Home | History | Annotate | Download | only in X86
      1 //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the pass which converts floating point instructions from
     11 // pseudo registers into register stack instructions.  This pass uses live
     12 // variable information to indicate where the FPn registers are used and their
     13 // lifetimes.
     14 //
     15 // The x87 hardware tracks liveness of the stack registers, so it is necessary
     16 // to implement exact liveness tracking between basic blocks. The CFG edges are
     17 // partitioned into bundles where the same FP registers must be live in
     18 // identical stack positions. Instructions are inserted at the end of each basic
     19 // block to rearrange the live registers to match the outgoing bundle.
     20 //
     21 // This approach avoids splitting critical edges at the potential cost of more
     22 // live register shuffling instructions when critical edges are present.
     23 //
     24 //===----------------------------------------------------------------------===//
     25 
     26 #include "X86.h"
     27 #include "X86InstrInfo.h"
     28 #include "llvm/ADT/DepthFirstIterator.h"
     29 #include "llvm/ADT/STLExtras.h"
     30 #include "llvm/ADT/SmallPtrSet.h"
     31 #include "llvm/ADT/SmallSet.h"
     32 #include "llvm/ADT/SmallVector.h"
     33 #include "llvm/ADT/Statistic.h"
     34 #include "llvm/CodeGen/EdgeBundles.h"
     35 #include "llvm/CodeGen/LivePhysRegs.h"
     36 #include "llvm/CodeGen/MachineFunctionPass.h"
     37 #include "llvm/CodeGen/MachineInstrBuilder.h"
     38 #include "llvm/CodeGen/MachineRegisterInfo.h"
     39 #include "llvm/CodeGen/Passes.h"
     40 #include "llvm/IR/InlineAsm.h"
     41 #include "llvm/Support/Debug.h"
     42 #include "llvm/Support/ErrorHandling.h"
     43 #include "llvm/Support/raw_ostream.h"
     44 #include "llvm/Target/TargetInstrInfo.h"
     45 #include "llvm/Target/TargetMachine.h"
     46 #include "llvm/Target/TargetSubtargetInfo.h"
     47 #include <algorithm>
     48 #include <bitset>
     49 using namespace llvm;
     50 
     51 #define DEBUG_TYPE "x86-codegen"
     52 
     53 STATISTIC(NumFXCH, "Number of fxch instructions inserted");
     54 STATISTIC(NumFP  , "Number of floating point instructions");
     55 
     56 namespace {
     57   const unsigned ScratchFPReg = 7;
     58 
     59   struct FPS : public MachineFunctionPass {
     60     static char ID;
     61     FPS() : MachineFunctionPass(ID) {
     62       initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
     63       // This is really only to keep valgrind quiet.
     64       // The logic in isLive() is too much for it.
     65       memset(Stack, 0, sizeof(Stack));
     66       memset(RegMap, 0, sizeof(RegMap));
     67     }
     68 
     69     void getAnalysisUsage(AnalysisUsage &AU) const override {
     70       AU.setPreservesCFG();
     71       AU.addRequired<EdgeBundles>();
     72       AU.addPreservedID(MachineLoopInfoID);
     73       AU.addPreservedID(MachineDominatorsID);
     74       MachineFunctionPass::getAnalysisUsage(AU);
     75     }
     76 
     77     bool runOnMachineFunction(MachineFunction &MF) override;
     78 
     79     const char *getPassName() const override { return "X86 FP Stackifier"; }
     80 
     81   private:
     82     const TargetInstrInfo *TII; // Machine instruction info.
     83 
     84     // Two CFG edges are related if they leave the same block, or enter the same
     85     // block. The transitive closure of an edge under this relation is a
     86     // LiveBundle. It represents a set of CFG edges where the live FP stack
     87     // registers must be allocated identically in the x87 stack.
     88     //
     89     // A LiveBundle is usually all the edges leaving a block, or all the edges
     90     // entering a block, but it can contain more edges if critical edges are
     91     // present.
     92     //
     93     // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
     94     // but the exact mapping of FP registers to stack slots is fixed later.
     95     struct LiveBundle {
     96       // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
     97       unsigned Mask;
     98 
     99       // Number of pre-assigned live registers in FixStack. This is 0 when the
    100       // stack order has not yet been fixed.
    101       unsigned FixCount;
    102 
    103       // Assigned stack order for live-in registers.
    104       // FixStack[i] == getStackEntry(i) for all i < FixCount.
    105       unsigned char FixStack[8];
    106 
    107       LiveBundle() : Mask(0), FixCount(0) {}
    108 
    109       // Have the live registers been assigned a stack order yet?
    110       bool isFixed() const { return !Mask || FixCount; }
    111     };
    112 
    113     // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
    114     // with no live FP registers.
    115     SmallVector<LiveBundle, 8> LiveBundles;
    116 
    117     // The edge bundle analysis provides indices into the LiveBundles vector.
    118     EdgeBundles *Bundles;
    119 
    120     // Return a bitmask of FP registers in block's live-in list.
    121     static unsigned calcLiveInMask(MachineBasicBlock *MBB) {
    122       unsigned Mask = 0;
    123       for (const auto &LI : MBB->liveins()) {
    124         if (LI.PhysReg < X86::FP0 || LI.PhysReg > X86::FP6)
    125           continue;
    126         Mask |= 1 << (LI.PhysReg - X86::FP0);
    127       }
    128       return Mask;
    129     }
    130 
    131     // Partition all the CFG edges into LiveBundles.
    132     void bundleCFG(MachineFunction &MF);
    133 
    134     MachineBasicBlock *MBB;     // Current basic block
    135 
    136     // The hardware keeps track of how many FP registers are live, so we have
    137     // to model that exactly. Usually, each live register corresponds to an
    138     // FP<n> register, but when dealing with calls, returns, and inline
    139     // assembly, it is sometimes necessary to have live scratch registers.
    140     unsigned Stack[8];          // FP<n> Registers in each stack slot...
    141     unsigned StackTop;          // The current top of the FP stack.
    142 
    143     enum {
    144       NumFPRegs = 8             // Including scratch pseudo-registers.
    145     };
    146 
    147     // For each live FP<n> register, point to its Stack[] entry.
    148     // The first entries correspond to FP0-FP6, the rest are scratch registers
    149     // used when we need slightly different live registers than what the
    150     // register allocator thinks.
    151     unsigned RegMap[NumFPRegs];
    152 
    153     // Set up our stack model to match the incoming registers to MBB.
    154     void setupBlockStack();
    155 
    156     // Shuffle live registers to match the expectations of successor blocks.
    157     void finishBlockStack();
    158 
    159 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    160     void dumpStack() const {
    161       dbgs() << "Stack contents:";
    162       for (unsigned i = 0; i != StackTop; ++i) {
    163         dbgs() << " FP" << Stack[i];
    164         assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
    165       }
    166     }
    167 #endif
    168 
    169     /// getSlot - Return the stack slot number a particular register number is
    170     /// in.
    171     unsigned getSlot(unsigned RegNo) const {
    172       assert(RegNo < NumFPRegs && "Regno out of range!");
    173       return RegMap[RegNo];
    174     }
    175 
    176     /// isLive - Is RegNo currently live in the stack?
    177     bool isLive(unsigned RegNo) const {
    178       unsigned Slot = getSlot(RegNo);
    179       return Slot < StackTop && Stack[Slot] == RegNo;
    180     }
    181 
    182     /// getStackEntry - Return the X86::FP<n> register in register ST(i).
    183     unsigned getStackEntry(unsigned STi) const {
    184       if (STi >= StackTop)
    185         report_fatal_error("Access past stack top!");
    186       return Stack[StackTop-1-STi];
    187     }
    188 
    189     /// getSTReg - Return the X86::ST(i) register which contains the specified
    190     /// FP<RegNo> register.
    191     unsigned getSTReg(unsigned RegNo) const {
    192       return StackTop - 1 - getSlot(RegNo) + X86::ST0;
    193     }
    194 
    195     // pushReg - Push the specified FP<n> register onto the stack.
    196     void pushReg(unsigned Reg) {
    197       assert(Reg < NumFPRegs && "Register number out of range!");
    198       if (StackTop >= 8)
    199         report_fatal_error("Stack overflow!");
    200       Stack[StackTop] = Reg;
    201       RegMap[Reg] = StackTop++;
    202     }
    203 
    204     bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
    205     void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
    206       DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
    207       if (isAtTop(RegNo)) return;
    208 
    209       unsigned STReg = getSTReg(RegNo);
    210       unsigned RegOnTop = getStackEntry(0);
    211 
    212       // Swap the slots the regs are in.
    213       std::swap(RegMap[RegNo], RegMap[RegOnTop]);
    214 
    215       // Swap stack slot contents.
    216       if (RegMap[RegOnTop] >= StackTop)
    217         report_fatal_error("Access past stack top!");
    218       std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
    219 
    220       // Emit an fxch to update the runtime processors version of the state.
    221       BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
    222       ++NumFXCH;
    223     }
    224 
    225     void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
    226       DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
    227       unsigned STReg = getSTReg(RegNo);
    228       pushReg(AsReg);   // New register on top of stack
    229 
    230       BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
    231     }
    232 
    233     /// popStackAfter - Pop the current value off of the top of the FP stack
    234     /// after the specified instruction.
