));
   3096   // t1 already points to the first character of underlying string.
   3097   __ jmp(&allocate_result);
   3098 
   3099   __ bind(&sequential_string);
   3100   // Locate first character of underlying subject string.
   3101   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
   3102   __ Addu(t1, t1, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
   3103 
   3104   __ bind(&allocate_result);
   3105   // Sequential acii string.  Allocate the result.
   3106   STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
   3107   __ And(t0, a1, Operand(kStringEncodingMask));
   3108   __ Branch(&two_byte_sequential, eq, t0, Operand(zero_reg));
   3109 
   3110   // Allocate and copy the resulting ASCII string.
   3111   __ AllocateOneByteString(v0, a2, t0, t2, t3, &runtime);
   3112 
   3113   // Locate first character of substring to copy.
   3114   __ Addu(t1, t1, a3);
   3115 
   3116   // Locate first character of result.
   3117   __ Addu(a1, v0, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
   3118 
   3119   // v0: result string
   3120   // a1: first character of result string
   3121   // a2: result string length
   3122   // t1: first character of substring to copy
   3123   STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
   3124   StringHelper::GenerateCopyCharacters(
   3125       masm, a1, t1, a2, a3, String::ONE_BYTE_ENCODING);
   3126   __ jmp(&return_v0);
   3127 
   3128   // Allocate and copy the resulting two-byte string.
   3129   __ bind(&two_byte_sequential);
   3130   __ AllocateTwoByteString(v0, a2, t0, t2, t3, &runtime);
   3131 
   3132   // Locate first character of substring to copy.
   3133   STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
   3134   __ sll(t0, a3, 1);
   3135   __ Addu(t1, t1, t0);
   3136   // Locate first character of result.
   3137   __ Addu(a1, v0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
   3138 
   3139   // v0: result string.
   3140   // a1: first character of result.
   3141   // a2: result length.
   3142   // t1: first character of substring to copy.
   3143   STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
   3144   StringHelper::GenerateCopyCharacters(
   3145       masm, a1, t1, a2, a3, String::TWO_BYTE_ENCODING);
   3146 
   3147   __ bind(&return_v0);
   3148   Counters* counters = isolate()->counters();
   3149   __ IncrementCounter(counters->sub_string_native(), 1, a3, t0);
   3150   __ DropAndRet(3);
   3151 
   3152   // Just jump to runtime to create the sub string.
   3153   __ bind(&runtime);
   3154   __ TailCallRuntime(Runtime::kSubString);
   3155 
   3156   __ bind(&single_char);
   3157   // v0: original string
   3158   // a1: instance type
   3159   // a2: length
   3160   // a3: from index (untagged)
   3161   __ SmiTag(a3, a3);
   3162   StringCharAtGenerator generator(v0, a3, a2, v0, &runtime, &runtime, &runtime,
   3163                                   STRING_INDEX_IS_NUMBER, RECEIVER_IS_STRING);
   3164   generator.GenerateFast(masm);
   3165   __ DropAndRet(3);
   3166   generator.SkipSlow(masm, &runtime);
   3167 }
   3168 
   3169 
   3170 void ToNumberStub::Generate(MacroAssembler* masm) {
   3171   // The ToNumber stub takes one argument in a0.
   3172   Label not_smi;
   3173   __ JumpIfNotSmi(a0, &not_smi);
   3174   __ Ret(USE_DELAY_SLOT);
   3175   __ mov(v0, a0);
   3176   __ bind(&not_smi);
   3177 
   3178   Label not_heap_number;
   3179   __ lw(a1, FieldMemOperand(a0, HeapObject::kMapOffset));
   3180   __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
   3181   // a0: object
   3182   // a1: instance type.
   3183   __ Branch(&not_heap_number, ne, a1, Operand(HEAP_NUMBER_TYPE));
   3184   __ Ret(USE_DELAY_SLOT);
   3185   __ mov(v0, a0);
   3186   __ bind(&not_heap_number);
   3187 
   3188   Label not_string, slow_string;
   3189   __ Branch(&not_string, hs, a1, Operand(FIRST_NONSTRING_TYPE));
   3190   // Check if string has a cached array index.
   3191   __ lw(a2, FieldMemOperand(a0, String::kHashFieldOffset));
   3192   __ And(at, a2, Operand(String::kContainsCachedArrayIndexMask));
   3193   __ Branch(&slow_string, ne, at, Operand(zero_reg));
   3194   __ IndexFromHash(a2, a0);
   3195   __ Ret(USE_DELAY_SLOT);
   3196   __ mov(v0, a0);
   3197   __ bind(&slow_string);
   3198   __ push(a0);  // Push argument.
   3199   __ TailCallRuntime(Runtime::kStringToNumber);
   3200   __ bind(&not_string);
   3201 
   3202   Label not_oddball;
   3203   __ Branch(&not_oddball, ne, a1, Operand(ODDBALL_TYPE));
   3204   __ Ret(USE_DELAY_SLOT);
   3205   __ lw(v0, FieldMemOperand(a0, Oddball::kToNumberOffset));
   3206   __ bind(&not_oddball);
   3207 
   3208   __ push(a0);  // Push argument.
   3209   __ TailCallRuntime(Runtime::kToNumber);
   3210 }
   3211 
   3212 
   3213 void ToLengthStub::Generate(MacroAssembler* masm) {
   3214   // The ToLength stub takes on argument in a0.
   3215   Label not_smi, positive_smi;
   3216   __ JumpIfNotSmi(a0, &not_smi);
   3217   STATIC_ASSERT(kSmiTag == 0);
   3218   __ Branch(&positive_smi, ge, a0, Operand(zero_reg));
   3219   __ mov(a0, zero_reg);
   3220   __ bind(&positive_smi);
   3221   __ Ret(USE_DELAY_SLOT);
   3222   __ mov(v0, a0);
   3223   __ bind(&not_smi);
   3224 
   3225   __ push(a0);  // Push argument.
   3226   __ TailCallRuntime(Runtime::kToLength);
   3227 }
   3228 
   3229 
   3230 void ToStringStub::Generate(MacroAssembler* masm) {
   3231   // The ToString stub takes on argument in a0.
   3232   Label is_number;
   3233   __ JumpIfSmi(a0, &is_number);
   3234 
   3235   Label not_string;
   3236   __ GetObjectType(a0, a1, a1);
   3237   // a0: receiver
   3238   // a1: receiver instance type
   3239   __ Branch(&not_string, ge, a1, Operand(FIRST_NONSTRING_TYPE));
   3240   __ Ret(USE_DELAY_SLOT);
   3241   __ mov(v0, a0);
   3242   __ bind(&not_string);
   3243 
   3244   Label not_heap_number;
   3245   __ Branch(&not_heap_number, ne, a1, Operand(HEAP_NUMBER_TYPE));
   3246   __ bind(&is_number);
   3247   NumberToStringStub stub(isolate());
   3248   __ TailCallStub(&stub);
   3249   __ bind(&not_heap_number);
   3250 
   3251   Label not_oddball;
   3252   __ Branch(&not_oddball, ne, a1, Operand(ODDBALL_TYPE));
   3253   __ Ret(USE_DELAY_SLOT);
   3254   __ lw(v0, FieldMemOperand(a0, Oddball::kToStringOffset));
   3255   __ bind(&not_oddball);
   3256 
   3257   __ push(a0);  // Push argument.
   3258   __ TailCallRuntime(Runtime::kToString);
   3259 }
   3260 
   3261 
   3262 void StringHelper::GenerateFlatOneByteStringEquals(
   3263     MacroAssembler* masm, Register left, Register right, Register scratch1,
   3264     Register scratch2, Register scratch3) {
   3265   Register length = scratch1;
   3266 
   3267   // Compare lengths.
   3268   Label strings_not_equal, check_zero_length;
   3269   __ lw(length, FieldMemOperand(left, String::kLengthOffset));
   3270   __ lw(scratch2, FieldMemOperand(right, String::kLengthOffset));
   3271   __ Branch(&check_zero_length, eq, length, Operand(scratch2));
   3272   __ bind(&strings_not_equal);
   3273   DCHECK(is_int16(NOT_EQUAL));
   3274   __ Ret(USE_DELAY_SLOT);
   3275   __ li(v0, Operand(Smi::FromInt(NOT_EQUAL)));
   3276 
   3277   // Check if the length is zero.
   3278   Label compare_chars;
   3279   __ bind(&check_zero_length);
   3280   STATIC_ASSERT(kSmiTag == 0);
   3281   __ Branch(&compare_chars, ne, length, Operand(zero_reg));
   3282   DCHECK(is_int16(EQUAL));
   3283   __ Ret(USE_DELAY_SLOT);
   3284   __ li(v0, Operand(Smi::FromInt(EQUAL)));
   3285 
   3286   // Compare characters.
   3287   __ bind(&compare_chars);
   3288 
   3289   GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2, scratch3,
   3290                                   v0, &strings_not_equal);
   3291 
   3292   // Characters are equal.
   3293   __ Ret(USE_DELAY_SLOT);
   3294   __ li(v0, Operand(Smi::FromInt(EQUAL)));
   3295 }
   3296 
   3297 
   3298 void StringHelper::GenerateCompareFlatOneByteStrings(
   3299     MacroAssembler* masm, Register left, Register right, Register scratch1,
   3300     Register scratch2, Register scratch3, Register scratch4) {
   3301   Label result_not_equal, compare_lengths;
   3302   // Find minimum length and length difference.
   3303   __ lw(scratch1, FieldMemOperand(left, String::kLengthOffset));
   3304   __ lw(scratch2, FieldMemOperand(right, String::kLengthOffset));
   3305   __ Subu(scratch3, scratch1, Operand(scratch2));
   3306   Register length_delta = scratch3;
   3307   __ slt(scratch4, scratch2, scratch1);
   3308   __ Movn(scratch1, scratch2, scratch4);
   3309   Register min_length = scratch1;
   3310   STATIC_ASSERT(kSmiTag == 0);
   3311   __ Branch(&compare_lengths, eq, min_length, Operand(zero_reg));
   3312 
   3313   // Compare loop.
   3314   GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
   3315                                   scratch4, v0, &result_not_equal);
   3316 
   3317   // Compare lengths - strings up to min-length are equal.
   3318   __ bind(&compare_lengths);
   3319   DCHECK(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
   3320   // Use length_delta as result if it's zero.
   3321   __ mov(scratch2, length_delta);
   3322   __ mov(scratch4, zero_reg);
   3323   __ mov(v0, zero_reg);
   3324 
   3325   __ bind(&result_not_equal);
   3326   // Conditionally update the result based either on length_delta or
   3327   // the last comparion performed in the loop above.
   3328   Label ret;
   3329   __ Branch(&ret, eq, scratch2, Operand(scratch4));
   3330   __ li(v0, Operand(Smi::FromInt(GREATER)));
   3331   __ Branch(&ret, gt, scratch2, Operand(scratch4));
   3332   __ li(v0, Operand(Smi::FromInt(LESS)));
   3333   __ bind(&ret);
   3334   __ Ret();
   3335 }
   3336 
   3337 
   3338 void StringHelper::GenerateOneByteCharsCompareLoop(
   3339     MacroAssembler* masm, Register left, Register right, Register length,
   3340     Register scratch1, Register scratch2, Register scratch3,
   3341     Label* chars_not_equal) {
   3342   // Change index to run from -length to -1 by adding length to string
   3343   // start. This means that loop ends when index reaches zero, which
   3344   // doesn't need an additional compare.
   3345   __ SmiUntag(length);
   3346   __ Addu(scratch1, length,
   3347           Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
   3348   __ Addu(left, left, Operand(scratch1));
   3349   __ Addu(right, right, Operand(scratch1));
   3350   __ Subu(length, zero_reg, length);
   3351   Register index = length;  // index = -length;
   3352 
   3353 
   3354   // Compare loop.
   3355   Label loop;
   3356   __ bind(&loop);
   3357   __ Addu(scratch3, left, index);
   3358   __ lbu(scratch1, MemOperand(scratch3));
   3359   __ Addu(scratch3, right, index);
   3360   __ lbu(scratch2, MemOperand(scratch3));
   3361   __ Branch(chars_not_equal, ne, scratch1, Operand(scratch2));
   3362   __ Addu(index, index, 1);
   3363   __ Branch(&loop, ne, index, Operand(zero_reg));
   3364 }
   3365 
   3366 
   3367 void StringCompareStub::Generate(MacroAssembler* masm) {
   3368   // ----------- S t a t e -------------
   3369   //  -- a1    : left
   3370   //  -- a0    : right
   3371   //  -- ra    : return address
   3372   // -----------------------------------
   3373   __ AssertString(a1);
   3374   __ AssertString(a0);
   3375 
   3376   Label not_same;
   3377   __ Branch(&not_same, ne, a0, Operand(a1));
   3378   __ li(v0, Operand(Smi::FromInt(EQUAL)));
   3379   __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, a1,
   3380                       a2);
   3381   __ Ret();
   3382 
   3383   __ bind(&not_same);
   3384 
   3385   // Check that both objects are sequential one-byte strings.
   3386   Label runtime;
   3387   __ JumpIfNotBothSequentialOneByteStrings(a1, a0, a2, a3, &runtime);
   3388 
   3389   // Compare flat ASCII strings natively.
   3390   __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, a2,
   3391                       a3);
   3392   StringHelper::GenerateCompareFlatOneByteStrings(masm, a1, a0, a2, a3, t0, t1);
   3393 
   3394   __ bind(&runtime);
   3395   __ Push(a1, a0);
   3396   __ TailCallRuntime(Runtime::kStringCompare);
   3397 }
   3398 
   3399 
   3400 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
   3401   // ----------- S t a t e -------------
   3402   //  -- a1    : left
   3403   //  -- a0    : right
   3404   //  -- ra    : return address
   3405   // -----------------------------------
   3406 
   3407   // Load a2 with the allocation site. We stick an undefined dummy value here
   3408   // and replace it with the real allocation site later when we instantiate this
   3409   // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
   3410   __ li(a2, handle(isolate()->heap()->undefined_value()));
   3411 
   3412   // Make sure that we actually patched the allocation site.
