Home | History | Annotate | Download | only in Common
      1 /*
      2 * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org
      3 *
      4 * This software is provided 'as-is', without any express or implied
      5 * warranty.  In no event will the authors be held liable for any damages
      6 * arising from the use of this software.
      7 * Permission is granted to anyone to use this software for any purpose,
      8 * including commercial applications, and to alter it and redistribute it
      9 * freely, subject to the following restrictions:
     10 * 1. The origin of this software must not be misrepresented; you must not
     11 * claim that you wrote the original software. If you use this software
     12 * in a product, an acknowledgment in the product documentation would be
     13 * appreciated but is not required.
     14 * 2. Altered source versions must be plainly marked as such, and must not be
     15 * misrepresented as being the original software.
     16 * 3. This notice may not be removed or altered from any source distribution.
     17 */
     18 
     19 #ifndef B2_MATH_H
     20 #define B2_MATH_H
     21 
     22 #include <Box2D/Common/b2Settings.h>
     23 
     24 #include <cmath>
     25 #include <cfloat>
     26 #include <cstddef>
     27 #include <float.h>
     28 
     29 /// This function is used to ensure that a floating point number is
     30 inline bool b2IsValid(float32 x)
     31 	{
     32 	int32 ix = *reinterpret_cast<int32*>(&x);
     33 	return (ix & 0x7f800000) != 0x7f800000;
     34 }
     35 
     36 /// This is a approximate yet fast inverse square-root.
     37 inline float32 b2InvSqrt(float32 x)
     38 {
     39 	union
     40 	{
     41 		float32 x;
     42 		int32 i;
     43 	} convert;
     44 
     45 	convert.x = x;
     46 	float32 xhalf = 0.5f * x;
     47 	convert.i = 0x5f3759df - (convert.i >> 1);
     48 	x = convert.x;
     49 	x = x * (1.5f - xhalf * x * x);
     50 	return x;
     51 }
     52 
     53 #define	b2Sqrt(x)	std::sqrt(x)
     54 #define	b2Atan2(y, x)	std::atan2(y, x)
     55 
     56 /// A 2D column vector.
     57 struct b2Vec2
     58 {
     59 	/// Default constructor does nothing (for performance).
     60 	b2Vec2() {}
     61 
     62 	/// Construct using coordinates.
     63 	b2Vec2(float32 x, float32 y) : x(x), y(y) {}
     64 
     65 	/// Set this vector to all zeros.
     66 	void SetZero() { x = 0.0f; y = 0.0f; }
     67 
     68 	/// Set this vector to some specified coordinates.
     69 	void Set(float32 x_, float32 y_) { x = x_; y = y_; }
     70 
     71 	/// Negate this vector.
     72 	b2Vec2 operator -() const { b2Vec2 v; v.Set(-x, -y); return v; }
     73 
     74 	/// Read from and indexed element.
     75 	float32 operator () (int32 i) const
     76 	{
     77 		return (&x)[i];
     78 	}
     79 
     80 	/// Write to an indexed element.
     81 	float32& operator () (int32 i)
     82 	{
     83 		return (&x)[i];
     84 	}
     85 
     86 	/// Add a vector to this vector.
     87 	void operator += (const b2Vec2& v)
     88 	{
     89 		x += v.x; y += v.y;
     90 	}
     91 
     92 	/// Subtract a vector from this vector.
     93 	void operator -= (const b2Vec2& v)
     94 	{
     95 		x -= v.x; y -= v.y;
     96 	}
     97 
     98 	/// Multiply this vector by a scalar.
     99 	void operator *= (float32 a)
    100 	{
    101 		x *= a; y *= a;
    102 	}
    103 
    104 	/// Get the length of this vector (the norm).
    105 	float32 Length() const
    106 	{
    107 		return b2Sqrt(x * x + y * y);
    108 	}
    109 
    110 	/// Get the length squared. For performance, use this instead of
    111 	/// b2Vec2::Length (if possible).
