1 //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the pass which converts floating point instructions from 11 // pseudo registers into register stack instructions. This pass uses live 12 // variable information to indicate where the FPn registers are used and their 13 // lifetimes. 14 // 15 // The x87 hardware tracks liveness of the stack registers, so it is necessary 16 // to implement exact liveness tracking between basic blocks. The CFG edges are 17 // partitioned into bundles where the same FP registers must be live in 18 // identical stack positions. Instructions are inserted at the end of each basic 19 // block to rearrange the live registers to match the outgoing bundle. 20 // 21 // This approach avoids splitting critical edges at the potential cost of more 22 // live register shuffling instructions when critical edges are present. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "X86.h" 27 #include "X86InstrInfo.h" 28 #include "llvm/ADT/DepthFirstIterator.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/CodeGen/EdgeBundles.h" 35 #include "llvm/CodeGen/LivePhysRegs.h" 36 #include "llvm/CodeGen/MachineFunctionPass.h" 37 #include "llvm/CodeGen/MachineInstrBuilder.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/CodeGen/Passes.h" 40 #include "llvm/IR/InlineAsm.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Target/TargetInstrInfo.h" 45 #include "llvm/Target/TargetMachine.h" 46 #include "llvm/Target/TargetSubtargetInfo.h" 47 #include <algorithm> 48 #include <bitset> 49 using namespace llvm; 50 51 #define DEBUG_TYPE "x86-codegen" 52 53 STATISTIC(NumFXCH, "Number of fxch instructions inserted"); 54 STATISTIC(NumFP , "Number of floating point instructions"); 55 56 namespace { 57 const unsigned ScratchFPReg = 7; 58 59 struct FPS : public MachineFunctionPass { 60 static char ID; 61 FPS() : MachineFunctionPass(ID) { 62 initializeEdgeBundlesPass(*PassRegistry::getPassRegistry()); 63 // This is really only to keep valgrind quiet. 64 // The logic in isLive() is too much for it. 65 memset(Stack, 0, sizeof(Stack)); 66 memset(RegMap, 0, sizeof(RegMap)); 67 } 68 69 void getAnalysisUsage(AnalysisUsage &AU) const override { 70 AU.setPreservesCFG(); 71 AU.addRequired<EdgeBundles>(); 72 AU.addPreservedID(MachineLoopInfoID); 73 AU.addPreservedID(MachineDominatorsID); 74 MachineFunctionPass::getAnalysisUsage(AU); 75 } 76 77 bool runOnMachineFunction(MachineFunction &MF) override; 78 79 const char *getPassName() const override { return "X86 FP Stackifier"; } 80 81 private: 82 const TargetInstrInfo *TII; // Machine instruction info. 83 84 // Two CFG edges are related if they leave the same block, or enter the same 85 // block. The transitive closure of an edge under this relation is a 86 // LiveBundle. It represents a set of CFG edges where the live FP stack 87 // registers must be allocated identically in the x87 stack. 88 // 89 // A LiveBundle is usually all the edges leaving a block, or all the edges 90 // entering a block, but it can contain more edges if critical edges are 91 // present. 92 // 93 // The set of live FP registers in a LiveBundle is calculated by bundleCFG, 94 // but the exact mapping of FP registers to stack slots is fixed later. 95 struct LiveBundle { 96 // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c. 97 unsigned Mask; 98 99 // Number of pre-assigned live registers in FixStack. This is 0 when the 100 // stack order has not yet been fixed. 101 unsigned FixCount; 102 103 // Assigned stack order for live-in registers. 104 // FixStack[i] == getStackEntry(i) for all i < FixCount. 105 unsigned char FixStack[8]; 106 107 LiveBundle() : Mask(0), FixCount(0) {} 108 109 // Have the live registers been assigned a stack order yet? 110 bool isFixed() const { return !Mask || FixCount; } 111 }; 112 113 // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges 114 // with no live FP registers. 115 SmallVector<LiveBundle, 8> LiveBundles; 116 117 // The edge bundle analysis provides indices into the LiveBundles vector. 118 EdgeBundles *Bundles; 119 120 // Return a bitmask of FP registers in block's live-in list. 121 static unsigned calcLiveInMask(MachineBasicBlock *MBB) { 122 unsigned Mask = 0; 123 for (const auto &LI : MBB->liveins()) { 124 if (LI.PhysReg < X86::FP0 || LI.PhysReg > X86::FP6) 125 continue; 126 Mask |= 1 << (LI.PhysReg - X86::FP0); 127 } 128 return Mask; 129 } 130 131 // Partition all the CFG edges into LiveBundles. 132 void bundleCFG(MachineFunction &MF); 133 134 MachineBasicBlock *MBB; // Current basic block 135 136 // The hardware keeps track of how many FP registers are live, so we have 137 // to model that exactly. Usually, each live register corresponds to an 138 // FP<n> register, but when dealing with calls, returns, and inline 139 // assembly, it is sometimes necessary to have live scratch registers. 140 unsigned Stack[8]; // FP<n> Registers in each stack slot... 141 unsigned StackTop; // The current top of the FP stack. 142 143 enum { 144 NumFPRegs = 8 // Including scratch pseudo-registers. 145 }; 146 147 // For each live FP<n> register, point to its Stack[] entry. 148 // The first entries correspond to FP0-FP6, the rest are scratch registers 149 // used when we need slightly different live registers than what the 150 // register allocator thinks. 151 unsigned RegMap[NumFPRegs]; 152 153 // Set up our stack model to match the incoming registers to MBB. 154 void setupBlockStack(); 155 156 // Shuffle live registers to match the expectations of successor blocks. 157 void finishBlockStack(); 158 159 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 160 void dumpStack() const { 161 dbgs() << "Stack contents:"; 162 for (unsigned i = 0; i != StackTop; ++i) { 163 dbgs() << " FP" << Stack[i]; 164 assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!"); 165 } 166 } 167 #endif 168 169 /// getSlot - Return the stack slot number a particular register number is 170 /// in. 171 unsigned getSlot(unsigned RegNo) const { 172 assert(RegNo < NumFPRegs && "Regno out of range!"); 173 return RegMap[RegNo]; 174 } 175 176 /// isLive - Is RegNo currently live in the stack? 177 bool isLive(unsigned RegNo) const { 178 unsigned Slot = getSlot(RegNo); 179 return Slot < StackTop && Stack[Slot] == RegNo; 180 } 181 182 /// getStackEntry - Return the X86::FP<n> register in register ST(i). 183 unsigned getStackEntry(unsigned STi) const { 184 if (STi >= StackTop) 185 report_fatal_error("Access past stack top!"); 186 return Stack[StackTop-1-STi]; 187 } 188 189 /// getSTReg - Return the X86::ST(i) register which contains the specified 190 /// FP<RegNo> register. 191 unsigned getSTReg(unsigned RegNo) const { 192 return StackTop - 1 - getSlot(RegNo) + X86::ST0; 193 } 194 195 // pushReg - Push the specified FP<n> register onto the stack. 196 void pushReg(unsigned Reg) { 197 assert(Reg < NumFPRegs && "Register number out of range!"); 198 if (StackTop >= 8) 199 report_fatal_error("Stack overflow!"); 200 Stack[StackTop] = Reg; 201 RegMap[Reg] = StackTop++; 202 } 203 204 bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; } 205 void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) { 206 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc(); 207 if (isAtTop(RegNo)) return; 208 209 unsigned STReg = getSTReg(RegNo); 210 unsigned RegOnTop = getStackEntry(0); 211 212 // Swap the slots the regs are in. 213 std::swap(RegMap[RegNo], RegMap[RegOnTop]); 214 215 // Swap stack slot contents. 216 if (RegMap[RegOnTop] >= StackTop) 217 report_fatal_error("Access past stack top!"); 218 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]); 219 220 // Emit an fxch to update the runtime processors version of the state. 