Home | History | Annotate | Download | only in Sema
      1 //===--- SemaOverload.cpp - C++ Overloading -------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file provides Sema routines for C++ overloading.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/Overload.h"
     15 #include "clang/AST/ASTContext.h"
     16 #include "clang/AST/CXXInheritance.h"
     17 #include "clang/AST/DeclObjC.h"
     18 #include "clang/AST/Expr.h"
     19 #include "clang/AST/ExprCXX.h"
     20 #include "clang/AST/ExprObjC.h"
     21 #include "clang/AST/TypeOrdering.h"
     22 #include "clang/Basic/Diagnostic.h"
     23 #include "clang/Basic/DiagnosticOptions.h"
     24 #include "clang/Basic/PartialDiagnostic.h"
     25 #include "clang/Basic/TargetInfo.h"
     26 #include "clang/Sema/Initialization.h"
     27 #include "clang/Sema/Lookup.h"
     28 #include "clang/Sema/SemaInternal.h"
     29 #include "clang/Sema/Template.h"
     30 #include "clang/Sema/TemplateDeduction.h"
     31 #include "llvm/ADT/DenseSet.h"
     32 #include "llvm/ADT/STLExtras.h"
     33 #include "llvm/ADT/SmallPtrSet.h"
     34 #include "llvm/ADT/SmallString.h"
     35 #include <algorithm>
     36 #include <cstdlib>
     37 
     38 using namespace clang;
     39 using namespace sema;
     40 
     41 static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) {
     42   return std::any_of(FD->param_begin(), FD->param_end(),
     43                      std::mem_fn(&ParmVarDecl::hasAttr<PassObjectSizeAttr>));
     44 }
     45 
     46 /// A convenience routine for creating a decayed reference to a function.
     47 static ExprResult
     48 CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl,
     49                       bool HadMultipleCandidates,
     50                       SourceLocation Loc = SourceLocation(),
     51                       const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
     52   if (S.DiagnoseUseOfDecl(FoundDecl, Loc))
     53     return ExprError();
     54   // If FoundDecl is different from Fn (such as if one is a template
     55   // and the other a specialization), make sure DiagnoseUseOfDecl is
     56   // called on both.
     57   // FIXME: This would be more comprehensively addressed by modifying
     58   // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
     59   // being used.
     60   if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc))
     61     return ExprError();
     62   DeclRefExpr *DRE = new (S.Context) DeclRefExpr(Fn, false, Fn->getType(),
     63                                                  VK_LValue, Loc, LocInfo);
     64   if (HadMultipleCandidates)
     65     DRE->setHadMultipleCandidates(true);
     66 
     67   S.MarkDeclRefReferenced(DRE);
     68   return S.ImpCastExprToType(DRE, S.Context.getPointerType(DRE->getType()),
     69                              CK_FunctionToPointerDecay);
     70 }
     71 
     72 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
     73                                  bool InOverloadResolution,
     74                                  StandardConversionSequence &SCS,
     75                                  bool CStyle,
     76                                  bool AllowObjCWritebackConversion);
     77 
     78 static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
     79                                                  QualType &ToType,
     80                                                  bool InOverloadResolution,
     81                                                  StandardConversionSequence &SCS,
     82                                                  bool CStyle);
     83 static OverloadingResult
     84 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
     85                         UserDefinedConversionSequence& User,
     86                         OverloadCandidateSet& Conversions,
     87                         bool AllowExplicit,
     88                         bool AllowObjCConversionOnExplicit);
     89 
     90 
     91 static ImplicitConversionSequence::CompareKind
     92 CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
     93                                    const StandardConversionSequence& SCS1,
     94                                    const StandardConversionSequence& SCS2);
     95 
     96 static ImplicitConversionSequence::CompareKind
     97 CompareQualificationConversions(Sema &S,
     98                                 const StandardConversionSequence& SCS1,
     99                                 const StandardConversionSequence& SCS2);
    100 
    101 static ImplicitConversionSequence::CompareKind
    102 CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
    103                                 const StandardConversionSequence& SCS1,
    104                                 const StandardConversionSequence& SCS2);
    105 
    106 /// GetConversionRank - Retrieve the implicit conversion rank
    107 /// corresponding to the given implicit conversion kind.
    108 ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) {
    109   static const ImplicitConversionRank
    110     Rank[(int)ICK_Num_Conversion_Kinds] = {
    111     ICR_Exact_Match,
    112     ICR_Exact_Match,
    113     ICR_Exact_Match,
    114     ICR_Exact_Match,
    115     ICR_Exact_Match,
    116     ICR_Exact_Match,
    117     ICR_Promotion,
    118     ICR_Promotion,
    119     ICR_Promotion,
    120     ICR_Conversion,
    121     ICR_Conversion,
    122     ICR_Conversion,
    123     ICR_Conversion,
    124     ICR_Conversion,
    125     ICR_Conversion,
    126     ICR_Conversion,
    127     ICR_Conversion,
    128     ICR_Conversion,
    129     ICR_Conversion,
    130     ICR_Conversion,
    131     ICR_Complex_Real_Conversion,
    132     ICR_Conversion,
    133     ICR_Conversion,
    134     ICR_Writeback_Conversion,
    135     ICR_Exact_Match, // NOTE(gbiv): This may not be completely right --
    136                      // it was omitted by the patch that added
    137                      // ICK_Zero_Event_Conversion
    138     ICR_C_Conversion
    139   };
    140   return Rank[(int)Kind];
    141 }
    142 
    143 /// GetImplicitConversionName - Return the name of this kind of
    144 /// implicit conversion.
    145 static const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
    146   static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
    147     "No conversion",
    148     "Lvalue-to-rvalue",
    149     "Array-to-pointer",
    150     "Function-to-pointer",
    151     "Noreturn adjustment",
    152     "Qualification",
    153     "Integral promotion",
    154     "Floating point promotion",
    155     "Complex promotion",
    156     "Integral conversion",
    157     "Floating conversion",
    158     "Complex conversion",
    159     "Floating-integral conversion",
    160     "Pointer conversion",
    161     "Pointer-to-member conversion",
    162     "Boolean conversion",
    163     "Compatible-types conversion",
    164     "Derived-to-base conversion",
    165     "Vector conversion",
    166     "Vector splat",
    167     "Complex-real conversion",
    168     "Block Pointer conversion",
    169     "Transparent Union Conversion",
    170     "Writeback conversion",
    171     "OpenCL Zero Event Conversion",
    172     "C specific type conversion"
    173   };
    174   return Name[Kind];
    175 }
    176 
    177 /// StandardConversionSequence - Set the standard conversion
    178 /// sequence to the identity conversion.
    179 void StandardConversionSequence::setAsIdentityConversion() {
    180   First = ICK_Identity;
    181   Second = ICK_Identity;
    182   Third = ICK_Identity;
    183   DeprecatedStringLiteralToCharPtr = false;
    184   QualificationIncludesObjCLifetime = false;
    185   ReferenceBinding = false;
    186   DirectBinding = false;
    187   IsLvalueReference = true;
    188   BindsToFunctionLvalue = false;
    189   BindsToRvalue = false;
    190   BindsImplicitObjectArgumentWithoutRefQualifier = false;
    191   ObjCLifetimeConversionBinding = false;
    192   CopyConstructor = nullptr;
    193 }
    194 
    195 /// getRank - Retrieve the rank of this standard conversion sequence
    196 /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
    197 /// implicit conversions.
    198 ImplicitConversionRank StandardConversionSequence::getRank() const {
    199   ImplicitConversionRank Rank = ICR_Exact_Match;
    200   if  (GetConversionRank(First) > Rank)
    201     Rank = GetConversionRank(First);
    202   if  (GetConversionRank(Second) > Rank)
    203     Rank = GetConversionRank(Second);
    204   if  (GetConversionRank(Third) > Rank)
    205     Rank = GetConversionRank(Third);
    206   return Rank;
    207 }
    208 
    209 /// isPointerConversionToBool - Determines whether this conversion is
    210 /// a conversion of a pointer or pointer-to-member to bool. This is
    211 /// used as part of the ranking of standard conversion sequences
    212 /// (C++ 13.3.3.2p4).
    213 bool StandardConversionSequence::isPointerConversionToBool() const {
    214   // Note that FromType has not necessarily been transformed by the
    215   // array-to-pointer or function-to-pointer implicit conversions, so
    216   // check for their presence as well as checking whether FromType is
    217   // a pointer.
    218   if (getToType(1)->isBooleanType() &&
    219       (getFromType()->isPointerType() ||
    220        getFromType()->isObjCObjectPointerType() ||
    221        getFromType()->isBlockPointerType() ||
    222        getFromType()->isNullPtrType() ||
    223        First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
    224     return true;
    225 
    226   return false;
    227 }
    228 
    229 /// isPointerConversionToVoidPointer - Determines whether this
    230 /// conversion is a conversion of a pointer to a void pointer. This is
    231 /// used as part of the ranking of standard conversion sequences (C++
    232 /// 13.3.3.2p4).
    233 bool
    234 StandardConversionSequence::
    235 isPointerConversionToVoidPointer(ASTContext& Context) const {
    236   QualType FromType = getFromType();
    237   QualType ToType = getToType(1);
    238 
    239   // Note that FromType has not necessarily been transformed by the
    240   // array-to-pointer implicit conversion, so check for its presence
    241   // and redo the conversion to get a pointer.
    242   if (First == ICK_Array_To_Pointer)
    243     FromType = Context.getArrayDecayedType(FromType);
    244 
    245   if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
    246     if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
    247       return ToPtrType->getPointeeType()->isVoidType();
    248 
    249   return false;
    250 }
    251 
    252 /// Skip any implicit casts which could be either part of a narrowing conversion
    253 /// or after one in an implicit conversion.
    254 static const Expr *IgnoreNarrowingConversion(const Expr *Converted) {
    255   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
    256     switch (ICE->getCastKind()) {
    257     case CK_NoOp:
    258     case CK_IntegralCast:
    259     case CK_IntegralToBoolean:
    260     case CK_IntegralToFloating:
    261     case CK_FloatingToIntegral:
    262     case CK_FloatingToBoolean:
    263     case CK_FloatingCast:
    264       Converted = ICE->getSubExpr();
    265       continue;
    266 
    267     default:
    268       return Converted;
    269     }
    270   }
    271 
    272   return Converted;
    273 }
    274 
    275 /// Check if this standard conversion sequence represents a narrowing
    276 /// conversion, according to C++11 [dcl.init.list]p7.
    277 ///
    278 /// \param Ctx  The AST context.
    279 /// \param Converted  The result of applying this standard conversion sequence.
    280 /// \param ConstantValue  If this is an NK_Constant_Narrowing conversion, the
    281 ///        value of the expression prior to the narrowing conversion.
    282 /// \param ConstantType  If this is an NK_Constant_Narrowing conversion, the
    283 ///        type of the expression prior to the narrowing conversion.
    284 NarrowingKind
    285 StandardConversionSequence::getNarrowingKind(ASTContext &Ctx,
    286                                              const Expr *Converted,
    287                                              APValue &ConstantValue,
    288                                              QualType &ConstantType) const {
    289   assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++");
    290 
    291   // C++11 [dcl.init.list]p7:
    292   //   A narrowing conversion is an implicit conversion ...
    293   QualType FromType = getToType(0);
    294   QualType ToType = getToType(1);
    295   switch (Second) {
    296   // 'bool' is an integral type; dispatch to the right place to handle it.
    297   case ICK_Boolean_Conversion:
    298     if (FromType->isRealFloatingType())
    299       goto FloatingIntegralConversion;
    300     if (FromType->isIntegralOrUnscopedEnumerationType())
    301       goto IntegralConversion;
    302     // Boolean conversions can be from pointers and pointers to members
    303     // [conv.bool], and those aren't considered narrowing conversions.
    304     return NK_Not_Narrowing;
    305 
    306   // -- from a floating-point type to an integer type, or
    307   //
    308   // -- from an integer type or unscoped enumeration type to a floating-point
    309   //    type, except where the source is a constant expression and the actual
    310   //    value after conversion will fit into the target type and will produce
    311   //    the original value when converted back to the original type, or
    312   case ICK_Floating_Integral:
    313   FloatingIntegralConversion:
    314     if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
    315       return NK_Type_Narrowing;
    316     } else if (FromType->isIntegralType(Ctx) && ToType->isRealFloatingType()) {
    317       llvm::APSInt IntConstantValue;
    318       const Expr *Initializer = IgnoreNarrowingConversion(Converted);
    319       if (Initializer &&
    320           Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
    321         // Convert the integer to the floating type.
    322         llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
    323         Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
    324                                 llvm::APFloat::rmNearestTiesToEven);
    325         // And back.
    326         llvm::APSInt ConvertedValue = IntConstantValue;
    327         bool ignored;
    328         Result.convertToInteger(ConvertedValue,
    329                                 llvm::APFloat::rmTowardZero, &ignored);
    330         // If the resulting value is different, this was a narrowing conversion.
    331         if (IntConstantValue != ConvertedValue) {
    332           ConstantValue = APValue(IntConstantValue);
    333           ConstantType = Initializer->getType();
    334           return NK_Constant_Narrowing;
    335         }
    336       } else {
    337         // Variables are always narrowings.
    338         return NK_Variable_Narrowing;
    339       }
    340     }
    341     return NK_Not_Narrowing;
    342 
    343   // -- from long double to double or float, or from double to float, except
    344   //    where the source is a constant expression and the actual value after
    345   //    conversion is within the range of values that can be represented (even
    346   //    if it cannot be represented exactly), or
    347   case ICK_Floating_Conversion:
    348     if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
    349         Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
    350       // FromType is larger than ToType.
    351       const Expr *Initializer = IgnoreNarrowingConversion(Converted);
    352       if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
    353         // Constant!
    354         assert(ConstantValue.isFloat());
    355         llvm::APFloat FloatVal = ConstantValue.getFloat();
    356         // Convert the source value into the target type.
    357         bool ignored;
    358         llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
    359           Ctx.getFloatTypeSemantics(ToType),
    360           llvm::APFloat::rmNearestTiesToEven, &ignored);
    361         // If there was no overflow, the source value is within the range of
    362         // values that can be represented.
    363         if (ConvertStatus & llvm::APFloat::opOverflow) {
    364           ConstantType = Initializer->getType();
    365           return NK_Constant_Narrowing;
    366         }
    367       } else {
    368         return NK_Variable_Narrowing;
    369       }
    370     }
    371     return NK_Not_Narrowing;
    372 
    373   // -- from an integer type or unscoped enumeration type to an integer type
    374   //    that cannot represent all the values of the original type, except where
    375   //    the source is a constant expression and the actual value after
    376   //    conversion will fit into the target type and will produce the original
    377   //    value when converted back to the original type.
    378   case ICK_Integral_Conversion:
    379   IntegralConversion: {
    380     assert(FromType->isIntegralOrUnscopedEnumerationType());
    381     assert(ToType->isIntegralOrUnscopedEnumerationType());
    382     const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
    383     const unsigned FromWidth = Ctx.getIntWidth(FromType);
    384     const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
    385     const unsigned ToWidth = Ctx.getIntWidth(ToType);
    386 
    387     if (FromWidth > ToWidth ||
    388         (FromWidth == ToWidth && FromSigned != ToSigned) ||
    389         (FromSigned && !ToSigned)) {
    390       // Not all values of FromType can be represented in ToType.
    391       llvm::APSInt InitializerValue;
    392       const Expr *Initializer = IgnoreNarrowingConversion(Converted);
    393       if (!Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
    394         // Such conversions on variables are always narrowing.
    395         return NK_Variable_Narrowing;
    396       }
    397       bool Narrowing = false;
    398       if (FromWidth < ToWidth) {
    399         // Negative -> unsigned is narrowing. Otherwise, more bits is never
    400         // narrowing.
    401         if (InitializerValue.isSigned() && InitializerValue.isNegative())
    402           Narrowing = true;
    403       } else {
    404         // Add a bit to the InitializerValue so we don't have to worry about
    405         // signed vs. unsigned comparisons.
    406         InitializerValue = InitializerValue.extend(
    407           InitializerValue.getBitWidth() + 1);
    408         // Convert the initializer to and from the target width and signed-ness.
    409         llvm::APSInt ConvertedValue = InitializerValue;
    410         ConvertedValue = ConvertedValue.trunc(ToWidth);
    411         ConvertedValue.setIsSigned(ToSigned);
    412         ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
    413         ConvertedValue.setIsSigned(InitializerValue.isSigned());
    414         // If the result is different, this was a narrowing conversion.
    415         if (ConvertedValue != InitializerValue)
    416           Narrowing = true;
    417       }
    418       if (Narrowing) {
    419         ConstantType = Initializer->getType();
    420         ConstantValue = APValue(InitializerValue);
    421         return NK_Constant_Narrowing;
    422       }
    423     }
    424     return NK_Not_Narrowing;
    425   }
    426 
    427   default:
    428     // Other kinds of conversions are not narrowings.
    429     return NK_Not_Narrowing;
    430   }
    431 }
    432 
    433 /// dump - Print this standard conversion sequence to standard
    434 /// error. Useful for debugging overloading issues.
    435 void StandardConversionSequence::dump() const {
    436   raw_ostream &OS = llvm::errs();
    437   bool PrintedSomething = false;
    438   if (First != ICK_Identity) {
    439     OS << GetImplicitConversionName(First);
    440     PrintedSomething = true;
    441   }
    442 
    443   if (Second != ICK_Identity) {
    444     if (PrintedSomething) {
    445       OS << " -> ";
    446     }
    447     OS << GetImplicitConversionName(Second);
    448 
    449     if (CopyConstructor) {
    450       OS << " (by copy constructor)";
    451     } else if (DirectBinding) {
    452       OS << " (direct reference binding)";
    453     } else if (ReferenceBinding) {
    454       OS << " (reference binding)";
    455     }
    456     PrintedSomething = true;
    457   }
    458 
    459   if (Third != ICK_Identity) {
    460     if (PrintedSomething) {
    461       OS << " -> ";
    462     }
    463     OS << GetImplicitConversionName(Third);
    464     PrintedSomething = true;
    465   }
    466 
    467   if (!PrintedSomething) {
    468     OS << "No conversions required";
    469   }
    470 }
    471 
    472 /// dump - Print this user-defined conversion sequence to standard
    473 /// error. Useful for debugging overloading issues.
    474 void UserDefinedConversionSequence::dump() const {
    475   raw_ostream &OS = llvm::errs();
    476   if (Before.First || Before.Second || Before.Third) {
    477     Before.dump();
    478     OS << " -> ";
    479   }
    480   if (ConversionFunction)
    481     OS << '\'' << *ConversionFunction << '\'';
    482   else
    483     OS << "aggregate initialization";
    484   if (After.First || After.Second || After.Third) {
    485     OS << " -> ";
    486     After.dump();
    487   }
    488 }
    489 
    490 /// dump - Print this implicit conversion sequence to standard
    491 /// error. Useful for debugging overloading issues.
    492 void ImplicitConversionSequence::dump() const {
    493   raw_ostream &OS = llvm::errs();
    494   if (isStdInitializerListElement())
    495     OS << "Worst std::initializer_list element conversion: ";
    496   switch (ConversionKind) {
    497   case StandardConversion:
    498     OS << "Standard conversion: ";
    499     Standard.dump();
    500     break;
    501   case UserDefinedConversion:
    502     OS << "User-defined conversion: ";
    503     UserDefined.dump();
    504     break;
    505   case EllipsisConversion:
    506     OS << "Ellipsis conversion";
    507     break;
    508   case AmbiguousConversion:
    509     OS << "Ambiguous conversion";
    510     break;
    511   case BadConversion:
    512     OS << "Bad conversion";
    513     break;
    514   }
    515 
    516   OS << "\n";
    517 }
    518 
    519 void AmbiguousConversionSequence::construct() {
    520   new (&conversions()) ConversionSet();
    521 }
    522 
    523 void AmbiguousConversionSequence::destruct() {
    524   conversions().~ConversionSet();
    525 }
    526 
    527 void
    528 AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
    529   FromTypePtr = O.FromTypePtr;
    530   ToTypePtr = O.ToTypePtr;
    531   new (&conversions()) ConversionSet(O.conversions());
    532 }
    533 
    534 namespace {
    535   // Structure used by DeductionFailureInfo to store
    536   // template argument information.
    537   struct DFIArguments {
    538     TemplateArgument FirstArg;
    539     TemplateArgument SecondArg;
    540   };
    541   // Structure used by DeductionFailureInfo to store
    542   // template parameter and template argument information.
    543   struct DFIParamWithArguments : DFIArguments {
    544     TemplateParameter Param;
    545   };
    546 }
    547 
    548 /// \brief Convert from Sema's representation of template deduction information
    549 /// to the form used in overload-candidate information.
    550 DeductionFailureInfo
    551 clang::MakeDeductionFailureInfo(ASTContext &Context,
    552                                 Sema::TemplateDeductionResult TDK,
    553                                 TemplateDeductionInfo &Info) {
    554   DeductionFailureInfo Result;
    555   Result.Result = static_cast<unsigned>(TDK);
    556   Result.HasDiagnostic = false;
    557   Result.Data = nullptr;
    558   switch (TDK) {
    559   case Sema::TDK_Success:
    560   case Sema::TDK_Invalid:
    561   case Sema::TDK_InstantiationDepth:
    562   case Sema::TDK_TooManyArguments:
    563   case Sema::TDK_TooFewArguments:
    564     break;
    565 
    566   case Sema::TDK_Incomplete:
    567   case Sema::TDK_InvalidExplicitArguments:
    568     Result.Data = Info.Param.getOpaqueValue();
    569     break;
    570 
    571   case Sema::TDK_NonDeducedMismatch: {
    572     // FIXME: Should allocate from normal heap so that we can free this later.
    573     DFIArguments *Saved = new (Context) DFIArguments;
    574     Saved->FirstArg = Info.FirstArg;
    575     Saved->SecondArg = Info.SecondArg;
    576     Result.Data = Saved;
    577     break;
    578   }
    579 
    580   case Sema::TDK_Inconsistent:
    581   case Sema::TDK_Underqualified: {
    582     // FIXME: Should allocate from normal heap so that we can free this later.
    583     DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
    584     Saved->Param = Info.Param;
    585     Saved->FirstArg = Info.FirstArg;
    586     Saved->SecondArg = Info.SecondArg;
    587     Result.Data = Saved;
    588     break;
    589   }
    590 
    591   case Sema::TDK_SubstitutionFailure:
    592     Result.Data = Info.take();
    593     if (Info.hasSFINAEDiagnostic()) {
    594       PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
    595           SourceLocation(), PartialDiagnostic::NullDiagnostic());
    596       Info.takeSFINAEDiagnostic(*Diag);
    597       Result.HasDiagnostic = true;
    598     }
    599     break;
    600 
    601   case Sema::TDK_FailedOverloadResolution:
    602     Result.Data = Info.Expression;
    603     break;
    604 
    605   case Sema::TDK_MiscellaneousDeductionFailure:
    606     break;
    607   }
    608 
    609   return Result;
    610 }
    611 
    612 void DeductionFailureInfo::Destroy() {
    613   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
    614   case Sema::TDK_Success:
    615   case Sema::TDK_Invalid:
    616   case Sema::TDK_InstantiationDepth:
    617   case Sema::TDK_Incomplete:
    618   case Sema::TDK_TooManyArguments:
    619   case Sema::TDK_TooFewArguments:
    620   case Sema::TDK_InvalidExplicitArguments:
    621   case Sema::TDK_FailedOverloadResolution:
    622     break;
    623 
    624   case Sema::TDK_Inconsistent:
    625   case Sema::TDK_Underqualified:
    626   case Sema::TDK_NonDeducedMismatch:
    627     // FIXME: Destroy the data?
    628     Data = nullptr;
    629     break;
    630 
    631   case Sema::TDK_SubstitutionFailure:
    632     // FIXME: Destroy the template argument list?
    633     Data = nullptr;
    634     if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
    635       Diag->~PartialDiagnosticAt();
    636       HasDiagnostic = false;
    637     }
    638     break;
    639 
    640   // Unhandled
    641   case Sema::TDK_MiscellaneousDeductionFailure:
    642     break;
    643   }
    644 }
    645 
    646 PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() {
    647   if (HasDiagnostic)
    648     return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
    649   return nullptr;
    650 }
    651 
    652 TemplateParameter DeductionFailureInfo::getTemplateParameter() {
    653   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
    654   case Sema::TDK_Success:
    655   case Sema::TDK_Invalid:
    656   case Sema::TDK_InstantiationDepth:
    657   case Sema::TDK_TooManyArguments:
    658   case Sema::TDK_TooFewArguments:
    659   case Sema::TDK_SubstitutionFailure:
    660   case Sema::TDK_NonDeducedMismatch:
    661   case Sema::TDK_FailedOverloadResolution:
    662     return TemplateParameter();
    663 
    664   case Sema::TDK_Incomplete:
    665   case Sema::TDK_InvalidExplicitArguments:
    666     return TemplateParameter::getFromOpaqueValue(Data);
    667 
    668   case Sema::TDK_Inconsistent:
    669   case Sema::TDK_Underqualified:
    670     return static_cast<DFIParamWithArguments*>(Data)->Param;
    671 
    672   // Unhandled
    673   case Sema::TDK_MiscellaneousDeductionFailure:
    674     break;
    675   }
    676 
    677   return TemplateParameter();
    678 }
    679 
    680 TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() {
    681   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
    682   case Sema::TDK_Success:
    683   case Sema::TDK_Invalid:
    684   case Sema::TDK_InstantiationDepth:
    685   case Sema::TDK_TooManyArguments:
    686   case Sema::TDK_TooFewArguments:
    687   case Sema::TDK_Incomplete:
    688   case Sema::TDK_InvalidExplicitArguments:
    689   case Sema::TDK_Inconsistent:
    690   case Sema::TDK_Underqualified:
    691   case Sema::TDK_NonDeducedMismatch:
    692   case Sema::TDK_FailedOverloadResolution:
    693     return nullptr;
    694 
    695   case Sema::TDK_SubstitutionFailure:
    696     return static_cast<TemplateArgumentList*>(Data);
    697 
    698   // Unhandled
    699   case Sema::TDK_MiscellaneousDeductionFailure:
    700     break;
    701   }
    702 
    703   return nullptr;
    704 }
    705 
    706 const TemplateArgument *DeductionFailureInfo::getFirstArg() {
    707   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
    708   case Sema::TDK_Success:
    709   case Sema::TDK_Invalid:
    710   case Sema::TDK_InstantiationDepth:
    711   case Sema::TDK_Incomplete:
    712   case Sema::TDK_TooManyArguments:
    713   case Sema::TDK_TooFewArguments:
    714   case Sema::TDK_InvalidExplicitArguments:
    715   case Sema::TDK_SubstitutionFailure:
    716   case Sema::TDK_FailedOverloadResolution:
    717     return nullptr;
    718 
    719   case Sema::TDK_Inconsistent:
    720   case Sema::TDK_Underqualified:
    721   case Sema::TDK_NonDeducedMismatch:
    722     return &static_cast<DFIArguments*>(Data)->FirstArg;
    723 
    724   // Unhandled
    725   case Sema::TDK_MiscellaneousDeductionFailure:
    726     break;
    727   }
    728 
    729   return nullptr;
    730 }
    731 
    732 const TemplateArgument *DeductionFailureInfo::getSecondArg() {
    733   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
    734   case Sema::TDK_Success:
    735   case Sema::TDK_Invalid:
    736   case Sema::TDK_InstantiationDepth:
    737   case Sema::TDK_Incomplete:
    738   case Sema::TDK_TooManyArguments:
    739   case Sema::TDK_TooFewArguments:
    740   case Sema::TDK_InvalidExplicitArguments:
    741   case Sema::TDK_SubstitutionFailure:
    742   case Sema::TDK_FailedOverloadResolution:
    743     return nullptr;
    744 
    745   case Sema::TDK_Inconsistent:
    746   case Sema::TDK_Underqualified:
    747   case Sema::TDK_NonDeducedMismatch:
    748     return &static_cast<DFIArguments*>(Data)->SecondArg;
    749 
    750   // Unhandled
    751   case Sema::TDK_MiscellaneousDeductionFailure:
    752     break;
    753   }
    754 
    755   return nullptr;
    756 }
    757 
    758 Expr *DeductionFailureInfo::getExpr() {
    759   if (static_cast<Sema::TemplateDeductionResult>(Result) ==
    760         Sema::TDK_FailedOverloadResolution)
    761     return static_cast<Expr*>(Data);
    762 
    763   return nullptr;
    764 }
    765 
    766 void OverloadCandidateSet::destroyCandidates() {
    767   for (iterator i = begin(), e = end(); i != e; ++i) {
    768     for (unsigned ii = 0, ie = i->NumConversions; ii != ie; ++ii)
    769       i->Conversions[ii].~ImplicitConversionSequence();
    770     if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction)
    771       i->DeductionFailure.Destroy();
    772   }
    773 }
    774 
    775 void OverloadCandidateSet::clear() {
    776   destroyCandidates();
    777   NumInlineSequences = 0;
    778   Candidates.clear();
    779   Functions.clear();
    780 }
    781 
    782 namespace {
    783   class UnbridgedCastsSet {
    784     struct Entry {
    785       Expr **Addr;
    786       Expr *Saved;
    787     };
    788     SmallVector<Entry, 2> Entries;
    789 
    790   public:
    791     void save(Sema &S, Expr *&E) {
    792       assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
    793       Entry entry = { &E, E };
    794       Entries.push_back(entry);
    795       E = S.stripARCUnbridgedCast(E);
    796     }
    797 
    798     void restore() {
    799       for (SmallVectorImpl<Entry>::iterator
    800              i = Entries.begin(), e = Entries.end(); i != e; ++i)
    801         *i->Addr = i->Saved;
    802     }
    803   };
    804 }
    805 
    806 /// checkPlaceholderForOverload - Do any interesting placeholder-like
    807 /// preprocessing on the given expression.
    808 ///
    809 /// \param unbridgedCasts a collection to which to add unbridged casts;
    810 ///   without this, they will be immediately diagnosed as errors
    811 ///
    812 /// Return true on unrecoverable error.
    813 static bool
    814 checkPlaceholderForOverload(Sema &S, Expr *&E,
    815                             UnbridgedCastsSet *unbridgedCasts = nullptr) {
    816   if (const BuiltinType *placeholder =  E->getType()->getAsPlaceholderType()) {
    817     // We can't handle overloaded expressions here because overload
    818     // resolution might reasonably tweak them.
    819     if (placeholder->getKind() == BuiltinType::Overload) return false;
    820 
    821     // If the context potentially accepts unbridged ARC casts, strip
    822     // the unbridged cast and add it to the collection for later restoration.
    823     if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
    824         unbridgedCasts) {
    825       unbridgedCasts->save(S, E);
    826       return false;
    827     }
    828 
    829     // Go ahead and check everything else.
    830     ExprResult result = S.CheckPlaceholderExpr(E);
    831     if (result.isInvalid())
    832       return true;
    833 
    834     E = result.get();
    835     return false;
    836   }
    837 
    838   // Nothing to do.
    839   return false;
    840 }
    841 
    842 /// checkArgPlaceholdersForOverload - Check a set of call operands for
    843 /// placeholders.
    844 static bool checkArgPlaceholdersForOverload(Sema &S,
    845                                             MultiExprArg Args,
    846                                             UnbridgedCastsSet &unbridged) {
    847   for (unsigned i = 0, e = Args.size(); i != e; ++i)
    848     if (checkPlaceholderForOverload(S, Args[i], &unbridged))
    849       return true;
    850 
    851   return false;
    852 }
    853 
    854 // IsOverload - Determine whether the given New declaration is an
    855 // overload of the declarations in Old. This routine returns false if
    856 // New and Old cannot be overloaded, e.g., if New has the same
    857 // signature as some function in Old (C++ 1.3.10) or if the Old
    858 // declarations aren't functions (or function templates) at all. When
    859 // it does return false, MatchedDecl will point to the decl that New
    860 // cannot be overloaded with.  This decl may be a UsingShadowDecl on
    861 // top of the underlying declaration.
    862 //
    863 // Example: Given the following input:
    864 //
    865 //   void f(int, float); // #1
    866 //   void f(int, int); // #2
    867 //   int f(int, int); // #3
    868 //
    869 // When we process #1, there is no previous declaration of "f",
    870 // so IsOverload will not be used.
    871 //
    872 // When we process #2, Old contains only the FunctionDecl for #1.  By
    873 // comparing the parameter types, we see that #1 and #2 are overloaded
    874 // (since they have different signatures), so this routine returns
    875 // false; MatchedDecl is unchanged.
    876 //
    877 // When we process #3, Old is an overload set containing #1 and #2. We
    878 // compare the signatures of #3 to #1 (they're overloaded, so we do
    879 // nothing) and then #3 to #2. Since the signatures of #3 and #2 are
    880 // identical (return types of functions are not part of the
    881 // signature), IsOverload returns false and MatchedDecl will be set to
    882 // point to the FunctionDecl for #2.
    883 //
    884 // 'NewIsUsingShadowDecl' indicates that 'New' is being introduced
    885 // into a class by a using declaration.  The rules for whether to hide
    886 // shadow declarations ignore some properties which otherwise figure
    887 // into a function template's signature.
    888 Sema::OverloadKind
    889 Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
    890                     NamedDecl *&Match, bool NewIsUsingDecl) {
    891   for (LookupResult::iterator I = Old.begin(), E = Old.end();
    892          I != E; ++I) {
    893     NamedDecl *OldD = *I;
    894 
    895     bool OldIsUsingDecl = false;
    896     if (isa<UsingShadowDecl>(OldD)) {
    897       OldIsUsingDecl = true;
    898 
    899       // We can always introduce two using declarations into the same
    900       // context, even if they have identical signatures.
    901       if (NewIsUsingDecl) continue;
    902 
    903       OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
    904     }
    905 
    906     // A using-declaration does not conflict with another declaration
    907     // if one of them is hidden.
    908     if ((OldIsUsingDecl || NewIsUsingDecl) && !isVisible(*I))
    909       continue;
    910 
    911     // If either declaration was introduced by a using declaration,
    912     // we'll need to use slightly different rules for matching.
    913     // Essentially, these rules are the normal rules, except that
    914     // function templates hide function templates with different
    915     // return types or template parameter lists.
    916     bool UseMemberUsingDeclRules =
    917       (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() &&
    918       !New->getFriendObjectKind();
    919 
    920     if (FunctionDecl *OldF = OldD->getAsFunction()) {
    921       if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
    922         if (UseMemberUsingDeclRules && OldIsUsingDecl) {
    923           HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
    924           continue;
    925         }
    926 
    927         if (!isa<FunctionTemplateDecl>(OldD) &&
    928             !shouldLinkPossiblyHiddenDecl(*I, New))
    929           continue;
    930 
    931         Match = *I;
    932         return Ovl_Match;
    933       }
    934     } else if (isa<UsingDecl>(OldD)) {
    935       // We can overload with these, which can show up when doing
    936       // redeclaration checks for UsingDecls.
    937       assert(Old.getLookupKind() == LookupUsingDeclName);
    938     } else if (isa<TagDecl>(OldD)) {
    939       // We can always overload with tags by hiding them.
    940     } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
    941       // Optimistically assume that an unresolved using decl will
    942       // overload; if it doesn't, we'll have to diagnose during
    943       // template instantiation.
    944     } else {
    945       // (C++ 13p1):
    946       //   Only function declarations can be overloaded; object and type
    947       //   declarations cannot be overloaded.
    948       Match = *I;
    949       return Ovl_NonFunction;
    950     }
    951   }
    952 
    953   return Ovl_Overload;
    954 }
    955 
    956 bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
    957                       bool UseUsingDeclRules) {
    958   // C++ [basic.start.main]p2: This function shall not be overloaded.
    959   if (New->isMain())
    960     return false;
    961 
    962   // MSVCRT user defined entry points cannot be overloaded.
    963   if (New->isMSVCRTEntryPoint())
    964     return false;
    965 
    966   FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
    967   FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
    968 
    969   // C++ [temp.fct]p2:
    970   //   A function template can be overloaded with other function templates
    971   //   and with normal (non-template) functions.
    972   if ((OldTemplate == nullptr) != (NewTemplate == nullptr))
    973     return true;
    974 
    975   // Is the function New an overload of the function Old?
    976   QualType OldQType = Context.getCanonicalType(Old->getType());
    977   QualType NewQType = Context.getCanonicalType(New->getType());
    978 
    979   // Compare the signatures (C++ 1.3.10) of the two functions to
    980   // determine whether they are overloads. If we find any mismatch
    981   // in the signature, they are overloads.
    982 
    983   // If either of these functions is a K&R-style function (no
    984   // prototype), then we consider them to have matching signatures.
    985   if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
    986       isa<FunctionNoProtoType>(NewQType.getTypePtr()))
    987     return false;
    988 
    989   const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType);
    990   const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType);
    991 
    992   // The signature of a function includes the types of its
    993   // parameters (C++ 1.3.10), which includes the presence or absence
    994   // of the ellipsis; see C++ DR 357).
    995   if (OldQType != NewQType &&
    996       (OldType->getNumParams() != NewType->getNumParams() ||
    997        OldType->isVariadic() != NewType->isVariadic() ||
    998        !FunctionParamTypesAreEqual(OldType, NewType)))
    999     return true;
   1000 
   1001   // C++ [temp.over.link]p4:
   1002   //   The signature of a function template consists of its function
   1003   //   signature, its return type and its template parameter list. The names
   1004   //   of the template parameters are significant only for establishing the
   1005   //   relationship between the template parameters and the rest of the
   1006   //   signature.
   1007   //
   1008   // We check the return type and template parameter lists for function
   1009   // templates first; the remaining checks follow.
   1010   //
   1011   // However, we don't consider either of these when deciding whether
   1012   // a member introduced by a shadow declaration is hidden.
   1013   if (!UseUsingDeclRules && NewTemplate &&
   1014       (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
   1015                                        OldTemplate->getTemplateParameters(),
   1016                                        false, TPL_TemplateMatch) ||
   1017        OldType->getReturnType() != NewType->getReturnType()))
   1018     return true;
   1019 
   1020   // If the function is a class member, its signature includes the
   1021   // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
   1022   //
   1023   // As part of this, also check whether one of the member functions
   1024   // is static, in which case they are not overloads (C++
   1025   // 13.1p2). While not part of the definition of the signature,
   1026   // this check is important to determine whether these functions
   1027   // can be overloaded.
   1028   CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
   1029   CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
   1030   if (OldMethod && NewMethod &&
   1031       !OldMethod->isStatic() && !NewMethod->isStatic()) {
   1032     if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) {
   1033       if (!UseUsingDeclRules &&
   1034           (OldMethod->getRefQualifier() == RQ_None ||
   1035            NewMethod->getRefQualifier() == RQ_None)) {
   1036         // C++0x [over.load]p2:
   1037         //   - Member function declarations with the same name and the same
   1038         //     parameter-type-list as well as member function template
   1039         //     declarations with the same name, the same parameter-type-list, and
   1040         //     the same template parameter lists cannot be overloaded if any of
   1041         //     them, but not all, have a ref-qualifier (8.3.5).
   1042         Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
   1043           << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
   1044         Diag(OldMethod->getLocation(), diag::note_previous_declaration);
   1045       }
   1046       return true;
   1047     }
   1048 
   1049     // We may not have applied the implicit const for a constexpr member
   1050     // function yet (because we haven't yet resolved whether this is a static
   1051     // or non-static member function). Add it now, on the assumption that this
   1052     // is a redeclaration of OldMethod.
   1053     unsigned OldQuals = OldMethod->getTypeQualifiers();
   1054     unsigned NewQuals = NewMethod->getTypeQualifiers();
   1055     if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() &&
   1056         !isa<CXXConstructorDecl>(NewMethod))
   1057       NewQuals |= Qualifiers::Const;
   1058 
   1059     // We do not allow overloading based off of '__restrict'.
   1060     OldQuals &= ~Qualifiers::Restrict;
   1061     NewQuals &= ~Qualifiers::Restrict;
   1062     if (OldQuals != NewQuals)
   1063       return true;
   1064   }
   1065 
   1066   // Though pass_object_size is placed on parameters and takes an argument, we
   1067   // consider it to be a function-level modifier for the sake of function
   1068   // identity. Either the function has one or more parameters with
   1069   // pass_object_size or it doesn't.
   1070   if (functionHasPassObjectSizeParams(New) !=
   1071       functionHasPassObjectSizeParams(Old))
   1072     return true;
   1073 
   1074   // enable_if attributes are an order-sensitive part of the signature.
   1075   for (specific_attr_iterator<EnableIfAttr>
   1076          NewI = New->specific_attr_begin<EnableIfAttr>(),
   1077          NewE = New->specific_attr_end<EnableIfAttr>(),
   1078          OldI = Old->specific_attr_begin<EnableIfAttr>(),
   1079          OldE = Old->specific_attr_end<EnableIfAttr>();
   1080        NewI != NewE || OldI != OldE; ++NewI, ++OldI) {
   1081     if (NewI == NewE || OldI == OldE)
   1082       return true;
   1083     llvm::FoldingSetNodeID NewID, OldID;
   1084     NewI->getCond()->Profile(NewID, Context, true);
   1085     OldI->getCond()->Profile(OldID, Context, true);
   1086     if (NewID != OldID)
   1087       return true;
   1088   }
   1089 
   1090   if (getLangOpts().CUDA && getLangOpts().CUDATargetOverloads) {
   1091     CUDAFunctionTarget NewTarget = IdentifyCUDATarget(New),
   1092                        OldTarget = IdentifyCUDATarget(Old);
   1093     if (NewTarget == CFT_InvalidTarget || NewTarget == CFT_Global)
   1094       return false;
   1095 
   1096     assert((OldTarget != CFT_InvalidTarget) && "Unexpected invalid target.");
   1097 
   1098     // Don't allow mixing of HD with other kinds. This guarantees that
   1099     // we have only one viable function with this signature on any
   1100     // side of CUDA compilation .
   1101     if ((NewTarget == CFT_HostDevice) || (OldTarget == CFT_HostDevice))
   1102       return false;
   1103 
   1104     // Allow overloading of functions with same signature, but
   1105     // different CUDA target attributes.
   1106     return NewTarget != OldTarget;
   1107   }
   1108 
   1109   // The signatures match; this is not an overload.
   1110   return false;
   1111 }
   1112 
   1113 /// \brief Checks availability of the function depending on the current
   1114 /// function context. Inside an unavailable function, unavailability is ignored.
   1115 ///
   1116 /// \returns true if \arg FD is unavailable and current context is inside
   1117 /// an available function, false otherwise.
   1118 bool Sema::isFunctionConsideredUnavailable(FunctionDecl *FD) {
   1119   return FD->isUnavailable() && !cast<Decl>(CurContext)->isUnavailable();
   1120 }
   1121 
   1122 /// \brief Tries a user-defined conversion from From to ToType.
   1123 ///
   1124 /// Produces an implicit conversion sequence for when a standard conversion
   1125 /// is not an option. See TryImplicitConversion for more information.
   1126 static ImplicitConversionSequence
   1127 TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
   1128                          bool SuppressUserConversions,
   1129                          bool AllowExplicit,
   1130                          bool InOverloadResolution,
   1131                          bool CStyle,
   1132                          bool AllowObjCWritebackConversion,
   1133                          bool AllowObjCConversionOnExplicit) {
   1134   ImplicitConversionSequence ICS;
   1135 
   1136   if (SuppressUserConversions) {
   1137     // We're not in the case above, so there is no conversion that
   1138     // we can perform.
   1139     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
   1140     return ICS;
   1141   }
   1142 
   1143   // Attempt user-defined conversion.
   1144   OverloadCandidateSet Conversions(From->getExprLoc(),
   1145                                    OverloadCandidateSet::CSK_Normal);
   1146   switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined,
   1147                                   Conversions, AllowExplicit,
   1148                                   AllowObjCConversionOnExplicit)) {
   1149   case OR_Success:
   1150   case OR_Deleted:
   1151     ICS.setUserDefined();
   1152     ICS.UserDefined.Before.setAsIdentityConversion();
   1153     // C++ [over.ics.user]p4:
   1154     //   A conversion of an expression of class type to the same class
   1155     //   type is given Exact Match rank, and a conversion of an
   1156     //   expression of class type to a base class of that type is
   1157     //   given Conversion rank, in spite of the fact that a copy
   1158     //   constructor (i.e., a user-defined conversion function) is
   1159     //   called for those cases.
   1160     if (CXXConstructorDecl *Constructor
   1161           = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
   1162       QualType FromCanon
   1163         = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
   1164       QualType ToCanon
   1165         = S.Context.getCanonicalType(ToType).getUnqualifiedType();
   1166       if (Constructor->isCopyConstructor() &&
   1167           (FromCanon == ToCanon ||
   1168            S.IsDerivedFrom(From->getLocStart(), FromCanon, ToCanon))) {
   1169         // Turn this into a "standard" conversion sequence, so that it
   1170         // gets ranked with standard conversion sequences.
   1171         ICS.setStandard();
   1172         ICS.Standard.setAsIdentityConversion();
   1173         ICS.Standard.setFromType(From->getType());
   1174         ICS.Standard.setAllToTypes(ToType);
   1175         ICS.Standard.CopyConstructor = Constructor;
   1176         if (ToCanon != FromCanon)
   1177           ICS.Standard.Second = ICK_Derived_To_Base;
   1178       }
   1179     }
   1180     break;
   1181 
   1182   case OR_Ambiguous:
   1183     ICS.setAmbiguous();
   1184     ICS.Ambiguous.setFromType(From->getType());
   1185     ICS.Ambiguous.setToType(ToType);
   1186     for (OverloadCandidateSet::iterator Cand = Conversions.begin();
   1187          Cand != Conversions.end(); ++Cand)
   1188       if (Cand->Viable)
   1189         ICS.Ambiguous.addConversion(Cand->Function);
   1190     break;
   1191 
   1192     // Fall through.
   1193   case OR_No_Viable_Function:
   1194     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
   1195     break;
   1196   }
   1197 
   1198   return ICS;
   1199 }
   1200 
   1201 /// TryImplicitConversion - Attempt to perform an implicit conversion
   1202 /// from the given expression (Expr) to the given type (ToType). This
   1203 /// function returns an implicit conversion sequence that can be used
   1204 /// to perform the initialization. Given
   1205 ///
   1206 ///   void f(float f);
   1207 ///   void g(int i) { f(i); }
   1208 ///
   1209 /// this routine would produce an implicit conversion sequence to
   1210 /// describe the initialization of f from i, which will be a standard
   1211 /// conversion sequence containing an lvalue-to-rvalue conversion (C++
   1212 /// 4.1) followed by a floating-integral conversion (C++ 4.9).
   1213 //
   1214 /// Note that this routine only determines how the conversion can be
   1215 /// performed; it does not actually perform the conversion. As such,
   1216 /// it will not produce any diagnostics if no conversion is available,
   1217 /// but will instead return an implicit conversion sequence of kind
   1218 /// "BadConversion".
   1219 ///
   1220 /// If @p SuppressUserConversions, then user-defined conversions are
   1221 /// not permitted.
   1222 /// If @p AllowExplicit, then explicit user-defined conversions are
   1223 /// permitted.
   1224 ///
   1225 /// \param AllowObjCWritebackConversion Whether we allow the Objective-C
   1226 /// writeback conversion, which allows __autoreleasing id* parameters to
   1227 /// be initialized with __strong id* or __weak id* arguments.
   1228 static ImplicitConversionSequence
   1229 TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
   1230                       bool SuppressUserConversions,
   1231                       bool AllowExplicit,
   1232                       bool InOverloadResolution,
   1233                       bool CStyle,
   1234                       bool AllowObjCWritebackConversion,
   1235                       bool AllowObjCConversionOnExplicit) {
   1236   ImplicitConversionSequence ICS;
   1237   if (IsStandardConversion(S, From, ToType, InOverloadResolution,
   1238                            ICS.Standard, CStyle, AllowObjCWritebackConversion)){
   1239     ICS.setStandard();
   1240     return ICS;
   1241   }
   1242 
   1243   if (!S.getLangOpts().CPlusPlus) {
   1244     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
   1245     return ICS;
   1246   }
   1247 
   1248   // C++ [over.ics.user]p4:
   1249   //   A conversion of an expression of class type to the same class
   1250   //   type is given Exact Match rank, and a conversion of an
   1251   //   expression of class type to a base class of that type is
   1252   //   given Conversion rank, in spite of the fact that a copy/move
   1253   //   constructor (i.e., a user-defined conversion function) is
   1254   //   called for those cases.
   1255   QualType FromType = From->getType();
   1256   if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
   1257       (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
   1258        S.IsDerivedFrom(From->getLocStart(), FromType, ToType))) {
   1259     ICS.setStandard();
   1260     ICS.Standard.setAsIdentityConversion();
   1261     ICS.Standard.setFromType(FromType);
   1262     ICS.Standard.setAllToTypes(ToType);
   1263 
   1264     // We don't actually check at this point whether there is a valid
   1265     // copy/move constructor, since overloading just assumes that it
   1266     // exists. When we actually perform initialization, we'll find the
   1267     // appropriate constructor to copy the returned object, if needed.
   1268     ICS.Standard.CopyConstructor = nullptr;
   1269 
   1270     // Determine whether this is considered a derived-to-base conversion.
   1271     if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
   1272       ICS.Standard.Second = ICK_Derived_To_Base;
   1273 
   1274     return ICS;
   1275   }
   1276 
   1277   return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
   1278                                   AllowExplicit, InOverloadResolution, CStyle,
   1279                                   AllowObjCWritebackConversion,
   1280                                   AllowObjCConversionOnExplicit);
   1281 }
   1282 
   1283 ImplicitConversionSequence
   1284 Sema::TryImplicitConversion(Expr *From, QualType ToType,
   1285                             bool SuppressUserConversions,
   1286                             bool AllowExplicit,
   1287                             bool InOverloadResolution,
   1288                             bool CStyle,
   1289                             bool AllowObjCWritebackConversion) {
   1290   return ::TryImplicitConversion(*this, From, ToType,
   1291                                  SuppressUserConversions, AllowExplicit,
   1292                                  InOverloadResolution, CStyle,
   1293                                  AllowObjCWritebackConversion,
   1294                                  /*AllowObjCConversionOnExplicit=*/false);
   1295 }
   1296 
   1297 /// PerformImplicitConversion - Perform an implicit conversion of the
   1298 /// expression From to the type ToType. Returns the
   1299 /// converted expression. Flavor is the kind of conversion we're
   1300 /// performing, used in the error message. If @p AllowExplicit,
   1301 /// explicit user-defined conversions are permitted.
   1302 ExprResult
   1303 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
   1304                                 AssignmentAction Action, bool AllowExplicit) {
   1305   ImplicitConversionSequence ICS;
   1306   return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
   1307 }
   1308 
   1309 ExprResult
   1310 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
   1311                                 AssignmentAction Action, bool AllowExplicit,
   1312                                 ImplicitConversionSequence& ICS) {
   1313   if (checkPlaceholderForOverload(*this, From))
   1314     return ExprError();
   1315 
   1316   // Objective-C ARC: Determine whether we will allow the writeback conversion.
   1317   bool AllowObjCWritebackConversion
   1318     = getLangOpts().ObjCAutoRefCount &&
   1319       (Action == AA_Passing || Action == AA_Sending);
   1320   if (getLangOpts().ObjC1)
   1321     CheckObjCBridgeRelatedConversions(From->getLocStart(),
   1322                                       ToType, From->getType(), From);
   1323   ICS = ::TryImplicitConversion(*this, From, ToType,
   1324                                 /*SuppressUserConversions=*/false,
   1325                                 AllowExplicit,
   1326                                 /*InOverloadResolution=*/false,
   1327                                 /*CStyle=*/false,
   1328                                 AllowObjCWritebackConversion,
   1329                                 /*AllowObjCConversionOnExplicit=*/false);
   1330   return PerformImplicitConversion(From, ToType, ICS, Action);
   1331 }
   1332 
   1333 /// \brief Determine whether the conversion from FromType to ToType is a valid
   1334 /// conversion that strips "noreturn" off the nested function type.
   1335 bool Sema::IsNoReturnConversion(QualType FromType, QualType ToType,
   1336                                 QualType &ResultTy) {
   1337   if (Context.hasSameUnqualifiedType(FromType, ToType))
   1338     return false;
   1339 
   1340   // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
   1341   // where F adds one of the following at most once:
   1342   //   - a pointer
   1343   //   - a member pointer
   1344   //   - a block pointer
   1345   CanQualType CanTo = Context.getCanonicalType(ToType);
   1346   CanQualType CanFrom = Context.getCanonicalType(FromType);
   1347   Type::TypeClass TyClass = CanTo->getTypeClass();
   1348   if (TyClass != CanFrom->getTypeClass()) return false;
   1349   if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
   1350     if (TyClass == Type::Pointer) {
   1351       CanTo = CanTo.getAs<PointerType>()->getPointeeType();
   1352       CanFrom = CanFrom.getAs<PointerType>()->getPointeeType();
   1353     } else if (TyClass == Type::BlockPointer) {
   1354       CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType();
   1355       CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType();
   1356     } else if (TyClass == Type::MemberPointer) {
   1357       CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType();
   1358       CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType();
   1359     } else {
   1360       return false;
   1361     }
   1362 
   1363     TyClass = CanTo->getTypeClass();
   1364     if (TyClass != CanFrom->getTypeClass()) return false;
   1365     if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
   1366       return false;
   1367   }
   1368 
   1369   const FunctionType *FromFn = cast<FunctionType>(CanFrom);
   1370   FunctionType::ExtInfo EInfo = FromFn->getExtInfo();
   1371   if (!EInfo.getNoReturn()) return false;
   1372 
   1373   FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false));
   1374   assert(QualType(FromFn, 0).isCanonical());
   1375   if (QualType(FromFn, 0) != CanTo) return false;
   1376 
   1377   ResultTy = ToType;
   1378   return true;
   1379 }
   1380 
   1381 /// \brief Determine whether the conversion from FromType to ToType is a valid
   1382 /// vector conversion.
   1383 ///
   1384 /// \param ICK Will be set to the vector conversion kind, if this is a vector
   1385 /// conversion.
   1386 static bool IsVectorConversion(Sema &S, QualType FromType,
   1387                                QualType ToType, ImplicitConversionKind &ICK) {
   1388   // We need at least one of these types to be a vector type to have a vector
   1389   // conversion.
   1390   if (!ToType->isVectorType() && !FromType->isVectorType())
   1391     return false;
   1392 
   1393   // Identical types require no conversions.
   1394   if (S.Context.hasSameUnqualifiedType(FromType, ToType))
   1395     return false;
   1396 
   1397   // There are no conversions between extended vector types, only identity.
   1398   if (ToType->isExtVectorType()) {
   1399     // There are no conversions between extended vector types other than the
   1400     // identity conversion.
   1401     if (FromType->isExtVectorType())
   1402       return false;
   1403 
   1404     // Vector splat from any arithmetic type to a vector.
   1405     if (FromType->isArithmeticType()) {
   1406       ICK = ICK_Vector_Splat;
   1407       return true;
   1408     }
   1409   }
   1410 
   1411   // We can perform the conversion between vector types in the following cases:
   1412   // 1)vector types are equivalent AltiVec and GCC vector types
   1413   // 2)lax vector conversions are permitted and the vector types are of the
   1414   //   same size
   1415   if (ToType->isVectorType() && FromType->isVectorType()) {
   1416     if (S.Context.areCompatibleVectorTypes(FromType, ToType) ||
   1417         S.isLaxVectorConversion(FromType, ToType)) {
   1418       ICK = ICK_Vector_Conversion;
   1419       return true;
   1420     }
   1421   }
   1422 
   1423   return false;
   1424 }
   1425 
   1426 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
   1427                                 bool InOverloadResolution,
   1428                                 StandardConversionSequence &SCS,
   1429                                 bool CStyle);
   1430 
   1431 /// IsStandardConversion - Determines whether there is a standard
   1432 /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
   1433 /// expression From to the type ToType. Standard conversion sequences
   1434 /// only consider non-class types; for conversions that involve class
   1435 /// types, use TryImplicitConversion. If a conversion exists, SCS will
   1436 /// contain the standard conversion sequence required to perform this
   1437 /// conversion and this routine will return true. Otherwise, this
   1438 /// routine will return false and the value of SCS is unspecified.
   1439 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
   1440                                  bool InOverloadResolution,
   1441                                  StandardConversionSequence &SCS,
   1442                                  bool CStyle,
   1443                                  bool AllowObjCWritebackConversion) {
   1444   QualType FromType = From->getType();
   1445 
   1446   // Standard conversions (C++ [conv])
   1447   SCS.setAsIdentityConversion();
   1448   SCS.IncompatibleObjC = false;
   1449   SCS.setFromType(FromType);
   1450   SCS.CopyConstructor = nullptr;
   1451 
   1452   // There are no standard conversions for class types in C++, so
   1453   // abort early. When overloading in C, however, we do permit them.
   1454   if (S.getLangOpts().CPlusPlus &&
   1455       (FromType->isRecordType() || ToType->isRecordType()))
   1456     return false;
   1457 
   1458   // The first conversion can be an lvalue-to-rvalue conversion,
   1459   // array-to-pointer conversion, or function-to-pointer conversion
   1460   // (C++ 4p1).
   1461 
   1462   if (FromType == S.Context.OverloadTy) {
   1463     DeclAccessPair AccessPair;
   1464     if (FunctionDecl *Fn
   1465           = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
   1466                                                  AccessPair)) {
   1467       // We were able to resolve the address of the overloaded function,
   1468       // so we can convert to the type of that function.
   1469       FromType = Fn->getType();
   1470       SCS.setFromType(FromType);
   1471 
   1472       // we can sometimes resolve &foo<int> regardless of ToType, so check
   1473       // if the type matches (identity) or we are converting to bool
   1474       if (!S.Context.hasSameUnqualifiedType(
   1475                       S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
   1476         QualType resultTy;
   1477         // if the function type matches except for [[noreturn]], it's ok
   1478         if (!S.IsNoReturnConversion(FromType,
   1479               S.ExtractUnqualifiedFunctionType(ToType), resultTy))
   1480           // otherwise, only a boolean conversion is standard
   1481           if (!ToType->isBooleanType())
   1482             return false;
   1483       }
   1484 
   1485       // Check if the "from" expression is taking the address of an overloaded
   1486       // function and recompute the FromType accordingly. Take advantage of the
   1487       // fact that non-static member functions *must* have such an address-of
   1488       // expression.
   1489       CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
   1490       if (Method && !Method->isStatic()) {
   1491         assert(isa<UnaryOperator>(From->IgnoreParens()) &&
   1492                "Non-unary operator on non-static member address");
   1493         assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
   1494                == UO_AddrOf &&
   1495                "Non-address-of operator on non-static member address");
   1496         const Type *ClassType
   1497           = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
   1498         FromType = S.Context.getMemberPointerType(FromType, ClassType);
   1499       } else if (isa<UnaryOperator>(From->IgnoreParens())) {
   1500         assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
   1501                UO_AddrOf &&
   1502                "Non-address-of operator for overloaded function expression");
   1503         FromType = S.Context.getPointerType(FromType);
   1504       }
   1505 
   1506       // Check that we've computed the proper type after overload resolution.
   1507       assert(S.Context.hasSameType(
   1508         FromType,
   1509         S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
   1510     } else {
   1511       return false;
   1512     }
   1513   }
   1514   // Lvalue-to-rvalue conversion (C++11 4.1):
   1515   //   A glvalue (3.10) of a non-function, non-array type T can
   1516   //   be converted to a prvalue.
   1517   bool argIsLValue = From->isGLValue();
   1518   if (argIsLValue &&
   1519       !FromType->isFunctionType() && !FromType->isArrayType() &&
   1520       S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
   1521     SCS.First = ICK_Lvalue_To_Rvalue;
   1522 
   1523     // C11 6.3.2.1p2:
   1524     //   ... if the lvalue has atomic type, the value has the non-atomic version
   1525     //   of the type of the lvalue ...
   1526     if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
   1527       FromType = Atomic->getValueType();
   1528 
   1529     // If T is a non-class type, the type of the rvalue is the
   1530     // cv-unqualified version of T. Otherwise, the type of the rvalue
   1531     // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
   1532     // just strip the qualifiers because they don't matter.
   1533     FromType = FromType.getUnqualifiedType();
   1534   } else if (FromType->isArrayType()) {
   1535     // Array-to-pointer conversion (C++ 4.2)
   1536     SCS.First = ICK_Array_To_Pointer;
   1537 
   1538     // An lvalue or rvalue of type "array of N T" or "array of unknown
   1539     // bound of T" can be converted to an rvalue of type "pointer to
   1540     // T" (C++ 4.2p1).
   1541     FromType = S.Context.getArrayDecayedType(FromType);
   1542 
   1543     if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
   1544       // This conversion is deprecated in C++03 (D.4)
   1545       SCS.DeprecatedStringLiteralToCharPtr = true;
   1546 
   1547       // For the purpose of ranking in overload resolution
   1548       // (13.3.3.1.1), this conversion is considered an
   1549       // array-to-pointer conversion followed by a qualification
   1550       // conversion (4.4). (C++ 4.2p2)
   1551       SCS.Second = ICK_Identity;
   1552       SCS.Third = ICK_Qualification;
   1553       SCS.QualificationIncludesObjCLifetime = false;
   1554       SCS.setAllToTypes(FromType);
   1555       return true;
   1556     }
   1557   } else if (FromType->isFunctionType() && argIsLValue) {
   1558     // Function-to-pointer conversion (C++ 4.3).
   1559     SCS.First = ICK_Function_To_Pointer;
   1560 
   1561     if (auto *DRE = dyn_cast<DeclRefExpr>(From->IgnoreParenCasts()))
   1562       if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
   1563         if (!S.checkAddressOfFunctionIsAvailable(FD))
   1564           return false;
   1565 
   1566     // An lvalue of function type T can be converted to an rvalue of
   1567     // type "pointer to T." The result is a pointer to the
   1568     // function. (C++ 4.3p1).