    235     void popStackAfter(MachineBasicBlock::iterator &I);
    236 
    237     /// freeStackSlotAfter - Free the specified register from the register
    238     /// stack, so that it is no longer in a register.  If the register is
    239     /// currently at the top of the stack, we just pop the current instruction,
    240     /// otherwise we store the current top-of-stack into the specified slot,
    241     /// then pop the top of stack.
    242     void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
    243 
    244     /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
    245     /// instruction.
    246     MachineBasicBlock::iterator
    247     freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
    248 
    249     /// Adjust the live registers to be the set in Mask.
    250     void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
    251 
    252     /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is
    253     /// st(0), FP reg FixStack[1] is st(1) etc.
    254     void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
    255                          MachineBasicBlock::iterator I);
    256 
    257     bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
    258 
    259     void handleCall(MachineBasicBlock::iterator &I);
    260     void handleZeroArgFP(MachineBasicBlock::iterator &I);
    261     void handleOneArgFP(MachineBasicBlock::iterator &I);
    262     void handleOneArgFPRW(MachineBasicBlock::iterator &I);
    263     void handleTwoArgFP(MachineBasicBlock::iterator &I);
    264     void handleCompareFP(MachineBasicBlock::iterator &I);
    265     void handleCondMovFP(MachineBasicBlock::iterator &I);
    266     void handleSpecialFP(MachineBasicBlock::iterator &I);
    267 
    268     // Check if a COPY instruction is using FP registers.
    269     static bool isFPCopy(MachineInstr *MI) {
    270       unsigned DstReg = MI->getOperand(0).getReg();
    271       unsigned SrcReg = MI->getOperand(1).getReg();
    272 
    273       return X86::RFP80RegClass.contains(DstReg) ||
    274         X86::RFP80RegClass.contains(SrcReg);
    275     }
    276 
    277     void setKillFlags(MachineBasicBlock &MBB) const;
    278   };
    279   char FPS::ID = 0;
    280 }
    281 
    282 FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
    283 
    284 /// getFPReg - Return the X86::FPx register number for the specified operand.
    285 /// For example, this returns 3 for X86::FP3.
    286 static unsigned getFPReg(const MachineOperand &MO) {
    287   assert(MO.isReg() && "Expected an FP register!");
    288   unsigned Reg = MO.getReg();
    289   assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
    290   return Reg - X86::FP0;
    291 }
    292 
    293 /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
    294 /// register references into FP stack references.
    295 ///
    296 bool FPS::runOnMachineFunction(MachineFunction &MF) {
    297   // We only need to run this pass if there are any FP registers used in this
    298   // function.  If it is all integer, there is nothing for us to do!
    299   bool FPIsUsed = false;
    300 
    301   static_assert(X86::FP6 == X86::FP0+6, "Register enums aren't sorted right!");
    302   const MachineRegisterInfo &MRI = MF.getRegInfo();
    303   for (unsigned i = 0; i <= 6; ++i)
    304     if (!MRI.reg_nodbg_empty(X86::FP0 + i)) {
    305       FPIsUsed = true;
    306       break;
    307     }
    308 
    309   // Early exit.
    310   if (!FPIsUsed) return false;
    311 
    312   Bundles = &getAnalysis<EdgeBundles>();
    313   TII = MF.getSubtarget().getInstrInfo();
    314 
    315   // Prepare cross-MBB liveness.
    316   bundleCFG(MF);
    317 
    318   StackTop = 0;
    319 
    320   // Process the function in depth first order so that we process at least one
    321   // of the predecessors for every reachable block in the function.
    322   SmallPtrSet<MachineBasicBlock*, 8> Processed;
    323   MachineBasicBlock *Entry = &MF.front();
    324 
    325   bool Changed = false;
    326   for (MachineBasicBlock *BB : depth_first_ext(Entry, Processed))
    327     Changed |= processBasicBlock(MF, *BB);
    328 
    329   // Process any unreachable blocks in arbitrary order now.
    330   if (MF.size() != Processed.size())
    331     for (MachineBasicBlock &BB : MF)
    332       if (Processed.insert(&BB).second)
    333         Changed |= processBasicBlock(MF, BB);
    334 
    335   LiveBundles.clear();
    336 
    337   return Changed;
    338 }
    339 
    340 /// bundleCFG - Scan all the basic blocks to determine consistent live-in and
    341 /// live-out sets for the FP registers. Consistent means that the set of
    342 /// registers live-out from a block is identical to the live-in set of all
    343 /// successors. This is not enforced by the normal live-in lists since
    344 /// registers may be implicitly defined, or not used by all successors.
    345 void FPS::bundleCFG(MachineFunction &MF) {
    346   assert(LiveBundles.empty() && "Stale data in LiveBundles");
    347   LiveBundles.resize(Bundles->getNumBundles());
    348 
    349   // Gather the actual live-in masks for all MBBs.
    350   for (MachineBasicBlock &MBB : MF) {
    351     const unsigned Mask = calcLiveInMask(&MBB);
    352     if (!Mask)
    353       continue;
    354     // Update MBB ingoing bundle mask.
    355     LiveBundles[Bundles->getBundle(MBB.getNumber(), false)].Mask |= Mask;
    356   }
    357 }
    358 
    359 /// processBasicBlock - Loop over all of the instructions in the basic block,
    360 /// transforming FP instructions into their stack form.
    361 ///
    362 bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
    363   bool Changed = false;
    364   MBB = &BB;
    365 
    366   setKillFlags(BB);
    367   setupBlockStack();
    368 
    369   for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
    370     MachineInstr *MI = I;
    371     uint64_t Flags = MI->getDesc().TSFlags;
    372 
    373     unsigned FPInstClass = Flags & X86II::FPTypeMask;
    374     if (MI->isInlineAsm())
    375       FPInstClass = X86II::SpecialFP;
    376 
    377     if (MI->isCopy() && isFPCopy(MI))
    378       FPInstClass = X86II::SpecialFP;
    379 
    380     if (MI->isImplicitDef() &&
    381         X86::RFP80RegClass.contains(MI->getOperand(0).getReg()))
    382       FPInstClass = X86II::SpecialFP;
    383 
    384     if (MI->isCall())
    385       FPInstClass = X86II::SpecialFP;
    386 
    387     if (FPInstClass == X86II::NotFP)
    388       continue;  // Efficiently ignore non-fp insts!
    389 
    390     MachineInstr *PrevMI = nullptr;
    391     if (I != BB.begin())
    392       PrevMI = std::prev(I);
    393 
    394     ++NumFP;  // Keep track of # of pseudo instrs
    395     DEBUG(dbgs() << "\nFPInst:\t" << *MI);
    396 
    397     // Get dead variables list now because the MI pointer may be deleted as part
    398     // of processing!
    399     SmallVector<unsigned, 8> DeadRegs;
    400     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    401       const MachineOperand &MO = MI->getOperand(i);
    402       if (MO.isReg() && MO.isDead())
    403         DeadRegs.push_back(MO.getReg());
    404     }
    405 
    406     switch (FPInstClass) {
    407     case X86II::ZeroArgFP:  handleZeroArgFP(I); break;
    408     case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0)
    409     case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
    410     case X86II::TwoArgFP:   handleTwoArgFP(I);  break;
    411     case X86II::CompareFP:  handleCompareFP(I); break;
    412     case X86II::CondMovFP:  handleCondMovFP(I); break;
    413     case X86II::SpecialFP:  handleSpecialFP(I); break;
    414     default: llvm_unreachable("Unknown FP Type!");
    415     }
    416 
    417     // Check to see if any of the values defined by this instruction are dead
    418     // after definition.  If so, pop them.
    419     for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
    420       unsigned Reg = DeadRegs[i];
    421       // Check if Reg is live on the stack. An inline-asm register operand that
    422       // is in the clobber list and marked dead might not be live on the stack.
    423       if (Reg >= X86::FP0 && Reg <= X86::FP6 && isLive(Reg-X86::FP0)) {
    424         DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
    425         freeStackSlotAfter(I, Reg-X86::FP0);
    426       }
    427     }
    428 
    429     // Print out all of the instructions expanded to if -debug
    430     DEBUG(
    431       MachineBasicBlock::iterator PrevI(PrevMI);
    432       if (I == PrevI) {
    433         dbgs() << "Just deleted pseudo instruction\n";
    434       } else {
    435         MachineBasicBlock::iterator Start = I;
    436         // Rewind to first instruction newly inserted.
    437         while (Start != BB.begin() && std::prev(Start) != PrevI) --Start;
    438         dbgs() << "Inserted instructions:\n\t";
    439         Start->print(dbgs());
    440         while (++Start != std::next(I)) {}
    441       }
    442       dumpStack();
    443     );
    444     (void)PrevMI;
    445 
    446     Changed = true;
    447   }
    448 
    449   finishBlockStack();
    450 
    451   return Changed;
    452 }
    453 
    454 /// setupBlockStack - Use the live bundles to set up our model of the stack
    455 /// to match predecessors' live out stack.