221 BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg); 222 ++NumFXCH; 223 } 224 225 void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) { 226 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc(); 227 unsigned STReg = getSTReg(RegNo); 228 pushReg(AsReg); // New register on top of stack 229 230 BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg); 231 } 232 233 /// popStackAfter - Pop the current value off of the top of the FP stack 234 /// after the specified instruction. 235 void popStackAfter(MachineBasicBlock::iterator &I); 236 237 /// freeStackSlotAfter - Free the specified register from the register 238 /// stack, so that it is no longer in a register. If the register is 239 /// currently at the top of the stack, we just pop the current instruction, 240 /// otherwise we store the current top-of-stack into the specified slot, 241 /// then pop the top of stack. 242 void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg); 243 244 /// freeStackSlotBefore - Just the pop, no folding. Return the inserted 245 /// instruction. 246 MachineBasicBlock::iterator 247 freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo); 248 249 /// Adjust the live registers to be the set in Mask. 250 void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I); 251 252 /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is 253 /// st(0), FP reg FixStack[1] is st(1) etc. 254 void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount, 255 MachineBasicBlock::iterator I); 256 257 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB); 258 259 void handleCall(MachineBasicBlock::iterator &I); 260 void handleZeroArgFP(MachineBasicBlock::iterator &I); 261 void handleOneArgFP(MachineBasicBlock::iterator &I); 262 void handleOneArgFPRW(MachineBasicBlock::iterator &I); 263 void handleTwoArgFP(MachineBasicBlock::iterator &I); 264 void handleCompareFP(MachineBasicBlock::iterator &I); 265 void handleCondMovFP(MachineBasicBlock::iterator &I); 266 void handleSpecialFP(MachineBasicBlock::iterator &I); 267 268 // Check if a COPY instruction is using FP registers. 269 static bool isFPCopy(MachineInstr *MI) { 270 unsigned DstReg = MI->getOperand(0).getReg(); 271 unsigned SrcReg = MI->getOperand(1).getReg(); 272 273 return X86::RFP80RegClass.contains(DstReg) || 274 X86::RFP80RegClass.contains(SrcReg); 275 } 276 277 void setKillFlags(MachineBasicBlock &MBB) const; 278 }; 279 char FPS::ID = 0; 280 } 281 282 FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); } 283 284 /// getFPReg - Return the X86::FPx register number for the specified operand. 285 /// For example, this returns 3 for X86::FP3. 286 static unsigned getFPReg(const MachineOperand &MO) { 287 assert(MO.isReg() && "Expected an FP register!"); 288 unsigned Reg = MO.getReg(); 289 assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!"); 290 return Reg - X86::FP0; 291 } 292 293 /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP 294 /// register references into FP stack references. 295 /// 296 bool FPS::runOnMachineFunction(MachineFunction &MF) { 297 // We only need to run this pass if there are any FP registers used in this 298 // function. If it is all integer, there is nothing for us to do! 299 bool FPIsUsed = false; 300 301 static_assert(X86::FP6 == X86::FP0+6, "Register enums aren't sorted right!"); 302 const MachineRegisterInfo &MRI = MF.getRegInfo(); 303 for (unsigned i = 0; i <= 6; ++i) 304 if (!MRI.reg_nodbg_empty(X86::FP0 + i)) { 305 FPIsUsed = true; 306 break; 307 } 308 309 // Early exit. 310 if (!FPIsUsed) return false; 311 312 Bundles = &getAnalysis<EdgeBundles>(); 313 TII = MF.getSubtarget().getInstrInfo(); 314 315 // Prepare cross-MBB liveness. 316 bundleCFG(MF); 317 318 StackTop = 0; 319 320 // Process the function in depth first order so that we process at least one 321 // of the predecessors for every reachable block in the function. 322 SmallPtrSet<MachineBasicBlock*, 8> Processed; 323 MachineBasicBlock *Entry = &MF.front(); 324 325 bool Changed = false; 326 for (MachineBasicBlock *BB : depth_first_ext(Entry, Processed)) 327 Changed |= processBasicBlock(MF, *BB); 328 329 // Process any unreachable blocks in arbitrary order now. 330 if (MF.size() != Processed.size()) 331 for (MachineBasicBlock &BB : MF) 332 if (Processed.insert(&BB).second) 333 Changed |= processBasicBlock(MF, BB); 334 335 LiveBundles.clear(); 336 337 return Changed; 338 } 339 340 /// bundleCFG - Scan all the basic blocks to determine consistent live-in and 341 /// live-out sets for the FP registers. Consistent means that the set of 342 /// registers live-out from a block is identical to the live-in set of all 343 /// successors. This is not enforced by the normal live-in lists since 344 /// registers may be implicitly defined, or not used by all successors. 345 void FPS::bundleCFG(MachineFunction &MF) { 346 assert(LiveBundles.empty() && "Stale data in LiveBundles"); 347 LiveBundles.resize(Bundles->getNumBundles()); 348 349 // Gather the actual live-in masks for all MBBs. 350 for (MachineBasicBlock &MBB : MF) { 351 const unsigned Mask = calcLiveInMask(&MBB); 352 if (!Mask) 353 continue; 354 // Update MBB ingoing bundle mask. 355 LiveBundles[Bundles->getBundle(MBB.getNumber(), false)].Mask |= Mask; 356 } 357 } 358 359 /// processBasicBlock - Loop over all of the instructions in the basic block, 360 /// transforming FP instructions into their stack form. 361 /// 362 bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) { 363 bool Changed = false; 364 MBB = &BB; 365 366 setKillFlags(BB); 367 setupBlockStack(); 368 369 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) { 370 MachineInstr *MI = I; 371 uint64_t Flags = MI->getDesc().TSFlags; 372 373 unsigned FPInstClass = Flags & X86II::FPTypeMask; 374 if (MI->isInlineAsm()) 375 FPInstClass = X86II::SpecialFP; 376 377 if (MI->isCopy() && isFPCopy(MI)) 378 FPInstClass = X86II::SpecialFP; 379 380 if (MI->isImplicitDef() && 381 X86::RFP80RegClass.contains(MI->getOperand(0).getReg())) 382 FPInstClass = X86II::SpecialFP; 383 384 if (MI->isCall()) 385 FPInstClass = X86II::SpecialFP; 386 387 if (FPInstClass == X86II::NotFP) 388 continue; // Efficiently ignore non-fp insts! 389 390 MachineInstr *PrevMI = nullptr; 391 if (I != BB.begin()) 392 PrevMI = std::prev(I); 393 394 ++NumFP; // Keep track of # of pseudo instrs 395 DEBUG(dbgs() << "\nFPInst:\t" << *MI); 396 397 // Get dead variables list now because the MI pointer may be deleted as part 398 // of processing! 399 SmallVector<unsigned, 8> DeadRegs; 400 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 401 const MachineOperand &MO = MI->getOperand(i); 402 if (MO.isReg() && MO.isDead()) 403 DeadRegs.push_back(MO.getReg()); 404 } 405 406 switch (FPInstClass) { 407 case X86II::ZeroArgFP: handleZeroArgFP(I); break; 408 case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0) 409 case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0)) 410 case X86II::TwoArgFP: handleTwoArgFP(I); break; 411 case X86II::CompareFP: handleCompareFP(I); break; 412 case X86II::CondMovFP: handleCondMovFP(I); break; 413 case X86II::SpecialFP: handleSpecialFP(I); break; 414 default: llvm_unreachable("Unknown FP Type!"); 415 } 416 417 // Check to see if any of the values defined by this instruction are dead 418 // after definition. If so, pop them. 419 for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) { 420 unsigned Reg = DeadRegs[i]; 421 // Check if Reg is live on the stack. An inline-asm register operand that 422 // is in the clobber list and marked dead might not be live on the stack. 