   1569     FromType = S.Context.getPointerType(FromType);
   1570   } else {
   1571     // We don't require any conversions for the first step.
   1572     SCS.First = ICK_Identity;
   1573   }
   1574   SCS.setToType(0, FromType);
   1575 
   1576   // The second conversion can be an integral promotion, floating
   1577   // point promotion, integral conversion, floating point conversion,
   1578   // floating-integral conversion, pointer conversion,
   1579   // pointer-to-member conversion, or boolean conversion (C++ 4p1).
   1580   // For overloading in C, this can also be a "compatible-type"
   1581   // conversion.
   1582   bool IncompatibleObjC = false;
   1583   ImplicitConversionKind SecondICK = ICK_Identity;
   1584   if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
   1585     // The unqualified versions of the types are the same: there's no
   1586     // conversion to do.
   1587     SCS.Second = ICK_Identity;
   1588   } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
   1589     // Integral promotion (C++ 4.5).
   1590     SCS.Second = ICK_Integral_Promotion;
   1591     FromType = ToType.getUnqualifiedType();
   1592   } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
   1593     // Floating point promotion (C++ 4.6).
   1594     SCS.Second = ICK_Floating_Promotion;
   1595     FromType = ToType.getUnqualifiedType();
   1596   } else if (S.IsComplexPromotion(FromType, ToType)) {
   1597     // Complex promotion (Clang extension)
   1598     SCS.Second = ICK_Complex_Promotion;
   1599     FromType = ToType.getUnqualifiedType();
   1600   } else if (ToType->isBooleanType() &&
   1601              (FromType->isArithmeticType() ||
   1602               FromType->isAnyPointerType() ||
   1603               FromType->isBlockPointerType() ||
   1604               FromType->isMemberPointerType() ||
   1605               FromType->isNullPtrType())) {
   1606     // Boolean conversions (C++ 4.12).
   1607     SCS.Second = ICK_Boolean_Conversion;
   1608     FromType = S.Context.BoolTy;
   1609   } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
   1610              ToType->isIntegralType(S.Context)) {
   1611     // Integral conversions (C++ 4.7).
   1612     SCS.Second = ICK_Integral_Conversion;
   1613     FromType = ToType.getUnqualifiedType();
   1614   } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) {
   1615     // Complex conversions (C99 6.3.1.6)
   1616     SCS.Second = ICK_Complex_Conversion;
   1617     FromType = ToType.getUnqualifiedType();
   1618   } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
   1619              (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
   1620     // Complex-real conversions (C99 6.3.1.7)
   1621     SCS.Second = ICK_Complex_Real;
   1622     FromType = ToType.getUnqualifiedType();
   1623   } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
   1624     // Floating point conversions (C++ 4.8).
   1625     SCS.Second = ICK_Floating_Conversion;
   1626     FromType = ToType.getUnqualifiedType();
   1627   } else if ((FromType->isRealFloatingType() &&
   1628               ToType->isIntegralType(S.Context)) ||
   1629              (FromType->isIntegralOrUnscopedEnumerationType() &&
   1630               ToType->isRealFloatingType())) {
   1631     // Floating-integral conversions (C++ 4.9).
   1632     SCS.Second = ICK_Floating_Integral;
   1633     FromType = ToType.getUnqualifiedType();
   1634   } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
   1635     SCS.Second = ICK_Block_Pointer_Conversion;
   1636   } else if (AllowObjCWritebackConversion &&
   1637              S.isObjCWritebackConversion(FromType, ToType, FromType)) {
   1638     SCS.Second = ICK_Writeback_Conversion;
   1639   } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
   1640                                    FromType, IncompatibleObjC)) {
   1641     // Pointer conversions (C++ 4.10).
   1642     SCS.Second = ICK_Pointer_Conversion;
   1643     SCS.IncompatibleObjC = IncompatibleObjC;
   1644     FromType = FromType.getUnqualifiedType();
   1645   } else if (S.IsMemberPointerConversion(From, FromType, ToType,
   1646                                          InOverloadResolution, FromType)) {
   1647     // Pointer to member conversions (4.11).
   1648     SCS.Second = ICK_Pointer_Member;
   1649   } else if (IsVectorConversion(S, FromType, ToType, SecondICK)) {
   1650     SCS.Second = SecondICK;
   1651     FromType = ToType.getUnqualifiedType();
   1652   } else if (!S.getLangOpts().CPlusPlus &&
   1653              S.Context.typesAreCompatible(ToType, FromType)) {
   1654     // Compatible conversions (Clang extension for C function overloading)
   1655     SCS.Second = ICK_Compatible_Conversion;
   1656     FromType = ToType.getUnqualifiedType();
   1657   } else if (S.IsNoReturnConversion(FromType, ToType, FromType)) {
   1658     // Treat a conversion that strips "noreturn" as an identity conversion.
   1659     SCS.Second = ICK_NoReturn_Adjustment;
   1660   } else if (IsTransparentUnionStandardConversion(S, From, ToType,
   1661                                              InOverloadResolution,
   1662                                              SCS, CStyle)) {
   1663     SCS.Second = ICK_TransparentUnionConversion;
   1664     FromType = ToType;
   1665   } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
   1666                                  CStyle)) {
   1667     // tryAtomicConversion has updated the standard conversion sequence
   1668     // appropriately.
   1669     return true;
   1670   } else if (ToType->isEventT() &&
   1671              From->isIntegerConstantExpr(S.getASTContext()) &&
   1672              From->EvaluateKnownConstInt(S.getASTContext()) == 0) {
   1673     SCS.Second = ICK_Zero_Event_Conversion;
   1674     FromType = ToType;
   1675   } else {
   1676     // No second conversion required.
   1677     SCS.Second = ICK_Identity;
   1678   }
   1679   SCS.setToType(1, FromType);
   1680 
   1681   QualType CanonFrom;
   1682   QualType CanonTo;
   1683   // The third conversion can be a qualification conversion (C++ 4p1).
   1684   bool ObjCLifetimeConversion;
   1685   if (S.IsQualificationConversion(FromType, ToType, CStyle,
   1686                                   ObjCLifetimeConversion)) {
   1687     SCS.Third = ICK_Qualification;
   1688     SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
   1689     FromType = ToType;
   1690     CanonFrom = S.Context.getCanonicalType(FromType);
   1691     CanonTo = S.Context.getCanonicalType(ToType);
   1692   } else {
   1693     // No conversion required
   1694     SCS.Third = ICK_Identity;
   1695 
   1696     // C++ [over.best.ics]p6:
   1697     //   [...] Any difference in top-level cv-qualification is
   1698     //   subsumed by the initialization itself and does not constitute
   1699     //   a conversion. [...]
   1700     CanonFrom = S.Context.getCanonicalType(FromType);
   1701     CanonTo = S.Context.getCanonicalType(ToType);
   1702     if (CanonFrom.getLocalUnqualifiedType()
   1703                                        == CanonTo.getLocalUnqualifiedType() &&
   1704         CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) {
   1705       FromType = ToType;
   1706       CanonFrom = CanonTo;
   1707     }
   1708   }
   1709   SCS.setToType(2, FromType);
   1710 
   1711   if (CanonFrom == CanonTo)
   1712     return true;
   1713 
   1714   // If we have not converted the argument type to the parameter type,
   1715   // this is a bad conversion sequence, unless we're resolving an overload in C.
   1716   if (S.getLangOpts().CPlusPlus || !InOverloadResolution)
   1717     return false;
   1718 
   1719   ExprResult ER = ExprResult{From};
   1720   auto Conv = S.CheckSingleAssignmentConstraints(ToType, ER,
   1721                                                  /*Diagnose=*/false,
   1722                                                  /*DiagnoseCFAudited=*/false,
   1723                                                  /*ConvertRHS=*/false);
   1724   if (Conv != Sema::Compatible)
   1725     return false;
   1726 
   1727   SCS.setAllToTypes(ToType);
   1728   // We need to set all three because we want this conversion to rank terribly,
   1729   // and we don't know what conversions it may overlap with.
   1730   SCS.First = ICK_C_Only_Conversion;
   1731   SCS.Second = ICK_C_Only_Conversion;
   1732   SCS.Third = ICK_C_Only_Conversion;
   1733   return true;
   1734 }
   1735 
   1736 static bool
   1737 IsTransparentUnionStandardConversion(Sema &S, Expr* From,
   1738                                      QualType &ToType,
   1739                                      bool InOverloadResolution,
   1740                                      StandardConversionSequence &SCS,
   1741                                      bool CStyle) {
   1742 
   1743   const RecordType *UT = ToType->getAsUnionType();
   1744   if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
   1745     return false;
   1746   // The field to initialize within the transparent union.
   1747   RecordDecl *UD = UT->getDecl();
   1748   // It's compatible if the expression matches any of the fields.
   1749   for (const auto *it : UD->fields()) {
   1750     if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
   1751                              CStyle, /*ObjCWritebackConversion=*/false)) {
   1752       ToType = it->getType();
   1753       return true;
   1754     }
   1755   }
   1756   return false;
   1757 }
   1758 
   1759 /// IsIntegralPromotion - Determines whether the conversion from the
   1760 /// expression From (whose potentially-adjusted type is FromType) to
   1761 /// ToType is an integral promotion (C++ 4.5). If so, returns true and
   1762 /// sets PromotedType to the promoted type.
   1763 bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
   1764   const BuiltinType *To = ToType->getAs<BuiltinType>();
   1765   // All integers are built-in.
   1766   if (!To) {
   1767     return false;
   1768   }
   1769 
   1770   // An rvalue of type char, signed char, unsigned char, short int, or
   1771   // unsigned short int can be converted to an rvalue of type int if
   1772   // int can represent all the values of the source type; otherwise,
   1773   // the source rvalue can be converted to an rvalue of type unsigned
   1774   // int (C++ 4.5p1).
   1775   if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
   1776       !FromType->isEnumeralType()) {
   1777     if (// We can promote any signed, promotable integer type to an int
   1778         (FromType->isSignedIntegerType() ||
   1779          // We can promote any unsigned integer type whose size is
   1780          // less than int to an int.
   1781          (!FromType->isSignedIntegerType() &&
   1782           Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
   1783       return To->getKind() == BuiltinType::Int;
   1784     }
   1785 
   1786     return To->getKind() == BuiltinType::UInt;
   1787   }
   1788 
   1789   // C++11 [conv.prom]p3:
   1790   //   A prvalue of an unscoped enumeration type whose underlying type is not
   1791   //   fixed (7.2) can be converted to an rvalue a prvalue of the first of the
   1792   //   following types that can represent all the values of the enumeration
   1793   //   (i.e., the values in the range bmin to bmax as described in 7.2): int,
   1794   //   unsigned int, long int, unsigned long int, long long int, or unsigned
   1795   //   long long int. If none of the types in that list can represent all the
   1796   //   values of the enumeration, an rvalue a prvalue of an unscoped enumeration
   1797   //   type can be converted to an rvalue a prvalue of the extended integer type
   1798   //   with lowest integer conversion rank (4.13) greater than the rank of long
   1799   //   long in which all the values of the enumeration can be represented. If
   1800   //   there are two such extended types, the signed one is chosen.
   1801   // C++11 [conv.prom]p4:
   1802   //   A prvalue of an unscoped enumeration type whose underlying type is fixed
   1803   //   can be converted to a prvalue of its underlying type. Moreover, if
   1804   //   integral promotion can be applied to its underlying type, a prvalue of an
   1805   //   unscoped enumeration type whose underlying type is fixed can also be
   1806   //   converted to a prvalue of the promoted underlying type.
   1807   if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
   1808     // C++0x 7.2p9: Note that this implicit enum to int conversion is not
   1809     // provided for a scoped enumeration.
   1810     if (FromEnumType->getDecl()->isScoped())
   1811       return false;
   1812 
   1813     // We can perform an integral promotion to the underlying type of the enum,
   1814     // even if that's not the promoted type. Note that the check for promoting
   1815     // the underlying type is based on the type alone, and does not consider
   1816     // the bitfield-ness of the actual source expression.
   1817     if (FromEnumType->getDecl()->isFixed()) {
   1818       QualType Underlying = FromEnumType->getDecl()->getIntegerType();
   1819       return Context.hasSameUnqualifiedType(Underlying, ToType) ||
   1820              IsIntegralPromotion(nullptr, Underlying, ToType);
   1821     }
   1822 
   1823     // We have already pre-calculated the promotion type, so this is trivial.
   1824     if (ToType->isIntegerType() &&
   1825         isCompleteType(From->getLocStart(), FromType))
   1826       return Context.hasSameUnqualifiedType(
   1827           ToType, FromEnumType->getDecl()->getPromotionType());
   1828   }
   1829 
   1830   // C++0x [conv.prom]p2:
   1831   //   A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
   1832   //   to an rvalue a prvalue of the first of the following types that can
   1833   //   represent all the values of its underlying type: int, unsigned int,
   1834   //   long int, unsigned long int, long long int, or unsigned long long int.
   1835   //   If none of the types in that list can represent all the values of its
   1836   //   underlying type, an rvalue a prvalue of type char16_t, char32_t,
   1837   //   or wchar_t can be converted to an rvalue a prvalue of its underlying
   1838   //   type.
   1839   if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
   1840       ToType->isIntegerType()) {
   1841     // Determine whether the type we're converting from is signed or
   1842     // unsigned.
   1843     bool FromIsSigned = FromType->isSignedIntegerType();
   1844     uint64_t FromSize = Context.getTypeSize(FromType);
   1845 
   1846     // The types we'll try to promote to, in the appropriate
   1847     // order. Try each of these types.
   1848     QualType PromoteTypes[6] = {
   1849       Context.IntTy, Context.UnsignedIntTy,
   1850       Context.LongTy, Context.UnsignedLongTy ,
   1851       Context.LongLongTy, Context.UnsignedLongLongTy
   1852     };
   1853     for (int Idx = 0; Idx < 6; ++Idx) {
   1854       uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
   1855       if (FromSize < ToSize ||
   1856           (FromSize == ToSize &&
   1857            FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
   1858         // We found the type that we can promote to. If this is the
   1859         // type we wanted, we have a promotion. Otherwise, no
   1860         // promotion.
   1861         return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
   1862       }
   1863     }
   1864   }
   1865 
   1866   // An rvalue for an integral bit-field (9.6) can be converted to an
   1867   // rvalue of type int if int can represent all the values of the
   1868   // bit-field; otherwise, it can be converted to unsigned int if
   1869   // unsigned int can represent all the values of the bit-field. If
   1870   // the bit-field is larger yet, no integral promotion applies to
   1871   // it. If the bit-field has an enumerated type, it is treated as any
   1872   // other value of that type for promotion purposes (C++ 4.5p3).
   1873   // FIXME: We should delay checking of bit-fields until we actually perform the
   1874   // conversion.
   1875   if (From) {
   1876     if (FieldDecl *MemberDecl = From->getSourceBitField()) {
   1877       llvm::APSInt BitWidth;
   1878       if (FromType->isIntegralType(Context) &&
   1879           MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
   1880         llvm::APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
   1881         ToSize = Context.getTypeSize(ToType);
   1882 
   1883         // Are we promoting to an int from a bitfield that fits in an int?
   1884         if (BitWidth < ToSize ||
   1885             (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
   1886           return To->getKind() == BuiltinType::Int;
   1887         }
   1888 
   1889         // Are we promoting to an unsigned int from an unsigned bitfield
   1890         // that fits into an unsigned int?
   1891         if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
   1892           return To->getKind() == BuiltinType::UInt;
   1893         }
   1894 
   1895         return false;
   1896       }
   1897     }
   1898   }
   1899 
   1900   // An rvalue of type bool can be converted to an rvalue of type int,
   1901   // with false becoming zero and true becoming one (C++ 4.5p4).
   1902   if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
   1903     return true;
   1904   }
   1905 
   1906   return false;
   1907 }
   1908 
   1909 /// IsFloatingPointPromotion - Determines whether the conversion from
   1910 /// FromType to ToType is a floating point promotion (C++ 4.6). If so,
   1911 /// returns true and sets PromotedType to the promoted type.
   1912 bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
   1913   if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
   1914     if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
   1915       /// An rvalue of type float can be converted to an rvalue of type
   1916       /// double. (C++ 4.6p1).
   1917       if (FromBuiltin->getKind() == BuiltinType::Float &&
   1918           ToBuiltin->getKind() == BuiltinType::Double)
   1919         return true;
   1920 
   1921       // C99 6.3.1.5p1:
   1922       //   When a float is promoted to double or long double, or a
   1923       //   double is promoted to long double [...].
   1924       if (!getLangOpts().CPlusPlus &&
   1925           (FromBuiltin->getKind() == BuiltinType::Float ||
   1926            FromBuiltin->getKind() == BuiltinType::Double) &&
   1927           (ToBuiltin->getKind() == BuiltinType::LongDouble))
   1928         return true;
   1929 
   1930       // Half can be promoted to float.
   1931       if (!getLangOpts().NativeHalfType &&
   1932            FromBuiltin->getKind() == BuiltinType::Half &&
   1933           ToBuiltin->getKind() == BuiltinType::Float)
   1934         return true;
   1935     }
   1936 
   1937   return false;
   1938 }
   1939 
   1940 /// \brief Determine if a conversion is a complex promotion.
   1941 ///
   1942 /// A complex promotion is defined as a complex -> complex conversion
   1943 /// where the conversion between the underlying real types is a
   1944 /// floating-point or integral promotion.
   1945 bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
   1946   const ComplexType *FromComplex = FromType->getAs<ComplexType>();
   1947   if (!FromComplex)
   1948     return false;
   1949 
   1950   const ComplexType *ToComplex = ToType->getAs<ComplexType>();
   1951   if (!ToComplex)
   1952     return false;
   1953 
   1954   return IsFloatingPointPromotion(FromComplex->getElementType(),
   1955                                   ToComplex->getElementType()) ||
   1956     IsIntegralPromotion(nullptr, FromComplex->getElementType(),
   1957                         ToComplex->getElementType());
   1958 }
   1959 
   1960 /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
   1961 /// the pointer type FromPtr to a pointer to type ToPointee, with the
   1962 /// same type qualifiers as FromPtr has on its pointee type. ToType,
   1963 /// if non-empty, will be a pointer to ToType that may or may not have
   1964 /// the right set of qualifiers on its pointee.
   1965 ///
   1966 static QualType
   1967 BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
   1968                                    QualType ToPointee, QualType ToType,
   1969                                    ASTContext &Context,
   1970                                    bool StripObjCLifetime = false) {
   1971   assert((FromPtr->getTypeClass() == Type::Pointer ||
   1972           FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
   1973          "Invalid similarly-qualified pointer type");
   1974 
   1975   /// Conversions to 'id' subsume cv-qualifier conversions.
   1976   if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
   1977     return ToType.getUnqualifiedType();
   1978 
   1979   QualType CanonFromPointee
   1980     = Context.getCanonicalType(FromPtr->getPointeeType());
   1981   QualType CanonToPointee = Context.getCanonicalType(ToPointee);
   1982   Qualifiers Quals = CanonFromPointee.getQualifiers();
   1983 
   1984   if (StripObjCLifetime)
   1985     Quals.removeObjCLifetime();
   1986 
   1987   // Exact qualifier match -> return the pointer type we're converting to.
   1988   if (CanonToPointee.getLocalQualifiers() == Quals) {
   1989     // ToType is exactly what we need. Return it.
   1990     if (!ToType.isNull())
   1991       return ToType.getUnqualifiedType();
   1992 
   1993     // Build a pointer to ToPointee. It has the right qualifiers
   1994     // already.
   1995     if (isa<ObjCObjectPointerType>(ToType))
   1996       return Context.getObjCObjectPointerType(ToPointee);
   1997     return Context.getPointerType(ToPointee);
   1998   }
   1999 
   2000   // Just build a canonical type that has the right qualifiers.
   2001   QualType QualifiedCanonToPointee
   2002     = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
   2003 
   2004   if (isa<ObjCObjectPointerType>(ToType))
   2005     return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
   2006   return Context.getPointerType(QualifiedCanonToPointee);
   2007 }
   2008 
   2009 static bool isNullPointerConstantForConversion(Expr *Expr,
   2010                                                bool InOverloadResolution,
   2011                                                ASTContext &Context) {
   2012   // Handle value-dependent integral null pointer constants correctly.
   2013   // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
   2014   if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
   2015       Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
   2016     return !InOverloadResolution;
   2017 
   2018   return Expr->isNullPointerConstant(Context,
   2019                     InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
   2020                                         : Expr::NPC_ValueDependentIsNull);
   2021 }
   2022 
   2023 /// IsPointerConversion - Determines whether the conversion of the
   2024 /// expression From, which has the (possibly adjusted) type FromType,
   2025 /// can be converted to the type ToType via a pointer conversion (C++
   2026 /// 4.10). If so, returns true and places the converted type (that
   2027 /// might differ from ToType in its cv-qualifiers at some level) into
   2028 /// ConvertedType.
   2029 ///
   2030 /// This routine also supports conversions to and from block pointers
   2031 /// and conversions with Objective-C's 'id', 'id<protocols...>', and
   2032 /// pointers to interfaces. FIXME: Once we've determined the
   2033 /// appropriate overloading rules for Objective-C, we may want to
   2034 /// split the Objective-C checks into a different routine; however,
   2035 /// GCC seems to consider all of these conversions to be pointer
   2036 /// conversions, so for now they live here. IncompatibleObjC will be
   2037 /// set if the conversion is an allowed Objective-C conversion that
   2038 /// should result in a warning.
   2039 bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
   2040                                bool InOverloadResolution,
   2041                                QualType& ConvertedType,
   2042                                bool &IncompatibleObjC) {
   2043   IncompatibleObjC = false;
   2044   if (isObjCPointerConversion(FromType, ToType, ConvertedType,
   2045                               IncompatibleObjC))
   2046     return true;
   2047 
   2048   // Conversion from a null pointer constant to any Objective-C pointer type.
   2049   if (ToType->isObjCObjectPointerType() &&
   2050       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
   2051     ConvertedType = ToType;
   2052     return true;
   2053   }
   2054 
   2055   // Blocks: Block pointers can be converted to void*.
   2056   if (FromType->isBlockPointerType() && ToType->isPointerType() &&
   2057       ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
   2058     ConvertedType = ToType;
   2059     return true;
   2060   }
   2061   // Blocks: A null pointer constant can be converted to a block
   2062   // pointer type.
   2063   if (ToType->isBlockPointerType() &&
   2064       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
   2065     ConvertedType = ToType;
   2066     return true;
   2067   }
   2068 
   2069   // If the left-hand-side is nullptr_t, the right side can be a null
   2070   // pointer constant.
   2071   if (ToType->isNullPtrType() &&
   2072       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
   2073     ConvertedType = ToType;
   2074     return true;
   2075   }
   2076 
   2077   const PointerType* ToTypePtr = ToType->getAs<PointerType>();
   2078   if (!ToTypePtr)
   2079     return false;
   2080 
   2081   // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
   2082   if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
   2083     ConvertedType = ToType;
   2084     return true;
   2085   }
   2086 
   2087   // Beyond this point, both types need to be pointers
   2088   // , including objective-c pointers.
   2089   QualType ToPointeeType = ToTypePtr->getPointeeType();
   2090   if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
   2091       !getLangOpts().ObjCAutoRefCount) {
   2092     ConvertedType = BuildSimilarlyQualifiedPointerType(
   2093                                       FromType->getAs<ObjCObjectPointerType>(),
   2094                                                        ToPointeeType,
   2095                                                        ToType, Context);
   2096     return true;
   2097   }
   2098   const PointerType *FromTypePtr = FromType->getAs<PointerType>();
   2099   if (!FromTypePtr)
   2100     return false;
   2101 
   2102   QualType FromPointeeType = FromTypePtr->getPointeeType();
   2103 
   2104   // If the unqualified pointee types are the same, this can't be a
   2105   // pointer conversion, so don't do all of the work below.
   2106   if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
   2107     return false;
   2108 
   2109   // An rvalue of type "pointer to cv T," where T is an object type,
   2110   // can be converted to an rvalue of type "pointer to cv void" (C++
   2111   // 4.10p2).
   2112   if (FromPointeeType->isIncompleteOrObjectType() &&
   2113       ToPointeeType->isVoidType()) {
   2114     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
   2115                                                        ToPointeeType,
   2116                                                        ToType, Context,
   2117                                                    /*StripObjCLifetime=*/true);
   2118     return true;
   2119   }
   2120 
   2121   // MSVC allows implicit function to void* type conversion.
   2122   if (getLangOpts().MSVCCompat && FromPointeeType->isFunctionType() &&
   2123       ToPointeeType->isVoidType()) {
   2124     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
   2125                                                        ToPointeeType,
   2126                                                        ToType, Context);
   2127     return true;
   2128   }
   2129 
   2130   // When we're overloading in C, we allow a special kind of pointer
   2131   // conversion for compatible-but-not-identical pointee types.
   2132   if (!getLangOpts().CPlusPlus &&
   2133       Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
   2134     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
   2135                                                        ToPointeeType,
   2136                                                        ToType, Context);
   2137     return true;
   2138   }
   2139 
   2140   // C++ [conv.ptr]p3:
   2141   //
   2142   //   An rvalue of type "pointer to cv D," where D is a class type,
   2143   //   can be converted to an rvalue of type "pointer to cv B," where
   2144   //   B is a base class (clause 10) of D. If B is an inaccessible
   2145   //   (clause 11) or ambiguous (10.2) base class of D, a program that
   2146   //   necessitates this conversion is ill-formed. The result of the
   2147   //   conversion is a pointer to the base class sub-object of the
   2148   //   derived class object. The null pointer value is converted to
   2149   //   the null pointer value of the destination type.
   2150   //
   2151   // Note that we do not check for ambiguity or inaccessibility
   2152   // here. That is handled by CheckPointerConversion.
   2153   if (getLangOpts().CPlusPlus &&
   2154       FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
   2155       !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
   2156       IsDerivedFrom(From->getLocStart(), FromPointeeType, ToPointeeType)) {
   2157     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
   2158                                                        ToPointeeType,
   2159                                                        ToType, Context);
   2160     return true;
   2161   }
   2162 
   2163   if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
   2164       Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
   2165     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
   2166                                                        ToPointeeType,
   2167                                                        ToType, Context);
   2168     return true;
   2169   }
   2170 
   2171   return false;
   2172 }
   2173 
   2174 /// \brief Adopt the given qualifiers for the given type.
   2175 static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
   2176   Qualifiers TQs = T.getQualifiers();
   2177 
   2178   // Check whether qualifiers already match.
   2179   if (TQs == Qs)
   2180     return T;
   2181 
   2182   if (Qs.compatiblyIncludes(TQs))
   2183     return Context.getQualifiedType(T, Qs);
   2184 
   2185   return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
   2186 }
   2187 
   2188 /// isObjCPointerConversion - Determines whether this is an
   2189 /// Objective-C pointer conversion. Subroutine of IsPointerConversion,
   2190 /// with the same arguments and return values.
   2191 bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
   2192                                    QualType& ConvertedType,
   2193                                    bool &IncompatibleObjC) {
   2194   if (!getLangOpts().ObjC1)
   2195     return false;
   2196 
   2197   // The set of qualifiers on the type we're converting from.
   2198   Qualifiers FromQualifiers = FromType.getQualifiers();
   2199 
   2200   // First, we handle all conversions on ObjC object pointer types.
   2201   const ObjCObjectPointerType* ToObjCPtr =
   2202     ToType->getAs<ObjCObjectPointerType>();
   2203   const ObjCObjectPointerType *FromObjCPtr =
   2204     FromType->getAs<ObjCObjectPointerType>();
   2205 
   2206   if (ToObjCPtr && FromObjCPtr) {
   2207     // If the pointee types are the same (ignoring qualifications),
   2208     // then this is not a pointer conversion.
   2209     if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
   2210                                        FromObjCPtr->getPointeeType()))
   2211       return false;
   2212 
   2213     // Conversion between Objective-C pointers.
   2214     if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
   2215       const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
   2216       const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
   2217       if (getLangOpts().CPlusPlus && LHS && RHS &&
   2218           !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
   2219                                                 FromObjCPtr->getPointeeType()))
   2220         return false;
   2221       ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
   2222                                                    ToObjCPtr->getPointeeType(),
   2223                                                          ToType, Context);
   2224       ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
   2225       return true;
   2226     }
   2227 
   2228     if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
   2229       // Okay: this is some kind of implicit downcast of Objective-C
   2230       // interfaces, which is permitted. However, we're going to
   2231       // complain about it.
   2232       IncompatibleObjC = true;
   2233       ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
   2234                                                    ToObjCPtr->getPointeeType(),
   2235                                                          ToType, Context);
   2236       ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
   2237       return true;
   2238     }
   2239   }
   2240   // Beyond this point, both types need to be C pointers or block pointers.
   2241   QualType ToPointeeType;
   2242   if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
   2243     ToPointeeType = ToCPtr->getPointeeType();
   2244   else if (const BlockPointerType *ToBlockPtr =
   2245             ToType->getAs<BlockPointerType>()) {
   2246     // Objective C++: We're able to convert from a pointer to any object
   2247     // to a block pointer type.
   2248     if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
   2249       ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
   2250       return true;
   2251     }
   2252     ToPointeeType = ToBlockPtr->getPointeeType();
   2253   }
   2254   else if (FromType->getAs<BlockPointerType>() &&
   2255            ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
   2256     // Objective C++: We're able to convert from a block pointer type to a
   2257     // pointer to any object.
   2258     ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
   2259     return true;
   2260   }
   2261   else
   2262     return false;
   2263 
   2264   QualType FromPointeeType;
   2265   if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
   2266     FromPointeeType = FromCPtr->getPointeeType();
   2267   else if (const BlockPointerType *FromBlockPtr =
   2268            FromType->getAs<BlockPointerType>())
   2269     FromPointeeType = FromBlockPtr->getPointeeType();
   2270   else
   2271     return false;
   2272 
   2273   // If we have pointers to pointers, recursively check whether this
   2274   // is an Objective-C conversion.
   2275   if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
   2276       isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
   2277                               IncompatibleObjC)) {
   2278     // We always complain about this conversion.
   2279     IncompatibleObjC = true;
   2280     ConvertedType = Context.getPointerType(ConvertedType);
   2281     ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
   2282     return true;
   2283   }
   2284   // Allow conversion of pointee being objective-c pointer to another one;
   2285   // as in I* to id.
   2286   if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
   2287       ToPointeeType->getAs<ObjCObjectPointerType>() &&
   2288       isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
   2289                               IncompatibleObjC)) {
   2290 
   2291     ConvertedType = Context.getPointerType(ConvertedType);
   2292     ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
   2293     return true;
   2294   }
   2295 
   2296   // If we have pointers to functions or blocks, check whether the only
   2297   // differences in the argument and result types are in Objective-C
   2298   // pointer conversions. If so, we permit the conversion (but
   2299   // complain about it).
   2300   const FunctionProtoType *FromFunctionType
   2301     = FromPointeeType->getAs<FunctionProtoType>();
   2302   const FunctionProtoType *ToFunctionType
   2303     = ToPointeeType->getAs<FunctionProtoType>();
   2304   if (FromFunctionType && ToFunctionType) {
   2305     // If the function types are exactly the same, this isn't an
   2306     // Objective-C pointer conversion.
   2307     if (Context.getCanonicalType(FromPointeeType)
   2308           == Context.getCanonicalType(ToPointeeType))
   2309       return false;
   2310 
   2311     // Perform the quick checks that will tell us whether these
   2312     // function types are obviously different.
   2313     if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
   2314         FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
   2315         FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
   2316       return false;
   2317 
   2318     bool HasObjCConversion = false;
   2319     if (Context.getCanonicalType(FromFunctionType->getReturnType()) ==
   2320         Context.getCanonicalType(ToFunctionType->getReturnType())) {
   2321       // Okay, the types match exactly. Nothing to do.
   2322     } else if (isObjCPointerConversion(FromFunctionType->getReturnType(),
   2323                                        ToFunctionType->getReturnType(),
   2324                                        ConvertedType, IncompatibleObjC)) {
   2325       // Okay, we have an Objective-C pointer conversion.
   2326       HasObjCConversion = true;
   2327     } else {
   2328       // Function types are too different. Abort.
   2329       return false;
   2330     }
   2331 
   2332     // Check argument types.
   2333     for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
   2334          ArgIdx != NumArgs; ++ArgIdx) {
   2335       QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
   2336       QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
   2337       if (Context.getCanonicalType(FromArgType)
   2338             == Context.getCanonicalType(ToArgType)) {
   2339         // Okay, the types match exactly. Nothing to do.
   2340       } else if (isObjCPointerConversion(FromArgType, ToArgType,
   2341                                          ConvertedType, IncompatibleObjC)) {
   2342         // Okay, we have an Objective-C pointer conversion.
   2343         HasObjCConversion = true;
   2344       } else {
   2345         // Argument types are too different. Abort.
   2346         return false;
   2347       }
   2348     }
   2349 
   2350     if (HasObjCConversion) {
   2351       // We had an Objective-C conversion. Allow this pointer
   2352       // conversion, but complain about it.
   2353       ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
   2354       IncompatibleObjC = true;
   2355       return true;
   2356     }
   2357   }
   2358 
   2359   return false;
   2360 }
   2361 
   2362 /// \brief Determine whether this is an Objective-C writeback conversion,
   2363 /// used for parameter passing when performing automatic reference counting.
   2364 ///
   2365 /// \param FromType The type we're converting form.
   2366 ///
   2367 /// \param ToType The type we're converting to.
   2368 ///
   2369 /// \param ConvertedType The type that will be produced after applying
   2370 /// this conversion.
   2371 bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
   2372                                      QualType &ConvertedType) {
   2373   if (!getLangOpts().ObjCAutoRefCount ||
   2374       Context.hasSameUnqualifiedType(FromType, ToType))
   2375     return false;
   2376 
   2377   // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
   2378   QualType ToPointee;
   2379   if (const PointerType *ToPointer = ToType->getAs<PointerType>())
   2380     ToPointee = ToPointer->getPointeeType();
   2381   else
   2382     return false;
   2383 
   2384   Qualifiers ToQuals = ToPointee.getQualifiers();
   2385   if (!ToPointee->isObjCLifetimeType() ||
   2386       ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
   2387       !ToQuals.withoutObjCLifetime().empty())
   2388     return false;
   2389 
   2390   // Argument must be a pointer to __strong to __weak.
   2391   QualType FromPointee;
   2392   if (const PointerType *FromPointer = FromType->getAs<PointerType>())
   2393     FromPointee = FromPointer->getPointeeType();
   2394   else
   2395     return false;
   2396 
   2397   Qualifiers FromQuals = FromPointee.getQualifiers();
   2398   if (!FromPointee->isObjCLifetimeType() ||
   2399       (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
   2400        FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
   2401     return false;
   2402 
   2403   // Make sure that we have compatible qualifiers.
   2404   FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
   2405   if (!ToQuals.compatiblyIncludes(FromQuals))
   2406     return false;
   2407 
   2408   // Remove qualifiers from the pointee type we're converting from; they
   2409   // aren't used in the compatibility check belong, and we'll be adding back
   2410   // qualifiers (with __autoreleasing) if the compatibility check succeeds.
   2411   FromPointee = FromPointee.getUnqualifiedType();
   2412 
   2413   // The unqualified form of the pointee types must be compatible.
   2414   ToPointee = ToPointee.getUnqualifiedType();
   2415   bool IncompatibleObjC;
   2416   if (Context.typesAreCompatible(FromPointee, ToPointee))
   2417     FromPointee = ToPointee;
   2418   else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
   2419                                     IncompatibleObjC))
   2420     return false;
   2421 
   2422   /// \brief Construct the type we're converting to, which is a pointer to
   2423   /// __autoreleasing pointee.
   2424   FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
   2425   ConvertedType = Context.getPointerType(FromPointee);
   2426   return true;
   2427 }
   2428 
   2429 bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
   2430                                     QualType& ConvertedType) {
   2431   QualType ToPointeeType;
   2432   if (const BlockPointerType *ToBlockPtr =
   2433         ToType->getAs<BlockPointerType>())
   2434     ToPointeeType = ToBlockPtr->getPointeeType();
   2435   else
   2436     return false;
   2437 
   2438   QualType FromPointeeType;
   2439   if (const BlockPointerType *FromBlockPtr =
   2440       FromType->getAs<BlockPointerType>())
   2441     FromPointeeType = FromBlockPtr->getPointeeType();
   2442   else
   2443     return false;
   2444   // We have pointer to blocks, check whether the only
   2445   // differences in the argument and result types are in Objective-C
   2446   // pointer conversions. If so, we permit the conversion.
   2447 
   2448   const FunctionProtoType *FromFunctionType
   2449     = FromPointeeType->getAs<FunctionProtoType>();
   2450   const FunctionProtoType *ToFunctionType
   2451     = ToPointeeType->getAs<FunctionProtoType>();
   2452 
   2453   if (!FromFunctionType || !ToFunctionType)
   2454     return false;
   2455 
   2456   if (Context.hasSameType(FromPointeeType, ToPointeeType))
   2457     return true;
   2458 
   2459   // Perform the quick checks that will tell us whether these
   2460   // function types are obviously different.
   2461   if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
   2462       FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
   2463     return false;
   2464 
   2465   FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
   2466   FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
   2467   if (FromEInfo != ToEInfo)
   2468     return false;
   2469 
   2470   bool IncompatibleObjC = false;
   2471   if (Context.hasSameType(FromFunctionType->getReturnType(),
   2472                           ToFunctionType->getReturnType())) {
   2473     // Okay, the types match exactly. Nothing to do.
   2474   } else {
   2475     QualType RHS = FromFunctionType->getReturnType();
   2476     QualType LHS = ToFunctionType->getReturnType();
   2477     if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
   2478         !RHS.hasQualifiers() && LHS.hasQualifiers())
   2479        LHS = LHS.getUnqualifiedType();
   2480 
   2481      if (Context.hasSameType(RHS,LHS)) {
   2482        // OK exact match.
   2483      } else if (isObjCPointerConversion(RHS, LHS,
   2484                                         ConvertedType, IncompatibleObjC)) {
   2485      if (IncompatibleObjC)
   2486        return false;
   2487      // Okay, we have an Objective-C pointer conversion.
   2488      }
   2489      else
   2490        return false;
   2491    }
   2492 
   2493    // Check argument types.
   2494    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
   2495         ArgIdx != NumArgs; ++ArgIdx) {
   2496      IncompatibleObjC = false;
   2497      QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
   2498      QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
   2499      if (Context.hasSameType(FromArgType, ToArgType)) {
   2500        // Okay, the types match exactly. Nothing to do.
   2501      } else if (isObjCPointerConversion(ToArgType, FromArgType,
   2502                                         ConvertedType, IncompatibleObjC)) {
   2503        if (IncompatibleObjC)
   2504          return false;
   2505        // Okay, we have an Objective-C pointer conversion.
   2506      } else
   2507        // Argument types are too different. Abort.
   2508        return false;
   2509    }
   2510    if (LangOpts.ObjCAutoRefCount &&
   2511        !Context.FunctionTypesMatchOnNSConsumedAttrs(FromFunctionType,
   2512                                                     ToFunctionType))
   2513      return false;
   2514 
   2515    ConvertedType = ToType;
   2516    return true;
   2517 }
   2518 
   2519 enum {
   2520   ft_default,
   2521   ft_different_class,
   2522   ft_parameter_arity,
   2523   ft_parameter_mismatch,
   2524   ft_return_type,
   2525   ft_qualifer_mismatch
   2526 };
   2527 
   2528 /// Attempts to get the FunctionProtoType from a Type. Handles
   2529 /// MemberFunctionPointers properly.
   2530 static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) {
   2531   if (auto *FPT = FromType->getAs<FunctionProtoType>())
   2532     return FPT;
   2533 
   2534   if (auto *MPT = FromType->getAs<MemberPointerType>())
   2535     return MPT->getPointeeType()->getAs<FunctionProtoType>();
   2536 
   2537   return nullptr;
   2538 }
   2539 
   2540 /// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
   2541 /// function types.  Catches different number of parameter, mismatch in
   2542 /// parameter types, and different return types.
   2543 void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
   2544                                       QualType FromType, QualType ToType) {
   2545   // If either type is not valid, include no extra info.
   2546   if (FromType.isNull() || ToType.isNull()) {
   2547     PDiag << ft_default;
   2548     return;
   2549   }
   2550 
   2551   // Get the function type from the pointers.
   2552   if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
   2553     const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(),
   2554                             *ToMember = ToType->getAs<MemberPointerType>();
   2555     if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) {
   2556       PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
   2557             << QualType(FromMember->getClass(), 0);
   2558       return;
   2559     }
   2560     FromType = FromMember->getPointeeType();
   2561     ToType = ToMember->getPointeeType();
   2562   }
   2563 
   2564   if (FromType->isPointerType())
   2565     FromType = FromType->getPointeeType();
   2566   if (ToType->isPointerType())
   2567     ToType = ToType->getPointeeType();
   2568 
   2569   // Remove references.
   2570   FromType = FromType.getNonReferenceType();
   2571   ToType = ToType.getNonReferenceType();
   2572 
   2573   // Don't print extra info for non-specialized template functions.
   2574   if (FromType->isInstantiationDependentType() &&
   2575       !FromType->getAs<TemplateSpecializationType>()) {
   2576     PDiag << ft_default;
   2577     return;
   2578   }
   2579 
   2580   // No extra info for same types.
   2581   if (Context.hasSameType(FromType, ToType)) {
   2582     PDiag << ft_default;
   2583     return;
   2584   }
   2585 
   2586   const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType),
   2587                           *ToFunction = tryGetFunctionProtoType(ToType);
   2588 
   2589   // Both types need to be function types.
   2590   if (!FromFunction || !ToFunction) {
   2591     PDiag << ft_default;
   2592     return;
   2593   }
   2594 
   2595   if (FromFunction->getNumParams() != ToFunction->getNumParams()) {
   2596     PDiag << ft_parameter_arity << ToFunction->getNumParams()
   2597           << FromFunction->getNumParams();
   2598     return;
   2599   }
   2600 
   2601   // Handle different parameter types.
   2602   unsigned ArgPos;
   2603   if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
   2604     PDiag << ft_parameter_mismatch << ArgPos + 1
   2605           << ToFunction->getParamType(ArgPos)
   2606           << FromFunction->getParamType(ArgPos);
   2607     return;
   2608   }
   2609 
   2610   // Handle different return type.
   2611   if (!Context.hasSameType(FromFunction->getReturnType(),
   2612                            ToFunction->getReturnType())) {
   2613     PDiag << ft_return_type << ToFunction->getReturnType()
   2614           << FromFunction->getReturnType();
   2615     return;
   2616   }
   2617 
   2618   unsigned FromQuals = FromFunction->getTypeQuals(),
   2619            ToQuals = ToFunction->getTypeQuals();
   2620   if (FromQuals != ToQuals) {
   2621     PDiag << ft_qualifer_mismatch << ToQuals << FromQuals;
   2622     return;
   2623   }
   2624 
   2625   // Unable to find a difference, so add no extra info.
   2626   PDiag << ft_default;
   2627 }
   2628 
   2629 /// FunctionParamTypesAreEqual - This routine checks two function proto types
   2630 /// for equality of their argument types. Caller has already checked that
   2631 /// they have same number of arguments.  If the parameters are different,
   2632 /// ArgPos will have the parameter index of the first different parameter.
   2633 bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
   2634                                       const FunctionProtoType *NewType,
   2635                                       unsigned *ArgPos) {
   2636   for (FunctionProtoType::param_type_iterator O = OldType->param_type_begin(),
   2637                                               N = NewType->param_type_begin(),
   2638                                               E = OldType->param_type_end();
   2639        O && (O != E); ++O, ++N) {
   2640     if (!Context.hasSameType(O->getUnqualifiedType(),
   2641                              N->getUnqualifiedType())) {
   2642       if (ArgPos)
   2643         *ArgPos = O - OldType->param_type_begin();
   2644       return false;
   2645     }
   2646   }
   2647   return true;
   2648 }
   2649 
   2650 /// CheckPointerConversion - Check the pointer conversion from the
   2651 /// expression From to the type ToType. This routine checks for
   2652 /// ambiguous or inaccessible derived-to-base pointer
   2653 /// conversions for which IsPointerConversion has already returned
   2654 /// true. It returns true and produces a diagnostic if there was an
   2655 /// error, or returns false otherwise.
   2656 bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
   2657                                   CastKind &Kind,
   2658                                   CXXCastPath& BasePath,
   2659                                   bool IgnoreBaseAccess) {
   2660   QualType FromType = From->getType();
   2661   bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
   2662 
   2663   Kind = CK_BitCast;
   2664 
   2665   if (!IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() &&
   2666       From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) ==
   2667       Expr::NPCK_ZeroExpression) {
   2668     if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy))
   2669       DiagRuntimeBehavior(From->getExprLoc(), From,
   2670                           PDiag(diag::warn_impcast_bool_to_null_pointer)
   2671                             << ToType << From->getSourceRange());
   2672     else if (!isUnevaluatedContext())
   2673       Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer)
   2674         << ToType << From->getSourceRange();
   2675   }
   2676   if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
   2677     if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
   2678       QualType FromPointeeType = FromPtrType->getPointeeType(),
   2679                ToPointeeType   = ToPtrType->getPointeeType();
   2680 
   2681       if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
   2682           !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
   2683         // We must have a derived-to-base conversion. Check an
   2684         // ambiguous or inaccessible conversion.
   2685         if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
   2686                                          From->getExprLoc(),
   2687                                          From->getSourceRange(), &BasePath,
   2688                                          IgnoreBaseAccess))
   2689           return true;
   2690 
   2691         // The conversion was successful.
   2692         Kind = CK_DerivedToBase;
   2693       }
   2694 
   2695       if (!IsCStyleOrFunctionalCast && FromPointeeType->isFunctionType() &&
   2696           ToPointeeType->isVoidType()) {
   2697         assert(getLangOpts().MSVCCompat &&
   2698                "this should only be possible with MSVCCompat!");
   2699         Diag(From->getExprLoc(), diag::ext_ms_impcast_fn_obj)
   2700             << From->getSourceRange();
   2701       }
   2702     }
   2703   } else if (const ObjCObjectPointerType *ToPtrType =
   2704                ToType->getAs<ObjCObjectPointerType>()) {
   2705     if (const ObjCObjectPointerType *FromPtrType =
   2706           FromType->getAs<ObjCObjectPointerType>()) {
   2707       // Objective-C++ conversions are always okay.
   2708       // FIXME: We should have a different class of conversions for the
   2709       // Objective-C++ implicit conversions.
   2710       if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
   2711         return false;
   2712     } else if (FromType->isBlockPointerType()) {
   2713       Kind = CK_BlockPointerToObjCPointerCast;
   2714     } else {
   2715       Kind = CK_CPointerToObjCPointerCast;
   2716     }
   2717   } else if (ToType->isBlockPointerType()) {
   2718     if (!FromType->isBlockPointerType())
   2719       Kind = CK_AnyPointerToBlockPointerCast;
   2720   }
   2721 
   2722   // We shouldn't fall into this case unless it's valid for other
   2723   // reasons.
   2724   if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
   2725     Kind = CK_NullToPointer;
   2726 
   2727   return false;
   2728 }
   2729 
   2730 /// IsMemberPointerConversion - Determines whether the conversion of the
   2731 /// expression From, which has the (possibly adjusted) type FromType, can be
   2732 /// converted to the type ToType via a member pointer conversion (C++ 4.11).
   2733 /// If so, returns true and places the converted type (that might differ from
   2734 /// ToType in its cv-qualifiers at some level) into ConvertedType.
   2735 bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
   2736                                      QualType ToType,
   2737                                      bool InOverloadResolution,
   2738                                      QualType &ConvertedType) {
   2739   const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
   2740   if (!ToTypePtr)
   2741     return false;
   2742 
   2743   // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
   2744   if (From->isNullPointerConstant(Context,
   2745                     InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
   2746                                         : Expr::NPC_ValueDependentIsNull)) {
   2747     ConvertedType = ToType;
   2748     return true;
   2749   }
   2750 
   2751   // Otherwise, both types have to be member pointers.
   2752   const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
   2753   if (!FromTypePtr)
   2754     return false;
   2755 
   2756   // A pointer to member of B can be converted to a pointer to member of D,
   2757   // where D is derived from B (C++ 4.11p2).
   2758   QualType FromClass(FromTypePtr->getClass(), 0);
   2759   QualType ToClass(ToTypePtr->getClass(), 0);
   2760 
   2761   if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
   2762       IsDerivedFrom(From->getLocStart(), ToClass, FromClass)) {
   2763     ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
   2764                                                  ToClass.getTypePtr());
   2765     return true;
   2766   }
   2767 
   2768   return false;
   2769 }
   2770 
   2771 /// CheckMemberPointerConversion - Check the member pointer conversion from the
   2772 /// expression From to the type ToType. This routine checks for ambiguous or
   2773 /// virtual or inaccessible base-to-derived member pointer conversions
   2774 /// for which IsMemberPointerConversion has already returned true. It returns
   2775 /// true and produces a diagnostic if there was an error, or returns false
   2776 /// otherwise.
   2777 bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
   2778                                         CastKind &Kind,
   2779                                         CXXCastPath &BasePath,
   2780                                         bool IgnoreBaseAccess) {
   2781   QualType FromType = From->getType();
   2782   const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
   2783   if (!FromPtrType) {
   2784     // This must be a null pointer to member pointer conversion
   2785     assert(From->isNullPointerConstant(Context,
   2786                                        Expr::NPC_ValueDependentIsNull) &&
   2787            "Expr must be null pointer constant!");
   2788     Kind = CK_NullToMemberPointer;
   2789     return false;
   2790   }
   2791 
   2792   const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
   2793   assert(ToPtrType && "No member pointer cast has a target type "
   2794                       "that is not a member pointer.");
   2795 
   2796   QualType FromClass = QualType(FromPtrType->getClass(), 0);
   2797   QualType ToClass   = QualType(ToPtrType->getClass(), 0);
   2798 
   2799   // FIXME: What about dependent types?
   2800   assert(FromClass->isRecordType() && "Pointer into non-class.");
   2801   assert(ToClass->isRecordType() && "Pointer into non-class.");
   2802 
   2803   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
   2804                      /*DetectVirtual=*/true);
   2805   bool DerivationOkay =
   2806       IsDerivedFrom(From->getLocStart(), ToClass, FromClass, Paths);
   2807   assert(DerivationOkay &&
   2808          "Should not have been called if derivation isn't OK.");
   2809   (void)DerivationOkay;
   2810 
   2811   if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
   2812                                   getUnqualifiedType())) {
   2813     std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
   2814     Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
   2815       << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
   2816     return true;
   2817   }
   2818 
   2819   if (const RecordType *VBase = Paths.getDetectedVirtual()) {
   2820     Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
   2821       << FromClass << ToClass << QualType(VBase, 0)
   2822       << From->getSourceRange();
   2823     return true;
   2824   }
   2825 
   2826   if (!IgnoreBaseAccess)
   2827     CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
   2828                          Paths.front(),
   2829                          diag::err_downcast_from_inaccessible_base);
   2830 
   2831   // Must be a base to derived member conversion.
   2832   BuildBasePathArray(Paths, BasePath);
   2833   Kind = CK_BaseToDerivedMemberPointer;
   2834   return false;
   2835 }
   2836 
   2837 /// Determine whether the lifetime conversion between the two given
   2838 /// qualifiers sets is nontrivial.
   2839 static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals,
   2840                                                Qualifiers ToQuals) {
   2841   // Converting anything to const __unsafe_unretained is trivial.
   2842   if (ToQuals.hasConst() &&
   2843       ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone)
   2844     return false;
   2845 
   2846   return true;
   2847 }
   2848 
   2849 /// IsQualificationConversion - Determines whether the conversion from
   2850 /// an rvalue of type FromType to ToType is a qualification conversion
   2851 /// (C++ 4.4).
   2852 ///
   2853 /// \param ObjCLifetimeConversion Output parameter that will be set to indicate
   2854 /// when the qualification conversion involves a change in the Objective-C
   2855 /// object lifetime.
   2856 bool
   2857 Sema::IsQualificationConversion(QualType FromType, QualType ToType,
   2858                                 bool CStyle, bool &ObjCLifetimeConversion) {
   2859   FromType = Context.getCanonicalType(FromType);
   2860   ToType = Context.getCanonicalType(ToType);
   2861   ObjCLifetimeConversion = false;
   2862 
   2863   // If FromType and ToType are the same type, this is not a
   2864   // qualification conversion.
   2865   if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
   2866     return false;
   2867 
   2868   // (C++ 4.4p4):
   2869   //   A conversion can add cv-qualifiers at levels other than the first
   2870   //   in multi-level pointers, subject to the following rules: [...]
   2871   bool PreviousToQualsIncludeConst = true;
   2872   bool UnwrappedAnyPointer = false;
   2873   while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) {
   2874     // Within each iteration of the loop, we check the qualifiers to
   2875     // determine if this still looks like a qualification
   2876     // conversion. Then, if all is well, we unwrap one more level of
   2877     // pointers or pointers-to-members and do it all again
   2878     // until there are no more pointers or pointers-to-members left to
   2879     // unwrap.
   2880     UnwrappedAnyPointer = true;
   2881 
   2882     Qualifiers FromQuals = FromType.getQualifiers();
   2883     Qualifiers ToQuals = ToType.getQualifiers();
   2884 
   2885     // Objective-C ARC:
   2886     //   Check Objective-C lifetime conversions.
   2887     if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() &&
   2888         UnwrappedAnyPointer) {
   2889       if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
   2890         if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals))
   2891           ObjCLifetimeConversion = true;
   2892         FromQuals.removeObjCLifetime();
   2893         ToQuals.removeObjCLifetime();
   2894       } else {
   2895         // Qualification conversions cannot cast between different
   2896         // Objective-C lifetime qualifiers.
   2897         return false;
   2898       }
   2899     }
   2900 
   2901     // Allow addition/removal of GC attributes but not changing GC attributes.
   2902     if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
   2903         (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
   2904       FromQuals.removeObjCGCAttr();
   2905       ToQuals.removeObjCGCAttr();
   2906     }
   2907 
   2908     //   -- for every j > 0, if const is in cv 1,j then const is in cv
   2909     //      2,j, and similarly for volatile.
   2910     if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
   2911       return false;
   2912 
   2913     //   -- if the cv 1,j and cv 2,j are different, then const is in
   2914     //      every cv for 0 < k < j.
   2915     if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers()
   2916         && !PreviousToQualsIncludeConst)
   2917       return false;
   2918 
   2919     // Keep track of whether all prior cv-qualifiers in the "to" type
   2920     // include const.
   2921     PreviousToQualsIncludeConst
   2922       = PreviousToQualsIncludeConst && ToQuals.hasConst();
   2923   }
   2924 
   2925   // We are left with FromType and ToType being the pointee types
   2926   // after unwrapping the original FromType and ToType the same number
   2927   // of types. If we unwrapped any pointers, and if FromType and
   2928   // ToType have the same unqualified type (since we checked
   2929   // qualifiers above), then this is a qualification conversion.
   2930   return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
   2931 }
   2932 
   2933 /// \brief - Determine whether this is a conversion from a scalar type to an
   2934 /// atomic type.
   2935 ///
   2936 /// If successful, updates \c SCS's second and third steps in the conversion
   2937 /// sequence to finish the conversion.
   2938 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
   2939                                 bool InOverloadResolution,
   2940                                 StandardConversionSequence &SCS,
   2941                                 bool CStyle) {
   2942   const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
   2943   if (!ToAtomic)
   2944     return false;
   2945 
   2946   StandardConversionSequence InnerSCS;
   2947   if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
   2948                             InOverloadResolution, InnerSCS,
   2949                             CStyle, /*AllowObjCWritebackConversion=*/false))
   2950     return false;
   2951 
   2952   SCS.Second = InnerSCS.Second;
   2953   SCS.setToType(1, InnerSCS.getToType(1));
   2954   SCS.Third = InnerSCS.Third;
   2955   SCS.QualificationIncludesObjCLifetime
   2956     = InnerSCS.QualificationIncludesObjCLifetime;
   2957   SCS.setToType(2, InnerSCS.getToType(2));
   2958   return true;
   2959 }
   2960 
   2961 static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
   2962                                               CXXConstructorDecl *Constructor,
   2963                                               QualType Type) {
   2964   const FunctionProtoType *CtorType =
   2965       Constructor->getType()->getAs<FunctionProtoType>();
   2966   if (CtorType->getNumParams() > 0) {
   2967     QualType FirstArg = CtorType->getParamType(0);
   2968     if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
   2969       return true;
   2970   }
   2971   return false;
   2972 }
   2973 
   2974 static OverloadingResult
   2975 IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
   2976                                        CXXRecordDecl *To,
   2977                                        UserDefinedConversionSequence &User,
   2978                                        OverloadCandidateSet &CandidateSet,
   2979                                        bool AllowExplicit) {
   2980   DeclContext::lookup_result R = S.LookupConstructors(To);
   2981   for (DeclContext::lookup_iterator Con = R.begin(), ConEnd = R.end();
   2982        Con != ConEnd; ++Con) {
   2983     NamedDecl *D = *Con;
   2984     DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
   2985 
   2986     // Find the constructor (which may be a template).
   2987     CXXConstructorDecl *Constructor = nullptr;
   2988     FunctionTemplateDecl *ConstructorTmpl
   2989       = dyn_cast<FunctionTemplateDecl>(D);
   2990     if (ConstructorTmpl)
   2991       Constructor
   2992         = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
   2993     else
   2994       Constructor = cast<CXXConstructorDecl>(D);
   2995 
   2996     bool Usable = !Constructor->isInvalidDecl() &&
   2997                   S.isInitListConstructor(Constructor) &&
   2998                   (AllowExplicit || !Constructor->isExplicit());
   2999     if (Usable) {
   3000       // If the first argument is (a reference to) the target type,
   3001       // suppress conversions.
   3002       bool SuppressUserConversions =
   3003           isFirstArgumentCompatibleWithType(S.Context, Constructor, ToType);
   3004       if (ConstructorTmpl)
   3005         S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
   3006                                        /*ExplicitArgs*/ nullptr,
   3007                                        From, CandidateSet,
   3008                                        SuppressUserConversions);
   3009       else
   3010         S.AddOverloadCandidate(Constructor, FoundDecl,
   3011                                From, CandidateSet,
   3012                                SuppressUserConversions);
   3013     }
   3014   }
   3015 
   3016   bool HadMultipleCandidates = (CandidateSet.size() > 1);
   3017 
   3018   OverloadCandidateSet::iterator Best;
   3019   switch (auto Result =
   3020             CandidateSet.BestViableFunction(S, From->getLocStart(),
   3021                                             Best, true)) {
   3022   case OR_Deleted:
   3023   case OR_Success: {
   3024     // Record the standard conversion we used and the conversion function.
   3025     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
   3026     QualType ThisType = Constructor->getThisType(S.Context);
   3027     // Initializer lists don't have conversions as such.
   3028     User.Before.setAsIdentityConversion();
   3029     User.HadMultipleCandidates = HadMultipleCandidates;
   3030     User.ConversionFunction = Constructor;
   3031     User.FoundConversionFunction = Best->FoundDecl;
   3032     User.After.setAsIdentityConversion();
   3033     User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
   3034     User.After.setAllToTypes(ToType);
   3035     return Result;
   3036   }
   3037 
   3038   case OR_No_Viable_Function:
   3039     return OR_No_Viable_Function;
   3040   case OR_Ambiguous:
   3041     return OR_Ambiguous;
   3042   }
   3043 
   3044   llvm_unreachable("Invalid OverloadResult!");
   3045 }
   3046 
   3047 /// Determines whether there is a user-defined conversion sequence
   3048 /// (C++ [over.ics.user]) that converts expression From to the type
   3049 /// ToType. If such a conversion exists, User will contain the
   3050 /// user-defined conversion sequence that performs such a conversion
   3051 /// and this routine will return true. Otherwise, this routine returns
   3052 /// false and User is unspecified.
   3053 ///
   3054 /// \param AllowExplicit  true if the conversion should consider C++0x
   3055 /// "explicit" conversion functions as well as non-explicit conversion
   3056 /// functions (C++0x [class.conv.fct]p2).
   3057 ///
   3058 /// \param AllowObjCConversionOnExplicit true if the conversion should
   3059 /// allow an extra Objective-C pointer conversion on uses of explicit
   3060 /// constructors. Requires \c AllowExplicit to also be set.
   3061 static OverloadingResult
   3062 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
   3063                         UserDefinedConversionSequence &User,
   3064                         OverloadCandidateSet &CandidateSet,
   3065                         bool AllowExplicit,
   3066                         bool AllowObjCConversionOnExplicit) {
   3067   assert(AllowExplicit || !AllowObjCConversionOnExplicit);
   3068 
   3069   // Whether we will only visit constructors.
   3070   bool ConstructorsOnly = false;
   3071 
   3072   // If the type we are conversion to is a class type, enumerate its
   3073   // constructors.
   3074   if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
   3075     // C++ [over.match.ctor]p1:
   3076     //   When objects of class type are direct-initialized (8.5), or
   3077     //   copy-initialized from an expression of the same or a
   3078     //   derived class type (8.5), overload resolution selects the
   3079     //   constructor. [...] For copy-initialization, the candidate
   3080     //   functions are all the converting constructors (12.3.1) of
   3081     //   that class. The argument list is the expression-list within
   3082     //   the parentheses of the initializer.
   3083     if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
   3084         (From->getType()->getAs<RecordType>() &&
   3085          S.IsDerivedFrom(From->getLocStart(), From->getType(), ToType)))
   3086       ConstructorsOnly = true;
   3087 
   3088     if (!S.isCompleteType(From->getExprLoc(), ToType)) {
   3089       // We're not going to find any constructors.
   3090     } else if (CXXRecordDecl *ToRecordDecl
   3091                  = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
   3092 
   3093       Expr **Args = &From;
   3094       unsigned NumArgs = 1;
   3095       bool ListInitializing = false;
   3096       if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
   3097         // But first, see if there is an init-list-constructor that will work.
