Home | History | Annotate | Download | only in Shapes
      1 /*
      2 * Copyright (c) 2006-2010 Erin Catto http://www.box2d.org
      3 *
      4 * This software is provided 'as-is', without any express or implied
      5 * warranty.  In no event will the authors be held liable for any damages
      6 * arising from the use of this software.
      7 * Permission is granted to anyone to use this software for any purpose,
      8 * including commercial applications, and to alter it and redistribute it
      9 * freely, subject to the following restrictions:
     10 * 1. The origin of this software must not be misrepresented; you must not
     11 * claim that you wrote the original software. If you use this software
     12 * in a product, an acknowledgment in the product documentation would be
     13 * appreciated but is not required.
     14 * 2. Altered source versions must be plainly marked as such, and must not be
     15 * misrepresented as being the original software.
     16 * 3. This notice may not be removed or altered from any source distribution.
     17 */
     18 
     19 #include <Box2D/Collision/Shapes/b2ChainShape.h>
     20 #include <Box2D/Collision/Shapes/b2EdgeShape.h>
     21 #include <new>
     22 #include <cstring>
     23 using namespace std;
     24 
     25 b2ChainShape::~b2ChainShape()
     26 {
     27 	Clear();
     28 }
     29 
     30 void b2ChainShape::Clear()
     31 {
     32 	b2Free(m_vertices);
     33 	m_vertices = NULL;
     34 	m_count = 0;
     35 }
     36 
     37 void b2ChainShape::CreateLoop(const b2Vec2* vertices, int32 count)
     38 {
     39 	b2Assert(m_vertices == NULL && m_count == 0);
     40 	b2Assert(count >= 3);
     41 	for (int32 i = 1; i < count; ++i)
     42 	{
     43 		b2Vec2 v1 = vertices[i-1];
     44 		b2Vec2 v2 = vertices[i];
     45 		// If the code crashes here, it means your vertices are too close together.
     46 		b2Assert(b2DistanceSquared(v1, v2) > b2_linearSlop * b2_linearSlop);
     47 	}
     48 
     49 	m_count = count + 1;
     50 	m_vertices = (b2Vec2*)b2Alloc(m_count * sizeof(b2Vec2));
     51 	memcpy(m_vertices, vertices, count * sizeof(b2Vec2));
     52 	m_vertices[count] = m_vertices[0];
     53 	m_prevVertex = m_vertices[m_count - 2];
     54 	m_nextVertex = m_vertices[1];
     55 	m_hasPrevVertex = true;
     56 	m_hasNextVertex = true;
     57 }
     58 
     59 void b2ChainShape::CreateChain(const b2Vec2* vertices, int32 count)
     60 {
     61 	b2Assert(m_vertices == NULL && m_count == 0);
     62 	b2Assert(count >= 2);
     63 	for (int32 i = 1; i < count; ++i)
     64 	{
     65 		// If the code crashes here, it means your vertices are too close together.
