1 //===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The LiveRangeEdit class represents changes done to a virtual register when it 11 // is spilled or split. 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/LiveRangeEdit.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/CodeGen/CalcSpillWeights.h" 17 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 18 #include "llvm/CodeGen/MachineRegisterInfo.h" 19 #include "llvm/CodeGen/VirtRegMap.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/raw_ostream.h" 22 #include "llvm/Target/TargetInstrInfo.h" 23 24 using namespace llvm; 25 26 #define DEBUG_TYPE "regalloc" 27 28 STATISTIC(NumDCEDeleted, "Number of instructions deleted by DCE"); 29 STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE"); 30 STATISTIC(NumFracRanges, "Number of live ranges fractured by DCE"); 31 32 void LiveRangeEdit::Delegate::anchor() { } 33 34 LiveInterval &LiveRangeEdit::createEmptyIntervalFrom(unsigned OldReg) { 35 unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg)); 36 if (VRM) { 37 VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg)); 38 } 39 LiveInterval &LI = LIS.createEmptyInterval(VReg); 40 return LI; 41 } 42 43 unsigned LiveRangeEdit::createFrom(unsigned OldReg) { 44 unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg)); 45 if (VRM) { 46 VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg)); 47 } 48 return VReg; 49 } 50 51 bool LiveRangeEdit::checkRematerializable(VNInfo *VNI, 52 const MachineInstr *DefMI, 53 AliasAnalysis *aa) { 54 assert(DefMI && "Missing instruction"); 55 ScannedRemattable = true; 56 if (!TII.isTriviallyReMaterializable(DefMI, aa)) 57 return false; 58 Remattable.insert(VNI); 59 return true; 60 } 61 62 void LiveRangeEdit::scanRemattable(AliasAnalysis *aa) { 63 for (VNInfo *VNI : getParent().valnos) { 64 if (VNI->isUnused()) 65 continue; 66 MachineInstr *DefMI = LIS.getInstructionFromIndex(VNI->def); 67 if (!DefMI) 68 continue; 69 checkRematerializable(VNI, DefMI, aa); 70 } 71 ScannedRemattable = true; 72 } 73 74 bool LiveRangeEdit::anyRematerializable(AliasAnalysis *aa) { 75 if (!ScannedRemattable) 76 scanRemattable(aa); 77 return !Remattable.empty(); 78 } 79 80 /// allUsesAvailableAt - Return true if all registers used by OrigMI at 81 /// OrigIdx are also available with the same value at UseIdx. 82 bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI, 83 SlotIndex OrigIdx, 84 SlotIndex UseIdx) const { 85 OrigIdx = OrigIdx.getRegSlot(true); 86 UseIdx = UseIdx.getRegSlot(true); 87 for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) { 88 const MachineOperand &MO = OrigMI->getOperand(i); 89 if (!MO.isReg() || !MO.getReg() || !MO.readsReg()) 90 continue; 91 92 // We can't remat physreg uses, unless it is a constant. 93 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { 94 if (MRI.isConstantPhysReg(MO.getReg(), *OrigMI->getParent()->getParent())) 95 continue; 96 return false; 97 } 98 99 LiveInterval &li = LIS.getInterval(MO.getReg()); 100 const VNInfo *OVNI = li.getVNInfoAt(OrigIdx); 101 if (!OVNI) 102 continue; 103 104 // Don't allow rematerialization immediately after the original def. 105 // It would be incorrect if OrigMI redefines the register. 106 // See PR14098. 