    112 	float32 LengthSquared() const
    113 	{
    114 		return x * x + y * y;
    115 	}
    116 
    117 	/// Convert this vector into a unit vector. Returns the length.
    118 	float32 Normalize()
    119 	{
    120 		float32 length = Length();
    121 		if (length < b2_epsilon)
    122 		{
    123 			return 0.0f;
    124 		}
    125 		float32 invLength = 1.0f / length;
    126 		x *= invLength;
    127 		y *= invLength;
    128 
    129 		return length;
    130 	}
    131 
    132 	/// Does this vector contain finite coordinates?
    133 	bool IsValid() const
    134 	{
    135 		return b2IsValid(x) && b2IsValid(y);
    136 	}
    137 
    138 	/// Get the skew vector such that dot(skew_vec, other) == cross(vec, other)
    139 	b2Vec2 Skew() const
    140 	{
    141 		return b2Vec2(-y, x);
    142 	}
    143 
    144 	float32 x, y;
    145 };
    146 
    147 /// A 2D column vector with 3 elements.
    148 struct b2Vec3
    149 {
    150 	/// Default constructor does nothing (for performance).
    151 	b2Vec3() {}
    152 
    153 	/// Construct using coordinates.
    154 	b2Vec3(float32 x, float32 y, float32 z) : x(x), y(y), z(z) {}
    155 
    156 	/// Set this vector to all zeros.
    157 	void SetZero() { x = 0.0f; y = 0.0f; z = 0.0f; }
    158 
    159 	/// Set this vector to some specified coordinates.
    160 	void Set(float32 x_, float32 y_, float32 z_) { x = x_; y = y_; z = z_; }
    161 
    162 	/// Negate this vector.
    163 	b2Vec3 operator -() const { b2Vec3 v; v.Set(-x, -y, -z); return v; }
    164 
    165 	/// Add a vector to this vector.
    166 	void operator += (const b2Vec3& v)
    167 	{
    168 		x += v.x; y += v.y; z += v.z;
    169 	}
    170 
    171 	/// Subtract a vector from this vector.
    172 	void operator -= (const b2Vec3& v)
    173 	{
    174 		x -= v.x; y -= v.y; z -= v.z;
    175 	}
    176 
    177 	/// Multiply this vector by a scalar.
    178 	void operator *= (float32 s)
    179 	{
    180 		x *= s; y *= s; z *= s;
    181 	}
    182 
    183 	float32 x, y, z;
    184 };
    185 
    186 /// A 2-by-2 matrix. Stored in column-major order.
    187 struct b2Mat22
    188 {
    189 	/// The default constructor does nothing (for performance).
    190 	b2Mat22() {}
    191 
    192 	/// Construct this matrix using columns.
    193 	b2Mat22(const b2Vec2& c1, const b2Vec2& c2)
    194 	{
    195 		ex = c1;
    196 		ey = c2;
    197 	}
    198 
    199 	/// Construct this matrix using scalars.
    200 	b2Mat22(float32 a11, float32 a12, float32 a21, float32 a22)
    201 	{
    202 		ex.x = a11; ex.y = a21;
    203 		ey.x = a12; ey.y = a22;
    204 	}
    205 
    206 	/// Initialize this matrix using columns.
    207 	void Set(const b2Vec2& c1, const b2Vec2& c2)
    208 	{
    209 		ex = c1;
    210 		ey = c2;
    211 	}
    212 
    213 	/// Set this to the identity matrix.
    214 	void SetIdentity()
    215 	{
    216 		ex.x = 1.0f; ey.x = 0.0f;
    217 		ex.y = 0.0f; ey.y = 1.0f;
    218 	}
    219 
    220 	/// Set this matrix to all zeros.