   3413   if (FLAG_debug_code) {
   3414     __ And(at, a2, Operand(kSmiTagMask));
   3415     __ Assert(ne, kExpectedAllocationSite, at, Operand(zero_reg));
   3416     __ lw(t0, FieldMemOperand(a2, HeapObject::kMapOffset));
   3417     __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
   3418     __ Assert(eq, kExpectedAllocationSite, t0, Operand(at));
   3419   }
   3420 
   3421   // Tail call into the stub that handles binary operations with allocation
   3422   // sites.
   3423   BinaryOpWithAllocationSiteStub stub(isolate(), state());
   3424   __ TailCallStub(&stub);
   3425 }
   3426 
   3427 
   3428 void CompareICStub::GenerateBooleans(MacroAssembler* masm) {
   3429   DCHECK_EQ(CompareICState::BOOLEAN, state());
   3430   Label miss;
   3431 
   3432   __ CheckMap(a1, a2, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK);
   3433   __ CheckMap(a0, a3, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK);
   3434   if (op() != Token::EQ_STRICT && is_strong(strength())) {
   3435     __ TailCallRuntime(Runtime::kThrowStrongModeImplicitConversion);
   3436   } else {
   3437     if (!Token::IsEqualityOp(op())) {
   3438       __ lw(a1, FieldMemOperand(a1, Oddball::kToNumberOffset));
   3439       __ AssertSmi(a1);
   3440       __ lw(a0, FieldMemOperand(a0, Oddball::kToNumberOffset));
   3441       __ AssertSmi(a0);
   3442     }
   3443     __ Ret(USE_DELAY_SLOT);
   3444     __ Subu(v0, a1, a0);
   3445   }
   3446 
   3447   __ bind(&miss);
   3448   GenerateMiss(masm);
   3449 }
   3450 
   3451 
   3452 void CompareICStub::GenerateSmis(MacroAssembler* masm) {
   3453   DCHECK(state() == CompareICState::SMI);
   3454   Label miss;
   3455   __ Or(a2, a1, a0);
   3456   __ JumpIfNotSmi(a2, &miss);
   3457 
   3458   if (GetCondition() == eq) {
   3459     // For equality we do not care about the sign of the result.
   3460     __ Ret(USE_DELAY_SLOT);
   3461     __ Subu(v0, a0, a1);
   3462   } else {
   3463     // Untag before subtracting to avoid handling overflow.
   3464     __ SmiUntag(a1);
   3465     __ SmiUntag(a0);
   3466     __ Ret(USE_DELAY_SLOT);
   3467     __ Subu(v0, a1, a0);
   3468   }
   3469 
   3470   __ bind(&miss);
   3471   GenerateMiss(masm);
   3472 }
   3473 
   3474 
   3475 void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
   3476   DCHECK(state() == CompareICState::NUMBER);
   3477 
   3478   Label generic_stub;
   3479   Label unordered, maybe_undefined1, maybe_undefined2;
   3480   Label miss;
   3481 
   3482   if (left() == CompareICState::SMI) {
   3483     __ JumpIfNotSmi(a1, &miss);
   3484   }
   3485   if (right() == CompareICState::SMI) {
   3486     __ JumpIfNotSmi(a0, &miss);
   3487   }
   3488 
   3489   // Inlining the double comparison and falling back to the general compare
   3490   // stub if NaN is involved.
   3491   // Load left and right operand.
   3492   Label done, left, left_smi, right_smi;
   3493   __ JumpIfSmi(a0, &right_smi);
   3494   __ CheckMap(a0, a2, Heap::kHeapNumberMapRootIndex, &maybe_undefined1,
   3495               DONT_DO_SMI_CHECK);
   3496   __ Subu(a2, a0, Operand(kHeapObjectTag));
   3497   __ ldc1(f2, MemOperand(a2, HeapNumber::kValueOffset));
   3498   __ Branch(&left);
   3499   __ bind(&right_smi);
   3500   __ SmiUntag(a2, a0);  // Can't clobber a0 yet.
   3501   FPURegister single_scratch = f6;
   3502   __ mtc1(a2, single_scratch);
   3503   __ cvt_d_w(f2, single_scratch);
   3504 
   3505   __ bind(&left);
   3506   __ JumpIfSmi(a1, &left_smi);
   3507   __ CheckMap(a1, a2, Heap::kHeapNumberMapRootIndex, &maybe_undefined2,
   3508               DONT_DO_SMI_CHECK);
   3509   __ Subu(a2, a1, Operand(kHeapObjectTag));
   3510   __ ldc1(f0, MemOperand(a2, HeapNumber::kValueOffset));
   3511   __ Branch(&done);
   3512   __ bind(&left_smi);
   3513   __ SmiUntag(a2, a1);  // Can't clobber a1 yet.
   3514   single_scratch = f8;
   3515   __ mtc1(a2, single_scratch);
   3516   __ cvt_d_w(f0, single_scratch);
   3517 
   3518   __ bind(&done);
   3519 
   3520   // Return a result of -1, 0, or 1, or use CompareStub for NaNs.
   3521   Label fpu_eq, fpu_lt;
   3522   // Test if equal, and also handle the unordered/NaN case.
   3523   __ BranchF(&fpu_eq, &unordered, eq, f0, f2);
   3524 
   3525   // Test if less (unordered case is already handled).
   3526   __ BranchF(&fpu_lt, NULL, lt, f0, f2);
   3527 
   3528   // Otherwise it's greater, so just fall thru, and return.
   3529   DCHECK(is_int16(GREATER) && is_int16(EQUAL) && is_int16(LESS));
   3530   __ Ret(USE_DELAY_SLOT);
   3531   __ li(v0, Operand(GREATER));
   3532 
   3533   __ bind(&fpu_eq);
   3534   __ Ret(USE_DELAY_SLOT);
   3535   __ li(v0, Operand(EQUAL));
   3536 
   3537   __ bind(&fpu_lt);
   3538   __ Ret(USE_DELAY_SLOT);
   3539   __ li(v0, Operand(LESS));
   3540 
   3541   __ bind(&unordered);
   3542   __ bind(&generic_stub);
   3543   CompareICStub stub(isolate(), op(), strength(), CompareICState::GENERIC,
   3544                      CompareICState::GENERIC, CompareICState::GENERIC);
   3545   __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
   3546 
   3547   __ bind(&maybe_undefined1);
   3548   if (Token::IsOrderedRelationalCompareOp(op())) {
   3549     __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
   3550     __ Branch(&miss, ne, a0, Operand(at));
   3551     __ JumpIfSmi(a1, &unordered);
   3552     __ GetObjectType(a1, a2, a2);
   3553     __ Branch(&maybe_undefined2, ne, a2, Operand(HEAP_NUMBER_TYPE));
   3554     __ jmp(&unordered);
   3555   }
   3556 
   3557   __ bind(&maybe_undefined2);
   3558   if (Token::IsOrderedRelationalCompareOp(op())) {
   3559     __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
   3560     __ Branch(&unordered, eq, a1, Operand(at));
   3561   }
   3562 
   3563   __ bind(&miss);
   3564   GenerateMiss(masm);
   3565 }
   3566 
   3567 
   3568 void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
   3569   DCHECK(state() == CompareICState::INTERNALIZED_STRING);
   3570   Label miss;
   3571 
   3572   // Registers containing left and right operands respectively.
   3573   Register left = a1;
   3574   Register right = a0;
   3575   Register tmp1 = a2;
   3576   Register tmp2 = a3;
   3577 
   3578   // Check that both operands are heap objects.
   3579   __ JumpIfEitherSmi(left, right, &miss);
   3580 
   3581   // Check that both operands are internalized strings.
   3582   __ lw(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
   3583   __ lw(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
   3584   __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
   3585   __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
   3586   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
   3587   __ Or(tmp1, tmp1, Operand(tmp2));
   3588   __ And(at, tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask));
   3589   __ Branch(&miss, ne, at, Operand(zero_reg));
   3590 
   3591   // Make sure a0 is non-zero. At this point input operands are
   3592   // guaranteed to be non-zero.
   3593   DCHECK(right.is(a0));
   3594   STATIC_ASSERT(EQUAL == 0);
   3595   STATIC_ASSERT(kSmiTag == 0);
   3596   __ mov(v0, right);
   3597   // Internalized strings are compared by identity.
   3598   __ Ret(ne, left, Operand(right));
   3599   DCHECK(is_int16(EQUAL));
   3600   __ Ret(USE_DELAY_SLOT);
   3601   __ li(v0, Operand(Smi::FromInt(EQUAL)));
   3602 
   3603   __ bind(&miss);
   3604   GenerateMiss(masm);
   3605 }
   3606 
   3607 
   3608 void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
   3609   DCHECK(state() == CompareICState::UNIQUE_NAME);
   3610   DCHECK(GetCondition() == eq);
   3611   Label miss;
   3612 
   3613   // Registers containing left and right operands respectively.
   3614   Register left = a1;
   3615   Register right = a0;
   3616   Register tmp1 = a2;
   3617   Register tmp2 = a3;
   3618 
   3619   // Check that both operands are heap objects.
   3620   __ JumpIfEitherSmi(left, right, &miss);
   3621 
   3622   // Check that both operands are unique names. This leaves the instance
   3623   // types loaded in tmp1 and tmp2.
   3624   __ lw(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
   3625   __ lw(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
   3626   __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
   3627   __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
   3628 
   3629   __ JumpIfNotUniqueNameInstanceType(tmp1, &miss);
   3630   __ JumpIfNotUniqueNameInstanceType(tmp2, &miss);
   3631 
   3632   // Use a0 as result
   3633   __ mov(v0, a0);
   3634 
   3635   // Unique names are compared by identity.
   3636   Label done;
   3637   __ Branch(&done, ne, left, Operand(right));
   3638   // Make sure a0 is non-zero. At this point input operands are
   3639   // guaranteed to be non-zero.
   3640   DCHECK(right.is(a0));
   3641   STATIC_ASSERT(EQUAL == 0);
   3642   STATIC_ASSERT(kSmiTag == 0);
   3643   __ li(v0, Operand(Smi::FromInt(EQUAL)));
   3644   __ bind(&done);
   3645   __ Ret();
   3646 
   3647   __ bind(&miss);
   3648   GenerateMiss(masm);
   3649 }
   3650 
   3651 
   3652 void CompareICStub::GenerateStrings(MacroAssembler* masm) {
   3653   DCHECK(state() == CompareICState::STRING);
   3654   Label miss;
   3655 
   3656   bool equality = Token::IsEqualityOp(op());
   3657 
   3658   // Registers containing left and right operands respectively.
   3659   Register left = a1;
   3660   Register right = a0;
   3661   Register tmp1 = a2;
   3662   Register tmp2 = a3;
   3663   Register tmp3 = t0;
   3664   Register tmp4 = t1;
   3665   Register tmp5 = t2;
   3666 
   3667   // Check that both operands are heap objects.
   3668   __ JumpIfEitherSmi(left, right, &miss);
   3669 
   3670   // Check that both operands are strings. This leaves the instance
   3671   // types loaded in tmp1 and tmp2.
   3672   __ lw(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
   3673   __ lw(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
   3674   __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
   3675   __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
   3676   STATIC_ASSERT(kNotStringTag != 0);
   3677   __ Or(tmp3, tmp1, tmp2);
   3678   __ And(tmp5, tmp3, Operand(kIsNotStringMask));
   3679   __ Branch(&miss, ne, tmp5, Operand(zero_reg));
   3680 
   3681   // Fast check for identical strings.
   3682   Label left_ne_right;
   3683   STATIC_ASSERT(EQUAL == 0);
   3684   STATIC_ASSERT(kSmiTag == 0);
   3685   __ Branch(&left_ne_right, ne, left, Operand(right));
   3686   __ Ret(USE_DELAY_SLOT);
   3687   __ mov(v0, zero_reg);  // In the delay slot.
   3688   __ bind(&left_ne_right);
   3689 
   3690   // Handle not identical strings.
   3691 
   3692   // Check that both strings are internalized strings. If they are, we're done
   3693   // because we already know they are not identical. We know they are both
   3694   // strings.
   3695   if (equality) {
   3696     DCHECK(GetCondition() == eq);
   3697     STATIC_ASSERT(kInternalizedTag == 0);
   3698     __ Or(tmp3, tmp1, Operand(tmp2));
   3699     __ And(tmp5, tmp3, Operand(kIsNotInternalizedMask));
   3700     Label is_symbol;
   3701     __ Branch(&is_symbol, ne, tmp5, Operand(zero_reg));
   3702     // Make sure a0 is non-zero. At this point input operands are
   3703     // guaranteed to be non-zero.
   3704     DCHECK(right.is(a0));
   3705     __ Ret(USE_DELAY_SLOT);
   3706     __ mov(v0, a0);  // In the delay slot.
   3707     __ bind(&is_symbol);
   3708   }
   3709 
   3710   // Check that both strings are sequential one-byte.
   3711   Label runtime;
   3712   __ JumpIfBothInstanceTypesAreNotSequentialOneByte(tmp1, tmp2, tmp3, tmp4,
   3713                                                     &runtime);
   3714 
   3715   // Compare flat one-byte strings. Returns when done.
   3716   if (equality) {
   3717     StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1, tmp2,
   3718                                                   tmp3);
   3719   } else {
   3720     StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
   3721                                                     tmp2, tmp3, tmp4);
   3722   }
   3723 
   3724   // Handle more complex cases in runtime.