423 if (Reg >= X86::FP0 && Reg <= X86::FP6 && isLive(Reg-X86::FP0)) { 424 DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n"); 425 freeStackSlotAfter(I, Reg-X86::FP0); 426 } 427 } 428 429 // Print out all of the instructions expanded to if -debug 430 DEBUG( 431 MachineBasicBlock::iterator PrevI(PrevMI); 432 if (I == PrevI) { 433 dbgs() << "Just deleted pseudo instruction\n"; 434 } else { 435 MachineBasicBlock::iterator Start = I; 436 // Rewind to first instruction newly inserted. 437 while (Start != BB.begin() && std::prev(Start) != PrevI) --Start; 438 dbgs() << "Inserted instructions:\n\t"; 439 Start->print(dbgs()); 440 while (++Start != std::next(I)) {} 441 } 442 dumpStack(); 443 ); 444 (void)PrevMI; 445 446 Changed = true; 447 } 448 449 finishBlockStack(); 450 451 return Changed; 452 } 453 454 /// setupBlockStack - Use the live bundles to set up our model of the stack 455 /// to match predecessors' live out stack. 456 void FPS::setupBlockStack() { 457 DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber() 458 << " derived from " << MBB->getName() << ".\n"); 459 StackTop = 0; 460 // Get the live-in bundle for MBB. 461 const LiveBundle &Bundle = 462 LiveBundles[Bundles->getBundle(MBB->getNumber(), false)]; 463 464 if (!Bundle.Mask) { 465 DEBUG(dbgs() << "Block has no FP live-ins.\n"); 466 return; 467 } 468 469 // Depth-first iteration should ensure that we always have an assigned stack. 470 assert(Bundle.isFixed() && "Reached block before any predecessors"); 471 472 // Push the fixed live-in registers. 473 for (unsigned i = Bundle.FixCount; i > 0; --i) { 474 MBB->addLiveIn(X86::ST0+i-1); 475 DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP" 476 << unsigned(Bundle.FixStack[i-1]) << '\n'); 477 pushReg(Bundle.FixStack[i-1]); 478 } 479 480 // Kill off unwanted live-ins. This can happen with a critical edge. 481 // FIXME: We could keep these live registers around as zombies. They may need 482 // to be revived at the end of a short block. It might save a few instrs. 483 adjustLiveRegs(calcLiveInMask(MBB), MBB->begin()); 484 DEBUG(MBB->dump()); 485 } 486 487 /// finishBlockStack - Revive live-outs that are implicitly defined out of 488 /// MBB. Shuffle live registers to match the expected fixed stack of any 489 /// predecessors, and ensure that all predecessors are expecting the same 490 /// stack. 491 void FPS::finishBlockStack() { 492 // The RET handling below takes care of return blocks for us. 493 if (MBB->succ_empty()) 494 return; 495 496 DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber() 497 << " derived from " << MBB->getName() << ".\n"); 498 499 // Get MBB's live-out bundle. 500 unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true); 501 LiveBundle &Bundle = LiveBundles[BundleIdx]; 502 503 // We may need to kill and define some registers to match successors. 504 // FIXME: This can probably be combined with the shuffle below. 505 MachineBasicBlock::iterator Term = MBB->getFirstTerminator(); 506 adjustLiveRegs(Bundle.Mask, Term); 507 508 if (!Bundle.Mask) { 509 DEBUG(dbgs() << "No live-outs.\n"); 510 return; 511 } 512 513 // Has the stack order been fixed yet? 514 DEBUG(dbgs() << "LB#" << BundleIdx << ": "); 515 if (Bundle.isFixed()) { 516 DEBUG(dbgs() << "Shuffling stack to match.\n"); 517 shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term); 518 } else { 519 // Not fixed yet, we get to choose. 520 DEBUG(dbgs() << "Fixing stack order now.\n"); 521 Bundle.FixCount = StackTop; 522 for (unsigned i = 0; i < StackTop; ++i) 523 Bundle.FixStack[i] = getStackEntry(i); 524 } 525 } 526 527 528 //===----------------------------------------------------------------------===// 529 // Efficient Lookup Table Support 530 //===----------------------------------------------------------------------===// 531 532 namespace { 533 struct TableEntry { 534 uint16_t from; 535 uint16_t to; 536 bool operator<(const TableEntry &TE) const { return from < TE.from; } 537 friend bool operator<(const TableEntry &TE, unsigned V) { 538 return TE.from < V; 539 } 540 friend bool LLVM_ATTRIBUTE_UNUSED operator<(unsigned V, 541 const TableEntry &TE) { 542 return V < TE.from; 543 } 544 }; 545 } 546 547 static int Lookup(ArrayRef<TableEntry> Table, unsigned Opcode) { 548 const TableEntry *I = std::lower_bound(Table.begin(), Table.end(), Opcode); 549 if (I != Table.end() && I->from == Opcode) 550 return I->to; 551 return -1; 552 } 553 554 #ifdef NDEBUG 555 #define ASSERT_SORTED(TABLE) 556 #else 557 #define ASSERT_SORTED(TABLE) \ 558 { static bool TABLE##Checked = false; \ 559 if (!TABLE##Checked) { \ 560 assert(std::is_sorted(std::begin(TABLE), std::end(TABLE)) && \ 561 "All lookup tables must be sorted for efficient access!"); \ 562 TABLE##Checked = true; \ 563 } \ 564 } 565 #endif 566 567 //===----------------------------------------------------------------------===// 568 // Register File -> Register Stack Mapping Methods 569 //===----------------------------------------------------------------------===// 570 571 // OpcodeTable - Sorted map of register instructions to their stack version. 572 // The first element is an register file pseudo instruction, the second is the 573 // concrete X86 instruction which uses the register stack. 574 // 575 static const TableEntry OpcodeTable[] = { 576 { X86::ABS_Fp32 , X86::ABS_F }, 577 { X86::ABS_Fp64 , X86::ABS_F }, 578 { X86::ABS_Fp80 , X86::ABS_F }, 579 { X86::ADD_Fp32m , X86::ADD_F32m }, 580 { X86::ADD_Fp64m , X86::ADD_F64m }, 581 { X86::ADD_Fp64m32 , X86::ADD_F32m }, 582 { X86::ADD_Fp80m32 , X86::ADD_F32m }, 583 { X86::ADD_Fp80m64 , X86::ADD_F64m }, 584 { X86::ADD_FpI16m32 , X86::ADD_FI16m }, 585 { X86::ADD_FpI16m64 , X86::ADD_FI16m }, 586 { X86::ADD_FpI16m80 , X86::ADD_FI16m }, 587 { X86::ADD_FpI32m32 , X86::ADD_FI32m }, 588 { X86::ADD_FpI32m64 , X86::ADD_FI32m }, 589 { X86::ADD_FpI32m80 , X86::ADD_FI32m }, 590 { X86::CHS_Fp32 , X86::CHS_F }, 591 { X86::CHS_Fp64 , X86::CHS_F }, 592 { X86::CHS_Fp80 , X86::CHS_F }, 593 { X86::CMOVBE_Fp32 , X86::CMOVBE_F }, 594 { X86::CMOVBE_Fp64 , X86::CMOVBE_F }, 595 { X86::CMOVBE_Fp80 , X86::CMOVBE_F }, 596 { X86::CMOVB_Fp32 , X86::CMOVB_F }, 597 { X86::CMOVB_Fp64 , X86::CMOVB_F }, 598 { X86::CMOVB_Fp80 , X86::CMOVB_F }, 599 { X86::CMOVE_Fp32 , X86::CMOVE_F }, 600 { X86::CMOVE_Fp64 , X86::CMOVE_F }, 601 { X86::CMOVE_Fp80 , X86::CMOVE_F }, 602 { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F }, 603 { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F }, 604 { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F }, 605 { X86::CMOVNB_Fp32 , X86::CMOVNB_F }, 606 { X86::CMOVNB_Fp64 , X86::CMOVNB_F }, 607 { X86::CMOVNB_Fp80 , X86::CMOVNB_F }, 608 { X86::CMOVNE_Fp32 , X86::CMOVNE_F }, 609 { X86::CMOVNE_Fp64 , X86::CMOVNE_F }, 610 { X86::CMOVNE_Fp80 , X86::CMOVNE_F }, 611 { X86::CMOVNP_Fp32 , X86::CMOVNP_F }, 612 { X86::CMOVNP_Fp64 , X86::CMOVNP_F }, 613 { X86::CMOVNP_Fp80 , X86::CMOVNP_F }, 614 { X86::CMOVP_Fp32 , X86::CMOVP_F }, 615 { X86::CMOVP_Fp64 , X86::CMOVP_F }, 616 { X86::CMOVP_Fp80 , X86::CMOVP_F }, 617 { X86::COS_Fp32 , X86::COS_F }, 618 { X86::COS_Fp64 , X86::COS_F }, 619 { X86::COS_Fp80 , X86::COS_F }, 620 { X86::DIVR_Fp32m , X86::DIVR_F32m }, 621 { X86::DIVR_Fp64m , X86::DIVR_F64m }, 622 { X86::DIVR_Fp64m32 , X86::DIVR_F32m }, 623 { X86::DIVR_Fp80m32 , X86::DIVR_F32m }, 624 { X86::DIVR_Fp80m64 , X86::DIVR_F64m }, 625 { X86::DIVR_FpI16m32, X86::DIVR_FI16m}, 626 { X86::DIVR_FpI16m64, X86::DIVR_FI16m}, 627 { X86::DIVR_FpI16m80, X86::DIVR_FI16m}, 628 { X86::DIVR_FpI32m32, X86::DIVR_FI32m}, 629 { X86::DIVR_FpI32m64, X86::DIVR_FI32m}, 630 { X86::DIVR_FpI32m80, X86::DIVR_FI32m}, 631 { X86::DIV_Fp32m , X86::DIV_F32m }, 632 { X86::DIV_Fp64m , X86::DIV_F64m }, 633 { X86::DIV_Fp64m32 , X86::DIV_F32m }, 634 { X86::DIV_Fp80m32 , X86::DIV_F32m }, 635 { X86::DIV_Fp80m64 , X86::DIV_F64m }, 636 { X86::DIV_FpI16m32 , X86::DIV_FI16m }, 637 { X86::DIV_FpI16m64 , X86::DIV_FI16m }, 638 { X86::DIV_FpI16m80 , X86::DIV_FI16m }, 639 { X86::DIV_FpI32m32 , X86::DIV_FI32m }, 640 { X86::DIV_FpI32m64 , X86::DIV_FI32m }, 641 { X86::DIV_FpI32m80 , X86::DIV_FI32m }, 642 { X86::ILD_Fp16m32 , X86::ILD_F16m }, 643 { X86::ILD_Fp16m64 , X86::ILD_F16m }, 644 { X86::ILD_Fp16m80 , X86::ILD_F16m }, 645 { X86::ILD_Fp32m32 , X86::ILD_F32m }, 646 { X86::ILD_Fp32m64 , X86::ILD_F32m }, 647 { X86::ILD_Fp32m80 , X86::ILD_F32m }, 648 { X86::ILD_Fp64m32 , X86::ILD_F64m }, 649 { X86::ILD_Fp64m64 , X86::ILD_F64m }, 650 { X86::ILD_Fp64m80 , X86::ILD_F64m }, 651 { X86::ISTT_Fp16m32 , X86::ISTT_FP16m}, 652 { X86::ISTT_Fp16m64 , X86::ISTT_FP16m}, 653 { X86::ISTT_Fp16m80 , X86::ISTT_FP16m}, 654 { X86::ISTT_Fp32m32 , X86::ISTT_FP32m}, 655 { X86::ISTT_Fp32m64 , X86::ISTT_FP32m}, 656 { X86::ISTT_Fp32m80 , X86::ISTT_FP32m}, 657 { X86::ISTT_Fp64m32 , X86::ISTT_FP64m}, 658 { X86::ISTT_Fp64m64 , X86::ISTT_FP64m}, 659 { X86::ISTT_Fp64m80 , X86::ISTT_FP64m}, 660 { X86::IST_Fp16m32 , X86::IST_F16m }, 661 { X86::IST_Fp16m64 , X86::IST_F16m }, 662 { X86::IST_Fp16m80 , X86::IST_F16m }, 663 { X86::IST_Fp32m32 , X86::IST_F32m }, 664 { X86::IST_Fp32m64 , X86::IST_F32m }, 665 { X86::IST_Fp32m80 , X86::IST_F32m }, 666 { X86::IST_Fp64m32 , X86::IST_FP64m }, 667 { X86::IST_Fp64m64 , X86::IST_FP64m }, 668 { X86::IST_Fp64m80 , X86::IST_FP64m }, 669 { X86::LD_Fp032 , X86::LD_F0 }, 670 { X86::LD_Fp064 , X86::LD_F0 }, 671 { X86::LD_Fp080 , X86::LD_F0 }, 672 { X86::LD_Fp132 , X86::LD_F1 }, 673 { X86::LD_Fp164 , X86::LD_F1 }, 674 { X86::LD_Fp180 , X86::LD_F1 }, 675 { X86::LD_Fp32m , X86::LD_F32m }, 676 { X86::LD_Fp32m64 , X86::LD_F32m }, 677 { X86::LD_Fp32m80 , X86::LD_F32m }, 678 { X86::LD_Fp64m , X86::LD_F64m }, 679 { X86::LD_Fp64m80 , X86::LD_F64m }, 680 { X86::LD_Fp80m , X86::LD_F80m }, 681 { X86::MUL_Fp32m , X86::MUL_F32m }, 682 { X86::MUL_Fp64m , X86::MUL_F64m }, 683 { X86::MUL_Fp64m32 , X86::MUL_F32m }, 684 { X86::MUL_Fp80m32 , X86::MUL_F32m }, 685 { X86::MUL_Fp80m64 , X86::MUL_F64m }, 686 { X86::MUL_FpI16m32 , X86::MUL_FI16m }, 687 { X86::MUL_FpI16m64 , X86::MUL_FI16m }, 688 { X86::MUL_FpI16m80 , X86::MUL_FI16m }, 689 { X86::MUL_FpI32m32 , X86::MUL_FI32m }, 690 { X86::MUL_FpI32m64 , X86::MUL_FI32m }, 691 { X86::MUL_FpI32m80 , X86::MUL_FI32m }, 692 { X86::SIN_Fp32 , X86::SIN_F }, 693 { X86::SIN_Fp64 , X86::SIN_F }, 694 { X86::SIN_Fp80 , X86::SIN_F }, 695 { X86::SQRT_Fp32 , X86::SQRT_F }, 696 { X86::SQRT_Fp64 , X86::SQRT_F }, 697 { X86::SQRT_Fp80 , X86::SQRT_F }, 698 { X86::ST_Fp32m , X86::ST_F32m }, 699 { X86::ST_Fp64m , X86::ST_F64m }, 700 { X86::ST_Fp64m32 , X86::ST_F32m }, 701 { X86::ST_Fp80m32 , X86::ST_F32m }, 702 { X86::ST_Fp80m64 , X86::ST_F64m }, 703 { X86::ST_FpP80m , X86::ST_FP80m }, 704 { X86::SUBR_Fp32m , X86::SUBR_F32m }, 705 { X86::SUBR_Fp64m , X86::SUBR_F64m }, 706 { X86::SUBR_Fp64m32 , X86::SUBR_F32m }, 707 { X86::SUBR_Fp80m32 , X86::SUBR_F32m }, 708 { X86::SUBR_Fp80m64 , X86::SUBR_F64m }, 709 { X86::SUBR_FpI16m32, X86::SUBR_FI16m}, 710 { X86::SUBR_FpI16m64, X86::SUBR_FI16m}, 711 { X86::SUBR_FpI16m80, X86::SUBR_FI16m}, 712 { X86::SUBR_FpI32m32, X86::SUBR_FI32m}, 713 { X86::SUBR_FpI32m64, X86::SUBR_FI32m}, 714 { X86::SUBR_FpI32m80, X86::SUBR_FI32m}, 715 { X86::SUB_Fp32m , X86::SUB_F32m }, 716 { X86::SUB_Fp64m , X86::SUB_F64m }, 717 { X86::SUB_Fp64m32 , X86::SUB_F32m }, 718 { X86::SUB_Fp80m32 , X86::SUB_F32m }, 719 { X86::SUB_Fp80m64 , X86::SUB_F64m }, 720 { X86::SUB_FpI16m32 , X86::SUB_FI16m }, 721 { X86::SUB_FpI16m64 , X86::SUB_FI16m }, 722 { X86::SUB_FpI16m80 , X86::SUB_FI16m }, 723 { X86::SUB_FpI32m32 , X86::SUB_FI32m }, 724 { X86::SUB_FpI32m64 , X86::SUB_FI32m }, 725 { X86::SUB_FpI32m80 , X86::SUB_FI32m }, 726 { X86::TST_Fp32 , X86::TST_F }, 727 { X86::TST_Fp64 , X86::TST_F }, 728 { X86::TST_Fp80 , X86::TST_F }, 729 { X86::UCOM_FpIr32 , X86::UCOM_FIr }, 730 { X86::UCOM_FpIr64 , X86::UCOM_FIr }, 731 { X86::UCOM_FpIr80 , X86::UCOM_FIr }, 732 { X86::UCOM_Fpr32 , X86::UCOM_Fr }, 733 { X86::UCOM_Fpr64 , X86::UCOM_Fr }, 734 { X86::UCOM_Fpr80 , X86::UCOM_Fr }, 735 }; 736 737 static unsigned getConcreteOpcode(unsigned Opcode) { 738 ASSERT_SORTED(OpcodeTable); 739 int Opc = Lookup(OpcodeTable, Opcode); 740 assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!"); 741 return Opc; 742 } 743 744 //===----------------------------------------------------------------------===// 745 // Helper Methods 746 //===----------------------------------------------------------------------===// 747 748 // PopTable - Sorted map of instructions to their popping version. The first 749 // element is an instruction, the second is the version which pops. 750 // 751 static const TableEntry PopTable[] = { 752 { X86::ADD_FrST0 , X86::ADD_FPrST0 }, 753 754 { X86::DIVR_FrST0, X86::DIVR_FPrST0 }, 755 { X86::DIV_FrST0 , X86::DIV_FPrST0 }, 756 757 { X86::IST_F16m , X86::IST_FP16m }, 758 { X86::IST_F32m , X86::IST_FP32m }, 759 760 { X86::MUL_FrST0 , X86::MUL_FPrST0 }, 761 762 { X86::ST_F32m , X86::ST_FP32m }, 763 { X86::ST_F64m , X86::ST_FP64m }, 764 { X86::ST_Frr , X86::ST_FPrr }, 765 766 { X86::SUBR_FrST0, X86::SUBR_FPrST0 }, 767 { X86::SUB_FrST0 , X86::SUB_FPrST0 }, 768 769 { X86::UCOM_FIr , X86::UCOM_FIPr }, 770 771 { X86::UCOM_FPr , X86::UCOM_FPPr }, 772 { X86::UCOM_Fr , X86::UCOM_FPr }, 773 }; 774 775 /// popStackAfter - Pop the current value off of the top of the FP stack after 776 /// the specified instruction. This attempts to be sneaky and combine the pop 777 /// into the instruction itself if possible. The iterator is left pointing to 778 /// the last instruction, be it a new pop instruction inserted, or the old 779 /// instruction if it was modified in place. 780 /// 781 void FPS::popStackAfter(MachineBasicBlock::iterator &I) { 782 MachineInstr* MI = I; 783 DebugLoc dl = MI->getDebugLoc(); 784 ASSERT_SORTED(PopTable); 785 if (StackTop == 0) 786 report_fatal_error("Cannot pop empty stack!"); 787 RegMap[Stack[--StackTop]] = ~0; // Update state 788 789 // Check to see if there is a popping version of this instruction... 790 int Opcode = Lookup(PopTable, I->getOpcode()); 791 if (Opcode != -1) { 792 I->setDesc(TII->get(Opcode)); 793 if (Opcode == X86::UCOM_FPPr) 794 I->RemoveOperand(0); 795 } else { // Insert an explicit pop 796 I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0); 797 } 798 } 799 800 /// freeStackSlotAfter - Free the specified register from the register stack, so 801 /// that it is no longer in a register. If the register is currently at the top 802 /// of the stack, we just pop the current instruction, otherwise we store the 803 /// current top-of-stack into the specified slot, then pop the top of stack. 804 void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) { 805 if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy. 806 popStackAfter(I); 807 return; 808 } 809 810 // Otherwise, store the top of stack into the dead slot, killing the operand 811 // without having to add in an explicit xchg then pop. 812 // 813 I = freeStackSlotBefore(++I, FPRegNo); 814 } 815 816 /// freeStackSlotBefore - Free the specified register without trying any 817 /// folding. 818 MachineBasicBlock::iterator 819 FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) { 820 unsigned STReg = getSTReg(FPRegNo); 821 unsigned OldSlot = getSlot(FPRegNo); 822 unsigned TopReg = Stack[StackTop-1]; 823 Stack[OldSlot] = TopReg; 824 RegMap[TopReg] = OldSlot; 825 RegMap[FPRegNo] = ~0; 826 Stack[--StackTop] = ~0; 827 return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr)) 828 .addReg(STReg) 829 .getInstr(); 830 } 831 832 /// adjustLiveRegs - Kill and revive registers such that exactly the FP 833 /// registers with a bit in Mask are live. 834 void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) { 835 unsigned Defs = Mask; 836 unsigned Kills = 0; 837 for (unsigned i = 0; i < StackTop; ++i) { 838 unsigned RegNo = Stack[i]; 839 if (!