    456 void FPS::setupBlockStack() {
    457   DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber()
    458                << " derived from " << MBB->getName() << ".\n");
    459   StackTop = 0;
    460   // Get the live-in bundle for MBB.
    461   const LiveBundle &Bundle =
    462     LiveBundles[Bundles->getBundle(MBB->getNumber(), false)];
    463 
    464   if (!Bundle.Mask) {
    465     DEBUG(dbgs() << "Block has no FP live-ins.\n");
    466     return;
    467   }
    468 
    469   // Depth-first iteration should ensure that we always have an assigned stack.
    470   assert(Bundle.isFixed() && "Reached block before any predecessors");
    471 
    472   // Push the fixed live-in registers.
    473   for (unsigned i = Bundle.FixCount; i > 0; --i) {
    474     MBB->addLiveIn(X86::ST0+i-1);
    475     DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP"
    476                  << unsigned(Bundle.FixStack[i-1]) << '\n');
    477     pushReg(Bundle.FixStack[i-1]);
    478   }
    479 
    480   // Kill off unwanted live-ins. This can happen with a critical edge.
    481   // FIXME: We could keep these live registers around as zombies. They may need
    482   // to be revived at the end of a short block. It might save a few instrs.
    483   adjustLiveRegs(calcLiveInMask(MBB), MBB->begin());
    484   DEBUG(MBB->dump());
    485 }
    486 
    487 /// finishBlockStack - Revive live-outs that are implicitly defined out of
    488 /// MBB. Shuffle live registers to match the expected fixed stack of any
    489 /// predecessors, and ensure that all predecessors are expecting the same
    490 /// stack.
    491 void FPS::finishBlockStack() {
    492   // The RET handling below takes care of return blocks for us.
    493   if (MBB->succ_empty())
    494     return;
    495 
    496   DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber()
    497                << " derived from " << MBB->getName() << ".\n");
    498 
    499   // Get MBB's live-out bundle.
    500   unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true);
    501   LiveBundle &Bundle = LiveBundles[BundleIdx];
    502 
    503   // We may need to kill and define some registers to match successors.
    504   // FIXME: This can probably be combined with the shuffle below.
    505   MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
    506   adjustLiveRegs(Bundle.Mask, Term);
    507 
    508   if (!Bundle.Mask) {
    509     DEBUG(dbgs() << "No live-outs.\n");
    510     return;
    511   }
    512 
    513   // Has the stack order been fixed yet?
    514   DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
    515   if (Bundle.isFixed()) {
    516     DEBUG(dbgs() << "Shuffling stack to match.\n");
    517     shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
    518   } else {
    519     // Not fixed yet, we get to choose.
    520     DEBUG(dbgs() << "Fixing stack order now.\n");
    521     Bundle.FixCount = StackTop;
    522     for (unsigned i = 0; i < StackTop; ++i)
    523       Bundle.FixStack[i] = getStackEntry(i);
    524   }
    525 }
    526 
    527 
    528 //===----------------------------------------------------------------------===//
    529 // Efficient Lookup Table Support
    530 //===----------------------------------------------------------------------===//
    531 
    532 namespace {
    533   struct TableEntry {
    534     uint16_t from;
    535     uint16_t to;
    536     bool operator<(const TableEntry &TE) const { return from < TE.from; }
    537     friend bool operator<(const TableEntry &TE, unsigned V) {
    538       return TE.from < V;
    539     }
    540     friend bool LLVM_ATTRIBUTE_UNUSED operator<(unsigned V,
    541                                                 const TableEntry &TE) {
    542       return V < TE.from;
    543     }
    544   };
    545 }
    546 
    547 static int Lookup(ArrayRef<TableEntry> Table, unsigned Opcode) {
    548   const TableEntry *I = std::lower_bound(Table.begin(), Table.end(), Opcode);
    549   if (I != Table.end() && I->from == Opcode)
    550     return I->to;
    551   return -1;
    552 }
    553 
    554 #ifdef NDEBUG
    555 #define ASSERT_SORTED(TABLE)
    556 #else
    557 #define ASSERT_SORTED(TABLE)                                              \
    558   { static bool TABLE##Checked = false;                                   \
    559     if (!TABLE##Checked) {                                                \
    560        assert(std::is_sorted(std::begin(TABLE), std::end(TABLE)) &&       \
    561               "All lookup tables must be sorted for efficient access!");  \
    562        TABLE##Checked = true;                                             \
    563     }                                                                     \
    564   }
    565 #endif
    566 
    567 //===----------------------------------------------------------------------===//
    568 // Register File -> Register Stack Mapping Methods
    569 //===----------------------------------------------------------------------===//
    570 
    571 // OpcodeTable - Sorted map of register instructions to their stack version.
    572 // The first element is an register file pseudo instruction, the second is the
    573 // concrete X86 instruction which uses the register stack.
    574 //
    575 static const TableEntry OpcodeTable[] = {
    576   { X86::ABS_Fp32     , X86::ABS_F     },
    577   { X86::ABS_Fp64     , X86::ABS_F     },
    578   { X86::ABS_Fp80     , X86::ABS_F     },
    579   { X86::ADD_Fp32m    , X86::ADD_F32m  },
    580   { X86::ADD_Fp64m    , X86::ADD_F64m  },
    581   { X86::ADD_Fp64m32  , X86::ADD_F32m  },
    582   { X86::ADD_Fp80m32  , X86::ADD_F32m  },
    583   { X86::ADD_Fp80m64  , X86::ADD_F64m  },
    584   { X86::ADD_FpI16m32 , X86::ADD_FI16m },
    585   { X86::ADD_FpI16m64 , X86::ADD_FI16m },
    586   { X86::ADD_FpI16m80 , X86::ADD_FI16m },
    587   { X86::ADD_FpI32m32 , X86::ADD_FI32m },
    588   { X86::ADD_FpI32m64 , X86::ADD_FI32m },
    589   { X86::ADD_FpI32m80 , X86::ADD_FI32m },
    590   { X86::CHS_Fp32     , X86::CHS_F     },
    591   { X86::CHS_Fp64     , X86::CHS_F     },
    592   { X86::CHS_Fp80     , X86::CHS_F     },
    593   { X86::CMOVBE_Fp32  , X86::CMOVBE_F  },
    594   { X86::CMOVBE_Fp64  , X86::CMOVBE_F  },
    595   { X86::CMOVBE_Fp80  , X86::CMOVBE_F  },
    596   { X86::CMOVB_Fp32   , X86::CMOVB_F   },
    597   { X86::CMOVB_Fp64   , X86::CMOVB_F  },
    598   { X86::CMOVB_Fp80   , X86::CMOVB_F  },
    599   { X86::CMOVE_Fp32   , X86::CMOVE_F  },
    600   { X86::CMOVE_Fp64   , X86::CMOVE_F   },
    601   { X86::CMOVE_Fp80   , X86::CMOVE_F   },
    602   { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
    603   { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
    604   { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
    605   { X86::CMOVNB_Fp32  , X86::CMOVNB_F  },
    606   { X86::CMOVNB_Fp64  , X86::CMOVNB_F  },
    607   { X86::CMOVNB_Fp80  , X86::CMOVNB_F  },
    608   { X86::CMOVNE_Fp32  , X86::CMOVNE_F  },
    609   { X86::CMOVNE_Fp64  , X86::CMOVNE_F  },
    610   { X86::CMOVNE_Fp80  , X86::CMOVNE_F  },
    611   { X86::CMOVNP_Fp32  , X86::CMOVNP_F  },
    612   { X86::CMOVNP_Fp64  , X86::CMOVNP_F  },
    613   { X86::CMOVNP_Fp80  , X86::CMOVNP_F  },
    614   { X86::CMOVP_Fp32   , X86::CMOVP_F   },
    615   { X86::CMOVP_Fp64   , X86::CMOVP_F   },
    616   { X86::CMOVP_Fp80   , X86::CMOVP_F   },
    617   { X86::COS_Fp32     , X86::COS_F     },
    618   { X86::COS_Fp64     , X86::COS_F     },
    619   { X86::COS_Fp80     , X86::COS_F     },
    620   { X86::DIVR_Fp32m   , X86::DIVR_F32m },
    621   { X86::DIVR_Fp64m   , X86::DIVR_F64m },
    622   { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
    623   { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
    624   { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
    625   { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
    626   { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
    627   { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
    628   { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
    629   { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
    630   { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
    631   { X86::DIV_Fp32m    , X86::DIV_F32m  },
    632   { X86::DIV_Fp64m    , X86::DIV_F64m  },