   3725   __ bind(&runtime);
   3726   __ Push(left, right);
   3727   if (equality) {
   3728     __ TailCallRuntime(Runtime::kStringEquals);
   3729   } else {
   3730     __ TailCallRuntime(Runtime::kStringCompare);
   3731   }
   3732 
   3733   __ bind(&miss);
   3734   GenerateMiss(masm);
   3735 }
   3736 
   3737 
   3738 void CompareICStub::GenerateReceivers(MacroAssembler* masm) {
   3739   DCHECK_EQ(CompareICState::RECEIVER, state());
   3740   Label miss;
   3741   __ And(a2, a1, Operand(a0));
   3742   __ JumpIfSmi(a2, &miss);
   3743 
   3744   STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
   3745   __ GetObjectType(a0, a2, a2);
   3746   __ Branch(&miss, lt, a2, Operand(FIRST_JS_RECEIVER_TYPE));
   3747   __ GetObjectType(a1, a2, a2);
   3748   __ Branch(&miss, lt, a2, Operand(FIRST_JS_RECEIVER_TYPE));
   3749 
   3750   DCHECK_EQ(eq, GetCondition());
   3751   __ Ret(USE_DELAY_SLOT);
   3752   __ subu(v0, a0, a1);
   3753 
   3754   __ bind(&miss);
   3755   GenerateMiss(masm);
   3756 }
   3757 
   3758 
   3759 void CompareICStub::GenerateKnownReceivers(MacroAssembler* masm) {
   3760   Label miss;
   3761   Handle<WeakCell> cell = Map::WeakCellForMap(known_map_);
   3762   __ And(a2, a1, a0);
   3763   __ JumpIfSmi(a2, &miss);
   3764   __ GetWeakValue(t0, cell);
   3765   __ lw(a2, FieldMemOperand(a0, HeapObject::kMapOffset));
   3766   __ lw(a3, FieldMemOperand(a1, HeapObject::kMapOffset));
   3767   __ Branch(&miss, ne, a2, Operand(t0));
   3768   __ Branch(&miss, ne, a3, Operand(t0));
   3769 
   3770   if (Token::IsEqualityOp(op())) {
   3771     __ Ret(USE_DELAY_SLOT);
   3772     __ subu(v0, a0, a1);
   3773   } else if (is_strong(strength())) {
   3774     __ TailCallRuntime(Runtime::kThrowStrongModeImplicitConversion);
   3775   } else {
   3776     if (op() == Token::LT || op() == Token::LTE) {
   3777       __ li(a2, Operand(Smi::FromInt(GREATER)));
   3778     } else {
   3779       __ li(a2, Operand(Smi::FromInt(LESS)));
   3780     }
   3781     __ Push(a1, a0, a2);
   3782     __ TailCallRuntime(Runtime::kCompare);
   3783   }
   3784 
   3785   __ bind(&miss);
   3786   GenerateMiss(masm);
   3787 }
   3788 
   3789 
   3790 void CompareICStub::GenerateMiss(MacroAssembler* masm) {
   3791   {
   3792     // Call the runtime system in a fresh internal frame.
   3793     FrameScope scope(masm, StackFrame::INTERNAL);
   3794     __ Push(a1, a0);
   3795     __ Push(ra, a1, a0);
   3796     __ li(t0, Operand(Smi::FromInt(op())));
   3797     __ addiu(sp, sp, -kPointerSize);
   3798     __ CallRuntime(Runtime::kCompareIC_Miss, 3, kDontSaveFPRegs,
   3799                    USE_DELAY_SLOT);
   3800     __ sw(t0, MemOperand(sp));  // In the delay slot.
   3801     // Compute the entry point of the rewritten stub.
   3802     __ Addu(a2, v0, Operand(Code::kHeaderSize - kHeapObjectTag));
   3803     // Restore registers.
   3804     __ Pop(a1, a0, ra);
   3805   }
   3806   __ Jump(a2);
   3807 }
   3808 
   3809 
   3810 void DirectCEntryStub::Generate(MacroAssembler* masm) {
   3811   // Make place for arguments to fit C calling convention. Most of the callers
   3812   // of DirectCEntryStub::GenerateCall are using EnterExitFrame/LeaveExitFrame
   3813   // so they handle stack restoring and we don't have to do that here.
   3814   // Any caller of DirectCEntryStub::GenerateCall must take care of dropping
   3815   // kCArgsSlotsSize stack space after the call.
   3816   __ Subu(sp, sp, Operand(kCArgsSlotsSize));
   3817   // Place the return address on the stack, making the call
   3818   // GC safe. The RegExp backend also relies on this.
   3819   __ sw(ra, MemOperand(sp, kCArgsSlotsSize));
   3820   __ Call(t9);  // Call the C++ function.
   3821   __ lw(t9, MemOperand(sp, kCArgsSlotsSize));
   3822 
   3823   if (FLAG_debug_code && FLAG_enable_slow_asserts) {
   3824     // In case of an error the return address may point to a memory area
   3825     // filled with kZapValue by the GC.
   3826     // Dereference the address and check for this.
   3827     __ lw(t0, MemOperand(t9));
   3828     __ Assert(ne, kReceivedInvalidReturnAddress, t0,
   3829         Operand(reinterpret_cast<uint32_t>(kZapValue)));
   3830   }
   3831   __ Jump(t9);
   3832 }
   3833 
   3834 
   3835 void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
   3836                                     Register target) {
   3837   intptr_t loc =
   3838       reinterpret_cast<intptr_t>(GetCode().location());
   3839   __ Move(t9, target);
   3840   __ li(at, Operand(loc, RelocInfo::CODE_TARGET), CONSTANT_SIZE);
   3841   __ Call(at);
   3842 }
   3843 
   3844 
   3845 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
   3846                                                       Label* miss,
   3847                                                       Label* done,
   3848                                                       Register receiver,
   3849                                                       Register properties,
   3850                                                       Handle<Name> name,
   3851                                                       Register scratch0) {
   3852   DCHECK(name->IsUniqueName());
   3853   // If names of slots in range from 1 to kProbes - 1 for the hash value are
   3854   // not equal to the name and kProbes-th slot is not used (its name is the
   3855   // undefined value), it guarantees the hash table doesn't contain the
   3856   // property. It's true even if some slots represent deleted properties
   3857   // (their names are the hole value).
   3858   for (int i = 0; i < kInlinedProbes; i++) {
   3859     // scratch0 points to properties hash.
   3860     // Compute the masked index: (hash + i + i * i) & mask.
   3861     Register index = scratch0;
   3862     // Capacity is smi 2^n.
   3863     __ lw(index, FieldMemOperand(properties, kCapacityOffset));
   3864     __ Subu(index, index, Operand(1));
   3865     __ And(index, index, Operand(
   3866         Smi::FromInt(name->Hash() + NameDictionary::GetProbeOffset(i))));
   3867 
   3868     // Scale the index by multiplying by the entry size.
   3869     STATIC_ASSERT(NameDictionary::kEntrySize == 3);
   3870     __ sll(at, index, 1);
   3871     __ Addu(index, index, at);
   3872 
   3873     Register entity_name = scratch0;
   3874     // Having undefined at this place means the name is not contained.
   3875     STATIC_ASSERT(kSmiTagSize == 1);
   3876     Register tmp = properties;
   3877     __ sll(scratch0, index, 1);
   3878     __ Addu(tmp, properties, scratch0);
   3879     __ lw(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
   3880 
   3881     DCHECK(!tmp.is(entity_name));
   3882     __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
   3883     __ Branch(done, eq, entity_name, Operand(tmp));
   3884 
   3885     // Load the hole ready for use below:
   3886     __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex);
   3887 
   3888     // Stop if found the property.
   3889     __ Branch(miss, eq, entity_name, Operand(Handle<Name>(name)));
   3890 
   3891     Label good;
   3892     __ Branch(&good, eq, entity_name, Operand(tmp));
   3893 
   3894     // Check if the entry name is not a unique name.
   3895     __ lw(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
   3896     __ lbu(entity_name,
   3897            FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
   3898     __ JumpIfNotUniqueNameInstanceType(entity_name, miss);
   3899     __ bind(&good);
   3900 
   3901     // Restore the properties.
   3902     __ lw(properties,
   3903           FieldMemOperand(receiver, JSObject::kPropertiesOffset));
   3904   }
   3905 
   3906   const int spill_mask =
   3907       (ra.bit() | t2.bit() | t1.bit() | t0.bit() | a3.bit() |
   3908        a2.bit() | a1.bit() | a0.bit() | v0.bit());
   3909 
   3910   __ MultiPush(spill_mask);
   3911   __ lw(a0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
   3912   __ li(a1, Operand(Handle<Name>(name)));
   3913   NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP);
   3914   __ CallStub(&stub);
   3915   __ mov(at, v0);
   3916   __ MultiPop(spill_mask);
   3917 
   3918   __ Branch(done, eq, at, Operand(zero_reg));
   3919   __ Branch(miss, ne, at, Operand(zero_reg));
   3920 }
   3921 
   3922 
   3923 // Probe the name dictionary in the |elements| register. Jump to the
   3924 // |done| label if a property with the given name is found. Jump to
   3925 // the |miss| label otherwise.
   3926 // If lookup was successful |scratch2| will be equal to elements + 4 * index.
   3927 void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
   3928                                                       Label* miss,
   3929                                                       Label* done,
   3930                                                       Register elements,
   3931                                                       Register name,
   3932                                                       Register scratch1,
   3933                                                       Register scratch2) {
   3934   DCHECK(!elements.is(scratch1));
   3935   DCHECK(!elements.is(scratch2));
   3936   DCHECK(!name.is(scratch1));
   3937   DCHECK(!name.is(scratch2));
   3938 
   3939   __ AssertName(name);
   3940 
   3941   // Compute the capacity mask.
   3942   __ lw(scratch1, FieldMemOperand(elements, kCapacityOffset));
   3943   __ sra(scratch1, scratch1, kSmiTagSize);  // convert smi to int
   3944   __ Subu(scratch1, scratch1, Operand(1));
   3945 
   3946   // Generate an unrolled loop that performs a few probes before
   3947   // giving up. Measurements done on Gmail indicate that 2 probes
   3948   // cover ~93% of loads from dictionaries.
   3949   for (int i = 0; i < kInlinedProbes; i++) {
   3950     // Compute the masked index: (hash + i + i * i) & mask.
   3951     __ lw(scratch2, FieldMemOperand(name, Name::kHashFieldOffset));
   3952     if (i > 0) {
   3953       // Add the probe offset (i + i * i) left shifted to avoid right shifting
   3954       // the hash in a separate instruction. The value hash + i + i * i is right
   3955       // shifted in the following and instruction.
   3956       DCHECK(NameDictionary::GetProbeOffset(i) <
   3957              1 << (32 - Name::kHashFieldOffset));
   3958       __ Addu(scratch2, scratch2, Operand(
   3959           NameDictionary::GetProbeOffset(i) << Name::kHashShift));
   3960     }
   3961     __ srl(scratch2, scratch2, Name::kHashShift);
   3962     __ And(scratch2, scratch1, scratch2);
   3963 
   3964     // Scale the index by multiplying by the element size.
   3965     STATIC_ASSERT(NameDictionary::kEntrySize == 3);
   3966     // scratch2 = scratch2 * 3.
   3967 
   3968     __ sll(at, scratch2, 1);
   3969     __ Addu(scratch2, scratch2, at);
   3970 
   3971     // Check if the key is identical to the name.
   3972     __ sll(at, scratch2, 2);
   3973     __ Addu(scratch2, elements, at);
   3974     __ lw(at, FieldMemOperand(scratch2, kElementsStartOffset));
   3975     __ Branch(done, eq, name, Operand(at));
   3976   }
   3977 
   3978   const int spill_mask =
   3979       (ra.bit() | t2.bit() | t1.bit() | t0.bit() |
   3980        a3.bit() | a2.bit() | a1.bit() | a0.bit() | v0.bit()) &
   3981       ~(scratch1.bit() | scratch2.bit());
   3982 
   3983   __ MultiPush(spill_mask);
   3984   if (name.is(a0)) {
   3985     DCHECK(!elements.is(a1));
   3986     __ Move(a1, name);
   3987     __ Move(a0, elements);
   3988   } else {
   3989     __ Move(a0, elements);
   3990     __ Move(a1, name);
   3991   }
   3992   NameDictionaryLookupStub stub(masm->isolate(), POSITIVE_LOOKUP);
   3993   __ CallStub(&stub);
   3994   __ mov(scratch2, a2);
   3995   __ mov(at, v0);
   3996   __ MultiPop(spill_mask);
   3997 
   3998   __ Branch(done, ne, at, Operand(zero_reg));
   3999   __ Branch(miss, eq, at, Operand(zero_reg));
   4000 }
   4001 
   4002 
   4003 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
   4004   // This stub overrides SometimesSetsUpAFrame() to return false.  That means
   4005   // we cannot call anything that could cause a GC from this stub.
   4006   // Registers:
   4007   //  result: NameDictionary to probe
   4008   //  a1: key
   4009   //  dictionary: NameDictionary to probe.
   4010   //  index: will hold an index of entry if lookup is successful.
   4011   //         might alias with result_.
   4012   // Returns:
   4013   //  result_ is zero if lookup failed, non zero otherwise.
   4014 
   4015   Register result = v0;
   4016   Register dictionary = a0;
   4017   Register key = a1;
   4018   Register index = a2;
   4019   Register mask = a3;
   4020   Register hash = t0;
   4021   Register undefined = t1;
   4022   Register entry_key = t2;
   4023 
   4024   Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
   4025 
   4026   __ lw(mask, FieldMemOperand(dictionary, kCapacityOffset));
   4027   __ sra(mask, mask, kSmiTagSize);
   4028   __ Subu(mask, mask, Operand(1));
   4029 
   4030   __ lw(hash, FieldMemOperand(key, Name::kHashFieldOffset));
   4031 
   4032   __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
   4033 
   4034   for (int i = kInlinedProbes; i < kTotalProbes; i++) {
   4035     // Compute the masked index: (hash + i + i * i) & mask.
   4036     // Capacity is smi 2^n.
   4037     if (i > 0) {
   4038       // Add the probe offset (i + i * i) left shifted to avoid right shifting
   4039       // the hash in a separate instruction. The value hash + i + i * i is right
   4040       // shifted in the following and instruction.