     66 		b2Assert(b2DistanceSquared(vertices[i-1], vertices[i]) > b2_linearSlop * b2_linearSlop);
     67 	}
     68 
     69 	m_count = count;
     70 	m_vertices = (b2Vec2*)b2Alloc(count * sizeof(b2Vec2));
     71 	memcpy(m_vertices, vertices, m_count * sizeof(b2Vec2));
     72 
     73 	m_hasPrevVertex = false;
     74 	m_hasNextVertex = false;
     75 
     76 	m_prevVertex.SetZero();
     77 	m_nextVertex.SetZero();
     78 }
     79 
     80 void b2ChainShape::SetPrevVertex(const b2Vec2& prevVertex)
     81 {
     82 	m_prevVertex = prevVertex;
     83 	m_hasPrevVertex = true;
     84 }
     85 
     86 void b2ChainShape::SetNextVertex(const b2Vec2& nextVertex)
     87 {
     88 	m_nextVertex = nextVertex;
     89 	m_hasNextVertex = true;
     90 }
     91 
     92 b2Shape* b2ChainShape::Clone(b2BlockAllocator* allocator) const
     93 {
     94 	void* mem = allocator->Allocate(sizeof(b2ChainShape));
     95 	b2ChainShape* clone = new (mem) b2ChainShape;
     96 	clone->CreateChain(m_vertices, m_count);
     97 	clone->m_prevVertex = m_prevVertex;
     98 	clone->m_nextVertex = m_nextVertex;
     99 	clone->m_hasPrevVertex = m_hasPrevVertex;
    100 	clone->m_hasNextVertex = m_hasNextVertex;
    101 	return clone;
    102 }
    103 
    104 int32 b2ChainShape::GetChildCount() const
    105 {
    106 	// edge count = vertex count - 1
    107 	return m_count - 1;
    108 }
    109 
    110 void b2ChainShape::GetChildEdge(b2EdgeShape* edge, int32 index) const
    111 {
    112 	b2Assert(0 <= index && index < m_count - 1);
    113 	edge->m_type = b2Shape::e_edge;
    114 	edge->m_radius = m_radius;
    115 
    116 	edge->m_vertex1 = m_vertices[index + 0];
    117 	edge->m_vertex2 = m_vertices[index + 1];
    118 
    119 	if (index > 0)
    120 	{
    121 		edge->m_vertex0 = m_vertices[index - 1];
    122 		edge->m_hasVertex0 = true;
    123 	}
    124 	else
    125 	{
    126 		edge->m_vertex0 = m_prevVertex;
    127 		edge->m_hasVertex0 = m_hasPrevVertex;
    128 	}
    129 
    130 	if (index < m_count - 2)
    131 	{
    132 		edge->m_vertex3 = m_vertices[index + 2];
    133 		edge->m_hasVertex3 = true;
    134 	}
    135 	else
    136 	{
    137 		edge->m_vertex3 = m_nextVertex;
    138 		edge->m_hasVertex3 = m_hasNextVertex;
    139 	}
    140 }
    141 
    142 bool b2ChainShape::TestPoint(const b2Transform& xf, const b2Vec2& p) const
    143 {
    144 	B2_NOT_USED(xf);
    145 	B2_NOT_USED(p);
    146 	return false;
    147 }
    148 
    149 bool b2ChainShape::RayCast(b2RayCastOutput* output, const b2RayCastInput& input,
    150 							const b2Transform& xf, int32 childIndex) const
    151 {
    152 	b2Assert(childIndex < m_count);
    153 
    154 	b2EdgeShape edgeShape;
    155 
    156 	int32 i1 = childIndex;
    157 	int32 i2 = childIndex + 1;
    158 	if (i2 == m_count)
    159 	{
    160 		i2 = 0;
    161 	}
    162 
    163 	edgeShape.m_vertex1 = m_vertices[i1];
    164 	edgeShape.m_vertex2 = m_vertices[i2];
    165 
    166 	return edgeShape.RayCast(output, input, xf, 0);
    167 }
    168 
    169 void b2ChainShape::ComputeAABB(b2AABB* aabb, const b2Transform& xf, int32 childIndex) const
    170 {
    171 	b2Assert(childIndex < m_count);
    172 
    173 	int32 i1 = childIndex;
    174 	int32 i2 = childIndex + 1;
    175 	if (i2 == m_count)
    176 	{
    177 		i2 = 0;
    178 	}
    179 
    180 	b2Vec2 v1 = b2Mul(xf, m_vertices[i1]);
    181 	b2Vec2 v2 = b2Mul(xf, m_vertices[i2]);
    182 
    183 	aabb->lowerBound = b2Min(v1, v2);
    184 	aabb->upperBound = b2Max(v1, v2);
    185 }
    186 
    187 void b2ChainShape::ComputeMass(b2MassData* massData, float32 density) const
    188 {
    189 	B2_NOT_USED(density);
    190 
    191 	massData->mass = 0.0f;
    192 	massData->center.SetZero();
    193 	massData->I = 0.0f;
    194 }
    195