   3098         OverloadingResult Result = IsInitializerListConstructorConversion(
   3099             S, From, ToType, ToRecordDecl, User, CandidateSet, AllowExplicit);
   3100         if (Result != OR_No_Viable_Function)
   3101           return Result;
   3102         // Never mind.
   3103         CandidateSet.clear();
   3104 
   3105         // If we're list-initializing, we pass the individual elements as
   3106         // arguments, not the entire list.
   3107         Args = InitList->getInits();
   3108         NumArgs = InitList->getNumInits();
   3109         ListInitializing = true;
   3110       }
   3111 
   3112       DeclContext::lookup_result R = S.LookupConstructors(ToRecordDecl);
   3113       for (DeclContext::lookup_iterator Con = R.begin(), ConEnd = R.end();
   3114            Con != ConEnd; ++Con) {
   3115         NamedDecl *D = *Con;
   3116         DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
   3117 
   3118         // Find the constructor (which may be a template).
   3119         CXXConstructorDecl *Constructor = nullptr;
   3120         FunctionTemplateDecl *ConstructorTmpl
   3121           = dyn_cast<FunctionTemplateDecl>(D);
   3122         if (ConstructorTmpl)
   3123           Constructor
   3124             = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
   3125         else
   3126           Constructor = cast<CXXConstructorDecl>(D);
   3127 
   3128         bool Usable = !Constructor->isInvalidDecl();
   3129         if (ListInitializing)
   3130           Usable = Usable && (AllowExplicit || !Constructor->isExplicit());
   3131         else
   3132           Usable = Usable &&Constructor->isConvertingConstructor(AllowExplicit);
   3133         if (Usable) {
   3134           bool SuppressUserConversions = !ConstructorsOnly;
   3135           if (SuppressUserConversions && ListInitializing) {
   3136             SuppressUserConversions = false;
   3137             if (NumArgs == 1) {
   3138               // If the first argument is (a reference to) the target type,
   3139               // suppress conversions.
   3140               SuppressUserConversions = isFirstArgumentCompatibleWithType(
   3141                                                 S.Context, Constructor, ToType);
   3142             }
   3143           }
   3144           if (ConstructorTmpl)
   3145             S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
   3146                                            /*ExplicitArgs*/ nullptr,
   3147                                            llvm::makeArrayRef(Args, NumArgs),
   3148                                            CandidateSet, SuppressUserConversions);
   3149           else
   3150             // Allow one user-defined conversion when user specifies a
   3151             // From->ToType conversion via an static cast (c-style, etc).
   3152             S.AddOverloadCandidate(Constructor, FoundDecl,
   3153                                    llvm::makeArrayRef(Args, NumArgs),
   3154                                    CandidateSet, SuppressUserConversions);
   3155         }
   3156       }
   3157     }
   3158   }
   3159 
   3160   // Enumerate conversion functions, if we're allowed to.
   3161   if (ConstructorsOnly || isa<InitListExpr>(From)) {
   3162   } else if (!S.isCompleteType(From->getLocStart(), From->getType())) {
   3163     // No conversion functions from incomplete types.
   3164   } else if (const RecordType *FromRecordType
   3165                                    = From->getType()->getAs<RecordType>()) {
   3166     if (CXXRecordDecl *FromRecordDecl
   3167          = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
   3168       // Add all of the conversion functions as candidates.
   3169       const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions();
   3170       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
   3171         DeclAccessPair FoundDecl = I.getPair();
   3172         NamedDecl *D = FoundDecl.getDecl();
   3173         CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
   3174         if (isa<UsingShadowDecl>(D))
   3175           D = cast<UsingShadowDecl>(D)->getTargetDecl();
   3176 
   3177         CXXConversionDecl *Conv;
   3178         FunctionTemplateDecl *ConvTemplate;
   3179         if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
   3180           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
   3181         else
   3182           Conv = cast<CXXConversionDecl>(D);
   3183 
   3184         if (AllowExplicit || !Conv->isExplicit()) {
   3185           if (ConvTemplate)
   3186             S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
   3187                                              ActingContext, From, ToType,
   3188                                              CandidateSet,
   3189                                              AllowObjCConversionOnExplicit);
   3190           else
   3191             S.AddConversionCandidate(Conv, FoundDecl, ActingContext,
   3192                                      From, ToType, CandidateSet,
   3193                                      AllowObjCConversionOnExplicit);
   3194         }
   3195       }
   3196     }
   3197   }
   3198 
   3199   bool HadMultipleCandidates = (CandidateSet.size() > 1);
   3200 
   3201   OverloadCandidateSet::iterator Best;
   3202   switch (auto Result = CandidateSet.BestViableFunction(S, From->getLocStart(),
   3203                                                         Best, true)) {
   3204   case OR_Success:
   3205   case OR_Deleted:
   3206     // Record the standard conversion we used and the conversion function.
   3207     if (CXXConstructorDecl *Constructor
   3208           = dyn_cast<CXXConstructorDecl>(Best->Function)) {
   3209       // C++ [over.ics.user]p1:
   3210       //   If the user-defined conversion is specified by a
   3211       //   constructor (12.3.1), the initial standard conversion
   3212       //   sequence converts the source type to the type required by
   3213       //   the argument of the constructor.
   3214       //
   3215       QualType ThisType = Constructor->getThisType(S.Context);
   3216       if (isa<InitListExpr>(From)) {
   3217         // Initializer lists don't have conversions as such.
   3218         User.Before.setAsIdentityConversion();
   3219       } else {
   3220         if (Best->Conversions[0].isEllipsis())
   3221           User.EllipsisConversion = true;
   3222         else {
   3223           User.Before = Best->Conversions[0].Standard;
   3224           User.EllipsisConversion = false;
   3225         }
   3226       }
   3227       User.HadMultipleCandidates = HadMultipleCandidates;
   3228       User.ConversionFunction = Constructor;
   3229       User.FoundConversionFunction = Best->FoundDecl;
   3230       User.After.setAsIdentityConversion();
   3231       User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
   3232       User.After.setAllToTypes(ToType);
   3233       return Result;
   3234     }
   3235     if (CXXConversionDecl *Conversion
   3236                  = dyn_cast<CXXConversionDecl>(Best->Function)) {
   3237       // C++ [over.ics.user]p1:
   3238       //
   3239       //   [...] If the user-defined conversion is specified by a
   3240       //   conversion function (12.3.2), the initial standard
   3241       //   conversion sequence converts the source type to the
   3242       //   implicit object parameter of the conversion function.
   3243       User.Before = Best->Conversions[0].Standard;
   3244       User.HadMultipleCandidates = HadMultipleCandidates;
   3245       User.ConversionFunction = Conversion;
   3246       User.FoundConversionFunction = Best->FoundDecl;
   3247       User.EllipsisConversion = false;
   3248 
   3249       // C++ [over.ics.user]p2:
   3250       //   The second standard conversion sequence converts the
   3251       //   result of the user-defined conversion to the target type
   3252       //   for the sequence. Since an implicit conversion sequence
   3253       //   is an initialization, the special rules for
   3254       //   initialization by user-defined conversion apply when
   3255       //   selecting the best user-defined conversion for a
   3256       //   user-defined conversion sequence (see 13.3.3 and
   3257       //   13.3.3.1).
   3258       User.After = Best->FinalConversion;
   3259       return Result;
   3260     }
   3261     llvm_unreachable("Not a constructor or conversion function?");
   3262 
   3263   case OR_No_Viable_Function:
   3264     return OR_No_Viable_Function;
   3265 
   3266   case OR_Ambiguous:
   3267     return OR_Ambiguous;
   3268   }
   3269 
   3270   llvm_unreachable("Invalid OverloadResult!");
   3271 }
   3272 
   3273 bool
   3274 Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
   3275   ImplicitConversionSequence ICS;
   3276   OverloadCandidateSet CandidateSet(From->getExprLoc(),
   3277                                     OverloadCandidateSet::CSK_Normal);
   3278   OverloadingResult OvResult =
   3279     IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
   3280                             CandidateSet, false, false);
   3281   if (OvResult == OR_Ambiguous)
   3282     Diag(From->getLocStart(), diag::err_typecheck_ambiguous_condition)
   3283         << From->getType() << ToType << From->getSourceRange();
   3284   else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) {
   3285     if (!RequireCompleteType(From->getLocStart(), ToType,
   3286                              diag::err_typecheck_nonviable_condition_incomplete,
   3287                              From->getType(), From->getSourceRange()))
   3288       Diag(From->getLocStart(), diag::err_typecheck_nonviable_condition)
   3289           << false << From->getType() << From->getSourceRange() << ToType;
   3290   } else
   3291     return false;
   3292   CandidateSet.NoteCandidates(*this, OCD_AllCandidates, From);
   3293   return true;
   3294 }
   3295 
   3296 /// \brief Compare the user-defined conversion functions or constructors
   3297 /// of two user-defined conversion sequences to determine whether any ordering
   3298 /// is possible.
   3299 static ImplicitConversionSequence::CompareKind
   3300 compareConversionFunctions(Sema &S, FunctionDecl *Function1,
   3301                            FunctionDecl *Function2) {
   3302   if (!S.getLangOpts().ObjC1 || !S.getLangOpts().CPlusPlus11)
   3303     return ImplicitConversionSequence::Indistinguishable;
   3304 
   3305   // Objective-C++:
   3306   //   If both conversion functions are implicitly-declared conversions from
   3307   //   a lambda closure type to a function pointer and a block pointer,
   3308   //   respectively, always prefer the conversion to a function pointer,
   3309   //   because the function pointer is more lightweight and is more likely
   3310   //   to keep code working.
   3311   CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1);
   3312   if (!Conv1)
   3313     return ImplicitConversionSequence::Indistinguishable;
   3314 
   3315   CXXConversionDecl *Conv2 = dyn_cast<CXXConversionDecl>(Function2);
   3316   if (!Conv2)
   3317     return ImplicitConversionSequence::Indistinguishable;
   3318 
   3319   if (Conv1->getParent()->isLambda() && Conv2->getParent()->isLambda()) {
   3320     bool Block1 = Conv1->getConversionType()->isBlockPointerType();
   3321     bool Block2 = Conv2->getConversionType()->isBlockPointerType();
   3322     if (Block1 != Block2)
   3323       return Block1 ? ImplicitConversionSequence::Worse
   3324                     : ImplicitConversionSequence::Better;
   3325   }
   3326 
   3327   return ImplicitConversionSequence::Indistinguishable;
   3328 }
   3329 
   3330 static bool hasDeprecatedStringLiteralToCharPtrConversion(
   3331     const ImplicitConversionSequence &ICS) {
   3332   return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) ||
   3333          (ICS.isUserDefined() &&
   3334           ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr);
   3335 }
   3336 
   3337 /// CompareImplicitConversionSequences - Compare two implicit
   3338 /// conversion sequences to determine whether one is better than the
   3339 /// other or if they are indistinguishable (C++ 13.3.3.2).
   3340 static ImplicitConversionSequence::CompareKind
   3341 CompareImplicitConversionSequences(Sema &S, SourceLocation Loc,
   3342                                    const ImplicitConversionSequence& ICS1,
   3343                                    const ImplicitConversionSequence& ICS2)
   3344 {
   3345   // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
   3346   // conversion sequences (as defined in 13.3.3.1)
   3347   //   -- a standard conversion sequence (13.3.3.1.1) is a better
   3348   //      conversion sequence than a user-defined conversion sequence or
   3349   //      an ellipsis conversion sequence, and
   3350   //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
   3351   //      conversion sequence than an ellipsis conversion sequence
   3352   //      (13.3.3.1.3).
   3353   //
   3354   // C++0x [over.best.ics]p10:
   3355   //   For the purpose of ranking implicit conversion sequences as
   3356   //   described in 13.3.3.2, the ambiguous conversion sequence is
   3357   //   treated as a user-defined sequence that is indistinguishable
   3358   //   from any other user-defined conversion sequence.
   3359 
   3360   // String literal to 'char *' conversion has been deprecated in C++03. It has
   3361   // been removed from C++11. We still accept this conversion, if it happens at
   3362   // the best viable function. Otherwise, this conversion is considered worse
   3363   // than ellipsis conversion. Consider this as an extension; this is not in the
   3364   // standard. For example:
   3365   //
   3366   // int &f(...);    // #1
   3367   // void f(char*);  // #2
   3368   // void g() { int &r = f("foo"); }
   3369   //
   3370   // In C++03, we pick #2 as the best viable function.
   3371   // In C++11, we pick #1 as the best viable function, because ellipsis
   3372   // conversion is better than string-literal to char* conversion (since there
   3373   // is no such conversion in C++11). If there was no #1 at all or #1 couldn't
   3374   // convert arguments, #2 would be the best viable function in C++11.
   3375   // If the best viable function has this conversion, a warning will be issued
   3376   // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11.
   3377 
   3378   if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
   3379       hasDeprecatedStringLiteralToCharPtrConversion(ICS1) !=
   3380       hasDeprecatedStringLiteralToCharPtrConversion(ICS2))
   3381     return hasDeprecatedStringLiteralToCharPtrConversion(ICS1)
   3382                ? ImplicitConversionSequence::Worse
   3383                : ImplicitConversionSequence::Better;
   3384 
   3385   if (ICS1.getKindRank() < ICS2.getKindRank())
   3386     return ImplicitConversionSequence::Better;
   3387   if (ICS2.getKindRank() < ICS1.getKindRank())
   3388     return ImplicitConversionSequence::Worse;
   3389 
   3390   // The following checks require both conversion sequences to be of
   3391   // the same kind.
   3392   if (ICS1.getKind() != ICS2.getKind())
   3393     return ImplicitConversionSequence::Indistinguishable;
   3394 
   3395   ImplicitConversionSequence::CompareKind Result =
   3396       ImplicitConversionSequence::Indistinguishable;
   3397 
   3398   // Two implicit conversion sequences of the same form are
   3399   // indistinguishable conversion sequences unless one of the
   3400   // following rules apply: (C++ 13.3.3.2p3):
   3401 
   3402   // List-initialization sequence L1 is a better conversion sequence than
   3403   // list-initialization sequence L2 if:
   3404   // - L1 converts to std::initializer_list<X> for some X and L2 does not, or,
   3405   //   if not that,
   3406   // - L1 converts to type "array of N1 T", L2 converts to type "array of N2 T",
   3407   //   and N1 is smaller than N2.,
   3408   // even if one of the other rules in this paragraph would otherwise apply.
   3409   if (!ICS1.isBad()) {
   3410     if (ICS1.isStdInitializerListElement() &&
   3411         !ICS2.isStdInitializerListElement())
   3412       return ImplicitConversionSequence::Better;
   3413     if (!ICS1.isStdInitializerListElement() &&
   3414         ICS2.isStdInitializerListElement())
   3415       return ImplicitConversionSequence::Worse;
   3416   }
   3417 
   3418   if (ICS1.isStandard())
   3419     // Standard conversion sequence S1 is a better conversion sequence than
   3420     // standard conversion sequence S2 if [...]
   3421     Result = CompareStandardConversionSequences(S, Loc,
   3422                                                 ICS1.Standard, ICS2.Standard);
   3423   else if (ICS1.isUserDefined()) {
   3424     // User-defined conversion sequence U1 is a better conversion
   3425     // sequence than another user-defined conversion sequence U2 if
   3426     // they contain the same user-defined conversion function or
   3427     // constructor and if the second standard conversion sequence of
   3428     // U1 is better than the second standard conversion sequence of
   3429     // U2 (C++ 13.3.3.2p3).
   3430     if (ICS1.UserDefined.ConversionFunction ==
   3431           ICS2.UserDefined.ConversionFunction)
   3432       Result = CompareStandardConversionSequences(S, Loc,
   3433                                                   ICS1.UserDefined.After,
   3434                                                   ICS2.UserDefined.After);
   3435     else
   3436       Result = compareConversionFunctions(S,
   3437                                           ICS1.UserDefined.ConversionFunction,
   3438                                           ICS2.UserDefined.ConversionFunction);
   3439   }
   3440 
   3441   return Result;
   3442 }
   3443 
   3444 static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) {
   3445   while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
   3446     Qualifiers Quals;
   3447     T1 = Context.getUnqualifiedArrayType(T1, Quals);
   3448     T2 = Context.getUnqualifiedArrayType(T2, Quals);
   3449   }
   3450 
   3451   return Context.hasSameUnqualifiedType(T1, T2);
   3452 }
   3453 
   3454 // Per 13.3.3.2p3, compare the given standard conversion sequences to
   3455 // determine if one is a proper subset of the other.
   3456 static ImplicitConversionSequence::CompareKind
   3457 compareStandardConversionSubsets(ASTContext &Context,
   3458                                  const StandardConversionSequence& SCS1,
   3459                                  const StandardConversionSequence& SCS2) {
   3460   ImplicitConversionSequence::CompareKind Result
   3461     = ImplicitConversionSequence::Indistinguishable;
   3462 
   3463   // the identity conversion sequence is considered to be a subsequence of
   3464   // any non-identity conversion sequence
   3465   if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
   3466     return ImplicitConversionSequence::Better;
   3467   else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
   3468     return ImplicitConversionSequence::Worse;
   3469 
   3470   if (SCS1.Second != SCS2.Second) {
   3471     if (SCS1.Second == ICK_Identity)
   3472       Result = ImplicitConversionSequence::Better;
   3473     else if (SCS2.Second == ICK_Identity)
   3474       Result = ImplicitConversionSequence::Worse;
   3475     else
   3476       return ImplicitConversionSequence::Indistinguishable;
   3477   } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1)))
   3478     return ImplicitConversionSequence::Indistinguishable;
   3479 
   3480   if (SCS1.Third == SCS2.Third) {
   3481     return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
   3482                              : ImplicitConversionSequence::Indistinguishable;
   3483   }
   3484 
   3485   if (SCS1.Third == ICK_Identity)
   3486     return Result == ImplicitConversionSequence::Worse
   3487              ? ImplicitConversionSequence::Indistinguishable
   3488              : ImplicitConversionSequence::Better;
   3489 
   3490   if (SCS2.Third == ICK_Identity)
   3491     return Result == ImplicitConversionSequence::Better
   3492              ? ImplicitConversionSequence::Indistinguishable
   3493              : ImplicitConversionSequence::Worse;
   3494 
   3495   return ImplicitConversionSequence::Indistinguishable;
   3496 }
   3497 
   3498 /// \brief Determine whether one of the given reference bindings is better
   3499 /// than the other based on what kind of bindings they are.
   3500 static bool
   3501 isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
   3502                              const StandardConversionSequence &SCS2) {
   3503   // C++0x [over.ics.rank]p3b4:
   3504   //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
   3505   //      implicit object parameter of a non-static member function declared
   3506   //      without a ref-qualifier, and *either* S1 binds an rvalue reference
   3507   //      to an rvalue and S2 binds an lvalue reference *or S1 binds an
   3508   //      lvalue reference to a function lvalue and S2 binds an rvalue
   3509   //      reference*.
   3510   //
   3511   // FIXME: Rvalue references. We're going rogue with the above edits,
   3512   // because the semantics in the current C++0x working paper (N3225 at the
   3513   // time of this writing) break the standard definition of std::forward
   3514   // and std::reference_wrapper when dealing with references to functions.
   3515   // Proposed wording changes submitted to CWG for consideration.
   3516   if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
   3517       SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
   3518     return false;
   3519 
   3520   return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
   3521           SCS2.IsLvalueReference) ||
   3522          (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
   3523           !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue);
   3524 }
   3525 
   3526 /// CompareStandardConversionSequences - Compare two standard
   3527 /// conversion sequences to determine whether one is better than the
   3528 /// other or if they are indistinguishable (C++ 13.3.3.2p3).
   3529 static ImplicitConversionSequence::CompareKind
   3530 CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
   3531                                    const StandardConversionSequence& SCS1,
   3532                                    const StandardConversionSequence& SCS2)
   3533 {
   3534   // Standard conversion sequence S1 is a better conversion sequence
   3535   // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
   3536 
   3537   //  -- S1 is a proper subsequence of S2 (comparing the conversion
   3538   //     sequences in the canonical form defined by 13.3.3.1.1,
   3539   //     excluding any Lvalue Transformation; the identity conversion
   3540   //     sequence is considered to be a subsequence of any
   3541   //     non-identity conversion sequence) or, if not that,
   3542   if (ImplicitConversionSequence::CompareKind CK
   3543         = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
   3544     return CK;
   3545 
   3546   //  -- the rank of S1 is better than the rank of S2 (by the rules
   3547   //     defined below), or, if not that,
   3548   ImplicitConversionRank Rank1 = SCS1.getRank();
   3549   ImplicitConversionRank Rank2 = SCS2.getRank();
   3550   if (Rank1 < Rank2)
   3551     return ImplicitConversionSequence::Better;
   3552   else if (Rank2 < Rank1)
   3553     return ImplicitConversionSequence::Worse;
   3554 
   3555   // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
   3556   // are indistinguishable unless one of the following rules
   3557   // applies:
   3558 
   3559   //   A conversion that is not a conversion of a pointer, or
   3560   //   pointer to member, to bool is better than another conversion
   3561   //   that is such a conversion.
   3562   if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
   3563     return SCS2.isPointerConversionToBool()
   3564              ? ImplicitConversionSequence::Better
   3565              : ImplicitConversionSequence::Worse;
   3566 
   3567   // C++ [over.ics.rank]p4b2:
   3568   //
   3569   //   If class B is derived directly or indirectly from class A,
   3570   //   conversion of B* to A* is better than conversion of B* to
   3571   //   void*, and conversion of A* to void* is better than conversion
   3572   //   of B* to void*.
   3573   bool SCS1ConvertsToVoid
   3574     = SCS1.isPointerConversionToVoidPointer(S.Context);
   3575   bool SCS2ConvertsToVoid
   3576     = SCS2.isPointerConversionToVoidPointer(S.Context);
   3577   if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
   3578     // Exactly one of the conversion sequences is a conversion to
   3579     // a void pointer; it's the worse conversion.
   3580     return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
   3581                               : ImplicitConversionSequence::Worse;
   3582   } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
   3583     // Neither conversion sequence converts to a void pointer; compare
   3584     // their derived-to-base conversions.
   3585     if (ImplicitConversionSequence::CompareKind DerivedCK
   3586           = CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2))
   3587       return DerivedCK;
   3588   } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
   3589              !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
   3590     // Both conversion sequences are conversions to void
   3591     // pointers. Compare the source types to determine if there's an
   3592     // inheritance relationship in their sources.
   3593     QualType FromType1 = SCS1.getFromType();
   3594     QualType FromType2 = SCS2.getFromType();
   3595 
   3596     // Adjust the types we're converting from via the array-to-pointer
   3597     // conversion, if we need to.
   3598     if (SCS1.First == ICK_Array_To_Pointer)
   3599       FromType1 = S.Context.getArrayDecayedType(FromType1);
   3600     if (SCS2.First == ICK_Array_To_Pointer)
   3601       FromType2 = S.Context.getArrayDecayedType(FromType2);
   3602 
   3603     QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
   3604     QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
   3605 
   3606     if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
   3607       return ImplicitConversionSequence::Better;
   3608     else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
   3609       return ImplicitConversionSequence::Worse;
   3610 
   3611     // Objective-C++: If one interface is more specific than the
   3612     // other, it is the better one.
   3613     const ObjCObjectPointerType* FromObjCPtr1
   3614       = FromType1->getAs<ObjCObjectPointerType>();
   3615     const ObjCObjectPointerType* FromObjCPtr2
   3616       = FromType2->getAs<ObjCObjectPointerType>();
   3617     if (FromObjCPtr1 && FromObjCPtr2) {
   3618       bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
   3619                                                           FromObjCPtr2);
   3620       bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
   3621                                                            FromObjCPtr1);
   3622       if (AssignLeft != AssignRight) {
   3623         return AssignLeft? ImplicitConversionSequence::Better
   3624                          : ImplicitConversionSequence::Worse;
   3625       }
   3626     }
   3627   }
   3628 
   3629   // Compare based on qualification conversions (C++ 13.3.3.2p3,
   3630   // bullet 3).
   3631   if (ImplicitConversionSequence::CompareKind QualCK
   3632         = CompareQualificationConversions(S, SCS1, SCS2))
   3633     return QualCK;
   3634 
   3635   if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
   3636     // Check for a better reference binding based on the kind of bindings.
   3637     if (isBetterReferenceBindingKind(SCS1, SCS2))
   3638       return ImplicitConversionSequence::Better;
   3639     else if (isBetterReferenceBindingKind(SCS2, SCS1))
   3640       return ImplicitConversionSequence::Worse;
   3641 
   3642     // C++ [over.ics.rank]p3b4:
   3643     //   -- S1 and S2 are reference bindings (8.5.3), and the types to
   3644     //      which the references refer are the same type except for
   3645     //      top-level cv-qualifiers, and the type to which the reference
   3646     //      initialized by S2 refers is more cv-qualified than the type
   3647     //      to which the reference initialized by S1 refers.
   3648     QualType T1 = SCS1.getToType(2);
   3649     QualType T2 = SCS2.getToType(2);
   3650     T1 = S.Context.getCanonicalType(T1);
   3651     T2 = S.Context.getCanonicalType(T2);
   3652     Qualifiers T1Quals, T2Quals;
   3653     QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
   3654     QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
   3655     if (UnqualT1 == UnqualT2) {
   3656       // Objective-C++ ARC: If the references refer to objects with different
   3657       // lifetimes, prefer bindings that don't change lifetime.
   3658       if (SCS1.ObjCLifetimeConversionBinding !=
   3659                                           SCS2.ObjCLifetimeConversionBinding) {
   3660         return SCS1.ObjCLifetimeConversionBinding
   3661                                            ? ImplicitConversionSequence::Worse
   3662                                            : ImplicitConversionSequence::Better;
   3663       }
   3664 
   3665       // If the type is an array type, promote the element qualifiers to the
   3666       // type for comparison.
   3667       if (isa<ArrayType>(T1) && T1Quals)
   3668         T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
   3669       if (isa<ArrayType>(T2) && T2Quals)
   3670         T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
   3671       if (T2.isMoreQualifiedThan(T1))
   3672         return ImplicitConversionSequence::Better;
   3673       else if (T1.isMoreQualifiedThan(T2))
   3674         return ImplicitConversionSequence::Worse;
   3675     }
   3676   }
   3677 
   3678   // In Microsoft mode, prefer an integral conversion to a
   3679   // floating-to-integral conversion if the integral conversion
   3680   // is between types of the same size.
   3681   // For example:
   3682   // void f(float);
   3683   // void f(int);
   3684   // int main {
   3685   //    long a;
   3686   //    f(a);
   3687   // }
   3688   // Here, MSVC will call f(int) instead of generating a compile error
   3689   // as clang will do in standard mode.
   3690   if (S.getLangOpts().MSVCCompat && SCS1.Second == ICK_Integral_Conversion &&
   3691       SCS2.Second == ICK_Floating_Integral &&
   3692       S.Context.getTypeSize(SCS1.getFromType()) ==
   3693           S.Context.getTypeSize(SCS1.getToType(2)))
   3694     return ImplicitConversionSequence::Better;
   3695 
   3696   return ImplicitConversionSequence::Indistinguishable;
   3697 }
   3698 
   3699 /// CompareQualificationConversions - Compares two standard conversion
   3700 /// sequences to determine whether they can be ranked based on their
   3701 /// qualification conversions (C++ 13.3.3.2p3 bullet 3).
   3702 static ImplicitConversionSequence::CompareKind
   3703 CompareQualificationConversions(Sema &S,
   3704                                 const StandardConversionSequence& SCS1,
   3705                                 const StandardConversionSequence& SCS2) {
   3706   // C++ 13.3.3.2p3:
   3707   //  -- S1 and S2 differ only in their qualification conversion and
   3708   //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
   3709   //     cv-qualification signature of type T1 is a proper subset of
   3710   //     the cv-qualification signature of type T2, and S1 is not the
   3711   //     deprecated string literal array-to-pointer conversion (4.2).
   3712   if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
   3713       SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
   3714     return ImplicitConversionSequence::Indistinguishable;
   3715 
   3716   // FIXME: the example in the standard doesn't use a qualification
   3717   // conversion (!)
   3718   QualType T1 = SCS1.getToType(2);
   3719   QualType T2 = SCS2.getToType(2);
   3720   T1 = S.Context.getCanonicalType(T1);
   3721   T2 = S.Context.getCanonicalType(T2);
   3722   Qualifiers T1Quals, T2Quals;
   3723   QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
   3724   QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
   3725 
   3726   // If the types are the same, we won't learn anything by unwrapped
   3727   // them.
   3728   if (UnqualT1 == UnqualT2)
   3729     return ImplicitConversionSequence::Indistinguishable;
   3730 
   3731   // If the type is an array type, promote the element qualifiers to the type
   3732   // for comparison.
   3733   if (isa<ArrayType>(T1) && T1Quals)
   3734     T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
   3735   if (isa<ArrayType>(T2) && T2Quals)
   3736     T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
   3737 
   3738   ImplicitConversionSequence::CompareKind Result
   3739     = ImplicitConversionSequence::Indistinguishable;
   3740 
   3741   // Objective-C++ ARC:
   3742   //   Prefer qualification conversions not involving a change in lifetime
   3743   //   to qualification conversions that do not change lifetime.
   3744   if (SCS1.QualificationIncludesObjCLifetime !=
   3745                                       SCS2.QualificationIncludesObjCLifetime) {
   3746     Result = SCS1.QualificationIncludesObjCLifetime
   3747                ? ImplicitConversionSequence::Worse
   3748                : ImplicitConversionSequence::Better;
   3749   }
   3750 
   3751   while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) {
   3752     // Within each iteration of the loop, we check the qualifiers to
   3753     // determine if this still looks like a qualification
   3754     // conversion. Then, if all is well, we unwrap one more level of
   3755     // pointers or pointers-to-members and do it all again
   3756     // until there are no more pointers or pointers-to-members left
   3757     // to unwrap. This essentially mimics what
   3758     // IsQualificationConversion does, but here we're checking for a
   3759     // strict subset of qualifiers.
   3760     if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
   3761       // The qualifiers are the same, so this doesn't tell us anything
   3762       // about how the sequences rank.
   3763       ;
   3764     else if (T2.isMoreQualifiedThan(T1)) {
   3765       // T1 has fewer qualifiers, so it could be the better sequence.
   3766       if (Result == ImplicitConversionSequence::Worse)
   3767         // Neither has qualifiers that are a subset of the other's
   3768         // qualifiers.
   3769         return ImplicitConversionSequence::Indistinguishable;
   3770 
   3771       Result = ImplicitConversionSequence::Better;
   3772     } else if (T1.isMoreQualifiedThan(T2)) {
   3773       // T2 has fewer qualifiers, so it could be the better sequence.
   3774       if (Result == ImplicitConversionSequence::Better)
   3775         // Neither has qualifiers that are a subset of the other's
   3776         // qualifiers.
   3777         return ImplicitConversionSequence::Indistinguishable;
   3778 
   3779       Result = ImplicitConversionSequence::Worse;
   3780     } else {
   3781       // Qualifiers are disjoint.
   3782       return ImplicitConversionSequence::Indistinguishable;
   3783     }
   3784 
   3785     // If the types after this point are equivalent, we're done.
   3786     if (S.Context.hasSameUnqualifiedType(T1, T2))
   3787       break;
   3788   }
   3789 
   3790   // Check that the winning standard conversion sequence isn't using
   3791   // the deprecated string literal array to pointer conversion.
   3792   switch (Result) {
   3793   case ImplicitConversionSequence::Better:
   3794     if (SCS1.DeprecatedStringLiteralToCharPtr)
   3795       Result = ImplicitConversionSequence::Indistinguishable;
   3796     break;
   3797 
   3798   case ImplicitConversionSequence::Indistinguishable:
   3799     break;
   3800 
   3801   case ImplicitConversionSequence::Worse:
   3802     if (SCS2.DeprecatedStringLiteralToCharPtr)
   3803       Result = ImplicitConversionSequence::Indistinguishable;
   3804     break;
   3805   }
   3806 
   3807   return Result;
   3808 }
   3809 
   3810 /// CompareDerivedToBaseConversions - Compares two standard conversion
   3811 /// sequences to determine whether they can be ranked based on their
   3812 /// various kinds of derived-to-base conversions (C++
   3813 /// [over.ics.rank]p4b3).  As part of these checks, we also look at
   3814 /// conversions between Objective-C interface types.
   3815 static ImplicitConversionSequence::CompareKind
   3816 CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
   3817                                 const StandardConversionSequence& SCS1,
   3818                                 const StandardConversionSequence& SCS2) {
   3819   QualType FromType1 = SCS1.getFromType();
   3820   QualType ToType1 = SCS1.getToType(1);
   3821   QualType FromType2 = SCS2.getFromType();
   3822   QualType ToType2 = SCS2.getToType(1);
   3823 
   3824   // Adjust the types we're converting from via the array-to-pointer
   3825   // conversion, if we need to.
   3826   if (SCS1.First == ICK_Array_To_Pointer)
   3827     FromType1 = S.Context.getArrayDecayedType(FromType1);
   3828   if (SCS2.First == ICK_Array_To_Pointer)
   3829     FromType2 = S.Context.getArrayDecayedType(FromType2);
   3830 
   3831   // Canonicalize all of the types.
   3832   FromType1 = S.Context.getCanonicalType(FromType1);
   3833   ToType1 = S.Context.getCanonicalType(ToType1);
   3834   FromType2 = S.Context.getCanonicalType(FromType2);
   3835   ToType2 = S.Context.getCanonicalType(ToType2);
   3836 
   3837   // C++ [over.ics.rank]p4b3:
   3838   //
   3839   //   If class B is derived directly or indirectly from class A and
   3840   //   class C is derived directly or indirectly from B,
   3841   //
   3842   // Compare based on pointer conversions.
   3843   if (SCS1.Second == ICK_Pointer_Conversion &&
   3844       SCS2.Second == ICK_Pointer_Conversion &&
   3845       /*FIXME: Remove if Objective-C id conversions get their own rank*/
   3846       FromType1->isPointerType() && FromType2->isPointerType() &&
   3847       ToType1->isPointerType() && ToType2->isPointerType()) {
   3848     QualType FromPointee1
   3849       = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
   3850     QualType ToPointee1
   3851       = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
   3852     QualType FromPointee2
   3853       = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
   3854     QualType ToPointee2
   3855       = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
   3856 
   3857     //   -- conversion of C* to B* is better than conversion of C* to A*,
   3858     if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
   3859       if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
   3860         return ImplicitConversionSequence::Better;
   3861       else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
   3862         return ImplicitConversionSequence::Worse;
   3863     }
   3864 
   3865     //   -- conversion of B* to A* is better than conversion of C* to A*,
   3866     if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
   3867       if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
   3868         return ImplicitConversionSequence::Better;
   3869       else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
   3870         return ImplicitConversionSequence::Worse;
   3871     }
   3872   } else if (SCS1.Second == ICK_Pointer_Conversion &&
   3873              SCS2.Second == ICK_Pointer_Conversion) {
   3874     const ObjCObjectPointerType *FromPtr1
   3875       = FromType1->getAs<ObjCObjectPointerType>();
   3876     const ObjCObjectPointerType *FromPtr2
   3877       = FromType2->getAs<ObjCObjectPointerType>();
   3878     const ObjCObjectPointerType *ToPtr1
   3879       = ToType1->getAs<ObjCObjectPointerType>();
   3880     const ObjCObjectPointerType *ToPtr2
   3881       = ToType2->getAs<ObjCObjectPointerType>();
   3882 
   3883     if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
   3884       // Apply the same conversion ranking rules for Objective-C pointer types
   3885       // that we do for C++ pointers to class types. However, we employ the
   3886       // Objective-C pseudo-subtyping relationship used for assignment of
   3887       // Objective-C pointer types.
   3888       bool FromAssignLeft
   3889         = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
   3890       bool FromAssignRight
   3891         = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
   3892       bool ToAssignLeft
   3893         = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
   3894       bool ToAssignRight
   3895         = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
   3896 
   3897       // A conversion to an a non-id object pointer type or qualified 'id'
   3898       // type is better than a conversion to 'id'.
   3899       if (ToPtr1->isObjCIdType() &&
   3900           (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
   3901         return ImplicitConversionSequence::Worse;
   3902       if (ToPtr2->isObjCIdType() &&
   3903           (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
   3904         return ImplicitConversionSequence::Better;
   3905 
   3906       // A conversion to a non-id object pointer type is better than a
   3907       // conversion to a qualified 'id' type
   3908       if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
   3909         return ImplicitConversionSequence::Worse;
   3910       if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
   3911         return ImplicitConversionSequence::Better;
   3912 
   3913       // A conversion to an a non-Class object pointer type or qualified 'Class'
   3914       // type is better than a conversion to 'Class'.
   3915       if (ToPtr1->isObjCClassType() &&
   3916           (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
   3917         return ImplicitConversionSequence::Worse;
   3918       if (ToPtr2->isObjCClassType() &&
   3919           (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
   3920         return ImplicitConversionSequence::Better;
   3921 
   3922       // A conversion to a non-Class object pointer type is better than a
   3923       // conversion to a qualified 'Class' type.
   3924       if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
   3925         return ImplicitConversionSequence::Worse;
   3926       if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
   3927         return ImplicitConversionSequence::Better;
   3928 
   3929       //   -- "conversion of C* to B* is better than conversion of C* to A*,"
   3930       if (S.Context.hasSameType(FromType1, FromType2) &&
   3931           !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
   3932           (ToAssignLeft != ToAssignRight))
   3933         return ToAssignLeft? ImplicitConversionSequence::Worse
   3934                            : ImplicitConversionSequence::Better;
   3935 
   3936       //   -- "conversion of B* to A* is better than conversion of C* to A*,"
   3937       if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
   3938           (FromAssignLeft != FromAssignRight))
   3939         return FromAssignLeft? ImplicitConversionSequence::Better
   3940         : ImplicitConversionSequence::Worse;
   3941     }
   3942   }
   3943 
   3944   // Ranking of member-pointer types.
   3945   if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
   3946       FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
   3947       ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
   3948     const MemberPointerType * FromMemPointer1 =
   3949                                         FromType1->getAs<MemberPointerType>();
   3950     const MemberPointerType * ToMemPointer1 =
   3951                                           ToType1->getAs<MemberPointerType>();
   3952     const MemberPointerType * FromMemPointer2 =
   3953                                           FromType2->getAs<MemberPointerType>();
   3954     const MemberPointerType * ToMemPointer2 =
   3955                                           ToType2->getAs<MemberPointerType>();
   3956     const Type *FromPointeeType1 = FromMemPointer1->getClass();
   3957     const Type *ToPointeeType1 = ToMemPointer1->getClass();
   3958     const Type *FromPointeeType2 = FromMemPointer2->getClass();
   3959     const Type *ToPointeeType2 = ToMemPointer2->getClass();
   3960     QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
   3961     QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
   3962     QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
   3963     QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
   3964     // conversion of A::* to B::* is better than conversion of A::* to C::*,
   3965     if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
   3966       if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
   3967         return ImplicitConversionSequence::Worse;
   3968       else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
   3969         return ImplicitConversionSequence::Better;
   3970     }
   3971     // conversion of B::* to C::* is better than conversion of A::* to C::*
   3972     if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
   3973       if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
   3974         return ImplicitConversionSequence::Better;
   3975       else if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
   3976         return ImplicitConversionSequence::Worse;
   3977     }
   3978   }
   3979 
   3980   if (SCS1.Second == ICK_Derived_To_Base) {
   3981     //   -- conversion of C to B is better than conversion of C to A,
   3982     //   -- binding of an expression of type C to a reference of type
   3983     //      B& is better than binding an expression of type C to a
   3984     //      reference of type A&,
   3985     if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
   3986         !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
   3987       if (S.IsDerivedFrom(Loc, ToType1, ToType2))
   3988         return ImplicitConversionSequence::Better;
   3989       else if (S.IsDerivedFrom(Loc, ToType2, ToType1))
   3990         return ImplicitConversionSequence::Worse;
   3991     }
   3992 
   3993     //   -- conversion of B to A is better than conversion of C to A.
   3994     //   -- binding of an expression of type B to a reference of type
   3995     //      A& is better than binding an expression of type C to a
   3996     //      reference of type A&,
   3997     if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
   3998         S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
   3999       if (S.IsDerivedFrom(Loc, FromType2, FromType1))
   4000         return ImplicitConversionSequence::Better;
   4001       else if (S.IsDerivedFrom(Loc, FromType1, FromType2))
   4002         return ImplicitConversionSequence::Worse;
   4003     }
   4004   }
   4005 
   4006   return ImplicitConversionSequence::Indistinguishable;
   4007 }
   4008 
   4009 /// \brief Determine whether the given type is valid, e.g., it is not an invalid
   4010 /// C++ class.
   4011 static bool isTypeValid(QualType T) {
   4012   if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
   4013     return !Record->isInvalidDecl();
   4014 
   4015   return true;
   4016 }
   4017 
   4018 /// CompareReferenceRelationship - Compare the two types T1 and T2 to
   4019 /// determine whether they are reference-related,
   4020 /// reference-compatible, reference-compatible with added
   4021 /// qualification, or incompatible, for use in C++ initialization by
   4022 /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
   4023 /// type, and the first type (T1) is the pointee type of the reference
   4024 /// type being initialized.
   4025 Sema::ReferenceCompareResult
   4026 Sema::CompareReferenceRelationship(SourceLocation Loc,
   4027                                    QualType OrigT1, QualType OrigT2,
   4028                                    bool &DerivedToBase,
   4029                                    bool &ObjCConversion,
   4030                                    bool &ObjCLifetimeConversion) {
   4031   assert(!OrigT1->isReferenceType() &&
   4032     "T1 must be the pointee type of the reference type");
   4033   assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
   4034 
   4035   QualType T1 = Context.getCanonicalType(OrigT1);
   4036   QualType T2 = Context.getCanonicalType(OrigT2);
   4037   Qualifiers T1Quals, T2Quals;
   4038   QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
   4039   QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
   4040 
   4041   // C++ [dcl.init.ref]p4:
   4042   //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
   4043   //   reference-related to "cv2 T2" if T1 is the same type as T2, or
   4044   //   T1 is a base class of T2.
   4045   DerivedToBase = false;
   4046   ObjCConversion = false;
   4047   ObjCLifetimeConversion = false;
   4048   if (UnqualT1 == UnqualT2) {
   4049     // Nothing to do.
   4050   } else if (isCompleteType(Loc, OrigT2) &&
   4051              isTypeValid(UnqualT1) && isTypeValid(UnqualT2) &&
   4052              IsDerivedFrom(Loc, UnqualT2, UnqualT1))
   4053     DerivedToBase = true;
   4054   else if (UnqualT1->isObjCObjectOrInterfaceType() &&
   4055            UnqualT2->isObjCObjectOrInterfaceType() &&
   4056            Context.canBindObjCObjectType(UnqualT1, UnqualT2))
   4057     ObjCConversion = true;
   4058   else
   4059     return Ref_Incompatible;
   4060 
   4061   // At this point, we know that T1 and T2 are reference-related (at
   4062   // least).
   4063 
   4064   // If the type is an array type, promote the element qualifiers to the type
   4065   // for comparison.
   4066   if (isa<ArrayType>(T1) && T1Quals)
   4067     T1 = Context.getQualifiedType(UnqualT1, T1Quals);
   4068   if (isa<ArrayType>(T2) && T2Quals)
   4069     T2 = Context.getQualifiedType(UnqualT2, T2Quals);
   4070 
   4071   // C++ [dcl.init.ref]p4:
   4072   //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
   4073   //   reference-related to T2 and cv1 is the same cv-qualification
   4074   //   as, or greater cv-qualification than, cv2. For purposes of
   4075   //   overload resolution, cases for which cv1 is greater
   4076   //   cv-qualification than cv2 are identified as
   4077   //   reference-compatible with added qualification (see 13.3.3.2).
   4078   //
   4079   // Note that we also require equivalence of Objective-C GC and address-space
   4080   // qualifiers when performing these computations, so that e.g., an int in
   4081   // address space 1 is not reference-compatible with an int in address
   4082   // space 2.
   4083   if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() &&
   4084       T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) {
   4085     if (isNonTrivialObjCLifetimeConversion(T2Quals, T1Quals))
   4086       ObjCLifetimeConversion = true;
   4087 
   4088     T1Quals.removeObjCLifetime();
   4089     T2Quals.removeObjCLifetime();
   4090   }
   4091 
   4092   if (T1Quals == T2Quals)
   4093     return Ref_Compatible;
   4094   else if (T1Quals.compatiblyIncludes(T2Quals))
   4095     return Ref_Compatible_With_Added_Qualification;
   4096   else
   4097     return Ref_Related;
   4098 }
   4099 
   4100 /// \brief Look for a user-defined conversion to an value reference-compatible
   4101 ///        with DeclType. Return true if something definite is found.
   4102 static bool
   4103 FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
   4104                          QualType DeclType, SourceLocation DeclLoc,
   4105                          Expr *Init, QualType T2, bool AllowRvalues,
   4106                          bool AllowExplicit) {
   4107   assert(T2->isRecordType() && "Can only find conversions of record types.");
   4108   CXXRecordDecl *T2RecordDecl
   4109     = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
   4110 
   4111   OverloadCandidateSet CandidateSet(DeclLoc, OverloadCandidateSet::CSK_Normal);
   4112   const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
   4113   for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
   4114     NamedDecl *D = *I;
   4115     CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
   4116     if (isa<UsingShadowDecl>(D))
   4117       D = cast<UsingShadowDecl>(D)->getTargetDecl();
   4118 
   4119     FunctionTemplateDecl *ConvTemplate
   4120       = dyn_cast<FunctionTemplateDecl>(D);
   4121     CXXConversionDecl *Conv;
   4122     if (ConvTemplate)
   4123       Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
   4124     else
   4125       Conv = cast<CXXConversionDecl>(D);
   4126 
   4127     // If this is an explicit conversion, and we're not allowed to consider
   4128     // explicit conversions, skip it.
   4129     if (!AllowExplicit && Conv->isExplicit())
   4130       continue;
   4131 
   4132     if (AllowRvalues) {
   4133       bool DerivedToBase = false;
   4134       bool ObjCConversion = false;
   4135       bool ObjCLifetimeConversion = false;
   4136 
   4137       // If we are initializing an rvalue reference, don't permit conversion
   4138       // functions that return lvalues.
   4139       if (!ConvTemplate && DeclType->isRValueReferenceType()) {
   4140         const ReferenceType *RefType
   4141           = Conv->getConversionType()->getAs<LValueReferenceType>();
   4142         if (RefType && !RefType->getPointeeType()->isFunctionType())
   4143           continue;
   4144       }
   4145 
   4146       if (!ConvTemplate &&
   4147           S.CompareReferenceRelationship(
   4148             DeclLoc,
   4149             Conv->getConversionType().getNonReferenceType()
   4150               .getUnqualifiedType(),
   4151             DeclType.getNonReferenceType().getUnqualifiedType(),
   4152             DerivedToBase, ObjCConversion, ObjCLifetimeConversion) ==
   4153           Sema::Ref_Incompatible)
   4154         continue;
   4155     } else {
   4156       // If the conversion function doesn't return a reference type,
   4157       // it can't be considered for this conversion. An rvalue reference
   4158       // is only acceptable if its referencee is a function type.
   4159 
   4160       const ReferenceType *RefType =
   4161         Conv->getConversionType()->getAs<ReferenceType>();
   4162       if (!RefType ||
   4163           (!RefType->isLValueReferenceType() &&
   4164            !RefType->getPointeeType()->isFunctionType()))
   4165         continue;
   4166     }
   4167 
   4168     if (ConvTemplate)
   4169       S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
   4170                                        Init, DeclType, CandidateSet,
   4171                                        /*AllowObjCConversionOnExplicit=*/false);
   4172     else
   4173       S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
   4174                                DeclType, CandidateSet,
   4175                                /*AllowObjCConversionOnExplicit=*/false);
   4176   }
   4177 
   4178   bool HadMultipleCandidates = (CandidateSet.size() > 1);
   4179 
   4180   OverloadCandidateSet::iterator Best;
   4181   switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
   4182   case OR_Success:
   4183     // C++ [over.ics.ref]p1:
   4184     //
   4185     //   [...] If the parameter binds directly to the result of
   4186     //   applying a conversion function to the argument
   4187     //   expression, the implicit conversion sequence is a
   4188     //   user-defined conversion sequence (13.3.3.1.2), with the
   4189     //   second standard conversion sequence either an identity
   4190     //   conversion or, if the conversion function returns an
   4191     //   entity of a type that is a derived class of the parameter
   4192     //   type, a derived-to-base Conversion.
   4193     if (!Best->FinalConversion.DirectBinding)
   4194       return false;
   4195 
   4196     ICS.setUserDefined();
   4197     ICS.UserDefined.Before = Best->Conversions[0].Standard;
   4198     ICS.UserDefined.After = Best->FinalConversion;
   4199     ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
   4200     ICS.UserDefined.ConversionFunction = Best->Function;
   4201     ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
   4202     ICS.UserDefined.EllipsisConversion = false;
   4203     assert(ICS.UserDefined.After.ReferenceBinding &&
   4204            ICS.UserDefined.After.DirectBinding &&
   4205            "Expected a direct reference binding!");
   4206     return true;
   4207 
   4208   case OR_Ambiguous:
   4209     ICS.setAmbiguous();
   4210     for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
   4211          Cand != CandidateSet.end(); ++Cand)
   4212       if (Cand->Viable)
   4213         ICS.Ambiguous.addConversion(Cand->Function);
   4214     return true;
   4215 
   4216   case OR_No_Viable_Function:
   4217   case OR_Deleted:
   4218     // There was no suitable conversion, or we found a deleted
   4219     // conversion; continue with other checks.
   4220     return false;
   4221   }
   4222 
   4223   llvm_unreachable("Invalid OverloadResult!");
   4224 }
   4225 
   4226 /// \brief Compute an implicit conversion sequence for reference
   4227 /// initialization.
   4228 static ImplicitConversionSequence
   4229 TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
   4230                  SourceLocation DeclLoc,
   4231                  bool SuppressUserConversions,
   4232                  bool AllowExplicit) {
   4233   assert(DeclType->isReferenceType() && "Reference init needs a reference");
   4234 
   4235   // Most paths end in a failed conversion.
   4236   ImplicitConversionSequence ICS;
   4237   ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
   4238 
   4239   QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
   4240   QualType T2 = Init->getType();
   4241 
   4242   // If the initializer is the address of an overloaded function, try
   4243   // to resolve the overloaded function. If all goes well, T2 is the
   4244   // type of the resulting function.
   4245   if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
   4246     DeclAccessPair Found;
   4247     if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
   4248                                                                 false, Found))
   4249       T2 = Fn->getType();
   4250   }
   4251 
   4252   // Compute some basic properties of the types and the initializer.
   4253   bool isRValRef = DeclType->isRValueReferenceType();
   4254   bool DerivedToBase = false;
   4255   bool ObjCConversion = false;
   4256   bool ObjCLifetimeConversion = false;
   4257   Expr::Classification InitCategory = Init->Classify(S.Context);
   4258   Sema::ReferenceCompareResult RefRelationship
   4259     = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase,
   4260                                      ObjCConversion, ObjCLifetimeConversion);
   4261 
   4262 
   4263   // C++0x [dcl.init.ref]p5:
   4264   //   A reference to type "cv1 T1" is initialized by an expression
   4265   //   of type "cv2 T2" as follows:
   4266 
   4267   //     -- If reference is an lvalue reference and the initializer expression
   4268   if (!isRValRef) {
   4269     //     -- is an lvalue (but is not a bit-field), and "cv1 T1" is
   4270     //        reference-compatible with "cv2 T2," or
   4271     //
   4272     // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
   4273     if (InitCategory.isLValue() &&
   4274         RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
   4275       // C++ [over.ics.ref]p1:
   4276       //   When a parameter of reference type binds directly (8.5.3)
   4277       //   to an argument expression, the implicit conversion sequence
   4278       //   is the identity conversion, unless the argument expression
   4279       //   has a type that is a derived class of the parameter type,
   4280       //   in which case the implicit conversion sequence is a
   4281       //   derived-to-base Conversion (13.3.3.1).
   4282       ICS.setStandard();
   4283       ICS.Standard.First = ICK_Identity;
   4284       ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
   4285                          : ObjCConversion? ICK_Compatible_Conversion
   4286                          : ICK_Identity;
   4287       ICS.Standard.Third = ICK_Identity;
   4288       ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
   4289       ICS.Standard.setToType(0, T2);
   4290       ICS.Standard.setToType(1, T1);
   4291       ICS.Standard.setToType(2, T1);
   4292       ICS.Standard.ReferenceBinding = true;
   4293       ICS.Standard.DirectBinding = true;
   4294       ICS.Standard.IsLvalueReference = !isRValRef;
   4295       ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
   4296       ICS.Standard.BindsToRvalue = false;
   4297       ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
   4298       ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
   4299       ICS.Standard.CopyConstructor = nullptr;
   4300       ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
   4301 
   4302       // Nothing more to do: the inaccessibility/ambiguity check for
   4303       // derived-to-base conversions is suppressed when we're
   4304       // computing the implicit conversion sequence (C++
   4305       // [over.best.ics]p2).
   4306       return ICS;
   4307     }
   4308 
   4309     //       -- has a class type (i.e., T2 is a class type), where T1 is
   4310     //          not reference-related to T2, and can be implicitly
   4311     //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
   4312     //          is reference-compatible with "cv3 T3" 92) (this
   4313     //          conversion is selected by enumerating the applicable
   4314     //          conversion functions (13.3.1.6) and choosing the best
   4315     //          one through overload resolution (13.3)),
   4316     if (!SuppressUserConversions && T2->isRecordType() &&
   4317         S.isCompleteType(DeclLoc, T2) &&
   4318         RefRelationship == Sema::Ref_Incompatible) {
   4319       if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
   4320                                    Init, T2, /*AllowRvalues=*/false,
   4321                                    AllowExplicit))
   4322         return ICS;
   4323     }
   4324   }
   4325 
   4326   //     -- Otherwise, the reference shall be an lvalue reference to a
   4327   //        non-volatile const type (i.e., cv1 shall be const), or the reference
   4328   //        shall be an rvalue reference.
   4329   if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified()))
   4330     return ICS;
   4331 
   4332   //       -- If the initializer expression
   4333   //
   4334   //            -- is an xvalue, class prvalue, array prvalue or function
   4335   //               lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
   4336   if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification &&
   4337       (InitCategory.isXValue() ||
   4338       (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) ||
   4339       (InitCategory.isLValue() && T2->isFunctionType()))) {
   4340     ICS.setStandard();
   4341     ICS.Standard.First = ICK_Identity;
   4342     ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
   4343                       : ObjCConversion? ICK_Compatible_Conversion
   4344                       : ICK_Identity;
   4345     ICS.Standard.Third = ICK_Identity;
   4346     ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
   4347     ICS.Standard.setToType(0, T2);
   4348     ICS.Standard.setToType(1, T1);
   4349     ICS.Standard.setToType(2, T1);
   4350     ICS.Standard.ReferenceBinding = true;
   4351     // In C++0x, this is always a direct binding. In C++98/03, it's a direct
   4352     // binding unless we're binding to a class prvalue.
   4353     // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
   4354     // allow the use of rvalue references in C++98/03 for the benefit of
   4355     // standard library implementors; therefore, we need the xvalue check here.
   4356     ICS.Standard.DirectBinding =
   4357       S.getLangOpts().CPlusPlus11 ||
   4358       !(InitCategory.isPRValue() || T2->isRecordType());
   4359     ICS.Standard.IsLvalueReference = !isRValRef;
   4360     ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
   4361     ICS.Standard.BindsToRvalue = InitCategory.isRValue();
   4362     ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
   4363     ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
   4364     ICS.Standard.CopyConstructor = nullptr;
   4365     ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
   4366     return ICS;
   4367   }
   4368 
   4369   //            -- has a class type (i.e., T2 is a class type), where T1 is not
   4370   //               reference-related to T2, and can be implicitly converted to
   4371   //               an xvalue, class prvalue, or function lvalue of type
   4372   //               "cv3 T3", where "cv1 T1" is reference-compatible with
   4373   //               "cv3 T3",
   4374   //
   4375   //          then the reference is bound to the value of the initializer
   4376   //          expression in the first case and to the result of the conversion
   4377   //          in the second case (or, in either case, to an appropriate base
   4378   //          class subobject).
   4379   if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
   4380       T2->isRecordType() && S.isCompleteType(DeclLoc, T2) &&
   4381       FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
   4382                                Init, T2, /*AllowRvalues=*/true,
   4383                                AllowExplicit)) {
   4384     // In the second case, if the reference is an rvalue reference
   4385     // and the second standard conversion sequence of the
   4386     // user-defined conversion sequence includes an lvalue-to-rvalue
   4387     // conversion, the program is ill-formed.
   4388     if (ICS.isUserDefined() && isRValRef &&
   4389         ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
   4390       ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
   4391 
   4392     return ICS;
   4393   }
   4394 
   4395   // A temporary of function type cannot be created; don't even try.
   4396   if (T1->isFunctionType())
   4397     return ICS;
   4398 
   4399   //       -- Otherwise, a temporary of type "cv1 T1" is created and
   4400   //          initialized from the initializer expression using the
   4401   //          rules for a non-reference copy initialization (8.5). The
   4402   //          reference is then bound to the temporary. If T1 is
   4403   //          reference-related to T2, cv1 must be the same
   4404   //          cv-qualification as, or greater cv-qualification than,
   4405   //          cv2; otherwise, the program is ill-formed.
   4406   if (RefRelationship == Sema::Ref_Related) {
   4407     // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
   4408     // we would be reference-compatible or reference-compatible with
   4409     // added qualification. But that wasn't the case, so the reference
   4410     // initialization fails.
   4411     //
   4412     // Note that we only want to check address spaces and cvr-qualifiers here.
   4413     // ObjC GC and lifetime qualifiers aren't important.
   4414     Qualifiers T1Quals = T1.getQualifiers();
   4415     Qualifiers T2Quals = T2.getQualifiers();
   4416     T1Quals.removeObjCGCAttr();
   4417     T1Quals.removeObjCLifetime();
   4418     T2Quals.removeObjCGCAttr();
   4419     T2Quals.removeObjCLifetime();
   4420     if (!T1Quals.compatiblyIncludes(T2Quals))
   4421       return ICS;
   4422   }
   4423 
   4424   // If at least one of the types is a class type, the types are not
   4425   // related, and we aren't allowed any user conversions, the
   4426   // reference binding fails. This case is important for breaking
   4427   // recursion, since TryImplicitConversion below will attempt to
   4428   // create a temporary through the use of a copy constructor.
   4429   if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
   4430       (T1->isRecordType() || T2->isRecordType()))
   4431     return ICS;
   4432 
   4433   // If T1 is reference-related to T2 and the reference is an rvalue
   4434   // reference, the initializer expression shall not be an lvalue.
   4435   if (RefRelationship >= Sema::Ref_Related &&
   4436       isRValRef && Init->Classify(S.Context).isLValue())
   4437     return ICS;
   4438 
   4439   // C++ [over.ics.ref]p2:
   4440   //   When a parameter of reference type is not bound directly to
   4441   //   an argument expression, the conversion sequence is the one
   4442   //   required to convert the argument expression to the
   4443   //   underlying type of the reference according to
   4444   //   13.3.3.1. Conceptually, this conversion sequence corresponds
   4445   //   to copy-initializing a temporary of the underlying type with
   4446   //   the argument expression. Any difference in top-level
   4447   //   cv-qualification is subsumed by the initialization itself
   4448   //   and does not constitute a conversion.
   4449   ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
   4450                               /*AllowExplicit=*/false,
   4451                               /*InOverloadResolution=*/false,
   4452                               /*CStyle=*/false,
   4453                               /*AllowObjCWritebackConversion=*/false,
   4454                               /*AllowObjCConversionOnExplicit=*/false);
   4455 
   4456   // Of course, that's still a reference binding.
   4457   if (ICS.isStandard()) {
   4458     ICS.Standard.ReferenceBinding = true;
   4459     ICS.Standard.IsLvalueReference = !isRValRef;
   4460     ICS.Standard.BindsToFunctionLvalue = false;
   4461     ICS.Standard.BindsToRvalue = true;
   4462     ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
   4463     ICS.Standard.ObjCLifetimeConversionBinding = false;
   4464   } else if (ICS.isUserDefined()) {
   4465     const ReferenceType *LValRefType =
   4466         ICS.UserDefined.ConversionFunction->getReturnType()
   4467             ->getAs<LValueReferenceType>();
   4468 
   4469     // C++ [over.ics.ref]p3:
   4470     //   Except for an implicit object parameter, for which see 13.3.1, a
   4471     //   standard conversion sequence cannot be formed if it requires [...]
   4472     //   binding an rvalue reference to an lvalue other than a function
   4473     //   lvalue.
   4474     // Note that the function case is not possible here.
   4475     if (DeclType->isRValueReferenceType() && LValRefType) {
   4476       // FIXME: This is the wrong BadConversionSequence. The problem is binding
   4477       // an rvalue reference to a (non-function) lvalue, not binding an lvalue
   4478       // reference to an rvalue!
   4479       ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType);
   4480       return ICS;
   4481     }
   4482 
   4483     ICS.UserDefined.Before.setAsIdentityConversion();
   4484     ICS.UserDefined.After.ReferenceBinding = true;
   4485     ICS.UserDefined.After.IsLvalueReference = !isRValRef;
   4486     ICS.UserDefined.After.BindsToFunctionLvalue = false;
   4487     ICS.UserDefined.After.BindsToRvalue = !LValRefType;
   4488     ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
   4489     ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
   4490   }
   4491 
   4492   return ICS;
   4493 }
   4494 
   4495 static ImplicitConversionSequence
   4496 TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
   4497                       bool SuppressUserConversions,
   4498                       bool InOverloadResolution,
   4499                       bool AllowObjCWritebackConversion,
   4500                       bool AllowExplicit = false);
   4501 
   4502 /// TryListConversion - Try to copy-initialize a value of type ToType from the
   4503 /// initializer list From.