   4041       DCHECK(NameDictionary::GetProbeOffset(i) <
   4042              1 << (32 - Name::kHashFieldOffset));
   4043       __ Addu(index, hash, Operand(
   4044           NameDictionary::GetProbeOffset(i) << Name::kHashShift));
   4045     } else {
   4046       __ mov(index, hash);
   4047     }
   4048     __ srl(index, index, Name::kHashShift);
   4049     __ And(index, mask, index);
   4050 
   4051     // Scale the index by multiplying by the entry size.
   4052     STATIC_ASSERT(NameDictionary::kEntrySize == 3);
   4053     // index *= 3.
   4054     __ mov(at, index);
   4055     __ sll(index, index, 1);
   4056     __ Addu(index, index, at);
   4057 
   4058 
   4059     STATIC_ASSERT(kSmiTagSize == 1);
   4060     __ sll(index, index, 2);
   4061     __ Addu(index, index, dictionary);
   4062     __ lw(entry_key, FieldMemOperand(index, kElementsStartOffset));
   4063 
   4064     // Having undefined at this place means the name is not contained.
   4065     __ Branch(&not_in_dictionary, eq, entry_key, Operand(undefined));
   4066 
   4067     // Stop if found the property.
   4068     __ Branch(&in_dictionary, eq, entry_key, Operand(key));
   4069 
   4070     if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
   4071       // Check if the entry name is not a unique name.
   4072       __ lw(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
   4073       __ lbu(entry_key,
   4074              FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
   4075       __ JumpIfNotUniqueNameInstanceType(entry_key, &maybe_in_dictionary);
   4076     }
   4077   }
   4078 
   4079   __ bind(&maybe_in_dictionary);
   4080   // If we are doing negative lookup then probing failure should be
   4081   // treated as a lookup success. For positive lookup probing failure
   4082   // should be treated as lookup failure.
   4083   if (mode() == POSITIVE_LOOKUP) {
   4084     __ Ret(USE_DELAY_SLOT);
   4085     __ mov(result, zero_reg);
   4086   }
   4087 
   4088   __ bind(&in_dictionary);
   4089   __ Ret(USE_DELAY_SLOT);
   4090   __ li(result, 1);
   4091 
   4092   __ bind(&not_in_dictionary);
   4093   __ Ret(USE_DELAY_SLOT);
   4094   __ mov(result, zero_reg);
   4095 }
   4096 
   4097 
   4098 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
   4099     Isolate* isolate) {
   4100   StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
   4101   stub1.GetCode();
   4102   // Hydrogen code stubs need stub2 at snapshot time.
   4103   StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
   4104   stub2.GetCode();
   4105 }
   4106 
   4107 
   4108 // Takes the input in 3 registers: address_ value_ and object_.  A pointer to
   4109 // the value has just been written into the object, now this stub makes sure
   4110 // we keep the GC informed.  The word in the object where the value has been
   4111 // written is in the address register.
   4112 void RecordWriteStub::Generate(MacroAssembler* masm) {
   4113   Label skip_to_incremental_noncompacting;
   4114   Label skip_to_incremental_compacting;
   4115 
   4116   // The first two branch+nop instructions are generated with labels so as to
   4117   // get the offset fixed up correctly by the bind(Label*) call.  We patch it
   4118   // back and forth between a "bne zero_reg, zero_reg, ..." (a nop in this
   4119   // position) and the "beq zero_reg, zero_reg, ..." when we start and stop
   4120   // incremental heap marking.
   4121   // See RecordWriteStub::Patch for details.
   4122   __ beq(zero_reg, zero_reg, &skip_to_incremental_noncompacting);
   4123   __ nop();
   4124   __ beq(zero_reg, zero_reg, &skip_to_incremental_compacting);
   4125   __ nop();
   4126 
   4127   if (remembered_set_action() == EMIT_REMEMBERED_SET) {
   4128     __ RememberedSetHelper(object(),
   4129                            address(),
   4130                            value(),
   4131                            save_fp_regs_mode(),
   4132                            MacroAssembler::kReturnAtEnd);
   4133   }
   4134   __ Ret();
   4135 
   4136   __ bind(&skip_to_incremental_noncompacting);
   4137   GenerateIncremental(masm, INCREMENTAL);
   4138 
   4139   __ bind(&skip_to_incremental_compacting);
   4140   GenerateIncremental(masm, INCREMENTAL_COMPACTION);
   4141 
   4142   // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
   4143   // Will be checked in IncrementalMarking::ActivateGeneratedStub.
   4144 
   4145   PatchBranchIntoNop(masm, 0);
   4146   PatchBranchIntoNop(masm, 2 * Assembler::kInstrSize);
   4147 }
   4148 
   4149 
   4150 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
   4151   regs_.Save(masm);
   4152 
   4153   if (remembered_set_action() == EMIT_REMEMBERED_SET) {
   4154     Label dont_need_remembered_set;
   4155 
   4156     __ lw(regs_.scratch0(), MemOperand(regs_.address(), 0));
   4157     __ JumpIfNotInNewSpace(regs_.scratch0(),  // Value.
   4158                            regs_.scratch0(),
   4159                            &dont_need_remembered_set);
   4160 
   4161     __ CheckPageFlag(regs_.object(),
   4162                      regs_.scratch0(),
   4163                      1 << MemoryChunk::SCAN_ON_SCAVENGE,
   4164                      ne,
   4165                      &dont_need_remembered_set);
   4166 
   4167     // First notify the incremental marker if necessary, then update the
   4168     // remembered set.
   4169     CheckNeedsToInformIncrementalMarker(
   4170         masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
   4171     InformIncrementalMarker(masm);
   4172     regs_.Restore(masm);
   4173     __ RememberedSetHelper(object(),
   4174                            address(),
   4175                            value(),
   4176                            save_fp_regs_mode(),
   4177                            MacroAssembler::kReturnAtEnd);
   4178 
   4179     __ bind(&dont_need_remembered_set);
   4180   }
   4181 
   4182   CheckNeedsToInformIncrementalMarker(
   4183       masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
   4184   InformIncrementalMarker(masm);
   4185   regs_.Restore(masm);
   4186   __ Ret();
   4187 }
   4188 
   4189 
   4190 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
   4191   regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
   4192   int argument_count = 3;
   4193   __ PrepareCallCFunction(argument_count, regs_.scratch0());
   4194   Register address =
   4195       a0.is(regs_.address()) ? regs_.scratch0() : regs_.address();
   4196   DCHECK(!address.is(regs_.object()));
   4197   DCHECK(!address.is(a0));
   4198   __ Move(address, regs_.address());
   4199   __ Move(a0, regs_.object());
   4200   __ Move(a1, address);
   4201   __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
   4202 
   4203   AllowExternalCallThatCantCauseGC scope(masm);
   4204   __ CallCFunction(
   4205       ExternalReference::incremental_marking_record_write_function(isolate()),
   4206       argument_count);
   4207   regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
   4208 }
   4209 
   4210 
   4211 void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
   4212     MacroAssembler* masm,
   4213     OnNoNeedToInformIncrementalMarker on_no_need,
   4214     Mode mode) {
   4215   Label on_black;
   4216   Label need_incremental;
   4217   Label need_incremental_pop_scratch;
   4218 
   4219   __ And(regs_.scratch0(), regs_.object(), Operand(~Page::kPageAlignmentMask));
   4220   __ lw(regs_.scratch1(),
   4221         MemOperand(regs_.scratch0(),
   4222                    MemoryChunk::kWriteBarrierCounterOffset));
   4223   __ Subu(regs_.scratch1(), regs_.scratch1(), Operand(1));
   4224   __ sw(regs_.scratch1(),
   4225          MemOperand(regs_.scratch0(),
   4226                     MemoryChunk::kWriteBarrierCounterOffset));
   4227   __ Branch(&need_incremental, lt, regs_.scratch1(), Operand(zero_reg));
   4228 
   4229   // Let's look at the color of the object:  If it is not black we don't have
   4230   // to inform the incremental marker.
   4231   __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
   4232 
   4233   regs_.Restore(masm);
   4234   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
   4235     __ RememberedSetHelper(object(),
   4236                            address(),
   4237                            value(),
   4238                            save_fp_regs_mode(),
   4239                            MacroAssembler::kReturnAtEnd);
   4240   } else {
   4241     __ Ret();
   4242   }
   4243 
   4244   __ bind(&on_black);
   4245 
   4246   // Get the value from the slot.
   4247   __ lw(regs_.scratch0(), MemOperand(regs_.address(), 0));
   4248 
   4249   if (mode == INCREMENTAL_COMPACTION) {
   4250     Label ensure_not_white;
   4251 
   4252     __ CheckPageFlag(regs_.scratch0(),  // Contains value.
   4253                      regs_.scratch1(),  // Scratch.
   4254                      MemoryChunk::kEvacuationCandidateMask,
   4255                      eq,
   4256                      &ensure_not_white);
   4257 
   4258     __ CheckPageFlag(regs_.object(),
   4259                      regs_.scratch1(),  // Scratch.
   4260                      MemoryChunk::kSkipEvacuationSlotsRecordingMask,
   4261                      eq,
   4262                      &need_incremental);
   4263 
   4264     __ bind(&ensure_not_white);
   4265   }
   4266 
   4267   // We need extra registers for this, so we push the object and the address
   4268   // register temporarily.
   4269   __ Push(regs_.object(), regs_.address());
   4270   __ JumpIfWhite(regs_.scratch0(),  // The value.
   4271                  regs_.scratch1(),  // Scratch.
   4272                  regs_.object(),    // Scratch.
   4273                  regs_.address(),   // Scratch.
   4274                  &need_incremental_pop_scratch);
   4275   __ Pop(regs_.object(), regs_.address());
   4276 
   4277   regs_.Restore(masm);
   4278   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
   4279     __ RememberedSetHelper(object(),
   4280                            address(),
   4281                            value(),
   4282                            save_fp_regs_mode(),
   4283                            MacroAssembler::kReturnAtEnd);
   4284   } else {
   4285     __ Ret();
   4286   }
   4287 
   4288   __ bind(&need_incremental_pop_scratch);
   4289   __ Pop(regs_.object(), regs_.address());
   4290 
   4291   __ bind(&need_incremental);
   4292 
   4293   // Fall through when we need to inform the incremental marker.
   4294 }
   4295 
   4296 
   4297 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
   4298   CEntryStub ces(isolate(), 1, kSaveFPRegs);
   4299   __ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
   4300   int parameter_count_offset =
   4301       StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
   4302   __ lw(a1, MemOperand(fp, parameter_count_offset));
   4303   if (function_mode() == JS_FUNCTION_STUB_MODE) {
   4304     __ Addu(a1, a1, Operand(1));
   4305   }
   4306   masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
   4307   __ sll(a1, a1, kPointerSizeLog2);
   4308   __ Ret(USE_DELAY_SLOT);
   4309   __ Addu(sp, sp, a1);
   4310 }
   4311 
   4312 
   4313 void LoadICTrampolineStub::Generate(MacroAssembler* masm) {
   4314   __ EmitLoadTypeFeedbackVector(LoadWithVectorDescriptor::VectorRegister());
   4315   LoadICStub stub(isolate(), state());
   4316   stub.GenerateForTrampoline(masm);
   4317 }
   4318 
   4319 
   4320 void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) {
   4321   __ EmitLoadTypeFeedbackVector(LoadWithVectorDescriptor::VectorRegister());
   4322   KeyedLoadICStub stub(isolate(), state());
   4323   stub.GenerateForTrampoline(masm);
   4324 }
   4325 
   4326 
   4327 void CallICTrampolineStub::Generate(MacroAssembler* masm) {
   4328   __ EmitLoadTypeFeedbackVector(a2);
   4329   CallICStub stub(isolate(), state());
   4330   __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
   4331 }
   4332 
   4333 
   4334 void LoadICStub::Generate(MacroAssembler* masm) { GenerateImpl(masm, false); }
   4335 
   4336 
   4337 void LoadICStub::GenerateForTrampoline(MacroAssembler* masm) {
   4338   GenerateImpl(masm, true);
   4339 }
   4340 
   4341 
   4342 static void HandleArrayCases(MacroAssembler* masm, Register feedback,
   4343                              Register receiver_map, Register scratch1,
   4344                              Register scratch2, bool is_polymorphic,
   4345                              Label* miss) {
   4346   // feedback initially contains the feedback array
   4347   Label next_loop, prepare_next;
   4348   Label start_polymorphic;
   4349 
   4350   Register cached_map = scratch1;
   4351 
   4352   __ lw(cached_map,
   4353         FieldMemOperand(feedback, FixedArray::OffsetOfElementAt(0)));
   4354   __ lw(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset));
   4355   __ Branch(&start_polymorphic, ne, receiver_map, Operand(cached_map));
   4356   // found, now call handler.
   4357   Register handler = feedback;
   4358   __ lw(handler, FieldMemOperand(feedback, FixedArray::OffsetOfElementAt(1)));
   4359   __ Addu(t9, handler, Operand(Code::kHeaderSize - kHeapObjectTag));
   4360   __ Jump(t9);
   4361 
   4362 
   4363   Register length = scratch2;
   4364   __ bind(&start_polymorphic);
   4365   __ lw(length, FieldMemOperand(feedback, FixedArray::kLengthOffset));
   4366   if (!is_polymorphic) {
   4367     // If the IC could be monomorphic we have to make sure we don't go past the
   4368     // end of the feedback array.
   4369     __ Branch(miss, eq, length, Operand(Smi::FromInt(2)));
   4370   }
   4371 
   4372   Register too_far = length;
   4373   Register pointer_reg = feedback;
   4374 
   4375   // +-----+------+------+-----+-----+ ... ----+
   4376   // | map | len  | wm0  | h0  | wm1 |      hN |
   4377   // +-----+------+------+-----+-----+ ... ----+
   4378   //                 0      1     2        len-1
   4379   //                              ^              ^
   4380   //                              |              |
   4381   //                         pointer_reg      too_far
   4382   //                         aka feedback     scratch2
   4383   // also need receiver_map
   4384   // use cached_map (scratch1) to look in the weak map values.