(Defs & (1 << RegNo))) 840 // This register is live, but we don't want it. 841 Kills |= (1 << RegNo); 842 else 843 // We don't need to imp-def this live register. 844 Defs &= ~(1 << RegNo); 845 } 846 assert((Kills & Defs) == 0 && "Register needs killing and def'ing?"); 847 848 // Produce implicit-defs for free by using killed registers. 849 while (Kills && Defs) { 850 unsigned KReg = countTrailingZeros(Kills); 851 unsigned DReg = countTrailingZeros(Defs); 852 DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n"); 853 std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]); 854 std::swap(RegMap[KReg], RegMap[DReg]); 855 Kills &= ~(1 << KReg); 856 Defs &= ~(1 << DReg); 857 } 858 859 // Kill registers by popping. 860 if (Kills && I != MBB->begin()) { 861 MachineBasicBlock::iterator I2 = std::prev(I); 862 while (StackTop) { 863 unsigned KReg = getStackEntry(0); 864 if (!(Kills & (1 << KReg))) 865 break; 866 DEBUG(dbgs() << "Popping %FP" << KReg << "\n"); 867 popStackAfter(I2); 868 Kills &= ~(1 << KReg); 869 } 870 } 871 872 // Manually kill the rest. 873 while (Kills) { 874 unsigned KReg = countTrailingZeros(Kills); 875 DEBUG(dbgs() << "Killing %FP" << KReg << "\n"); 876 freeStackSlotBefore(I, KReg); 877 Kills &= ~(1 << KReg); 878 } 879 880 // Load zeros for all the imp-defs. 881 while(Defs) { 882 unsigned DReg = countTrailingZeros(Defs); 883 DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n"); 884 BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0)); 885 pushReg(DReg); 886 Defs &= ~(1 << DReg); 887 } 888 889 // Now we should have the correct registers live. 890 DEBUG(dumpStack()); 891 assert(StackTop == countPopulation(Mask) && "Live count mismatch"); 892 } 893 894 /// shuffleStackTop - emit fxch instructions before I to shuffle the top 895 /// FixCount entries into the order given by FixStack. 896 /// FIXME: Is there a better algorithm than insertion sort? 897 void FPS::shuffleStackTop(const unsigned char *FixStack, 898 unsigned FixCount, 899 MachineBasicBlock::iterator I) { 900 // Move items into place, starting from the desired stack bottom. 901 while (FixCount--) { 902 // Old register at position FixCount. 903 unsigned OldReg = getStackEntry(FixCount); 904 // Desired register at position FixCount. 905 unsigned Reg = FixStack[FixCount]; 906 if (Reg == OldReg) 907 continue; 908 // (Reg st0) (OldReg st0) = (Reg OldReg st0) 909 moveToTop(Reg, I); 910 if (FixCount > 0) 911 moveToTop(OldReg, I); 912 } 913 DEBUG(dumpStack()); 914 } 915 916 917 //===----------------------------------------------------------------------===// 918 // Instruction transformation implementation 919 //===----------------------------------------------------------------------===// 920 921 void FPS::handleCall(MachineBasicBlock::iterator &I) { 922 unsigned STReturns = 0; 923 924 for (const auto &MO : I->operands()) { 925 if (!MO.isReg()) 926 continue; 927 928 unsigned R = MO.getReg() - X86::FP0; 929 930 if (R < 8) { 931 assert(MO.isDef() && MO.isImplicit()); 932 STReturns |= 1 << R; 933 } 934 } 935 936 unsigned N = countTrailingOnes(STReturns); 937 938 // FP registers used for function return must be consecutive starting at 939 // FP0. 940 assert(STReturns == 0 || (isMask_32(STReturns) && N <= 2)); 941 942 for (unsigned I = 0; I < N; ++I) 943 pushReg(N - I - 1); 944 } 945 946 /// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem> 947 /// 948 void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) { 949 MachineInstr *MI = I; 950 unsigned DestReg = getFPReg(MI->getOperand(0)); 951 952 // Change from the pseudo instruction to the concrete instruction. 953 MI->RemoveOperand(0); // Remove the explicit ST(0) operand 954 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode()))); 955 956 // Result gets pushed on the stack. 957 pushReg(DestReg); 958 } 959 960 /// handleOneArgFP - fst <mem>, ST(0) 961 /// 962 void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) { 963 MachineInstr *MI = I; 964 unsigned NumOps = MI->getDesc().getNumOperands(); 965 assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) && 966 "Can only handle fst* & ftst instructions!"); 967 968 // Is this the last use of the source register? 969 unsigned Reg = getFPReg(MI->getOperand(NumOps-1)); 970 bool KillsSrc = MI->killsRegister(X86::FP0+Reg); 971 972 // FISTP64m is strange because there isn't a non-popping versions. 973 // If we have one _and_ we don't want to pop the operand, duplicate the value 974 // on the stack instead of moving it. This ensure that popping the value is 975 // always ok. 976 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m. 977 // 978 if (!KillsSrc && 979 (MI->getOpcode() == X86::IST_Fp64m32 || 980 MI->getOpcode() == X86::ISTT_Fp16m32 || 981 MI->getOpcode() == X86::ISTT_Fp32m32 || 982 MI->getOpcode() == X86::ISTT_Fp64m32 || 983 MI->getOpcode() == X86::IST_Fp64m64 || 984 MI->getOpcode() == X86::ISTT_Fp16m64 || 985 MI->getOpcode() == X86::ISTT_Fp32m64 || 986 MI->getOpcode() == X86::ISTT_Fp64m64 || 987 MI->getOpcode() == X86::IST_Fp64m80 || 988 MI->getOpcode() == X86::ISTT_Fp16m80 || 989 MI->getOpcode() == X86::ISTT_Fp32m80 || 990 MI->getOpcode() == X86::ISTT_Fp64m80 || 991 MI->getOpcode() == X86::ST_FpP80m)) { 992 duplicateToTop(Reg, ScratchFPReg, I); 993 } else { 994 moveToTop(Reg, I); // Move to the top of the stack... 995 } 996 997 // Convert from the pseudo instruction to the concrete instruction. 998 MI->RemoveOperand(NumOps-1); // Remove explicit ST(0) operand 999 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode()))); 1000 1001 if (MI->getOpcode() == X86::IST_FP64m || 1002 MI->getOpcode() == X86::ISTT_FP16m || 1003 MI->getOpcode() == X86::ISTT_FP32m || 1004 MI->getOpcode() == X86::ISTT_FP64m || 1005 MI->getOpcode() == X86::ST_FP80m) { 1006 if (StackTop == 0) 1007 report_fatal_error("Stack empty??"); 1008 --StackTop; 1009 } else if (KillsSrc) { // Last use of operand? 1010 popStackAfter(I); 1011 } 1012 } 1013 1014 1015 /// handleOneArgFPRW: Handle instructions that read from the top of stack and 1016 /// replace the value with a newly computed value. These instructions may have 1017 /// non-fp operands after their FP operands. 1018 /// 1019 /// Examples: 1020 /// R1 = fchs R2 1021 /// R1 = fadd R2, [mem] 1022 /// 1023 void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) { 1024 MachineInstr *MI = I; 1025 #ifndef NDEBUG 1026 unsigned NumOps = MI->getDesc().getNumOperands(); 1027 assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!"); 1028 #endif 1029 1030 // Is this the last use of the source register? 1031 unsigned Reg = getFPReg(MI->getOperand(1)); 1032 bool KillsSrc = MI->killsRegister(X86::FP0+Reg); 1033 1034 if (KillsSrc) { 1035 // If this is the last use of the source register, just make sure it's on 1036 // the top of the stack. 1037 moveToTop(Reg, I); 1038 if (StackTop == 0) 1039 report_fatal_error("Stack cannot be empty!"); 1040 --StackTop; 1041 pushReg(getFPReg(MI->getOperand(0))); 1042 } else { 1043 // If this is not the last use of the source register, _copy_ it to the top 1044 // of the stack. 1045 duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I); 1046 } 1047 1048 // Change from the pseudo instruction to the concrete instruction. 1049 MI->RemoveOperand(1); // Drop the source operand. 1050 MI->RemoveOperand(0); // Drop the destination operand. 