    221 	void SetZero()
    222 	{
    223 		ex.x = 0.0f; ey.x = 0.0f;
    224 		ex.y = 0.0f; ey.y = 0.0f;
    225 	}
    226 
    227 	b2Mat22 GetInverse() const
    228 	{
    229 		float32 a = ex.x, b = ey.x, c = ex.y, d = ey.y;
    230 		b2Mat22 B;
    231 		float32 det = a * d - b * c;
    232 		if (det != 0.0f)
    233 		{
    234 			det = 1.0f / det;
    235 		}
    236 		B.ex.x =  det * d;	B.ey.x = -det * b;
    237 		B.ex.y = -det * c;	B.ey.y =  det * a;
    238 		return B;
    239 	}
    240 
    241 	/// Solve A * x = b, where b is a column vector. This is more efficient
    242 	/// than computing the inverse in one-shot cases.
    243 	b2Vec2 Solve(const b2Vec2& b) const
    244 	{
    245 		float32 a11 = ex.x, a12 = ey.x, a21 = ex.y, a22 = ey.y;
    246 		float32 det = a11 * a22 - a12 * a21;
    247 		if (det != 0.0f)
    248 		{
    249 			det = 1.0f / det;
    250 		}
    251 		b2Vec2 x;
    252 		x.x = det * (a22 * b.x - a12 * b.y);
    253 		x.y = det * (a11 * b.y - a21 * b.x);
    254 		return x;
    255 	}
    256 
    257 	b2Vec2 ex, ey;
    258 };
    259 
    260 /// A 3-by-3 matrix. Stored in column-major order.
    261 struct b2Mat33
    262 {
    263 	/// The default constructor does nothing (for performance).
    264 	b2Mat33() {}
    265 
    266 	/// Construct this matrix using columns.
    267 	b2Mat33(const b2Vec3& c1, const b2Vec3& c2, const b2Vec3& c3)
    268 	{
    269 		ex = c1;
    270 		ey = c2;
    271 		ez = c3;
    272 	}
    273 
    274 	/// Set this matrix to all zeros.
    275 	void SetZero()
    276 	{
    277 		ex.SetZero();
    278 		ey.SetZero();
    279 		ez.SetZero();
    280 	}
    281 
    282 	/// Solve A * x = b, where b is a column vector. This is more efficient
    283 	/// than computing the inverse in one-shot cases.
    284 	b2Vec3 Solve33(const b2Vec3& b) const;
    285 
    286 	/// Solve A * x = b, where b is a column vector. This is more efficient
    287 	/// than computing the inverse in one-shot cases. Solve only the upper
    288 	/// 2-by-2 matrix equation.
    289 	b2Vec2 Solve22(const b2Vec2& b) const;
    290 
    291 	/// Get the inverse of this matrix as a 2-by-2.
    292 	/// Returns the zero matrix if singular.
    293 	void GetInverse22(b2Mat33* M) const;
    294 
    295 	/// Get the symmetric inverse of this matrix as a 3-by-3.
    296 	/// Returns the zero matrix if singular.
    297 	void GetSymInverse33(b2Mat33* M) const;
    298 
    299 	b2Vec3 ex, ey, ez;
    300 };
    301 
    302 /// Rotation
    303 struct b2Rot
    304 {
    305 	b2Rot() {}
    306 
    307 	/// Initialize from an angle in radians
    308 	explicit b2Rot(float32 angle)
    309 	{
    310 		/// TODO_ERIN optimize
    311 		s = sinf(angle);
    312 		c = cosf(angle);
    313 	}
    314 
    315 	/// Set using an angle in radians.
    316 	void Set(float32 angle)
    317 	{
    318 		/// TODO_ERIN optimize
    319 		s = sinf(angle);
    320 		c = cosf(angle);
    321 	}
    322 
    323 	/// Set to the identity rotation
    324 	void SetIdentity()
    325 	{
    326 		s = 0.0f;
    327 		c = 1.0f;
    328 	}
    329 
    330 	/// Get the angle in radians
    331 	float32 GetAngle() const
    332 	{
    333 		return b2Atan2(s, c);
    334 	}
    335 
    336 	/// Get the x-axis
    337 	b2Vec2 GetXAxis() const
    338 	{
    339 		return b2Vec2(c, s);
    340 	}
    341 
    342 	/// Get the u-axis
    343 	b2Vec2 GetYAxis() const
    344 	{
    345 		return b2Vec2(-s, c);
    346 	}
    347 
    348 	/// Sine and cosine
    349 	float32 s, c;
    350 };
    351 
    352 /// A transform contains translation and rotation. It is used to represent
    353 /// the position and orientation of rigid frames.