   4504 static ImplicitConversionSequence
   4505 TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
   4506                   bool SuppressUserConversions,
   4507                   bool InOverloadResolution,
   4508                   bool AllowObjCWritebackConversion) {
   4509   // C++11 [over.ics.list]p1:
   4510   //   When an argument is an initializer list, it is not an expression and
   4511   //   special rules apply for converting it to a parameter type.
   4512 
   4513   ImplicitConversionSequence Result;
   4514   Result.setBad(BadConversionSequence::no_conversion, From, ToType);
   4515 
   4516   // We need a complete type for what follows. Incomplete types can never be
   4517   // initialized from init lists.
   4518   if (!S.isCompleteType(From->getLocStart(), ToType))
   4519     return Result;
   4520 
   4521   // Per DR1467:
   4522   //   If the parameter type is a class X and the initializer list has a single
   4523   //   element of type cv U, where U is X or a class derived from X, the
   4524   //   implicit conversion sequence is the one required to convert the element
   4525   //   to the parameter type.
   4526   //
   4527   //   Otherwise, if the parameter type is a character array [... ]
   4528   //   and the initializer list has a single element that is an
   4529   //   appropriately-typed string literal (8.5.2 [dcl.init.string]), the
   4530   //   implicit conversion sequence is the identity conversion.
   4531   if (From->getNumInits() == 1) {
   4532     if (ToType->isRecordType()) {
   4533       QualType InitType = From->getInit(0)->getType();
   4534       if (S.Context.hasSameUnqualifiedType(InitType, ToType) ||
   4535           S.IsDerivedFrom(From->getLocStart(), InitType, ToType))
   4536         return TryCopyInitialization(S, From->getInit(0), ToType,
   4537                                      SuppressUserConversions,
   4538                                      InOverloadResolution,
   4539                                      AllowObjCWritebackConversion);
   4540     }
   4541     // FIXME: Check the other conditions here: array of character type,
   4542     // initializer is a string literal.
   4543     if (ToType->isArrayType()) {
   4544       InitializedEntity Entity =
   4545         InitializedEntity::InitializeParameter(S.Context, ToType,
   4546                                                /*Consumed=*/false);
   4547       if (S.CanPerformCopyInitialization(Entity, From)) {
   4548         Result.setStandard();
   4549         Result.Standard.setAsIdentityConversion();
   4550         Result.Standard.setFromType(ToType);
   4551         Result.Standard.setAllToTypes(ToType);
   4552         return Result;
   4553       }
   4554     }
   4555   }
   4556 
   4557   // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below).
   4558   // C++11 [over.ics.list]p2:
   4559   //   If the parameter type is std::initializer_list<X> or "array of X" and
   4560   //   all the elements can be implicitly converted to X, the implicit
   4561   //   conversion sequence is the worst conversion necessary to convert an
   4562   //   element of the list to X.
   4563   //
   4564   // C++14 [over.ics.list]p3:
   4565   //   Otherwise, if the parameter type is "array of N X", if the initializer
   4566   //   list has exactly N elements or if it has fewer than N elements and X is
   4567   //   default-constructible, and if all the elements of the initializer list
   4568   //   can be implicitly converted to X, the implicit conversion sequence is
   4569   //   the worst conversion necessary to convert an element of the list to X.
   4570   //
   4571   // FIXME: We're missing a lot of these checks.
   4572   bool toStdInitializerList = false;
   4573   QualType X;
   4574   if (ToType->isArrayType())
   4575     X = S.Context.getAsArrayType(ToType)->getElementType();
   4576   else
   4577     toStdInitializerList = S.isStdInitializerList(ToType, &X);
   4578   if (!X.isNull()) {
   4579     for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) {
   4580       Expr *Init = From->getInit(i);
   4581       ImplicitConversionSequence ICS =
   4582           TryCopyInitialization(S, Init, X, SuppressUserConversions,
   4583                                 InOverloadResolution,
   4584                                 AllowObjCWritebackConversion);
   4585       // If a single element isn't convertible, fail.
   4586       if (ICS.isBad()) {
   4587         Result = ICS;
   4588         break;
   4589       }
   4590       // Otherwise, look for the worst conversion.
   4591       if (Result.isBad() ||
   4592           CompareImplicitConversionSequences(S, From->getLocStart(), ICS,
   4593                                              Result) ==
   4594               ImplicitConversionSequence::Worse)
   4595         Result = ICS;
   4596     }
   4597 
   4598     // For an empty list, we won't have computed any conversion sequence.
   4599     // Introduce the identity conversion sequence.
   4600     if (From->getNumInits() == 0) {
   4601       Result.setStandard();
   4602       Result.Standard.setAsIdentityConversion();
   4603       Result.Standard.setFromType(ToType);
   4604       Result.Standard.setAllToTypes(ToType);
   4605     }
   4606 
   4607     Result.setStdInitializerListElement(toStdInitializerList);
   4608     return Result;
   4609   }
   4610 
   4611   // C++14 [over.ics.list]p4:
   4612   // C++11 [over.ics.list]p3:
   4613   //   Otherwise, if the parameter is a non-aggregate class X and overload
   4614   //   resolution chooses a single best constructor [...] the implicit
   4615   //   conversion sequence is a user-defined conversion sequence. If multiple
   4616   //   constructors are viable but none is better than the others, the
   4617   //   implicit conversion sequence is a user-defined conversion sequence.
   4618   if (ToType->isRecordType() && !ToType->isAggregateType()) {
   4619     // This function can deal with initializer lists.
   4620     return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
   4621                                     /*AllowExplicit=*/false,
   4622                                     InOverloadResolution, /*CStyle=*/false,
   4623                                     AllowObjCWritebackConversion,
   4624                                     /*AllowObjCConversionOnExplicit=*/false);
   4625   }
   4626 
   4627   // C++14 [over.ics.list]p5:
   4628   // C++11 [over.ics.list]p4:
   4629   //   Otherwise, if the parameter has an aggregate type which can be
   4630   //   initialized from the initializer list [...] the implicit conversion
   4631   //   sequence is a user-defined conversion sequence.
   4632   if (ToType->isAggregateType()) {
   4633     // Type is an aggregate, argument is an init list. At this point it comes
   4634     // down to checking whether the initialization works.
   4635     // FIXME: Find out whether this parameter is consumed or not.
   4636     InitializedEntity Entity =
   4637         InitializedEntity::InitializeParameter(S.Context, ToType,
   4638                                                /*Consumed=*/false);
   4639     if (S.CanPerformCopyInitialization(Entity, From)) {
   4640       Result.setUserDefined();
   4641       Result.UserDefined.Before.setAsIdentityConversion();
   4642       // Initializer lists don't have a type.
   4643       Result.UserDefined.Before.setFromType(QualType());
   4644       Result.UserDefined.Before.setAllToTypes(QualType());
   4645 
   4646       Result.UserDefined.After.setAsIdentityConversion();
   4647       Result.UserDefined.After.setFromType(ToType);
   4648       Result.UserDefined.After.setAllToTypes(ToType);
   4649       Result.UserDefined.ConversionFunction = nullptr;
   4650     }
   4651     return Result;
   4652   }
   4653 
   4654   // C++14 [over.ics.list]p6:
   4655   // C++11 [over.ics.list]p5:
   4656   //   Otherwise, if the parameter is a reference, see 13.3.3.1.4.
   4657   if (ToType->isReferenceType()) {
   4658     // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
   4659     // mention initializer lists in any way. So we go by what list-
   4660     // initialization would do and try to extrapolate from that.
   4661 
   4662     QualType T1 = ToType->getAs<ReferenceType>()->getPointeeType();
   4663 
   4664     // If the initializer list has a single element that is reference-related
   4665     // to the parameter type, we initialize the reference from that.
   4666     if (From->getNumInits() == 1) {
   4667       Expr *Init = From->getInit(0);
   4668 
   4669       QualType T2 = Init->getType();
   4670 
   4671       // If the initializer is the address of an overloaded function, try
   4672       // to resolve the overloaded function. If all goes well, T2 is the
   4673       // type of the resulting function.
   4674       if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
   4675         DeclAccessPair Found;
   4676         if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
   4677                                    Init, ToType, false, Found))
   4678           T2 = Fn->getType();
   4679       }
   4680 
   4681       // Compute some basic properties of the types and the initializer.
   4682       bool dummy1 = false;
   4683       bool dummy2 = false;
   4684       bool dummy3 = false;
   4685       Sema::ReferenceCompareResult RefRelationship
   4686         = S.CompareReferenceRelationship(From->getLocStart(), T1, T2, dummy1,
   4687                                          dummy2, dummy3);
   4688 
   4689       if (RefRelationship >= Sema::Ref_Related) {
   4690         return TryReferenceInit(S, Init, ToType, /*FIXME*/From->getLocStart(),
   4691                                 SuppressUserConversions,
   4692                                 /*AllowExplicit=*/false);
   4693       }
   4694     }
   4695 
   4696     // Otherwise, we bind the reference to a temporary created from the
   4697     // initializer list.
   4698     Result = TryListConversion(S, From, T1, SuppressUserConversions,
   4699                                InOverloadResolution,
   4700                                AllowObjCWritebackConversion);
   4701     if (Result.isFailure())
   4702       return Result;
   4703     assert(!Result.isEllipsis() &&
   4704            "Sub-initialization cannot result in ellipsis conversion.");
   4705 
   4706     // Can we even bind to a temporary?
   4707     if (ToType->isRValueReferenceType() ||
   4708         (T1.isConstQualified() && !T1.isVolatileQualified())) {
   4709       StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
   4710                                             Result.UserDefined.After;
   4711       SCS.ReferenceBinding = true;
   4712       SCS.IsLvalueReference = ToType->isLValueReferenceType();
   4713       SCS.BindsToRvalue = true;
   4714       SCS.BindsToFunctionLvalue = false;
   4715       SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
   4716       SCS.ObjCLifetimeConversionBinding = false;
   4717     } else
   4718       Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
   4719                     From, ToType);
   4720     return Result;
   4721   }
   4722 
   4723   // C++14 [over.ics.list]p7:
   4724   // C++11 [over.ics.list]p6:
   4725   //   Otherwise, if the parameter type is not a class:
   4726   if (!ToType->isRecordType()) {
   4727     //    - if the initializer list has one element that is not itself an
   4728     //      initializer list, the implicit conversion sequence is the one
   4729     //      required to convert the element to the parameter type.
   4730     unsigned NumInits = From->getNumInits();
   4731     if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0)))
   4732       Result = TryCopyInitialization(S, From->getInit(0), ToType,
   4733                                      SuppressUserConversions,
   4734                                      InOverloadResolution,
   4735                                      AllowObjCWritebackConversion);
   4736     //    - if the initializer list has no elements, the implicit conversion
   4737     //      sequence is the identity conversion.
   4738     else if (NumInits == 0) {
   4739       Result.setStandard();
   4740       Result.Standard.setAsIdentityConversion();
   4741       Result.Standard.setFromType(ToType);
   4742       Result.Standard.setAllToTypes(ToType);
   4743     }
   4744     return Result;
   4745   }
   4746 
   4747   // C++14 [over.ics.list]p8:
   4748   // C++11 [over.ics.list]p7:
   4749   //   In all cases other than those enumerated above, no conversion is possible
   4750   return Result;
   4751 }
   4752 
   4753 /// TryCopyInitialization - Try to copy-initialize a value of type
   4754 /// ToType from the expression From. Return the implicit conversion
   4755 /// sequence required to pass this argument, which may be a bad
   4756 /// conversion sequence (meaning that the argument cannot be passed to
   4757 /// a parameter of this type). If @p SuppressUserConversions, then we
   4758 /// do not permit any user-defined conversion sequences.
   4759 static ImplicitConversionSequence
   4760 TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
   4761                       bool SuppressUserConversions,
   4762                       bool InOverloadResolution,
   4763                       bool AllowObjCWritebackConversion,
   4764                       bool AllowExplicit) {
   4765   if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
   4766     return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
   4767                              InOverloadResolution,AllowObjCWritebackConversion);
   4768 
   4769   if (ToType->isReferenceType())
   4770     return TryReferenceInit(S, From, ToType,
   4771                             /*FIXME:*/From->getLocStart(),
   4772                             SuppressUserConversions,
   4773                             AllowExplicit);
   4774 
   4775   return TryImplicitConversion(S, From, ToType,
   4776                                SuppressUserConversions,
   4777                                /*AllowExplicit=*/false,
   4778                                InOverloadResolution,
   4779                                /*CStyle=*/false,
   4780                                AllowObjCWritebackConversion,
   4781                                /*AllowObjCConversionOnExplicit=*/false);
   4782 }
   4783 
   4784 static bool TryCopyInitialization(const CanQualType FromQTy,
   4785                                   const CanQualType ToQTy,
   4786                                   Sema &S,
   4787                                   SourceLocation Loc,
   4788                                   ExprValueKind FromVK) {
   4789   OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
   4790   ImplicitConversionSequence ICS =
   4791     TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
   4792 
   4793   return !ICS.isBad();
   4794 }
   4795 
   4796 /// TryObjectArgumentInitialization - Try to initialize the object
   4797 /// parameter of the given member function (@c Method) from the
   4798 /// expression @p From.
   4799 static ImplicitConversionSequence
   4800 TryObjectArgumentInitialization(Sema &S, SourceLocation Loc, QualType FromType,
   4801                                 Expr::Classification FromClassification,
   4802                                 CXXMethodDecl *Method,
   4803                                 CXXRecordDecl *ActingContext) {
   4804   QualType ClassType = S.Context.getTypeDeclType(ActingContext);
   4805   // [class.dtor]p2: A destructor can be invoked for a const, volatile or
   4806   //                 const volatile object.
   4807   unsigned Quals = isa<CXXDestructorDecl>(Method) ?
   4808     Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
   4809   QualType ImplicitParamType =  S.Context.getCVRQualifiedType(ClassType, Quals);
   4810 
   4811   // Set up the conversion sequence as a "bad" conversion, to allow us
   4812   // to exit early.
   4813   ImplicitConversionSequence ICS;
   4814 
   4815   // We need to have an object of class type.
   4816   if (const PointerType *PT = FromType->getAs<PointerType>()) {
   4817     FromType = PT->getPointeeType();
   4818 
   4819     // When we had a pointer, it's implicitly dereferenced, so we
   4820     // better have an lvalue.
   4821     assert(FromClassification.isLValue());
   4822   }
   4823 
   4824   assert(FromType->isRecordType());
   4825 
   4826   // C++0x [over.match.funcs]p4:
   4827   //   For non-static member functions, the type of the implicit object
   4828   //   parameter is
   4829   //
   4830   //     - "lvalue reference to cv X" for functions declared without a
   4831   //        ref-qualifier or with the & ref-qualifier
   4832   //     - "rvalue reference to cv X" for functions declared with the &&
   4833   //        ref-qualifier
   4834   //
   4835   // where X is the class of which the function is a member and cv is the
   4836   // cv-qualification on the member function declaration.
   4837   //
   4838   // However, when finding an implicit conversion sequence for the argument, we
   4839   // are not allowed to create temporaries or perform user-defined conversions
   4840   // (C++ [over.match.funcs]p5). We perform a simplified version of
   4841   // reference binding here, that allows class rvalues to bind to
   4842   // non-constant references.
   4843 
   4844   // First check the qualifiers.
   4845   QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
   4846   if (ImplicitParamType.getCVRQualifiers()
   4847                                     != FromTypeCanon.getLocalCVRQualifiers() &&
   4848       !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
   4849     ICS.setBad(BadConversionSequence::bad_qualifiers,
   4850                FromType, ImplicitParamType);
   4851     return ICS;
   4852   }
   4853 
   4854   // Check that we have either the same type or a derived type. It
   4855   // affects the conversion rank.
   4856   QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
   4857   ImplicitConversionKind SecondKind;
   4858   if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
   4859     SecondKind = ICK_Identity;
   4860   } else if (S.IsDerivedFrom(Loc, FromType, ClassType))
   4861     SecondKind = ICK_Derived_To_Base;
   4862   else {
   4863     ICS.setBad(BadConversionSequence::unrelated_class,
   4864                FromType, ImplicitParamType);
   4865     return ICS;
   4866   }
   4867 
   4868   // Check the ref-qualifier.
   4869   switch (Method->getRefQualifier()) {
   4870   case RQ_None:
   4871     // Do nothing; we don't care about lvalueness or rvalueness.
   4872     break;
   4873 
   4874   case RQ_LValue:
   4875     if (!FromClassification.isLValue() && Quals != Qualifiers::Const) {
   4876       // non-const lvalue reference cannot bind to an rvalue
   4877       ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
   4878                  ImplicitParamType);
   4879       return ICS;
   4880     }
   4881     break;
   4882 
   4883   case RQ_RValue:
   4884     if (!FromClassification.isRValue()) {
   4885       // rvalue reference cannot bind to an lvalue
   4886       ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
   4887                  ImplicitParamType);
   4888       return ICS;
   4889     }
   4890     break;
   4891   }
   4892 
   4893   // Success. Mark this as a reference binding.
   4894   ICS.setStandard();
   4895   ICS.Standard.setAsIdentityConversion();
   4896   ICS.Standard.Second = SecondKind;
   4897   ICS.Standard.setFromType(FromType);
   4898   ICS.Standard.setAllToTypes(ImplicitParamType);
   4899   ICS.Standard.ReferenceBinding = true;
   4900   ICS.Standard.DirectBinding = true;
   4901   ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
   4902   ICS.Standard.BindsToFunctionLvalue = false;
   4903   ICS.Standard.BindsToRvalue = FromClassification.isRValue();
   4904   ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
   4905     = (Method->getRefQualifier() == RQ_None);
   4906   return ICS;
   4907 }
   4908 
   4909 /// PerformObjectArgumentInitialization - Perform initialization of
   4910 /// the implicit object parameter for the given Method with the given
   4911 /// expression.
   4912 ExprResult
   4913 Sema::PerformObjectArgumentInitialization(Expr *From,
   4914                                           NestedNameSpecifier *Qualifier,
   4915                                           NamedDecl *FoundDecl,
   4916                                           CXXMethodDecl *Method) {
   4917   QualType FromRecordType, DestType;
   4918   QualType ImplicitParamRecordType  =
   4919     Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
   4920 
   4921   Expr::Classification FromClassification;
   4922   if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
   4923     FromRecordType = PT->getPointeeType();
   4924     DestType = Method->getThisType(Context);
   4925     FromClassification = Expr::Classification::makeSimpleLValue();
   4926   } else {
   4927     FromRecordType = From->getType();
   4928     DestType = ImplicitParamRecordType;
   4929     FromClassification = From->Classify(Context);
   4930   }
   4931 
   4932   // Note that we always use the true parent context when performing
   4933   // the actual argument initialization.
   4934   ImplicitConversionSequence ICS = TryObjectArgumentInitialization(
   4935       *this, From->getLocStart(), From->getType(), FromClassification, Method,
   4936       Method->getParent());
   4937   if (ICS.isBad()) {
   4938     if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) {
   4939       Qualifiers FromQs = FromRecordType.getQualifiers();
   4940       Qualifiers ToQs = DestType.getQualifiers();
   4941       unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
   4942       if (CVR) {
   4943         Diag(From->getLocStart(),
   4944              diag::err_member_function_call_bad_cvr)
   4945           << Method->getDeclName() << FromRecordType << (CVR - 1)
   4946           << From->getSourceRange();
   4947         Diag(Method->getLocation(), diag::note_previous_decl)
   4948           << Method->getDeclName();
   4949         return ExprError();
   4950       }
   4951     }
   4952 
   4953     return Diag(From->getLocStart(),
   4954                 diag::err_implicit_object_parameter_init)
   4955        << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
   4956   }
   4957 
   4958   if (ICS.Standard.Second == ICK_Derived_To_Base) {
   4959     ExprResult FromRes =
   4960       PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
   4961     if (FromRes.isInvalid())
   4962       return ExprError();
   4963     From = FromRes.get();
   4964   }
   4965 
   4966   if (!Context.hasSameType(From->getType(), DestType))
   4967     From = ImpCastExprToType(From, DestType, CK_NoOp,
   4968                              From->getValueKind()).get();
   4969   return From;
   4970 }
   4971 
   4972 /// TryContextuallyConvertToBool - Attempt to contextually convert the
   4973 /// expression From to bool (C++0x [conv]p3).
   4974 static ImplicitConversionSequence
   4975 TryContextuallyConvertToBool(Sema &S, Expr *From) {
   4976   return TryImplicitConversion(S, From, S.Context.BoolTy,
   4977                                /*SuppressUserConversions=*/false,
   4978                                /*AllowExplicit=*/true,
   4979                                /*InOverloadResolution=*/false,
   4980                                /*CStyle=*/false,
   4981                                /*AllowObjCWritebackConversion=*/false,
   4982                                /*AllowObjCConversionOnExplicit=*/false);
   4983 }
   4984 
   4985 /// PerformContextuallyConvertToBool - Perform a contextual conversion
   4986 /// of the expression From to bool (C++0x [conv]p3).
   4987 ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
   4988   if (checkPlaceholderForOverload(*this, From))
   4989     return ExprError();
   4990 
   4991   ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
   4992   if (!ICS.isBad())
   4993     return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
   4994 
   4995   if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
   4996     return Diag(From->getLocStart(),
   4997                 diag::err_typecheck_bool_condition)
   4998                   << From->getType() << From->getSourceRange();
   4999   return ExprError();
   5000 }
   5001 
   5002 /// Check that the specified conversion is permitted in a converted constant
   5003 /// expression, according to C++11 [expr.const]p3. Return true if the conversion
   5004 /// is acceptable.
   5005 static bool CheckConvertedConstantConversions(Sema &S,
   5006                                               StandardConversionSequence &SCS) {
   5007   // Since we know that the target type is an integral or unscoped enumeration
   5008   // type, most conversion kinds are impossible. All possible First and Third
   5009   // conversions are fine.
   5010   switch (SCS.Second) {
   5011   case ICK_Identity:
   5012   case ICK_NoReturn_Adjustment:
   5013   case ICK_Integral_Promotion:
   5014   case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere.
   5015     return true;
   5016 
   5017   case ICK_Boolean_Conversion:
   5018     // Conversion from an integral or unscoped enumeration type to bool is
   5019     // classified as ICK_Boolean_Conversion, but it's also arguably an integral
   5020     // conversion, so we allow it in a converted constant expression.
   5021     //
   5022     // FIXME: Per core issue 1407, we should not allow this, but that breaks
   5023     // a lot of popular code. We should at least add a warning for this
   5024     // (non-conforming) extension.
   5025     return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
   5026            SCS.getToType(2)->isBooleanType();
   5027 
   5028   case ICK_Pointer_Conversion:
   5029   case ICK_Pointer_Member:
   5030     // C++1z: null pointer conversions and null member pointer conversions are
   5031     // only permitted if the source type is std::nullptr_t.
   5032     return SCS.getFromType()->isNullPtrType();
   5033 
   5034   case ICK_Floating_Promotion:
   5035   case ICK_Complex_Promotion:
   5036   case ICK_Floating_Conversion:
   5037   case ICK_Complex_Conversion:
   5038   case ICK_Floating_Integral:
   5039   case ICK_Compatible_Conversion:
   5040   case ICK_Derived_To_Base:
   5041   case ICK_Vector_Conversion:
   5042   case ICK_Vector_Splat:
   5043   case ICK_Complex_Real:
   5044   case ICK_Block_Pointer_Conversion:
   5045   case ICK_TransparentUnionConversion:
   5046   case ICK_Writeback_Conversion:
   5047   case ICK_Zero_Event_Conversion:
   5048   case ICK_C_Only_Conversion:
   5049     return false;
   5050 
   5051   case ICK_Lvalue_To_Rvalue:
   5052   case ICK_Array_To_Pointer:
   5053   case ICK_Function_To_Pointer:
   5054     llvm_unreachable("found a first conversion kind in Second");
   5055 
   5056   case ICK_Qualification:
   5057     llvm_unreachable("found a third conversion kind in Second");
   5058 
   5059   case ICK_Num_Conversion_Kinds:
   5060     break;
   5061   }
   5062 
   5063   llvm_unreachable("unknown conversion kind");
   5064 }
   5065 
   5066 /// CheckConvertedConstantExpression - Check that the expression From is a
   5067 /// converted constant expression of type T, perform the conversion and produce
   5068 /// the converted expression, per C++11 [expr.const]p3.
   5069 static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From,
   5070                                                    QualType T, APValue &Value,
   5071                                                    Sema::CCEKind CCE,
   5072                                                    bool RequireInt) {
   5073   assert(S.getLangOpts().CPlusPlus11 &&
   5074          "converted constant expression outside C++11");
   5075 
   5076   if (checkPlaceholderForOverload(S, From))
   5077     return ExprError();
   5078 
   5079   // C++1z [expr.const]p3:
   5080   //  A converted constant expression of type T is an expression,
   5081   //  implicitly converted to type T, where the converted
   5082   //  expression is a constant expression and the implicit conversion
   5083   //  sequence contains only [... list of conversions ...].
   5084   ImplicitConversionSequence ICS =
   5085     TryCopyInitialization(S, From, T,
   5086                           /*SuppressUserConversions=*/false,
   5087                           /*InOverloadResolution=*/false,
   5088                           /*AllowObjcWritebackConversion=*/false,
   5089                           /*AllowExplicit=*/false);
   5090   StandardConversionSequence *SCS = nullptr;
   5091   switch (ICS.getKind()) {
   5092   case ImplicitConversionSequence::StandardConversion:
   5093     SCS = &ICS.Standard;
   5094     break;
   5095   case ImplicitConversionSequence::UserDefinedConversion:
   5096     // We are converting to a non-class type, so the Before sequence
   5097     // must be trivial.
   5098     SCS = &ICS.UserDefined.After;
   5099     break;
   5100   case ImplicitConversionSequence::AmbiguousConversion:
   5101   case ImplicitConversionSequence::BadConversion:
   5102     if (!S.DiagnoseMultipleUserDefinedConversion(From, T))
   5103       return S.Diag(From->getLocStart(),
   5104                     diag::err_typecheck_converted_constant_expression)
   5105                 << From->getType() << From->getSourceRange() << T;
   5106     return ExprError();
   5107 
   5108   case ImplicitConversionSequence::EllipsisConversion:
   5109     llvm_unreachable("ellipsis conversion in converted constant expression");
   5110   }
   5111 
   5112   // Check that we would only use permitted conversions.
   5113   if (!CheckConvertedConstantConversions(S, *SCS)) {
   5114     return S.Diag(From->getLocStart(),
   5115                   diag::err_typecheck_converted_constant_expression_disallowed)
   5116              << From->getType() << From->getSourceRange() << T;
   5117   }
   5118   // [...] and where the reference binding (if any) binds directly.
   5119   if (SCS->ReferenceBinding && !SCS->DirectBinding) {
   5120     return S.Diag(From->getLocStart(),
   5121                   diag::err_typecheck_converted_constant_expression_indirect)
   5122              << From->getType() << From->getSourceRange() << T;
   5123   }
   5124 
   5125   ExprResult Result =
   5126       S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting);
   5127   if (Result.isInvalid())
   5128     return Result;
   5129 
   5130   // Check for a narrowing implicit conversion.
   5131   APValue PreNarrowingValue;
   5132   QualType PreNarrowingType;
   5133   switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue,
   5134                                 PreNarrowingType)) {
   5135   case NK_Variable_Narrowing:
   5136     // Implicit conversion to a narrower type, and the value is not a constant
   5137     // expression. We'll diagnose this in a moment.
   5138   case NK_Not_Narrowing:
   5139     break;
   5140 
   5141   case NK_Constant_Narrowing:
   5142     S.Diag(From->getLocStart(), diag::ext_cce_narrowing)
   5143       << CCE << /*Constant*/1
   5144       << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T;
   5145     break;
   5146 
   5147   case NK_Type_Narrowing:
   5148     S.Diag(From->getLocStart(), diag::ext_cce_narrowing)
   5149       << CCE << /*Constant*/0 << From->getType() << T;
   5150     break;
   5151   }
   5152 
   5153   // Check the expression is a constant expression.
   5154   SmallVector<PartialDiagnosticAt, 8> Notes;
   5155   Expr::EvalResult Eval;
   5156   Eval.Diag = &Notes;
   5157 
   5158   if ((T->isReferenceType()
   5159            ? !Result.get()->EvaluateAsLValue(Eval, S.Context)
   5160            : !Result.get()->EvaluateAsRValue(Eval, S.Context)) ||
   5161       (RequireInt && !Eval.Val.isInt())) {
   5162     // The expression can't be folded, so we can't keep it at this position in
   5163     // the AST.
   5164     Result = ExprError();
   5165   } else {
   5166     Value = Eval.Val;
   5167 
   5168     if (Notes.empty()) {
   5169       // It's a constant expression.
   5170       return Result;
   5171     }
   5172   }
   5173 
   5174   // It's not a constant expression. Produce an appropriate diagnostic.
   5175   if (Notes.size() == 1 &&
   5176       Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr)
   5177     S.Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
   5178   else {
   5179     S.Diag(From->getLocStart(), diag::err_expr_not_cce)
   5180       << CCE << From->getSourceRange();
   5181     for (unsigned I = 0; I < Notes.size(); ++I)
   5182       S.Diag(Notes[I].first, Notes[I].second);
   5183   }
   5184   return ExprError();
   5185 }
   5186 
   5187 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
   5188                                                   APValue &Value, CCEKind CCE) {
   5189   return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false);
   5190 }
   5191 
   5192 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
   5193                                                   llvm::APSInt &Value,
   5194                                                   CCEKind CCE) {
   5195   assert(T->isIntegralOrEnumerationType() && "unexpected converted const type");
   5196 
   5197   APValue V;
   5198   auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true);
   5199   if (!R.isInvalid())
   5200     Value = V.getInt();
   5201   return R;
   5202 }
   5203 
   5204 
   5205 /// dropPointerConversions - If the given standard conversion sequence
   5206 /// involves any pointer conversions, remove them.  This may change
   5207 /// the result type of the conversion sequence.
   5208 static void dropPointerConversion(StandardConversionSequence &SCS) {
   5209   if (SCS.Second == ICK_Pointer_Conversion) {
   5210     SCS.Second = ICK_Identity;
   5211     SCS.Third = ICK_Identity;
   5212     SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
   5213   }
   5214 }
   5215 
   5216 /// TryContextuallyConvertToObjCPointer - Attempt to contextually
   5217 /// convert the expression From to an Objective-C pointer type.
   5218 static ImplicitConversionSequence
   5219 TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
   5220   // Do an implicit conversion to 'id'.
   5221   QualType Ty = S.Context.getObjCIdType();
   5222   ImplicitConversionSequence ICS
   5223     = TryImplicitConversion(S, From, Ty,
   5224                             // FIXME: Are these flags correct?
   5225                             /*SuppressUserConversions=*/false,
   5226                             /*AllowExplicit=*/true,
   5227                             /*InOverloadResolution=*/false,
   5228                             /*CStyle=*/false,
   5229                             /*AllowObjCWritebackConversion=*/false,
   5230                             /*AllowObjCConversionOnExplicit=*/true);
   5231 
   5232   // Strip off any final conversions to 'id'.
   5233   switch (ICS.getKind()) {
   5234   case ImplicitConversionSequence::BadConversion:
   5235   case ImplicitConversionSequence::AmbiguousConversion:
   5236   case ImplicitConversionSequence::EllipsisConversion:
   5237     break;
   5238 
   5239   case ImplicitConversionSequence::UserDefinedConversion:
   5240     dropPointerConversion(ICS.UserDefined.After);
   5241     break;
   5242 
   5243   case ImplicitConversionSequence::StandardConversion:
   5244     dropPointerConversion(ICS.Standard);
   5245     break;
   5246   }
   5247 
   5248   return ICS;
   5249 }
   5250 
   5251 /// PerformContextuallyConvertToObjCPointer - Perform a contextual
   5252 /// conversion of the expression From to an Objective-C pointer type.
   5253 ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
   5254   if (checkPlaceholderForOverload(*this, From))
   5255     return ExprError();
   5256 
   5257   QualType Ty = Context.getObjCIdType();
   5258   ImplicitConversionSequence ICS =
   5259     TryContextuallyConvertToObjCPointer(*this, From);
   5260   if (!ICS.isBad())
   5261     return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
   5262   return ExprError();
   5263 }
   5264 
   5265 /// Determine whether the provided type is an integral type, or an enumeration
   5266 /// type of a permitted flavor.
   5267 bool Sema::ICEConvertDiagnoser::match(QualType T) {
   5268   return AllowScopedEnumerations ? T->isIntegralOrEnumerationType()
   5269                                  : T->isIntegralOrUnscopedEnumerationType();
   5270 }
   5271 
   5272 static ExprResult
   5273 diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From,
   5274                             Sema::ContextualImplicitConverter &Converter,
   5275                             QualType T, UnresolvedSetImpl &ViableConversions) {
   5276 
   5277   if (Converter.Suppress)
   5278     return ExprError();
   5279 
   5280   Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange();
   5281   for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
   5282     CXXConversionDecl *Conv =
   5283         cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
   5284     QualType ConvTy = Conv->getConversionType().getNonReferenceType();
   5285     Converter.noteAmbiguous(SemaRef, Conv, ConvTy);
   5286   }
   5287   return From;
   5288 }
   5289 
   5290 static bool
   5291 diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
   5292                            Sema::ContextualImplicitConverter &Converter,
   5293                            QualType T, bool HadMultipleCandidates,
   5294                            UnresolvedSetImpl &ExplicitConversions) {
   5295   if (ExplicitConversions.size() == 1 && !Converter.Suppress) {
   5296     DeclAccessPair Found = ExplicitConversions[0];
   5297     CXXConversionDecl *Conversion =
   5298         cast<CXXConversionDecl>(Found->getUnderlyingDecl());
   5299 
   5300     // The user probably meant to invoke the given explicit
   5301     // conversion; use it.
   5302     QualType ConvTy = Conversion->getConversionType().getNonReferenceType();
   5303     std::string TypeStr;
   5304     ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy());
   5305 
   5306     Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy)
   5307         << FixItHint::CreateInsertion(From->getLocStart(),
   5308                                       "static_cast<" + TypeStr + ">(")
   5309         << FixItHint::CreateInsertion(
   5310                SemaRef.getLocForEndOfToken(From->getLocEnd()), ")");
   5311     Converter.noteExplicitConv(SemaRef, Conversion, ConvTy);
   5312 
   5313     // If we aren't in a SFINAE context, build a call to the
   5314     // explicit conversion function.
   5315     if (SemaRef.isSFINAEContext())
   5316       return true;
   5317 
   5318     SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
   5319     ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
   5320                                                        HadMultipleCandidates);
   5321     if (Result.isInvalid())
   5322       return true;
   5323     // Record usage of conversion in an implicit cast.
   5324     From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
   5325                                     CK_UserDefinedConversion, Result.get(),
   5326                                     nullptr, Result.get()->getValueKind());
   5327   }
   5328   return false;
   5329 }
   5330 
   5331 static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
   5332                              Sema::ContextualImplicitConverter &Converter,
   5333                              QualType T, bool HadMultipleCandidates,
   5334                              DeclAccessPair &Found) {
   5335   CXXConversionDecl *Conversion =
   5336       cast<CXXConversionDecl>(Found->getUnderlyingDecl());
   5337   SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
   5338 
   5339   QualType ToType = Conversion->getConversionType().getNonReferenceType();
   5340   if (!Converter.SuppressConversion) {
   5341     if (SemaRef.isSFINAEContext())
   5342       return true;
   5343 
   5344     Converter.diagnoseConversion(SemaRef, Loc, T, ToType)
   5345         << From->getSourceRange();
   5346   }
   5347 
   5348   ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
   5349                                                      HadMultipleCandidates);
   5350   if (Result.isInvalid())
   5351     return true;
   5352   // Record usage of conversion in an implicit cast.
   5353   From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
   5354                                   CK_UserDefinedConversion, Result.get(),
   5355                                   nullptr, Result.get()->getValueKind());
   5356   return false;
   5357 }
   5358 
   5359 static ExprResult finishContextualImplicitConversion(
   5360     Sema &SemaRef, SourceLocation Loc, Expr *From,
   5361     Sema::ContextualImplicitConverter &Converter) {
   5362   if (!Converter.match(From->getType()) && !Converter.Suppress)
   5363     Converter.diagnoseNoMatch(SemaRef, Loc, From->getType())
   5364         << From->getSourceRange();
   5365 
   5366   return SemaRef.DefaultLvalueConversion(From);
   5367 }
   5368 
   5369 static void
   5370 collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType,
   5371                                   UnresolvedSetImpl &ViableConversions,
   5372                                   OverloadCandidateSet &CandidateSet) {
   5373   for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
   5374     DeclAccessPair FoundDecl = ViableConversions[I];
   5375     NamedDecl *D = FoundDecl.getDecl();
   5376     CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
   5377     if (isa<UsingShadowDecl>(D))
   5378       D = cast<UsingShadowDecl>(D)->getTargetDecl();
   5379 
   5380     CXXConversionDecl *Conv;
   5381     FunctionTemplateDecl *ConvTemplate;
   5382     if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
   5383       Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
   5384     else
   5385       Conv = cast<CXXConversionDecl>(D);
   5386 
   5387     if (ConvTemplate)
   5388       SemaRef.AddTemplateConversionCandidate(
   5389         ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet,
   5390         /*AllowObjCConversionOnExplicit=*/false);
   5391     else
   5392       SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From,
   5393                                      ToType, CandidateSet,
   5394                                      /*AllowObjCConversionOnExplicit=*/false);
   5395   }
   5396 }
   5397 
   5398 /// \brief Attempt to convert the given expression to a type which is accepted
   5399 /// by the given converter.
   5400 ///
   5401 /// This routine will attempt to convert an expression of class type to a
   5402 /// type accepted by the specified converter. In C++11 and before, the class
   5403 /// must have a single non-explicit conversion function converting to a matching
   5404 /// type. In C++1y, there can be multiple such conversion functions, but only
   5405 /// one target type.
   5406 ///
   5407 /// \param Loc The source location of the construct that requires the
   5408 /// conversion.
   5409 ///
   5410 /// \param From The expression we're converting from.
   5411 ///
   5412 /// \param Converter Used to control and diagnose the conversion process.
   5413 ///
   5414 /// \returns The expression, converted to an integral or enumeration type if
   5415 /// successful.
   5416 ExprResult Sema::PerformContextualImplicitConversion(
   5417     SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) {
   5418   // We can't perform any more checking for type-dependent expressions.
   5419   if (From->isTypeDependent())
   5420     return From;
   5421 
   5422   // Process placeholders immediately.
   5423   if (From->hasPlaceholderType()) {
   5424     ExprResult result = CheckPlaceholderExpr(From);
   5425     if (result.isInvalid())
   5426       return result;
   5427     From = result.get();
   5428   }
   5429 
   5430   // If the expression already has a matching type, we're golden.
   5431   QualType T = From->getType();
   5432   if (Converter.match(T))
   5433     return DefaultLvalueConversion(From);
   5434 
   5435   // FIXME: Check for missing '()' if T is a function type?
   5436 
   5437   // We can only perform contextual implicit conversions on objects of class
   5438   // type.
   5439   const RecordType *RecordTy = T->getAs<RecordType>();
   5440   if (!RecordTy || !getLangOpts().CPlusPlus) {
   5441     if (!Converter.Suppress)
   5442       Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange();
   5443     return From;
   5444   }
   5445 
   5446   // We must have a complete class type.
   5447   struct TypeDiagnoserPartialDiag : TypeDiagnoser {
   5448     ContextualImplicitConverter &Converter;
   5449     Expr *From;
   5450 
   5451     TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From)
   5452         : Converter(Converter), From(From) {}
   5453 
   5454     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
   5455       Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange();
   5456     }
   5457   } IncompleteDiagnoser(Converter, From);
   5458 
   5459   if (Converter.Suppress ? !isCompleteType(Loc, T)
   5460                          : RequireCompleteType(Loc, T, IncompleteDiagnoser))
   5461     return From;
   5462 
   5463   // Look for a conversion to an integral or enumeration type.
   5464   UnresolvedSet<4>
   5465       ViableConversions; // These are *potentially* viable in C++1y.
   5466   UnresolvedSet<4> ExplicitConversions;
   5467   const auto &Conversions =
   5468       cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
   5469 
   5470   bool HadMultipleCandidates =
   5471       (std::distance(Conversions.begin(), Conversions.end()) > 1);
   5472 
   5473   // To check that there is only one target type, in C++1y:
   5474   QualType ToType;
   5475   bool HasUniqueTargetType = true;
   5476 
   5477   // Collect explicit or viable (potentially in C++1y) conversions.
   5478   for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
   5479     NamedDecl *D = (*I)->getUnderlyingDecl();
   5480     CXXConversionDecl *Conversion;
   5481     FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
   5482     if (ConvTemplate) {
   5483       if (getLangOpts().CPlusPlus14)
   5484         Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
   5485       else
   5486         continue; // C++11 does not consider conversion operator templates(?).
   5487     } else
   5488       Conversion = cast<CXXConversionDecl>(D);
   5489 
   5490     assert((!ConvTemplate || getLangOpts().CPlusPlus14) &&
   5491            "Conversion operator templates are considered potentially "
   5492            "viable in C++1y");
   5493 
   5494     QualType CurToType = Conversion->getConversionType().getNonReferenceType();
   5495     if (Converter.match(CurToType) || ConvTemplate) {
   5496 
   5497       if (Conversion->isExplicit()) {
   5498         // FIXME: For C++1y, do we need this restriction?
   5499         // cf. diagnoseNoViableConversion()
   5500         if (!ConvTemplate)
   5501           ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
   5502       } else {
   5503         if (!ConvTemplate && getLangOpts().CPlusPlus14) {
   5504           if (ToType.isNull())
   5505             ToType = CurToType.getUnqualifiedType();
   5506           else if (HasUniqueTargetType &&
   5507                    (CurToType.getUnqualifiedType() != ToType))
   5508             HasUniqueTargetType = false;
   5509         }
   5510         ViableConversions.addDecl(I.getDecl(), I.getAccess());
   5511       }
   5512     }
   5513   }
   5514 
   5515   if (getLangOpts().CPlusPlus14) {
   5516     // C++1y [conv]p6:
   5517     // ... An expression e of class type E appearing in such a context
   5518     // is said to be contextually implicitly converted to a specified
   5519     // type T and is well-formed if and only if e can be implicitly
   5520     // converted to a type T that is determined as follows: E is searched
   5521     // for conversion functions whose return type is cv T or reference to
   5522     // cv T such that T is allowed by the context. There shall be
   5523     // exactly one such T.
   5524 
   5525     // If no unique T is found:
   5526     if (ToType.isNull()) {
   5527       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
   5528                                      HadMultipleCandidates,
   5529                                      ExplicitConversions))
   5530         return ExprError();
   5531       return finishContextualImplicitConversion(*this, Loc, From, Converter);
   5532     }
   5533 
   5534     // If more than one unique Ts are found:
   5535     if (!HasUniqueTargetType)
   5536       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
   5537                                          ViableConversions);
   5538 
   5539     // If one unique T is found:
   5540     // First, build a candidate set from the previously recorded
   5541     // potentially viable conversions.
   5542     OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
   5543     collectViableConversionCandidates(*this, From, ToType, ViableConversions,
   5544                                       CandidateSet);
   5545 
   5546     // Then, perform overload resolution over the candidate set.
   5547     OverloadCandidateSet::iterator Best;
   5548     switch (CandidateSet.BestViableFunction(*this, Loc, Best)) {
   5549     case OR_Success: {
   5550       // Apply this conversion.
   5551       DeclAccessPair Found =
   5552           DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess());
   5553       if (recordConversion(*this, Loc, From, Converter, T,
   5554                            HadMultipleCandidates, Found))
   5555         return ExprError();
   5556       break;
   5557     }
   5558     case OR_Ambiguous:
   5559       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
   5560                                          ViableConversions);
   5561     case OR_No_Viable_Function:
   5562       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
   5563                                      HadMultipleCandidates,
   5564                                      ExplicitConversions))
   5565         return ExprError();
   5566     // fall through 'OR_Deleted' case.
   5567     case OR_Deleted:
   5568       // We'll complain below about a non-integral condition type.
   5569       break;
   5570     }
   5571   } else {
   5572     switch (ViableConversions.size()) {
   5573     case 0: {
   5574       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
   5575                                      HadMultipleCandidates,
   5576                                      ExplicitConversions))
   5577         return ExprError();
   5578 
   5579       // We'll complain below about a non-integral condition type.
   5580       break;
   5581     }
   5582     case 1: {
   5583       // Apply this conversion.
   5584       DeclAccessPair Found = ViableConversions[0];
   5585       if (recordConversion(*this, Loc, From, Converter, T,
   5586                            HadMultipleCandidates, Found))
   5587         return ExprError();
   5588       break;
   5589     }
   5590     default:
   5591       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
   5592                                          ViableConversions);
   5593     }
   5594   }
   5595 
   5596   return finishContextualImplicitConversion(*this, Loc, From, Converter);
   5597 }
   5598 
   5599 /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
   5600 /// an acceptable non-member overloaded operator for a call whose
   5601 /// arguments have types T1 (and, if non-empty, T2). This routine
   5602 /// implements the check in C++ [over.match.oper]p3b2 concerning
   5603 /// enumeration types.
   5604 static bool IsAcceptableNonMemberOperatorCandidate(ASTContext &Context,
   5605                                                    FunctionDecl *Fn,
   5606                                                    ArrayRef<Expr *> Args) {
   5607   QualType T1 = Args[0]->getType();
   5608   QualType T2 = Args.size() > 1 ? Args[1]->getType() : QualType();
   5609 
   5610   if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
   5611     return true;
   5612 
   5613   if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
   5614     return true;
   5615 
   5616   const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
   5617   if (Proto->getNumParams() < 1)
   5618     return false;
   5619 
   5620   if (T1->isEnumeralType()) {
   5621     QualType ArgType = Proto->getParamType(0).getNonReferenceType();
   5622     if (Context.hasSameUnqualifiedType(T1, ArgType))
   5623       return true;
   5624   }
   5625 
   5626   if (Proto->getNumParams() < 2)
   5627     return false;
   5628 
   5629   if (!T2.isNull() && T2->isEnumeralType()) {
   5630     QualType ArgType = Proto->getParamType(1).getNonReferenceType();
   5631     if (Context.hasSameUnqualifiedType(T2, ArgType))
   5632       return true;
   5633   }
   5634 
   5635   return false;
   5636 }
   5637 
   5638 /// AddOverloadCandidate - Adds the given function to the set of
   5639 /// candidate functions, using the given function call arguments.  If
   5640 /// @p SuppressUserConversions, then don't allow user-defined
   5641 /// conversions via constructors or conversion operators.
   5642 ///
   5643 /// \param PartialOverloading true if we are performing "partial" overloading
   5644 /// based on an incomplete set of function arguments. This feature is used by
   5645 /// code completion.
   5646 void
   5647 Sema::AddOverloadCandidate(FunctionDecl *Function,
   5648                            DeclAccessPair FoundDecl,
   5649                            ArrayRef<Expr *> Args,
   5650                            OverloadCandidateSet &CandidateSet,
   5651                            bool SuppressUserConversions,
   5652                            bool PartialOverloading,
   5653                            bool AllowExplicit) {
   5654   const FunctionProtoType *Proto
   5655     = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
   5656   assert(Proto && "Functions without a prototype cannot be overloaded");
   5657   assert(!Function->getDescribedFunctionTemplate() &&
   5658          "Use AddTemplateOverloadCandidate for function templates");
   5659 
   5660   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
   5661     if (!isa<CXXConstructorDecl>(Method)) {
   5662       // If we get here, it's because we're calling a member function
   5663       // that is named without a member access expression (e.g.,
   5664       // "this->f") that was either written explicitly or created
   5665       // implicitly. This can happen with a qualified call to a member
   5666       // function, e.g., X::f(). We use an empty type for the implied
   5667       // object argument (C++ [over.call.func]p3), and the acting context
   5668       // is irrelevant.
   5669       AddMethodCandidate(Method, FoundDecl, Method->getParent(),
   5670                          QualType(), Expr::Classification::makeSimpleLValue(),
   5671                          Args, CandidateSet, SuppressUserConversions,
   5672                          PartialOverloading);
   5673       return;
   5674     }
   5675     // We treat a constructor like a non-member function, since its object
   5676     // argument doesn't participate in overload resolution.
   5677   }
   5678 
   5679   if (!CandidateSet.isNewCandidate(Function))
   5680     return;
   5681 
   5682   // C++ [over.match.oper]p3:
   5683   //   if no operand has a class type, only those non-member functions in the
   5684   //   lookup set that have a first parameter of type T1 or "reference to
   5685   //   (possibly cv-qualified) T1", when T1 is an enumeration type, or (if there
   5686   //   is a right operand) a second parameter of type T2 or "reference to
   5687   //   (possibly cv-qualified) T2", when T2 is an enumeration type, are
   5688   //   candidate functions.
   5689   if (CandidateSet.getKind() == OverloadCandidateSet::CSK_Operator &&
   5690       !IsAcceptableNonMemberOperatorCandidate(Context, Function, Args))
   5691     return;
   5692 
   5693   // C++11 [class.copy]p11: [DR1402]
   5694   //   A defaulted move constructor that is defined as deleted is ignored by
   5695   //   overload resolution.
   5696   CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function);
   5697   if (Constructor && Constructor->isDefaulted() && Constructor->isDeleted() &&
   5698       Constructor->isMoveConstructor())
   5699     return;
   5700 
   5701   // Overload resolution is always an unevaluated context.
   5702   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   5703 
   5704   // Add this candidate
   5705   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
   5706   Candidate.FoundDecl = FoundDecl;
   5707   Candidate.Function = Function;
   5708   Candidate.Viable = true;
   5709   Candidate.IsSurrogate = false;
   5710   Candidate.IgnoreObjectArgument = false;
   5711   Candidate.ExplicitCallArguments = Args.size();
   5712 
   5713   if (Constructor) {
   5714     // C++ [class.copy]p3:
   5715     //   A member function template is never instantiated to perform the copy
   5716     //   of a class object to an object of its class type.
   5717     QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
   5718     if (Args.size() == 1 && Constructor->isSpecializationCopyingObject() &&
   5719         (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
   5720          IsDerivedFrom(Args[0]->getLocStart(), Args[0]->getType(),
   5721                        ClassType))) {
   5722       Candidate.Viable = false;
   5723       Candidate.FailureKind = ovl_fail_illegal_constructor;
   5724       return;
   5725     }
   5726   }
   5727 
   5728   unsigned NumParams = Proto->getNumParams();
   5729 
   5730   // (C++ 13.3.2p2): A candidate function having fewer than m
   5731   // parameters is viable only if it has an ellipsis in its parameter
   5732   // list (8.3.5).
   5733   if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
   5734       !Proto->isVariadic()) {
   5735     Candidate.Viable = false;
   5736     Candidate.FailureKind = ovl_fail_too_many_arguments;
   5737     return;
   5738   }
   5739 
   5740   // (C++ 13.3.2p2): A candidate function having more than m parameters
   5741   // is viable only if the (m+1)st parameter has a default argument
   5742   // (8.3.6). For the purposes of overload resolution, the
   5743   // parameter list is truncated on the right, so that there are
   5744   // exactly m parameters.
   5745   unsigned MinRequiredArgs = Function->getMinRequiredArguments();
   5746   if (Args.size() < MinRequiredArgs && !PartialOverloading) {
   5747     // Not enough arguments.
   5748     Candidate.Viable = false;
   5749     Candidate.FailureKind = ovl_fail_too_few_arguments;
   5750     return;
   5751   }
   5752 
   5753   // (CUDA B.1): Check for invalid calls between targets.
   5754   if (getLangOpts().CUDA)
   5755     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
   5756       // Skip the check for callers that are implicit members, because in this
   5757       // case we may not yet know what the member's target is; the target is
   5758       // inferred for the member automatically, based on the bases and fields of
   5759       // the class.
   5760       if (!Caller->isImplicit() && CheckCUDATarget(Caller, Function)) {
   5761         Candidate.Viable = false;
   5762         Candidate.FailureKind = ovl_fail_bad_target;
   5763         return;
   5764       }
   5765 
   5766   // Determine the implicit conversion sequences for each of the
   5767   // arguments.
   5768   for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
   5769     if (ArgIdx < NumParams) {
   5770       // (C++ 13.3.2p3): for F to be a viable function, there shall
   5771       // exist for each argument an implicit conversion sequence
   5772       // (13.3.3.1) that converts that argument to the corresponding
   5773       // parameter of F.
   5774       QualType ParamType = Proto->getParamType(ArgIdx);
   5775       Candidate.Conversions[ArgIdx]
   5776         = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
   5777                                 SuppressUserConversions,
   5778                                 /*InOverloadResolution=*/true,
   5779                                 /*AllowObjCWritebackConversion=*/
   5780                                   getLangOpts().ObjCAutoRefCount,
   5781                                 AllowExplicit);
   5782       if (Candidate.Conversions[ArgIdx].isBad()) {
   5783         Candidate.Viable = false;
   5784         Candidate.FailureKind = ovl_fail_bad_conversion;
   5785         return;
   5786       }
   5787     } else {
   5788       // (C++ 13.3.2p2): For the purposes of overload resolution, any
   5789       // argument for which there is no corresponding parameter is
   5790       // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
   5791       Candidate.Conversions[ArgIdx].setEllipsis();
   5792     }
   5793   }
   5794 
   5795   if (EnableIfAttr *FailedAttr = CheckEnableIf(Function, Args)) {
   5796     Candidate.Viable = false;
   5797     Candidate.FailureKind = ovl_fail_enable_if;
   5798     Candidate.DeductionFailure.Data = FailedAttr;
   5799     return;
   5800   }
   5801 }
   5802 
   5803 ObjCMethodDecl *Sema::SelectBestMethod(Selector Sel, MultiExprArg Args,
   5804                                        bool IsInstance) {
   5805   SmallVector<ObjCMethodDecl*, 4> Methods;
   5806   if (!CollectMultipleMethodsInGlobalPool(Sel, Methods, IsInstance))
   5807     return nullptr;
   5808 
   5809   for (unsigned b = 0, e = Methods.size(); b < e; b++) {
   5810     bool Match = true;
   5811     ObjCMethodDecl *Method = Methods[b];
   5812     unsigned NumNamedArgs = Sel.getNumArgs();
   5813     // Method might have more arguments than selector indicates. This is due
   5814     // to addition of c-style arguments in method.
   5815     if (Method->param_size() > NumNamedArgs)
   5816       NumNamedArgs = Method->param_size();
   5817     if (Args.size() < NumNamedArgs)
   5818       continue;
   5819 
   5820     for (unsigned i = 0; i < NumNamedArgs; i++) {
   5821       // We can't do any type-checking on a type-dependent argument.
   5822       if (Args[i]->isTypeDependent()) {
   5823         Match = false;
   5824         break;
   5825       }
   5826 
   5827       ParmVarDecl *param = Method->parameters()[i];
   5828       Expr *argExpr = Args[i];
   5829       assert(argExpr && "SelectBestMethod(): missing expression");
   5830 
   5831       // Strip the unbridged-cast placeholder expression off unless it's
   5832       // a consumed argument.
   5833       if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) &&
   5834           !param->hasAttr<CFConsumedAttr>())
   5835         argExpr = stripARCUnbridgedCast(argExpr);
   5836 
   5837       // If the parameter is __unknown_anytype, move on to the next method.
   5838       if (param->getType() == Context.UnknownAnyTy) {
   5839         Match = false;
   5840         break;
   5841       }
   5842 
   5843       ImplicitConversionSequence ConversionState
   5844         = TryCopyInitialization(*this, argExpr, param->getType(),
   5845                                 /*SuppressUserConversions*/false,
   5846                                 /*InOverloadResolution=*/true,
   5847                                 /*AllowObjCWritebackConversion=*/
   5848                                 getLangOpts().ObjCAutoRefCount,
   5849                                 /*AllowExplicit*/false);
   5850         if (ConversionState.isBad()) {
   5851           Match = false;
   5852           break;
   5853         }
   5854     }
   5855     // Promote additional arguments to variadic methods.
   5856     if (Match && Method->isVariadic()) {
   5857       for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) {
   5858         if (Args[i]->isTypeDependent()) {
   5859           Match = false;
   5860           break;
   5861         }
   5862         ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
   5863                                                           nullptr);
   5864         if (Arg.isInvalid()) {
   5865           Match = false;
   5866           break;
   5867         }
   5868       }
   5869     } else {
   5870       // Check for extra arguments to non-variadic methods.
   5871       if (Args.size() != NumNamedArgs)
   5872         Match = false;
   5873       else if (Match && NumNamedArgs == 0 && Methods.size() > 1) {
   5874         // Special case when selectors have no argument. In this case, select
   5875         // one with the most general result type of 'id'.
   5876         for (unsigned b = 0, e = Methods.size(); b < e; b++) {
   5877           QualType ReturnT = Methods[b]->getReturnType();
   5878           if (ReturnT->isObjCIdType())
   5879             return Methods[b];
   5880         }
   5881       }
   5882     }
   5883 
   5884     if (Match)
   5885       return Method;
   5886   }
   5887   return nullptr;
   5888 }
   5889 
   5890 // specific_attr_iterator iterates over enable_if attributes in reverse, and
   5891 // enable_if is order-sensitive. As a result, we need to reverse things
   5892 // sometimes. Size of 4 elements is arbitrary.
   5893 static SmallVector<EnableIfAttr *, 4>
   5894 getOrderedEnableIfAttrs(const FunctionDecl *Function) {
   5895   SmallVector<EnableIfAttr *, 4> Result;
   5896   if (!Function->hasAttrs())
   5897     return Result;
   5898 
   5899   const auto &FuncAttrs = Function->getAttrs();
   5900   for (Attr *Attr : FuncAttrs)
   5901     if (auto *EnableIf = dyn_cast<EnableIfAttr>(Attr))
   5902       Result.push_back(EnableIf);
   5903 
   5904   std::reverse(Result.begin(), Result.end());
   5905   return Result;
   5906 }
   5907 
   5908 EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function, ArrayRef<Expr *> Args,
   5909                                   bool MissingImplicitThis) {
   5910   auto EnableIfAttrs = getOrderedEnableIfAttrs(Function);
   5911   if (EnableIfAttrs.empty())
   5912     return nullptr;
   5913 
   5914   SFINAETrap Trap(*this);
   5915   SmallVector<Expr *, 16> ConvertedArgs;
   5916   bool InitializationFailed = false;
   5917   bool ContainsValueDependentExpr = false;
   5918 
   5919   // Convert the arguments.
   5920   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
   5921     if (i == 0 && !MissingImplicitThis && isa<CXXMethodDecl>(Function) &&
   5922         !cast<CXXMethodDecl>(Function)->isStatic() &&
   5923         !isa<CXXConstructorDecl>(Function)) {
   5924       CXXMethodDecl *Method = cast<CXXMethodDecl>(Function);
   5925       ExprResult R =
   5926         PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
   5927                                             Method, Method);
   5928       if (R.isInvalid()) {
   5929         InitializationFailed = true;
   5930         break;
   5931       }
   5932       ContainsValueDependentExpr |= R.get()->isValueDependent();
   5933       ConvertedArgs.push_back(R.get());
   5934     } else {
   5935       ExprResult R =
   5936         PerformCopyInitialization(InitializedEntity::InitializeParameter(
   5937                                                 Context,
   5938                                                 Function->getParamDecl(i)),
   5939                                   SourceLocation(),
   5940                                   Args[i]);
   5941       if (R.isInvalid()) {
   5942         InitializationFailed = true;
   5943         break;
   5944       }
   5945       ContainsValueDependentExpr |= R.get()->isValueDependent();
   5946       ConvertedArgs.push_back(R.get());
   5947     }
   5948   }
   5949 
   5950   if (InitializationFailed || Trap.hasErrorOccurred())
   5951     return EnableIfAttrs[0];
   5952 
   5953   // Push default arguments if needed.
   5954   if (!Function->isVariadic() && Args.size() < Function->getNumParams()) {
   5955     for (unsigned i = Args.size(), e = Function->getNumParams(); i != e; ++i) {
   5956       ParmVarDecl *P = Function->getParamDecl(i);
   5957       ExprResult R = PerformCopyInitialization(
   5958           InitializedEntity::InitializeParameter(Context,
   5959                                                  Function->getParamDecl(i)),
   5960           SourceLocation(),
   5961           P->hasUninstantiatedDefaultArg() ? P->getUninstantiatedDefaultArg()
   5962                                            : P->getDefaultArg());
   5963       if (R.isInvalid()) {
   5964         InitializationFailed = true;
   5965         break;
   5966       }
   5967       ContainsValueDependentExpr |= R.get()->isValueDependent();
   5968       ConvertedArgs.push_back(R.get());
   5969     }
   5970 
   5971     if (InitializationFailed || Trap.hasErrorOccurred())
   5972       return EnableIfAttrs[0];
   5973   }
   5974 
   5975   for (auto *EIA : EnableIfAttrs) {
   5976     APValue Result;
   5977     if (EIA->getCond()->isValueDependent()) {
   5978       // Don't even try now, we'll examine it after instantiation.
   5979       continue;
   5980     }
   5981 
   5982     if (!EIA->getCond()->EvaluateWithSubstitution(
   5983             Result, Context, Function, llvm::makeArrayRef(ConvertedArgs))) {
   5984       if (!ContainsValueDependentExpr)
   5985         return EIA;
   5986     } else if (!Result.isInt() || !Result.getInt().getBoolValue()) {
   5987       return EIA;
   5988     }
   5989   }
   5990   return nullptr;
   5991 }
   5992 
   5993 /// \brief Add all of the function declarations in the given function set to
   5994 /// the overload candidate set.