1051 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode()))); 1052 } 1053 1054 1055 //===----------------------------------------------------------------------===// 1056 // Define tables of various ways to map pseudo instructions 1057 // 1058 1059 // ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i) 1060 static const TableEntry ForwardST0Table[] = { 1061 { X86::ADD_Fp32 , X86::ADD_FST0r }, 1062 { X86::ADD_Fp64 , X86::ADD_FST0r }, 1063 { X86::ADD_Fp80 , X86::ADD_FST0r }, 1064 { X86::DIV_Fp32 , X86::DIV_FST0r }, 1065 { X86::DIV_Fp64 , X86::DIV_FST0r }, 1066 { X86::DIV_Fp80 , X86::DIV_FST0r }, 1067 { X86::MUL_Fp32 , X86::MUL_FST0r }, 1068 { X86::MUL_Fp64 , X86::MUL_FST0r }, 1069 { X86::MUL_Fp80 , X86::MUL_FST0r }, 1070 { X86::SUB_Fp32 , X86::SUB_FST0r }, 1071 { X86::SUB_Fp64 , X86::SUB_FST0r }, 1072 { X86::SUB_Fp80 , X86::SUB_FST0r }, 1073 }; 1074 1075 // ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0) 1076 static const TableEntry ReverseST0Table[] = { 1077 { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative 1078 { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative 1079 { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative 1080 { X86::DIV_Fp32 , X86::DIVR_FST0r }, 1081 { X86::DIV_Fp64 , X86::DIVR_FST0r }, 1082 { X86::DIV_Fp80 , X86::DIVR_FST0r }, 1083 { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative 1084 { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative 1085 { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative 1086 { X86::SUB_Fp32 , X86::SUBR_FST0r }, 1087 { X86::SUB_Fp64 , X86::SUBR_FST0r }, 1088 { X86::SUB_Fp80 , X86::SUBR_FST0r }, 1089 }; 1090 1091 // ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i) 1092 static const TableEntry ForwardSTiTable[] = { 1093 { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative 1094 { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative 1095 { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative 1096 { X86::DIV_Fp32 , X86::DIVR_FrST0 }, 1097 { X86::DIV_Fp64 , X86::DIVR_FrST0 }, 1098 { X86::DIV_Fp80 , X86::DIVR_FrST0 }, 1099 { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative 1100 { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative 1101 { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative 1102 { X86::SUB_Fp32 , X86::SUBR_FrST0 }, 1103 { X86::SUB_Fp64 , X86::SUBR_FrST0 }, 1104 { X86::SUB_Fp80 , X86::SUBR_FrST0 }, 1105 }; 1106 1107 // ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0) 1108 static const TableEntry ReverseSTiTable[] = { 1109 { X86::ADD_Fp32 , X86::ADD_FrST0 }, 1110 { X86::ADD_Fp64 , X86::ADD_FrST0 }, 1111 { X86::ADD_Fp80 , X86::ADD_FrST0 }, 1112 { X86::DIV_Fp32 , X86::DIV_FrST0 }, 1113 { X86::DIV_Fp64 , X86::DIV_FrST0 }, 1114 { X86::DIV_Fp80 , X86::DIV_FrST0 }, 1115 { X86::MUL_Fp32 , X86::MUL_FrST0 }, 1116 { X86::MUL_Fp64 , X86::MUL_FrST0 }, 1117 { X86::MUL_Fp80 , X86::MUL_FrST0 }, 1118 { X86::SUB_Fp32 , X86::SUB_FrST0 }, 1119 { X86::SUB_Fp64 , X86::SUB_FrST0 }, 1120 { X86::SUB_Fp80 , X86::SUB_FrST0 }, 1121 }; 1122 1123 1124 /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual 1125 /// instructions which need to be simplified and possibly transformed. 1126 /// 1127 /// Result: ST(0) = fsub ST(0), ST(i) 1128 /// ST(i) = fsub ST(0), ST(i) 1129 /// ST(0) = fsubr ST(0), ST(i) 1130 /// ST(i) = fsubr ST(0), ST(i) 1131 /// 1132 void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) { 1133 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table); 1134 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable); 1135 MachineInstr *MI = I; 1136 1137 unsigned NumOperands = MI->getDesc().getNumOperands(); 1138 assert(NumOperands == 3 && "Illegal TwoArgFP instruction!"); 1139 unsigned Dest = getFPReg(MI->getOperand(0)); 1140 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2)); 1141 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1)); 1142 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0); 1143 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1); 1144 DebugLoc dl = MI->getDebugLoc(); 1145 1146 unsigned TOS = getStackEntry(0); 1147 1148 // One of our operands must be on the top of the stack. If neither is yet, we 1149 // need to move one. 1150 if (Op0 != TOS && Op1 != TOS) { // No operand at TOS? 1151 // We can choose to move either operand to the top of the stack. If one of 1152 // the operands is killed by this instruction, we want that one so that we 1153 // can update right on top of the old version. 1154 if (KillsOp0) { 1155 moveToTop(Op0, I); // Move dead operand to TOS. 1156 TOS = Op0; 1157 } else if (KillsOp1) { 1158 moveToTop(Op1, I); 1159 TOS = Op1; 1160 } else { 1161 // All of the operands are live after this instruction executes, so we 1162 // cannot update on top of any operand. Because of this, we must 1163 // duplicate one of the stack elements to the top. It doesn't matter 1164 // which one we pick. 1165 // 1166 duplicateToTop(Op0, Dest, I); 1167 Op0 = TOS = Dest; 1168 KillsOp0 = true; 1169 } 1170 } else if (!KillsOp0 && !KillsOp1) { 1171 // If we DO have one of our operands at the top of the stack, but we don't 1172 // have a dead operand, we must duplicate one of the operands to a new slot 1173 // on the stack. 1174 duplicateToTop(Op0, Dest, I); 1175 Op0 = TOS = Dest; 1176 KillsOp0 = true; 1177 } 1178 1179 // Now we know that one of our operands is on the top of the stack, and at 1180 // least one of our operands is killed by this instruction. 1181 assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) && 1182 "Stack conditions not set up right!"); 1183 1184 // We decide which form to use based on what is on the top of the stack, and 1185 // which operand is killed by this instruction. 1186 ArrayRef<TableEntry> InstTable; 1187 bool isForward = TOS == Op0; 1188 bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0); 1189 if (updateST0) { 1190 if (isForward) 1191 InstTable = ForwardST0Table; 1192 else 1193 InstTable = ReverseST0Table; 1194 } else { 1195 if (isForward) 1196 InstTable = ForwardSTiTable; 1197 else 1198 InstTable = ReverseSTiTable; 1199 } 1200 1201 int Opcode = Lookup(InstTable, MI->getOpcode()); 1202 assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!"); 1203 1204 // NotTOS - The register which is not on the top of stack... 1205 unsigned NotTOS = (TOS == Op0) ? Op1 : Op0; 1206 1207 // Replace the old instruction with a new instruction 1208 MBB->remove(I++); 1209 I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS)); 1210 1211 // If both operands are killed, pop one off of the stack in addition to 1212 // overwriting the other one. 1213 if (KillsOp0 && KillsOp1 && Op0 != Op1) { 1214 assert(!updateST0 && "Should have updated other operand!"); 1215 popStackAfter(I); // Pop the top of stack 1216 } 1217 1218 // Update stack information so that we know the destination register is now on 1219 // the stack. 1220 unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS); 1221 assert(UpdatedSlot < StackTop && Dest < 7); 1222 Stack[UpdatedSlot] = Dest; 1223 RegMap[Dest] = UpdatedSlot; 1224 MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction 1225 } 1226 1227 /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP 1228 /// register arguments and no explicit destinations. 1229 /// 1230 void FPS::handleCompareFP(MachineBasicBlock::iterator &I) { 1231 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table); 1232 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable); 1233 MachineInstr *MI = I; 1234 1235 unsigned NumOperands = MI->getDesc().getNumOperands(); 1236 assert(NumOperands == 2 && "Illegal FUCOM* instruction!"); 1237 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2)); 1238 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1)); 1239 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0); 1240 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1); 1241 1242 // Make sure the first operand is on the top of stack, the other one can be 1243 // anywhere. 