   4385   __ sll(at, length, kPointerSizeLog2 - kSmiTagSize);
   4386   __ Addu(too_far, feedback, Operand(at));
   4387   __ Addu(too_far, too_far, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
   4388   __ Addu(pointer_reg, feedback,
   4389           Operand(FixedArray::OffsetOfElementAt(2) - kHeapObjectTag));
   4390 
   4391   __ bind(&next_loop);
   4392   __ lw(cached_map, MemOperand(pointer_reg));
   4393   __ lw(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset));
   4394   __ Branch(&prepare_next, ne, receiver_map, Operand(cached_map));
   4395   __ lw(handler, MemOperand(pointer_reg, kPointerSize));
   4396   __ Addu(t9, handler, Operand(Code::kHeaderSize - kHeapObjectTag));
   4397   __ Jump(t9);
   4398 
   4399   __ bind(&prepare_next);
   4400   __ Addu(pointer_reg, pointer_reg, Operand(kPointerSize * 2));
   4401   __ Branch(&next_loop, lt, pointer_reg, Operand(too_far));
   4402 
   4403   // We exhausted our array of map handler pairs.
   4404   __ jmp(miss);
   4405 }
   4406 
   4407 
   4408 static void HandleMonomorphicCase(MacroAssembler* masm, Register receiver,
   4409                                   Register receiver_map, Register feedback,
   4410                                   Register vector, Register slot,
   4411                                   Register scratch, Label* compare_map,
   4412                                   Label* load_smi_map, Label* try_array) {
   4413   __ JumpIfSmi(receiver, load_smi_map);
   4414   __ lw(receiver_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
   4415   __ bind(compare_map);
   4416   Register cached_map = scratch;
   4417   // Move the weak map into the weak_cell register.
   4418   __ lw(cached_map, FieldMemOperand(feedback, WeakCell::kValueOffset));
   4419   __ Branch(try_array, ne, cached_map, Operand(receiver_map));
   4420   Register handler = feedback;
   4421 
   4422   __ sll(at, slot, kPointerSizeLog2 - kSmiTagSize);
   4423   __ Addu(handler, vector, Operand(at));
   4424   __ lw(handler,
   4425         FieldMemOperand(handler, FixedArray::kHeaderSize + kPointerSize));
   4426   __ Addu(t9, handler, Operand(Code::kHeaderSize - kHeapObjectTag));
   4427   __ Jump(t9);
   4428 }
   4429 
   4430 
   4431 void LoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
   4432   Register receiver = LoadWithVectorDescriptor::ReceiverRegister();  // a1
   4433   Register name = LoadWithVectorDescriptor::NameRegister();          // a2
   4434   Register vector = LoadWithVectorDescriptor::VectorRegister();      // a3
   4435   Register slot = LoadWithVectorDescriptor::SlotRegister();          // a0
   4436   Register feedback = t0;
   4437   Register receiver_map = t1;
   4438   Register scratch1 = t4;
   4439 
   4440   __ sll(at, slot, kPointerSizeLog2 - kSmiTagSize);
   4441   __ Addu(feedback, vector, Operand(at));
   4442   __ lw(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
   4443 
   4444   // Try to quickly handle the monomorphic case without knowing for sure
   4445   // if we have a weak cell in feedback. We do know it's safe to look
   4446   // at WeakCell::kValueOffset.
   4447   Label try_array, load_smi_map, compare_map;
   4448   Label not_array, miss;
   4449   HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
   4450                         scratch1, &compare_map, &load_smi_map, &try_array);
   4451 
   4452   // Is it a fixed array?
   4453   __ bind(&try_array);
   4454   __ lw(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
   4455   __ LoadRoot(at, Heap::kFixedArrayMapRootIndex);
   4456   __ Branch(&not_array, ne, at, Operand(scratch1));
   4457   HandleArrayCases(masm, feedback, receiver_map, scratch1, t5, true, &miss);
   4458 
   4459   __ bind(&not_array);
   4460   __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex);
   4461   __ Branch(&miss, ne, at, Operand(feedback));
   4462   Code::Flags code_flags = Code::RemoveTypeAndHolderFromFlags(
   4463       Code::ComputeHandlerFlags(Code::LOAD_IC));
   4464   masm->isolate()->stub_cache()->GenerateProbe(masm, Code::LOAD_IC, code_flags,
   4465                                                receiver, name, feedback,
   4466                                                receiver_map, scratch1, t5);
   4467 
   4468   __ bind(&miss);
   4469   LoadIC::GenerateMiss(masm);
   4470 
   4471   __ bind(&load_smi_map);
   4472   __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
   4473   __ jmp(&compare_map);
   4474 }
   4475 
   4476 
   4477 void KeyedLoadICStub::Generate(MacroAssembler* masm) {
   4478   GenerateImpl(masm, false);
   4479 }
   4480 
   4481 
   4482 void KeyedLoadICStub::GenerateForTrampoline(MacroAssembler* masm) {
   4483   GenerateImpl(masm, true);
   4484 }
   4485 
   4486 
   4487 void KeyedLoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
   4488   Register receiver = LoadWithVectorDescriptor::ReceiverRegister();  // a1
   4489   Register key = LoadWithVectorDescriptor::NameRegister();           // a2
   4490   Register vector = LoadWithVectorDescriptor::VectorRegister();      // a3
   4491   Register slot = LoadWithVectorDescriptor::SlotRegister();          // a0
   4492   Register feedback = t0;
   4493   Register receiver_map = t1;
   4494   Register scratch1 = t4;
   4495 
   4496   __ sll(at, slot, kPointerSizeLog2 - kSmiTagSize);
   4497   __ Addu(feedback, vector, Operand(at));
   4498   __ lw(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
   4499 
   4500   // Try to quickly handle the monomorphic case without knowing for sure
   4501   // if we have a weak cell in feedback. We do know it's safe to look
   4502   // at WeakCell::kValueOffset.
   4503   Label try_array, load_smi_map, compare_map;
   4504   Label not_array, miss;
   4505   HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
   4506                         scratch1, &compare_map, &load_smi_map, &try_array);
   4507 
   4508   __ bind(&try_array);
   4509   // Is it a fixed array?
   4510   __ lw(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
   4511   __ LoadRoot(at, Heap::kFixedArrayMapRootIndex);
   4512   __ Branch(&not_array, ne, at, Operand(scratch1));
   4513   // We have a polymorphic element handler.
   4514   __ JumpIfNotSmi(key, &miss);
   4515 
   4516   Label polymorphic, try_poly_name;
   4517   __ bind(&polymorphic);
   4518   HandleArrayCases(masm, feedback, receiver_map, scratch1, t5, true, &miss);
   4519 
   4520   __ bind(&not_array);
   4521   // Is it generic?
   4522   __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex);
   4523   __ Branch(&try_poly_name, ne, at, Operand(feedback));
   4524   Handle<Code> megamorphic_stub =
   4525       KeyedLoadIC::ChooseMegamorphicStub(masm->isolate(), GetExtraICState());
   4526   __ Jump(megamorphic_stub, RelocInfo::CODE_TARGET);
   4527 
   4528   __ bind(&try_poly_name);
   4529   // We might have a name in feedback, and a fixed array in the next slot.
   4530   __ Branch(&miss, ne, key, Operand(feedback));
   4531   // If the name comparison succeeded, we know we have a fixed array with
   4532   // at least one map/handler pair.
   4533   __ sll(at, slot, kPointerSizeLog2 - kSmiTagSize);
   4534   __ Addu(feedback, vector, Operand(at));
   4535   __ lw(feedback,
   4536         FieldMemOperand(feedback, FixedArray::kHeaderSize + kPointerSize));
   4537   HandleArrayCases(masm, feedback, receiver_map, scratch1, t5, false, &miss);
   4538 
   4539   __ bind(&miss);
   4540   KeyedLoadIC::GenerateMiss(masm);
   4541 
   4542   __ bind(&load_smi_map);
   4543   __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
   4544   __ jmp(&compare_map);
   4545 }
   4546 
   4547 
   4548 void VectorStoreICTrampolineStub::Generate(MacroAssembler* masm) {
   4549   __ EmitLoadTypeFeedbackVector(VectorStoreICDescriptor::VectorRegister());
   4550   VectorStoreICStub stub(isolate(), state());
   4551   stub.GenerateForTrampoline(masm);
   4552 }
   4553 
   4554 
   4555 void VectorKeyedStoreICTrampolineStub::Generate(MacroAssembler* masm) {
   4556   __ EmitLoadTypeFeedbackVector(VectorStoreICDescriptor::VectorRegister());
   4557   VectorKeyedStoreICStub stub(isolate(), state());
   4558   stub.GenerateForTrampoline(masm);
   4559 }
   4560 
   4561 
   4562 void VectorStoreICStub::Generate(MacroAssembler* masm) {
   4563   GenerateImpl(masm, false);
   4564 }
   4565 
   4566 
   4567 void VectorStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
   4568   GenerateImpl(masm, true);
   4569 }
   4570 
   4571 
   4572 void VectorStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
   4573   Register receiver = VectorStoreICDescriptor::ReceiverRegister();  // a1
   4574   Register key = VectorStoreICDescriptor::NameRegister();           // a2
   4575   Register vector = VectorStoreICDescriptor::VectorRegister();      // a3
   4576   Register slot = VectorStoreICDescriptor::SlotRegister();          // t0
   4577   DCHECK(VectorStoreICDescriptor::ValueRegister().is(a0));          // a0
   4578   Register feedback = t1;
   4579   Register receiver_map = t2;
   4580   Register scratch1 = t5;
   4581 
   4582   __ sll(scratch1, slot, kPointerSizeLog2 - kSmiTagSize);
   4583   __ Addu(feedback, vector, Operand(scratch1));
   4584   __ lw(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
   4585 
   4586   // Try to quickly handle the monomorphic case without knowing for sure
   4587   // if we have a weak cell in feedback. We do know it's safe to look
   4588   // at WeakCell::kValueOffset.
   4589   Label try_array, load_smi_map, compare_map;
   4590   Label not_array, miss;
   4591   HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
   4592                         scratch1, &compare_map, &load_smi_map, &try_array);
   4593 
   4594   // Is it a fixed array?
   4595   __ bind(&try_array);
   4596   __ lw(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
   4597   __ LoadRoot(at, Heap::kFixedArrayMapRootIndex);
   4598   __ Branch(&not_array, ne, scratch1, Operand(at));
   4599 
   4600   Register scratch2 = t4;
   4601   HandleArrayCases(masm, feedback, receiver_map, scratch1, scratch2, true,
   4602                    &miss);
   4603 
   4604   __ bind(&not_array);
   4605   __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex);
   4606   __ Branch(&miss, ne, feedback, Operand(at));
   4607   Code::Flags code_flags = Code::RemoveTypeAndHolderFromFlags(
   4608       Code::ComputeHandlerFlags(Code::STORE_IC));
   4609   masm->isolate()->stub_cache()->GenerateProbe(
   4610       masm, Code::STORE_IC, code_flags, receiver, key, feedback, receiver_map,
   4611       scratch1, scratch2);
   4612 
   4613   __ bind(&miss);
   4614   StoreIC::GenerateMiss(masm);
   4615 
   4616   __ bind(&load_smi_map);
   4617   __ Branch(USE_DELAY_SLOT, &compare_map);
   4618   __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);  // In delay slot.
   4619 }
   4620 
   4621 
   4622 void VectorKeyedStoreICStub::Generate(MacroAssembler* masm) {
   4623   GenerateImpl(masm, false);
   4624 }
   4625 
   4626 
   4627 void VectorKeyedStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
   4628   GenerateImpl(masm, true);
   4629 }
   4630 
   4631 
   4632 static void HandlePolymorphicStoreCase(MacroAssembler* masm, Register feedback,
   4633                                        Register receiver_map, Register scratch1,
   4634                                        Register scratch2, Label* miss) {
   4635   // feedback initially contains the feedback array
   4636   Label next_loop, prepare_next;
   4637   Label start_polymorphic;
   4638   Label transition_call;
   4639 
   4640   Register cached_map = scratch1;
   4641   Register too_far = scratch2;
   4642   Register pointer_reg = feedback;
   4643   __ lw(too_far, FieldMemOperand(feedback, FixedArray::kLengthOffset));
   4644 
   4645   // +-----+------+------+-----+-----+-----+ ... ----+
   4646   // | map | len  | wm0  | wt0 | h0  | wm1 |      hN |
   4647   // +-----+------+------+-----+-----+ ----+ ... ----+
   4648   //                 0      1     2              len-1
   4649   //                 ^                                 ^
   4650   //                 |                                 |
   4651   //             pointer_reg                        too_far
   4652   //             aka feedback                       scratch2
   4653   // also need receiver_map
   4654   // use cached_map (scratch1) to look in the weak map values.
   4655   __ sll(scratch1, too_far, kPointerSizeLog2 - kSmiTagSize);
   4656   __ Addu(too_far, feedback, Operand(scratch1));
   4657   __ Addu(too_far, too_far, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
   4658   __ Addu(pointer_reg, feedback,
   4659           Operand(FixedArray::OffsetOfElementAt(0) - kHeapObjectTag));
   4660 
   4661   __ bind(&next_loop);
   4662   __ lw(cached_map, MemOperand(pointer_reg));
   4663   __ lw(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset));
   4664   __ Branch(&prepare_next, ne, receiver_map, Operand(cached_map));
   4665   // Is it a transitioning store?
   4666   __ lw(too_far, MemOperand(pointer_reg, kPointerSize));
   4667   __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
   4668   __ Branch(&transition_call, ne, too_far, Operand(at));
   4669   __ lw(pointer_reg, MemOperand(pointer_reg, kPointerSize * 2));
   4670   __ Addu(t9, pointer_reg, Operand(Code::kHeaderSize - kHeapObjectTag));
   4671   __ Jump(t9);
   4672 
   4673   __ bind(&transition_call);
   4674   __ lw(too_far, FieldMemOperand(too_far, WeakCell::kValueOffset));
   4675   __ JumpIfSmi(too_far, miss);
   4676 
   4677   __ lw(receiver_map, MemOperand(pointer_reg, kPointerSize * 2));
   4678 
   4679   // Load the map into the correct register.