    354 struct b2Transform
    355 {
    356 	/// The default constructor does nothing.
    357 	b2Transform() {}
    358 
    359 	/// Initialize using a position vector and a rotation.
    360 	b2Transform(const b2Vec2& position, const b2Rot& rotation) : p(position), q(rotation) {}
    361 
    362 	/// Set this to the identity transform.
    363 	void SetIdentity()
    364 	{
    365 		p.SetZero();
    366 		q.SetIdentity();
    367 	}
    368 
    369 	/// Set this based on the position and angle.
    370 	void Set(const b2Vec2& position, float32 angle)
    371 	{
    372 		p = position;
    373 		q.Set(angle);
    374 	}
    375 
    376 	b2Vec2 p;
    377 	b2Rot q;
    378 };
    379 
    380 /// This describes the motion of a body/shape for TOI computation.
    381 /// Shapes are defined with respect to the body origin, which may
    382 /// no coincide with the center of mass. However, to support dynamics
    383 /// we must interpolate the center of mass position.
    384 struct b2Sweep
    385 {
    386 	/// Get the interpolated transform at a specific time.
    387 	/// @param beta is a factor in [0,1], where 0 indicates alpha0.
    388 	void GetTransform(b2Transform* xfb, float32 beta) const;
    389 
    390 	/// Advance the sweep forward, yielding a new initial state.
    391 	/// @param alpha the new initial time.
    392 	void Advance(float32 alpha);
    393 
    394 	/// Normalize the angles.
    395 	void Normalize();
    396 
    397 	b2Vec2 localCenter;	///< local center of mass position
    398 	b2Vec2 c0, c;		///< center world positions
    399 	float32 a0, a;		///< world angles
    400 
    401 	/// Fraction of the current time step in the range [0,1]
    402 	/// c0 and a0 are the positions at alpha0.
    403 	float32 alpha0;
    404 };
    405 
    406 /// Useful constant
    407 extern const b2Vec2 b2Vec2_zero;
    408 
    409 /// Perform the dot product on two vectors.
    410 inline float32 b2Dot(const b2Vec2& a, const b2Vec2& b)
    411 {
    412 	return a.x * b.x + a.y * b.y;
    413 }
    414 
    415 /// Perform the cross product on two vectors. In 2D this produces a scalar.
    416 inline float32 b2Cross(const b2Vec2& a, const b2Vec2& b)
    417 {
    418 	return a.x * b.y - a.y * b.x;
    419 }
    420 
    421 /// Perform the cross product on a vector and a scalar. In 2D this produces
    422 /// a vector.
    423 inline b2Vec2 b2Cross(const b2Vec2& a, float32 s)
    424 {
    425 	return b2Vec2(s * a.y, -s * a.x);
    426 }
    427 
    428 /// Perform the cross product on a scalar and a vector. In 2D this produces
    429 /// a vector.
    430 inline b2Vec2 b2Cross(float32 s, const b2Vec2& a)
    431 {
    432 	return b2Vec2(-s * a.y, s * a.x);
    433 }
    434 
    435 /// Multiply a matrix times a vector. If a rotation matrix is provided,
    436 /// then this transforms the vector from one frame to another.
    437 inline b2Vec2 b2Mul(const b2Mat22& A, const b2Vec2& v)
    438 {
    439 	return b2Vec2(A.ex.x * v.x + A.ey.x * v.y, A.ex.y * v.x + A.ey.y * v.y);
    440 }
    441 
    442 /// Multiply a matrix transpose times a vector. If a rotation matrix is provided,
    443 /// then this transforms the vector from one frame to another (inverse transform).