1244 moveToTop(Op0, I); 1245 1246 // Change from the pseudo instruction to the concrete instruction. 1247 MI->getOperand(0).setReg(getSTReg(Op1)); 1248 MI->RemoveOperand(1); 1249 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode()))); 1250 1251 // If any of the operands are killed by this instruction, free them. 1252 if (KillsOp0) freeStackSlotAfter(I, Op0); 1253 if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1); 1254 } 1255 1256 /// handleCondMovFP - Handle two address conditional move instructions. These 1257 /// instructions move a st(i) register to st(0) iff a condition is true. These 1258 /// instructions require that the first operand is at the top of the stack, but 1259 /// otherwise don't modify the stack at all. 1260 void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) { 1261 MachineInstr *MI = I; 1262 1263 unsigned Op0 = getFPReg(MI->getOperand(0)); 1264 unsigned Op1 = getFPReg(MI->getOperand(2)); 1265 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1); 1266 1267 // The first operand *must* be on the top of the stack. 1268 moveToTop(Op0, I); 1269 1270 // Change the second operand to the stack register that the operand is in. 1271 // Change from the pseudo instruction to the concrete instruction. 1272 MI->RemoveOperand(0); 1273 MI->RemoveOperand(1); 1274 MI->getOperand(0).setReg(getSTReg(Op1)); 1275 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode()))); 1276 1277 // If we kill the second operand, make sure to pop it from the stack. 1278 if (Op0 != Op1 && KillsOp1) { 1279 // Get this value off of the register stack. 1280 freeStackSlotAfter(I, Op1); 1281 } 1282 } 1283 1284 1285 /// handleSpecialFP - Handle special instructions which behave unlike other 1286 /// floating point instructions. This is primarily intended for use by pseudo 1287 /// instructions. 1288 /// 1289 void FPS::handleSpecialFP(MachineBasicBlock::iterator &Inst) { 1290 MachineInstr *MI = Inst; 1291 1292 if (MI->isCall()) { 1293 handleCall(Inst); 1294 return; 1295 } 1296 1297 switch (MI->getOpcode()) { 1298 default: llvm_unreachable("Unknown SpecialFP instruction!"); 1299 case TargetOpcode::COPY: { 1300 // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP. 1301 const MachineOperand &MO1 = MI->getOperand(1); 1302 const MachineOperand &MO0 = MI->getOperand(0); 1303 bool KillsSrc = MI->killsRegister(MO1.getReg()); 1304 1305 // FP <- FP copy. 1306 unsigned DstFP = getFPReg(MO0); 1307 unsigned SrcFP = getFPReg(MO1); 1308 assert(isLive(SrcFP) && "Cannot copy dead register"); 1309 if (KillsSrc) { 1310 // If the input operand is killed, we can just change the owner of the 1311 // incoming stack slot into the result. 1312 unsigned Slot = getSlot(SrcFP); 1313 Stack[Slot] = DstFP; 1314 RegMap[DstFP] = Slot; 1315 } else { 1316 // For COPY we just duplicate the specified value to a new stack slot. 1317 // This could be made better, but would require substantial changes. 1318 duplicateToTop(SrcFP, DstFP, Inst); 1319 } 1320 break; 1321 } 1322 1323 case TargetOpcode::IMPLICIT_DEF: { 1324 // All FP registers must be explicitly defined, so load a 0 instead. 1325 unsigned Reg = MI->getOperand(0).getReg() - X86::FP0; 1326 DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n'); 1327 BuildMI(*MBB, Inst, MI->getDebugLoc(), TII->get(X86::LD_F0)); 1328 pushReg(Reg); 1329 break; 1330 } 1331 1332 case TargetOpcode::INLINEASM: { 1333 // The inline asm MachineInstr currently only *uses* FP registers for the 1334 // 'f' constraint. These should be turned into the current ST(x) register 1335 // in the machine instr. 1336 // 1337 // There are special rules for x87 inline assembly. The compiler must know 1338 // exactly how many registers are popped and pushed implicitly by the asm. 1339 // Otherwise it is not possible to restore the stack state after the inline 1340 // asm. 1341 // 1342 // There are 3 kinds of input operands: 1343 // 1344 // 1. Popped inputs. These must appear at the stack top in ST0-STn. A 1345 // popped input operand must be in a fixed stack slot, and it is either 1346 // tied to an output operand, or in the clobber list. The MI has ST use 1347 // and def operands for these inputs. 1348 // 1349 // 2. Fixed inputs. These inputs appear in fixed stack slots, but are 1350 // preserved by the inline asm. The fixed stack slots must be STn-STm 1351 // following the popped inputs. A fixed input operand cannot be tied to 1352 // an output or appear in the clobber list. The MI has ST use operands 1353 // and no defs for these inputs. 1354 // 1355 // 3. Preserved inputs. These inputs use the "f" constraint which is 1356 // represented as an FP register. The inline asm won't change these 1357 // stack slots. 1358 // 1359 // Outputs must be in ST registers, FP outputs are not allowed. Clobbered 1360 // registers do not count as output operands. The inline asm changes the 1361 // stack as if it popped all the popped inputs and then pushed all the 1362 // output operands. 1363 1364 // Scan the assembly for ST registers used, defined and clobbered. We can 1365 // only tell clobbers from defs by looking at the asm descriptor. 1366 unsigned STUses = 0, STDefs = 0, STClobbers = 0, STDeadDefs = 0; 1367 unsigned NumOps = 0; 1368 SmallSet<unsigned, 1> FRegIdx; 1369 unsigned RCID; 1370 1371 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands(); 1372 i != e && MI->getOperand(i).isImm(); i += 1 + NumOps) { 1373 unsigned Flags = MI->getOperand(i).getImm(); 1374 1375 NumOps = InlineAsm::getNumOperandRegisters(Flags); 1376 if (NumOps != 1) 1377 continue; 1378 const MachineOperand &MO = MI->getOperand(i + 1); 1379 if (!MO.isReg()) 1380 continue; 1381 unsigned STReg = MO.getReg() - X86::FP0; 1382 if (STReg >= 8) 1383 continue; 1384 1385 // If the flag has a register class constraint, this must be an operand 1386 // with constraint "f". Record its index and continue. 1387 if (InlineAsm::hasRegClassConstraint(Flags, RCID)) { 1388 FRegIdx.insert(i + 1); 1389 continue; 1390 } 1391 1392 switch (InlineAsm::getKind(Flags)) { 1393 case InlineAsm::Kind_RegUse: 1394 STUses |= (1u << STReg); 1395 break; 1396 case InlineAsm::Kind_RegDef: 1397 case InlineAsm::Kind_RegDefEarlyClobber: 1398 STDefs |= (1u << STReg); 1399 if (MO.isDead()) 1400 STDeadDefs |= (1u << STReg); 1401 break; 1402 case InlineAsm::Kind_Clobber: 1403 STClobbers |= (1u << STReg); 1404 break; 1405 default: 1406 break; 1407 } 1408 } 1409 1410 if (STUses && !isMask_32(STUses)) 1411 MI->emitError("fixed input regs must be last on the x87 stack"); 1412 unsigned NumSTUses = countTrailingOnes(STUses); 1413 1414 // Defs must be contiguous from the stack top. ST0-STn. 1415 if (STDefs && !isMask_32(STDefs)) { 1416 MI->emitError("output regs must be last on the x87 stack"); 1417 STDefs = NextPowerOf2(STDefs) - 1; 1418 } 1419 unsigned NumSTDefs = countTrailingOnes(STDefs); 1420 1421 // So must the clobbered stack slots. ST0-STm, m >= n. 1422 if (STClobbers && !isMask_32(STDefs | STClobbers)) 1423 MI->emitError("clobbers must be last on the x87 stack"); 1424 1425 // Popped inputs are the ones that are also clobbered or defined. 1426 unsigned STPopped = STUses & (STDefs | STClobbers); 1427 if (STPopped && !isMask_32(STPopped)) 1428 MI->emitError("implicitly popped regs must be last on the x87 stack"); 1429 unsigned NumSTPopped = countTrailingOnes(STPopped); 1430 1431 DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops " 1432 << NumSTPopped << ", and defines " << NumSTDefs << " regs.