107 if (SlotIndex::isSameInstr(OrigIdx, UseIdx)) 108 return false; 109 110 if (OVNI != li.getVNInfoAt(UseIdx)) 111 return false; 112 } 113 return true; 114 } 115 116 bool LiveRangeEdit::canRematerializeAt(Remat &RM, 117 SlotIndex UseIdx, 118 bool cheapAsAMove) { 119 assert(ScannedRemattable && "Call anyRematerializable first"); 120 121 // Use scanRemattable info. 122 if (!Remattable.count(RM.ParentVNI)) 123 return false; 124 125 // No defining instruction provided. 126 SlotIndex DefIdx; 127 if (RM.OrigMI) 128 DefIdx = LIS.getInstructionIndex(RM.OrigMI); 129 else { 130 DefIdx = RM.ParentVNI->def; 131 RM.OrigMI = LIS.getInstructionFromIndex(DefIdx); 132 assert(RM.OrigMI && "No defining instruction for remattable value"); 133 } 134 135 // If only cheap remats were requested, bail out early. 136 if (cheapAsAMove && !TII.isAsCheapAsAMove(RM.OrigMI)) 137 return false; 138 139 // Verify that all used registers are available with the same values. 140 if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx)) 141 return false; 142 143 return true; 144 } 145 146 SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB, 147 MachineBasicBlock::iterator MI, 148 unsigned DestReg, 149 const Remat &RM, 150 const TargetRegisterInfo &tri, 151 bool Late) { 152 assert(RM.OrigMI && "Invalid remat"); 153 TII.reMaterialize(MBB, MI, DestReg, 0, RM.OrigMI, tri); 154 Rematted.insert(RM.ParentVNI); 155 return LIS.getSlotIndexes()->insertMachineInstrInMaps(--MI, Late) 156 .getRegSlot(); 157 } 158 159 void LiveRangeEdit::eraseVirtReg(unsigned Reg) { 160 if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg)) 161 LIS.removeInterval(Reg); 162 } 163 164 bool LiveRangeEdit::foldAsLoad(LiveInterval *LI, 165 SmallVectorImpl<MachineInstr*> &Dead) { 166 MachineInstr *DefMI = nullptr, *UseMI = nullptr; 167 168 // Check that there is a single def and a single use. 169 for (MachineOperand &MO : MRI.reg_nodbg_operands(LI->reg)) { 170 MachineInstr *MI = MO.getParent(); 171 if (MO.isDef()) { 172 if (DefMI && DefMI != MI) 173 return false; 174 if (!MI->canFoldAsLoad()) 175 return false; 176 DefMI = MI; 177 } else if (!MO.isUndef()) { 178 if (UseMI && UseMI != MI) 179 return false; 180 // FIXME: Targets don't know how to fold subreg uses. 181 if (MO.getSubReg()) 182 return false; 183 UseMI = MI; 184 } 185 } 186 if (!DefMI || !UseMI) 187 return false; 188 189 // Since we're moving the DefMI load, make sure we're not extending any live 190 // ranges. 191 if (!allUsesAvailableAt(DefMI, 192 LIS.getInstructionIndex(DefMI), 193 LIS.getInstructionIndex(UseMI))) 194 return false; 195 196 // We also need to make sure it is safe to move the load. 197 // Assume there are stores between DefMI and UseMI. 198 bool SawStore = true; 199 if (!DefMI->isSafeToMove(nullptr, SawStore)) 200 return false; 201 202 DEBUG(dbgs() << "Try to fold single def: " << *DefMI 203 << " into single use: " << *UseMI); 204 205 SmallVector<unsigned, 8> Ops; 206 if (UseMI->readsWritesVirtualRegister(LI->reg, &Ops).second) 207 return false; 208 209 MachineInstr *FoldMI = TII.foldMemoryOperand(UseMI, Ops, DefMI); 210 if (!FoldMI) 211 return false; 212 DEBUG(dbgs() << " folded: " << *FoldMI); 213 LIS.ReplaceMachineInstrInMaps(UseMI, FoldMI); 214 UseMI->eraseFromParent(); 215 DefMI->addRegisterDead(LI->reg, nullptr); 216 Dead.push_back(DefMI); 217 ++NumDCEFoldedLoads; 218 return true; 219 } 220 221 bool LiveRangeEdit::useIsKill(const LiveInterval &LI, 222 const MachineOperand &MO) const { 223 const MachineInstr *MI = MO.getParent(); 224 SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot(); 225 if (LI.Query(Idx).isKill()) 226 return true; 227 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 228 unsigned SubReg = MO.getSubReg(); 229 LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubReg); 230 for (const LiveInterval::SubRange &S : LI.subranges()) { 231 if ((S.LaneMask & LaneMask) != 0 && S.Query(Idx).isKill()) 232 return true; 233 } 234 return false; 235 } 236 237 /// Find all live intervals that need to shrink, then remove the instruction. 