   5995 void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
   5996                                  ArrayRef<Expr *> Args,
   5997                                  OverloadCandidateSet& CandidateSet,
   5998                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
   5999                                  bool SuppressUserConversions,
   6000                                  bool PartialOverloading) {
   6001   for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
   6002     NamedDecl *D = F.getDecl()->getUnderlyingDecl();
   6003     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   6004       if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
   6005         AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
   6006                            cast<CXXMethodDecl>(FD)->getParent(),
   6007                            Args[0]->getType(), Args[0]->Classify(Context),
   6008                            Args.slice(1), CandidateSet,
   6009                            SuppressUserConversions, PartialOverloading);
   6010       else
   6011         AddOverloadCandidate(FD, F.getPair(), Args, CandidateSet,
   6012                              SuppressUserConversions, PartialOverloading);
   6013     } else {
   6014       FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
   6015       if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
   6016           !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
   6017         AddMethodTemplateCandidate(FunTmpl, F.getPair(),
   6018                               cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
   6019                                    ExplicitTemplateArgs,
   6020                                    Args[0]->getType(),
   6021                                    Args[0]->Classify(Context), Args.slice(1),
   6022                                    CandidateSet, SuppressUserConversions,
   6023                                    PartialOverloading);
   6024       else
   6025         AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
   6026                                      ExplicitTemplateArgs, Args,
   6027                                      CandidateSet, SuppressUserConversions,
   6028                                      PartialOverloading);
   6029     }
   6030   }
   6031 }
   6032 
   6033 /// AddMethodCandidate - Adds a named decl (which is some kind of
   6034 /// method) as a method candidate to the given overload set.
   6035 void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
   6036                               QualType ObjectType,
   6037                               Expr::Classification ObjectClassification,
   6038                               ArrayRef<Expr *> Args,
   6039                               OverloadCandidateSet& CandidateSet,
   6040                               bool SuppressUserConversions) {
   6041   NamedDecl *Decl = FoundDecl.getDecl();
   6042   CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
   6043 
   6044   if (isa<UsingShadowDecl>(Decl))
   6045     Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
   6046 
   6047   if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
   6048     assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
   6049            "Expected a member function template");
   6050     AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
   6051                                /*ExplicitArgs*/ nullptr,
   6052                                ObjectType, ObjectClassification,
   6053                                Args, CandidateSet,
   6054                                SuppressUserConversions);
   6055   } else {
   6056     AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
   6057                        ObjectType, ObjectClassification,
   6058                        Args,
   6059                        CandidateSet, SuppressUserConversions);
   6060   }
   6061 }
   6062 
   6063 /// AddMethodCandidate - Adds the given C++ member function to the set
   6064 /// of candidate functions, using the given function call arguments
   6065 /// and the object argument (@c Object). For example, in a call
   6066 /// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
   6067 /// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
   6068 /// allow user-defined conversions via constructors or conversion
   6069 /// operators.
   6070 void
   6071 Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
   6072                          CXXRecordDecl *ActingContext, QualType ObjectType,
   6073                          Expr::Classification ObjectClassification,
   6074                          ArrayRef<Expr *> Args,
   6075                          OverloadCandidateSet &CandidateSet,
   6076                          bool SuppressUserConversions,
   6077                          bool PartialOverloading) {
   6078   const FunctionProtoType *Proto
   6079     = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
   6080   assert(Proto && "Methods without a prototype cannot be overloaded");
   6081   assert(!isa<CXXConstructorDecl>(Method) &&
   6082          "Use AddOverloadCandidate for constructors");
   6083 
   6084   if (!CandidateSet.isNewCandidate(Method))
   6085     return;
   6086 
   6087   // C++11 [class.copy]p23: [DR1402]
   6088   //   A defaulted move assignment operator that is defined as deleted is
   6089   //   ignored by overload resolution.
   6090   if (Method->isDefaulted() && Method->isDeleted() &&
   6091       Method->isMoveAssignmentOperator())
   6092     return;
   6093 
   6094   // Overload resolution is always an unevaluated context.
   6095   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   6096 
   6097   // Add this candidate
   6098   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
   6099   Candidate.FoundDecl = FoundDecl;
   6100   Candidate.Function = Method;
   6101   Candidate.IsSurrogate = false;
   6102   Candidate.IgnoreObjectArgument = false;
   6103   Candidate.ExplicitCallArguments = Args.size();
   6104 
   6105   unsigned NumParams = Proto->getNumParams();
   6106 
   6107   // (C++ 13.3.2p2): A candidate function having fewer than m
   6108   // parameters is viable only if it has an ellipsis in its parameter
   6109   // list (8.3.5).
   6110   if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
   6111       !Proto->isVariadic()) {
   6112     Candidate.Viable = false;
   6113     Candidate.FailureKind = ovl_fail_too_many_arguments;
   6114     return;
   6115   }
   6116 
   6117   // (C++ 13.3.2p2): A candidate function having more than m parameters
   6118   // is viable only if the (m+1)st parameter has a default argument
   6119   // (8.3.6). For the purposes of overload resolution, the
   6120   // parameter list is truncated on the right, so that there are
   6121   // exactly m parameters.
   6122   unsigned MinRequiredArgs = Method->getMinRequiredArguments();
   6123   if (Args.size() < MinRequiredArgs && !PartialOverloading) {
   6124     // Not enough arguments.
   6125     Candidate.Viable = false;
   6126     Candidate.FailureKind = ovl_fail_too_few_arguments;
   6127     return;
   6128   }
   6129 
   6130   Candidate.Viable = true;
   6131 
   6132   if (Method->isStatic() || ObjectType.isNull())
   6133     // The implicit object argument is ignored.
   6134     Candidate.IgnoreObjectArgument = true;
   6135   else {
   6136     // Determine the implicit conversion sequence for the object
   6137     // parameter.
   6138     Candidate.Conversions[0] = TryObjectArgumentInitialization(
   6139         *this, CandidateSet.getLocation(), ObjectType, ObjectClassification,
   6140         Method, ActingContext);
   6141     if (Candidate.Conversions[0].isBad()) {
   6142       Candidate.Viable = false;
   6143       Candidate.FailureKind = ovl_fail_bad_conversion;
   6144       return;
   6145     }
   6146   }
   6147 
   6148   // (CUDA B.1): Check for invalid calls between targets.
   6149   if (getLangOpts().CUDA)
   6150     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
   6151       if (CheckCUDATarget(Caller, Method)) {
   6152         Candidate.Viable = false;
   6153         Candidate.FailureKind = ovl_fail_bad_target;
   6154         return;
   6155       }
   6156 
   6157   // Determine the implicit conversion sequences for each of the
   6158   // arguments.
   6159   for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
   6160     if (ArgIdx < NumParams) {
   6161       // (C++ 13.3.2p3): for F to be a viable function, there shall
   6162       // exist for each argument an implicit conversion sequence
   6163       // (13.3.3.1) that converts that argument to the corresponding
   6164       // parameter of F.
   6165       QualType ParamType = Proto->getParamType(ArgIdx);
   6166       Candidate.Conversions[ArgIdx + 1]
   6167         = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
   6168                                 SuppressUserConversions,
   6169                                 /*InOverloadResolution=*/true,
   6170                                 /*AllowObjCWritebackConversion=*/
   6171                                   getLangOpts().ObjCAutoRefCount);
   6172       if (Candidate.Conversions[ArgIdx + 1].isBad()) {
   6173         Candidate.Viable = false;
   6174         Candidate.FailureKind = ovl_fail_bad_conversion;
   6175         return;
   6176       }
   6177     } else {
   6178       // (C++ 13.3.2p2): For the purposes of overload resolution, any
   6179       // argument for which there is no corresponding parameter is
   6180       // considered to "match the ellipsis" (C+ 13.3.3.1.3).
   6181       Candidate.Conversions[ArgIdx + 1].setEllipsis();
   6182     }
   6183   }
   6184 
   6185   if (EnableIfAttr *FailedAttr = CheckEnableIf(Method, Args, true)) {
   6186     Candidate.Viable = false;
   6187     Candidate.FailureKind = ovl_fail_enable_if;
   6188     Candidate.DeductionFailure.Data = FailedAttr;
   6189     return;
   6190   }
   6191 }
   6192 
   6193 /// \brief Add a C++ member function template as a candidate to the candidate
   6194 /// set, using template argument deduction to produce an appropriate member
   6195 /// function template specialization.
   6196 void
   6197 Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
   6198                                  DeclAccessPair FoundDecl,
   6199                                  CXXRecordDecl *ActingContext,
   6200                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
   6201                                  QualType ObjectType,
   6202                                  Expr::Classification ObjectClassification,
   6203                                  ArrayRef<Expr *> Args,
   6204                                  OverloadCandidateSet& CandidateSet,
   6205                                  bool SuppressUserConversions,
   6206                                  bool PartialOverloading) {
   6207   if (!CandidateSet.isNewCandidate(MethodTmpl))
   6208     return;
   6209 
   6210   // C++ [over.match.funcs]p7:
   6211   //   In each case where a candidate is a function template, candidate
   6212   //   function template specializations are generated using template argument
   6213   //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
   6214   //   candidate functions in the usual way.113) A given name can refer to one
   6215   //   or more function templates and also to a set of overloaded non-template
   6216   //   functions. In such a case, the candidate functions generated from each
   6217   //   function template are combined with the set of non-template candidate
   6218   //   functions.
   6219   TemplateDeductionInfo Info(CandidateSet.getLocation());
   6220   FunctionDecl *Specialization = nullptr;
   6221   if (TemplateDeductionResult Result
   6222       = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, Args,
   6223                                 Specialization, Info, PartialOverloading)) {
   6224     OverloadCandidate &Candidate = CandidateSet.addCandidate();
   6225     Candidate.FoundDecl = FoundDecl;
   6226     Candidate.Function = MethodTmpl->getTemplatedDecl();
   6227     Candidate.Viable = false;
   6228     Candidate.FailureKind = ovl_fail_bad_deduction;
   6229     Candidate.IsSurrogate = false;
   6230     Candidate.IgnoreObjectArgument = false;
   6231     Candidate.ExplicitCallArguments = Args.size();
   6232     Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
   6233                                                           Info);
   6234     return;
   6235   }
   6236 
   6237   // Add the function template specialization produced by template argument
   6238   // deduction as a candidate.
   6239   assert(Specialization && "Missing member function template specialization?");
   6240   assert(isa<CXXMethodDecl>(Specialization) &&
   6241          "Specialization is not a member function?");
   6242   AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
   6243                      ActingContext, ObjectType, ObjectClassification, Args,
   6244                      CandidateSet, SuppressUserConversions, PartialOverloading);
   6245 }
   6246 
   6247 /// \brief Add a C++ function template specialization as a candidate
   6248 /// in the candidate set, using template argument deduction to produce
   6249 /// an appropriate function template specialization.
   6250 void
   6251 Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
   6252                                    DeclAccessPair FoundDecl,
   6253                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
   6254                                    ArrayRef<Expr *> Args,
   6255                                    OverloadCandidateSet& CandidateSet,
   6256                                    bool SuppressUserConversions,
   6257                                    bool PartialOverloading) {
   6258   if (!CandidateSet.isNewCandidate(FunctionTemplate))
   6259     return;
   6260 
   6261   // C++ [over.match.funcs]p7:
   6262   //   In each case where a candidate is a function template, candidate
   6263   //   function template specializations are generated using template argument
   6264   //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
   6265   //   candidate functions in the usual way.113) A given name can refer to one
   6266   //   or more function templates and also to a set of overloaded non-template
   6267   //   functions. In such a case, the candidate functions generated from each
   6268   //   function template are combined with the set of non-template candidate
   6269   //   functions.
   6270   TemplateDeductionInfo Info(CandidateSet.getLocation());
   6271   FunctionDecl *Specialization = nullptr;
   6272   if (TemplateDeductionResult Result
   6273         = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, Args,
   6274                                   Specialization, Info, PartialOverloading)) {
   6275     OverloadCandidate &Candidate = CandidateSet.addCandidate();
   6276     Candidate.FoundDecl = FoundDecl;
   6277     Candidate.Function = FunctionTemplate->getTemplatedDecl();
   6278     Candidate.Viable = false;
   6279     Candidate.FailureKind = ovl_fail_bad_deduction;
   6280     Candidate.IsSurrogate = false;
   6281     Candidate.IgnoreObjectArgument = false;
   6282     Candidate.ExplicitCallArguments = Args.size();
   6283     Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
   6284                                                           Info);
   6285     return;
   6286   }
   6287 
   6288   // Add the function template specialization produced by template argument
   6289   // deduction as a candidate.
   6290   assert(Specialization && "Missing function template specialization?");
   6291   AddOverloadCandidate(Specialization, FoundDecl, Args, CandidateSet,
   6292                        SuppressUserConversions, PartialOverloading);
   6293 }
   6294 
   6295 /// Determine whether this is an allowable conversion from the result
   6296 /// of an explicit conversion operator to the expected type, per C++
   6297 /// [over.match.conv]p1 and [over.match.ref]p1.
   6298 ///
   6299 /// \param ConvType The return type of the conversion function.
   6300 ///
   6301 /// \param ToType The type we are converting to.
   6302 ///
   6303 /// \param AllowObjCPointerConversion Allow a conversion from one
   6304 /// Objective-C pointer to another.
   6305 ///
   6306 /// \returns true if the conversion is allowable, false otherwise.
   6307 static bool isAllowableExplicitConversion(Sema &S,
   6308                                           QualType ConvType, QualType ToType,
   6309                                           bool AllowObjCPointerConversion) {
   6310   QualType ToNonRefType = ToType.getNonReferenceType();
   6311 
   6312   // Easy case: the types are the same.
   6313   if (S.Context.hasSameUnqualifiedType(ConvType, ToNonRefType))
   6314     return true;
   6315 
   6316   // Allow qualification conversions.
   6317   bool ObjCLifetimeConversion;
   6318   if (S.IsQualificationConversion(ConvType, ToNonRefType, /*CStyle*/false,
   6319                                   ObjCLifetimeConversion))
   6320     return true;
   6321 
   6322   // If we're not allowed to consider Objective-C pointer conversions,
   6323   // we're done.
   6324   if (!AllowObjCPointerConversion)
   6325     return false;
   6326 
   6327   // Is this an Objective-C pointer conversion?
   6328   bool IncompatibleObjC = false;
   6329   QualType ConvertedType;
   6330   return S.isObjCPointerConversion(ConvType, ToNonRefType, ConvertedType,
   6331                                    IncompatibleObjC);
   6332 }
   6333 
   6334 /// AddConversionCandidate - Add a C++ conversion function as a
   6335 /// candidate in the candidate set (C++ [over.match.conv],
   6336 /// C++ [over.match.copy]). From is the expression we're converting from,
   6337 /// and ToType is the type that we're eventually trying to convert to
   6338 /// (which may or may not be the same type as the type that the
   6339 /// conversion function produces).
   6340 void
   6341 Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
   6342                              DeclAccessPair FoundDecl,
   6343                              CXXRecordDecl *ActingContext,
   6344                              Expr *From, QualType ToType,
   6345                              OverloadCandidateSet& CandidateSet,
   6346                              bool AllowObjCConversionOnExplicit) {
   6347   assert(!Conversion->getDescribedFunctionTemplate() &&
   6348          "Conversion function templates use AddTemplateConversionCandidate");
   6349   QualType ConvType = Conversion->getConversionType().getNonReferenceType();
   6350   if (!CandidateSet.isNewCandidate(Conversion))
   6351     return;
   6352 
   6353   // If the conversion function has an undeduced return type, trigger its
   6354   // deduction now.
   6355   if (getLangOpts().CPlusPlus14 && ConvType->isUndeducedType()) {
   6356     if (DeduceReturnType(Conversion, From->getExprLoc()))
   6357       return;
   6358     ConvType = Conversion->getConversionType().getNonReferenceType();
   6359   }
   6360 
   6361   // Per C++ [over.match.conv]p1, [over.match.ref]p1, an explicit conversion
   6362   // operator is only a candidate if its return type is the target type or
   6363   // can be converted to the target type with a qualification conversion.
   6364   if (Conversion->isExplicit() &&
   6365       !isAllowableExplicitConversion(*this, ConvType, ToType,
   6366                                      AllowObjCConversionOnExplicit))
   6367     return;
   6368 
   6369   // Overload resolution is always an unevaluated context.
   6370   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   6371 
   6372   // Add this candidate
   6373   OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
   6374   Candidate.FoundDecl = FoundDecl;
   6375   Candidate.Function = Conversion;
   6376   Candidate.IsSurrogate = false;
   6377   Candidate.IgnoreObjectArgument = false;
   6378   Candidate.FinalConversion.setAsIdentityConversion();
   6379   Candidate.FinalConversion.setFromType(ConvType);
   6380   Candidate.FinalConversion.setAllToTypes(ToType);
   6381   Candidate.Viable = true;
   6382   Candidate.ExplicitCallArguments = 1;
   6383 
   6384   // C++ [over.match.funcs]p4:
   6385   //   For conversion functions, the function is considered to be a member of
   6386   //   the class of the implicit implied object argument for the purpose of
   6387   //   defining the type of the implicit object parameter.
   6388   //
   6389   // Determine the implicit conversion sequence for the implicit
   6390   // object parameter.
   6391   QualType ImplicitParamType = From->getType();
   6392   if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
   6393     ImplicitParamType = FromPtrType->getPointeeType();
   6394   CXXRecordDecl *ConversionContext
   6395     = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl());
   6396 
   6397   Candidate.Conversions[0] = TryObjectArgumentInitialization(
   6398       *this, CandidateSet.getLocation(), From->getType(),
   6399       From->Classify(Context), Conversion, ConversionContext);
   6400 
   6401   if (Candidate.Conversions[0].isBad()) {
   6402     Candidate.Viable = false;
   6403     Candidate.FailureKind = ovl_fail_bad_conversion;
   6404     return;
   6405   }
   6406 
   6407   // We won't go through a user-defined type conversion function to convert a
   6408   // derived to base as such conversions are given Conversion Rank. They only
   6409   // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
   6410   QualType FromCanon
   6411     = Context.getCanonicalType(From->getType().getUnqualifiedType());
   6412   QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
   6413   if (FromCanon == ToCanon ||
   6414       IsDerivedFrom(CandidateSet.getLocation(), FromCanon, ToCanon)) {
   6415     Candidate.Viable = false;
   6416     Candidate.FailureKind = ovl_fail_trivial_conversion;
   6417     return;
   6418   }
   6419 
   6420   // To determine what the conversion from the result of calling the
   6421   // conversion function to the type we're eventually trying to
   6422   // convert to (ToType), we need to synthesize a call to the
   6423   // conversion function and attempt copy initialization from it. This
   6424   // makes sure that we get the right semantics with respect to
   6425   // lvalues/rvalues and the type. Fortunately, we can allocate this
   6426   // call on the stack and we don't need its arguments to be
   6427   // well-formed.
   6428   DeclRefExpr ConversionRef(Conversion, false, Conversion->getType(),
   6429                             VK_LValue, From->getLocStart());
   6430   ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
   6431                                 Context.getPointerType(Conversion->getType()),
   6432                                 CK_FunctionToPointerDecay,
   6433                                 &ConversionRef, VK_RValue);
   6434 
   6435   QualType ConversionType = Conversion->getConversionType();
   6436   if (!isCompleteType(From->getLocStart(), ConversionType)) {
   6437     Candidate.Viable = false;
   6438     Candidate.FailureKind = ovl_fail_bad_final_conversion;
   6439     return;
   6440   }
   6441 
   6442   ExprValueKind VK = Expr::getValueKindForType(ConversionType);
   6443 
   6444   // Note that it is safe to allocate CallExpr on the stack here because
   6445   // there are 0 arguments (i.e., nothing is allocated using ASTContext's
   6446   // allocator).
   6447   QualType CallResultType = ConversionType.getNonLValueExprType(Context);
   6448   CallExpr Call(Context, &ConversionFn, None, CallResultType, VK,
   6449                 From->getLocStart());
   6450   ImplicitConversionSequence ICS =
   6451     TryCopyInitialization(*this, &Call, ToType,
   6452                           /*SuppressUserConversions=*/true,
   6453                           /*InOverloadResolution=*/false,
   6454                           /*AllowObjCWritebackConversion=*/false);
   6455 
   6456   switch (ICS.getKind()) {
   6457   case ImplicitConversionSequence::StandardConversion:
   6458     Candidate.FinalConversion = ICS.Standard;
   6459 
   6460     // C++ [over.ics.user]p3:
   6461     //   If the user-defined conversion is specified by a specialization of a
   6462     //   conversion function template, the second standard conversion sequence
   6463     //   shall have exact match rank.
   6464     if (Conversion->getPrimaryTemplate() &&
   6465         GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
   6466       Candidate.Viable = false;
   6467       Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
   6468       return;
   6469     }
   6470 
   6471     // C++0x [dcl.init.ref]p5:
   6472     //    In the second case, if the reference is an rvalue reference and
   6473     //    the second standard conversion sequence of the user-defined
   6474     //    conversion sequence includes an lvalue-to-rvalue conversion, the
   6475     //    program is ill-formed.
   6476     if (ToType->isRValueReferenceType() &&
   6477         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
   6478       Candidate.Viable = false;
   6479       Candidate.FailureKind = ovl_fail_bad_final_conversion;
   6480       return;
   6481     }
   6482     break;
   6483 
   6484   case ImplicitConversionSequence::BadConversion:
   6485     Candidate.Viable = false;
   6486     Candidate.FailureKind = ovl_fail_bad_final_conversion;
   6487     return;
   6488 
   6489   default:
   6490     llvm_unreachable(
   6491            "Can only end up with a standard conversion sequence or failure");
   6492   }
   6493 
   6494   if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, None)) {
   6495     Candidate.Viable = false;
   6496     Candidate.FailureKind = ovl_fail_enable_if;
   6497     Candidate.DeductionFailure.Data = FailedAttr;
   6498     return;
   6499   }
   6500 }
   6501 
   6502 /// \brief Adds a conversion function template specialization
   6503 /// candidate to the overload set, using template argument deduction
   6504 /// to deduce the template arguments of the conversion function
   6505 /// template from the type that we are converting to (C++
   6506 /// [temp.deduct.conv]).
   6507 void
   6508 Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
   6509                                      DeclAccessPair FoundDecl,
   6510                                      CXXRecordDecl *ActingDC,
   6511                                      Expr *From, QualType ToType,
   6512                                      OverloadCandidateSet &CandidateSet,
   6513                                      bool AllowObjCConversionOnExplicit) {
   6514   assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
   6515          "Only conversion function templates permitted here");
   6516 
   6517   if (!CandidateSet.isNewCandidate(FunctionTemplate))
   6518     return;
   6519 
   6520   TemplateDeductionInfo Info(CandidateSet.getLocation());
   6521   CXXConversionDecl *Specialization = nullptr;
   6522   if (TemplateDeductionResult Result
   6523         = DeduceTemplateArguments(FunctionTemplate, ToType,
   6524                                   Specialization, Info)) {
   6525     OverloadCandidate &Candidate = CandidateSet.addCandidate();
   6526     Candidate.FoundDecl = FoundDecl;
   6527     Candidate.Function = FunctionTemplate->getTemplatedDecl();
   6528     Candidate.Viable = false;
   6529     Candidate.FailureKind = ovl_fail_bad_deduction;
   6530     Candidate.IsSurrogate = false;
   6531     Candidate.IgnoreObjectArgument = false;
   6532     Candidate.ExplicitCallArguments = 1;
   6533     Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
   6534                                                           Info);
   6535     return;
   6536   }
   6537 
   6538   // Add the conversion function template specialization produced by
   6539   // template argument deduction as a candidate.
   6540   assert(Specialization && "Missing function template specialization?");
   6541   AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
   6542                          CandidateSet, AllowObjCConversionOnExplicit);
   6543 }
   6544 
   6545 /// AddSurrogateCandidate - Adds a "surrogate" candidate function that
   6546 /// converts the given @c Object to a function pointer via the
   6547 /// conversion function @c Conversion, and then attempts to call it
   6548 /// with the given arguments (C++ [over.call.object]p2-4). Proto is
   6549 /// the type of function that we'll eventually be calling.
   6550 void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
   6551                                  DeclAccessPair FoundDecl,
   6552                                  CXXRecordDecl *ActingContext,
   6553                                  const FunctionProtoType *Proto,
   6554                                  Expr *Object,
   6555                                  ArrayRef<Expr *> Args,
   6556                                  OverloadCandidateSet& CandidateSet) {
   6557   if (!CandidateSet.isNewCandidate(Conversion))
   6558     return;
   6559 
   6560   // Overload resolution is always an unevaluated context.
   6561   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   6562 
   6563   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
   6564   Candidate.FoundDecl = FoundDecl;
   6565   Candidate.Function = nullptr;
   6566   Candidate.Surrogate = Conversion;
   6567   Candidate.Viable = true;
   6568   Candidate.IsSurrogate = true;
   6569   Candidate.IgnoreObjectArgument = false;
   6570   Candidate.ExplicitCallArguments = Args.size();
   6571 
   6572   // Determine the implicit conversion sequence for the implicit
   6573   // object parameter.
   6574   ImplicitConversionSequence ObjectInit = TryObjectArgumentInitialization(
   6575       *this, CandidateSet.getLocation(), Object->getType(),
   6576       Object->Classify(Context), Conversion, ActingContext);
   6577   if (ObjectInit.isBad()) {
   6578     Candidate.Viable = false;
   6579     Candidate.FailureKind = ovl_fail_bad_conversion;
   6580     Candidate.Conversions[0] = ObjectInit;
   6581     return;
   6582   }
   6583 
   6584   // The first conversion is actually a user-defined conversion whose
   6585   // first conversion is ObjectInit's standard conversion (which is
   6586   // effectively a reference binding). Record it as such.
   6587   Candidate.Conversions[0].setUserDefined();
   6588   Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
   6589   Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
   6590   Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
   6591   Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
   6592   Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
   6593   Candidate.Conversions[0].UserDefined.After
   6594     = Candidate.Conversions[0].UserDefined.Before;
   6595   Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
   6596 
   6597   // Find the
   6598   unsigned NumParams = Proto->getNumParams();
   6599 
   6600   // (C++ 13.3.2p2): A candidate function having fewer than m
   6601   // parameters is viable only if it has an ellipsis in its parameter
   6602   // list (8.3.5).
   6603   if (Args.size() > NumParams && !Proto->isVariadic()) {
   6604     Candidate.Viable = false;
   6605     Candidate.FailureKind = ovl_fail_too_many_arguments;
   6606     return;
   6607   }
   6608 
   6609   // Function types don't have any default arguments, so just check if
   6610   // we have enough arguments.
   6611   if (Args.size() < NumParams) {
   6612     // Not enough arguments.
   6613     Candidate.Viable = false;
   6614     Candidate.FailureKind = ovl_fail_too_few_arguments;
   6615     return;
   6616   }
   6617 
   6618   // Determine the implicit conversion sequences for each of the
   6619   // arguments.
   6620   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
   6621     if (ArgIdx < NumParams) {
   6622       // (C++ 13.3.2p3): for F to be a viable function, there shall
   6623       // exist for each argument an implicit conversion sequence
   6624       // (13.3.3.1) that converts that argument to the corresponding
   6625       // parameter of F.
   6626       QualType ParamType = Proto->getParamType(ArgIdx);
   6627       Candidate.Conversions[ArgIdx + 1]
   6628         = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
   6629                                 /*SuppressUserConversions=*/false,
   6630                                 /*InOverloadResolution=*/false,
   6631                                 /*AllowObjCWritebackConversion=*/
   6632                                   getLangOpts().ObjCAutoRefCount);
   6633       if (Candidate.Conversions[ArgIdx + 1].isBad()) {
   6634         Candidate.Viable = false;
   6635         Candidate.FailureKind = ovl_fail_bad_conversion;
   6636         return;
   6637       }
   6638     } else {
   6639       // (C++ 13.3.2p2): For the purposes of overload resolution, any
   6640       // argument for which there is no corresponding parameter is
   6641       // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
   6642       Candidate.Conversions[ArgIdx + 1].setEllipsis();
   6643     }
   6644   }
   6645 
   6646   if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, None)) {
   6647     Candidate.Viable = false;
   6648     Candidate.FailureKind = ovl_fail_enable_if;
   6649     Candidate.DeductionFailure.Data = FailedAttr;
   6650     return;
   6651   }
   6652 }
   6653 
   6654 /// \brief Add overload candidates for overloaded operators that are
   6655 /// member functions.
   6656 ///
   6657 /// Add the overloaded operator candidates that are member functions
   6658 /// for the operator Op that was used in an operator expression such
   6659 /// as "x Op y". , Args/NumArgs provides the operator arguments, and
   6660 /// CandidateSet will store the added overload candidates. (C++
   6661 /// [over.match.oper]).
   6662 void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
   6663                                        SourceLocation OpLoc,
   6664                                        ArrayRef<Expr *> Args,
   6665                                        OverloadCandidateSet& CandidateSet,
   6666                                        SourceRange OpRange) {
   6667   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
   6668 
   6669   // C++ [over.match.oper]p3:
   6670   //   For a unary operator @ with an operand of a type whose
   6671   //   cv-unqualified version is T1, and for a binary operator @ with
   6672   //   a left operand of a type whose cv-unqualified version is T1 and
   6673   //   a right operand of a type whose cv-unqualified version is T2,
   6674   //   three sets of candidate functions, designated member
   6675   //   candidates, non-member candidates and built-in candidates, are
   6676   //   constructed as follows:
   6677   QualType T1 = Args[0]->getType();
   6678 
   6679   //     -- If T1 is a complete class type or a class currently being
   6680   //        defined, the set of member candidates is the result of the
   6681   //        qualified lookup of T1::operator@ (13.3.1.1.1); otherwise,
   6682   //        the set of member candidates is empty.
   6683   if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
   6684     // Complete the type if it can be completed.
   6685     if (!isCompleteType(OpLoc, T1) && !T1Rec->isBeingDefined())
   6686       return;
   6687     // If the type is neither complete nor being defined, bail out now.
   6688     if (!T1Rec->getDecl()->getDefinition())
   6689       return;
   6690 
   6691     LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
   6692     LookupQualifiedName(Operators, T1Rec->getDecl());
   6693     Operators.suppressDiagnostics();
   6694 
   6695     for (LookupResult::iterator Oper = Operators.begin(),
   6696                              OperEnd = Operators.end();
   6697          Oper != OperEnd;
   6698          ++Oper)
   6699       AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
   6700                          Args[0]->Classify(Context),
   6701                          Args.slice(1),
   6702                          CandidateSet,
   6703                          /* SuppressUserConversions = */ false);
   6704   }
   6705 }
   6706 
   6707 /// AddBuiltinCandidate - Add a candidate for a built-in
   6708 /// operator. ResultTy and ParamTys are the result and parameter types
   6709 /// of the built-in candidate, respectively. Args and NumArgs are the
   6710 /// arguments being passed to the candidate. IsAssignmentOperator
   6711 /// should be true when this built-in candidate is an assignment
   6712 /// operator. NumContextualBoolArguments is the number of arguments
   6713 /// (at the beginning of the argument list) that will be contextually
   6714 /// converted to bool.
   6715 void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
   6716                                ArrayRef<Expr *> Args,
   6717                                OverloadCandidateSet& CandidateSet,
   6718                                bool IsAssignmentOperator,
   6719                                unsigned NumContextualBoolArguments) {
   6720   // Overload resolution is always an unevaluated context.
   6721   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   6722 
   6723   // Add this candidate
   6724   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
   6725   Candidate.FoundDecl = DeclAccessPair::make(nullptr, AS_none);
   6726   Candidate.Function = nullptr;
   6727   Candidate.IsSurrogate = false;
   6728   Candidate.IgnoreObjectArgument = false;
   6729   Candidate.BuiltinTypes.ResultTy = ResultTy;
   6730   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
   6731     Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
   6732 
   6733   // Determine the implicit conversion sequences for each of the
   6734   // arguments.
   6735   Candidate.Viable = true;
   6736   Candidate.ExplicitCallArguments = Args.size();
   6737   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
   6738     // C++ [over.match.oper]p4:
   6739     //   For the built-in assignment operators, conversions of the
   6740     //   left operand are restricted as follows:
   6741     //     -- no temporaries are introduced to hold the left operand, and
   6742     //     -- no user-defined conversions are applied to the left
   6743     //        operand to achieve a type match with the left-most
   6744     //        parameter of a built-in candidate.
   6745     //
   6746     // We block these conversions by turning off user-defined
   6747     // conversions, since that is the only way that initialization of
   6748     // a reference to a non-class type can occur from something that
   6749     // is not of the same type.
   6750     if (ArgIdx < NumContextualBoolArguments) {
   6751       assert(ParamTys[ArgIdx] == Context.BoolTy &&
   6752              "Contextual conversion to bool requires bool type");
   6753       Candidate.Conversions[ArgIdx]
   6754         = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
   6755     } else {
   6756       Candidate.Conversions[ArgIdx]
   6757         = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
   6758                                 ArgIdx == 0 && IsAssignmentOperator,
   6759                                 /*InOverloadResolution=*/false,
   6760                                 /*AllowObjCWritebackConversion=*/
   6761                                   getLangOpts().ObjCAutoRefCount);
   6762     }
   6763     if (Candidate.Conversions[ArgIdx].isBad()) {
   6764       Candidate.Viable = false;
   6765       Candidate.FailureKind = ovl_fail_bad_conversion;
   6766       break;
   6767     }
   6768   }
   6769 }
   6770 
   6771 namespace {
   6772 
   6773 /// BuiltinCandidateTypeSet - A set of types that will be used for the
   6774 /// candidate operator functions for built-in operators (C++
   6775 /// [over.built]). The types are separated into pointer types and
   6776 /// enumeration types.
   6777 class BuiltinCandidateTypeSet  {
   6778   /// TypeSet - A set of types.
   6779   typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
   6780 
   6781   /// PointerTypes - The set of pointer types that will be used in the
   6782   /// built-in candidates.
   6783   TypeSet PointerTypes;
   6784 
   6785   /// MemberPointerTypes - The set of member pointer types that will be
   6786   /// used in the built-in candidates.
   6787   TypeSet MemberPointerTypes;
   6788 
   6789   /// EnumerationTypes - The set of enumeration types that will be
   6790   /// used in the built-in candidates.
   6791   TypeSet EnumerationTypes;
   6792 
   6793   /// \brief The set of vector types that will be used in the built-in
   6794   /// candidates.
   6795   TypeSet VectorTypes;
   6796 
   6797   /// \brief A flag indicating non-record types are viable candidates
   6798   bool HasNonRecordTypes;
   6799 
   6800   /// \brief A flag indicating whether either arithmetic or enumeration types
   6801   /// were present in the candidate set.
   6802   bool HasArithmeticOrEnumeralTypes;
   6803 
   6804   /// \brief A flag indicating whether the nullptr type was present in the
   6805   /// candidate set.
   6806   bool HasNullPtrType;
   6807 
   6808   /// Sema - The semantic analysis instance where we are building the
   6809   /// candidate type set.
   6810   Sema &SemaRef;
   6811 
   6812   /// Context - The AST context in which we will build the type sets.
   6813   ASTContext &Context;
   6814 
   6815   bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
   6816                                                const Qualifiers &VisibleQuals);
   6817   bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
   6818 
   6819 public:
   6820   /// iterator - Iterates through the types that are part of the set.
   6821   typedef TypeSet::iterator iterator;
   6822 
   6823   BuiltinCandidateTypeSet(Sema &SemaRef)
   6824     : HasNonRecordTypes(false),
   6825       HasArithmeticOrEnumeralTypes(false),
   6826       HasNullPtrType(false),
   6827       SemaRef(SemaRef),
   6828       Context(SemaRef.Context) { }
   6829 
   6830   void AddTypesConvertedFrom(QualType Ty,
   6831                              SourceLocation Loc,
   6832                              bool AllowUserConversions,
   6833                              bool AllowExplicitConversions,
   6834                              const Qualifiers &VisibleTypeConversionsQuals);
   6835 
   6836   /// pointer_begin - First pointer type found;
   6837   iterator pointer_begin() { return PointerTypes.begin(); }
   6838 
   6839   /// pointer_end - Past the last pointer type found;
   6840   iterator pointer_end() { return PointerTypes.end(); }
   6841 
   6842   /// member_pointer_begin - First member pointer type found;
   6843   iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
   6844 
   6845   /// member_pointer_end - Past the last member pointer type found;
   6846   iterator member_pointer_end() { return MemberPointerTypes.end(); }
   6847 
   6848   /// enumeration_begin - First enumeration type found;
   6849   iterator enumeration_begin() { return EnumerationTypes.begin(); }
   6850 
   6851   /// enumeration_end - Past the last enumeration type found;
   6852   iterator enumeration_end() { return EnumerationTypes.end(); }
   6853 
   6854   iterator vector_begin() { return VectorTypes.begin(); }
   6855   iterator vector_end() { return VectorTypes.end(); }
   6856 
   6857   bool hasNonRecordTypes() { return HasNonRecordTypes; }
   6858   bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
   6859   bool hasNullPtrType() const { return HasNullPtrType; }
   6860 };
   6861 
   6862 } // end anonymous namespace
   6863 
   6864 /// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
   6865 /// the set of pointer types along with any more-qualified variants of
   6866 /// that type. For example, if @p Ty is "int const *", this routine
   6867 /// will add "int const *", "int const volatile *", "int const
   6868 /// restrict *", and "int const volatile restrict *" to the set of
   6869 /// pointer types. Returns true if the add of @p Ty itself succeeded,
   6870 /// false otherwise.
   6871 ///
   6872 /// FIXME: what to do about extended qualifiers?
   6873 bool
   6874 BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
   6875                                              const Qualifiers &VisibleQuals) {
   6876 
   6877   // Insert this type.
   6878   if (!PointerTypes.insert(Ty).second)
   6879     return false;
   6880 
   6881   QualType PointeeTy;
   6882   const PointerType *PointerTy = Ty->getAs<PointerType>();
   6883   bool buildObjCPtr = false;
   6884   if (!PointerTy) {
   6885     const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>();
   6886     PointeeTy = PTy->getPointeeType();
   6887     buildObjCPtr = true;
   6888   } else {
   6889     PointeeTy = PointerTy->getPointeeType();
   6890   }
   6891 
   6892   // Don't add qualified variants of arrays. For one, they're not allowed
   6893   // (the qualifier would sink to the element type), and for another, the
   6894   // only overload situation where it matters is subscript or pointer +- int,
   6895   // and those shouldn't have qualifier variants anyway.
   6896   if (PointeeTy->isArrayType())
   6897     return true;
   6898 
   6899   unsigned BaseCVR = PointeeTy.getCVRQualifiers();
   6900   bool hasVolatile = VisibleQuals.hasVolatile();
   6901   bool hasRestrict = VisibleQuals.hasRestrict();
   6902 
   6903   // Iterate through all strict supersets of BaseCVR.
   6904   for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
   6905     if ((CVR | BaseCVR) != CVR) continue;
   6906     // Skip over volatile if no volatile found anywhere in the types.
   6907     if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
   6908 
   6909     // Skip over restrict if no restrict found anywhere in the types, or if
   6910     // the type cannot be restrict-qualified.
   6911     if ((CVR & Qualifiers::Restrict) &&
   6912         (!hasRestrict ||
   6913          (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType()))))
   6914       continue;
   6915 
   6916     // Build qualified pointee type.
   6917     QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
   6918 
   6919     // Build qualified pointer type.
   6920     QualType QPointerTy;
   6921     if (!buildObjCPtr)
   6922       QPointerTy = Context.getPointerType(QPointeeTy);
   6923     else
   6924       QPointerTy = Context.getObjCObjectPointerType(QPointeeTy);
   6925 
   6926     // Insert qualified pointer type.
   6927     PointerTypes.insert(QPointerTy);
   6928   }
   6929 
   6930   return true;
   6931 }
   6932 
   6933 /// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
   6934 /// to the set of pointer types along with any more-qualified variants of
   6935 /// that type. For example, if @p Ty is "int const *", this routine
   6936 /// will add "int const *", "int const volatile *", "int const
   6937 /// restrict *", and "int const volatile restrict *" to the set of
   6938 /// pointer types. Returns true if the add of @p Ty itself succeeded,
   6939 /// false otherwise.
   6940 ///
   6941 /// FIXME: what to do about extended qualifiers?
   6942 bool
   6943 BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
   6944     QualType Ty) {
   6945   // Insert this type.
   6946   if (!MemberPointerTypes.insert(Ty).second)
   6947     return false;
   6948 
   6949   const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
   6950   assert(PointerTy && "type was not a member pointer type!");
   6951 
   6952   QualType PointeeTy = PointerTy->getPointeeType();
   6953   // Don't add qualified variants of arrays. For one, they're not allowed
   6954   // (the qualifier would sink to the element type), and for another, the
   6955   // only overload situation where it matters is subscript or pointer +- int,
   6956   // and those shouldn't have qualifier variants anyway.
   6957   if (PointeeTy->isArrayType())
   6958     return true;
   6959   const Type *ClassTy = PointerTy->getClass();
   6960 
   6961   // Iterate through all strict supersets of the pointee type's CVR
   6962   // qualifiers.
   6963   unsigned BaseCVR = PointeeTy.getCVRQualifiers();
   6964   for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
   6965     if ((CVR | BaseCVR) != CVR) continue;
   6966 
   6967     QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
   6968     MemberPointerTypes.insert(
   6969       Context.getMemberPointerType(QPointeeTy, ClassTy));
   6970   }
   6971 
   6972   return true;
   6973 }
   6974 
   6975 /// AddTypesConvertedFrom - Add each of the types to which the type @p
   6976 /// Ty can be implicit converted to the given set of @p Types. We're
   6977 /// primarily interested in pointer types and enumeration types. We also
   6978 /// take member pointer types, for the conditional operator.
   6979 /// AllowUserConversions is true if we should look at the conversion
   6980 /// functions of a class type, and AllowExplicitConversions if we
   6981 /// should also include the explicit conversion functions of a class
   6982 /// type.
   6983 void
   6984 BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
   6985                                                SourceLocation Loc,
   6986                                                bool AllowUserConversions,
   6987                                                bool AllowExplicitConversions,
   6988                                                const Qualifiers &VisibleQuals) {
   6989   // Only deal with canonical types.
   6990   Ty = Context.getCanonicalType(Ty);
   6991 
   6992   // Look through reference types; they aren't part of the type of an
   6993   // expression for the purposes of conversions.
   6994   if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
   6995     Ty = RefTy->getPointeeType();
   6996 
   6997   // If we're dealing with an array type, decay to the pointer.
   6998   if (Ty->isArrayType())
   6999     Ty = SemaRef.Context.getArrayDecayedType(Ty);
   7000 
   7001   // Otherwise, we don't care about qualifiers on the type.
   7002   Ty = Ty.getLocalUnqualifiedType();
   7003 
   7004   // Flag if we ever add a non-record type.
   7005   const RecordType *TyRec = Ty->getAs<RecordType>();
   7006   HasNonRecordTypes = HasNonRecordTypes || !TyRec;
   7007 
   7008   // Flag if we encounter an arithmetic type.
   7009   HasArithmeticOrEnumeralTypes =
   7010     HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
   7011 
   7012   if (Ty->isObjCIdType() || Ty->isObjCClassType())
   7013     PointerTypes.insert(Ty);
   7014   else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
   7015     // Insert our type, and its more-qualified variants, into the set
   7016     // of types.
   7017     if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
   7018       return;
   7019   } else if (Ty->isMemberPointerType()) {
   7020     // Member pointers are far easier, since the pointee can't be converted.
   7021     if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
   7022       return;
   7023   } else if (Ty->isEnumeralType()) {
   7024     HasArithmeticOrEnumeralTypes = true;
   7025     EnumerationTypes.insert(Ty);
   7026   } else if (Ty->isVectorType()) {
   7027     // We treat vector types as arithmetic types in many contexts as an
   7028     // extension.
   7029     HasArithmeticOrEnumeralTypes = true;
   7030     VectorTypes.insert(Ty);
   7031   } else if (Ty->isNullPtrType()) {
   7032     HasNullPtrType = true;
   7033   } else if (AllowUserConversions && TyRec) {
   7034     // No conversion functions in incomplete types.
   7035     if (!SemaRef.isCompleteType(Loc, Ty))
   7036       return;
   7037 
   7038     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
   7039     for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
   7040       if (isa<UsingShadowDecl>(D))
   7041         D = cast<UsingShadowDecl>(D)->getTargetDecl();
   7042 
   7043       // Skip conversion function templates; they don't tell us anything
   7044       // about which builtin types we can convert to.
   7045       if (isa<FunctionTemplateDecl>(D))
   7046         continue;
   7047 
   7048       CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
   7049       if (AllowExplicitConversions || !Conv->isExplicit()) {
   7050         AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
   7051                               VisibleQuals);
   7052       }
   7053     }
   7054   }
   7055 }
   7056 
   7057 /// \brief Helper function for AddBuiltinOperatorCandidates() that adds
   7058 /// the volatile- and non-volatile-qualified assignment operators for the
   7059 /// given type to the candidate set.
   7060 static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
   7061                                                    QualType T,
   7062                                                    ArrayRef<Expr *> Args,
   7063                                     OverloadCandidateSet &CandidateSet) {
   7064   QualType ParamTypes[2];
   7065 
   7066   // T& operator=(T&, T)
   7067   ParamTypes[0] = S.Context.getLValueReferenceType(T);
   7068   ParamTypes[1] = T;
   7069   S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7070                         /*IsAssignmentOperator=*/true);
   7071 
   7072   if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
   7073     // volatile T& operator=(volatile T&, T)
   7074     ParamTypes[0]
   7075       = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
   7076     ParamTypes[1] = T;
   7077     S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7078                           /*IsAssignmentOperator=*/true);
   7079   }
   7080 }
   7081 
   7082 /// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
   7083 /// if any, found in visible type conversion functions found in ArgExpr's type.
   7084 static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
   7085     Qualifiers VRQuals;
   7086     const RecordType *TyRec;
   7087     if (const MemberPointerType *RHSMPType =
   7088         ArgExpr->getType()->getAs<MemberPointerType>())
   7089       TyRec = RHSMPType->getClass()->getAs<RecordType>();
   7090     else
   7091       TyRec = ArgExpr->getType()->getAs<RecordType>();
   7092     if (!TyRec) {
   7093       // Just to be safe, assume the worst case.
   7094       VRQuals.addVolatile();
   7095       VRQuals.addRestrict();
   7096       return VRQuals;
   7097     }
   7098 
   7099     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
   7100     if (!ClassDecl->hasDefinition())
   7101       return VRQuals;
   7102 
   7103     for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
   7104       if (isa<UsingShadowDecl>(D))
   7105         D = cast<UsingShadowDecl>(D)->getTargetDecl();
   7106       if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
   7107         QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
   7108         if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
   7109           CanTy = ResTypeRef->getPointeeType();
   7110         // Need to go down the pointer/mempointer chain and add qualifiers
   7111         // as see them.
   7112         bool done = false;
   7113         while (!done) {
   7114           if (CanTy.isRestrictQualified())
   7115             VRQuals.addRestrict();
   7116           if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
   7117             CanTy = ResTypePtr->getPointeeType();
   7118           else if (const MemberPointerType *ResTypeMPtr =
   7119                 CanTy->getAs<MemberPointerType>())
   7120             CanTy = ResTypeMPtr->getPointeeType();
   7121           else
   7122             done = true;
   7123           if (CanTy.isVolatileQualified())
   7124             VRQuals.addVolatile();
   7125           if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
   7126             return VRQuals;
   7127         }
   7128       }
   7129     }
   7130     return VRQuals;
   7131 }
   7132 
   7133 namespace {
   7134 
   7135 /// \brief Helper class to manage the addition of builtin operator overload
   7136 /// candidates. It provides shared state and utility methods used throughout
   7137 /// the process, as well as a helper method to add each group of builtin
   7138 /// operator overloads from the standard to a candidate set.
   7139 class BuiltinOperatorOverloadBuilder {
   7140   // Common instance state available to all overload candidate addition methods.
   7141   Sema &S;
   7142   ArrayRef<Expr *> Args;
   7143   Qualifiers VisibleTypeConversionsQuals;
   7144   bool HasArithmeticOrEnumeralCandidateType;
   7145   SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
   7146   OverloadCandidateSet &CandidateSet;
   7147 
   7148   // Define some constants used to index and iterate over the arithemetic types
   7149   // provided via the getArithmeticType() method below.
   7150   // The "promoted arithmetic types" are the arithmetic
   7151   // types are that preserved by promotion (C++ [over.built]p2).
   7152   static const unsigned FirstIntegralType = 3;
   7153   static const unsigned LastIntegralType = 20;
   7154   static const unsigned FirstPromotedIntegralType = 3,
   7155                         LastPromotedIntegralType = 11;
   7156   static const unsigned FirstPromotedArithmeticType = 0,
   7157                         LastPromotedArithmeticType = 11;
   7158   static const unsigned NumArithmeticTypes = 20;
   7159 
   7160   /// \brief Get the canonical type for a given arithmetic type index.
   7161   CanQualType getArithmeticType(unsigned index) {
   7162     assert(index < NumArithmeticTypes);
   7163     static CanQualType ASTContext::* const
   7164       ArithmeticTypes[NumArithmeticTypes] = {
   7165       // Start of promoted types.
   7166       &ASTContext::FloatTy,
   7167       &ASTContext::DoubleTy,
   7168       &ASTContext::LongDoubleTy,
   7169 
   7170       // Start of integral types.
   7171       &ASTContext::IntTy,
   7172       &ASTContext::LongTy,
   7173       &ASTContext::LongLongTy,
   7174       &ASTContext::Int128Ty,
   7175       &ASTContext::UnsignedIntTy,
   7176       &ASTContext::UnsignedLongTy,
   7177       &ASTContext::UnsignedLongLongTy,
   7178       &ASTContext::UnsignedInt128Ty,
   7179       // End of promoted types.
   7180 
   7181       &ASTContext::BoolTy,
   7182       &ASTContext::CharTy,
   7183       &ASTContext::WCharTy,
   7184       &ASTContext::Char16Ty,
   7185       &ASTContext::Char32Ty,
   7186       &ASTContext::SignedCharTy,
   7187       &ASTContext::ShortTy,
   7188       &ASTContext::UnsignedCharTy,
   7189       &ASTContext::UnsignedShortTy,
   7190       // End of integral types.
   7191       // FIXME: What about complex? What about half?
   7192     };
   7193     return S.Context.*ArithmeticTypes[index];
   7194   }
   7195 
   7196   /// \brief Gets the canonical type resulting from the usual arithemetic
   7197   /// converions for the given arithmetic types.
   7198   CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) {
   7199     // Accelerator table for performing the usual arithmetic conversions.
   7200     // The rules are basically:
   7201     //   - if either is floating-point, use the wider floating-point
   7202     //   - if same signedness, use the higher rank
   7203     //   - if same size, use unsigned of the higher rank
   7204     //   - use the larger type
   7205     // These rules, together with the axiom that higher ranks are
   7206     // never smaller, are sufficient to precompute all of these results
   7207     // *except* when dealing with signed types of higher rank.
   7208     // (we could precompute SLL x UI for all known platforms, but it's
   7209     // better not to make any assumptions).
   7210     // We assume that int128 has a higher rank than long long on all platforms.
   7211     enum PromotedType {
   7212             Dep=-1,
   7213             Flt,  Dbl, LDbl,   SI,   SL,  SLL, S128,   UI,   UL,  ULL, U128
   7214     };
   7215     static const PromotedType ConversionsTable[LastPromotedArithmeticType]
   7216                                         [LastPromotedArithmeticType] = {
   7217 /* Flt*/ {  Flt,  Dbl, LDbl,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt },
   7218 /* Dbl*/ {  Dbl,  Dbl, LDbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl },
   7219 /*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl },
   7220 /*  SI*/ {  Flt,  Dbl, LDbl,   SI,   SL,  SLL, S128,   UI,   UL,  ULL, U128 },
   7221 /*  SL*/ {  Flt,  Dbl, LDbl,   SL,   SL,  SLL, S128,  Dep,   UL,  ULL, U128 },
   7222 /* SLL*/ {  Flt,  Dbl, LDbl,  SLL,  SLL,  SLL, S128,  Dep,  Dep,  ULL, U128 },
   7223 /*S128*/ {  Flt,  Dbl, LDbl, S128, S128, S128, S128, S128, S128, S128, U128 },
   7224 /*  UI*/ {  Flt,  Dbl, LDbl,   UI,  Dep,  Dep, S128,   UI,   UL,  ULL, U128 },
   7225 /*  UL*/ {  Flt,  Dbl, LDbl,   UL,   UL,  Dep, S128,   UL,   UL,  ULL, U128 },
   7226 /* ULL*/ {  Flt,  Dbl, LDbl,  ULL,  ULL,  ULL, S128,  ULL,  ULL,  ULL, U128 },
   7227 /*U128*/ {  Flt,  Dbl, LDbl, U128, U128, U128, U128, U128, U128, U128, U128 },
   7228     };
   7229 
   7230     assert(L < LastPromotedArithmeticType);
   7231     assert(R < LastPromotedArithmeticType);
   7232     int Idx = ConversionsTable[L][R];
   7233 
   7234     // Fast path: the table gives us a concrete answer.
   7235     if (Idx != Dep) return getArithmeticType(Idx);
   7236 
   7237     // Slow path: we need to compare widths.
   7238     // An invariant is that the signed type has higher rank.
   7239     CanQualType LT = getArithmeticType(L),
   7240                 RT = getArithmeticType(R);
   7241     unsigned LW = S.Context.getIntWidth(LT),
   7242              RW = S.Context.getIntWidth(RT);
   7243 
   7244     // If they're different widths, use the signed type.
   7245     if (LW > RW) return LT;
   7246     else if (LW < RW) return RT;
   7247 
   7248     // Otherwise, use the unsigned type of the signed type's rank.
   7249     if (L == SL || R == SL) return S.Context.UnsignedLongTy;
   7250     assert(L == SLL || R == SLL);
   7251     return S.Context.UnsignedLongLongTy;
   7252   }
   7253 
   7254   /// \brief Helper method to factor out the common pattern of adding overloads
   7255   /// for '++' and '--' builtin operators.
   7256   void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
   7257                                            bool HasVolatile,
   7258                                            bool HasRestrict) {
   7259     QualType ParamTypes[2] = {
   7260       S.Context.getLValueReferenceType(CandidateTy),
   7261       S.Context.IntTy
   7262     };
   7263 
   7264     // Non-volatile version.
   7265     if (Args.size() == 1)
   7266       S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
   7267     else
   7268       S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
   7269 
   7270     // Use a heuristic to reduce number of builtin candidates in the set:
   7271     // add volatile version only if there are conversions to a volatile type.
   7272     if (HasVolatile) {
   7273       ParamTypes[0] =
   7274         S.Context.getLValueReferenceType(
   7275           S.Context.getVolatileType(CandidateTy));
   7276       if (Args.size() == 1)
   7277         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
   7278       else
   7279         S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
   7280     }
   7281 
   7282     // Add restrict version only if there are conversions to a restrict type
   7283     // and our candidate type is a non-restrict-qualified pointer.
   7284     if (HasRestrict && CandidateTy->isAnyPointerType() &&
   7285         !CandidateTy.isRestrictQualified()) {
   7286       ParamTypes[0]
   7287         = S.Context.getLValueReferenceType(
   7288             S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict));
   7289       if (Args.size() == 1)
   7290         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
   7291       else
   7292         S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
   7293 
   7294       if (HasVolatile) {
   7295         ParamTypes[0]
   7296           = S.Context.getLValueReferenceType(
   7297               S.Context.getCVRQualifiedType(CandidateTy,
   7298                                             (Qualifiers::Volatile |
   7299                                              Qualifiers::Restrict)));
   7300         if (Args.size() == 1)
   7301           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
   7302         else
   7303           S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
   7304       }
   7305     }
   7306 
   7307   }
   7308 
   7309 public:
   7310   BuiltinOperatorOverloadBuilder(
   7311     Sema &S, ArrayRef<Expr *> Args,
   7312     Qualifiers VisibleTypeConversionsQuals,
   7313     bool HasArithmeticOrEnumeralCandidateType,
   7314     SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
   7315     OverloadCandidateSet &CandidateSet)
   7316     : S(S), Args(Args),
   7317       VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
   7318       HasArithmeticOrEnumeralCandidateType(
   7319         HasArithmeticOrEnumeralCandidateType),
   7320       CandidateTypes(CandidateTypes),
   7321       CandidateSet(CandidateSet) {
   7322     // Validate some of our static helper constants in debug builds.
   7323     assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy &&
   7324            "Invalid first promoted integral type");
   7325     assert(getArithmeticType(LastPromotedIntegralType - 1)
   7326              == S.Context.UnsignedInt128Ty &&
   7327            "Invalid last promoted integral type");
   7328     assert(getArithmeticType(FirstPromotedArithmeticType)
   7329              == S.Context.FloatTy &&
   7330            "Invalid first promoted arithmetic type");
   7331     assert(getArithmeticType(LastPromotedArithmeticType - 1)
   7332              == S.Context.UnsignedInt128Ty &&
   7333            "Invalid last promoted arithmetic type");
   7334   }
   7335 
   7336   // C++ [over.built]p3:
   7337   //
   7338   //   For every pair (T, VQ), where T is an arithmetic type, and VQ
   7339   //   is either volatile or empty, there exist candidate operator
   7340   //   functions of the form
   7341   //
   7342   //       VQ T&      operator++(VQ T&);
   7343   //       T          operator++(VQ T&, int);
   7344   //
   7345   // C++ [over.built]p4:
   7346   //
   7347   //   For every pair (T, VQ), where T is an arithmetic type other
   7348   //   than bool, and VQ is either volatile or empty, there exist
   7349   //   candidate operator functions of the form
   7350   //
   7351   //       VQ T&      operator--(VQ T&);
   7352   //       T          operator--(VQ T&, int);
   7353   void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
   7354     if (!HasArithmeticOrEnumeralCandidateType)
   7355       return;
   7356 
   7357     for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
   7358          Arith < NumArithmeticTypes; ++Arith) {
   7359       addPlusPlusMinusMinusStyleOverloads(
   7360         getArithmeticType(Arith),
   7361         VisibleTypeConversionsQuals.hasVolatile(),
   7362         VisibleTypeConversionsQuals.hasRestrict());
   7363     }
   7364   }
   7365 
   7366   // C++ [over.built]p5:
   7367   //
   7368   //   For every pair (T, VQ), where T is a cv-qualified or
   7369   //   cv-unqualified object type, and VQ is either volatile or
   7370   //   empty, there exist candidate operator functions of the form
   7371   //
   7372   //       T*VQ&      operator++(T*VQ&);
   7373   //       T*VQ&      operator--(T*VQ&);
   7374   //       T*         operator++(T*VQ&, int);
   7375   //       T*         operator--(T*VQ&, int);
   7376   void addPlusPlusMinusMinusPointerOverloads() {
   7377     for (BuiltinCandidateTypeSet::iterator
   7378               Ptr = CandidateTypes[0].pointer_begin(),
   7379            PtrEnd = CandidateTypes[0].pointer_end();
   7380          Ptr != PtrEnd; ++Ptr) {
   7381       // Skip pointer types that aren't pointers to object types.
   7382       if (!(*Ptr)->getPointeeType()->isObjectType())
   7383         continue;
   7384 
   7385       addPlusPlusMinusMinusStyleOverloads(*Ptr,
   7386         (!(*Ptr).isVolatileQualified() &&
   7387          VisibleTypeConversionsQuals.hasVolatile()),
   7388         (!(*Ptr).isRestrictQualified() &&
   7389          VisibleTypeConversionsQuals.hasRestrict()));
   7390     }
   7391   }
   7392 
   7393   // C++ [over.built]p6:
   7394   //   For every cv-qualified or cv-unqualified object type T, there
   7395   //   exist candidate operator functions of the form
   7396   //
   7397   //       T&         operator*(T*);
   7398   //
   7399   // C++ [over.built]p7:
   7400   //   For every function type T that does not have cv-qualifiers or a
   7401   //   ref-qualifier, there exist candidate operator functions of the form
   7402   //       T&         operator*(T*);
   7403   void addUnaryStarPointerOverloads() {
   7404     for (BuiltinCandidateTypeSet::iterator
   7405               Ptr = CandidateTypes[0].pointer_begin(),
   7406            PtrEnd = CandidateTypes[0].pointer_end();
   7407          Ptr != PtrEnd; ++Ptr) {
   7408       QualType ParamTy = *Ptr;
   7409       QualType PointeeTy = ParamTy->getPointeeType();
   7410       if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
   7411         continue;
   7412 
   7413       if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
   7414         if (Proto->getTypeQuals() || Proto->getRefQualifier())
   7415           continue;
   7416 
   7417       S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy),
   7418                             &ParamTy, Args, CandidateSet);
   7419     }
   7420   }
   7421 
   7422   // C++ [over.built]p9:
   7423   //  For every promoted arithmetic type T, there exist candidate
   7424   //  operator functions of the form
   7425   //
   7426   //       T         operator+(T);
   7427   //       T         operator-(T);
   7428   void addUnaryPlusOrMinusArithmeticOverloads() {
   7429     if (!HasArithmeticOrEnumeralCandidateType)
   7430       return;
   7431 
   7432     for (unsigned Arith = FirstPromotedArithmeticType;
   7433          Arith < LastPromotedArithmeticType; ++Arith) {
   7434       QualType ArithTy = getArithmeticType(Arith);
   7435       S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, CandidateSet);
   7436     }
   7437 
   7438     // Extension: We also add these operators for vector types.