    633   { X86::DIV_Fp64m32  , X86::DIV_F32m  },
    634   { X86::DIV_Fp80m32  , X86::DIV_F32m  },
    635   { X86::DIV_Fp80m64  , X86::DIV_F64m  },
    636   { X86::DIV_FpI16m32 , X86::DIV_FI16m },
    637   { X86::DIV_FpI16m64 , X86::DIV_FI16m },
    638   { X86::DIV_FpI16m80 , X86::DIV_FI16m },
    639   { X86::DIV_FpI32m32 , X86::DIV_FI32m },
    640   { X86::DIV_FpI32m64 , X86::DIV_FI32m },
    641   { X86::DIV_FpI32m80 , X86::DIV_FI32m },
    642   { X86::ILD_Fp16m32  , X86::ILD_F16m  },
    643   { X86::ILD_Fp16m64  , X86::ILD_F16m  },
    644   { X86::ILD_Fp16m80  , X86::ILD_F16m  },
    645   { X86::ILD_Fp32m32  , X86::ILD_F32m  },
    646   { X86::ILD_Fp32m64  , X86::ILD_F32m  },
    647   { X86::ILD_Fp32m80  , X86::ILD_F32m  },
    648   { X86::ILD_Fp64m32  , X86::ILD_F64m  },
    649   { X86::ILD_Fp64m64  , X86::ILD_F64m  },
    650   { X86::ILD_Fp64m80  , X86::ILD_F64m  },
    651   { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
    652   { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
    653   { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
    654   { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
    655   { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
    656   { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
    657   { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
    658   { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
    659   { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
    660   { X86::IST_Fp16m32  , X86::IST_F16m  },
    661   { X86::IST_Fp16m64  , X86::IST_F16m  },
    662   { X86::IST_Fp16m80  , X86::IST_F16m  },
    663   { X86::IST_Fp32m32  , X86::IST_F32m  },
    664   { X86::IST_Fp32m64  , X86::IST_F32m  },
    665   { X86::IST_Fp32m80  , X86::IST_F32m  },
    666   { X86::IST_Fp64m32  , X86::IST_FP64m },
    667   { X86::IST_Fp64m64  , X86::IST_FP64m },
    668   { X86::IST_Fp64m80  , X86::IST_FP64m },
    669   { X86::LD_Fp032     , X86::LD_F0     },
    670   { X86::LD_Fp064     , X86::LD_F0     },
    671   { X86::LD_Fp080     , X86::LD_F0     },
    672   { X86::LD_Fp132     , X86::LD_F1     },
    673   { X86::LD_Fp164     , X86::LD_F1     },
    674   { X86::LD_Fp180     , X86::LD_F1     },
    675   { X86::LD_Fp32m     , X86::LD_F32m   },
    676   { X86::LD_Fp32m64   , X86::LD_F32m   },
    677   { X86::LD_Fp32m80   , X86::LD_F32m   },
    678   { X86::LD_Fp64m     , X86::LD_F64m   },
    679   { X86::LD_Fp64m80   , X86::LD_F64m   },
    680   { X86::LD_Fp80m     , X86::LD_F80m   },
    681   { X86::MUL_Fp32m    , X86::MUL_F32m  },
    682   { X86::MUL_Fp64m    , X86::MUL_F64m  },
    683   { X86::MUL_Fp64m32  , X86::MUL_F32m  },
    684   { X86::MUL_Fp80m32  , X86::MUL_F32m  },
    685   { X86::MUL_Fp80m64  , X86::MUL_F64m  },
    686   { X86::MUL_FpI16m32 , X86::MUL_FI16m },
    687   { X86::MUL_FpI16m64 , X86::MUL_FI16m },
    688   { X86::MUL_FpI16m80 , X86::MUL_FI16m },
    689   { X86::MUL_FpI32m32 , X86::MUL_FI32m },
    690   { X86::MUL_FpI32m64 , X86::MUL_FI32m },
    691   { X86::MUL_FpI32m80 , X86::MUL_FI32m },
    692   { X86::SIN_Fp32     , X86::SIN_F     },
    693   { X86::SIN_Fp64     , X86::SIN_F     },
    694   { X86::SIN_Fp80     , X86::SIN_F     },
    695   { X86::SQRT_Fp32    , X86::SQRT_F    },
    696   { X86::SQRT_Fp64    , X86::SQRT_F    },
    697   { X86::SQRT_Fp80    , X86::SQRT_F    },
    698   { X86::ST_Fp32m     , X86::ST_F32m   },
    699   { X86::ST_Fp64m     , X86::ST_F64m   },
    700   { X86::ST_Fp64m32   , X86::ST_F32m   },
    701   { X86::ST_Fp80m32   , X86::ST_F32m   },
    702   { X86::ST_Fp80m64   , X86::ST_F64m   },
    703   { X86::ST_FpP80m    , X86::ST_FP80m  },
    704   { X86::SUBR_Fp32m   , X86::SUBR_F32m },
    705   { X86::SUBR_Fp64m   , X86::SUBR_F64m },
    706   { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
    707   { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
    708   { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
    709   { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
    710   { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
    711   { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
    712   { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
    713   { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
    714   { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
    715   { X86::SUB_Fp32m    , X86::SUB_F32m  },
    716   { X86::SUB_Fp64m    , X86::SUB_F64m  },
    717   { X86::SUB_Fp64m32  , X86::SUB_F32m  },
    718   { X86::SUB_Fp80m32  , X86::SUB_F32m  },
    719   { X86::SUB_Fp80m64  , X86::SUB_F64m  },
    720   { X86::SUB_FpI16m32 , X86::SUB_FI16m },
    721   { X86::SUB_FpI16m64 , X86::SUB_FI16m },
    722   { X86::SUB_FpI16m80 , X86::SUB_FI16m },
    723   { X86::SUB_FpI32m32 , X86::SUB_FI32m },
    724   { X86::SUB_FpI32m64 , X86::SUB_FI32m },
    725   { X86::SUB_FpI32m80 , X86::SUB_FI32m },
    726   { X86::TST_Fp32     , X86::TST_F     },
    727   { X86::TST_Fp64     , X86::TST_F     },
    728   { X86::TST_Fp80     , X86::TST_F     },
    729   { X86::UCOM_FpIr32  , X86::UCOM_FIr  },
    730   { X86::UCOM_FpIr64  , X86::UCOM_FIr  },
    731   { X86::UCOM_FpIr80  , X86::UCOM_FIr  },
    732   { X86::UCOM_Fpr32   , X86::UCOM_Fr   },
    733   { X86::UCOM_Fpr64   , X86::UCOM_Fr   },
    734   { X86::UCOM_Fpr80   , X86::UCOM_Fr   },
    735 };
    736 
    737 static unsigned getConcreteOpcode(unsigned Opcode) {
    738   ASSERT_SORTED(OpcodeTable);
    739   int Opc = Lookup(OpcodeTable, Opcode);
    740   assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
    741   return Opc;
    742 }
    743 
    744 //===----------------------------------------------------------------------===//
    745 // Helper Methods
    746 //===----------------------------------------------------------------------===//
    747 
    748 // PopTable - Sorted map of instructions to their popping version.  The first
    749 // element is an instruction, the second is the version which pops.
    750 //
    751 static const TableEntry PopTable[] = {
    752   { X86::ADD_FrST0 , X86::ADD_FPrST0  },
    753 
    754   { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
    755   { X86::DIV_FrST0 , X86::DIV_FPrST0  },
    756 
    757   { X86::IST_F16m  , X86::IST_FP16m   },
    758   { X86::IST_F32m  , X86::IST_FP32m   },
    759 
    760   { X86::MUL_FrST0 , X86::MUL_FPrST0  },
    761 
    762   { X86::ST_F32m   , X86::ST_FP32m    },
    763   { X86::ST_F64m   , X86::ST_FP64m    },
    764   { X86::ST_Frr    , X86::ST_FPrr     },
    765 
    766   { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
    767   { X86::SUB_FrST0 , X86::SUB_FPrST0  },
    768 
    769   { X86::UCOM_FIr  , X86::UCOM_FIPr   },
    770 
    771   { X86::UCOM_FPr  , X86::UCOM_FPPr   },
    772   { X86::UCOM_Fr   , X86::UCOM_FPr    },
    773 };
    774 
    775 /// popStackAfter - Pop the current value off of the top of the FP stack after
    776 /// the specified instruction.  This attempts to be sneaky and combine the pop
    777 /// into the instruction itself if possible.  The iterator is left pointing to
    778 /// the last instruction, be it a new pop instruction inserted, or the old
    779 /// instruction if it was modified in place.
    780 ///
    781 void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
    782   MachineInstr* MI = I;
    783   DebugLoc dl = MI->getDebugLoc();
    784   ASSERT_SORTED(PopTable);
    785   if (StackTop == 0)
    786     report_fatal_error("Cannot pop empty stack!");
    787   RegMap[Stack[--StackTop]] = ~0;     // Update state
    788 
    789   // Check to see if there is a popping version of this instruction...
    790   int Opcode = Lookup(PopTable, I->getOpcode());
    791   if (Opcode != -1) {
    792     I->setDesc(TII->get(Opcode));
    793     if (Opcode == X86::UCOM_FPPr)
    794       I->RemoveOperand(0);
    795   } else {    // Insert an explicit pop
    796     I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
    797   }
    798 }
    799 
    800 /// freeStackSlotAfter - Free the specified register from the register stack, so
    801 /// that it is no longer in a register.  If the register is currently at the top
    802 /// of the stack, we just pop the current instruction, otherwise we store the
    803 /// current top-of-stack into the specified slot, then pop the top of stack.