    444 inline b2Vec2 b2MulT(const b2Mat22& A, const b2Vec2& v)
    445 {
    446 	return b2Vec2(b2Dot(v, A.ex), b2Dot(v, A.ey));
    447 }
    448 
    449 /// Add two vectors component-wise.
    450 inline b2Vec2 operator + (const b2Vec2& a, const b2Vec2& b)
    451 {
    452 	return b2Vec2(a.x + b.x, a.y + b.y);
    453 }
    454 
    455 /// Subtract two vectors component-wise.
    456 inline b2Vec2 operator - (const b2Vec2& a, const b2Vec2& b)
    457 {
    458 	return b2Vec2(a.x - b.x, a.y - b.y);
    459 }
    460 
    461 inline b2Vec2 operator * (float32 s, const b2Vec2& a)
    462 {
    463 	return b2Vec2(s * a.x, s * a.y);
    464 }
    465 
    466 inline bool operator == (const b2Vec2& a, const b2Vec2& b)
    467 {
    468 	return a.x == b.x && a.y == b.y;
    469 }
    470 
    471 inline float32 b2Distance(const b2Vec2& a, const b2Vec2& b)
    472 {
    473 	b2Vec2 c = a - b;
    474 	return c.Length();
    475 }
    476 
    477 inline float32 b2DistanceSquared(const b2Vec2& a, const b2Vec2& b)
    478 {
    479 	b2Vec2 c = a - b;
    480 	return b2Dot(c, c);
    481 }
    482 
    483 inline b2Vec3 operator * (float32 s, const b2Vec3& a)
    484 {
    485 	return b2Vec3(s * a.x, s * a.y, s * a.z);
    486 }
    487 
    488 /// Add two vectors component-wise.
    489 inline b2Vec3 operator + (const b2Vec3& a, const b2Vec3& b)
    490 {
    491 	return b2Vec3(a.x + b.x, a.y + b.y, a.z + b.z);
    492 }
    493 
    494 /// Subtract two vectors component-wise.
    495 inline b2Vec3 operator - (const b2Vec3& a, const b2Vec3& b)
    496 {
    497 	return b2Vec3(a.x - b.x, a.y - b.y, a.z - b.z);
    498 }
    499 
    500 /// Perform the dot product on two vectors.
    501 inline float32 b2Dot(const b2Vec3& a, const b2Vec3& b)
    502 {
    503 	return a.x * b.x + a.y * b.y + a.z * b.z;
    504 }
    505 
    506 /// Perform the cross product on two vectors.
    507 inline b2Vec3 b2Cross(const b2Vec3& a, const b2Vec3& b)
    508 {
    509 	return b2Vec3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
    510 }
    511 
    512 inline b2Mat22 operator + (const b2Mat22& A, const b2Mat22& B)
    513 {
    514 	return b2Mat22(A.ex + B.ex, A.ey + B.ey);
    515 }
    516 
    517 // A * B
    518 inline b2Mat22 b2Mul(const b2Mat22& A, const b2Mat22& B)
    519 {
    520 	return b2Mat22(b2Mul(A, B.ex), b2Mul(A, B.ey));
    521 }
    522 
    523 // A^T * B
    524 inline b2Mat22 b2MulT(const b2Mat22& A, const b2Mat22& B)
    525 {
    526 	b2Vec2 c1(b2Dot(A.ex, B.ex), b2Dot(A.ey, B.ex));
    527 	b2Vec2 c2(b2Dot(A.ex, B.ey), b2Dot(A.ey, B.ey));
    528 	return b2Mat22(c1, c2);
    529 }
    530 
    531 /// Multiply a matrix times a vector.
    532 inline b2Vec3 b2Mul(const b2Mat33& A, const b2Vec3& v)
    533 {
    534 	return v.x * A.ex + v.y * A.ey + v.z * A.ez;
    535 }
    536 
    537 /// Multiply a matrix times a vector.