   4680   DCHECK(feedback.is(VectorStoreTransitionDescriptor::MapRegister()));
   4681   __ mov(feedback, too_far);
   4682 
   4683   __ Addu(t9, receiver_map, Operand(Code::kHeaderSize - kHeapObjectTag));
   4684   __ Jump(t9);
   4685 
   4686   __ bind(&prepare_next);
   4687   __ Addu(pointer_reg, pointer_reg, Operand(kPointerSize * 3));
   4688   __ Branch(&next_loop, lt, pointer_reg, Operand(too_far));
   4689 
   4690   // We exhausted our array of map handler pairs.
   4691   __ jmp(miss);
   4692 }
   4693 
   4694 
   4695 void VectorKeyedStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
   4696   Register receiver = VectorStoreICDescriptor::ReceiverRegister();  // a1
   4697   Register key = VectorStoreICDescriptor::NameRegister();           // a2
   4698   Register vector = VectorStoreICDescriptor::VectorRegister();      // a3
   4699   Register slot = VectorStoreICDescriptor::SlotRegister();          // t0
   4700   DCHECK(VectorStoreICDescriptor::ValueRegister().is(a0));          // a0
   4701   Register feedback = t1;
   4702   Register receiver_map = t2;
   4703   Register scratch1 = t5;
   4704 
   4705   __ sll(scratch1, slot, kPointerSizeLog2 - kSmiTagSize);
   4706   __ Addu(feedback, vector, Operand(scratch1));
   4707   __ lw(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
   4708 
   4709   // Try to quickly handle the monomorphic case without knowing for sure
   4710   // if we have a weak cell in feedback. We do know it's safe to look
   4711   // at WeakCell::kValueOffset.
   4712   Label try_array, load_smi_map, compare_map;
   4713   Label not_array, miss;
   4714   HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
   4715                         scratch1, &compare_map, &load_smi_map, &try_array);
   4716 
   4717   __ bind(&try_array);
   4718   // Is it a fixed array?
   4719   __ lw(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
   4720   __ LoadRoot(at, Heap::kFixedArrayMapRootIndex);
   4721   __ Branch(&not_array, ne, scratch1, Operand(at));
   4722 
   4723   // We have a polymorphic element handler.
   4724   Label polymorphic, try_poly_name;
   4725   __ bind(&polymorphic);
   4726 
   4727   Register scratch2 = t4;
   4728 
   4729   HandlePolymorphicStoreCase(masm, feedback, receiver_map, scratch1, scratch2,
   4730                              &miss);
   4731 
   4732   __ bind(&not_array);
   4733   // Is it generic?
   4734   __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex);
   4735   __ Branch(&try_poly_name, ne, feedback, Operand(at));
   4736   Handle<Code> megamorphic_stub =
   4737       KeyedStoreIC::ChooseMegamorphicStub(masm->isolate(), GetExtraICState());
   4738   __ Jump(megamorphic_stub, RelocInfo::CODE_TARGET);
   4739 
   4740   __ bind(&try_poly_name);
   4741   // We might have a name in feedback, and a fixed array in the next slot.
   4742   __ Branch(&miss, ne, key, Operand(feedback));
   4743   // If the name comparison succeeded, we know we have a fixed array with
   4744   // at least one map/handler pair.
   4745   __ sll(scratch1, slot, kPointerSizeLog2 - kSmiTagSize);
   4746   __ Addu(feedback, vector, Operand(scratch1));
   4747   __ lw(feedback,
   4748         FieldMemOperand(feedback, FixedArray::kHeaderSize + kPointerSize));
   4749   HandleArrayCases(masm, feedback, receiver_map, scratch1, scratch2, false,
   4750                    &miss);
   4751 
   4752   __ bind(&miss);
   4753   KeyedStoreIC::GenerateMiss(masm);
   4754 
   4755   __ bind(&load_smi_map);
   4756   __ Branch(USE_DELAY_SLOT, &compare_map);
   4757   __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);  // In delay slot.
   4758 }
   4759 
   4760 
   4761 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
   4762   if (masm->isolate()->function_entry_hook() != NULL) {
   4763     ProfileEntryHookStub stub(masm->isolate());
   4764     __ push(ra);
   4765     __ CallStub(&stub);
   4766     __ pop(ra);
   4767   }
   4768 }
   4769 
   4770 
   4771 void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
   4772   // The entry hook is a "push ra" instruction, followed by a call.
   4773   // Note: on MIPS "push" is 2 instruction
   4774   const int32_t kReturnAddressDistanceFromFunctionStart =
   4775       Assembler::kCallTargetAddressOffset + (2 * Assembler::kInstrSize);
   4776 
   4777   // This should contain all kJSCallerSaved registers.
   4778   const RegList kSavedRegs =
   4779      kJSCallerSaved |  // Caller saved registers.
   4780      s5.bit();         // Saved stack pointer.
   4781 
   4782   // We also save ra, so the count here is one higher than the mask indicates.
   4783   const int32_t kNumSavedRegs = kNumJSCallerSaved + 2;
   4784 
   4785   // Save all caller-save registers as this may be called from anywhere.
   4786   __ MultiPush(kSavedRegs | ra.bit());
   4787 
   4788   // Compute the function's address for the first argument.
   4789   __ Subu(a0, ra, Operand(kReturnAddressDistanceFromFunctionStart));
   4790 
   4791   // The caller's return address is above the saved temporaries.
   4792   // Grab that for the second argument to the hook.
   4793   __ Addu(a1, sp, Operand(kNumSavedRegs * kPointerSize));
   4794 
   4795   // Align the stack if necessary.
   4796   int frame_alignment = masm->ActivationFrameAlignment();
   4797   if (frame_alignment > kPointerSize) {
   4798     __ mov(s5, sp);
   4799     DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
   4800     __ And(sp, sp, Operand(-frame_alignment));
   4801   }
   4802   __ Subu(sp, sp, kCArgsSlotsSize);
   4803 #if defined(V8_HOST_ARCH_MIPS)
   4804   int32_t entry_hook =
   4805       reinterpret_cast<int32_t>(isolate()->function_entry_hook());
   4806   __ li(t9, Operand(entry_hook));
   4807 #else
   4808   // Under the simulator we need to indirect the entry hook through a
   4809   // trampoline function at a known address.
   4810   // It additionally takes an isolate as a third parameter.
   4811   __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
   4812 
   4813   ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
   4814   __ li(t9, Operand(ExternalReference(&dispatcher,
   4815                                       ExternalReference::BUILTIN_CALL,
   4816                                       isolate())));
   4817 #endif
   4818   // Call C function through t9 to conform ABI for PIC.
   4819   __ Call(t9);
   4820 
   4821   // Restore the stack pointer if needed.
   4822   if (frame_alignment > kPointerSize) {
   4823     __ mov(sp, s5);
   4824   } else {
   4825     __ Addu(sp, sp, kCArgsSlotsSize);
   4826   }
   4827 
   4828   // Also pop ra to get Ret(0).
   4829   __ MultiPop(kSavedRegs | ra.bit());
   4830   __ Ret();
   4831 }
   4832 
   4833 
   4834 template<class T>
   4835 static void CreateArrayDispatch(MacroAssembler* masm,
   4836                                 AllocationSiteOverrideMode mode) {
   4837   if (mode == DISABLE_ALLOCATION_SITES) {
   4838     T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
   4839     __ TailCallStub(&stub);
   4840   } else if (mode == DONT_OVERRIDE) {
   4841     int last_index = GetSequenceIndexFromFastElementsKind(
   4842         TERMINAL_FAST_ELEMENTS_KIND);
   4843     for (int i = 0; i <= last_index; ++i) {
   4844       ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
   4845       T stub(masm->isolate(), kind);
   4846       __ TailCallStub(&stub, eq, a3, Operand(kind));
   4847     }
   4848 
   4849     // If we reached this point there is a problem.
   4850     __ Abort(kUnexpectedElementsKindInArrayConstructor);
   4851   } else {
   4852     UNREACHABLE();
   4853   }
   4854 }
   4855 
   4856 
   4857 static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
   4858                                            AllocationSiteOverrideMode mode) {
   4859   // a2 - allocation site (if mode != DISABLE_ALLOCATION_SITES)
   4860   // a3 - kind (if mode != DISABLE_ALLOCATION_SITES)
   4861   // a0 - number of arguments
   4862   // a1 - constructor?
   4863   // sp[0] - last argument
   4864   Label normal_sequence;
   4865   if (mode == DONT_OVERRIDE) {
   4866     STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
   4867     STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
   4868     STATIC_ASSERT(FAST_ELEMENTS == 2);
   4869     STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
   4870     STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4);
   4871     STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
   4872 
   4873     // is the low bit set? If so, we are holey and that is good.
   4874     __ And(at, a3, Operand(1));
   4875     __ Branch(&normal_sequence, ne, at, Operand(zero_reg));
   4876   }
   4877 
   4878   // look at the first argument
   4879   __ lw(t1, MemOperand(sp, 0));
   4880   __ Branch(&normal_sequence, eq, t1, Operand(zero_reg));
   4881 
   4882   if (mode == DISABLE_ALLOCATION_SITES) {
   4883     ElementsKind initial = GetInitialFastElementsKind();
   4884     ElementsKind holey_initial = GetHoleyElementsKind(initial);
   4885 
   4886     ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
   4887                                                   holey_initial,
   4888                                                   DISABLE_ALLOCATION_SITES);
   4889     __ TailCallStub(&stub_holey);
   4890 
   4891     __ bind(&normal_sequence);
   4892     ArraySingleArgumentConstructorStub stub(masm->isolate(),
   4893                                             initial,
   4894                                             DISABLE_ALLOCATION_SITES);
   4895     __ TailCallStub(&stub);
   4896   } else if (mode == DONT_OVERRIDE) {
   4897     // We are going to create a holey array, but our kind is non-holey.
   4898     // Fix kind and retry (only if we have an allocation site in the slot).
   4899     __ Addu(a3, a3, Operand(1));
   4900 
   4901     if (FLAG_debug_code) {
   4902       __ lw(t1, FieldMemOperand(a2, 0));
   4903       __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
   4904       __ Assert(eq, kExpectedAllocationSite, t1, Operand(at));
   4905     }
   4906 
   4907     // Save the resulting elements kind in type info. We can't just store a3
   4908     // in the AllocationSite::transition_info field because elements kind is
   4909     // restricted to a portion of the field...upper bits need to be left alone.
   4910     STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
   4911     __ lw(t0, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset));
   4912     __ Addu(t0, t0, Operand(Smi::FromInt(kFastElementsKindPackedToHoley)));
   4913     __ sw(t0, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset));
   4914 
   4915 
   4916     __ bind(&normal_sequence);
   4917     int last_index = GetSequenceIndexFromFastElementsKind(
   4918         TERMINAL_FAST_ELEMENTS_KIND);
   4919     for (int i = 0; i <= last_index; ++i) {
   4920       ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
   4921       ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
   4922       __ TailCallStub(&stub, eq, a3, Operand(kind));
   4923     }
   4924 
   4925     // If we reached this point there is a problem.
   4926     __ Abort(kUnexpectedElementsKindInArrayConstructor);
   4927   } else {
   4928     UNREACHABLE();
   4929   }
   4930 }
   4931 
   4932 
   4933 template<class T>
   4934 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
   4935   int to_index = GetSequenceIndexFromFastElementsKind(
   4936       TERMINAL_FAST_ELEMENTS_KIND);
   4937   for (int i = 0; i <= to_index; ++i) {
   4938     ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
   4939     T stub(isolate, kind);
   4940     stub.GetCode();
   4941     if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
   4942       T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
   4943       stub1.GetCode();
   4944     }
   4945   }
   4946 }
   4947 
   4948 
   4949 void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
   4950   ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
   4951       isolate);
   4952   ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
   4953       isolate);
   4954   ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
   4955       isolate);
   4956 }
   4957 
   4958 
   4959 void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
   4960     Isolate* isolate) {
   4961   ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
   4962   for (int i = 0; i < 2; i++) {
   4963     // For internal arrays we only need a few things.
   4964     InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
   4965     stubh1.GetCode();
   4966     InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
   4967     stubh2.GetCode();
   4968     InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]);
   4969     stubh3.GetCode();
   4970   }
   4971 }
   4972 
   4973 
   4974 void ArrayConstructorStub::GenerateDispatchToArrayStub(
   4975     MacroAssembler* masm,
   4976     AllocationSiteOverrideMode mode) {
   4977   if (argument_count() == ANY) {
   4978     Label not_zero_case, not_one_case;
   4979     __ And(at, a0, a0);
   4980     __ Branch(&not_zero_case, ne, at, Operand(zero_reg));
   4981     CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
   4982 
   4983     __ bind(&not_zero_case);
   4984     __ Branch(&not_one_case, gt, a0, Operand(1));
   4985     CreateArrayDispatchOneArgument(masm, mode);
   4986 
   4987     __ bind(&not_one_case);
   4988     CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
   4989   } else if (argument_count() == NONE) {
   4990     CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
   4991   } else if (argument_count() == ONE) {
   4992     CreateArrayDispatchOneArgument(masm, mode);
   4993   } else if (argument_count() == MORE_THAN_ONE) {
   4994     CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
   4995   } else {
   4996     UNREACHABLE();
   4997   }
   4998 }
   4999 
   5000 
   5001 void ArrayConstructorStub::Generate(MacroAssembler* masm) {
   5002   // ----------- S t a t e -------------
   5003   //  -- a0 : argc (only if argument_count() is ANY or MORE_THAN_ONE)
   5004   //  -- a1 : constructor
   5005   //  -- a2 : AllocationSite or undefined
   5006   //  -- a3 : Original constructor
   5007   //  -- sp[0] : last argument
   5008   // -----------------------------------
   5009 
   5010   if (FLAG_debug_code) {
   5011     // The array construct code is only set for the global and natives
   5012     // builtin Array functions which always have maps.