    804 void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
    805   if (getStackEntry(0) == FPRegNo) {  // already at the top of stack? easy.
    806     popStackAfter(I);
    807     return;
    808   }
    809 
    810   // Otherwise, store the top of stack into the dead slot, killing the operand
    811   // without having to add in an explicit xchg then pop.
    812   //
    813   I = freeStackSlotBefore(++I, FPRegNo);
    814 }
    815 
    816 /// freeStackSlotBefore - Free the specified register without trying any
    817 /// folding.
    818 MachineBasicBlock::iterator
    819 FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
    820   unsigned STReg    = getSTReg(FPRegNo);
    821   unsigned OldSlot  = getSlot(FPRegNo);
    822   unsigned TopReg   = Stack[StackTop-1];
    823   Stack[OldSlot]    = TopReg;
    824   RegMap[TopReg]    = OldSlot;
    825   RegMap[FPRegNo]   = ~0;
    826   Stack[--StackTop] = ~0;
    827   return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr))
    828       .addReg(STReg)
    829       .getInstr();
    830 }
    831 
    832 /// adjustLiveRegs - Kill and revive registers such that exactly the FP
    833 /// registers with a bit in Mask are live.
    834 void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
    835   unsigned Defs = Mask;
    836   unsigned Kills = 0;
    837   for (unsigned i = 0; i < StackTop; ++i) {
    838     unsigned RegNo = Stack[i];
    839     if (!(Defs & (1 << RegNo)))
    840       // This register is live, but we don't want it.
    841       Kills |= (1 << RegNo);
    842     else
    843       // We don't need to imp-def this live register.
    844       Defs &= ~(1 << RegNo);
    845   }
    846   assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
    847 
    848   // Produce implicit-defs for free by using killed registers.
    849   while (Kills && Defs) {
    850     unsigned KReg = countTrailingZeros(Kills);
    851     unsigned DReg = countTrailingZeros(Defs);
    852     DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n");
    853     std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
    854     std::swap(RegMap[KReg], RegMap[DReg]);
    855     Kills &= ~(1 << KReg);
    856     Defs &= ~(1 << DReg);
    857   }
    858 
    859   // Kill registers by popping.
    860   if (Kills && I != MBB->begin()) {
    861     MachineBasicBlock::iterator I2 = std::prev(I);
    862     while (StackTop) {
    863       unsigned KReg = getStackEntry(0);
    864       if (!(Kills & (1 << KReg)))
    865         break;
    866       DEBUG(dbgs() << "Popping %FP" << KReg << "\n");
    867       popStackAfter(I2);
    868       Kills &= ~(1 << KReg);
    869     }
    870   }
    871 
    872   // Manually kill the rest.
    873   while (Kills) {
    874     unsigned KReg = countTrailingZeros(Kills);
    875     DEBUG(dbgs() << "Killing %FP" << KReg << "\n");
    876     freeStackSlotBefore(I, KReg);
    877     Kills &= ~(1 << KReg);
    878   }
    879 
    880   // Load zeros for all the imp-defs.
    881   while(Defs) {
    882     unsigned DReg = countTrailingZeros(Defs);
    883     DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n");
    884     BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
    885     pushReg(DReg);
    886     Defs &= ~(1 << DReg);
    887   }
    888 
    889   // Now we should have the correct registers live.
    890   DEBUG(dumpStack());
    891   assert(StackTop == countPopulation(Mask) && "Live count mismatch");
    892 }
    893 
    894 /// shuffleStackTop - emit fxch instructions before I to shuffle the top
    895 /// FixCount entries into the order given by FixStack.
    896 /// FIXME: Is there a better algorithm than insertion sort?
    897 void FPS::shuffleStackTop(const unsigned char *FixStack,
    898                           unsigned FixCount,
    899                           MachineBasicBlock::iterator I) {
    900   // Move items into place, starting from the desired stack bottom.
    901   while (FixCount--) {
    902     // Old register at position FixCount.
    903     unsigned OldReg = getStackEntry(FixCount);
    904     // Desired register at position FixCount.
    905     unsigned Reg = FixStack[FixCount];
    906     if (Reg == OldReg)
    907       continue;
    908     // (Reg st0) (OldReg st0) = (Reg OldReg st0)
    909     moveToTop(Reg, I);
    910     if (FixCount > 0)
    911       moveToTop(OldReg, I);
    912   }
    913   DEBUG(dumpStack());
    914 }
    915 
    916 
    917 //===----------------------------------------------------------------------===//
    918 // Instruction transformation implementation
    919 //===----------------------------------------------------------------------===//
    920 
    921 void FPS::handleCall(MachineBasicBlock::iterator &I) {
    922   unsigned STReturns = 0;
    923 
    924   for (const auto &MO : I->operands()) {
    925     if (!MO.isReg())
    926       continue;
    927 
    928     unsigned R = MO.getReg() - X86::FP0;
    929 
    930     if (R < 8) {
    931       assert(MO.isDef() && MO.isImplicit());
    932       STReturns |= 1 << R;
    933     }
    934   }
    935 
    936   unsigned N = countTrailingOnes(STReturns);
    937 
    938   // FP registers used for function return must be consecutive starting at
    939   // FP0.
    940   assert(STReturns == 0 || (isMask_32(STReturns) && N <= 2));
    941 
    942   for (unsigned I = 0; I < N; ++I)
    943     pushReg(N - I - 1);
    944 }
    945 
    946 /// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
    947 ///
    948 void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
    949   MachineInstr *MI = I;
    950   unsigned DestReg = getFPReg(MI->getOperand(0));
    951 
    952   // Change from the pseudo instruction to the concrete instruction.
    953   MI->RemoveOperand(0);   // Remove the explicit ST(0) operand
    954   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
    955 
    956   // Result gets pushed on the stack.
    957   pushReg(DestReg);
    958 }
    959 
    960 /// handleOneArgFP - fst <mem>, ST(0)
    961 ///
    962 void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
    963   MachineInstr *MI = I;
    964   unsigned NumOps = MI->getDesc().getNumOperands();
    965   assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
    966          "Can only handle fst* & ftst instructions!");
    967 
    968   // Is this the last use of the source register?
    969   unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
    970   bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
    971 
    972   // FISTP64m is strange because there isn't a non-popping versions.
    973   // If we have one _and_ we don't want to pop the operand, duplicate the value
    974   // on the stack instead of moving it.  This ensure that popping the value is
    975   // always ok.
    976   // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
    977   //
    978   if (!KillsSrc &&
    979       (MI->getOpcode() == X86::IST_Fp64m32 ||
    980        MI->getOpcode() == X86::ISTT_Fp16m32 ||
    981        MI->getOpcode() == X86::ISTT_Fp32m32 ||
    982        MI->getOpcode() == X86::ISTT_Fp64m32 ||
    983        MI->getOpcode() == X86::IST_Fp64m64 ||
    984        MI->getOpcode() == X86::ISTT_Fp16m64 ||
    985        MI->getOpcode() == X86::ISTT_Fp32m64 ||
    986        MI->getOpcode() == X86::ISTT_Fp64m64 ||
    987        MI->getOpcode() == X86::IST_Fp64m80 ||
    988        MI->getOpcode() == X86::ISTT_Fp16m80 ||
    989        MI->getOpcode() == X86::ISTT_Fp32m80 ||
    990        MI->getOpcode() == X86::ISTT_Fp64m80 ||
    991        MI->getOpcode() == X86::ST_FpP80m)) {
    992     duplicateToTop(Reg, ScratchFPReg, I);
    993   } else {
    994     moveToTop(Reg, I);            // Move to the top of the stack...
    995   }
    996 
    997   // Convert from the pseudo instruction to the concrete instruction.
    998   MI->RemoveOperand(NumOps-1);    // Remove explicit ST(0) operand
    999   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
   1000 
   1001   if (MI->getOpcode() == X86::IST_FP64m ||
   1002       MI->getOpcode() == X86::ISTT_FP16m ||
   1003       MI->getOpcode() == X86::ISTT_FP32m ||
   1004       MI->getOpcode() == X86::ISTT_FP64m ||
   1005       MI->getOpcode() == X86::ST_FP80m) {
   1006     if (StackTop == 0)
   1007       report_fatal_error("Stack empty??");
   1008     --StackTop;
   1009   } else if (KillsSrc) { // Last use of operand?
   1010     popStackAfter(I);
   1011   }
   1012 }
   1013 
   1014 
   1015 /// handleOneArgFPRW: Handle instructions that read from the top of stack and
   1016 /// replace the value with a newly computed value.  These instructions may have
   1017 /// non-fp operands after their FP operands.
   1018 ///
   1019 ///  Examples:
   1020 ///     R1 = fchs R2
   1021 ///     R1 = fadd R2, [mem]
   1022 ///
   1023 void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
   1024   MachineInstr *MI = I;
   1025 #ifndef NDEBUG
   1026   unsigned NumOps = MI->getDesc().getNumOperands();
   1027   assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
   1028 #endif
   1029 
   1030   // Is this the last use of the source register?