    538 inline b2Vec2 b2Mul22(const b2Mat33& A, const b2Vec2& v)
    539 {
    540 	return b2Vec2(A.ex.x * v.x + A.ey.x * v.y, A.ex.y * v.x + A.ey.y * v.y);
    541 }
    542 
    543 /// Multiply two rotations: q * r
    544 inline b2Rot b2Mul(const b2Rot& q, const b2Rot& r)
    545 {
    546 	// [qc -qs] * [rc -rs] = [qc*rc-qs*rs -qc*rs-qs*rc]
    547 	// [qs  qc]   [rs  rc]   [qs*rc+qc*rs -qs*rs+qc*rc]
    548 	// s = qs * rc + qc * rs
    549 	// c = qc * rc - qs * rs
    550 	b2Rot qr;
    551 	qr.s = q.s * r.c + q.c * r.s;
    552 	qr.c = q.c * r.c - q.s * r.s;
    553 	return qr;
    554 }
    555 
    556 /// Transpose multiply two rotations: qT * r
    557 inline b2Rot b2MulT(const b2Rot& q, const b2Rot& r)
    558 {
    559 	// [ qc qs] * [rc -rs] = [qc*rc+qs*rs -qc*rs+qs*rc]
    560 	// [-qs qc]   [rs  rc]   [-qs*rc+qc*rs qs*rs+qc*rc]
    561 	// s = qc * rs - qs * rc
    562 	// c = qc * rc + qs * rs
    563 	b2Rot qr;
    564 	qr.s = q.c * r.s - q.s * r.c;
    565 	qr.c = q.c * r.c + q.s * r.s;
    566 	return qr;
    567 }
    568 
    569 /// Rotate a vector
    570 inline b2Vec2 b2Mul(const b2Rot& q, const b2Vec2& v)
    571 {
    572 	return b2Vec2(q.c * v.x - q.s * v.y, q.s * v.x + q.c * v.y);
    573 }
    574 
    575 /// Inverse rotate a vector
    576 inline b2Vec2 b2MulT(const b2Rot& q, const b2Vec2& v)
    577 {
    578 	return b2Vec2(q.c * v.x + q.s * v.y, -q.s * v.x + q.c * v.y);
    579 }
    580 
    581 inline b2Vec2 b2Mul(const b2Transform& T, const b2Vec2& v)
    582 {
    583 	float32 x = (T.q.c * v.x - T.q.s * v.y) + T.p.x;
    584 	float32 y = (T.q.s * v.x + T.q.c * v.y) + T.p.y;
    585 
    586 	return b2Vec2(x, y);
    587 }
    588 
    589 inline b2Vec2 b2MulT(const b2Transform& T, const b2Vec2& v)
    590 {
    591 	float32 px = v.x - T.p.x;
    592 	float32 py = v.y - T.p.y;
    593 	float32 x = (T.q.c * px + T.q.s * py);
    594 	float32 y = (-T.q.s * px + T.q.c * py);
    595 
    596 	return b2Vec2(x, y);
    597 }
    598 
    599 // v2 = A.q.Rot(B.q.Rot(v1) + B.p) + A.p
    600 //    = (A.q * B.q).Rot(v1) + A.q.Rot(B.p) + A.p
    601 inline b2Transform b2Mul(const b2Transform& A, const b2Transform& B)
    602 {
    603 	b2Transform C;
    604 	C.q = b2Mul(A.q, B.q);
    605 	C.p = b2Mul(A.q, B.p) + A.p;
    606 	return C;
    607 }
    608 
    609 // v2 = A.q' * (B.q * v1 + B.p - A.p)
    610 //    = A.q' * B.q * v1 + A.q' * (B.p - A.p)
    611 inline b2Transform b2MulT(const b2Transform& A, const b2Transform& B)
    612 {
    613 	b2Transform C;
    614 	C.q = b2MulT(A.q, B.q);
    615 	C.p = b2MulT(A.q, B.p - A.p);
    616 	return C;
    617 }
    618 
    619 template <typename T>
    620 inline T b2Abs(T a)
    621 {
    622 	return a > T(0) ? a : -a;
    623 }
    624 
    625 inline b2Vec2 b2Abs(const b2Vec2& a)
    626 {