   7439     for (BuiltinCandidateTypeSet::iterator
   7440               Vec = CandidateTypes[0].vector_begin(),
   7441            VecEnd = CandidateTypes[0].vector_end();
   7442          Vec != VecEnd; ++Vec) {
   7443       QualType VecTy = *Vec;
   7444       S.AddBuiltinCandidate(VecTy, &VecTy, Args, CandidateSet);
   7445     }
   7446   }
   7447 
   7448   // C++ [over.built]p8:
   7449   //   For every type T, there exist candidate operator functions of
   7450   //   the form
   7451   //
   7452   //       T*         operator+(T*);
   7453   void addUnaryPlusPointerOverloads() {
   7454     for (BuiltinCandidateTypeSet::iterator
   7455               Ptr = CandidateTypes[0].pointer_begin(),
   7456            PtrEnd = CandidateTypes[0].pointer_end();
   7457          Ptr != PtrEnd; ++Ptr) {
   7458       QualType ParamTy = *Ptr;
   7459       S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, CandidateSet);
   7460     }
   7461   }
   7462 
   7463   // C++ [over.built]p10:
   7464   //   For every promoted integral type T, there exist candidate
   7465   //   operator functions of the form
   7466   //
   7467   //        T         operator~(T);
   7468   void addUnaryTildePromotedIntegralOverloads() {
   7469     if (!HasArithmeticOrEnumeralCandidateType)
   7470       return;
   7471 
   7472     for (unsigned Int = FirstPromotedIntegralType;
   7473          Int < LastPromotedIntegralType; ++Int) {
   7474       QualType IntTy = getArithmeticType(Int);
   7475       S.AddBuiltinCandidate(IntTy, &IntTy, Args, CandidateSet);
   7476     }
   7477 
   7478     // Extension: We also add this operator for vector types.
   7479     for (BuiltinCandidateTypeSet::iterator
   7480               Vec = CandidateTypes[0].vector_begin(),
   7481            VecEnd = CandidateTypes[0].vector_end();
   7482          Vec != VecEnd; ++Vec) {
   7483       QualType VecTy = *Vec;
   7484       S.AddBuiltinCandidate(VecTy, &VecTy, Args, CandidateSet);
   7485     }
   7486   }
   7487 
   7488   // C++ [over.match.oper]p16:
   7489   //   For every pointer to member type T, there exist candidate operator
   7490   //   functions of the form
   7491   //
   7492   //        bool operator==(T,T);
   7493   //        bool operator!=(T,T);
   7494   void addEqualEqualOrNotEqualMemberPointerOverloads() {
   7495     /// Set of (canonical) types that we've already handled.
   7496     llvm::SmallPtrSet<QualType, 8> AddedTypes;
   7497 
   7498     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
   7499       for (BuiltinCandidateTypeSet::iterator
   7500                 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
   7501              MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
   7502            MemPtr != MemPtrEnd;
   7503            ++MemPtr) {
   7504         // Don't add the same builtin candidate twice.
   7505         if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
   7506           continue;
   7507 
   7508         QualType ParamTypes[2] = { *MemPtr, *MemPtr };
   7509         S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
   7510       }
   7511     }
   7512   }
   7513 
   7514   // C++ [over.built]p15:
   7515   //
   7516   //   For every T, where T is an enumeration type, a pointer type, or
   7517   //   std::nullptr_t, there exist candidate operator functions of the form
   7518   //
   7519   //        bool       operator<(T, T);
   7520   //        bool       operator>(T, T);
   7521   //        bool       operator<=(T, T);
   7522   //        bool       operator>=(T, T);
   7523   //        bool       operator==(T, T);
   7524   //        bool       operator!=(T, T);
   7525   void addRelationalPointerOrEnumeralOverloads() {
   7526     // C++ [over.match.oper]p3:
   7527     //   [...]the built-in candidates include all of the candidate operator
   7528     //   functions defined in 13.6 that, compared to the given operator, [...]
   7529     //   do not have the same parameter-type-list as any non-template non-member
   7530     //   candidate.
   7531     //
   7532     // Note that in practice, this only affects enumeration types because there
   7533     // aren't any built-in candidates of record type, and a user-defined operator
   7534     // must have an operand of record or enumeration type. Also, the only other
   7535     // overloaded operator with enumeration arguments, operator=,
   7536     // cannot be overloaded for enumeration types, so this is the only place
   7537     // where we must suppress candidates like this.
   7538     llvm::DenseSet<std::pair<CanQualType, CanQualType> >
   7539       UserDefinedBinaryOperators;
   7540 
   7541     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
   7542       if (CandidateTypes[ArgIdx].enumeration_begin() !=
   7543           CandidateTypes[ArgIdx].enumeration_end()) {
   7544         for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
   7545                                          CEnd = CandidateSet.end();
   7546              C != CEnd; ++C) {
   7547           if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
   7548             continue;
   7549 
   7550           if (C->Function->isFunctionTemplateSpecialization())
   7551             continue;
   7552 
   7553           QualType FirstParamType =
   7554             C->Function->getParamDecl(0)->getType().getUnqualifiedType();
   7555           QualType SecondParamType =
   7556             C->Function->getParamDecl(1)->getType().getUnqualifiedType();
   7557 
   7558           // Skip if either parameter isn't of enumeral type.
   7559           if (!FirstParamType->isEnumeralType() ||
   7560               !SecondParamType->isEnumeralType())
   7561             continue;
   7562 
   7563           // Add this operator to the set of known user-defined operators.
   7564           UserDefinedBinaryOperators.insert(
   7565             std::make_pair(S.Context.getCanonicalType(FirstParamType),
   7566                            S.Context.getCanonicalType(SecondParamType)));
   7567         }
   7568       }
   7569     }
   7570 
   7571     /// Set of (canonical) types that we've already handled.
   7572     llvm::SmallPtrSet<QualType, 8> AddedTypes;
   7573 
   7574     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
   7575       for (BuiltinCandidateTypeSet::iterator
   7576                 Ptr = CandidateTypes[ArgIdx].pointer_begin(),
   7577              PtrEnd = CandidateTypes[ArgIdx].pointer_end();
   7578            Ptr != PtrEnd; ++Ptr) {
   7579         // Don't add the same builtin candidate twice.
   7580         if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
   7581           continue;
   7582 
   7583         QualType ParamTypes[2] = { *Ptr, *Ptr };
   7584         S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
   7585       }
   7586       for (BuiltinCandidateTypeSet::iterator
   7587                 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
   7588              EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
   7589            Enum != EnumEnd; ++Enum) {
   7590         CanQualType CanonType = S.Context.getCanonicalType(*Enum);
   7591 
   7592         // Don't add the same builtin candidate twice, or if a user defined
   7593         // candidate exists.
   7594         if (!AddedTypes.insert(CanonType).second ||
   7595             UserDefinedBinaryOperators.count(std::make_pair(CanonType,
   7596                                                             CanonType)))
   7597           continue;
   7598 
   7599         QualType ParamTypes[2] = { *Enum, *Enum };
   7600         S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
   7601       }
   7602 
   7603       if (CandidateTypes[ArgIdx].hasNullPtrType()) {
   7604         CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
   7605         if (AddedTypes.insert(NullPtrTy).second &&
   7606             !UserDefinedBinaryOperators.count(std::make_pair(NullPtrTy,
   7607                                                              NullPtrTy))) {
   7608           QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
   7609           S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args,
   7610                                 CandidateSet);
   7611         }
   7612       }
   7613     }
   7614   }
   7615 
   7616   // C++ [over.built]p13:
   7617   //
   7618   //   For every cv-qualified or cv-unqualified object type T
   7619   //   there exist candidate operator functions of the form
   7620   //
   7621   //      T*         operator+(T*, ptrdiff_t);
   7622   //      T&         operator[](T*, ptrdiff_t);    [BELOW]
   7623   //      T*         operator-(T*, ptrdiff_t);
   7624   //      T*         operator+(ptrdiff_t, T*);
   7625   //      T&         operator[](ptrdiff_t, T*);    [BELOW]
   7626   //
   7627   // C++ [over.built]p14:
   7628   //
   7629   //   For every T, where T is a pointer to object type, there
   7630   //   exist candidate operator functions of the form
   7631   //
   7632   //      ptrdiff_t  operator-(T, T);
   7633   void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
   7634     /// Set of (canonical) types that we've already handled.
   7635     llvm::SmallPtrSet<QualType, 8> AddedTypes;
   7636 
   7637     for (int Arg = 0; Arg < 2; ++Arg) {
   7638       QualType AsymmetricParamTypes[2] = {
   7639         S.Context.getPointerDiffType(),
   7640         S.Context.getPointerDiffType(),
   7641       };
   7642       for (BuiltinCandidateTypeSet::iterator
   7643                 Ptr = CandidateTypes[Arg].pointer_begin(),
   7644              PtrEnd = CandidateTypes[Arg].pointer_end();
   7645            Ptr != PtrEnd; ++Ptr) {
   7646         QualType PointeeTy = (*Ptr)->getPointeeType();
   7647         if (!PointeeTy->isObjectType())
   7648           continue;
   7649 
   7650         AsymmetricParamTypes[Arg] = *Ptr;
   7651         if (Arg == 0 || Op == OO_Plus) {
   7652           // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
   7653           // T* operator+(ptrdiff_t, T*);
   7654           S.AddBuiltinCandidate(*Ptr, AsymmetricParamTypes, Args, CandidateSet);
   7655         }
   7656         if (Op == OO_Minus) {
   7657           // ptrdiff_t operator-(T, T);
   7658           if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
   7659             continue;
   7660 
   7661           QualType ParamTypes[2] = { *Ptr, *Ptr };
   7662           S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes,
   7663                                 Args, CandidateSet);
   7664         }
   7665       }
   7666     }
   7667   }
   7668 
   7669   // C++ [over.built]p12:
   7670   //
   7671   //   For every pair of promoted arithmetic types L and R, there
   7672   //   exist candidate operator functions of the form
   7673   //
   7674   //        LR         operator*(L, R);
   7675   //        LR         operator/(L, R);
   7676   //        LR         operator+(L, R);
   7677   //        LR         operator-(L, R);
   7678   //        bool       operator<(L, R);
   7679   //        bool       operator>(L, R);
   7680   //        bool       operator<=(L, R);
   7681   //        bool       operator>=(L, R);
   7682   //        bool       operator==(L, R);
   7683   //        bool       operator!=(L, R);
   7684   //
   7685   //   where LR is the result of the usual arithmetic conversions
   7686   //   between types L and R.
   7687   //
   7688   // C++ [over.built]p24:
   7689   //
   7690   //   For every pair of promoted arithmetic types L and R, there exist
   7691   //   candidate operator functions of the form
   7692   //
   7693   //        LR       operator?(bool, L, R);
   7694   //
   7695   //   where LR is the result of the usual arithmetic conversions
   7696   //   between types L and R.
   7697   // Our candidates ignore the first parameter.
   7698   void addGenericBinaryArithmeticOverloads(bool isComparison) {
   7699     if (!HasArithmeticOrEnumeralCandidateType)
   7700       return;
   7701 
   7702     for (unsigned Left = FirstPromotedArithmeticType;
   7703          Left < LastPromotedArithmeticType; ++Left) {
   7704       for (unsigned Right = FirstPromotedArithmeticType;
   7705            Right < LastPromotedArithmeticType; ++Right) {
   7706         QualType LandR[2] = { getArithmeticType(Left),
   7707                               getArithmeticType(Right) };
   7708         QualType Result =
   7709           isComparison ? S.Context.BoolTy
   7710                        : getUsualArithmeticConversions(Left, Right);
   7711         S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
   7712       }
   7713     }
   7714 
   7715     // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
   7716     // conditional operator for vector types.
   7717     for (BuiltinCandidateTypeSet::iterator
   7718               Vec1 = CandidateTypes[0].vector_begin(),
   7719            Vec1End = CandidateTypes[0].vector_end();
   7720          Vec1 != Vec1End; ++Vec1) {
   7721       for (BuiltinCandidateTypeSet::iterator
   7722                 Vec2 = CandidateTypes[1].vector_begin(),
   7723              Vec2End = CandidateTypes[1].vector_end();
   7724            Vec2 != Vec2End; ++Vec2) {
   7725         QualType LandR[2] = { *Vec1, *Vec2 };
   7726         QualType Result = S.Context.BoolTy;
   7727         if (!isComparison) {
   7728           if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType())
   7729             Result = *Vec1;
   7730           else
   7731             Result = *Vec2;
   7732         }
   7733 
   7734         S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
   7735       }
   7736     }
   7737   }
   7738 
   7739   // C++ [over.built]p17:
   7740   //
   7741   //   For every pair of promoted integral types L and R, there
   7742   //   exist candidate operator functions of the form
   7743   //
   7744   //      LR         operator%(L, R);
   7745   //      LR         operator&(L, R);
   7746   //      LR         operator^(L, R);
   7747   //      LR         operator|(L, R);
   7748   //      L          operator<<(L, R);
   7749   //      L          operator>>(L, R);
   7750   //
   7751   //   where LR is the result of the usual arithmetic conversions
   7752   //   between types L and R.
   7753   void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
   7754     if (!HasArithmeticOrEnumeralCandidateType)
   7755       return;
   7756 
   7757     for (unsigned Left = FirstPromotedIntegralType;
   7758          Left < LastPromotedIntegralType; ++Left) {
   7759       for (unsigned Right = FirstPromotedIntegralType;
   7760            Right < LastPromotedIntegralType; ++Right) {
   7761         QualType LandR[2] = { getArithmeticType(Left),
   7762                               getArithmeticType(Right) };
   7763         QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
   7764             ? LandR[0]
   7765             : getUsualArithmeticConversions(Left, Right);
   7766         S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
   7767       }
   7768     }
   7769   }
   7770 
   7771   // C++ [over.built]p20:
   7772   //
   7773   //   For every pair (T, VQ), where T is an enumeration or
   7774   //   pointer to member type and VQ is either volatile or
   7775   //   empty, there exist candidate operator functions of the form
   7776   //
   7777   //        VQ T&      operator=(VQ T&, T);
   7778   void addAssignmentMemberPointerOrEnumeralOverloads() {
   7779     /// Set of (canonical) types that we've already handled.
   7780     llvm::SmallPtrSet<QualType, 8> AddedTypes;
   7781 
   7782     for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
   7783       for (BuiltinCandidateTypeSet::iterator
   7784                 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
   7785              EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
   7786            Enum != EnumEnd; ++Enum) {
   7787         if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)).second)
   7788           continue;
   7789 
   7790         AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, CandidateSet);
   7791       }
   7792 
   7793       for (BuiltinCandidateTypeSet::iterator
   7794                 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
   7795              MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
   7796            MemPtr != MemPtrEnd; ++MemPtr) {
   7797         if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
   7798           continue;
   7799 
   7800         AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, CandidateSet);
   7801       }
   7802     }
   7803   }
   7804 
   7805   // C++ [over.built]p19:
   7806   //
   7807   //   For every pair (T, VQ), where T is any type and VQ is either
   7808   //   volatile or empty, there exist candidate operator functions
   7809   //   of the form
   7810   //
   7811   //        T*VQ&      operator=(T*VQ&, T*);
   7812   //
   7813   // C++ [over.built]p21:
   7814   //
   7815   //   For every pair (T, VQ), where T is a cv-qualified or
   7816   //   cv-unqualified object type and VQ is either volatile or
   7817   //   empty, there exist candidate operator functions of the form
   7818   //
   7819   //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
   7820   //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
   7821   void addAssignmentPointerOverloads(bool isEqualOp) {
   7822     /// Set of (canonical) types that we've already handled.
   7823     llvm::SmallPtrSet<QualType, 8> AddedTypes;
   7824 
   7825     for (BuiltinCandidateTypeSet::iterator
   7826               Ptr = CandidateTypes[0].pointer_begin(),
   7827            PtrEnd = CandidateTypes[0].pointer_end();
   7828          Ptr != PtrEnd; ++Ptr) {
   7829       // If this is operator=, keep track of the builtin candidates we added.
   7830       if (isEqualOp)
   7831         AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
   7832       else if (!(*Ptr)->getPointeeType()->isObjectType())
   7833         continue;
   7834 
   7835       // non-volatile version
   7836       QualType ParamTypes[2] = {
   7837         S.Context.getLValueReferenceType(*Ptr),
   7838         isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
   7839       };
   7840       S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7841                             /*IsAssigmentOperator=*/ isEqualOp);
   7842 
   7843       bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
   7844                           VisibleTypeConversionsQuals.hasVolatile();
   7845       if (NeedVolatile) {
   7846         // volatile version
   7847         ParamTypes[0] =
   7848           S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
   7849         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7850                               /*IsAssigmentOperator=*/isEqualOp);
   7851       }
   7852 
   7853       if (!(*Ptr).isRestrictQualified() &&
   7854           VisibleTypeConversionsQuals.hasRestrict()) {
   7855         // restrict version
   7856         ParamTypes[0]
   7857           = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
   7858         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7859                               /*IsAssigmentOperator=*/isEqualOp);
   7860 
   7861         if (NeedVolatile) {
   7862           // volatile restrict version
   7863           ParamTypes[0]
   7864             = S.Context.getLValueReferenceType(
   7865                 S.Context.getCVRQualifiedType(*Ptr,
   7866                                               (Qualifiers::Volatile |
   7867                                                Qualifiers::Restrict)));
   7868           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7869                                 /*IsAssigmentOperator=*/isEqualOp);
   7870         }
   7871       }
   7872     }
   7873 
   7874     if (isEqualOp) {
   7875       for (BuiltinCandidateTypeSet::iterator
   7876                 Ptr = CandidateTypes[1].pointer_begin(),
   7877              PtrEnd = CandidateTypes[1].pointer_end();
   7878            Ptr != PtrEnd; ++Ptr) {
   7879         // Make sure we don't add the same candidate twice.
   7880         if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
   7881           continue;
   7882 
   7883         QualType ParamTypes[2] = {
   7884           S.Context.getLValueReferenceType(*Ptr),
   7885           *Ptr,
   7886         };
   7887 
   7888         // non-volatile version
   7889         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7890                               /*IsAssigmentOperator=*/true);
   7891 
   7892         bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
   7893                            VisibleTypeConversionsQuals.hasVolatile();
   7894         if (NeedVolatile) {
   7895           // volatile version
   7896           ParamTypes[0] =
   7897             S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
   7898           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7899                                 /*IsAssigmentOperator=*/true);
   7900         }
   7901 
   7902         if (!(*Ptr).isRestrictQualified() &&
   7903             VisibleTypeConversionsQuals.hasRestrict()) {
   7904           // restrict version
   7905           ParamTypes[0]
   7906             = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
   7907           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7908                                 /*IsAssigmentOperator=*/true);
   7909 
   7910           if (NeedVolatile) {
   7911             // volatile restrict version
   7912             ParamTypes[0]
   7913               = S.Context.getLValueReferenceType(
   7914                   S.Context.getCVRQualifiedType(*Ptr,
   7915                                                 (Qualifiers::Volatile |
   7916                                                  Qualifiers::Restrict)));
   7917             S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7918                                   /*IsAssigmentOperator=*/true);
   7919           }
   7920         }
   7921       }
   7922     }
   7923   }
   7924 
   7925   // C++ [over.built]p18:
   7926   //
   7927   //   For every triple (L, VQ, R), where L is an arithmetic type,
   7928   //   VQ is either volatile or empty, and R is a promoted
   7929   //   arithmetic type, there exist candidate operator functions of
   7930   //   the form
   7931   //
   7932   //        VQ L&      operator=(VQ L&, R);
   7933   //        VQ L&      operator*=(VQ L&, R);
   7934   //        VQ L&      operator/=(VQ L&, R);
   7935   //        VQ L&      operator+=(VQ L&, R);
   7936   //        VQ L&      operator-=(VQ L&, R);
   7937   void addAssignmentArithmeticOverloads(bool isEqualOp) {
   7938     if (!HasArithmeticOrEnumeralCandidateType)
   7939       return;
   7940 
   7941     for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
   7942       for (unsigned Right = FirstPromotedArithmeticType;
   7943            Right < LastPromotedArithmeticType; ++Right) {
   7944         QualType ParamTypes[2];
   7945         ParamTypes[1] = getArithmeticType(Right);
   7946 
   7947         // Add this built-in operator as a candidate (VQ is empty).
   7948         ParamTypes[0] =
   7949           S.Context.getLValueReferenceType(getArithmeticType(Left));
   7950         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7951                               /*IsAssigmentOperator=*/isEqualOp);
   7952 
   7953         // Add this built-in operator as a candidate (VQ is 'volatile').
   7954         if (VisibleTypeConversionsQuals.hasVolatile()) {
   7955           ParamTypes[0] =
   7956             S.Context.getVolatileType(getArithmeticType(Left));
   7957           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
   7958           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7959                                 /*IsAssigmentOperator=*/isEqualOp);
   7960         }
   7961       }
   7962     }
   7963 
   7964     // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
   7965     for (BuiltinCandidateTypeSet::iterator
   7966               Vec1 = CandidateTypes[0].vector_begin(),
   7967            Vec1End = CandidateTypes[0].vector_end();
   7968          Vec1 != Vec1End; ++Vec1) {
   7969       for (BuiltinCandidateTypeSet::iterator
   7970                 Vec2 = CandidateTypes[1].vector_begin(),
   7971              Vec2End = CandidateTypes[1].vector_end();
   7972            Vec2 != Vec2End; ++Vec2) {
   7973         QualType ParamTypes[2];
   7974         ParamTypes[1] = *Vec2;
   7975         // Add this built-in operator as a candidate (VQ is empty).
   7976         ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
   7977         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7978                               /*IsAssigmentOperator=*/isEqualOp);
   7979 
   7980         // Add this built-in operator as a candidate (VQ is 'volatile').
   7981         if (VisibleTypeConversionsQuals.hasVolatile()) {
   7982           ParamTypes[0] = S.Context.getVolatileType(*Vec1);
   7983           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
   7984           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
   7985                                 /*IsAssigmentOperator=*/isEqualOp);
   7986         }
   7987       }
   7988     }
   7989   }
   7990 
   7991   // C++ [over.built]p22:
   7992   //
   7993   //   For every triple (L, VQ, R), where L is an integral type, VQ
   7994   //   is either volatile or empty, and R is a promoted integral
   7995   //   type, there exist candidate operator functions of the form
   7996   //
   7997   //        VQ L&       operator%=(VQ L&, R);
   7998   //        VQ L&       operator<<=(VQ L&, R);
   7999   //        VQ L&       operator>>=(VQ L&, R);
   8000   //        VQ L&       operator&=(VQ L&, R);
   8001   //        VQ L&       operator^=(VQ L&, R);
   8002   //        VQ L&       operator|=(VQ L&, R);
   8003   void addAssignmentIntegralOverloads() {
   8004     if (!HasArithmeticOrEnumeralCandidateType)
   8005       return;
   8006 
   8007     for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
   8008       for (unsigned Right = FirstPromotedIntegralType;
   8009            Right < LastPromotedIntegralType; ++Right) {
   8010         QualType ParamTypes[2];
   8011         ParamTypes[1] = getArithmeticType(Right);
   8012 
   8013         // Add this built-in operator as a candidate (VQ is empty).
   8014         ParamTypes[0] =
   8015           S.Context.getLValueReferenceType(getArithmeticType(Left));
   8016         S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
   8017         if (VisibleTypeConversionsQuals.hasVolatile()) {
   8018           // Add this built-in operator as a candidate (VQ is 'volatile').
   8019           ParamTypes[0] = getArithmeticType(Left);
   8020           ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
   8021           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
   8022           S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
   8023         }
   8024       }
   8025     }
   8026   }
   8027 
   8028   // C++ [over.operator]p23:
   8029   //
   8030   //   There also exist candidate operator functions of the form
   8031   //
   8032   //        bool        operator!(bool);
   8033   //        bool        operator&&(bool, bool);
   8034   //        bool        operator||(bool, bool);
   8035   void addExclaimOverload() {
   8036     QualType ParamTy = S.Context.BoolTy;
   8037     S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, CandidateSet,
   8038                           /*IsAssignmentOperator=*/false,
   8039                           /*NumContextualBoolArguments=*/1);
   8040   }
   8041   void addAmpAmpOrPipePipeOverload() {
   8042     QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
   8043     S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet,
   8044                           /*IsAssignmentOperator=*/false,
   8045                           /*NumContextualBoolArguments=*/2);
   8046   }
   8047 
   8048   // C++ [over.built]p13:
   8049   //
   8050   //   For every cv-qualified or cv-unqualified object type T there
   8051   //   exist candidate operator functions of the form
   8052   //
   8053   //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
   8054   //        T&         operator[](T*, ptrdiff_t);
   8055   //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
   8056   //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
   8057   //        T&         operator[](ptrdiff_t, T*);
   8058   void addSubscriptOverloads() {
   8059     for (BuiltinCandidateTypeSet::iterator
   8060               Ptr = CandidateTypes[0].pointer_begin(),
   8061            PtrEnd = CandidateTypes[0].pointer_end();
   8062          Ptr != PtrEnd; ++Ptr) {
   8063       QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
   8064       QualType PointeeType = (*Ptr)->getPointeeType();
   8065       if (!PointeeType->isObjectType())
   8066         continue;
   8067 
   8068       QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
   8069 
   8070       // T& operator[](T*, ptrdiff_t)
   8071       S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
   8072     }
   8073 
   8074     for (BuiltinCandidateTypeSet::iterator
   8075               Ptr = CandidateTypes[1].pointer_begin(),
   8076            PtrEnd = CandidateTypes[1].pointer_end();
   8077          Ptr != PtrEnd; ++Ptr) {
   8078       QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
   8079       QualType PointeeType = (*Ptr)->getPointeeType();
   8080       if (!PointeeType->isObjectType())
   8081         continue;
   8082 
   8083       QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
   8084 
   8085       // T& operator[](ptrdiff_t, T*)
   8086       S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
   8087     }
   8088   }
   8089 
   8090   // C++ [over.built]p11:
   8091   //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
   8092   //    C1 is the same type as C2 or is a derived class of C2, T is an object
   8093   //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
   8094   //    there exist candidate operator functions of the form
   8095   //
   8096   //      CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
   8097   //
   8098   //    where CV12 is the union of CV1 and CV2.
   8099   void addArrowStarOverloads() {
   8100     for (BuiltinCandidateTypeSet::iterator
   8101              Ptr = CandidateTypes[0].pointer_begin(),
   8102            PtrEnd = CandidateTypes[0].pointer_end();
   8103          Ptr != PtrEnd; ++Ptr) {
   8104       QualType C1Ty = (*Ptr);
   8105       QualType C1;
   8106       QualifierCollector Q1;
   8107       C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
   8108       if (!isa<RecordType>(C1))
   8109         continue;
   8110       // heuristic to reduce number of builtin candidates in the set.
   8111       // Add volatile/restrict version only if there are conversions to a
   8112       // volatile/restrict type.
   8113       if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
   8114         continue;
   8115       if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
   8116         continue;
   8117       for (BuiltinCandidateTypeSet::iterator
   8118                 MemPtr = CandidateTypes[1].member_pointer_begin(),
   8119              MemPtrEnd = CandidateTypes[1].member_pointer_end();
   8120            MemPtr != MemPtrEnd; ++MemPtr) {
   8121         const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
   8122         QualType C2 = QualType(mptr->getClass(), 0);
   8123         C2 = C2.getUnqualifiedType();
   8124         if (C1 != C2 && !S.IsDerivedFrom(CandidateSet.getLocation(), C1, C2))
   8125           break;
   8126         QualType ParamTypes[2] = { *Ptr, *MemPtr };
   8127         // build CV12 T&
   8128         QualType T = mptr->getPointeeType();
   8129         if (!VisibleTypeConversionsQuals.hasVolatile() &&
   8130             T.isVolatileQualified())
   8131           continue;
   8132         if (!VisibleTypeConversionsQuals.hasRestrict() &&
   8133             T.isRestrictQualified())
   8134           continue;
   8135         T = Q1.apply(S.Context, T);
   8136         QualType ResultTy = S.Context.getLValueReferenceType(T);
   8137         S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
   8138       }
   8139     }
   8140   }
   8141 
   8142   // Note that we don't consider the first argument, since it has been
   8143   // contextually converted to bool long ago. The candidates below are
   8144   // therefore added as binary.
   8145   //
   8146   // C++ [over.built]p25:
   8147   //   For every type T, where T is a pointer, pointer-to-member, or scoped
   8148   //   enumeration type, there exist candidate operator functions of the form
   8149   //
   8150   //        T        operator?(bool, T, T);
   8151   //
   8152   void addConditionalOperatorOverloads() {
   8153     /// Set of (canonical) types that we've already handled.
   8154     llvm::SmallPtrSet<QualType, 8> AddedTypes;
   8155 
   8156     for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
   8157       for (BuiltinCandidateTypeSet::iterator
   8158                 Ptr = CandidateTypes[ArgIdx].pointer_begin(),
   8159              PtrEnd = CandidateTypes[ArgIdx].pointer_end();
   8160            Ptr != PtrEnd; ++Ptr) {
   8161         if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
   8162           continue;
   8163 
   8164         QualType ParamTypes[2] = { *Ptr, *Ptr };
   8165         S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, CandidateSet);
   8166       }
   8167 
   8168       for (BuiltinCandidateTypeSet::iterator
   8169                 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
   8170              MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
   8171            MemPtr != MemPtrEnd; ++MemPtr) {
   8172         if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
   8173           continue;
   8174 
   8175         QualType ParamTypes[2] = { *MemPtr, *MemPtr };
   8176         S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, CandidateSet);
   8177       }
   8178 
   8179       if (S.getLangOpts().CPlusPlus11) {
   8180         for (BuiltinCandidateTypeSet::iterator
   8181                   Enum = CandidateTypes[ArgIdx].enumeration_begin(),
   8182                EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
   8183              Enum != EnumEnd; ++Enum) {
   8184           if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped())
   8185             continue;
   8186 
   8187           if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)).second)
   8188             continue;
   8189 
   8190           QualType ParamTypes[2] = { *Enum, *Enum };
   8191           S.AddBuiltinCandidate(*Enum, ParamTypes, Args, CandidateSet);
   8192         }
   8193       }
   8194     }
   8195   }
   8196 };
   8197 
   8198 } // end anonymous namespace
   8199 
   8200 /// AddBuiltinOperatorCandidates - Add the appropriate built-in
   8201 /// operator overloads to the candidate set (C++ [over.built]), based
   8202 /// on the operator @p Op and the arguments given. For example, if the
   8203 /// operator is a binary '+', this routine might add "int
   8204 /// operator+(int, int)" to cover integer addition.
   8205 void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
   8206                                         SourceLocation OpLoc,
   8207                                         ArrayRef<Expr *> Args,
   8208                                         OverloadCandidateSet &CandidateSet) {
   8209   // Find all of the types that the arguments can convert to, but only
   8210   // if the operator we're looking at has built-in operator candidates
   8211   // that make use of these types. Also record whether we encounter non-record
   8212   // candidate types or either arithmetic or enumeral candidate types.
   8213   Qualifiers VisibleTypeConversionsQuals;
   8214   VisibleTypeConversionsQuals.addConst();
   8215   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
   8216     VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
   8217 
   8218   bool HasNonRecordCandidateType = false;
   8219   bool HasArithmeticOrEnumeralCandidateType = false;
   8220   SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
   8221   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
   8222     CandidateTypes.emplace_back(*this);
   8223     CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
   8224                                                  OpLoc,
   8225                                                  true,
   8226                                                  (Op == OO_Exclaim ||
   8227                                                   Op == OO_AmpAmp ||
   8228                                                   Op == OO_PipePipe),
   8229                                                  VisibleTypeConversionsQuals);
   8230     HasNonRecordCandidateType = HasNonRecordCandidateType ||
   8231         CandidateTypes[ArgIdx].hasNonRecordTypes();
   8232     HasArithmeticOrEnumeralCandidateType =
   8233         HasArithmeticOrEnumeralCandidateType ||
   8234         CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
   8235   }
   8236 
   8237   // Exit early when no non-record types have been added to the candidate set
   8238   // for any of the arguments to the operator.
   8239   //
   8240   // We can't exit early for !, ||, or &&, since there we have always have
   8241   // 'bool' overloads.
   8242   if (!HasNonRecordCandidateType &&
   8243       !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
   8244     return;
   8245 
   8246   // Setup an object to manage the common state for building overloads.
   8247   BuiltinOperatorOverloadBuilder OpBuilder(*this, Args,
   8248                                            VisibleTypeConversionsQuals,
   8249                                            HasArithmeticOrEnumeralCandidateType,
   8250                                            CandidateTypes, CandidateSet);
   8251 
   8252   // Dispatch over the operation to add in only those overloads which apply.
   8253   switch (Op) {
   8254   case OO_None:
   8255   case NUM_OVERLOADED_OPERATORS:
   8256     llvm_unreachable("Expected an overloaded operator");
   8257 
   8258   case OO_New:
   8259   case OO_Delete:
   8260   case OO_Array_New:
   8261   case OO_Array_Delete:
   8262   case OO_Call:
   8263     llvm_unreachable(
   8264                     "Special operators don't use AddBuiltinOperatorCandidates");
   8265 
   8266   case OO_Comma:
   8267   case OO_Arrow:
   8268   case OO_Coawait:
   8269     // C++ [over.match.oper]p3:
   8270     //   -- For the operator ',', the unary operator '&', the
   8271     //      operator '->', or the operator 'co_await', the
   8272     //      built-in candidates set is empty.
   8273     break;
   8274 
   8275   case OO_Plus: // '+' is either unary or binary
   8276     if (Args.size() == 1)
   8277       OpBuilder.addUnaryPlusPointerOverloads();
   8278     // Fall through.
   8279 
   8280   case OO_Minus: // '-' is either unary or binary
   8281     if (Args.size() == 1) {
   8282       OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
   8283     } else {
   8284       OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
   8285       OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
   8286     }
   8287     break;
   8288 
   8289   case OO_Star: // '*' is either unary or binary
   8290     if (Args.size() == 1)
   8291       OpBuilder.addUnaryStarPointerOverloads();
   8292     else
   8293       OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
   8294     break;
   8295 
   8296   case OO_Slash:
   8297     OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
   8298     break;
   8299 
   8300   case OO_PlusPlus:
   8301   case OO_MinusMinus:
   8302     OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
   8303     OpBuilder.addPlusPlusMinusMinusPointerOverloads();
   8304     break;
   8305 
   8306   case OO_EqualEqual:
   8307   case OO_ExclaimEqual:
   8308     OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads();
   8309     // Fall through.
   8310 
   8311   case OO_Less:
   8312   case OO_Greater:
   8313   case OO_LessEqual:
   8314   case OO_GreaterEqual:
   8315     OpBuilder.addRelationalPointerOrEnumeralOverloads();
   8316     OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true);
   8317     break;
   8318 
   8319   case OO_Percent:
   8320   case OO_Caret:
   8321   case OO_Pipe:
   8322   case OO_LessLess:
   8323   case OO_GreaterGreater:
   8324     OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
   8325     break;
   8326 
   8327   case OO_Amp: // '&' is either unary or binary
   8328     if (Args.size() == 1)
   8329       // C++ [over.match.oper]p3:
   8330       //   -- For the operator ',', the unary operator '&', or the
   8331       //      operator '->', the built-in candidates set is empty.
   8332       break;
   8333 
   8334     OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
   8335     break;
   8336 
   8337   case OO_Tilde:
   8338     OpBuilder.addUnaryTildePromotedIntegralOverloads();
   8339     break;
   8340 
   8341   case OO_Equal:
   8342     OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
   8343     // Fall through.
   8344 
   8345   case OO_PlusEqual:
   8346   case OO_MinusEqual:
   8347     OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
   8348     // Fall through.
   8349 
   8350   case OO_StarEqual:
   8351   case OO_SlashEqual:
   8352     OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
   8353     break;
   8354 
   8355   case OO_PercentEqual:
   8356   case OO_LessLessEqual:
   8357   case OO_GreaterGreaterEqual:
   8358   case OO_AmpEqual:
   8359   case OO_CaretEqual:
   8360   case OO_PipeEqual:
   8361     OpBuilder.addAssignmentIntegralOverloads();
   8362     break;
   8363 
   8364   case OO_Exclaim:
   8365     OpBuilder.addExclaimOverload();
   8366     break;
   8367 
   8368   case OO_AmpAmp:
   8369   case OO_PipePipe:
   8370     OpBuilder.addAmpAmpOrPipePipeOverload();
   8371     break;
   8372 
   8373   case OO_Subscript:
   8374     OpBuilder.addSubscriptOverloads();
   8375     break;
   8376 
   8377   case OO_ArrowStar:
   8378     OpBuilder.addArrowStarOverloads();
   8379     break;
   8380 
   8381   case OO_Conditional:
   8382     OpBuilder.addConditionalOperatorOverloads();
   8383     OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
   8384     break;
   8385   }
   8386 }
   8387 
   8388 /// \brief Add function candidates found via argument-dependent lookup
   8389 /// to the set of overloading candidates.
   8390 ///
   8391 /// This routine performs argument-dependent name lookup based on the
   8392 /// given function name (which may also be an operator name) and adds
   8393 /// all of the overload candidates found by ADL to the overload
   8394 /// candidate set (C++ [basic.lookup.argdep]).
   8395 void
   8396 Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
   8397                                            SourceLocation Loc,
   8398                                            ArrayRef<Expr *> Args,
   8399                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
   8400                                            OverloadCandidateSet& CandidateSet,
   8401                                            bool PartialOverloading) {
   8402   ADLResult Fns;
   8403 
   8404   // FIXME: This approach for uniquing ADL results (and removing
   8405   // redundant candidates from the set) relies on pointer-equality,
   8406   // which means we need to key off the canonical decl.  However,
   8407   // always going back to the canonical decl might not get us the
   8408   // right set of default arguments.  What default arguments are
   8409   // we supposed to consider on ADL candidates, anyway?
   8410 
   8411   // FIXME: Pass in the explicit template arguments?
   8412   ArgumentDependentLookup(Name, Loc, Args, Fns);
   8413 
   8414   // Erase all of the candidates we already knew about.
   8415   for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
   8416                                    CandEnd = CandidateSet.end();
   8417        Cand != CandEnd; ++Cand)
   8418     if (Cand->Function) {
   8419       Fns.erase(Cand->Function);
   8420       if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
   8421         Fns.erase(FunTmpl);
   8422     }
   8423 
   8424   // For each of the ADL candidates we found, add it to the overload
   8425   // set.
   8426   for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
   8427     DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
   8428     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
   8429       if (ExplicitTemplateArgs)
   8430         continue;
   8431 
   8432       AddOverloadCandidate(FD, FoundDecl, Args, CandidateSet, false,
   8433                            PartialOverloading);
   8434     } else
   8435       AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
   8436                                    FoundDecl, ExplicitTemplateArgs,
   8437                                    Args, CandidateSet, PartialOverloading);
   8438   }
   8439 }
   8440 
   8441 // Determines whether Cand1 is "better" in terms of its enable_if attrs than
   8442 // Cand2 for overloading. This function assumes that all of the enable_if attrs
   8443 // on Cand1 and Cand2 have conditions that evaluate to true.
   8444 //
   8445 // Cand1's set of enable_if attributes are said to be "better" than Cand2's iff
   8446 // Cand1's first N enable_if attributes have precisely the same conditions as
   8447 // Cand2's first N enable_if attributes (where N = the number of enable_if
   8448 // attributes on Cand2), and Cand1 has more than N enable_if attributes.
   8449 static bool hasBetterEnableIfAttrs(Sema &S, const FunctionDecl *Cand1,
   8450                                    const FunctionDecl *Cand2) {
   8451 
   8452   // FIXME: The next several lines are just
   8453   // specific_attr_iterator<EnableIfAttr> but going in declaration order,
   8454   // instead of reverse order which is how they're stored in the AST.
   8455   auto Cand1Attrs = getOrderedEnableIfAttrs(Cand1);
   8456   auto Cand2Attrs = getOrderedEnableIfAttrs(Cand2);
   8457 
   8458   // Candidate 1 is better if it has strictly more attributes and
   8459   // the common sequence is identical.
   8460   if (Cand1Attrs.size() <= Cand2Attrs.size())
   8461     return false;
   8462 
   8463   auto Cand1I = Cand1Attrs.begin();
   8464   llvm::FoldingSetNodeID Cand1ID, Cand2ID;
   8465   for (auto &Cand2A : Cand2Attrs) {
   8466     Cand1ID.clear();
   8467     Cand2ID.clear();
   8468 
   8469     auto &Cand1A = *Cand1I++;
   8470     Cand1A->getCond()->Profile(Cand1ID, S.getASTContext(), true);
   8471     Cand2A->getCond()->Profile(Cand2ID, S.getASTContext(), true);
   8472     if (Cand1ID != Cand2ID)
   8473       return false;
   8474   }
   8475 
   8476   return true;
   8477 }
   8478 
   8479 /// isBetterOverloadCandidate - Determines whether the first overload
   8480 /// candidate is a better candidate than the second (C++ 13.3.3p1).
   8481 bool clang::isBetterOverloadCandidate(Sema &S, const OverloadCandidate &Cand1,
   8482                                       const OverloadCandidate &Cand2,
   8483                                       SourceLocation Loc,
   8484                                       bool UserDefinedConversion) {
   8485   // Define viable functions to be better candidates than non-viable
   8486   // functions.
   8487   if (!Cand2.Viable)
   8488     return Cand1.Viable;
   8489   else if (!Cand1.Viable)
   8490     return false;
   8491 
   8492   // C++ [over.match.best]p1:
   8493   //
   8494   //   -- if F is a static member function, ICS1(F) is defined such
   8495   //      that ICS1(F) is neither better nor worse than ICS1(G) for
   8496   //      any function G, and, symmetrically, ICS1(G) is neither
   8497   //      better nor worse than ICS1(F).
   8498   unsigned StartArg = 0;
   8499   if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
   8500     StartArg = 1;
   8501 
   8502   // C++ [over.match.best]p1:
   8503   //   A viable function F1 is defined to be a better function than another
   8504   //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
   8505   //   conversion sequence than ICSi(F2), and then...
   8506   unsigned NumArgs = Cand1.NumConversions;
   8507   assert(Cand2.NumConversions == NumArgs && "Overload candidate mismatch");
   8508   bool HasBetterConversion = false;
   8509   for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
   8510     switch (CompareImplicitConversionSequences(S, Loc,
   8511                                                Cand1.Conversions[ArgIdx],
   8512                                                Cand2.Conversions[ArgIdx])) {
   8513     case ImplicitConversionSequence::Better:
   8514       // Cand1 has a better conversion sequence.
   8515       HasBetterConversion = true;
   8516       break;
   8517 
   8518     case ImplicitConversionSequence::Worse:
   8519       // Cand1 can't be better than Cand2.
   8520       return false;
   8521 
   8522     case ImplicitConversionSequence::Indistinguishable:
   8523       // Do nothing.
   8524       break;
   8525     }
   8526   }
   8527 
   8528   //    -- for some argument j, ICSj(F1) is a better conversion sequence than
   8529   //       ICSj(F2), or, if not that,
   8530   if (HasBetterConversion)
   8531     return true;
   8532 
   8533   //   -- the context is an initialization by user-defined conversion
   8534   //      (see 8.5, 13.3.1.5) and the standard conversion sequence
   8535   //      from the return type of F1 to the destination type (i.e.,
   8536   //      the type of the entity being initialized) is a better
   8537   //      conversion sequence than the standard conversion sequence
   8538   //      from the return type of F2 to the destination type.
   8539   if (UserDefinedConversion && Cand1.Function && Cand2.Function &&
   8540       isa<CXXConversionDecl>(Cand1.Function) &&
   8541       isa<CXXConversionDecl>(Cand2.Function)) {
   8542     // First check whether we prefer one of the conversion functions over the
   8543     // other. This only distinguishes the results in non-standard, extension
   8544     // cases such as the conversion from a lambda closure type to a function
   8545     // pointer or block.
   8546     ImplicitConversionSequence::CompareKind Result =
   8547         compareConversionFunctions(S, Cand1.Function, Cand2.Function);
   8548     if (Result == ImplicitConversionSequence::Indistinguishable)
   8549       Result = CompareStandardConversionSequences(S, Loc,
   8550                                                   Cand1.FinalConversion,
   8551                                                   Cand2.FinalConversion);
   8552 
   8553     if (Result != ImplicitConversionSequence::Indistinguishable)
   8554       return Result == ImplicitConversionSequence::Better;
   8555 
   8556     // FIXME: Compare kind of reference binding if conversion functions
   8557     // convert to a reference type used in direct reference binding, per
   8558     // C++14 [over.match.best]p1 section 2 bullet 3.
   8559   }
   8560 
   8561   //    -- F1 is a non-template function and F2 is a function template
   8562   //       specialization, or, if not that,
   8563   bool Cand1IsSpecialization = Cand1.Function &&
   8564                                Cand1.Function->getPrimaryTemplate();
   8565   bool Cand2IsSpecialization = Cand2.Function &&
   8566                                Cand2.Function->getPrimaryTemplate();
   8567   if (Cand1IsSpecialization != Cand2IsSpecialization)
   8568     return Cand2IsSpecialization;
   8569 
   8570   //   -- F1 and F2 are function template specializations, and the function
   8571   //      template for F1 is more specialized than the template for F2
   8572   //      according to the partial ordering rules described in 14.5.5.2, or,
   8573   //      if not that,
   8574   if (Cand1IsSpecialization && Cand2IsSpecialization) {
   8575     if (FunctionTemplateDecl *BetterTemplate
   8576           = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
   8577                                          Cand2.Function->getPrimaryTemplate(),
   8578                                          Loc,
   8579                        isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
   8580                                                              : TPOC_Call,
   8581                                          Cand1.ExplicitCallArguments,
   8582                                          Cand2.ExplicitCallArguments))
   8583       return BetterTemplate == Cand1.Function->getPrimaryTemplate();
   8584   }
   8585 
   8586   // Check for enable_if value-based overload resolution.
   8587   if (Cand1.Function && Cand2.Function &&
   8588       (Cand1.Function->hasAttr<EnableIfAttr>() ||
   8589        Cand2.Function->hasAttr<EnableIfAttr>()))
   8590     return hasBetterEnableIfAttrs(S, Cand1.Function, Cand2.Function);
   8591 
   8592   if (S.getLangOpts().CUDA && S.getLangOpts().CUDATargetOverloads &&
   8593       Cand1.Function && Cand2.Function) {
   8594     FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext);
   8595     return S.IdentifyCUDAPreference(Caller, Cand1.Function) >
   8596            S.IdentifyCUDAPreference(Caller, Cand2.Function);
   8597   }
   8598 
   8599   bool HasPS1 = Cand1.Function != nullptr &&
   8600                 functionHasPassObjectSizeParams(Cand1.Function);
   8601   bool HasPS2 = Cand2.Function != nullptr &&
   8602                 functionHasPassObjectSizeParams(Cand2.Function);
   8603   return HasPS1 != HasPS2 && HasPS1;
   8604 }
   8605 
   8606 /// Determine whether two declarations are "equivalent" for the purposes of
   8607 /// name lookup and overload resolution. This applies when the same internal/no
   8608 /// linkage entity is defined by two modules (probably by textually including
   8609 /// the same header). In such a case, we don't consider the declarations to
   8610 /// declare the same entity, but we also don't want lookups with both
   8611 /// declarations visible to be ambiguous in some cases (this happens when using
   8612 /// a modularized libstdc++).
   8613 bool Sema::isEquivalentInternalLinkageDeclaration(const NamedDecl *A,
   8614                                                   const NamedDecl *B) {
   8615   auto *VA = dyn_cast_or_null<ValueDecl>(A);
   8616   auto *VB = dyn_cast_or_null<ValueDecl>(B);
   8617   if (!VA || !VB)
   8618     return false;
   8619 
   8620   // The declarations must be declaring the same name as an internal linkage
   8621   // entity in different modules.
   8622   if (!VA->getDeclContext()->getRedeclContext()->Equals(
   8623           VB->getDeclContext()->getRedeclContext()) ||
   8624       getOwningModule(const_cast<ValueDecl *>(VA)) ==
   8625           getOwningModule(const_cast<ValueDecl *>(VB)) ||
   8626       VA->isExternallyVisible() || VB->isExternallyVisible())
   8627     return false;
   8628 
   8629   // Check that the declarations appear to be equivalent.
   8630   //
   8631   // FIXME: Checking the type isn't really enough to resolve the ambiguity.
   8632   // For constants and functions, we should check the initializer or body is
   8633   // the same. For non-constant variables, we shouldn't allow it at all.
   8634   if (Context.hasSameType(VA->getType(), VB->getType()))
   8635     return true;
   8636 
   8637   // Enum constants within unnamed enumerations will have different types, but
   8638   // may still be similar enough to be interchangeable for our purposes.
   8639   if (auto *EA = dyn_cast<EnumConstantDecl>(VA)) {
   8640     if (auto *EB = dyn_cast<EnumConstantDecl>(VB)) {
   8641       // Only handle anonymous enums. If the enumerations were named and
   8642       // equivalent, they would have been merged to the same type.
   8643       auto *EnumA = cast<EnumDecl>(EA->getDeclContext());
   8644       auto *EnumB = cast<EnumDecl>(EB->getDeclContext());
   8645       if (EnumA->hasNameForLinkage() || EnumB->hasNameForLinkage() ||
   8646           !Context.hasSameType(EnumA->getIntegerType(),
   8647                                EnumB->getIntegerType()))
   8648         return false;
   8649       // Allow this only if the value is the same for both enumerators.
   8650       return llvm::APSInt::isSameValue(EA->getInitVal(), EB->getInitVal());
   8651     }
   8652   }
   8653 
   8654   // Nothing else is sufficiently similar.
   8655   return false;
   8656 }
   8657 
   8658 void Sema::diagnoseEquivalentInternalLinkageDeclarations(
   8659     SourceLocation Loc, const NamedDecl *D, ArrayRef<const NamedDecl *> Equiv) {
   8660   Diag(Loc, diag::ext_equivalent_internal_linkage_decl_in_modules) << D;
   8661 
   8662   Module *M = getOwningModule(const_cast<NamedDecl*>(D));
   8663   Diag(D->getLocation(), diag::note_equivalent_internal_linkage_decl)
   8664       << !M << (M ? M->getFullModuleName() : "");
   8665 
   8666   for (auto *E : Equiv) {
   8667     Module *M = getOwningModule(const_cast<NamedDecl*>(E));
   8668     Diag(E->getLocation(), diag::note_equivalent_internal_linkage_decl)
   8669         << !M << (M ? M->getFullModuleName() : "");
   8670   }
   8671 }
   8672 
   8673 /// \brief Computes the best viable function (C++ 13.3.3)
   8674 /// within an overload candidate set.
   8675 ///
   8676 /// \param Loc The location of the function name (or operator symbol) for
   8677 /// which overload resolution occurs.
   8678 ///
   8679 /// \param Best If overload resolution was successful or found a deleted
   8680 /// function, \p Best points to the candidate function found.
   8681 ///
   8682 /// \returns The result of overload resolution.
   8683 OverloadingResult
   8684 OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
   8685                                          iterator &Best,
   8686                                          bool UserDefinedConversion) {
   8687   // Find the best viable function.
   8688   Best = end();
   8689   for (iterator Cand = begin(); Cand != end(); ++Cand) {
   8690     if (Cand->Viable)
   8691       if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc,
   8692                                                      UserDefinedConversion))
   8693         Best = Cand;
   8694   }
   8695 
   8696   // If we didn't find any viable functions, abort.
   8697   if (Best == end())
   8698     return OR_No_Viable_Function;
   8699 
   8700   llvm::SmallVector<const NamedDecl *, 4> EquivalentCands;
   8701 
   8702   // Make sure that this function is better than every other viable
   8703   // function. If not, we have an ambiguity.
   8704   for (iterator Cand = begin(); Cand != end(); ++Cand) {
   8705     if (Cand->Viable &&
   8706         Cand != Best &&
   8707         !isBetterOverloadCandidate(S, *Best, *Cand, Loc,
   8708                                    UserDefinedConversion)) {
   8709       if (S.isEquivalentInternalLinkageDeclaration(Best->Function,
   8710                                                    Cand->Function)) {
   8711         EquivalentCands.push_back(Cand->Function);
   8712         continue;
   8713       }
   8714 
   8715       Best = end();
   8716       return OR_Ambiguous;
   8717     }
   8718   }
   8719 
   8720   // Best is the best viable function.
   8721   if (Best->Function &&
   8722       (Best->Function->isDeleted() ||
   8723        S.isFunctionConsideredUnavailable(Best->Function)))
   8724     return OR_Deleted;
   8725 
   8726   if (!EquivalentCands.empty())
   8727     S.diagnoseEquivalentInternalLinkageDeclarations(Loc, Best->Function,
   8728                                                     EquivalentCands);
   8729 
   8730   return OR_Success;
   8731 }
   8732 
   8733 namespace {
   8734 
   8735 enum OverloadCandidateKind {
   8736   oc_function,
   8737   oc_method,
   8738   oc_constructor,
   8739   oc_function_template,
   8740   oc_method_template,
   8741   oc_constructor_template,
   8742   oc_implicit_default_constructor,
   8743   oc_implicit_copy_constructor,
   8744   oc_implicit_move_constructor,
   8745   oc_implicit_copy_assignment,
   8746   oc_implicit_move_assignment,
   8747   oc_implicit_inherited_constructor
   8748 };
   8749 
   8750 OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
   8751                                                 FunctionDecl *Fn,
   8752                                                 std::string &Description) {
   8753   bool isTemplate = false;
   8754 
   8755   if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
   8756     isTemplate = true;
   8757     Description = S.getTemplateArgumentBindingsText(
   8758       FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
   8759   }
   8760 
   8761   if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
   8762     if (!Ctor->isImplicit())
   8763       return isTemplate ? oc_constructor_template : oc_constructor;
   8764 
   8765     if (Ctor->getInheritedConstructor())
   8766       return oc_implicit_inherited_constructor;
   8767 
   8768     if (Ctor->isDefaultConstructor())
   8769       return oc_implicit_default_constructor;
   8770 
   8771     if (Ctor->isMoveConstructor())
   8772       return oc_implicit_move_constructor;
   8773 
   8774     assert(Ctor->isCopyConstructor() &&
   8775            "unexpected sort of implicit constructor");
   8776     return oc_implicit_copy_constructor;
   8777   }
   8778 
   8779   if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
   8780     // This actually gets spelled 'candidate function' for now, but
   8781     // it doesn't hurt to split it out.
   8782     if (!Meth->isImplicit())
   8783       return isTemplate ? oc_method_template : oc_method;
   8784 
   8785     if (Meth->isMoveAssignmentOperator())
   8786       return oc_implicit_move_assignment;
   8787 
   8788     if (Meth->isCopyAssignmentOperator())
   8789       return oc_implicit_copy_assignment;
   8790 
   8791     assert(isa<CXXConversionDecl>(Meth) && "expected conversion");
   8792     return oc_method;
   8793   }
   8794 
   8795   return isTemplate ? oc_function_template : oc_function;
   8796 }
   8797 
   8798 void MaybeEmitInheritedConstructorNote(Sema &S, Decl *Fn) {
   8799   const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn);
   8800   if (!Ctor) return;
   8801 
   8802   Ctor = Ctor->getInheritedConstructor();
   8803   if (!Ctor) return;
   8804 
   8805   S.Diag(Ctor->getLocation(), diag::note_ovl_candidate_inherited_constructor);
   8806 }
   8807 
   8808 } // end anonymous namespace
   8809 
   8810 static bool isFunctionAlwaysEnabled(const ASTContext &Ctx,
   8811                                     const FunctionDecl *FD) {
   8812   for (auto *EnableIf : FD->specific_attrs<EnableIfAttr>()) {
   8813     bool AlwaysTrue;
   8814     if (!EnableIf->getCond()->EvaluateAsBooleanCondition(AlwaysTrue, Ctx))
   8815       return false;
   8816     if (!AlwaysTrue)
   8817       return false;
   8818   }
   8819   return true;
   8820 }
   8821 
   8822 /// \brief Returns true if we can take the address of the function.
   8823 ///
   8824 /// \param Complain - If true, we'll emit a diagnostic
   8825 /// \param InOverloadResolution - For the purposes of emitting a diagnostic, are
   8826 ///   we in overload resolution?
   8827 /// \param Loc - The location of the statement we're complaining about. Ignored
   8828 ///   if we're not complaining, or if we're in overload resolution.
   8829 static bool checkAddressOfFunctionIsAvailable(Sema &S, const FunctionDecl *FD,
   8830                                               bool Complain,
   8831                                               bool InOverloadResolution,
   8832                                               SourceLocation Loc) {
   8833   if (!isFunctionAlwaysEnabled(S.Context, FD)) {
   8834     if (Complain) {
   8835       if (InOverloadResolution)
   8836         S.Diag(FD->getLocStart(),
   8837                diag::note_addrof_ovl_candidate_disabled_by_enable_if_attr);
   8838       else
   8839         S.Diag(Loc, diag::err_addrof_function_disabled_by_enable_if_attr) << FD;
   8840     }
   8841     return false;
   8842   }
   8843 
   8844   auto I = std::find_if(FD->param_begin(), FD->param_end(),
   8845                         std::mem_fn(&ParmVarDecl::hasAttr<PassObjectSizeAttr>));
   8846   if (I == FD->param_end())
   8847     return true;
   8848 
   8849   if (Complain) {
   8850     // Add one to ParamNo because it's user-facing
   8851     unsigned ParamNo = std::distance(FD->param_begin(), I) + 1;
   8852     if (InOverloadResolution)
   8853       S.Diag(FD->getLocation(),
   8854              diag::note_ovl_candidate_has_pass_object_size_params)
   8855           << ParamNo;
   8856     else
   8857       S.Diag(Loc, diag::err_address_of_function_with_pass_object_size_params)
   8858           << FD << ParamNo;
   8859   }
   8860   return false;
   8861 }
   8862 
   8863 static bool checkAddressOfCandidateIsAvailable(Sema &S,
   8864                                                const FunctionDecl *FD) {
   8865   return checkAddressOfFunctionIsAvailable(S, FD, /*Complain=*/true,
   8866                                            /*InOverloadResolution=*/true,
   8867                                            /*Loc=*/SourceLocation());
   8868 }
   8869 
   8870 bool Sema::checkAddressOfFunctionIsAvailable(const FunctionDecl *Function,
   8871                                              bool Complain,
   8872                                              SourceLocation Loc) {
   8873   return ::checkAddressOfFunctionIsAvailable(*this, Function, Complain,
   8874                                              /*InOverloadResolution=*/false,
   8875                                              Loc);
   8876 }
   8877 
   8878 // Notes the location of an overload candidate.
   8879 void Sema::NoteOverloadCandidate(FunctionDecl *Fn, QualType DestType,
   8880                                  bool TakingAddress) {
   8881   if (TakingAddress && !checkAddressOfCandidateIsAvailable(*this, Fn))
   8882     return;
   8883 
   8884   std::string FnDesc;
   8885   OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
   8886   PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
   8887                              << (unsigned) K << FnDesc;
   8888 
   8889   HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
   8890   Diag(Fn->getLocation(), PD);
   8891   MaybeEmitInheritedConstructorNote(*this, Fn);
   8892 }
   8893 
   8894 // Notes the location of all overload candidates designated through
   8895 // OverloadedExpr
   8896 void Sema::NoteAllOverloadCandidates(Expr *OverloadedExpr, QualType DestType,
   8897                                      bool TakingAddress) {
   8898   assert(OverloadedExpr->getType() == Context.OverloadTy);
   8899 
   8900   OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
   8901   OverloadExpr *OvlExpr = Ovl.Expression;
   8902 
   8903   for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
   8904                             IEnd = OvlExpr->decls_end();
   8905        I != IEnd; ++I) {
   8906     if (FunctionTemplateDecl *FunTmpl =
   8907                 dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
   8908       NoteOverloadCandidate(FunTmpl->getTemplatedDecl(), DestType,
   8909                             TakingAddress);
   8910     } else if (FunctionDecl *Fun
   8911                       = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
   8912       NoteOverloadCandidate(Fun, DestType, TakingAddress);
   8913     }
   8914   }
   8915 }
   8916 
   8917 /// Diagnoses an ambiguous conversion.  The partial diagnostic is the
   8918 /// "lead" diagnostic; it will be given two arguments, the source and
   8919 /// target types of the conversion.
   8920 void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
   8921                                  Sema &S,
   8922                                  SourceLocation CaretLoc,
   8923                                  const PartialDiagnostic &PDiag) const {
   8924   S.Diag(CaretLoc, PDiag)
   8925     << Ambiguous.getFromType() << Ambiguous.getToType();
   8926   // FIXME: The note limiting machinery is borrowed from
   8927   // OverloadCandidateSet::NoteCandidates; there's an opportunity for
   8928   // refactoring here.
   8929   const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
   8930   unsigned CandsShown = 0;
   8931   AmbiguousConversionSequence::const_iterator I, E;
   8932   for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
   8933     if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
   8934       break;
   8935     ++CandsShown;
   8936     S.NoteOverloadCandidate(*I);
   8937   }
   8938   if (I != E)
   8939     S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I);
   8940 }
   8941 
   8942 static void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand,
   8943                                   unsigned I, bool TakingCandidateAddress) {
   8944   const ImplicitConversionSequence &Conv = Cand->Conversions[I];
   8945   assert(Conv.isBad());
   8946   assert(Cand->Function && "for now, candidate must be a function");
   8947   FunctionDecl *Fn = Cand->Function;
   8948 
   8949   // There's a conversion slot for the object argument if this is a
   8950   // non-constructor method.  Note that 'I' corresponds the
   8951   // conversion-slot index.
   8952   bool isObjectArgument = false;
   8953   if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
   8954     if (I == 0)
   8955       isObjectArgument = true;
   8956     else
   8957       I--;
   8958   }
   8959 
   8960   std::string FnDesc;
   8961   OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
   8962 
   8963   Expr *FromExpr = Conv.Bad.FromExpr;
   8964   QualType FromTy = Conv.Bad.getFromType();
   8965   QualType ToTy = Conv.Bad.getToType();
   8966 
   8967   if (FromTy == S.Context.OverloadTy) {
   8968     assert(FromExpr && "overload set argument came from implicit argument?");
   8969     Expr *E = FromExpr->IgnoreParens();
   8970     if (isa<UnaryOperator>(E))
   8971       E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
   8972     DeclarationName Name = cast<OverloadExpr>(E)->getName();
   8973 
   8974     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
   8975       << (unsigned) FnKind << FnDesc
   8976       << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   8977       << ToTy << Name << I+1;
   8978     MaybeEmitInheritedConstructorNote(S, Fn);
   8979     return;
   8980   }
   8981 
   8982   // Do some hand-waving analysis to see if the non-viability is due
   8983   // to a qualifier mismatch.