   1031   unsigned Reg = getFPReg(MI->getOperand(1));
   1032   bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
   1033 
   1034   if (KillsSrc) {
   1035     // If this is the last use of the source register, just make sure it's on
   1036     // the top of the stack.
   1037     moveToTop(Reg, I);
   1038     if (StackTop == 0)
   1039       report_fatal_error("Stack cannot be empty!");
   1040     --StackTop;
   1041     pushReg(getFPReg(MI->getOperand(0)));
   1042   } else {
   1043     // If this is not the last use of the source register, _copy_ it to the top
   1044     // of the stack.
   1045     duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
   1046   }
   1047 
   1048   // Change from the pseudo instruction to the concrete instruction.
   1049   MI->RemoveOperand(1);   // Drop the source operand.
   1050   MI->RemoveOperand(0);   // Drop the destination operand.
   1051   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
   1052 }
   1053 
   1054 
   1055 //===----------------------------------------------------------------------===//
   1056 // Define tables of various ways to map pseudo instructions
   1057 //
   1058 
   1059 // ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
   1060 static const TableEntry ForwardST0Table[] = {
   1061   { X86::ADD_Fp32  , X86::ADD_FST0r },
   1062   { X86::ADD_Fp64  , X86::ADD_FST0r },
   1063   { X86::ADD_Fp80  , X86::ADD_FST0r },
   1064   { X86::DIV_Fp32  , X86::DIV_FST0r },
   1065   { X86::DIV_Fp64  , X86::DIV_FST0r },
   1066   { X86::DIV_Fp80  , X86::DIV_FST0r },
   1067   { X86::MUL_Fp32  , X86::MUL_FST0r },
   1068   { X86::MUL_Fp64  , X86::MUL_FST0r },
   1069   { X86::MUL_Fp80  , X86::MUL_FST0r },
   1070   { X86::SUB_Fp32  , X86::SUB_FST0r },
   1071   { X86::SUB_Fp64  , X86::SUB_FST0r },
   1072   { X86::SUB_Fp80  , X86::SUB_FST0r },
   1073 };
   1074 
   1075 // ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
   1076 static const TableEntry ReverseST0Table[] = {
   1077   { X86::ADD_Fp32  , X86::ADD_FST0r  },   // commutative
   1078   { X86::ADD_Fp64  , X86::ADD_FST0r  },   // commutative
   1079   { X86::ADD_Fp80  , X86::ADD_FST0r  },   // commutative
   1080   { X86::DIV_Fp32  , X86::DIVR_FST0r },
   1081   { X86::DIV_Fp64  , X86::DIVR_FST0r },
   1082   { X86::DIV_Fp80  , X86::DIVR_FST0r },
   1083   { X86::MUL_Fp32  , X86::MUL_FST0r  },   // commutative
   1084   { X86::MUL_Fp64  , X86::MUL_FST0r  },   // commutative
   1085   { X86::MUL_Fp80  , X86::MUL_FST0r  },   // commutative
   1086   { X86::SUB_Fp32  , X86::SUBR_FST0r },
   1087   { X86::SUB_Fp64  , X86::SUBR_FST0r },
   1088   { X86::SUB_Fp80  , X86::SUBR_FST0r },
   1089 };
   1090 
   1091 // ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
   1092 static const TableEntry ForwardSTiTable[] = {
   1093   { X86::ADD_Fp32  , X86::ADD_FrST0  },   // commutative
   1094   { X86::ADD_Fp64  , X86::ADD_FrST0  },   // commutative
   1095   { X86::ADD_Fp80  , X86::ADD_FrST0  },   // commutative
   1096   { X86::DIV_Fp32  , X86::DIVR_FrST0 },
   1097   { X86::DIV_Fp64  , X86::DIVR_FrST0 },
   1098   { X86::DIV_Fp80  , X86::DIVR_FrST0 },
   1099   { X86::MUL_Fp32  , X86::MUL_FrST0  },   // commutative
   1100   { X86::MUL_Fp64  , X86::MUL_FrST0  },   // commutative
   1101   { X86::MUL_Fp80  , X86::MUL_FrST0  },   // commutative
   1102   { X86::SUB_Fp32  , X86::SUBR_FrST0 },
   1103   { X86::SUB_Fp64  , X86::SUBR_FrST0 },
   1104   { X86::SUB_Fp80  , X86::SUBR_FrST0 },
   1105 };
   1106 
   1107 // ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
   1108 static const TableEntry ReverseSTiTable[] = {
   1109   { X86::ADD_Fp32  , X86::ADD_FrST0 },
   1110   { X86::ADD_Fp64  , X86::ADD_FrST0 },
   1111   { X86::ADD_Fp80  , X86::ADD_FrST0 },
   1112   { X86::DIV_Fp32  , X86::DIV_FrST0 },
   1113   { X86::DIV_Fp64  , X86::DIV_FrST0 },
   1114   { X86::DIV_Fp80  , X86::DIV_FrST0 },
   1115   { X86::MUL_Fp32  , X86::MUL_FrST0 },
   1116   { X86::MUL_Fp64  , X86::MUL_FrST0 },
   1117   { X86::MUL_Fp80  , X86::MUL_FrST0 },
   1118   { X86::SUB_Fp32  , X86::SUB_FrST0 },
   1119   { X86::SUB_Fp64  , X86::SUB_FrST0 },
   1120   { X86::SUB_Fp80  , X86::SUB_FrST0 },
   1121 };
   1122 
   1123 
   1124 /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
   1125 /// instructions which need to be simplified and possibly transformed.
   1126 ///
   1127 /// Result: ST(0) = fsub  ST(0), ST(i)
   1128 ///         ST(i) = fsub  ST(0), ST(i)
   1129 ///         ST(0) = fsubr ST(0), ST(i)
   1130 ///         ST(i) = fsubr ST(0), ST(i)
   1131 ///
   1132 void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
   1133   ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
   1134   ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
   1135   MachineInstr *MI = I;
   1136 
   1137   unsigned NumOperands = MI->getDesc().getNumOperands();
   1138   assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
   1139   unsigned Dest = getFPReg(MI->getOperand(0));
   1140   unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
   1141   unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
   1142   bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
   1143   bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
   1144   DebugLoc dl = MI->getDebugLoc();
   1145 
   1146   unsigned TOS = getStackEntry(0);
   1147 
   1148   // One of our operands must be on the top of the stack.  If neither is yet, we
   1149   // need to move one.
   1150   if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
   1151     // We can choose to move either operand to the top of the stack.  If one of
   1152     // the operands is killed by this instruction, we want that one so that we
   1153     // can update right on top of the old version.
   1154     if (KillsOp0) {
   1155       moveToTop(Op0, I);         // Move dead operand to TOS.
   1156       TOS = Op0;
   1157     } else if (KillsOp1) {
   1158       moveToTop(Op1, I);
   1159       TOS = Op1;
   1160     } else {
   1161       // All of the operands are live after this instruction executes, so we
   1162       // cannot update on top of any operand.  Because of this, we must
   1163       // duplicate one of the stack elements to the top.  It doesn't matter
   1164       // which one we pick.
   1165       //
   1166       duplicateToTop(Op0, Dest, I);
   1167       Op0 = TOS = Dest;
   1168       KillsOp0 = true;
   1169     }
   1170   } else if (!KillsOp0 && !KillsOp1) {
   1171     // If we DO have one of our operands at the top of the stack, but we don't
   1172     // have a dead operand, we must duplicate one of the operands to a new slot
   1173     // on the stack.
   1174     duplicateToTop(Op0, Dest, I);
   1175     Op0 = TOS = Dest;
   1176     KillsOp0 = true;
   1177   }
   1178 
   1179   // Now we know that one of our operands is on the top of the stack, and at
   1180   // least one of our operands is killed by this instruction.
   1181   assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
   1182          "Stack conditions not set up right!");
   1183 
   1184   // We decide which form to use based on what is on the top of the stack, and
   1185   // which operand is killed by this instruction.
   1186   ArrayRef<TableEntry> InstTable;
   1187   bool isForward = TOS == Op0;
   1188   bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
   1189   if (updateST0) {
   1190     if (isForward)
   1191       InstTable = ForwardST0Table;
   1192     else
   1193       InstTable = ReverseST0Table;
   1194   } else {
   1195     if (isForward)
   1196       InstTable = ForwardSTiTable;
   1197     else
   1198       InstTable = ReverseSTiTable;
   1199   }
   1200 
   1201   int Opcode = Lookup(InstTable, MI->getOpcode());
   1202   assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
   1203 
   1204   // NotTOS - The register which is not on the top of stack...
   1205   unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
   1206 
   1207   // Replace the old instruction with a new instruction
   1208   MBB->remove(I++);
   1209   I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
   1210 
   1211   // If both operands are killed, pop one off of the stack in addition to
   1212   // overwriting the other one.
   1213   if (KillsOp0 && KillsOp1 && Op0 != Op1) {
   1214     assert(!updateST0 && "Should have updated other operand!");
   1215     popStackAfter(I);   // Pop the top of stack
   1216   }
   1217 
   1218   // Update stack information so that we know the destination register is now on
   1219   // the stack.