\n"); 1433 1434 #ifndef NDEBUG 1435 // If any input operand uses constraint "f", all output register 1436 // constraints must be early-clobber defs. 1437 for (unsigned I = 0, E = MI->getNumOperands(); I < E; ++I) 1438 if (FRegIdx.count(I)) { 1439 assert((1 << getFPReg(MI->getOperand(I)) & STDefs) == 0 && 1440 "Operands with constraint \"f\" cannot overlap with defs"); 1441 } 1442 #endif 1443 1444 // Collect all FP registers (register operands with constraints "t", "u", 1445 // and "f") to kill afer the instruction. 1446 unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff; 1447 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1448 MachineOperand &Op = MI->getOperand(i); 1449 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6) 1450 continue; 1451 unsigned FPReg = getFPReg(Op); 1452 1453 // If we kill this operand, make sure to pop it from the stack after the 1454 // asm. We just remember it for now, and pop them all off at the end in 1455 // a batch. 1456 if (Op.isUse() && Op.isKill()) 1457 FPKills |= 1U << FPReg; 1458 } 1459 1460 // Do not include registers that are implicitly popped by defs/clobbers. 1461 FPKills &= ~(STDefs | STClobbers); 1462 1463 // Now we can rearrange the live registers to match what was requested. 1464 unsigned char STUsesArray[8]; 1465 1466 for (unsigned I = 0; I < NumSTUses; ++I) 1467 STUsesArray[I] = I; 1468 1469 shuffleStackTop(STUsesArray, NumSTUses, Inst); 1470 DEBUG({dbgs() << "Before asm: "; dumpStack();}); 1471 1472 // With the stack layout fixed, rewrite the FP registers. 1473 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1474 MachineOperand &Op = MI->getOperand(i); 1475 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6) 1476 continue; 1477 1478 unsigned FPReg = getFPReg(Op); 1479 1480 if (FRegIdx.count(i)) 1481 // Operand with constraint "f". 1482 Op.setReg(getSTReg(FPReg)); 1483 else 1484 // Operand with a single register class constraint ("t" or "u"). 1485 Op.setReg(X86::ST0 + FPReg); 1486 } 1487 1488 // Simulate the inline asm popping its inputs and pushing its outputs. 1489 StackTop -= NumSTPopped; 1490 1491 for (unsigned i = 0; i < NumSTDefs; ++i) 1492 pushReg(NumSTDefs - i - 1); 1493 1494 // If this asm kills any FP registers (is the last use of them) we must 1495 // explicitly emit pop instructions for them. Do this now after the asm has 1496 // executed so that the ST(x) numbers are not off (which would happen if we 1497 // did this inline with operand rewriting). 1498 // 1499 // Note: this might be a non-optimal pop sequence. We might be able to do 1500 // better by trying to pop in stack order or something. 1501 while (FPKills) { 1502 unsigned FPReg = countTrailingZeros(FPKills); 1503 if (isLive(FPReg)) 1504 freeStackSlotAfter(Inst, FPReg); 1505 FPKills &= ~(1U << FPReg); 1506 } 1507 1508 // Don't delete the inline asm! 1509 return; 1510 } 1511 1512 case X86::RETQ: 1513 case X86::RETL: 1514 case X86::RETIL: 1515 case X86::RETIQ: 1516 // If RET has an FP register use operand, pass the first one in ST(0) and 1517 // the second one in ST(1). 1518 1519 // Find the register operands. 1520 unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U; 1521 unsigned LiveMask = 0; 1522 1523 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1524 MachineOperand &Op = MI->getOperand(i); 1525 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6) 1526 continue; 1527 // FP Register uses must be kills unless there are two uses of the same 1528 // register, in which case only one will be a kill. 1529 assert(Op.isUse() && 1530 (Op.isKill() || // Marked kill. 1531 getFPReg(Op) == FirstFPRegOp || // Second instance. 1532 MI->killsRegister(Op.getReg())) && // Later use is marked kill. 1533 "Ret only defs operands, and values aren't live beyond it"); 1534 1535 if (FirstFPRegOp == ~0U) 1536 FirstFPRegOp = getFPReg(Op); 1537 else { 1538 assert(SecondFPRegOp == ~0U && "More than two fp operands!"); 1539 SecondFPRegOp = getFPReg(Op); 1540 } 1541 LiveMask |= (1 << getFPReg(Op)); 1542 1543 // Remove the operand so that later passes don't see it. 1544 MI->RemoveOperand(i); 1545 --i, --e; 1546 } 1547 1548 // We may have been carrying spurious live-ins, so make sure only the returned 1549 // registers are left live. 1550 adjustLiveRegs(LiveMask, MI); 1551 if (!LiveMask) return; // Quick check to see if any are possible. 1552 1553 // There are only four possibilities here: 1554 // 1) we are returning a single FP value. In this case, it has to be in 1555 // ST(0) already, so just declare success by removing the value from the 1556 // FP Stack. 1557 if (SecondFPRegOp == ~0U) { 1558 // Assert that the top of stack contains the right FP register. 1559 assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) && 1560 "Top of stack not the right register for RET!"); 1561 1562 // Ok, everything is good, mark the value as not being on the stack 1563 // anymore so that our assertion about the stack being empty at end of 1564 // block doesn't fire. 1565 StackTop = 0; 1566 return; 1567 } 1568 1569 // Otherwise, we are returning two values: 1570 // 2) If returning the same value for both, we only have one thing in the FP 1571 // stack. Consider: RET FP1, FP1 1572 if (StackTop == 1) { 1573 assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&& 1574 "Stack misconfiguration for RET!"); 1575 1576 // Duplicate the TOS so that we return it twice. Just pick some other FPx 1577 // register to hold it. 1578 unsigned NewReg = ScratchFPReg; 1579 duplicateToTop(FirstFPRegOp, NewReg, MI); 1580 FirstFPRegOp = NewReg; 1581 } 1582 1583 /// Okay we know we have two different FPx operands now: 1584 assert(StackTop == 2 && "Must have two values live!"); 1585 1586 /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently 1587 /// in ST(1). In this case, emit an fxch. 1588 if (getStackEntry(0) == SecondFPRegOp) { 1589 assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live"); 1590 moveToTop(FirstFPRegOp, MI); 1591 } 1592 1593 /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in 1594 /// ST(1). Just remove both from our understanding of the stack and return. 1595 assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live"); 1596 assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live"); 1597 StackTop = 0; 1598 return; 1599 } 1600 1601 Inst = MBB->erase(Inst); // Remove the pseudo instruction 1602 1603 // We want to leave I pointing to the previous instruction, but what if we 1604 // just erased the first instruction? 1605 if (Inst == MBB->begin()) { 1606 DEBUG(dbgs() << "Inserting dummy KILL\n"); 1607 Inst = BuildMI(*MBB, Inst, DebugLoc(), TII->get(TargetOpcode::KILL)); 1608 } else 1609 --Inst; 1610 } 1611 1612 void FPS::setKillFlags(MachineBasicBlock &MBB) const { 1613 const TargetRegisterInfo *TRI = 1614 MBB.getParent()->getSubtarget().getRegisterInfo(); 1615 LivePhysRegs LPR(TRI); 1616 1617 LPR.addLiveOuts(&MBB); 1618 1619 for (MachineBasicBlock::reverse_iterator I = MBB.rbegin(), E = MBB.rend(); 1620 I != E; ++I) { 1621 if (I->isDebugValue()) 1622 continue; 1623 1624 std::bitset<8> Defs; 1625 SmallVector<MachineOperand *, 2> Uses; 1626 MachineInstr &MI = *I; 1627 1628 for (auto &MO : I->operands()) { 1629 if (!MO.isReg()) 1630 continue; 1631 1632 unsigned Reg = MO.getReg() - X86::FP0; 1633 1634 if (Reg >= 8) 1635 continue; 1636 1637 if (MO.isDef()) { 1638 Defs.set(Reg); 1639 if (!LPR.contains(MO.getReg())) 1640 MO.setIsDead(); 1641 } else 1642 Uses.push_back(&MO); 1643 } 1644 1645 for (auto *MO : Uses) 1646 if (Defs.test(getFPReg(*MO)) || !LPR.contains(MO->getReg())) 1647 MO->setIsKill(); 1648 1649 LPR.stepBackward(MI); 1650 } 1651 } 1652