   5013 
   5014     // Initial map for the builtin Array function should be a map.
   5015     __ lw(t0, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
   5016     // Will both indicate a NULL and a Smi.
   5017     __ SmiTst(t0, at);
   5018     __ Assert(ne, kUnexpectedInitialMapForArrayFunction,
   5019         at, Operand(zero_reg));
   5020     __ GetObjectType(t0, t0, t1);
   5021     __ Assert(eq, kUnexpectedInitialMapForArrayFunction,
   5022         t1, Operand(MAP_TYPE));
   5023 
   5024     // We should either have undefined in a2 or a valid AllocationSite
   5025     __ AssertUndefinedOrAllocationSite(a2, t0);
   5026   }
   5027 
   5028   // Enter the context of the Array function.
   5029   __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
   5030 
   5031   Label subclassing;
   5032   __ Branch(&subclassing, ne, a1, Operand(a3));
   5033 
   5034   Label no_info;
   5035   // Get the elements kind and case on that.
   5036   __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
   5037   __ Branch(&no_info, eq, a2, Operand(at));
   5038 
   5039   __ lw(a3, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset));
   5040   __ SmiUntag(a3);
   5041   STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
   5042   __ And(a3, a3, Operand(AllocationSite::ElementsKindBits::kMask));
   5043   GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
   5044 
   5045   __ bind(&no_info);
   5046   GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
   5047 
   5048   // Subclassing.
   5049   __ bind(&subclassing);
   5050   switch (argument_count()) {
   5051     case ANY:
   5052     case MORE_THAN_ONE:
   5053       __ sll(at, a0, kPointerSizeLog2);
   5054       __ addu(at, sp, at);
   5055       __ sw(a1, MemOperand(at));
   5056       __ li(at, Operand(3));
   5057       __ addu(a0, a0, at);
   5058       break;
   5059     case NONE:
   5060       __ sw(a1, MemOperand(sp, 0 * kPointerSize));
   5061       __ li(a0, Operand(3));
   5062       break;
   5063     case ONE:
   5064       __ sw(a1, MemOperand(sp, 1 * kPointerSize));
   5065       __ li(a0, Operand(4));
   5066       break;
   5067   }
   5068   __ Push(a3, a2);
   5069   __ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate()));
   5070 }
   5071 
   5072 
   5073 void InternalArrayConstructorStub::GenerateCase(
   5074     MacroAssembler* masm, ElementsKind kind) {
   5075 
   5076   InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
   5077   __ TailCallStub(&stub0, lo, a0, Operand(1));
   5078 
   5079   InternalArrayNArgumentsConstructorStub stubN(isolate(), kind);
   5080   __ TailCallStub(&stubN, hi, a0, Operand(1));
   5081 
   5082   if (IsFastPackedElementsKind(kind)) {
   5083     // We might need to create a holey array
   5084     // look at the first argument.
   5085     __ lw(at, MemOperand(sp, 0));
   5086 
   5087     InternalArraySingleArgumentConstructorStub
   5088         stub1_holey(isolate(), GetHoleyElementsKind(kind));
   5089     __ TailCallStub(&stub1_holey, ne, at, Operand(zero_reg));
   5090   }
   5091 
   5092   InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
   5093   __ TailCallStub(&stub1);
   5094 }
   5095 
   5096 
   5097 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
   5098   // ----------- S t a t e -------------
   5099   //  -- a0 : argc
   5100   //  -- a1 : constructor
   5101   //  -- sp[0] : return address
   5102   //  -- sp[4] : last argument
   5103   // -----------------------------------
   5104 
   5105   if (FLAG_debug_code) {
   5106     // The array construct code is only set for the global and natives
   5107     // builtin Array functions which always have maps.
   5108 
   5109     // Initial map for the builtin Array function should be a map.
   5110     __ lw(a3, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
   5111     // Will both indicate a NULL and a Smi.
   5112     __ SmiTst(a3, at);
   5113     __ Assert(ne, kUnexpectedInitialMapForArrayFunction,
   5114         at, Operand(zero_reg));
   5115     __ GetObjectType(a3, a3, t0);
   5116     __ Assert(eq, kUnexpectedInitialMapForArrayFunction,
   5117         t0, Operand(MAP_TYPE));
   5118   }
   5119 
   5120   // Figure out the right elements kind.
   5121   __ lw(a3, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
   5122 
   5123   // Load the map's "bit field 2" into a3. We only need the first byte,
   5124   // but the following bit field extraction takes care of that anyway.
   5125   __ lbu(a3, FieldMemOperand(a3, Map::kBitField2Offset));
   5126   // Retrieve elements_kind from bit field 2.
   5127   __ DecodeField<Map::ElementsKindBits>(a3);
   5128 
   5129   if (FLAG_debug_code) {
   5130     Label done;
   5131     __ Branch(&done, eq, a3, Operand(FAST_ELEMENTS));
   5132     __ Assert(
   5133         eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray,
   5134         a3, Operand(FAST_HOLEY_ELEMENTS));
   5135     __ bind(&done);
   5136   }
   5137 
   5138   Label fast_elements_case;
   5139   __ Branch(&fast_elements_case, eq, a3, Operand(FAST_ELEMENTS));
   5140   GenerateCase(masm, FAST_HOLEY_ELEMENTS);
   5141 
   5142   __ bind(&fast_elements_case);
   5143   GenerateCase(masm, FAST_ELEMENTS);
   5144 }
   5145 
   5146 
   5147 void LoadGlobalViaContextStub::Generate(MacroAssembler* masm) {
   5148   Register context_reg = cp;
   5149   Register slot_reg = a2;
   5150   Register result_reg = v0;
   5151   Label slow_case;
   5152 
   5153   // Go up context chain to the script context.
   5154   for (int i = 0; i < depth(); ++i) {
   5155     __ lw(result_reg, ContextMemOperand(context_reg, Context::PREVIOUS_INDEX));
   5156     context_reg = result_reg;
   5157   }
   5158 
   5159   // Load the PropertyCell value at the specified slot.
   5160   __ sll(at, slot_reg, kPointerSizeLog2);
   5161   __ Addu(at, at, Operand(context_reg));
   5162   __ lw(result_reg, ContextMemOperand(at, 0));
   5163   __ lw(result_reg, FieldMemOperand(result_reg, PropertyCell::kValueOffset));
   5164 
   5165   // Check that value is not the_hole.
   5166   __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
   5167   __ Branch(&slow_case, eq, result_reg, Operand(at));
   5168   __ Ret();
   5169 
   5170   // Fallback to the runtime.
   5171   __ bind(&slow_case);
   5172   __ SmiTag(slot_reg);
   5173   __ Push(slot_reg);
   5174   __ TailCallRuntime(Runtime::kLoadGlobalViaContext);
   5175 }
   5176 
   5177 
   5178 void StoreGlobalViaContextStub::Generate(MacroAssembler* masm) {
   5179   Register context_reg = cp;
   5180   Register slot_reg = a2;
   5181   Register value_reg = a0;
   5182   Register cell_reg = t0;
   5183   Register cell_value_reg = t1;
   5184   Register cell_details_reg = t2;
   5185   Label fast_heapobject_case, fast_smi_case, slow_case;
   5186 
   5187   if (FLAG_debug_code) {
   5188     __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
   5189     __ Check(ne, kUnexpectedValue, value_reg, Operand(at));
   5190   }
   5191 
   5192   // Go up context chain to the script context.
   5193   for (int i = 0; i < depth(); ++i) {
   5194     __ lw(cell_reg, ContextMemOperand(context_reg, Context::PREVIOUS_INDEX));
   5195     context_reg = cell_reg;
   5196   }
   5197 
   5198   // Load the PropertyCell at the specified slot.
   5199   __ sll(at, slot_reg, kPointerSizeLog2);
   5200   __ Addu(at, at, Operand(context_reg));
   5201   __ lw(cell_reg, ContextMemOperand(at, 0));
   5202 
   5203   // Load PropertyDetails for the cell (actually only the cell_type and kind).
   5204   __ lw(cell_details_reg,
   5205         FieldMemOperand(cell_reg, PropertyCell::kDetailsOffset));
   5206   __ SmiUntag(cell_details_reg);
   5207   __ And(cell_details_reg, cell_details_reg,
   5208          PropertyDetails::PropertyCellTypeField::kMask |
   5209              PropertyDetails::KindField::kMask |
   5210              PropertyDetails::kAttributesReadOnlyMask);
   5211 
   5212   // Check if PropertyCell holds mutable data.
   5213   Label not_mutable_data;
   5214   __ Branch(&not_mutable_data, ne, cell_details_reg,
   5215             Operand(PropertyDetails::PropertyCellTypeField::encode(
   5216                         PropertyCellType::kMutable) |
   5217                     PropertyDetails::KindField::encode(kData)));
   5218   __ JumpIfSmi(value_reg, &fast_smi_case);
   5219   __ bind(&fast_heapobject_case);
   5220   __ sw(value_reg, FieldMemOperand(cell_reg, PropertyCell::kValueOffset));
   5221   __ RecordWriteField(cell_reg, PropertyCell::kValueOffset, value_reg,
   5222                       cell_details_reg, kRAHasNotBeenSaved, kDontSaveFPRegs,
   5223                       EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
   5224   // RecordWriteField clobbers the value register, so we need to reload.
   5225   __ Ret(USE_DELAY_SLOT);
   5226   __ lw(value_reg, FieldMemOperand(cell_reg, PropertyCell::kValueOffset));
   5227   __ bind(&not_mutable_data);
   5228 
   5229   // Check if PropertyCell value matches the new value (relevant for Constant,
   5230   // ConstantType and Undefined cells).
   5231   Label not_same_value;
   5232   __ lw(cell_value_reg, FieldMemOperand(cell_reg, PropertyCell::kValueOffset));
   5233   __ Branch(&not_same_value, ne, value_reg, Operand(cell_value_reg));
   5234   // Make sure the PropertyCell is not marked READ_ONLY.
   5235   __ And(at, cell_details_reg, PropertyDetails::kAttributesReadOnlyMask);
   5236   __ Branch(&slow_case, ne, at, Operand(zero_reg));
   5237   if (FLAG_debug_code) {
   5238     Label done;
   5239     // This can only be true for Constant, ConstantType and Undefined cells,
   5240     // because we never store the_hole via this stub.
   5241     __ Branch(&done, eq, cell_details_reg,
   5242               Operand(PropertyDetails::PropertyCellTypeField::encode(
   5243                           PropertyCellType::kConstant) |
   5244                       PropertyDetails::KindField::encode(kData)));
   5245     __ Branch(&done, eq, cell_details_reg,
   5246               Operand(PropertyDetails::PropertyCellTypeField::encode(
   5247                           PropertyCellType::kConstantType) |
   5248                       PropertyDetails::KindField::encode(kData)));
   5249     __ Check(eq, kUnexpectedValue, cell_details_reg,
   5250              Operand(PropertyDetails::PropertyCellTypeField::encode(
   5251                          PropertyCellType::kUndefined) |
   5252                      PropertyDetails::KindField::encode(kData)));
   5253     __ bind(&done);
   5254   }
   5255   __ Ret();
   5256   __ bind(&not_same_value);
   5257 
   5258   // Check if PropertyCell contains data with constant type (and is not
   5259   // READ_ONLY).
   5260   __ Branch(&slow_case, ne, cell_details_reg,
   5261             Operand(PropertyDetails::PropertyCellTypeField::encode(
   5262                         PropertyCellType::kConstantType) |
   5263                     PropertyDetails::KindField::encode(kData)));
   5264 
   5265   // Now either both old and new values must be SMIs or both must be heap
   5266   // objects with same map.
   5267   Label value_is_heap_object;
   5268   __ JumpIfNotSmi(value_reg, &value_is_heap_object);
   5269   __ JumpIfNotSmi(cell_value_reg, &slow_case);
   5270   // Old and new values are SMIs, no need for a write barrier here.
   5271   __ bind(&fast_smi_case);
   5272   __ Ret(USE_DELAY_SLOT);
   5273   __ sw(value_reg, FieldMemOperand(cell_reg, PropertyCell::kValueOffset));
   5274   __ bind(&value_is_heap_object);
   5275   __ JumpIfSmi(cell_value_reg, &slow_case);
   5276   Register cell_value_map_reg = cell_value_reg;
   5277   __ lw(cell_value_map_reg,
   5278         FieldMemOperand(cell_value_reg, HeapObject::kMapOffset));
   5279   __ Branch(&fast_heapobject_case, eq, cell_value_map_reg,
   5280             FieldMemOperand(value_reg, HeapObject::kMapOffset));
   5281 
   5282   // Fallback to the runtime.
   5283   __ bind(&slow_case);
   5284   __ SmiTag(slot_reg);
   5285   __ Push(slot_reg, value_reg);
   5286   __ TailCallRuntime(is_strict(language_mode())
   5287                          ? Runtime::kStoreGlobalViaContext_Strict
   5288                          : Runtime::kStoreGlobalViaContext_Sloppy);
   5289 }
   5290 
   5291 
   5292 static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
   5293   return ref0.address() - ref1.address();
   5294 }
   5295 
   5296 
   5297 // Calls an API function.  Allocates HandleScope, extracts returned value
   5298 // from handle and propagates exceptions.  Restores context.  stack_space
   5299 // - space to be unwound on exit (includes the call JS arguments space and
   5300 // the additional space allocated for the fast call).