   8984   CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
   8985   CanQualType CToTy = S.Context.getCanonicalType(ToTy);
   8986   if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
   8987     CToTy = RT->getPointeeType();
   8988   else {
   8989     // TODO: detect and diagnose the full richness of const mismatches.
   8990     if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
   8991       if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
   8992         CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
   8993   }
   8994 
   8995   if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
   8996       !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
   8997     Qualifiers FromQs = CFromTy.getQualifiers();
   8998     Qualifiers ToQs = CToTy.getQualifiers();
   8999 
   9000     if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
   9001       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
   9002         << (unsigned) FnKind << FnDesc
   9003         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   9004         << FromTy
   9005         << FromQs.getAddressSpace() << ToQs.getAddressSpace()
   9006         << (unsigned) isObjectArgument << I+1;
   9007       MaybeEmitInheritedConstructorNote(S, Fn);
   9008       return;
   9009     }
   9010 
   9011     if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
   9012       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
   9013         << (unsigned) FnKind << FnDesc
   9014         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   9015         << FromTy
   9016         << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
   9017         << (unsigned) isObjectArgument << I+1;
   9018       MaybeEmitInheritedConstructorNote(S, Fn);
   9019       return;
   9020     }
   9021 
   9022     if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
   9023       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
   9024       << (unsigned) FnKind << FnDesc
   9025       << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   9026       << FromTy
   9027       << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
   9028       << (unsigned) isObjectArgument << I+1;
   9029       MaybeEmitInheritedConstructorNote(S, Fn);
   9030       return;
   9031     }
   9032 
   9033     unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
   9034     assert(CVR && "unexpected qualifiers mismatch");
   9035 
   9036     if (isObjectArgument) {
   9037       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
   9038         << (unsigned) FnKind << FnDesc
   9039         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   9040         << FromTy << (CVR - 1);
   9041     } else {
   9042       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
   9043         << (unsigned) FnKind << FnDesc
   9044         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   9045         << FromTy << (CVR - 1) << I+1;
   9046     }
   9047     MaybeEmitInheritedConstructorNote(S, Fn);
   9048     return;
   9049   }
   9050 
   9051   // Special diagnostic for failure to convert an initializer list, since
   9052   // telling the user that it has type void is not useful.
   9053   if (FromExpr && isa<InitListExpr>(FromExpr)) {
   9054     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
   9055       << (unsigned) FnKind << FnDesc
   9056       << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   9057       << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
   9058     MaybeEmitInheritedConstructorNote(S, Fn);
   9059     return;
   9060   }
   9061 
   9062   // Diagnose references or pointers to incomplete types differently,
   9063   // since it's far from impossible that the incompleteness triggered
   9064   // the failure.
   9065   QualType TempFromTy = FromTy.getNonReferenceType();
   9066   if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
   9067     TempFromTy = PTy->getPointeeType();
   9068   if (TempFromTy->isIncompleteType()) {
   9069     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
   9070       << (unsigned) FnKind << FnDesc
   9071       << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   9072       << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
   9073     MaybeEmitInheritedConstructorNote(S, Fn);
   9074     return;
   9075   }
   9076 
   9077   // Diagnose base -> derived pointer conversions.
   9078   unsigned BaseToDerivedConversion = 0;
   9079   if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
   9080     if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
   9081       if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
   9082                                                FromPtrTy->getPointeeType()) &&
   9083           !FromPtrTy->getPointeeType()->isIncompleteType() &&
   9084           !ToPtrTy->getPointeeType()->isIncompleteType() &&
   9085           S.IsDerivedFrom(SourceLocation(), ToPtrTy->getPointeeType(),
   9086                           FromPtrTy->getPointeeType()))
   9087         BaseToDerivedConversion = 1;
   9088     }
   9089   } else if (const ObjCObjectPointerType *FromPtrTy
   9090                                     = FromTy->getAs<ObjCObjectPointerType>()) {
   9091     if (const ObjCObjectPointerType *ToPtrTy
   9092                                         = ToTy->getAs<ObjCObjectPointerType>())
   9093       if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
   9094         if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
   9095           if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
   9096                                                 FromPtrTy->getPointeeType()) &&
   9097               FromIface->isSuperClassOf(ToIface))
   9098             BaseToDerivedConversion = 2;
   9099   } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
   9100     if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
   9101         !FromTy->isIncompleteType() &&
   9102         !ToRefTy->getPointeeType()->isIncompleteType() &&
   9103         S.IsDerivedFrom(SourceLocation(), ToRefTy->getPointeeType(), FromTy)) {
   9104       BaseToDerivedConversion = 3;
   9105     } else if (ToTy->isLValueReferenceType() && !FromExpr->isLValue() &&
   9106                ToTy.getNonReferenceType().getCanonicalType() ==
   9107                FromTy.getNonReferenceType().getCanonicalType()) {
   9108       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_lvalue)
   9109         << (unsigned) FnKind << FnDesc
   9110         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   9111         << (unsigned) isObjectArgument << I + 1;
   9112       MaybeEmitInheritedConstructorNote(S, Fn);
   9113       return;
   9114     }
   9115   }
   9116 
   9117   if (BaseToDerivedConversion) {
   9118     S.Diag(Fn->getLocation(),
   9119            diag::note_ovl_candidate_bad_base_to_derived_conv)
   9120       << (unsigned) FnKind << FnDesc
   9121       << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   9122       << (BaseToDerivedConversion - 1)
   9123       << FromTy << ToTy << I+1;
   9124     MaybeEmitInheritedConstructorNote(S, Fn);
   9125     return;
   9126   }
   9127 
   9128   if (isa<ObjCObjectPointerType>(CFromTy) &&
   9129       isa<PointerType>(CToTy)) {
   9130       Qualifiers FromQs = CFromTy.getQualifiers();
   9131       Qualifiers ToQs = CToTy.getQualifiers();
   9132       if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
   9133         S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
   9134         << (unsigned) FnKind << FnDesc
   9135         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   9136         << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
   9137         MaybeEmitInheritedConstructorNote(S, Fn);
   9138         return;
   9139       }
   9140   }
   9141 
   9142   if (TakingCandidateAddress &&
   9143       !checkAddressOfCandidateIsAvailable(S, Cand->Function))
   9144     return;
   9145 
   9146   // Emit the generic diagnostic and, optionally, add the hints to it.
   9147   PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
   9148   FDiag << (unsigned) FnKind << FnDesc
   9149     << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
   9150     << FromTy << ToTy << (unsigned) isObjectArgument << I + 1
   9151     << (unsigned) (Cand->Fix.Kind);
   9152 
   9153   // If we can fix the conversion, suggest the FixIts.
   9154   for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
   9155        HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
   9156     FDiag << *HI;
   9157   S.Diag(Fn->getLocation(), FDiag);
   9158 
   9159   MaybeEmitInheritedConstructorNote(S, Fn);
   9160 }
   9161 
   9162 /// Additional arity mismatch diagnosis specific to a function overload
   9163 /// candidates. This is not covered by the more general DiagnoseArityMismatch()
   9164 /// over a candidate in any candidate set.
   9165 static bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand,
   9166                                unsigned NumArgs) {
   9167   FunctionDecl *Fn = Cand->Function;
   9168   unsigned MinParams = Fn->getMinRequiredArguments();
   9169 
   9170   // With invalid overloaded operators, it's possible that we think we
   9171   // have an arity mismatch when in fact it looks like we have the
   9172   // right number of arguments, because only overloaded operators have
   9173   // the weird behavior of overloading member and non-member functions.
   9174   // Just don't report anything.
   9175   if (Fn->isInvalidDecl() &&
   9176       Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
   9177     return true;
   9178 
   9179   if (NumArgs < MinParams) {
   9180     assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
   9181            (Cand->FailureKind == ovl_fail_bad_deduction &&
   9182             Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
   9183   } else {
   9184     assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
   9185            (Cand->FailureKind == ovl_fail_bad_deduction &&
   9186             Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
   9187   }
   9188 
   9189   return false;
   9190 }
   9191 
   9192 /// General arity mismatch diagnosis over a candidate in a candidate set.
   9193 static void DiagnoseArityMismatch(Sema &S, Decl *D, unsigned NumFormalArgs) {
   9194   assert(isa<FunctionDecl>(D) &&
   9195       "The templated declaration should at least be a function"
   9196       " when diagnosing bad template argument deduction due to too many"
   9197       " or too few arguments");
   9198 
   9199   FunctionDecl *Fn = cast<FunctionDecl>(D);
   9200 
   9201   // TODO: treat calls to a missing default constructor as a special case
   9202   const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
   9203   unsigned MinParams = Fn->getMinRequiredArguments();
   9204 
   9205   // at least / at most / exactly
   9206   unsigned mode, modeCount;
   9207   if (NumFormalArgs < MinParams) {
   9208     if (MinParams != FnTy->getNumParams() || FnTy->isVariadic() ||
   9209         FnTy->isTemplateVariadic())
   9210       mode = 0; // "at least"
   9211     else
   9212       mode = 2; // "exactly"
   9213     modeCount = MinParams;
   9214   } else {
   9215     if (MinParams != FnTy->getNumParams())
   9216       mode = 1; // "at most"
   9217     else
   9218       mode = 2; // "exactly"
   9219     modeCount = FnTy->getNumParams();
   9220   }
   9221 
   9222   std::string Description;
   9223   OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
   9224 
   9225   if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName())
   9226     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one)
   9227       << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != nullptr)
   9228       << mode << Fn->getParamDecl(0) << NumFormalArgs;
   9229   else
   9230     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
   9231       << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != nullptr)
   9232       << mode << modeCount << NumFormalArgs;
   9233   MaybeEmitInheritedConstructorNote(S, Fn);
   9234 }
   9235 
   9236 /// Arity mismatch diagnosis specific to a function overload candidate.
   9237 static void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
   9238                                   unsigned NumFormalArgs) {
   9239   if (!CheckArityMismatch(S, Cand, NumFormalArgs))
   9240     DiagnoseArityMismatch(S, Cand->Function, NumFormalArgs);
   9241 }
   9242 
   9243 static TemplateDecl *getDescribedTemplate(Decl *Templated) {
   9244   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Templated))
   9245     return FD->getDescribedFunctionTemplate();
   9246   else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Templated))
   9247     return RD->getDescribedClassTemplate();
   9248 
   9249   llvm_unreachable("Unsupported: Getting the described template declaration"
   9250                    " for bad deduction diagnosis");
   9251 }
   9252 
   9253 /// Diagnose a failed template-argument deduction.
   9254 static void DiagnoseBadDeduction(Sema &S, Decl *Templated,
   9255                                  DeductionFailureInfo &DeductionFailure,
   9256                                  unsigned NumArgs,
   9257                                  bool TakingCandidateAddress) {
   9258   TemplateParameter Param = DeductionFailure.getTemplateParameter();
   9259   NamedDecl *ParamD;
   9260   (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
   9261   (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
   9262   (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
   9263   switch (DeductionFailure.Result) {
   9264   case Sema::TDK_Success:
   9265     llvm_unreachable("TDK_success while diagnosing bad deduction");
   9266 
   9267   case Sema::TDK_Incomplete: {
   9268     assert(ParamD && "no parameter found for incomplete deduction result");
   9269     S.Diag(Templated->getLocation(),
   9270            diag::note_ovl_candidate_incomplete_deduction)
   9271         << ParamD->getDeclName();
   9272     MaybeEmitInheritedConstructorNote(S, Templated);
   9273     return;
   9274   }
   9275 
   9276   case Sema::TDK_Underqualified: {
   9277     assert(ParamD && "no parameter found for bad qualifiers deduction result");
   9278     TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
   9279 
   9280     QualType Param = DeductionFailure.getFirstArg()->getAsType();
   9281 
   9282     // Param will have been canonicalized, but it should just be a
   9283     // qualified version of ParamD, so move the qualifiers to that.
   9284     QualifierCollector Qs;
   9285     Qs.strip(Param);
   9286     QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
   9287     assert(S.Context.hasSameType(Param, NonCanonParam));
   9288 
   9289     // Arg has also been canonicalized, but there's nothing we can do
   9290     // about that.  It also doesn't matter as much, because it won't
   9291     // have any template parameters in it (because deduction isn't
   9292     // done on dependent types).
   9293     QualType Arg = DeductionFailure.getSecondArg()->getAsType();
   9294 
   9295     S.Diag(Templated->getLocation(), diag::note_ovl_candidate_underqualified)
   9296         << ParamD->getDeclName() << Arg << NonCanonParam;
   9297     MaybeEmitInheritedConstructorNote(S, Templated);
   9298     return;
   9299   }
   9300 
   9301   case Sema::TDK_Inconsistent: {
   9302     assert(ParamD && "no parameter found for inconsistent deduction result");
   9303     int which = 0;
   9304     if (isa<TemplateTypeParmDecl>(ParamD))
   9305       which = 0;
   9306     else if (isa<NonTypeTemplateParmDecl>(ParamD))
   9307       which = 1;
   9308     else {
   9309       which = 2;
   9310     }
   9311 
   9312     S.Diag(Templated->getLocation(),
   9313            diag::note_ovl_candidate_inconsistent_deduction)
   9314         << which << ParamD->getDeclName() << *DeductionFailure.getFirstArg()
   9315         << *DeductionFailure.getSecondArg();
   9316     MaybeEmitInheritedConstructorNote(S, Templated);
   9317     return;
   9318   }
   9319 
   9320   case Sema::TDK_InvalidExplicitArguments:
   9321     assert(ParamD && "no parameter found for invalid explicit arguments");
   9322     if (ParamD->getDeclName())
   9323       S.Diag(Templated->getLocation(),
   9324              diag::note_ovl_candidate_explicit_arg_mismatch_named)
   9325           << ParamD->getDeclName();
   9326     else {
   9327       int index = 0;
   9328       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
   9329         index = TTP->getIndex();
   9330       else if (NonTypeTemplateParmDecl *NTTP
   9331                                   = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
   9332         index = NTTP->getIndex();
   9333       else
   9334         index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
   9335       S.Diag(Templated->getLocation(),
   9336              diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
   9337           << (index + 1);
   9338     }
   9339     MaybeEmitInheritedConstructorNote(S, Templated);
   9340     return;
   9341 
   9342   case Sema::TDK_TooManyArguments:
   9343   case Sema::TDK_TooFewArguments:
   9344     DiagnoseArityMismatch(S, Templated, NumArgs);
   9345     return;
   9346 
   9347   case Sema::TDK_InstantiationDepth:
   9348     S.Diag(Templated->getLocation(),
   9349            diag::note_ovl_candidate_instantiation_depth);
   9350     MaybeEmitInheritedConstructorNote(S, Templated);
   9351     return;
   9352 
   9353   case Sema::TDK_SubstitutionFailure: {
   9354     // Format the template argument list into the argument string.
   9355     SmallString<128> TemplateArgString;
   9356     if (TemplateArgumentList *Args =
   9357             DeductionFailure.getTemplateArgumentList()) {
   9358       TemplateArgString = " ";
   9359       TemplateArgString += S.getTemplateArgumentBindingsText(
   9360           getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
   9361     }
   9362 
   9363     // If this candidate was disabled by enable_if, say so.
   9364     PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic();
   9365     if (PDiag && PDiag->second.getDiagID() ==
   9366           diag::err_typename_nested_not_found_enable_if) {
   9367       // FIXME: Use the source range of the condition, and the fully-qualified
   9368       //        name of the enable_if template. These are both present in PDiag.
   9369       S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if)
   9370         << "'enable_if'" << TemplateArgString;
   9371       return;
   9372     }
   9373 
   9374     // Format the SFINAE diagnostic into the argument string.
   9375     // FIXME: Add a general mechanism to include a PartialDiagnostic *'s
   9376     //        formatted message in another diagnostic.
   9377     SmallString<128> SFINAEArgString;
   9378     SourceRange R;
   9379     if (PDiag) {
   9380       SFINAEArgString = ": ";
   9381       R = SourceRange(PDiag->first, PDiag->first);
   9382       PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString);
   9383     }
   9384 
   9385     S.Diag(Templated->getLocation(),
   9386            diag::note_ovl_candidate_substitution_failure)
   9387         << TemplateArgString << SFINAEArgString << R;
   9388     MaybeEmitInheritedConstructorNote(S, Templated);
   9389     return;
   9390   }
   9391 
   9392   case Sema::TDK_FailedOverloadResolution: {
   9393     OverloadExpr::FindResult R = OverloadExpr::find(DeductionFailure.getExpr());
   9394     S.Diag(Templated->getLocation(),
   9395            diag::note_ovl_candidate_failed_overload_resolution)
   9396         << R.Expression->getName();
   9397     return;
   9398   }
   9399 
   9400   case Sema::TDK_NonDeducedMismatch: {
   9401     // FIXME: Provide a source location to indicate what we couldn't match.
   9402     TemplateArgument FirstTA = *DeductionFailure.getFirstArg();
   9403     TemplateArgument SecondTA = *DeductionFailure.getSecondArg();
   9404     if (FirstTA.getKind() == TemplateArgument::Template &&
   9405         SecondTA.getKind() == TemplateArgument::Template) {
   9406       TemplateName FirstTN = FirstTA.getAsTemplate();
   9407       TemplateName SecondTN = SecondTA.getAsTemplate();
   9408       if (FirstTN.getKind() == TemplateName::Template &&
   9409           SecondTN.getKind() == TemplateName::Template) {
   9410         if (FirstTN.getAsTemplateDecl()->getName() ==
   9411             SecondTN.getAsTemplateDecl()->getName()) {
   9412           // FIXME: This fixes a bad diagnostic where both templates are named
   9413           // the same.  This particular case is a bit difficult since:
   9414           // 1) It is passed as a string to the diagnostic printer.
   9415           // 2) The diagnostic printer only attempts to find a better
   9416           //    name for types, not decls.
   9417           // Ideally, this should folded into the diagnostic printer.
   9418           S.Diag(Templated->getLocation(),
   9419                  diag::note_ovl_candidate_non_deduced_mismatch_qualified)
   9420               << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl();
   9421           return;
   9422         }
   9423       }
   9424     }
   9425 
   9426     if (TakingCandidateAddress && isa<FunctionDecl>(Templated) &&
   9427         !checkAddressOfCandidateIsAvailable(S, cast<FunctionDecl>(Templated)))
   9428       return;
   9429 
   9430     // FIXME: For generic lambda parameters, check if the function is a lambda
   9431     // call operator, and if so, emit a prettier and more informative
   9432     // diagnostic that mentions 'auto' and lambda in addition to
   9433     // (or instead of?) the canonical template type parameters.
   9434     S.Diag(Templated->getLocation(),
   9435            diag::note_ovl_candidate_non_deduced_mismatch)
   9436         << FirstTA << SecondTA;
   9437     return;
   9438   }
   9439   // TODO: diagnose these individually, then kill off
   9440   // note_ovl_candidate_bad_deduction, which is uselessly vague.
   9441   case Sema::TDK_MiscellaneousDeductionFailure:
   9442     S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction);
   9443     MaybeEmitInheritedConstructorNote(S, Templated);
   9444     return;
   9445   }
   9446 }
   9447 
   9448 /// Diagnose a failed template-argument deduction, for function calls.
   9449 static void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
   9450                                  unsigned NumArgs,
   9451                                  bool TakingCandidateAddress) {
   9452   unsigned TDK = Cand->DeductionFailure.Result;
   9453   if (TDK == Sema::TDK_TooFewArguments || TDK == Sema::TDK_TooManyArguments) {
   9454     if (CheckArityMismatch(S, Cand, NumArgs))
   9455       return;
   9456   }
   9457   DiagnoseBadDeduction(S, Cand->Function, // pattern
   9458                        Cand->DeductionFailure, NumArgs, TakingCandidateAddress);
   9459 }
   9460 
   9461 /// CUDA: diagnose an invalid call across targets.
   9462 static void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
   9463   FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
   9464   FunctionDecl *Callee = Cand->Function;
   9465 
   9466   Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
   9467                            CalleeTarget = S.IdentifyCUDATarget(Callee);
   9468 
   9469   std::string FnDesc;
   9470   OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Callee, FnDesc);
   9471 
   9472   S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
   9473       << (unsigned)FnKind << CalleeTarget << CallerTarget;
   9474 
   9475   // This could be an implicit constructor for which we could not infer the
   9476   // target due to a collsion. Diagnose that case.
   9477   CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Callee);
   9478   if (Meth != nullptr && Meth->isImplicit()) {
   9479     CXXRecordDecl *ParentClass = Meth->getParent();
   9480     Sema::CXXSpecialMember CSM;
   9481 
   9482     switch (FnKind) {
   9483     default:
   9484       return;
   9485     case oc_implicit_default_constructor:
   9486       CSM = Sema::CXXDefaultConstructor;
   9487       break;
   9488     case oc_implicit_copy_constructor:
   9489       CSM = Sema::CXXCopyConstructor;
   9490       break;
   9491     case oc_implicit_move_constructor:
   9492       CSM = Sema::CXXMoveConstructor;
   9493       break;
   9494     case oc_implicit_copy_assignment:
   9495       CSM = Sema::CXXCopyAssignment;
   9496       break;
   9497     case oc_implicit_move_assignment:
   9498       CSM = Sema::CXXMoveAssignment;
   9499       break;
   9500     };
   9501 
   9502     bool ConstRHS = false;
   9503     if (Meth->getNumParams()) {
   9504       if (const ReferenceType *RT =
   9505               Meth->getParamDecl(0)->getType()->getAs<ReferenceType>()) {
   9506         ConstRHS = RT->getPointeeType().isConstQualified();
   9507       }
   9508     }
   9509 
   9510     S.inferCUDATargetForImplicitSpecialMember(ParentClass, CSM, Meth,
   9511                                               /* ConstRHS */ ConstRHS,
   9512                                               /* Diagnose */ true);
   9513   }
   9514 }
   9515 
   9516 static void DiagnoseFailedEnableIfAttr(Sema &S, OverloadCandidate *Cand) {
   9517   FunctionDecl *Callee = Cand->Function;
   9518   EnableIfAttr *Attr = static_cast<EnableIfAttr*>(Cand->DeductionFailure.Data);
   9519 
   9520   S.Diag(Callee->getLocation(),
   9521          diag::note_ovl_candidate_disabled_by_enable_if_attr)
   9522       << Attr->getCond()->getSourceRange() << Attr->getMessage();
   9523 }
   9524 
   9525 /// Generates a 'note' diagnostic for an overload candidate.  We've
   9526 /// already generated a primary error at the call site.
   9527 ///
   9528 /// It really does need to be a single diagnostic with its caret
   9529 /// pointed at the candidate declaration.  Yes, this creates some
   9530 /// major challenges of technical writing.  Yes, this makes pointing
   9531 /// out problems with specific arguments quite awkward.  It's still
   9532 /// better than generating twenty screens of text for every failed
   9533 /// overload.
   9534 ///
   9535 /// It would be great to be able to express per-candidate problems
   9536 /// more richly for those diagnostic clients that cared, but we'd
   9537 /// still have to be just as careful with the default diagnostics.
   9538 static void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
   9539                                   unsigned NumArgs,
   9540                                   bool TakingCandidateAddress) {
   9541   FunctionDecl *Fn = Cand->Function;
   9542 
   9543   // Note deleted candidates, but only if they're viable.
   9544   if (Cand->Viable && (Fn->isDeleted() ||
   9545       S.isFunctionConsideredUnavailable(Fn))) {
   9546     std::string FnDesc;
   9547     OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
   9548 
   9549     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
   9550       << FnKind << FnDesc
   9551       << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
   9552     MaybeEmitInheritedConstructorNote(S, Fn);
   9553     return;
   9554   }
   9555 
   9556   // We don't really have anything else to say about viable candidates.
   9557   if (Cand->Viable) {
   9558     S.NoteOverloadCandidate(Fn);
   9559     return;
   9560   }
   9561 
   9562   switch (Cand->FailureKind) {
   9563   case ovl_fail_too_many_arguments:
   9564   case ovl_fail_too_few_arguments:
   9565     return DiagnoseArityMismatch(S, Cand, NumArgs);
   9566 
   9567   case ovl_fail_bad_deduction:
   9568     return DiagnoseBadDeduction(S, Cand, NumArgs, TakingCandidateAddress);
   9569 
   9570   case ovl_fail_illegal_constructor: {
   9571     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_illegal_constructor)
   9572       << (Fn->getPrimaryTemplate() ? 1 : 0);
   9573     MaybeEmitInheritedConstructorNote(S, Fn);
   9574     return;
   9575   }
   9576 
   9577   case ovl_fail_trivial_conversion:
   9578   case ovl_fail_bad_final_conversion:
   9579   case ovl_fail_final_conversion_not_exact:
   9580     return S.NoteOverloadCandidate(Fn);
   9581 
   9582   case ovl_fail_bad_conversion: {
   9583     unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
   9584     for (unsigned N = Cand->NumConversions; I != N; ++I)
   9585       if (Cand->Conversions[I].isBad())
   9586         return DiagnoseBadConversion(S, Cand, I, TakingCandidateAddress);
   9587 
   9588     // FIXME: this currently happens when we're called from SemaInit
   9589     // when user-conversion overload fails.  Figure out how to handle
   9590     // those conditions and diagnose them well.
   9591     return S.NoteOverloadCandidate(Fn);
   9592   }
   9593 
   9594   case ovl_fail_bad_target:
   9595     return DiagnoseBadTarget(S, Cand);
   9596 
   9597   case ovl_fail_enable_if:
   9598     return DiagnoseFailedEnableIfAttr(S, Cand);
   9599   }
   9600 }
   9601 
   9602 static void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
   9603   // Desugar the type of the surrogate down to a function type,
   9604   // retaining as many typedefs as possible while still showing
   9605   // the function type (and, therefore, its parameter types).
   9606   QualType FnType = Cand->Surrogate->getConversionType();
   9607   bool isLValueReference = false;
   9608   bool isRValueReference = false;
   9609   bool isPointer = false;
   9610   if (const LValueReferenceType *FnTypeRef =
   9611         FnType->getAs<LValueReferenceType>()) {
   9612     FnType = FnTypeRef->getPointeeType();
   9613     isLValueReference = true;
   9614   } else if (const RValueReferenceType *FnTypeRef =
   9615                FnType->getAs<RValueReferenceType>()) {
   9616     FnType = FnTypeRef->getPointeeType();
   9617     isRValueReference = true;
   9618   }
   9619   if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
   9620     FnType = FnTypePtr->getPointeeType();
   9621     isPointer = true;
   9622   }
   9623   // Desugar down to a function type.
   9624   FnType = QualType(FnType->getAs<FunctionType>(), 0);
   9625   // Reconstruct the pointer/reference as appropriate.
   9626   if (isPointer) FnType = S.Context.getPointerType(FnType);
   9627   if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
   9628   if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
   9629 
   9630   S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
   9631     << FnType;
   9632   MaybeEmitInheritedConstructorNote(S, Cand->Surrogate);
   9633 }
   9634 
   9635 static void NoteBuiltinOperatorCandidate(Sema &S, StringRef Opc,
   9636                                          SourceLocation OpLoc,
   9637                                          OverloadCandidate *Cand) {
   9638   assert(Cand->NumConversions <= 2 && "builtin operator is not binary");
   9639   std::string TypeStr("operator");
   9640   TypeStr += Opc;
   9641   TypeStr += "(";
   9642   TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
   9643   if (Cand->NumConversions == 1) {
   9644     TypeStr += ")";
   9645     S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
   9646   } else {
   9647     TypeStr += ", ";
   9648     TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
   9649     TypeStr += ")";
   9650     S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
   9651   }
   9652 }
   9653 
   9654 static void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
   9655                                          OverloadCandidate *Cand) {
   9656   unsigned NoOperands = Cand->NumConversions;
   9657   for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
   9658     const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
   9659     if (ICS.isBad()) break; // all meaningless after first invalid
   9660     if (!ICS.isAmbiguous()) continue;
   9661 
   9662     ICS.DiagnoseAmbiguousConversion(S, OpLoc,
   9663                               S.PDiag(diag::note_ambiguous_type_conversion));
   9664   }
   9665 }
   9666 
   9667 static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
   9668   if (Cand->Function)
   9669     return Cand->Function->getLocation();
   9670   if (Cand->IsSurrogate)
   9671     return Cand->Surrogate->getLocation();
   9672   return SourceLocation();
   9673 }
   9674 
   9675 static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) {
   9676   switch ((Sema::TemplateDeductionResult)DFI.Result) {
   9677   case Sema::TDK_Success:
   9678     llvm_unreachable("TDK_success while diagnosing bad deduction");
   9679 
   9680   case Sema::TDK_Invalid:
   9681   case Sema::TDK_Incomplete:
   9682     return 1;
   9683 
   9684   case Sema::TDK_Underqualified:
   9685   case Sema::TDK_Inconsistent:
   9686     return 2;
   9687 
   9688   case Sema::TDK_SubstitutionFailure:
   9689   case Sema::TDK_NonDeducedMismatch:
   9690   case Sema::TDK_MiscellaneousDeductionFailure:
   9691     return 3;
   9692 
   9693   case Sema::TDK_InstantiationDepth:
   9694   case Sema::TDK_FailedOverloadResolution:
   9695     return 4;
   9696 
   9697   case Sema::TDK_InvalidExplicitArguments:
   9698     return 5;
   9699 
   9700   case Sema::TDK_TooManyArguments:
   9701   case Sema::TDK_TooFewArguments:
   9702     return 6;
   9703   }
   9704   llvm_unreachable("Unhandled deduction result");
   9705 }
   9706 
   9707 namespace {
   9708 struct CompareOverloadCandidatesForDisplay {
   9709   Sema &S;
   9710   SourceLocation Loc;
   9711   size_t NumArgs;
   9712 
   9713   CompareOverloadCandidatesForDisplay(Sema &S, SourceLocation Loc, size_t nArgs)
   9714       : S(S), NumArgs(nArgs) {}
   9715 
   9716   bool operator()(const OverloadCandidate *L,
   9717                   const OverloadCandidate *R) {
   9718     // Fast-path this check.
   9719     if (L == R) return false;
   9720 
   9721     // Order first by viability.
   9722     if (L->Viable) {
   9723       if (!R->Viable) return true;
   9724 
   9725       // TODO: introduce a tri-valued comparison for overload
   9726       // candidates.  Would be more worthwhile if we had a sort
   9727       // that could exploit it.
   9728       if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true;
   9729       if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false;
   9730     } else if (R->Viable)
   9731       return false;
   9732 
   9733     assert(L->Viable == R->Viable);
   9734 
   9735     // Criteria by which we can sort non-viable candidates:
   9736     if (!L->Viable) {
   9737       // 1. Arity mismatches come after other candidates.
   9738       if (L->FailureKind == ovl_fail_too_many_arguments ||
   9739           L->FailureKind == ovl_fail_too_few_arguments) {
   9740         if (R->FailureKind == ovl_fail_too_many_arguments ||
   9741             R->FailureKind == ovl_fail_too_few_arguments) {
   9742           int LDist = std::abs((int)L->getNumParams() - (int)NumArgs);
   9743           int RDist = std::abs((int)R->getNumParams() - (int)NumArgs);
   9744           if (LDist == RDist) {
   9745             if (L->FailureKind == R->FailureKind)
   9746               // Sort non-surrogates before surrogates.
   9747               return !L->IsSurrogate && R->IsSurrogate;
   9748             // Sort candidates requiring fewer parameters than there were
   9749             // arguments given after candidates requiring more parameters
   9750             // than there were arguments given.
   9751             return L->FailureKind == ovl_fail_too_many_arguments;
   9752           }
   9753           return LDist < RDist;
   9754         }
   9755         return false;
   9756       }
   9757       if (R->FailureKind == ovl_fail_too_many_arguments ||
   9758           R->FailureKind == ovl_fail_too_few_arguments)
   9759         return true;
   9760 
   9761       // 2. Bad conversions come first and are ordered by the number
   9762       // of bad conversions and quality of good conversions.
   9763       if (L->FailureKind == ovl_fail_bad_conversion) {
   9764         if (R->FailureKind != ovl_fail_bad_conversion)
   9765           return true;
   9766 
   9767         // The conversion that can be fixed with a smaller number of changes,
   9768         // comes first.
   9769         unsigned numLFixes = L->Fix.NumConversionsFixed;
   9770         unsigned numRFixes = R->Fix.NumConversionsFixed;
   9771         numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes;
   9772         numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes;
   9773         if (numLFixes != numRFixes) {
   9774           return numLFixes < numRFixes;
   9775         }
   9776 
   9777         // If there's any ordering between the defined conversions...
   9778         // FIXME: this might not be transitive.
   9779         assert(L->NumConversions == R->NumConversions);
   9780 
   9781         int leftBetter = 0;
   9782         unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
   9783         for (unsigned E = L->NumConversions; I != E; ++I) {
   9784           switch (CompareImplicitConversionSequences(S, Loc,
   9785                                                      L->Conversions[I],
   9786                                                      R->Conversions[I])) {
   9787           case ImplicitConversionSequence::Better:
   9788             leftBetter++;
   9789             break;
   9790 
   9791           case ImplicitConversionSequence::Worse:
   9792             leftBetter--;
   9793             break;
   9794 
   9795           case ImplicitConversionSequence::Indistinguishable:
   9796             break;
   9797           }
   9798         }
   9799         if (leftBetter > 0) return true;
   9800         if (leftBetter < 0) return false;
   9801 
   9802       } else if (R->FailureKind == ovl_fail_bad_conversion)
   9803         return false;
   9804 
   9805       if (L->FailureKind == ovl_fail_bad_deduction) {
   9806         if (R->FailureKind != ovl_fail_bad_deduction)
   9807           return true;
   9808 
   9809         if (L->DeductionFailure.Result != R->DeductionFailure.Result)
   9810           return RankDeductionFailure(L->DeductionFailure)
   9811                < RankDeductionFailure(R->DeductionFailure);
   9812       } else if (R->FailureKind == ovl_fail_bad_deduction)
   9813         return false;
   9814 
   9815       // TODO: others?
   9816     }
   9817 
   9818     // Sort everything else by location.
   9819     SourceLocation LLoc = GetLocationForCandidate(L);
   9820     SourceLocation RLoc = GetLocationForCandidate(R);
   9821 
   9822     // Put candidates without locations (e.g. builtins) at the end.
   9823     if (LLoc.isInvalid()) return false;
   9824     if (RLoc.isInvalid()) return true;
   9825 
   9826     return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
   9827   }
   9828 };
   9829 }
   9830 
   9831 /// CompleteNonViableCandidate - Normally, overload resolution only
   9832 /// computes up to the first. Produces the FixIt set if possible.
   9833 static void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
   9834                                        ArrayRef<Expr *> Args) {
   9835   assert(!Cand->Viable);
   9836 
   9837   // Don't do anything on failures other than bad conversion.
   9838   if (Cand->FailureKind != ovl_fail_bad_conversion) return;
   9839 
   9840   // We only want the FixIts if all the arguments can be corrected.
   9841   bool Unfixable = false;
   9842   // Use a implicit copy initialization to check conversion fixes.
   9843   Cand->Fix.setConversionChecker(TryCopyInitialization);
   9844 
   9845   // Skip forward to the first bad conversion.
   9846   unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
   9847   unsigned ConvCount = Cand->NumConversions;
   9848   while (true) {
   9849     assert(ConvIdx != ConvCount && "no bad conversion in candidate");
   9850     ConvIdx++;
   9851     if (Cand->Conversions[ConvIdx - 1].isBad()) {
   9852       Unfixable = !Cand->TryToFixBadConversion(ConvIdx - 1, S);
   9853       break;
   9854     }
   9855   }
   9856 
   9857   if (ConvIdx == ConvCount)
   9858     return;
   9859 
   9860   assert(!Cand->Conversions[ConvIdx].isInitialized() &&
   9861          "remaining conversion is initialized?");
   9862 
   9863   // FIXME: this should probably be preserved from the overload
   9864   // operation somehow.
   9865   bool SuppressUserConversions = false;
   9866 
   9867   const FunctionProtoType* Proto;
   9868   unsigned ArgIdx = ConvIdx;
   9869 
   9870   if (Cand->IsSurrogate) {
   9871     QualType ConvType
   9872       = Cand->Surrogate->getConversionType().getNonReferenceType();
   9873     if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
   9874       ConvType = ConvPtrType->getPointeeType();
   9875     Proto = ConvType->getAs<FunctionProtoType>();
   9876     ArgIdx--;
   9877   } else if (Cand->Function) {
   9878     Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
   9879     if (isa<CXXMethodDecl>(Cand->Function) &&
   9880         !isa<CXXConstructorDecl>(Cand->Function))
   9881       ArgIdx--;
   9882   } else {
   9883     // Builtin binary operator with a bad first conversion.
   9884     assert(ConvCount <= 3);
   9885     for (; ConvIdx != ConvCount; ++ConvIdx)
   9886       Cand->Conversions[ConvIdx]
   9887         = TryCopyInitialization(S, Args[ConvIdx],
   9888                                 Cand->BuiltinTypes.ParamTypes[ConvIdx],
   9889                                 SuppressUserConversions,
   9890                                 /*InOverloadResolution*/ true,
   9891                                 /*AllowObjCWritebackConversion=*/
   9892                                   S.getLangOpts().ObjCAutoRefCount);
   9893     return;
   9894   }
   9895 
   9896   // Fill in the rest of the conversions.
   9897   unsigned NumParams = Proto->getNumParams();
   9898   for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
   9899     if (ArgIdx < NumParams) {
   9900       Cand->Conversions[ConvIdx] = TryCopyInitialization(
   9901           S, Args[ArgIdx], Proto->getParamType(ArgIdx), SuppressUserConversions,
   9902           /*InOverloadResolution=*/true,
   9903           /*AllowObjCWritebackConversion=*/
   9904           S.getLangOpts().ObjCAutoRefCount);
   9905       // Store the FixIt in the candidate if it exists.
   9906       if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
   9907         Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
   9908     }
   9909     else
   9910       Cand->Conversions[ConvIdx].setEllipsis();
   9911   }
   9912 }
   9913 
   9914 /// PrintOverloadCandidates - When overload resolution fails, prints
   9915 /// diagnostic messages containing the candidates in the candidate
   9916 /// set.
   9917 void OverloadCandidateSet::NoteCandidates(Sema &S,
   9918                                           OverloadCandidateDisplayKind OCD,
   9919                                           ArrayRef<Expr *> Args,
   9920                                           StringRef Opc,
   9921                                           SourceLocation OpLoc) {
   9922   // Sort the candidates by viability and position.  Sorting directly would
   9923   // be prohibitive, so we make a set of pointers and sort those.
   9924   SmallVector<OverloadCandidate*, 32> Cands;
   9925   if (OCD == OCD_AllCandidates) Cands.reserve(size());
   9926   for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
   9927     if (Cand->Viable)
   9928       Cands.push_back(Cand);
   9929     else if (OCD == OCD_AllCandidates) {
   9930       CompleteNonViableCandidate(S, Cand, Args);
   9931       if (Cand->Function || Cand->IsSurrogate)
   9932         Cands.push_back(Cand);
   9933       // Otherwise, this a non-viable builtin candidate.  We do not, in general,
   9934       // want to list every possible builtin candidate.
   9935     }
   9936   }
   9937 
   9938   std::sort(Cands.begin(), Cands.end(),
   9939             CompareOverloadCandidatesForDisplay(S, OpLoc, Args.size()));
   9940 
   9941   bool ReportedAmbiguousConversions = false;
   9942 
   9943   SmallVectorImpl<OverloadCandidate*>::iterator I, E;
   9944   const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
   9945   unsigned CandsShown = 0;
   9946   for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
   9947     OverloadCandidate *Cand = *I;
   9948 
   9949     // Set an arbitrary limit on the number of candidate functions we'll spam
   9950     // the user with.  FIXME: This limit should depend on details of the
   9951     // candidate list.
   9952     if (CandsShown >= 4 && ShowOverloads == Ovl_Best) {
   9953       break;
   9954     }
   9955     ++CandsShown;
   9956 
   9957     if (Cand->Function)
   9958       NoteFunctionCandidate(S, Cand, Args.size(),
   9959                             /*TakingCandidateAddress=*/false);
   9960     else if (Cand->IsSurrogate)
   9961       NoteSurrogateCandidate(S, Cand);
   9962     else {
   9963       assert(Cand->Viable &&
   9964              "Non-viable built-in candidates are not added to Cands.");
   9965       // Generally we only see ambiguities including viable builtin
   9966       // operators if overload resolution got screwed up by an
   9967       // ambiguous user-defined conversion.
   9968       //
   9969       // FIXME: It's quite possible for different conversions to see
   9970       // different ambiguities, though.
   9971       if (!ReportedAmbiguousConversions) {
   9972         NoteAmbiguousUserConversions(S, OpLoc, Cand);
   9973         ReportedAmbiguousConversions = true;
   9974       }
   9975 
   9976       // If this is a viable builtin, print it.
   9977       NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
   9978     }
   9979   }
   9980 
   9981   if (I != E)
   9982     S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
   9983 }
   9984 
   9985 static SourceLocation
   9986 GetLocationForCandidate(const TemplateSpecCandidate *Cand) {
   9987   return Cand->Specialization ? Cand->Specialization->getLocation()
   9988                               : SourceLocation();
   9989 }
   9990 
   9991 namespace {
   9992 struct CompareTemplateSpecCandidatesForDisplay {
   9993   Sema &S;
   9994   CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {}
   9995 
   9996   bool operator()(const TemplateSpecCandidate *L,
   9997                   const TemplateSpecCandidate *R) {
   9998     // Fast-path this check.
   9999     if (L == R)
   10000       return false;
   10001 
   10002     // Assuming that both candidates are not matches...
   10003 
   10004     // Sort by the ranking of deduction failures.
   10005     if (L->DeductionFailure.Result != R->DeductionFailure.Result)
   10006       return RankDeductionFailure(L->DeductionFailure) <
   10007              RankDeductionFailure(R->DeductionFailure);
   10008 
   10009     // Sort everything else by location.
   10010     SourceLocation LLoc = GetLocationForCandidate(L);
   10011     SourceLocation RLoc = GetLocationForCandidate(R);
   10012 
   10013     // Put candidates without locations (e.g. builtins) at the end.
   10014     if (LLoc.isInvalid())
   10015       return false;
   10016     if (RLoc.isInvalid())
   10017       return true;
   10018 
   10019     return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
   10020   }
   10021 };
   10022 }
   10023 
   10024 /// Diagnose a template argument deduction failure.
   10025 /// We are treating these failures as overload failures due to bad
   10026 /// deductions.
   10027 void TemplateSpecCandidate::NoteDeductionFailure(Sema &S,
   10028                                                  bool ForTakingAddress) {
   10029   DiagnoseBadDeduction(S, Specialization, // pattern
   10030                        DeductionFailure, /*NumArgs=*/0, ForTakingAddress);
   10031 }
   10032 
   10033 void TemplateSpecCandidateSet::destroyCandidates() {
   10034   for (iterator i = begin(), e = end(); i != e; ++i) {
   10035     i->DeductionFailure.Destroy();
   10036   }
   10037 }
   10038 
   10039 void TemplateSpecCandidateSet::clear() {
   10040   destroyCandidates();
   10041   Candidates.clear();
   10042 }
   10043 
   10044 /// NoteCandidates - When no template specialization match is found, prints
   10045 /// diagnostic messages containing the non-matching specializations that form
   10046 /// the candidate set.
   10047 /// This is analoguous to OverloadCandidateSet::NoteCandidates() with
   10048 /// OCD == OCD_AllCandidates and Cand->Viable == false.
   10049 void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) {
   10050   // Sort the candidates by position (assuming no candidate is a match).
   10051   // Sorting directly would be prohibitive, so we make a set of pointers
   10052   // and sort those.
   10053   SmallVector<TemplateSpecCandidate *, 32> Cands;
   10054   Cands.reserve(size());
   10055   for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
   10056     if (Cand->Specialization)
   10057       Cands.push_back(Cand);
   10058     // Otherwise, this is a non-matching builtin candidate.  We do not,
   10059     // in general, want to list every possible builtin candidate.
   10060   }
   10061 
   10062   std::sort(Cands.begin(), Cands.end(),
   10063             CompareTemplateSpecCandidatesForDisplay(S));
   10064 
   10065   // FIXME: Perhaps rename OverloadsShown and getShowOverloads()
   10066   // for generalization purposes (?).
   10067   const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
   10068 
   10069   SmallVectorImpl<TemplateSpecCandidate *>::iterator I, E;
   10070   unsigned CandsShown = 0;
   10071   for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
   10072     TemplateSpecCandidate *Cand = *I;
   10073 
   10074     // Set an arbitrary limit on the number of candidates we'll spam
   10075     // the user with.  FIXME: This limit should depend on details of the
   10076     // candidate list.
   10077     if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
   10078       break;
   10079     ++CandsShown;
   10080 
   10081     assert(Cand->Specialization &&
   10082            "Non-matching built-in candidates are not added to Cands.");
   10083     Cand->NoteDeductionFailure(S, ForTakingAddress);
   10084   }
   10085 
   10086   if (I != E)
   10087     S.Diag(Loc, diag::note_ovl_too_many_candidates) << int(E - I);
   10088 }
   10089 
   10090 // [PossiblyAFunctionType]  -->   [Return]
   10091 // NonFunctionType --> NonFunctionType
   10092 // R (A) --> R(A)
   10093 // R (*)(A) --> R (A)
   10094 // R (&)(A) --> R (A)
   10095 // R (S::*)(A) --> R (A)
   10096 QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
   10097   QualType Ret = PossiblyAFunctionType;
   10098   if (const PointerType *ToTypePtr =
   10099     PossiblyAFunctionType->getAs<PointerType>())
   10100     Ret = ToTypePtr->getPointeeType();
   10101   else if (const ReferenceType *ToTypeRef =
   10102     PossiblyAFunctionType->getAs<ReferenceType>())
   10103     Ret = ToTypeRef->getPointeeType();
   10104   else if (const MemberPointerType *MemTypePtr =
   10105     PossiblyAFunctionType->getAs<MemberPointerType>())
   10106     Ret = MemTypePtr->getPointeeType();
   10107   Ret =
   10108     Context.getCanonicalType(Ret).getUnqualifiedType();
   10109   return Ret;
   10110 }
   10111 
   10112 namespace {
   10113 // A helper class to help with address of function resolution
   10114 // - allows us to avoid passing around all those ugly parameters
   10115 class AddressOfFunctionResolver {
   10116   Sema& S;
   10117   Expr* SourceExpr;
   10118   const QualType& TargetType;
   10119   QualType TargetFunctionType; // Extracted function type from target type
   10120 
   10121   bool Complain;
   10122   //DeclAccessPair& ResultFunctionAccessPair;
   10123   ASTContext& Context;
   10124 
   10125   bool TargetTypeIsNonStaticMemberFunction;
   10126   bool FoundNonTemplateFunction;
   10127   bool StaticMemberFunctionFromBoundPointer;
   10128   bool HasComplained;
   10129 
   10130   OverloadExpr::FindResult OvlExprInfo;
   10131   OverloadExpr *OvlExpr;
   10132   TemplateArgumentListInfo OvlExplicitTemplateArgs;
   10133   SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
   10134   TemplateSpecCandidateSet FailedCandidates;
   10135 
   10136 public:
   10137   AddressOfFunctionResolver(Sema &S, Expr *SourceExpr,
   10138                             const QualType &TargetType, bool Complain)
   10139       : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
   10140         Complain(Complain), Context(S.getASTContext()),
   10141         TargetTypeIsNonStaticMemberFunction(
   10142             !!TargetType->getAs<MemberPointerType>()),
   10143         FoundNonTemplateFunction(false),
   10144         StaticMemberFunctionFromBoundPointer(false),
   10145         HasComplained(false),
   10146         OvlExprInfo(OverloadExpr::find(SourceExpr)),
   10147         OvlExpr(OvlExprInfo.Expression),
   10148         FailedCandidates(OvlExpr->getNameLoc(), /*ForTakingAddress=*/true) {
   10149     ExtractUnqualifiedFunctionTypeFromTargetType();
   10150 
   10151     if (TargetFunctionType->isFunctionType()) {
   10152       if (UnresolvedMemberExpr *UME = dyn_cast<UnresolvedMemberExpr>(OvlExpr))
   10153         if (!UME->isImplicitAccess() &&
   10154             !S.ResolveSingleFunctionTemplateSpecialization(UME))
   10155           StaticMemberFunctionFromBoundPointer = true;
   10156     } else if (OvlExpr->hasExplicitTemplateArgs()) {
   10157       DeclAccessPair dap;
   10158       if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization(
   10159               OvlExpr, false, &dap)) {
   10160         if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
   10161           if (!Method->isStatic()) {
   10162             // If the target type is a non-function type and the function found
   10163             // is a non-static member function, pretend as if that was the
   10164             // target, it's the only possible type to end up with.
   10165             TargetTypeIsNonStaticMemberFunction = true;
   10166 
   10167             // And skip adding the function if its not in the proper form.
   10168             // We'll diagnose this due to an empty set of functions.
   10169             if (!OvlExprInfo.HasFormOfMemberPointer)
   10170               return;
   10171           }
   10172 
   10173         Matches.push_back(std::make_pair(dap, Fn));
   10174       }
   10175       return;
   10176     }
   10177 
   10178     if (OvlExpr->hasExplicitTemplateArgs())
   10179       OvlExpr->getExplicitTemplateArgs().copyInto(OvlExplicitTemplateArgs);
   10180 
   10181     if (FindAllFunctionsThatMatchTargetTypeExactly()) {
   10182       // C++ [over.over]p4:
   10183       //   If more than one function is selected, [...]
   10184       if (Matches.size() > 1 && !eliminiateSuboptimalOverloadCandidates()) {
   10185         if (FoundNonTemplateFunction)
   10186           EliminateAllTemplateMatches();
   10187         else
   10188           EliminateAllExceptMostSpecializedTemplate();
   10189       }
   10190     }
   10191 
   10192     if (S.getLangOpts().CUDA && S.getLangOpts().CUDATargetOverloads &&
   10193         Matches.size() > 1)
   10194       EliminateSuboptimalCudaMatches();
   10195   }
   10196 
   10197   bool hasComplained() const { return HasComplained; }
   10198 
   10199 private:
   10200   // Is A considered a better overload candidate for the desired type than B?
   10201   bool isBetterCandidate(const FunctionDecl *A, const FunctionDecl *B) {
   10202     return hasBetterEnableIfAttrs(S, A, B);
   10203   }
   10204 
   10205   // Returns true if we've eliminated any (read: all but one) candidates, false
   10206   // otherwise.
   10207   bool eliminiateSuboptimalOverloadCandidates() {
   10208     // Same algorithm as overload resolution -- one pass to pick the "best",
   10209     // another pass to be sure that nothing is better than the best.
   10210     auto Best = Matches.begin();
   10211     for (auto I = Matches.begin()+1, E = Matches.end(); I != E; ++I)
   10212       if (isBetterCandidate(I->second, Best->second))
   10213         Best = I;
   10214 
   10215     const FunctionDecl *BestFn = Best->second;
   10216     auto IsBestOrInferiorToBest = [this, BestFn](
   10217         const std::pair<DeclAccessPair, FunctionDecl *> &Pair) {
   10218       return BestFn == Pair.second || isBetterCandidate(BestFn, Pair.second);
   10219     };
   10220 
   10221     // Note: We explicitly leave Matches unmodified if there isn't a clear best
   10222     // option, so we can potentially give the user a better error
   10223     if (!std::all_of(Matches.begin(), Matches.end(), IsBestOrInferiorToBest))
   10224       return false;
   10225     Matches[0] = *Best;
   10226     Matches.resize(1);
   10227     return true;
   10228   }
   10229 
   10230   bool isTargetTypeAFunction() const {
   10231     return TargetFunctionType->isFunctionType();
   10232   }
   10233 
   10234   // [ToType]     [Return]
   10235 
   10236   // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
   10237   // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
   10238   // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
   10239   void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
   10240     TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
   10241   }
   10242 
   10243   // return true if any matching specializations were found
   10244   bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
   10245                                    const DeclAccessPair& CurAccessFunPair) {
   10246     if (CXXMethodDecl *Method
   10247               = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
   10248       // Skip non-static function templates when converting to pointer, and
   10249       // static when converting to member pointer.
   10250       if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
   10251         return false;
   10252     }
   10253     else if (TargetTypeIsNonStaticMemberFunction)
   10254       return false;
   10255 
   10256     // C++ [over.over]p2:
   10257     //   If the name is a function template, template argument deduction is
   10258     //   done (14.8.2.2), and if the argument deduction succeeds, the
   10259     //   resulting template argument list is used to generate a single
   10260     //   function template specialization, which is added to the set of
   10261     //   overloaded functions considered.
   10262     FunctionDecl *Specialization = nullptr;
   10263     TemplateDeductionInfo Info(FailedCandidates.getLocation());
   10264     if (Sema::TemplateDeductionResult Result
   10265           = S.DeduceTemplateArguments(FunctionTemplate,
   10266                                       &OvlExplicitTemplateArgs,
   10267                                       TargetFunctionType, Specialization,
   10268                                       Info, /*InOverloadResolution=*/true)) {
   10269       // Make a note of the failed deduction for diagnostics.
   10270       FailedCandidates.addCandidate()
   10271           .set(FunctionTemplate->getTemplatedDecl(),
   10272                MakeDeductionFailureInfo(Context, Result, Info));
   10273       return false;
   10274     }
   10275 
   10276     // Template argument deduction ensures that we have an exact match or
   10277     // compatible pointer-to-function arguments that would be adjusted by ICS.
   10278     // This function template specicalization works.
   10279     Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl());
   10280     assert(S.isSameOrCompatibleFunctionType(
   10281               Context.getCanonicalType(Specialization->getType()),
   10282               Context.getCanonicalType(TargetFunctionType)));
   10283 
   10284     if (!S.checkAddressOfFunctionIsAvailable(Specialization))
   10285       return false;
   10286 
   10287     Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
   10288     return true;
   10289   }
   10290 
   10291   bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
   10292                                       const DeclAccessPair& CurAccessFunPair) {
   10293     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
   10294       // Skip non-static functions when converting to pointer, and static
   10295       // when converting to member pointer.
   10296       if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
   10297         return false;
   10298     }
   10299     else if (TargetTypeIsNonStaticMemberFunction)
   10300       return false;
   10301 
   10302     if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
   10303       if (S.getLangOpts().CUDA)
   10304         if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
   10305           if (!Caller->isImplicit() && S.CheckCUDATarget(Caller, FunDecl))
   10306             return false;
   10307 
   10308       // If any candidate has a placeholder return type, trigger its deduction
   10309       // now.
   10310       if (S.getLangOpts().CPlusPlus14 &&
   10311           FunDecl->getReturnType()->isUndeducedType() &&
   10312           S.DeduceReturnType(FunDecl, SourceExpr->getLocStart(), Complain)) {
   10313         HasComplained |= Complain;
   10314         return false;
   10315       }
   10316 
   10317       if (!S.checkAddressOfFunctionIsAvailable(FunDecl))
   10318         return false;
   10319 
   10320       QualType ResultTy;
   10321       if (Context.hasSameUnqualifiedType(TargetFunctionType,
   10322                                          FunDecl->getType()) ||
   10323           S.IsNoReturnConversion(FunDecl->getType(), TargetFunctionType,
   10324                                  ResultTy) ||
   10325           (!S.getLangOpts().CPlusPlus && TargetType->isVoidPointerType())) {
   10326         Matches.push_back(std::make_pair(
   10327             CurAccessFunPair, cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
   10328         FoundNonTemplateFunction = true;
   10329         return true;
   10330       }
   10331     }
   10332 
   10333     return false;
   10334   }
   10335 
   10336   bool FindAllFunctionsThatMatchTargetTypeExactly() {
   10337     bool Ret = false;
   10338 
   10339     // If the overload expression doesn't have the form of a pointer to
   10340     // member, don't try to convert it to a pointer-to-member type.
   10341     if (IsInvalidFormOfPointerToMemberFunction())
   10342       return false;
   10343 
   10344     for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
   10345                                E = OvlExpr->decls_end();
   10346          I != E; ++I) {
   10347       // Look through any using declarations to find the underlying function.
   10348       NamedDecl *Fn = (*I)->getUnderlyingDecl();
   10349 
   10350       // C++ [over.over]p3:
   10351       //   Non-member functions and static member functions match
   10352       //   targets of type "pointer-to-function" or "reference-to-function."
   10353       //   Nonstatic member functions match targets of
   10354       //   type "pointer-to-member-function."
   10355       // Note that according to DR 247, the containing class does not matter.
   10356       if (FunctionTemplateDecl *FunctionTemplate
   10357                                         = dyn_cast<FunctionTemplateDecl>(Fn)) {
   10358         if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
   10359           Ret = true;
   10360       }
   10361       // If we have explicit template arguments supplied, skip non-templates.
   10362       else if (!OvlExpr->hasExplicitTemplateArgs() &&
   10363                AddMatchingNonTemplateFunction(Fn, I.getPair()))
   10364         Ret = true;
   10365     }
   10366     assert(Ret || Matches.empty());
   10367     return Ret;
   10368   }
   10369 
   10370   void EliminateAllExceptMostSpecializedTemplate() {
   10371     //   [...] and any given function template specialization F1 is
   10372     //   eliminated if the set contains a second function template
   10373     //   specialization whose function template is more specialized
   10374     //   than the function template of F1 according to the partial
   10375     //   ordering rules of 14.5.5.2.
   10376 
   10377     // The algorithm specified above is quadratic. We instead use a
   10378     // two-pass algorithm (similar to the one used to identify the
   10379     // best viable function in an overload set) that identifies the
   10380     // best function template (if it exists).
   10381 
   10382     UnresolvedSet<4> MatchesCopy; // TODO: avoid!
   10383     for (unsigned I = 0, E = Matches.size(); I != E; ++I)
   10384       MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
   10385 
   10386     // TODO: It looks like FailedCandidates does not serve much purpose
   10387     // here, since the no_viable diagnostic has index 0.
   10388     UnresolvedSetIterator Result = S.getMostSpecialized(
   10389         MatchesCopy.begin(), MatchesCopy.end(), FailedCandidates,
   10390         SourceExpr->getLocStart(), S.PDiag(),
   10391         S.PDiag(diag::err_addr_ovl_ambiguous) << Matches[0]
   10392                                                      .second->getDeclName(),
   10393         S.PDiag(diag::note_ovl_candidate) << (unsigned)oc_function_template,
   10394         Complain, TargetFunctionType);
   10395 
   10396     if (Result != MatchesCopy.end()) {
   10397       // Make it the first and only element
   10398       Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
   10399       Matches[0].second = cast<FunctionDecl>(*Result);
   10400       Matches.resize(1);
   10401     } else
   10402       HasComplained |= Complain;
   10403   }
   10404 
   10405   void EliminateAllTemplateMatches() {
   10406     //   [...] any function template specializations in the set are
   10407     //   eliminated if the set also contains a non-template function, [...]
   10408     for (unsigned I = 0, N = Matches.size(); I != N; ) {
   10409       if (Matches[I].second->getPrimaryTemplate() == nullptr)
   10410         ++I;
   10411       else {
   10412         Matches[I] = Matches[--N];
   10413         Matches.resize(N);
   10414       }
   10415     }
   10416   }
   10417 
   10418   void EliminateSuboptimalCudaMatches() {
   10419     S.EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(S.CurContext), Matches);
   10420   }
   10421 
   10422 public:
   10423   void ComplainNoMatchesFound() const {
   10424     assert(Matches.empty());
   10425     S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable)
   10426         << OvlExpr->getName() << TargetFunctionType
   10427         << OvlExpr->getSourceRange();
   10428     if (FailedCandidates.empty())
   10429       S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
   10430                                   /*TakingAddress=*/true);
   10431     else {
   10432       // We have some deduction failure messages. Use them to diagnose
   10433       // the function templates, and diagnose the non-template candidates
   10434       // normally.
   10435       for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
   10436                                  IEnd = OvlExpr->decls_end();
   10437            I != IEnd; ++I)
   10438         if (FunctionDecl *Fun =
   10439                 dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
   10440           if (!functionHasPassObjectSizeParams(Fun))
   10441             S.NoteOverloadCandidate(Fun, TargetFunctionType,
   10442                                     /*TakingAddress=*/true);
   10443       FailedCandidates.NoteCandidates(S, OvlExpr->getLocStart());
   10444     }
   10445   }
   10446 
   10447   bool IsInvalidFormOfPointerToMemberFunction() const {
   10448     return TargetTypeIsNonStaticMemberFunction &&
   10449       !OvlExprInfo.HasFormOfMemberPointer;
   10450   }
   10451 
   10452   void ComplainIsInvalidFormOfPointerToMemberFunction() const {
   10453       // TODO: Should we condition this on whether any functions might
   10454       // have matched, or is it more appropriate to do that in callers?
   10455       // TODO: a fixit wouldn't hurt.