   1220   unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
   1221   assert(UpdatedSlot < StackTop && Dest < 7);
   1222   Stack[UpdatedSlot]   = Dest;
   1223   RegMap[Dest]         = UpdatedSlot;
   1224   MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
   1225 }
   1226 
   1227 /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
   1228 /// register arguments and no explicit destinations.
   1229 ///
   1230 void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
   1231   ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
   1232   ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
   1233   MachineInstr *MI = I;
   1234 
   1235   unsigned NumOperands = MI->getDesc().getNumOperands();
   1236   assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
   1237   unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
   1238   unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
   1239   bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
   1240   bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
   1241 
   1242   // Make sure the first operand is on the top of stack, the other one can be
   1243   // anywhere.
   1244   moveToTop(Op0, I);
   1245 
   1246   // Change from the pseudo instruction to the concrete instruction.
   1247   MI->getOperand(0).setReg(getSTReg(Op1));
   1248   MI->RemoveOperand(1);
   1249   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
   1250 
   1251   // If any of the operands are killed by this instruction, free them.
   1252   if (KillsOp0) freeStackSlotAfter(I, Op0);
   1253   if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
   1254 }
   1255 
   1256 /// handleCondMovFP - Handle two address conditional move instructions.  These
   1257 /// instructions move a st(i) register to st(0) iff a condition is true.  These
   1258 /// instructions require that the first operand is at the top of the stack, but
   1259 /// otherwise don't modify the stack at all.
   1260 void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
   1261   MachineInstr *MI = I;
   1262 
   1263   unsigned Op0 = getFPReg(MI->getOperand(0));
   1264   unsigned Op1 = getFPReg(MI->getOperand(2));
   1265   bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
   1266 
   1267   // The first operand *must* be on the top of the stack.
   1268   moveToTop(Op0, I);
   1269 
   1270   // Change the second operand to the stack register that the operand is in.
   1271   // Change from the pseudo instruction to the concrete instruction.
   1272   MI->RemoveOperand(0);
   1273   MI->RemoveOperand(1);
   1274   MI->getOperand(0).setReg(getSTReg(Op1));
   1275   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
   1276 
   1277   // If we kill the second operand, make sure to pop it from the stack.
   1278   if (Op0 != Op1 && KillsOp1) {
   1279     // Get this value off of the register stack.
   1280     freeStackSlotAfter(I, Op1);
   1281   }
   1282 }
   1283 
   1284 
   1285 /// handleSpecialFP - Handle special instructions which behave unlike other
   1286 /// floating point instructions.  This is primarily intended for use by pseudo
   1287 /// instructions.
   1288 ///
   1289 void FPS::handleSpecialFP(MachineBasicBlock::iterator &Inst) {
   1290   MachineInstr *MI = Inst;
   1291 
   1292   if (MI->isCall()) {
   1293     handleCall(Inst);
   1294     return;
   1295   }
   1296 
   1297   switch (MI->getOpcode()) {
   1298   default: llvm_unreachable("Unknown SpecialFP instruction!");
   1299   case TargetOpcode::COPY: {
   1300     // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
   1301     const MachineOperand &MO1 = MI->getOperand(1);
   1302     const MachineOperand &MO0 = MI->getOperand(0);
   1303     bool KillsSrc = MI->killsRegister(MO1.getReg());
   1304 
   1305     // FP <- FP copy.
   1306     unsigned DstFP = getFPReg(MO0);
   1307     unsigned SrcFP = getFPReg(MO1);
   1308     assert(isLive(SrcFP) && "Cannot copy dead register");
   1309     if (KillsSrc) {
   1310       // If the input operand is killed, we can just change the owner of the
   1311       // incoming stack slot into the result.
   1312       unsigned Slot = getSlot(SrcFP);
   1313       Stack[Slot] = DstFP;
   1314       RegMap[DstFP] = Slot;
   1315     } else {
   1316       // For COPY we just duplicate the specified value to a new stack slot.
   1317       // This could be made better, but would require substantial changes.
   1318       duplicateToTop(SrcFP, DstFP, Inst);
   1319     }
   1320     break;
   1321   }
   1322 
   1323   case TargetOpcode::IMPLICIT_DEF: {
   1324     // All FP registers must be explicitly defined, so load a 0 instead.
   1325     unsigned Reg = MI->getOperand(0).getReg() - X86::FP0;
   1326     DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n');
   1327     BuildMI(*MBB, Inst, MI->getDebugLoc(), TII->get(X86::LD_F0));
   1328     pushReg(Reg);
   1329     break;
   1330   }
   1331 
   1332   case TargetOpcode::INLINEASM: {
   1333     // The inline asm MachineInstr currently only *uses* FP registers for the
   1334     // 'f' constraint.  These should be turned into the current ST(x) register
   1335     // in the machine instr.
   1336     //
   1337     // There are special rules for x87 inline assembly. The compiler must know
   1338     // exactly how many registers are popped and pushed implicitly by the asm.
   1339     // Otherwise it is not possible to restore the stack state after the inline
   1340     // asm.
   1341     //
   1342     // There are 3 kinds of input operands:
   1343     //
   1344     // 1. Popped inputs. These must appear at the stack top in ST0-STn. A
   1345     //    popped input operand must be in a fixed stack slot, and it is either
   1346     //    tied to an output operand, or in the clobber list. The MI has ST use
   1347     //    and def operands for these inputs.
   1348     //
   1349     // 2. Fixed inputs. These inputs appear in fixed stack slots, but are
   1350     //    preserved by the inline asm. The fixed stack slots must be STn-STm
   1351     //    following the popped inputs. A fixed input operand cannot be tied to
   1352     //    an output or appear in the clobber list. The MI has ST use operands
   1353     //    and no defs for these inputs.
   1354     //
   1355     // 3. Preserved inputs. These inputs use the "f" constraint which is
   1356     //    represented as an FP register. The inline asm won't change these
   1357     //    stack slots.
   1358     //
   1359     // Outputs must be in ST registers, FP outputs are not allowed. Clobbered
   1360     // registers do not count as output operands. The inline asm changes the
   1361     // stack as if it popped all the popped inputs and then pushed all the
   1362     // output operands.
   1363 
   1364     // Scan the assembly for ST registers used, defined and clobbered. We can
   1365     // only tell clobbers from defs by looking at the asm descriptor.
   1366     unsigned STUses = 0, STDefs = 0, STClobbers = 0, STDeadDefs = 0;
   1367     unsigned NumOps = 0;
   1368     SmallSet<unsigned, 1> FRegIdx;
   1369     unsigned RCID;
   1370 
   1371     for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands();
   1372          i != e && MI->getOperand(i).isImm(); i += 1 + NumOps) {
   1373       unsigned Flags = MI->getOperand(i).getImm();
   1374 
   1375       NumOps = InlineAsm::getNumOperandRegisters(Flags);
   1376       if (NumOps != 1)
   1377         continue;
   1378       const MachineOperand &MO = MI->getOperand(i + 1);
   1379       if (!MO.isReg())
   1380         continue;
   1381       unsigned STReg = MO.getReg() - X86::FP0;
   1382       if (STReg >= 8)
   1383         continue;
   1384 
   1385       // If the flag has a register class constraint, this must be an operand
   1386       // with constraint "f". Record its index and continue.
   1387       if (InlineAsm::hasRegClassConstraint(Flags, RCID)) {
   1388         FRegIdx.insert(i + 1);
   1389         continue;
   1390       }
   1391 
   1392       switch (InlineAsm::getKind(Flags)) {
   1393       case InlineAsm::Kind_RegUse:
   1394         STUses |= (1u << STReg);
   1395         break;
   1396       case InlineAsm::Kind_RegDef:
   1397       case InlineAsm::Kind_RegDefEarlyClobber:
   1398         STDefs |= (1u << STReg);
   1399         if (MO.isDead())
   1400           STDeadDefs |= (1u << STReg);
   1401         break;
   1402       case InlineAsm::Kind_Clobber:
   1403         STClobbers |= (1u << STReg);
   1404         break;
   1405       default:
   1406         break;
   1407       }
   1408     }
   1409 
   1410     if (STUses && !isMask_32(STUses))
   1411       MI->emitError("fixed input regs must be last on the x87 stack");
   1412     unsigned NumSTUses = countTrailingOnes(STUses);
   1413 
   1414     // Defs must be contiguous from the stack top. ST0-STn.
   1415     if (STDefs && !isMask_32(STDefs)) {
   1416       MI->emitError("output regs must be last on the x87 stack");
   1417       STDefs = NextPowerOf2(STDefs) - 1;
   1418     }
   1419     unsigned NumSTDefs = countTrailingOnes(STDefs);
   1420 
   1421     // So must the clobbered stack slots. ST0-STm, m >= n.
   1422     if (STClobbers && !isMask_32(STDefs | STClobbers))
   1423       MI->emitError("clobbers must be last on the x87 stack");
   1424 
   1425     // Popped inputs are the ones that are also clobbered or defined.