238 void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink) { 239 assert(MI->allDefsAreDead() && "Def isn't really dead"); 240 SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot(); 241 242 // Never delete a bundled instruction. 243 if (MI->isBundled()) { 244 return; 245 } 246 // Never delete inline asm. 247 if (MI->isInlineAsm()) { 248 DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI); 249 return; 250 } 251 252 // Use the same criteria as DeadMachineInstructionElim. 253 bool SawStore = false; 254 if (!MI->isSafeToMove(nullptr, SawStore)) { 255 DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI); 256 return; 257 } 258 259 DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI); 260 261 // Collect virtual registers to be erased after MI is gone. 262 SmallVector<unsigned, 8> RegsToErase; 263 bool ReadsPhysRegs = false; 264 265 // Check for live intervals that may shrink 266 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 267 MOE = MI->operands_end(); MOI != MOE; ++MOI) { 268 if (!MOI->isReg()) 269 continue; 270 unsigned Reg = MOI->getReg(); 271 if (!TargetRegisterInfo::isVirtualRegister(Reg)) { 272 // Check if MI reads any unreserved physregs. 273 if (Reg && MOI->readsReg() && !MRI.isReserved(Reg)) 274 ReadsPhysRegs = true; 275 else if (MOI->isDef()) 276 LIS.removePhysRegDefAt(Reg, Idx); 277 continue; 278 } 279 LiveInterval &LI = LIS.getInterval(Reg); 280 281 // Shrink read registers, unless it is likely to be expensive and 282 // unlikely to change anything. We typically don't want to shrink the 283 // PIC base register that has lots of uses everywhere. 284 // Always shrink COPY uses that probably come from live range splitting. 285 if ((MI->readsVirtualRegister(Reg) && (MI->isCopy() || MOI->isDef())) || 286 (MOI->readsReg() && (MRI.hasOneNonDBGUse(Reg) || useIsKill(LI, *MOI)))) 287 ToShrink.insert(&LI); 288 289 // Remove defined value. 290 if (MOI->isDef()) { 291 if (TheDelegate && LI.getVNInfoAt(Idx) != nullptr) 292 TheDelegate->LRE_WillShrinkVirtReg(LI.reg); 293 LIS.removeVRegDefAt(LI, Idx); 294 if (LI.empty()) 295 RegsToErase.push_back(Reg); 296 } 297 } 298 299 // Currently, we don't support DCE of physreg live ranges. If MI reads 300 // any unreserved physregs, don't erase the instruction, but turn it into 301 // a KILL instead. This way, the physreg live ranges don't end up 302 // dangling. 303 // FIXME: It would be better to have something like shrinkToUses() for 304 // physregs. That could potentially enable more DCE and it would free up 305 // the physreg. It would not happen often, though. 306 if (ReadsPhysRegs) { 307 MI->setDesc(TII.get(TargetOpcode::KILL)); 308 // Remove all operands that aren't physregs. 