    627 	return b2Vec2(b2Abs(a.x), b2Abs(a.y));
    628 }
    629 
    630 inline b2Mat22 b2Abs(const b2Mat22& A)
    631 {
    632 	return b2Mat22(b2Abs(A.ex), b2Abs(A.ey));
    633 }
    634 
    635 template <typename T>
    636 inline T b2Min(T a, T b)
    637 {
    638 	return a < b ? a : b;
    639 }
    640 
    641 inline b2Vec2 b2Min(const b2Vec2& a, const b2Vec2& b)
    642 {
    643 	return b2Vec2(b2Min(a.x, b.x), b2Min(a.y, b.y));
    644 }
    645 
    646 template <typename T>
    647 inline T b2Max(T a, T b)
    648 {
    649 	return a > b ? a : b;
    650 }
    651 
    652 inline b2Vec2 b2Max(const b2Vec2& a, const b2Vec2& b)
    653 {
    654 	return b2Vec2(b2Max(a.x, b.x), b2Max(a.y, b.y));
    655 }
    656 
    657 template <typename T>
    658 inline T b2Clamp(T a, T low, T high)
    659 {
    660 	return b2Max(low, b2Min(a, high));
    661 }
    662 
    663 inline b2Vec2 b2Clamp(const b2Vec2& a, const b2Vec2& low, const b2Vec2& high)
    664 {
    665 	return b2Max(low, b2Min(a, high));
    666 }
    667 
    668 template<typename T> inline void b2Swap(T& a, T& b)
    669 {
    670 	T tmp = a;
    671 	a = b;
    672 	b = tmp;
    673 }
    674 
    675 /// "Next Largest Power of 2
    676 /// Given a binary integer value x, the next largest power of 2 can be computed by a SWAR algorithm
    677 /// that recursively "folds" the upper bits into the lower bits. This process yields a bit vector with
    678 /// the same most significant 1 as x, but all 1's below it. Adding 1 to that value yields the next
    679 /// largest power of 2. For a 32-bit value:"
    680 inline uint32 b2NextPowerOfTwo(uint32 x)
    681 {
    682 	x |= (x >> 1);
    683 	x |= (x >> 2);
    684 	x |= (x >> 4);
    685 	x |= (x >> 8);
    686 	x |= (x >> 16);
    687 	return x + 1;
    688 }
    689 
    690 inline bool b2IsPowerOfTwo(uint32 x)
    691 {
    692 	bool result = x > 0 && (x & (x - 1)) == 0;
    693 	return result;
    694 }
    695 
    696 inline void b2Sweep::GetTransform(b2Transform* xf, float32 beta) const
    697 {
    698 	xf->p = (1.0f - beta) * c0 + beta * c;
    699 	float32 angle = (1.0f - beta) * a0 + beta * a;
    700 	xf->q.Set(angle);
    701 
    702 	// Shift to origin
    703 	xf->p -= b2Mul(xf->q, localCenter);
    704 }
    705 
    706 inline void b2Sweep::Advance(float32 alpha)
    707 {
    708 	b2Assert(alpha0 < 1.0f);
    709 	float32 beta = (alpha - alpha0) / (1.0f - alpha0);
    710 	c0 += beta * (c - c0);
    711 	a0 += beta * (a - a0);
    712 	alpha0 = alpha;
    713 }
    714 
    715 /// Normalize an angle in radians to be between -pi and pi
    716 inline void b2Sweep::Normalize()
    717 {
    718 	float32 twoPi = 2.0f * b2_pi;
    719 	float32 d =  twoPi * floorf(a0 / twoPi);
    720 	a0 -= d;
    721 	a -= d;
    722 }
    723 
    724 #endif
    725