   5301 static void CallApiFunctionAndReturn(
   5302     MacroAssembler* masm, Register function_address,
   5303     ExternalReference thunk_ref, int stack_space, int32_t stack_space_offset,
   5304     MemOperand return_value_operand, MemOperand* context_restore_operand) {
   5305   Isolate* isolate = masm->isolate();
   5306   ExternalReference next_address =
   5307       ExternalReference::handle_scope_next_address(isolate);
   5308   const int kNextOffset = 0;
   5309   const int kLimitOffset = AddressOffset(
   5310       ExternalReference::handle_scope_limit_address(isolate), next_address);
   5311   const int kLevelOffset = AddressOffset(
   5312       ExternalReference::handle_scope_level_address(isolate), next_address);
   5313 
   5314   DCHECK(function_address.is(a1) || function_address.is(a2));
   5315 
   5316   Label profiler_disabled;
   5317   Label end_profiler_check;
   5318   __ li(t9, Operand(ExternalReference::is_profiling_address(isolate)));
   5319   __ lb(t9, MemOperand(t9, 0));
   5320   __ Branch(&profiler_disabled, eq, t9, Operand(zero_reg));
   5321 
   5322   // Additional parameter is the address of the actual callback.
   5323   __ li(t9, Operand(thunk_ref));
   5324   __ jmp(&end_profiler_check);
   5325 
   5326   __ bind(&profiler_disabled);
   5327   __ mov(t9, function_address);
   5328   __ bind(&end_profiler_check);
   5329 
   5330   // Allocate HandleScope in callee-save registers.
   5331   __ li(s3, Operand(next_address));
   5332   __ lw(s0, MemOperand(s3, kNextOffset));
   5333   __ lw(s1, MemOperand(s3, kLimitOffset));
   5334   __ lw(s2, MemOperand(s3, kLevelOffset));
   5335   __ Addu(s2, s2, Operand(1));
   5336   __ sw(s2, MemOperand(s3, kLevelOffset));
   5337 
   5338   if (FLAG_log_timer_events) {
   5339     FrameScope frame(masm, StackFrame::MANUAL);
   5340     __ PushSafepointRegisters();
   5341     __ PrepareCallCFunction(1, a0);
   5342     __ li(a0, Operand(ExternalReference::isolate_address(isolate)));
   5343     __ CallCFunction(ExternalReference::log_enter_external_function(isolate),
   5344                      1);
   5345     __ PopSafepointRegisters();
   5346   }
   5347 
   5348   // Native call returns to the DirectCEntry stub which redirects to the
   5349   // return address pushed on stack (could have moved after GC).
   5350   // DirectCEntry stub itself is generated early and never moves.
   5351   DirectCEntryStub stub(isolate);
   5352   stub.GenerateCall(masm, t9);
   5353 
   5354   if (FLAG_log_timer_events) {
   5355     FrameScope frame(masm, StackFrame::MANUAL);
   5356     __ PushSafepointRegisters();
   5357     __ PrepareCallCFunction(1, a0);
   5358     __ li(a0, Operand(ExternalReference::isolate_address(isolate)));
   5359     __ CallCFunction(ExternalReference::log_leave_external_function(isolate),
   5360                      1);
   5361     __ PopSafepointRegisters();
   5362   }
   5363 
   5364   Label promote_scheduled_exception;
   5365   Label delete_allocated_handles;
   5366   Label leave_exit_frame;
   5367   Label return_value_loaded;
   5368 
   5369   // Load value from ReturnValue.
   5370   __ lw(v0, return_value_operand);
   5371   __ bind(&return_value_loaded);
   5372 
   5373   // No more valid handles (the result handle was the last one). Restore
   5374   // previous handle scope.
   5375   __ sw(s0, MemOperand(s3, kNextOffset));
   5376   if (__ emit_debug_code()) {
   5377     __ lw(a1, MemOperand(s3, kLevelOffset));
   5378     __ Check(eq, kUnexpectedLevelAfterReturnFromApiCall, a1, Operand(s2));
   5379   }
   5380   __ Subu(s2, s2, Operand(1));
   5381   __ sw(s2, MemOperand(s3, kLevelOffset));
   5382   __ lw(at, MemOperand(s3, kLimitOffset));
   5383   __ Branch(&delete_allocated_handles, ne, s1, Operand(at));
   5384 
   5385   // Leave the API exit frame.
   5386   __ bind(&leave_exit_frame);
   5387 
   5388   bool restore_context = context_restore_operand != NULL;
   5389   if (restore_context) {
   5390     __ lw(cp, *context_restore_operand);
   5391   }
   5392   if (stack_space_offset != kInvalidStackOffset) {
   5393     // ExitFrame contains four MIPS argument slots after DirectCEntryStub call
   5394     // so this must be accounted for.
   5395     __ lw(s0, MemOperand(sp, stack_space_offset + kCArgsSlotsSize));
   5396   } else {
   5397     __ li(s0, Operand(stack_space));
   5398   }
   5399   __ LeaveExitFrame(false, s0, !restore_context, NO_EMIT_RETURN,
   5400                     stack_space_offset != kInvalidStackOffset);
   5401 
   5402   // Check if the function scheduled an exception.
   5403   __ LoadRoot(t0, Heap::kTheHoleValueRootIndex);
   5404   __ li(at, Operand(ExternalReference::scheduled_exception_address(isolate)));
   5405   __ lw(t1, MemOperand(at));
   5406   __ Branch(&promote_scheduled_exception, ne, t0, Operand(t1));
   5407 
   5408   __ Ret();
   5409 
   5410   // Re-throw by promoting a scheduled exception.
   5411   __ bind(&promote_scheduled_exception);
   5412   __ TailCallRuntime(Runtime::kPromoteScheduledException);
   5413 
   5414   // HandleScope limit has changed. Delete allocated extensions.
   5415   __ bind(&delete_allocated_handles);
   5416   __ sw(s1, MemOperand(s3, kLimitOffset));
   5417   __ mov(s0, v0);
   5418   __ mov(a0, v0);
   5419   __ PrepareCallCFunction(1, s1);
   5420   __ li(a0, Operand(ExternalReference::isolate_address(isolate)));
   5421   __ CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate),
   5422                    1);
   5423   __ mov(v0, s0);
   5424   __ jmp(&leave_exit_frame);
   5425 }
   5426 
   5427 
   5428 static void CallApiFunctionStubHelper(MacroAssembler* masm,
   5429                                       const ParameterCount& argc,
   5430                                       bool return_first_arg,
   5431                                       bool call_data_undefined) {
   5432   // ----------- S t a t e -------------
   5433   //  -- a0                  : callee
   5434   //  -- t0                  : call_data
   5435   //  -- a2                  : holder
   5436   //  -- a1                  : api_function_address
   5437   //  -- a3                  : number of arguments if argc is a register
   5438   //  -- cp                  : context
   5439   //  --
   5440   //  -- sp[0]               : last argument
   5441   //  -- ...
   5442   //  -- sp[(argc - 1)* 4]   : first argument
   5443   //  -- sp[argc * 4]        : receiver
   5444   // -----------------------------------
   5445 
   5446   Register callee = a0;
   5447   Register call_data = t0;
   5448   Register holder = a2;
   5449   Register api_function_address = a1;
   5450   Register context = cp;
   5451 
   5452   typedef FunctionCallbackArguments FCA;
   5453 
   5454   STATIC_ASSERT(FCA::kContextSaveIndex == 6);
   5455   STATIC_ASSERT(FCA::kCalleeIndex == 5);
   5456   STATIC_ASSERT(FCA::kDataIndex == 4);
   5457   STATIC_ASSERT(FCA::kReturnValueOffset == 3);
   5458   STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
   5459   STATIC_ASSERT(FCA::kIsolateIndex == 1);
   5460   STATIC_ASSERT(FCA::kHolderIndex == 0);
   5461   STATIC_ASSERT(FCA::kArgsLength == 7);
   5462 
   5463   DCHECK(argc.is_immediate() || a3.is(argc.reg()));
   5464 
   5465   // Save context, callee and call data.
   5466   __ Push(context, callee, call_data);
   5467   // Load context from callee.
   5468   __ lw(context, FieldMemOperand(callee, JSFunction::kContextOffset));
   5469 
   5470   Register scratch = call_data;
   5471   if (!call_data_undefined) {
   5472     __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
   5473   }
   5474   // Push return value and default return value.
   5475   __ Push(scratch, scratch);
   5476   __ li(scratch, Operand(ExternalReference::isolate_address(masm->isolate())));
   5477   // Push isolate and holder.
   5478   __ Push(scratch, holder);
   5479 
   5480   // Prepare arguments.
   5481   __ mov(scratch, sp);
   5482 
   5483   // Allocate the v8::Arguments structure in the arguments' space since
   5484   // it's not controlled by GC.
   5485   const int kApiStackSpace = 4;
   5486 
   5487   FrameScope frame_scope(masm, StackFrame::MANUAL);
   5488   __ EnterExitFrame(false, kApiStackSpace);
   5489 
   5490   DCHECK(!api_function_address.is(a0) && !scratch.is(a0));
   5491   // a0 = FunctionCallbackInfo&
   5492   // Arguments is after the return address.
   5493   __ Addu(a0, sp, Operand(1 * kPointerSize));
   5494   // FunctionCallbackInfo::implicit_args_
   5495   __ sw(scratch, MemOperand(a0, 0 * kPointerSize));
   5496   if (argc.is_immediate()) {
   5497     // FunctionCallbackInfo::values_
   5498     __ Addu(at, scratch,
   5499             Operand((FCA::kArgsLength - 1 + argc.immediate()) * kPointerSize));
   5500     __ sw(at, MemOperand(a0, 1 * kPointerSize));
   5501     // FunctionCallbackInfo::length_ = argc
   5502     __ li(at, Operand(argc.immediate()));
   5503     __ sw(at, MemOperand(a0, 2 * kPointerSize));
   5504     // FunctionCallbackInfo::is_construct_call_ = 0
   5505     __ sw(zero_reg, MemOperand(a0, 3 * kPointerSize));
   5506   } else {
   5507     // FunctionCallbackInfo::values_
   5508     __ sll(at, argc.reg(), kPointerSizeLog2);
   5509     __ Addu(at, at, scratch);
   5510     __ Addu(at, at, Operand((FCA::kArgsLength - 1) * kPointerSize));
   5511     __ sw(at, MemOperand(a0, 1 * kPointerSize));
   5512     // FunctionCallbackInfo::length_ = argc
   5513     __ sw(argc.reg(), MemOperand(a0, 2 * kPointerSize));
   5514     // FunctionCallbackInfo::is_construct_call_
   5515     __ Addu(argc.reg(), argc.reg(), Operand(FCA::kArgsLength + 1));
   5516     __ sll(at, argc.reg(), kPointerSizeLog2);
   5517     __ sw(at, MemOperand(a0, 3 * kPointerSize));
   5518   }
   5519 
   5520   ExternalReference thunk_ref =
   5521       ExternalReference::invoke_function_callback(masm->isolate());
   5522 
   5523   AllowExternalCallThatCantCauseGC scope(masm);
   5524   MemOperand context_restore_operand(
   5525       fp, (2 + FCA::kContextSaveIndex) * kPointerSize);
   5526   // Stores return the first js argument.
   5527   int return_value_offset = 0;
   5528   if (return_first_arg) {
   5529     return_value_offset = 2 + FCA::kArgsLength;
   5530   } else {
   5531     return_value_offset = 2 + FCA::kReturnValueOffset;
   5532   }
   5533   MemOperand return_value_operand(fp, return_value_offset * kPointerSize);
   5534   int stack_space = 0;
   5535   int32_t stack_space_offset = 4 * kPointerSize;
   5536   if (argc.is_immediate()) {
   5537     stack_space = argc.immediate() + FCA::kArgsLength + 1;
   5538     stack_space_offset = kInvalidStackOffset;
   5539   }
   5540   CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, stack_space,
   5541                            stack_space_offset, return_value_operand,
   5542                            &context_restore_operand);
   5543 }
   5544 
   5545 
   5546 void CallApiFunctionStub::Generate(MacroAssembler* masm) {
   5547   bool call_data_undefined = this->call_data_undefined();
   5548   CallApiFunctionStubHelper(masm, ParameterCount(a3), false,
   5549                             call_data_undefined);
   5550 }
   5551 
   5552 
   5553 void CallApiAccessorStub::Generate(MacroAssembler* masm) {
   5554   bool is_store = this->is_store();
   5555   int argc = this->argc();
   5556   bool call_data_undefined = this->call_data_undefined();
   5557   CallApiFunctionStubHelper(masm, ParameterCount(argc), is_store,
   5558                             call_data_undefined);
   5559 }
   5560 
   5561 
   5562 void CallApiGetterStub::Generate(MacroAssembler* masm) {
   5563   // ----------- S t a t e -------------
   5564   //  -- sp[0]                  : name
   5565   //  -- sp[4 - kArgsLength*4]  : PropertyCallbackArguments object
   5566   //  -- ...
   5567   //  -- a2                     : api_function_address
   5568   // -----------------------------------
   5569 
   5570   Register api_function_address = ApiGetterDescriptor::function_address();
   5571   DCHECK(api_function_address.is(a2));
   5572 
   5573   __ mov(a0, sp);  // a0 = Handle<Name>
   5574   __ Addu(a1, a0, Operand(1 * kPointerSize));  // a1 = PCA
   5575 
   5576   const int kApiStackSpace = 1;
   5577   FrameScope frame_scope(masm, StackFrame::MANUAL);
   5578   __ EnterExitFrame(false, kApiStackSpace);
   5579 
   5580   // Create PropertyAccessorInfo instance on the stack above the exit frame with
   5581   // a1 (internal::Object** args_) as the data.
   5582   __ sw(a1, MemOperand(sp, 1 * kPointerSize));
   5583   __ Addu(a1, sp, Operand(1 * kPointerSize));  // a1 = AccessorInfo&
   5584 
   5585   const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
   5586 
   5587   ExternalReference thunk_ref =
   5588       ExternalReference::invoke_accessor_getter_callback(isolate());
   5589   CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
   5590                            kStackUnwindSpace, kInvalidStackOffset,
   5591                            MemOperand(fp, 6 * kPointerSize), NULL);
   5592 }
   5593 
   5594 
   5595 #undef __
   5596 
   5597 }  // namespace internal
   5598 }  // namespace v8
   5599 
   5600 #endif  // V8_TARGET_ARCH_MIPS
   5601