309 for (unsigned i = MI->getNumOperands(); i; --i) { 310 const MachineOperand &MO = MI->getOperand(i-1); 311 if (MO.isReg() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) 312 continue; 313 MI->RemoveOperand(i-1); 314 } 315 DEBUG(dbgs() << "Converted physregs to:\t" << *MI); 316 } else { 317 if (TheDelegate) 318 TheDelegate->LRE_WillEraseInstruction(MI); 319 LIS.RemoveMachineInstrFromMaps(MI); 320 MI->eraseFromParent(); 321 ++NumDCEDeleted; 322 } 323 324 // Erase any virtregs that are now empty and unused. There may be <undef> 325 // uses around. Keep the empty live range in that case. 326 for (unsigned i = 0, e = RegsToErase.size(); i != e; ++i) { 327 unsigned Reg = RegsToErase[i]; 328 if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) { 329 ToShrink.remove(&LIS.getInterval(Reg)); 330 eraseVirtReg(Reg); 331 } 332 } 333 } 334 335 void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr*> &Dead, 336 ArrayRef<unsigned> RegsBeingSpilled) { 337 ToShrinkSet ToShrink; 338 339 for (;;) { 340 // Erase all dead defs. 341 while (!Dead.empty()) 342 eliminateDeadDef(Dead.pop_back_val(), ToShrink); 343 344 if (ToShrink.empty()) 345 break; 346 347 // Shrink just one live interval. Then delete new dead defs. 348 LiveInterval *LI = ToShrink.back(); 349 ToShrink.pop_back(); 350 if (foldAsLoad(LI, Dead)) 351 continue; 352 unsigned VReg = LI->reg; 353 if (TheDelegate) 354 TheDelegate->LRE_WillShrinkVirtReg(VReg); 355 if (!LIS.shrinkToUses(LI, &Dead)) 356 continue; 357 358 // Don't create new intervals for a register being spilled. 359 // The new intervals would have to be spilled anyway so its not worth it. 360 // Also they currently aren't spilled so creating them and not spilling 361 // them results in incorrect code. 362 bool BeingSpilled = false; 363 for (unsigned i = 0, e = RegsBeingSpilled.size(); i != e; ++i) { 364 if (VReg == RegsBeingSpilled[i]) { 365 BeingSpilled = true; 366 break; 367 } 368 } 369 370 if (BeingSpilled) continue; 371 372 // LI may have been separated, create new intervals. 373 LI->RenumberValues(); 374 SmallVector<LiveInterval*, 8> SplitLIs; 375 LIS.splitSeparateComponents(*LI, SplitLIs); 376 if (!SplitLIs.empty()) 377 ++NumFracRanges; 378 379 unsigned Original = VRM ? VRM->getOriginal(VReg) : 0; 380 for (const LiveInterval *SplitLI : SplitLIs) { 381 // If LI is an original interval that hasn't been split yet, make the new 382 // intervals their own originals instead of referring to LI. The original 383 // interval must contain all the split products, and LI doesn't. 384 if (Original != VReg && Original != 0) 385 VRM->setIsSplitFromReg(SplitLI->reg, Original); 386 if (TheDelegate) 387 TheDelegate->LRE_DidCloneVirtReg(SplitLI->reg, VReg); 388 } 389 } 390 } 391 392 // Keep track of new virtual registers created via 393 // MachineRegisterInfo::createVirtualRegister. 394 void 395 LiveRangeEdit::MRI_NoteNewVirtualRegister(unsigned VReg) 396 { 397 if (VRM) 398 VRM->grow(); 399 400 NewRegs.push_back(VReg); 401 } 402 403 void 404 LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF, 405 const MachineLoopInfo &Loops, 406 const MachineBlockFrequencyInfo &MBFI) { 407 VirtRegAuxInfo VRAI(MF, LIS, VRM, Loops, MBFI); 408 for (unsigned I = 0, Size = size(); I < Size; ++I) { 409 LiveInterval &LI = LIS.getInterval(get(I)); 410 if (MRI.recomputeRegClass(LI.reg)) 411 DEBUG({ 412 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 413 dbgs() << "Inflated " << PrintReg(LI.reg) << " to " 414 << TRI->getRegClassName(MRI.getRegClass(LI.reg)) << '\n'; 415 }); 416 VRAI.calculateSpillWeightAndHint(LI); 417 } 418 } 419