   1426     unsigned STPopped = STUses & (STDefs | STClobbers);
   1427     if (STPopped && !isMask_32(STPopped))
   1428       MI->emitError("implicitly popped regs must be last on the x87 stack");
   1429     unsigned NumSTPopped = countTrailingOnes(STPopped);
   1430 
   1431     DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops "
   1432                  << NumSTPopped << ", and defines " << NumSTDefs << " regs.\n");
   1433 
   1434 #ifndef NDEBUG
   1435     // If any input operand uses constraint "f", all output register
   1436     // constraints must be early-clobber defs.
   1437     for (unsigned I = 0, E = MI->getNumOperands(); I < E; ++I)
   1438       if (FRegIdx.count(I)) {
   1439         assert((1 << getFPReg(MI->getOperand(I)) & STDefs) == 0 &&
   1440                "Operands with constraint \"f\" cannot overlap with defs");
   1441       }
   1442 #endif
   1443 
   1444     // Collect all FP registers (register operands with constraints "t", "u",
   1445     // and "f") to kill afer the instruction.
   1446     unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff;
   1447     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1448       MachineOperand &Op = MI->getOperand(i);
   1449       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
   1450         continue;
   1451       unsigned FPReg = getFPReg(Op);
   1452 
   1453       // If we kill this operand, make sure to pop it from the stack after the
   1454       // asm.  We just remember it for now, and pop them all off at the end in
   1455       // a batch.
   1456       if (Op.isUse() && Op.isKill())
   1457         FPKills |= 1U << FPReg;
   1458     }
   1459 
   1460     // Do not include registers that are implicitly popped by defs/clobbers.
   1461     FPKills &= ~(STDefs | STClobbers);
   1462 
   1463     // Now we can rearrange the live registers to match what was requested.
   1464     unsigned char STUsesArray[8];
   1465 
   1466     for (unsigned I = 0; I < NumSTUses; ++I)
   1467       STUsesArray[I] = I;
   1468 
   1469     shuffleStackTop(STUsesArray, NumSTUses, Inst);
   1470     DEBUG({dbgs() << "Before asm: "; dumpStack();});
   1471 
   1472     // With the stack layout fixed, rewrite the FP registers.
   1473     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1474       MachineOperand &Op = MI->getOperand(i);
   1475       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
   1476         continue;
   1477 
   1478       unsigned FPReg = getFPReg(Op);
   1479 
   1480       if (FRegIdx.count(i))
   1481         // Operand with constraint "f".
   1482         Op.setReg(getSTReg(FPReg));
   1483       else
   1484         // Operand with a single register class constraint ("t" or "u").
   1485         Op.setReg(X86::ST0 + FPReg);
   1486     }
   1487 
   1488     // Simulate the inline asm popping its inputs and pushing its outputs.
   1489     StackTop -= NumSTPopped;
   1490 
   1491     for (unsigned i = 0; i < NumSTDefs; ++i)
   1492       pushReg(NumSTDefs - i - 1);
   1493 
   1494     // If this asm kills any FP registers (is the last use of them) we must
   1495     // explicitly emit pop instructions for them.  Do this now after the asm has
   1496     // executed so that the ST(x) numbers are not off (which would happen if we
   1497     // did this inline with operand rewriting).
   1498     //
   1499     // Note: this might be a non-optimal pop sequence.  We might be able to do
   1500     // better by trying to pop in stack order or something.
   1501     while (FPKills) {
   1502       unsigned FPReg = countTrailingZeros(FPKills);
   1503       if (isLive(FPReg))
   1504         freeStackSlotAfter(Inst, FPReg);
   1505       FPKills &= ~(1U << FPReg);
   1506     }
   1507 
   1508     // Don't delete the inline asm!
   1509     return;
   1510   }
   1511 
   1512   case X86::RETQ:
   1513   case X86::RETL:
   1514   case X86::RETIL:
   1515   case X86::RETIQ:
   1516     // If RET has an FP register use operand, pass the first one in ST(0) and
   1517     // the second one in ST(1).
   1518 
   1519     // Find the register operands.
   1520     unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
   1521     unsigned LiveMask = 0;
   1522 
   1523     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1524       MachineOperand &Op = MI->getOperand(i);
   1525       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
   1526         continue;
   1527       // FP Register uses must be kills unless there are two uses of the same
   1528       // register, in which case only one will be a kill.
   1529       assert(Op.isUse() &&
   1530              (Op.isKill() ||                        // Marked kill.
   1531               getFPReg(Op) == FirstFPRegOp ||       // Second instance.
   1532               MI->killsRegister(Op.getReg())) &&    // Later use is marked kill.
   1533              "Ret only defs operands, and values aren't live beyond it");
   1534 
   1535       if (FirstFPRegOp == ~0U)
   1536         FirstFPRegOp = getFPReg(Op);
   1537       else {
   1538         assert(SecondFPRegOp == ~0U && "More than two fp operands!");
   1539         SecondFPRegOp = getFPReg(Op);
   1540       }
   1541       LiveMask |= (1 << getFPReg(Op));
   1542 
   1543       // Remove the operand so that later passes don't see it.
   1544       MI->RemoveOperand(i);
   1545       --i, --e;
   1546     }
   1547 
   1548     // We may have been carrying spurious live-ins, so make sure only the returned
   1549     // registers are left live.
   1550     adjustLiveRegs(LiveMask, MI);
   1551     if (!LiveMask) return;  // Quick check to see if any are possible.
   1552 
   1553     // There are only four possibilities here:
   1554     // 1) we are returning a single FP value.  In this case, it has to be in
   1555     //    ST(0) already, so just declare success by removing the value from the
   1556     //    FP Stack.
   1557     if (SecondFPRegOp == ~0U) {
   1558       // Assert that the top of stack contains the right FP register.
   1559       assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
   1560              "Top of stack not the right register for RET!");
   1561 
   1562       // Ok, everything is good, mark the value as not being on the stack
   1563       // anymore so that our assertion about the stack being empty at end of
   1564       // block doesn't fire.
   1565       StackTop = 0;
   1566       return;
   1567     }
   1568 
   1569     // Otherwise, we are returning two values:
   1570     // 2) If returning the same value for both, we only have one thing in the FP
   1571     //    stack.  Consider:  RET FP1, FP1
   1572     if (StackTop == 1) {
   1573       assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
   1574              "Stack misconfiguration for RET!");
   1575 
   1576       // Duplicate the TOS so that we return it twice.  Just pick some other FPx
   1577       // register to hold it.
   1578       unsigned NewReg = ScratchFPReg;
   1579       duplicateToTop(FirstFPRegOp, NewReg, MI);
   1580       FirstFPRegOp = NewReg;
   1581     }
   1582 
   1583     /// Okay we know we have two different FPx operands now:
   1584     assert(StackTop == 2 && "Must have two values live!");
   1585 
   1586     /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
   1587     ///    in ST(1).  In this case, emit an fxch.
   1588     if (getStackEntry(0) == SecondFPRegOp) {
   1589       assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
   1590       moveToTop(FirstFPRegOp, MI);
   1591     }
   1592 
   1593     /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
   1594     /// ST(1).  Just remove both from our understanding of the stack and return.
   1595     assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
   1596     assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
   1597     StackTop = 0;
   1598     return;
   1599   }
   1600 
   1601   Inst = MBB->erase(Inst);  // Remove the pseudo instruction
   1602 
   1603   // We want to leave I pointing to the previous instruction, but what if we
   1604   // just erased the first instruction?
   1605   if (Inst == MBB->begin()) {
   1606     DEBUG(dbgs() << "Inserting dummy KILL\n");
   1607     Inst = BuildMI(*MBB, Inst, DebugLoc(), TII->get(TargetOpcode::KILL));
   1608   } else
   1609     --Inst;
   1610 }
   1611 
   1612 void FPS::setKillFlags(MachineBasicBlock &MBB) const {
   1613   const TargetRegisterInfo *TRI =
   1614       MBB.getParent()->getSubtarget().getRegisterInfo();
   1615   LivePhysRegs LPR(TRI);
   1616 
   1617   LPR.addLiveOuts(&MBB);
   1618 
   1619   for (MachineBasicBlock::reverse_iterator I = MBB.rbegin(), E = MBB.rend();
   1620        I != E; ++I) {
   1621     if (I->isDebugValue())
   1622       continue;
   1623 
   1624     std::bitset<8> Defs;
   1625     SmallVector<MachineOperand *, 2> Uses;
   1626     MachineInstr &MI = *I;
   1627 
   1628     for (auto &MO : I->operands()) {
   1629       if (!MO.isReg())
   1630         continue;
   1631 
   1632       unsigned Reg = MO.getReg() - X86::FP0;
   1633 
   1634       if (Reg >= 8)
   1635         continue;
   1636 
   1637       if (MO.isDef()) {
   1638         Defs.set(Reg);
   1639         if (!LPR.contains(MO.getReg()))
   1640           MO.setIsDead();
   1641       } else
   1642         Uses.push_back(&MO);
   1643     }
   1644 
   1645     for (auto *MO : Uses)
   1646       if (Defs.test(getFPReg(*MO)) || !LPR.contains(MO->getReg()))
   1647         MO->setIsKill();
   1648 
   1649     LPR.stepBackward(MI);
   1650   }
   1651 }
   1652