   10456       S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
   10457         << TargetType << OvlExpr->getSourceRange();
   10458   }
   10459 
   10460   bool IsStaticMemberFunctionFromBoundPointer() const {
   10461     return StaticMemberFunctionFromBoundPointer;
   10462   }
   10463 
   10464   void ComplainIsStaticMemberFunctionFromBoundPointer() const {
   10465     S.Diag(OvlExpr->getLocStart(),
   10466            diag::err_invalid_form_pointer_member_function)
   10467       << OvlExpr->getSourceRange();
   10468   }
   10469 
   10470   void ComplainOfInvalidConversion() const {
   10471     S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
   10472       << OvlExpr->getName() << TargetType;
   10473   }
   10474 
   10475   void ComplainMultipleMatchesFound() const {
   10476     assert(Matches.size() > 1);
   10477     S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous)
   10478       << OvlExpr->getName()
   10479       << OvlExpr->getSourceRange();
   10480     S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
   10481                                 /*TakingAddress=*/true);
   10482   }
   10483 
   10484   bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
   10485 
   10486   int getNumMatches() const { return Matches.size(); }
   10487 
   10488   FunctionDecl* getMatchingFunctionDecl() const {
   10489     if (Matches.size() != 1) return nullptr;
   10490     return Matches[0].second;
   10491   }
   10492 
   10493   const DeclAccessPair* getMatchingFunctionAccessPair() const {
   10494     if (Matches.size() != 1) return nullptr;
   10495     return &Matches[0].first;
   10496   }
   10497 };
   10498 }
   10499 
   10500 /// ResolveAddressOfOverloadedFunction - Try to resolve the address of
   10501 /// an overloaded function (C++ [over.over]), where @p From is an
   10502 /// expression with overloaded function type and @p ToType is the type
   10503 /// we're trying to resolve to. For example:
   10504 ///
   10505 /// @code
   10506 /// int f(double);
   10507 /// int f(int);
   10508 ///
   10509 /// int (*pfd)(double) = f; // selects f(double)
   10510 /// @endcode
   10511 ///
   10512 /// This routine returns the resulting FunctionDecl if it could be
   10513 /// resolved, and NULL otherwise. When @p Complain is true, this
   10514 /// routine will emit diagnostics if there is an error.
   10515 FunctionDecl *
   10516 Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
   10517                                          QualType TargetType,
   10518                                          bool Complain,
   10519                                          DeclAccessPair &FoundResult,
   10520                                          bool *pHadMultipleCandidates) {
   10521   assert(AddressOfExpr->getType() == Context.OverloadTy);
   10522 
   10523   AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
   10524                                      Complain);
   10525   int NumMatches = Resolver.getNumMatches();
   10526   FunctionDecl *Fn = nullptr;
   10527   bool ShouldComplain = Complain && !Resolver.hasComplained();
   10528   if (NumMatches == 0 && ShouldComplain) {
   10529     if (Resolver.IsInvalidFormOfPointerToMemberFunction())
   10530       Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
   10531     else
   10532       Resolver.ComplainNoMatchesFound();
   10533   }
   10534   else if (NumMatches > 1 && ShouldComplain)
   10535     Resolver.ComplainMultipleMatchesFound();
   10536   else if (NumMatches == 1) {
   10537     Fn = Resolver.getMatchingFunctionDecl();
   10538     assert(Fn);
   10539     FoundResult = *Resolver.getMatchingFunctionAccessPair();
   10540     if (Complain) {
   10541       if (Resolver.IsStaticMemberFunctionFromBoundPointer())
   10542         Resolver.ComplainIsStaticMemberFunctionFromBoundPointer();
   10543       else
   10544         CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
   10545     }
   10546   }
   10547 
   10548   if (pHadMultipleCandidates)
   10549     *pHadMultipleCandidates = Resolver.hadMultipleCandidates();
   10550   return Fn;
   10551 }
   10552 
   10553 /// \brief Given an expression that refers to an overloaded function, try to
   10554 /// resolve that overloaded function expression down to a single function.
   10555 ///
   10556 /// This routine can only resolve template-ids that refer to a single function
   10557 /// template, where that template-id refers to a single template whose template
   10558 /// arguments are either provided by the template-id or have defaults,
   10559 /// as described in C++0x [temp.arg.explicit]p3.
   10560 ///
   10561 /// If no template-ids are found, no diagnostics are emitted and NULL is
   10562 /// returned.
   10563 FunctionDecl *
   10564 Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
   10565                                                   bool Complain,
   10566                                                   DeclAccessPair *FoundResult) {
   10567   // C++ [over.over]p1:
   10568   //   [...] [Note: any redundant set of parentheses surrounding the
   10569   //   overloaded function name is ignored (5.1). ]
   10570   // C++ [over.over]p1:
   10571   //   [...] The overloaded function name can be preceded by the &
   10572   //   operator.
   10573 
   10574   // If we didn't actually find any template-ids, we're done.
   10575   if (!ovl->hasExplicitTemplateArgs())
   10576     return nullptr;
   10577 
   10578   TemplateArgumentListInfo ExplicitTemplateArgs;
   10579   ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
   10580   TemplateSpecCandidateSet FailedCandidates(ovl->getNameLoc());
   10581 
   10582   // Look through all of the overloaded functions, searching for one
   10583   // whose type matches exactly.
   10584   FunctionDecl *Matched = nullptr;
   10585   for (UnresolvedSetIterator I = ovl->decls_begin(),
   10586          E = ovl->decls_end(); I != E; ++I) {
   10587     // C++0x [temp.arg.explicit]p3:
   10588     //   [...] In contexts where deduction is done and fails, or in contexts
   10589     //   where deduction is not done, if a template argument list is
   10590     //   specified and it, along with any default template arguments,
   10591     //   identifies a single function template specialization, then the
   10592     //   template-id is an lvalue for the function template specialization.
   10593     FunctionTemplateDecl *FunctionTemplate
   10594       = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
   10595 
   10596     // C++ [over.over]p2:
   10597     //   If the name is a function template, template argument deduction is
   10598     //   done (14.8.2.2), and if the argument deduction succeeds, the
   10599     //   resulting template argument list is used to generate a single
   10600     //   function template specialization, which is added to the set of
   10601     //   overloaded functions considered.
   10602     FunctionDecl *Specialization = nullptr;
   10603     TemplateDeductionInfo Info(FailedCandidates.getLocation());
   10604     if (TemplateDeductionResult Result
   10605           = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
   10606                                     Specialization, Info,
   10607                                     /*InOverloadResolution=*/true)) {
   10608       // Make a note of the failed deduction for diagnostics.
   10609       // TODO: Actually use the failed-deduction info?
   10610       FailedCandidates.addCandidate()
   10611           .set(FunctionTemplate->getTemplatedDecl(),
   10612                MakeDeductionFailureInfo(Context, Result, Info));
   10613       continue;
   10614     }
   10615 
   10616     assert(Specialization && "no specialization and no error?");
   10617 
   10618     // Multiple matches; we can't resolve to a single declaration.
   10619     if (Matched) {
   10620       if (Complain) {
   10621         Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
   10622           << ovl->getName();
   10623         NoteAllOverloadCandidates(ovl);
   10624       }
   10625       return nullptr;
   10626     }
   10627 
   10628     Matched = Specialization;
   10629     if (FoundResult) *FoundResult = I.getPair();
   10630   }
   10631 
   10632   if (Matched && getLangOpts().CPlusPlus14 &&
   10633       Matched->getReturnType()->isUndeducedType() &&
   10634       DeduceReturnType(Matched, ovl->getExprLoc(), Complain))
   10635     return nullptr;
   10636 
   10637   return Matched;
   10638 }
   10639 
   10640 
   10641 
   10642 
   10643 // Resolve and fix an overloaded expression that can be resolved
   10644 // because it identifies a single function template specialization.
   10645 //
   10646 // Last three arguments should only be supplied if Complain = true
   10647 //
   10648 // Return true if it was logically possible to so resolve the
   10649 // expression, regardless of whether or not it succeeded.  Always
   10650 // returns true if 'complain' is set.
   10651 bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
   10652                       ExprResult &SrcExpr, bool doFunctionPointerConverion,
   10653                       bool complain, SourceRange OpRangeForComplaining,
   10654                                            QualType DestTypeForComplaining,
   10655                                             unsigned DiagIDForComplaining) {
   10656   assert(SrcExpr.get()->getType() == Context.OverloadTy);
   10657 
   10658   OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
   10659 
   10660   DeclAccessPair found;
   10661   ExprResult SingleFunctionExpression;
   10662   if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
   10663                            ovl.Expression, /*complain*/ false, &found)) {
   10664     if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getLocStart())) {
   10665       SrcExpr = ExprError();
   10666       return true;
   10667     }
   10668 
   10669     // It is only correct to resolve to an instance method if we're
   10670     // resolving a form that's permitted to be a pointer to member.
   10671     // Otherwise we'll end up making a bound member expression, which
   10672     // is illegal in all the contexts we resolve like this.
   10673     if (!ovl.HasFormOfMemberPointer &&
   10674         isa<CXXMethodDecl>(fn) &&
   10675         cast<CXXMethodDecl>(fn)->isInstance()) {
   10676       if (!complain) return false;
   10677 
   10678       Diag(ovl.Expression->getExprLoc(),
   10679            diag::err_bound_member_function)
   10680         << 0 << ovl.Expression->getSourceRange();
   10681 
   10682       // TODO: I believe we only end up here if there's a mix of
   10683       // static and non-static candidates (otherwise the expression
   10684       // would have 'bound member' type, not 'overload' type).
   10685       // Ideally we would note which candidate was chosen and why
   10686       // the static candidates were rejected.
   10687       SrcExpr = ExprError();
   10688       return true;
   10689     }
   10690 
   10691     // Fix the expression to refer to 'fn'.
   10692     SingleFunctionExpression =
   10693         FixOverloadedFunctionReference(SrcExpr.get(), found, fn);
   10694 
   10695     // If desired, do function-to-pointer decay.
   10696     if (doFunctionPointerConverion) {
   10697       SingleFunctionExpression =
   10698         DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.get());
   10699       if (SingleFunctionExpression.isInvalid()) {
   10700         SrcExpr = ExprError();
   10701         return true;
   10702       }
   10703     }
   10704   }
   10705 
   10706   if (!SingleFunctionExpression.isUsable()) {
   10707     if (complain) {
   10708       Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
   10709         << ovl.Expression->getName()
   10710         << DestTypeForComplaining
   10711         << OpRangeForComplaining
   10712         << ovl.Expression->getQualifierLoc().getSourceRange();
   10713       NoteAllOverloadCandidates(SrcExpr.get());
   10714 
   10715       SrcExpr = ExprError();
   10716       return true;
   10717     }
   10718 
   10719     return false;
   10720   }
   10721 
   10722   SrcExpr = SingleFunctionExpression;
   10723   return true;
   10724 }
   10725 
   10726 /// \brief Add a single candidate to the overload set.
   10727 static void AddOverloadedCallCandidate(Sema &S,
   10728                                        DeclAccessPair FoundDecl,
   10729                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
   10730                                        ArrayRef<Expr *> Args,
   10731                                        OverloadCandidateSet &CandidateSet,
   10732                                        bool PartialOverloading,
   10733                                        bool KnownValid) {
   10734   NamedDecl *Callee = FoundDecl.getDecl();
   10735   if (isa<UsingShadowDecl>(Callee))
   10736     Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
   10737 
   10738   if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
   10739     if (ExplicitTemplateArgs) {
   10740       assert(!KnownValid && "Explicit template arguments?");
   10741       return;
   10742     }
   10743     S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet,
   10744                            /*SuppressUsedConversions=*/false,
   10745                            PartialOverloading);
   10746     return;
   10747   }
   10748 
   10749   if (FunctionTemplateDecl *FuncTemplate
   10750       = dyn_cast<FunctionTemplateDecl>(Callee)) {
   10751     S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
   10752                                    ExplicitTemplateArgs, Args, CandidateSet,
   10753                                    /*SuppressUsedConversions=*/false,
   10754                                    PartialOverloading);
   10755     return;
   10756   }
   10757 
   10758   assert(!KnownValid && "unhandled case in overloaded call candidate");
   10759 }
   10760 
   10761 /// \brief Add the overload candidates named by callee and/or found by argument
   10762 /// dependent lookup to the given overload set.
   10763 void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
   10764                                        ArrayRef<Expr *> Args,
   10765                                        OverloadCandidateSet &CandidateSet,
   10766                                        bool PartialOverloading) {
   10767 
   10768 #ifndef NDEBUG
   10769   // Verify that ArgumentDependentLookup is consistent with the rules
   10770   // in C++0x [basic.lookup.argdep]p3:
   10771   //
   10772   //   Let X be the lookup set produced by unqualified lookup (3.4.1)
   10773   //   and let Y be the lookup set produced by argument dependent
   10774   //   lookup (defined as follows). If X contains
   10775   //
   10776   //     -- a declaration of a class member, or
   10777   //
   10778   //     -- a block-scope function declaration that is not a
   10779   //        using-declaration, or
   10780   //
   10781   //     -- a declaration that is neither a function or a function
   10782   //        template
   10783   //
   10784   //   then Y is empty.
   10785 
   10786   if (ULE->requiresADL()) {
   10787     for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
   10788            E = ULE->decls_end(); I != E; ++I) {
   10789       assert(!(*I)->getDeclContext()->isRecord());
   10790       assert(isa<UsingShadowDecl>(*I) ||
   10791              !(*I)->getDeclContext()->isFunctionOrMethod());
   10792       assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
   10793     }
   10794   }
   10795 #endif
   10796 
   10797   // It would be nice to avoid this copy.
   10798   TemplateArgumentListInfo TABuffer;
   10799   TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
   10800   if (ULE->hasExplicitTemplateArgs()) {
   10801     ULE->copyTemplateArgumentsInto(TABuffer);
   10802     ExplicitTemplateArgs = &TABuffer;
   10803   }
   10804 
   10805   for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
   10806          E = ULE->decls_end(); I != E; ++I)
   10807     AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
   10808                                CandidateSet, PartialOverloading,
   10809                                /*KnownValid*/ true);
   10810 
   10811   if (ULE->requiresADL())
   10812     AddArgumentDependentLookupCandidates(ULE->getName(), ULE->getExprLoc(),
   10813                                          Args, ExplicitTemplateArgs,
   10814                                          CandidateSet, PartialOverloading);
   10815 }
   10816 
   10817 /// Determine whether a declaration with the specified name could be moved into
   10818 /// a different namespace.
   10819 static bool canBeDeclaredInNamespace(const DeclarationName &Name) {
   10820   switch (Name.getCXXOverloadedOperator()) {
   10821   case OO_New: case OO_Array_New:
   10822   case OO_Delete: case OO_Array_Delete:
   10823     return false;
   10824 
   10825   default:
   10826     return true;
   10827   }
   10828 }
   10829 
   10830 /// Attempt to recover from an ill-formed use of a non-dependent name in a
   10831 /// template, where the non-dependent name was declared after the template
   10832 /// was defined. This is common in code written for a compilers which do not
   10833 /// correctly implement two-stage name lookup.
   10834 ///
   10835 /// Returns true if a viable candidate was found and a diagnostic was issued.
   10836 static bool
   10837 DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
   10838                        const CXXScopeSpec &SS, LookupResult &R,
   10839                        OverloadCandidateSet::CandidateSetKind CSK,
   10840                        TemplateArgumentListInfo *ExplicitTemplateArgs,
   10841                        ArrayRef<Expr *> Args,
   10842                        bool *DoDiagnoseEmptyLookup = nullptr) {
   10843   if (SemaRef.ActiveTemplateInstantiations.empty() || !SS.isEmpty())
   10844     return false;
   10845 
   10846   for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
   10847     if (DC->isTransparentContext())
   10848       continue;
   10849 
   10850     SemaRef.LookupQualifiedName(R, DC);
   10851 
   10852     if (!R.empty()) {
   10853       R.suppressDiagnostics();
   10854 
   10855       if (isa<CXXRecordDecl>(DC)) {
   10856         // Don't diagnose names we find in classes; we get much better
   10857         // diagnostics for these from DiagnoseEmptyLookup.
   10858         R.clear();
   10859         if (DoDiagnoseEmptyLookup)
   10860           *DoDiagnoseEmptyLookup = true;
   10861         return false;
   10862       }
   10863 
   10864       OverloadCandidateSet Candidates(FnLoc, CSK);
   10865       for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
   10866         AddOverloadedCallCandidate(SemaRef, I.getPair(),
   10867                                    ExplicitTemplateArgs, Args,
   10868                                    Candidates, false, /*KnownValid*/ false);
   10869 
   10870       OverloadCandidateSet::iterator Best;
   10871       if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) {
   10872         // No viable functions. Don't bother the user with notes for functions
   10873         // which don't work and shouldn't be found anyway.
   10874         R.clear();
   10875         return false;
   10876       }
   10877 
   10878       // Find the namespaces where ADL would have looked, and suggest
   10879       // declaring the function there instead.
   10880       Sema::AssociatedNamespaceSet AssociatedNamespaces;
   10881       Sema::AssociatedClassSet AssociatedClasses;
   10882       SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args,
   10883                                                  AssociatedNamespaces,
   10884                                                  AssociatedClasses);
   10885       Sema::AssociatedNamespaceSet SuggestedNamespaces;
   10886       if (canBeDeclaredInNamespace(R.getLookupName())) {
   10887         DeclContext *Std = SemaRef.getStdNamespace();
   10888         for (Sema::AssociatedNamespaceSet::iterator
   10889                it = AssociatedNamespaces.begin(),
   10890                end = AssociatedNamespaces.end(); it != end; ++it) {
   10891           // Never suggest declaring a function within namespace 'std'.
   10892           if (Std && Std->Encloses(*it))
   10893             continue;
   10894 
   10895           // Never suggest declaring a function within a namespace with a
   10896           // reserved name, like __gnu_cxx.
   10897           NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it);
   10898           if (NS &&
   10899               NS->getQualifiedNameAsString().find("__") != std::string::npos)
   10900             continue;
   10901 
   10902           SuggestedNamespaces.insert(*it);
   10903         }
   10904       }
   10905 
   10906       SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
   10907         << R.getLookupName();
   10908       if (SuggestedNamespaces.empty()) {
   10909         SemaRef.Diag(Best->Function->getLocation(),
   10910                      diag::note_not_found_by_two_phase_lookup)
   10911           << R.getLookupName() << 0;
   10912       } else if (SuggestedNamespaces.size() == 1) {
   10913         SemaRef.Diag(Best->Function->getLocation(),
   10914                      diag::note_not_found_by_two_phase_lookup)
   10915           << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
   10916       } else {
   10917         // FIXME: It would be useful to list the associated namespaces here,
   10918         // but the diagnostics infrastructure doesn't provide a way to produce
   10919         // a localized representation of a list of items.
   10920         SemaRef.Diag(Best->Function->getLocation(),
   10921                      diag::note_not_found_by_two_phase_lookup)
   10922           << R.getLookupName() << 2;
   10923       }
   10924 
   10925       // Try to recover by calling this function.
   10926       return true;
   10927     }
   10928 
   10929     R.clear();
   10930   }
   10931 
   10932   return false;
   10933 }
   10934 
   10935 /// Attempt to recover from ill-formed use of a non-dependent operator in a
   10936 /// template, where the non-dependent operator was declared after the template
   10937 /// was defined.
   10938 ///
   10939 /// Returns true if a viable candidate was found and a diagnostic was issued.
   10940 static bool
   10941 DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
   10942                                SourceLocation OpLoc,
   10943                                ArrayRef<Expr *> Args) {
   10944   DeclarationName OpName =
   10945     SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
   10946   LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
   10947   return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
   10948                                 OverloadCandidateSet::CSK_Operator,
   10949                                 /*ExplicitTemplateArgs=*/nullptr, Args);
   10950 }
   10951 
   10952 namespace {
   10953 class BuildRecoveryCallExprRAII {
   10954   Sema &SemaRef;
   10955 public:
   10956   BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) {
   10957     assert(SemaRef.IsBuildingRecoveryCallExpr == false);
   10958     SemaRef.IsBuildingRecoveryCallExpr = true;
   10959   }
   10960 
   10961   ~BuildRecoveryCallExprRAII() {
   10962     SemaRef.IsBuildingRecoveryCallExpr = false;
   10963   }
   10964 };
   10965 
   10966 }
   10967 
   10968 static std::unique_ptr<CorrectionCandidateCallback>
   10969 MakeValidator(Sema &SemaRef, MemberExpr *ME, size_t NumArgs,
   10970               bool HasTemplateArgs, bool AllowTypoCorrection) {
   10971   if (!AllowTypoCorrection)
   10972     return llvm::make_unique<NoTypoCorrectionCCC>();
   10973   return llvm::make_unique<FunctionCallFilterCCC>(SemaRef, NumArgs,
   10974                                                   HasTemplateArgs, ME);
   10975 }
   10976 
   10977 /// Attempts to recover from a call where no functions were found.
   10978 ///
   10979 /// Returns true if new candidates were found.
   10980 static ExprResult
   10981 BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
   10982                       UnresolvedLookupExpr *ULE,
   10983                       SourceLocation LParenLoc,
   10984                       MutableArrayRef<Expr *> Args,
   10985                       SourceLocation RParenLoc,
   10986                       bool EmptyLookup, bool AllowTypoCorrection) {
   10987   // Do not try to recover if it is already building a recovery call.
   10988   // This stops infinite loops for template instantiations like
   10989   //
   10990   // template <typename T> auto foo(T t) -> decltype(foo(t)) {}
   10991   // template <typename T> auto foo(T t) -> decltype(foo(&t)) {}
   10992   //
   10993   if (SemaRef.IsBuildingRecoveryCallExpr)
   10994     return ExprError();
   10995   BuildRecoveryCallExprRAII RCE(SemaRef);
   10996 
   10997   CXXScopeSpec SS;
   10998   SS.Adopt(ULE->getQualifierLoc());
   10999   SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();
   11000 
   11001   TemplateArgumentListInfo TABuffer;
   11002   TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
   11003   if (ULE->hasExplicitTemplateArgs()) {
   11004     ULE->copyTemplateArgumentsInto(TABuffer);
   11005     ExplicitTemplateArgs = &TABuffer;
   11006   }
   11007 
   11008   LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
   11009                  Sema::LookupOrdinaryName);
   11010   bool DoDiagnoseEmptyLookup = EmptyLookup;
   11011   if (!DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R,
   11012                               OverloadCandidateSet::CSK_Normal,
   11013                               ExplicitTemplateArgs, Args,
   11014                               &DoDiagnoseEmptyLookup) &&
   11015     (!DoDiagnoseEmptyLookup || SemaRef.DiagnoseEmptyLookup(
   11016         S, SS, R,
   11017         MakeValidator(SemaRef, dyn_cast<MemberExpr>(Fn), Args.size(),
   11018                       ExplicitTemplateArgs != nullptr, AllowTypoCorrection),
   11019         ExplicitTemplateArgs, Args)))
   11020     return ExprError();
   11021 
   11022   assert(!R.empty() && "lookup results empty despite recovery");
   11023 
   11024   // Build an implicit member call if appropriate.  Just drop the
   11025   // casts and such from the call, we don't really care.
   11026   ExprResult NewFn = ExprError();
   11027   if ((*R.begin())->isCXXClassMember())
   11028     NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R,
   11029                                                     ExplicitTemplateArgs, S);
   11030   else if (ExplicitTemplateArgs || TemplateKWLoc.isValid())
   11031     NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
   11032                                         ExplicitTemplateArgs);
   11033   else
   11034     NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
   11035 
   11036   if (NewFn.isInvalid())
   11037     return ExprError();
   11038 
   11039   // This shouldn't cause an infinite loop because we're giving it
   11040   // an expression with viable lookup results, which should never
   11041   // end up here.
   11042   return SemaRef.ActOnCallExpr(/*Scope*/ nullptr, NewFn.get(), LParenLoc,
   11043                                MultiExprArg(Args.data(), Args.size()),
   11044                                RParenLoc);
   11045 }
   11046 
   11047 /// \brief Constructs and populates an OverloadedCandidateSet from
   11048 /// the given function.
   11049 /// \returns true when an the ExprResult output parameter has been set.
   11050 bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn,
   11051                                   UnresolvedLookupExpr *ULE,
   11052                                   MultiExprArg Args,
   11053                                   SourceLocation RParenLoc,
   11054                                   OverloadCandidateSet *CandidateSet,
   11055                                   ExprResult *Result) {
   11056 #ifndef NDEBUG
   11057   if (ULE->requiresADL()) {
   11058     // To do ADL, we must have found an unqualified name.
   11059     assert(!ULE->getQualifier() && "qualified name with ADL");
   11060 
   11061     // We don't perform ADL for implicit declarations of builtins.
   11062     // Verify that this was correctly set up.
   11063     FunctionDecl *F;
   11064     if (ULE->decls_begin() + 1 == ULE->decls_end() &&
   11065         (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
   11066         F->getBuiltinID() && F->isImplicit())
   11067       llvm_unreachable("performing ADL for builtin");
   11068 
   11069     // We don't perform ADL in C.
   11070     assert(getLangOpts().CPlusPlus && "ADL enabled in C");
   11071   }
   11072 #endif
   11073 
   11074   UnbridgedCastsSet UnbridgedCasts;
   11075   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) {
   11076     *Result = ExprError();
   11077     return true;
   11078   }
   11079 
   11080   // Add the functions denoted by the callee to the set of candidate
   11081   // functions, including those from argument-dependent lookup.
   11082   AddOverloadedCallCandidates(ULE, Args, *CandidateSet);
   11083 
   11084   if (getLangOpts().MSVCCompat &&
   11085       CurContext->isDependentContext() && !isSFINAEContext() &&
   11086       (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
   11087 
   11088     OverloadCandidateSet::iterator Best;
   11089     if (CandidateSet->empty() ||
   11090         CandidateSet->BestViableFunction(*this, Fn->getLocStart(), Best) ==
   11091             OR_No_Viable_Function) {
   11092       // In Microsoft mode, if we are inside a template class member function then
   11093       // create a type dependent CallExpr. The goal is to postpone name lookup
   11094       // to instantiation time to be able to search into type dependent base
   11095       // classes.
   11096       CallExpr *CE = new (Context) CallExpr(
   11097           Context, Fn, Args, Context.DependentTy, VK_RValue, RParenLoc);
   11098       CE->setTypeDependent(true);
   11099       CE->setValueDependent(true);
   11100       CE->setInstantiationDependent(true);
   11101       *Result = CE;
   11102       return true;
   11103     }
   11104   }
   11105 
   11106   if (CandidateSet->empty())
   11107     return false;
   11108 
   11109   UnbridgedCasts.restore();
   11110   return false;
   11111 }
   11112 
   11113 /// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns
   11114 /// the completed call expression. If overload resolution fails, emits
   11115 /// diagnostics and returns ExprError()
   11116 static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
   11117                                            UnresolvedLookupExpr *ULE,
   11118                                            SourceLocation LParenLoc,
   11119                                            MultiExprArg Args,
   11120                                            SourceLocation RParenLoc,
   11121                                            Expr *ExecConfig,
   11122                                            OverloadCandidateSet *CandidateSet,
   11123                                            OverloadCandidateSet::iterator *Best,
   11124                                            OverloadingResult OverloadResult,
   11125                                            bool AllowTypoCorrection) {
   11126   if (CandidateSet->empty())
   11127     return BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc, Args,
   11128                                  RParenLoc, /*EmptyLookup=*/true,
   11129                                  AllowTypoCorrection);
   11130 
   11131   switch (OverloadResult) {
   11132   case OR_Success: {
   11133     FunctionDecl *FDecl = (*Best)->Function;
   11134     SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl);
   11135     if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc()))
   11136       return ExprError();
   11137     Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
   11138     return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
   11139                                          ExecConfig);
   11140   }
   11141 
   11142   case OR_No_Viable_Function: {
   11143     // Try to recover by looking for viable functions which the user might
   11144     // have meant to call.
   11145     ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc,
   11146                                                 Args, RParenLoc,
   11147                                                 /*EmptyLookup=*/false,
   11148                                                 AllowTypoCorrection);
   11149     if (!Recovery.isInvalid())
   11150       return Recovery;
   11151 
   11152     // If the user passes in a function that we can't take the address of, we
   11153     // generally end up emitting really bad error messages. Here, we attempt to
   11154     // emit better ones.
   11155     for (const Expr *Arg : Args) {
   11156       if (!Arg->getType()->isFunctionType())
   11157         continue;
   11158       if (auto *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts())) {
   11159         auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
   11160         if (FD &&
   11161             !SemaRef.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
   11162                                                        Arg->getExprLoc()))
   11163           return ExprError();
   11164       }
   11165     }
   11166 
   11167     SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_no_viable_function_in_call)
   11168         << ULE->getName() << Fn->getSourceRange();
   11169     CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates, Args);
   11170     break;
   11171   }
   11172 
   11173   case OR_Ambiguous:
   11174     SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_ambiguous_call)
   11175       << ULE->getName() << Fn->getSourceRange();
   11176     CandidateSet->NoteCandidates(SemaRef, OCD_ViableCandidates, Args);
   11177     break;
   11178 
   11179   case OR_Deleted: {
   11180     SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_deleted_call)
   11181       << (*Best)->Function->isDeleted()
   11182       << ULE->getName()
   11183       << SemaRef.getDeletedOrUnavailableSuffix((*Best)->Function)
   11184       << Fn->getSourceRange();
   11185     CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates, Args);
   11186 
   11187     // We emitted an error for the unvailable/deleted function call but keep
   11188     // the call in the AST.
   11189     FunctionDecl *FDecl = (*Best)->Function;
   11190     Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
   11191     return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
   11192                                          ExecConfig);
   11193   }
   11194   }
   11195 
   11196   // Overload resolution failed.
   11197   return ExprError();
   11198 }
   11199 
   11200 /// BuildOverloadedCallExpr - Given the call expression that calls Fn
   11201 /// (which eventually refers to the declaration Func) and the call
   11202 /// arguments Args/NumArgs, attempt to resolve the function call down
   11203 /// to a specific function. If overload resolution succeeds, returns
   11204 /// the call expression produced by overload resolution.
   11205 /// Otherwise, emits diagnostics and returns ExprError.
   11206 ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn,
   11207                                          UnresolvedLookupExpr *ULE,
   11208                                          SourceLocation LParenLoc,
   11209                                          MultiExprArg Args,
   11210                                          SourceLocation RParenLoc,
   11211                                          Expr *ExecConfig,
   11212                                          bool AllowTypoCorrection) {
   11213   OverloadCandidateSet CandidateSet(Fn->getExprLoc(),
   11214                                     OverloadCandidateSet::CSK_Normal);
   11215   ExprResult result;
   11216 
   11217   if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet,
   11218                              &result))
   11219     return result;
   11220 
   11221   OverloadCandidateSet::iterator Best;
   11222   OverloadingResult OverloadResult =
   11223       CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best);
   11224 
   11225   return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args,
   11226                                   RParenLoc, ExecConfig, &CandidateSet,
   11227                                   &Best, OverloadResult,
   11228                                   AllowTypoCorrection);
   11229 }
   11230 
   11231 static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
   11232   return Functions.size() > 1 ||
   11233     (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
   11234 }
   11235 
   11236 /// \brief Create a unary operation that may resolve to an overloaded
   11237 /// operator.
   11238 ///
   11239 /// \param OpLoc The location of the operator itself (e.g., '*').
   11240 ///
   11241 /// \param Opc The UnaryOperatorKind that describes this operator.
   11242 ///
   11243 /// \param Fns The set of non-member functions that will be
   11244 /// considered by overload resolution. The caller needs to build this
   11245 /// set based on the context using, e.g.,
   11246 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
   11247 /// set should not contain any member functions; those will be added
   11248 /// by CreateOverloadedUnaryOp().
   11249 ///
   11250 /// \param Input The input argument.
   11251 ExprResult
   11252 Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc,
   11253                               const UnresolvedSetImpl &Fns,
   11254                               Expr *Input) {
   11255   OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
   11256   assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
   11257   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
   11258   // TODO: provide better source location info.
   11259   DeclarationNameInfo OpNameInfo(OpName, OpLoc);
   11260 
   11261   if (checkPlaceholderForOverload(*this, Input))
   11262     return ExprError();
   11263 
   11264   Expr *Args[2] = { Input, nullptr };
   11265   unsigned NumArgs = 1;
   11266 
   11267   // For post-increment and post-decrement, add the implicit '0' as
   11268   // the second argument, so that we know this is a post-increment or
   11269   // post-decrement.
   11270   if (Opc == UO_PostInc || Opc == UO_PostDec) {
   11271     llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
   11272     Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
   11273                                      SourceLocation());
   11274     NumArgs = 2;
   11275   }
   11276 
   11277   ArrayRef<Expr *> ArgsArray(Args, NumArgs);
   11278 
   11279   if (Input->isTypeDependent()) {
   11280     if (Fns.empty())
   11281       return new (Context) UnaryOperator(Input, Opc, Context.DependentTy,
   11282                                          VK_RValue, OK_Ordinary, OpLoc);
   11283 
   11284     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
   11285     UnresolvedLookupExpr *Fn
   11286       = UnresolvedLookupExpr::Create(Context, NamingClass,
   11287                                      NestedNameSpecifierLoc(), OpNameInfo,
   11288                                      /*ADL*/ true, IsOverloaded(Fns),
   11289                                      Fns.begin(), Fns.end());
   11290     return new (Context)
   11291         CXXOperatorCallExpr(Context, Op, Fn, ArgsArray, Context.DependentTy,
   11292                             VK_RValue, OpLoc, false);
   11293   }
   11294 
   11295   // Build an empty overload set.
   11296   OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
   11297 
   11298   // Add the candidates from the given function set.
   11299   AddFunctionCandidates(Fns, ArgsArray, CandidateSet);
   11300 
   11301   // Add operator candidates that are member functions.
   11302   AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
   11303 
   11304   // Add candidates from ADL.
   11305   AddArgumentDependentLookupCandidates(OpName, OpLoc, ArgsArray,
   11306                                        /*ExplicitTemplateArgs*/nullptr,
   11307                                        CandidateSet);
   11308 
   11309   // Add builtin operator candidates.
   11310   AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
   11311 
   11312   bool HadMultipleCandidates = (CandidateSet.size() > 1);
   11313 
   11314   // Perform overload resolution.
   11315   OverloadCandidateSet::iterator Best;
   11316   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
   11317   case OR_Success: {
   11318     // We found a built-in operator or an overloaded operator.
   11319     FunctionDecl *FnDecl = Best->Function;
   11320 
   11321     if (FnDecl) {
   11322       // We matched an overloaded operator. Build a call to that
   11323       // operator.
   11324 
   11325       // Convert the arguments.
   11326       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
   11327         CheckMemberOperatorAccess(OpLoc, Args[0], nullptr, Best->FoundDecl);
   11328 
   11329         ExprResult InputRes =
   11330           PerformObjectArgumentInitialization(Input, /*Qualifier=*/nullptr,
   11331                                               Best->FoundDecl, Method);
   11332         if (InputRes.isInvalid())
   11333           return ExprError();
   11334         Input = InputRes.get();
   11335       } else {
   11336         // Convert the arguments.
   11337         ExprResult InputInit
   11338           = PerformCopyInitialization(InitializedEntity::InitializeParameter(
   11339                                                       Context,
   11340                                                       FnDecl->getParamDecl(0)),
   11341                                       SourceLocation(),
   11342                                       Input);
   11343         if (InputInit.isInvalid())
   11344           return ExprError();
   11345         Input = InputInit.get();
   11346       }
   11347 
   11348       // Build the actual expression node.
   11349       ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl,
   11350                                                 HadMultipleCandidates, OpLoc);
   11351       if (FnExpr.isInvalid())
   11352         return ExprError();
   11353 
   11354       // Determine the result type.
   11355       QualType ResultTy = FnDecl->getReturnType();
   11356       ExprValueKind VK = Expr::getValueKindForType(ResultTy);
   11357       ResultTy = ResultTy.getNonLValueExprType(Context);
   11358 
   11359       Args[0] = Input;
   11360       CallExpr *TheCall =
   11361         new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.get(), ArgsArray,
   11362                                           ResultTy, VK, OpLoc, false);
   11363 
   11364       if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, FnDecl))
   11365         return ExprError();
   11366 
   11367       return MaybeBindToTemporary(TheCall);
   11368     } else {
   11369       // We matched a built-in operator. Convert the arguments, then
   11370       // break out so that we will build the appropriate built-in
   11371       // operator node.
   11372       ExprResult InputRes =
   11373         PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
   11374                                   Best->Conversions[0], AA_Passing);
   11375       if (InputRes.isInvalid())
   11376         return ExprError();
   11377       Input = InputRes.get();
   11378       break;
   11379     }
   11380   }
   11381 
   11382   case OR_No_Viable_Function:
   11383     // This is an erroneous use of an operator which can be overloaded by
   11384     // a non-member function. Check for non-member operators which were
   11385     // defined too late to be candidates.
   11386     if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray))
   11387       // FIXME: Recover by calling the found function.
   11388       return ExprError();
   11389 
   11390     // No viable function; fall through to handling this as a
   11391     // built-in operator, which will produce an error message for us.
   11392     break;
   11393 
   11394   case OR_Ambiguous:
   11395     Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
   11396         << UnaryOperator::getOpcodeStr(Opc)
   11397         << Input->getType()
   11398         << Input->getSourceRange();
   11399     CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, ArgsArray,
   11400                                 UnaryOperator::getOpcodeStr(Opc), OpLoc);
   11401     return ExprError();
   11402 
   11403   case OR_Deleted:
   11404     Diag(OpLoc, diag::err_ovl_deleted_oper)
   11405       << Best->Function->isDeleted()
   11406       << UnaryOperator::getOpcodeStr(Opc)
   11407       << getDeletedOrUnavailableSuffix(Best->Function)
   11408       << Input->getSourceRange();
   11409     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, ArgsArray,
   11410                                 UnaryOperator::getOpcodeStr(Opc), OpLoc);
   11411     return ExprError();
   11412   }
   11413 
   11414   // Either we found no viable overloaded operator or we matched a
   11415   // built-in operator. In either case, fall through to trying to
   11416   // build a built-in operation.
   11417   return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
   11418 }
   11419 
   11420 /// \brief Create a binary operation that may resolve to an overloaded
   11421 /// operator.
   11422 ///
   11423 /// \param OpLoc The location of the operator itself (e.g., '+').
   11424 ///
   11425 /// \param Opc The BinaryOperatorKind that describes this operator.
   11426 ///
   11427 /// \param Fns The set of non-member functions that will be
   11428 /// considered by overload resolution. The caller needs to build this
   11429 /// set based on the context using, e.g.,
   11430 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
   11431 /// set should not contain any member functions; those will be added
   11432 /// by CreateOverloadedBinOp().
   11433 ///
   11434 /// \param LHS Left-hand argument.
   11435 /// \param RHS Right-hand argument.
   11436 ExprResult
   11437 Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
   11438                             BinaryOperatorKind Opc,
   11439                             const UnresolvedSetImpl &Fns,
   11440                             Expr *LHS, Expr *RHS) {
   11441   Expr *Args[2] = { LHS, RHS };
   11442   LHS=RHS=nullptr; // Please use only Args instead of LHS/RHS couple
   11443 
   11444   OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
   11445   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
   11446 
   11447   // If either side is type-dependent, create an appropriate dependent
   11448   // expression.
   11449   if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
   11450     if (Fns.empty()) {
   11451       // If there are no functions to store, just build a dependent
   11452       // BinaryOperator or CompoundAssignment.
   11453       if (Opc <= BO_Assign || Opc > BO_OrAssign)
   11454         return new (Context) BinaryOperator(
   11455             Args[0], Args[1], Opc, Context.DependentTy, VK_RValue, OK_Ordinary,
   11456             OpLoc, FPFeatures.fp_contract);
   11457 
   11458       return new (Context) CompoundAssignOperator(
   11459           Args[0], Args[1], Opc, Context.DependentTy, VK_LValue, OK_Ordinary,
   11460           Context.DependentTy, Context.DependentTy, OpLoc,
   11461           FPFeatures.fp_contract);
   11462     }
   11463 
   11464     // FIXME: save results of ADL from here?
   11465     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
   11466     // TODO: provide better source location info in DNLoc component.
   11467     DeclarationNameInfo OpNameInfo(OpName, OpLoc);
   11468     UnresolvedLookupExpr *Fn
   11469       = UnresolvedLookupExpr::Create(Context, NamingClass,
   11470                                      NestedNameSpecifierLoc(), OpNameInfo,
   11471                                      /*ADL*/ true, IsOverloaded(Fns),
   11472                                      Fns.begin(), Fns.end());
   11473     return new (Context)
   11474         CXXOperatorCallExpr(Context, Op, Fn, Args, Context.DependentTy,
   11475                             VK_RValue, OpLoc, FPFeatures.fp_contract);
   11476   }
   11477 
   11478   // Always do placeholder-like conversions on the RHS.
   11479   if (checkPlaceholderForOverload(*this, Args[1]))
   11480     return ExprError();
   11481 
   11482   // Do placeholder-like conversion on the LHS; note that we should
   11483   // not get here with a PseudoObject LHS.
   11484   assert(Args[0]->getObjectKind() != OK_ObjCProperty);
   11485   if (checkPlaceholderForOverload(*this, Args[0]))
   11486     return ExprError();
   11487 
   11488   // If this is the assignment operator, we only perform overload resolution
   11489   // if the left-hand side is a class or enumeration type. This is actually
   11490   // a hack. The standard requires that we do overload resolution between the
   11491   // various built-in candidates, but as DR507 points out, this can lead to
   11492   // problems. So we do it this way, which pretty much follows what GCC does.
   11493   // Note that we go the traditional code path for compound assignment forms.
   11494   if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
   11495     return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
   11496 
   11497   // If this is the .* operator, which is not overloadable, just
   11498   // create a built-in binary operator.
   11499   if (Opc == BO_PtrMemD)
   11500     return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
   11501 
   11502   // Build an empty overload set.
   11503   OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
   11504 
   11505   // Add the candidates from the given function set.
   11506   AddFunctionCandidates(Fns, Args, CandidateSet);
   11507 
   11508   // Add operator candidates that are member functions.
   11509   AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet);
   11510 
   11511   // Add candidates from ADL. Per [over.match.oper]p2, this lookup is not
   11512   // performed for an assignment operator (nor for operator[] nor operator->,
   11513   // which don't get here).
   11514   if (Opc != BO_Assign)
   11515     AddArgumentDependentLookupCandidates(OpName, OpLoc, Args,
   11516                                          /*ExplicitTemplateArgs*/ nullptr,
   11517                                          CandidateSet);
   11518 
   11519   // Add builtin operator candidates.
   11520   AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet);
   11521 
   11522   bool HadMultipleCandidates = (CandidateSet.size() > 1);
   11523 
   11524   // Perform overload resolution.
   11525   OverloadCandidateSet::iterator Best;
   11526   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
   11527     case OR_Success: {
   11528       // We found a built-in operator or an overloaded operator.
   11529       FunctionDecl *FnDecl = Best->Function;
   11530 
   11531       if (FnDecl) {
   11532         // We matched an overloaded operator. Build a call to that
   11533         // operator.
   11534 
   11535         // Convert the arguments.
   11536         if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
   11537           // Best->Access is only meaningful for class members.
   11538           CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
   11539 
   11540           ExprResult Arg1 =
   11541             PerformCopyInitialization(
   11542               InitializedEntity::InitializeParameter(Context,
   11543                                                      FnDecl->getParamDecl(0)),
   11544               SourceLocation(), Args[1]);
   11545           if (Arg1.isInvalid())
   11546             return ExprError();
   11547 
   11548           ExprResult Arg0 =
   11549             PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
   11550                                                 Best->FoundDecl, Method);
   11551           if (Arg0.isInvalid())
   11552             return ExprError();
   11553           Args[0] = Arg0.getAs<Expr>();
   11554           Args[1] = RHS = Arg1.getAs<Expr>();
   11555         } else {
   11556           // Convert the arguments.
   11557           ExprResult Arg0 = PerformCopyInitialization(
   11558             InitializedEntity::InitializeParameter(Context,
   11559                                                    FnDecl->getParamDecl(0)),
   11560             SourceLocation(), Args[0]);
   11561           if (Arg0.isInvalid())
   11562             return ExprError();
   11563 
   11564           ExprResult Arg1 =
   11565             PerformCopyInitialization(
   11566               InitializedEntity::InitializeParameter(Context,
   11567                                                      FnDecl->getParamDecl(1)),
   11568               SourceLocation(), Args[1]);
   11569           if (Arg1.isInvalid())
   11570             return ExprError();
   11571           Args[0] = LHS = Arg0.getAs<Expr>();
   11572           Args[1] = RHS = Arg1.getAs<Expr>();
   11573         }
   11574 
   11575         // Build the actual expression node.
   11576         ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
   11577                                                   Best->FoundDecl,
   11578                                                   HadMultipleCandidates, OpLoc);
   11579         if (FnExpr.isInvalid())
   11580           return ExprError();
   11581 
   11582         // Determine the result type.
   11583         QualType ResultTy = FnDecl->getReturnType();
   11584         ExprValueKind VK = Expr::getValueKindForType(ResultTy);
   11585         ResultTy = ResultTy.getNonLValueExprType(Context);
   11586 
   11587         CXXOperatorCallExpr *TheCall =
   11588           new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.get(),
   11589                                             Args, ResultTy, VK, OpLoc,
   11590                                             FPFeatures.fp_contract);
   11591 
   11592         if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall,
   11593                                 FnDecl))
   11594           return ExprError();
   11595 
   11596         ArrayRef<const Expr *> ArgsArray(Args, 2);
   11597         // Cut off the implicit 'this'.
   11598         if (isa<CXXMethodDecl>(FnDecl))
   11599           ArgsArray = ArgsArray.slice(1);
   11600 
   11601         // Check for a self move.
   11602         if (Op == OO_Equal)
   11603           DiagnoseSelfMove(Args[0], Args[1], OpLoc);
   11604 
   11605         checkCall(FnDecl, nullptr, ArgsArray, isa<CXXMethodDecl>(FnDecl), OpLoc,
   11606                   TheCall->getSourceRange(), VariadicDoesNotApply);
   11607 
   11608         return MaybeBindToTemporary(TheCall);
   11609       } else {
   11610         // We matched a built-in operator. Convert the arguments, then
   11611         // break out so that we will build the appropriate built-in
   11612         // operator node.
   11613         ExprResult ArgsRes0 =
   11614           PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
   11615                                     Best->Conversions[0], AA_Passing);
   11616         if (ArgsRes0.isInvalid())
   11617           return ExprError();
   11618         Args[0] = ArgsRes0.get();
   11619 
   11620         ExprResult ArgsRes1 =
   11621           PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
   11622                                     Best->Conversions[1], AA_Passing);
   11623         if (ArgsRes1.isInvalid())
   11624           return ExprError();
   11625         Args[1] = ArgsRes1.get();
   11626         break;
   11627       }
   11628     }
   11629 
   11630     case OR_No_Viable_Function: {
   11631       // C++ [over.match.oper]p9:
   11632       //   If the operator is the operator , [...] and there are no
   11633       //   viable functions, then the operator is assumed to be the
   11634       //   built-in operator and interpreted according to clause 5.
   11635       if (Opc == BO_Comma)
   11636         break;
   11637 
   11638       // For class as left operand for assignment or compound assigment
   11639       // operator do not fall through to handling in built-in, but report that
   11640       // no overloaded assignment operator found
   11641       ExprResult Result = ExprError();
   11642       if (Args[0]->getType()->isRecordType() &&
   11643           Opc >= BO_Assign && Opc <= BO_OrAssign) {
   11644         Diag(OpLoc,  diag::err_ovl_no_viable_oper)
   11645              << BinaryOperator::getOpcodeStr(Opc)
   11646              << Args[0]->getSourceRange() << Args[1]->getSourceRange();
   11647         if (Args[0]->getType()->isIncompleteType()) {
   11648           Diag(OpLoc, diag::note_assign_lhs_incomplete)
   11649             << Args[0]->getType()
   11650             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
   11651         }
   11652       } else {
   11653         // This is an erroneous use of an operator which can be overloaded by
   11654         // a non-member function. Check for non-member operators which were
   11655         // defined too late to be candidates.
   11656         if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args))
   11657           // FIXME: Recover by calling the found function.
   11658           return ExprError();
   11659 
   11660         // No viable function; try to create a built-in operation, which will
   11661         // produce an error. Then, show the non-viable candidates.
   11662         Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
   11663       }
   11664       assert(Result.isInvalid() &&
   11665              "C++ binary operator overloading is missing candidates!");
   11666       if (Result.isInvalid())
   11667         CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
   11668                                     BinaryOperator::getOpcodeStr(Opc), OpLoc);
   11669       return Result;
   11670     }
   11671 
   11672     case OR_Ambiguous:
   11673       Diag(OpLoc,  diag::err_ovl_ambiguous_oper_binary)
   11674           << BinaryOperator::getOpcodeStr(Opc)
   11675           << Args[0]->getType() << Args[1]->getType()
   11676           << Args[0]->getSourceRange() << Args[1]->getSourceRange();
   11677       CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
   11678                                   BinaryOperator::getOpcodeStr(Opc), OpLoc);
   11679       return ExprError();
   11680 
   11681     case OR_Deleted:
   11682       if (isImplicitlyDeleted(Best->Function)) {
   11683         CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
   11684         Diag(OpLoc, diag::err_ovl_deleted_special_oper)
   11685           << Context.getRecordType(Method->getParent())
   11686           << getSpecialMember(Method);
   11687 
   11688         // The user probably meant to call this special member. Just
   11689         // explain why it's deleted.
   11690         NoteDeletedFunction(Method);
   11691         return ExprError();
   11692       } else {
   11693         Diag(OpLoc, diag::err_ovl_deleted_oper)
   11694           << Best->Function->isDeleted()
   11695           << BinaryOperator::getOpcodeStr(Opc)
   11696           << getDeletedOrUnavailableSuffix(Best->Function)
   11697           << Args[0]->getSourceRange() << Args[1]->getSourceRange();
   11698       }
   11699       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
   11700                                   BinaryOperator::getOpcodeStr(Opc), OpLoc);
   11701       return ExprError();
   11702   }
   11703 
   11704   // We matched a built-in operator; build it.
   11705   return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
   11706 }
   11707 
   11708 ExprResult
   11709 Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
   11710                                          SourceLocation RLoc,
   11711                                          Expr *Base, Expr *Idx) {
   11712   Expr *Args[2] = { Base, Idx };
   11713   DeclarationName OpName =
   11714       Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
   11715 
   11716   // If either side is type-dependent, create an appropriate dependent
   11717   // expression.
   11718   if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
   11719 
   11720     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
   11721     // CHECKME: no 'operator' keyword?
   11722     DeclarationNameInfo OpNameInfo(OpName, LLoc);
   11723     OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
   11724     UnresolvedLookupExpr *Fn
   11725       = UnresolvedLookupExpr::Create(Context, NamingClass,
   11726                                      NestedNameSpecifierLoc(), OpNameInfo,
   11727                                      /*ADL*/ true, /*Overloaded*/ false,
   11728                                      UnresolvedSetIterator(),
   11729                                      UnresolvedSetIterator());
   11730     // Can't add any actual overloads yet
   11731 
   11732     return new (Context)
   11733         CXXOperatorCallExpr(Context, OO_Subscript, Fn, Args,
   11734                             Context.DependentTy, VK_RValue, RLoc, false);
   11735   }
   11736 
   11737   // Handle placeholders on both operands.
   11738   if (checkPlaceholderForOverload(*this, Args[0]))
   11739     return ExprError();
   11740   if (checkPlaceholderForOverload(*this, Args[1]))
   11741     return ExprError();
   11742 
   11743   // Build an empty overload set.
   11744   OverloadCandidateSet CandidateSet(LLoc, OverloadCandidateSet::CSK_Operator);
   11745 
   11746   // Subscript can only be overloaded as a member function.
   11747 
   11748   // Add operator candidates that are member functions.
   11749   AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
   11750 
   11751   // Add builtin operator candidates.
   11752   AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
   11753 
   11754   bool HadMultipleCandidates = (CandidateSet.size() > 1);
   11755 
   11756   // Perform overload resolution.
   11757   OverloadCandidateSet::iterator Best;
   11758   switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
   11759     case OR_Success: {
   11760       // We found a built-in operator or an overloaded operator.
   11761       FunctionDecl *FnDecl = Best->Function;
   11762 
   11763       if (FnDecl) {
   11764         // We matched an overloaded operator. Build a call to that
   11765         // operator.
   11766 
   11767         CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
   11768 
   11769         // Convert the arguments.
   11770         CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
   11771         ExprResult Arg0 =
   11772           PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
   11773                                               Best->FoundDecl, Method);
   11774         if (Arg0.isInvalid())
   11775           return ExprError();
   11776         Args[0] = Arg0.get();
   11777 
   11778         // Convert the arguments.
   11779         ExprResult InputInit
   11780           = PerformCopyInitialization(InitializedEntity::InitializeParameter(
   11781                                                       Context,
   11782                                                       FnDecl->getParamDecl(0)),
   11783                                       SourceLocation(),
   11784                                       Args[1]);
   11785         if (InputInit.isInvalid())
   11786           return ExprError();
   11787 
   11788         Args[1] = InputInit.getAs<Expr>();
   11789 
   11790         // Build the actual expression node.
   11791         DeclarationNameInfo OpLocInfo(OpName, LLoc);
   11792         OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
   11793         ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
   11794                                                   Best->FoundDecl,
   11795                                                   HadMultipleCandidates,
   11796                                                   OpLocInfo.getLoc(),
   11797                                                   OpLocInfo.getInfo());
   11798         if (FnExpr.isInvalid())
   11799           return ExprError();
   11800 
   11801         // Determine the result type
   11802         QualType ResultTy = FnDecl->getReturnType();
   11803         ExprValueKind VK = Expr::getValueKindForType(ResultTy);
   11804         ResultTy = ResultTy.getNonLValueExprType(Context);
   11805 
   11806         CXXOperatorCallExpr *TheCall =
   11807           new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
   11808                                             FnExpr.get(), Args,
   11809                                             ResultTy, VK, RLoc,
   11810                                             false);
   11811 
   11812         if (CheckCallReturnType(FnDecl->getReturnType(), LLoc, TheCall, FnDecl))
   11813           return ExprError();
   11814 
   11815         return MaybeBindToTemporary(TheCall);
   11816       } else {
   11817         // We matched a built-in operator. Convert the arguments, then
   11818         // break out so that we will build the appropriate built-in
   11819         // operator node.
   11820         ExprResult ArgsRes0 =
   11821           PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
   11822                                     Best->Conversions[0], AA_Passing);
   11823         if (ArgsRes0.isInvalid())
   11824           return ExprError();
   11825         Args[0] = ArgsRes0.get();
   11826 
   11827         ExprResult ArgsRes1 =
   11828           PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
   11829                                     Best->Conversions[1], AA_Passing);
   11830         if (ArgsRes1.isInvalid())
   11831           return ExprError();
   11832         Args[1] = ArgsRes1.get();
   11833 
   11834         break;
   11835       }
   11836     }
   11837 
   11838     case OR_No_Viable_Function: {
   11839       if (CandidateSet.empty())
   11840         Diag(LLoc, diag::err_ovl_no_oper)
   11841           << Args[0]->getType() << /*subscript*/ 0
   11842           << Args[0]->getSourceRange() << Args[1]->getSourceRange();
   11843       else
   11844         Diag(LLoc, diag::err_ovl_no_viable_subscript)
   11845           << Args[0]->getType()
   11846           << Args[0]->getSourceRange() << Args[1]->getSourceRange();
   11847       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
   11848                                   "[]", LLoc);
   11849       return ExprError();
   11850     }
   11851 
   11852     case OR_Ambiguous:
   11853       Diag(LLoc,  diag::err_ovl_ambiguous_oper_binary)
   11854           << "[]"
   11855           << Args[0]->getType() << Args[1]->getType()
   11856           << Args[0]->getSourceRange() << Args[1]->getSourceRange();
   11857       CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
   11858                                   "[]", LLoc);
   11859       return ExprError();
   11860 
   11861     case OR_Deleted:
   11862       Diag(LLoc, diag::err_ovl_deleted_oper)
   11863         << Best->Function->isDeleted() << "[]"
   11864         << getDeletedOrUnavailableSuffix(Best->Function)
   11865         << Args[0]->getSourceRange() << Args[1]->getSourceRange();
   11866       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
   11867                                   "[]", LLoc);
   11868       return ExprError();
   11869     }
   11870 
   11871   // We matched a built-in operator; build it.
   11872   return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
   11873 }
   11874 
   11875 /// BuildCallToMemberFunction - Build a call to a member
   11876 /// function. MemExpr is the expression that refers to the member
   11877 /// function (and includes the object parameter), Args/NumArgs are the
   11878 /// arguments to the function call (not including the object
   11879 /// parameter). The caller needs to validate that the member
   11880 /// expression refers to a non-static member function or an overloaded
   11881 /// member function.
   11882 ExprResult
   11883 Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
   11884                                 SourceLocation LParenLoc,
   11885                                 MultiExprArg Args,
   11886                                 SourceLocation RParenLoc) {
   11887   assert(MemExprE->getType() == Context.BoundMemberTy ||
   11888          MemExprE->getType() == Context.OverloadTy);
   11889 
   11890   // Dig out the member expression. This holds both the object
   11891   // argument and the member function we're referring to.
   11892   Expr *NakedMemExpr = MemExprE->IgnoreParens();
   11893 
   11894   // Determine whether this is a call to a pointer-to-member function.
   11895   if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
   11896     assert(op->getType() == Context.BoundMemberTy);
   11897     assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI);
   11898 
   11899     QualType fnType =
   11900       op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
   11901 
   11902     const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
   11903     QualType resultType = proto->getCallResultType(Context);
   11904     ExprValueKind valueKind = Expr::getValueKindForType(proto->getReturnType());
   11905 
   11906     // Check that the object type isn't more qualified than the
   11907     // member function we're calling.
   11908     Qualifiers funcQuals = Qualifiers::fromCVRMask(proto->getTypeQuals());
   11909 
   11910     QualType objectType = op->getLHS()->getType();
   11911     if (op->getOpcode() == BO_PtrMemI)
   11912       objectType = objectType->castAs<PointerType>()->getPointeeType();
   11913     Qualifiers objectQuals = objectType.getQualifiers();
   11914 
   11915     Qualifiers difference = objectQuals - funcQuals;
   11916     difference.removeObjCGCAttr();
   11917     difference.removeAddressSpace();
   11918     if (difference) {
   11919       std::string qualsString = difference.getAsString();
   11920       Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
   11921         << fnType.getUnqualifiedType()
   11922         << qualsString
   11923         << (qualsString.find(' ') == std::string::npos ? 1 : 2);
   11924     }
   11925 
   11926     CXXMemberCallExpr *call
   11927       = new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
   11928                                         resultType, valueKind, RParenLoc);
   11929 
   11930     if (CheckCallReturnType(proto->getReturnType(), op->getRHS()->getLocStart(),
   11931                             call, nullptr))
   11932       return ExprError();
   11933 
   11934     if (ConvertArgumentsForCall(call, op, nullptr, proto, Args, RParenLoc))
   11935       return ExprError();
   11936 
   11937     if (CheckOtherCall(call, proto))
   11938       return ExprError();
   11939 
   11940     return MaybeBindToTemporary(call);
   11941   }
   11942 
   11943   if (isa<CXXPseudoDestructorExpr>(NakedMemExpr))
   11944     return new (Context)
   11945         CallExpr(Context, MemExprE, Args, Context.VoidTy, VK_RValue, RParenLoc);
   11946 
   11947   UnbridgedCastsSet UnbridgedCasts;
   11948   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
   11949     return ExprError();
   11950 
   11951   MemberExpr *MemExpr;
   11952   CXXMethodDecl *Method = nullptr;
   11953   DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_public);
   11954   NestedNameSpecifier *Qualifier = nullptr;
   11955   if (isa<MemberExpr>(NakedMemExpr)) {
   11956     MemExpr = cast<MemberExpr>(NakedMemExpr);
   11957     Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
   11958     FoundDecl = MemExpr->getFoundDecl();
   11959     Qualifier = MemExpr->getQualifier();
   11960     UnbridgedCasts.restore();
   11961   } else {
   11962     UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
   11963     Qualifier = UnresExpr->getQualifier();
   11964 
   11965     QualType ObjectType = UnresExpr->getBaseType();
   11966     Expr::Classification ObjectClassification
   11967       = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
   11968                             : UnresExpr->getBase()->Classify(Context);
   11969 
   11970     // Add overload candidates
   11971     OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc(),
   11972                                       OverloadCandidateSet::CSK_Normal);
   11973 
   11974     // FIXME: avoid copy.
   11975     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
   11976     if (UnresExpr->hasExplicitTemplateArgs()) {
   11977       UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
   11978       TemplateArgs = &TemplateArgsBuffer;
   11979     }
   11980 
   11981     for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
   11982            E = UnresExpr->decls_end(); I != E; ++I) {
   11983 
   11984       NamedDecl *Func = *I;
   11985       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
   11986       if (isa<UsingShadowDecl>(Func))
   11987         Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
   11988 
   11989 
   11990       // Microsoft supports direct constructor calls.
   11991       if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
   11992         AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(),
   11993                              Args, CandidateSet);
   11994       } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
   11995         // If explicit template arguments were provided, we can't call a
   11996         // non-template member function.
   11997         if (TemplateArgs)
   11998           continue;
   11999 
   12000         AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
   12001                            ObjectClassification, Args, CandidateSet,
   12002                            /*SuppressUserConversions=*/false);
   12003       } else {
   12004         AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
   12005                                    I.getPair(), ActingDC, TemplateArgs,
   12006                                    ObjectType,  ObjectClassification,
   12007                                    Args, CandidateSet,
   12008                                    /*SuppressUsedConversions=*/false);
   12009       }
   12010     }
   12011 
   12012     DeclarationName DeclName = UnresExpr->getMemberName();
   12013 
   12014     UnbridgedCasts.restore();
   12015 
   12016     OverloadCandidateSet::iterator Best;
   12017     switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(),
   12018                                             Best)) {
   12019     case OR_Success:
   12020       Method = cast<CXXMethodDecl>(Best->Function);
   12021       FoundDecl = Best->FoundDecl;
   12022       CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
   12023       if (DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()))
   12024         return ExprError();
   12025       // If FoundDecl is different from Method (such as if one is a template
   12026       // and the other a specialization), make sure DiagnoseUseOfDecl is
   12027       // called on both.
   12028       // FIXME: This would be more comprehensively addressed by modifying
   12029       // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
   12030       // being used.
   12031       if (Method != FoundDecl.getDecl() &&
   12032                       DiagnoseUseOfDecl(Method, UnresExpr->getNameLoc()))
   12033         return ExprError();
   12034       break;
   12035 
   12036     case OR_No_Viable_Function:
   12037       Diag(UnresExpr->getMemberLoc(),
   12038            diag::err_ovl_no_viable_member_function_in_call)
   12039         << DeclName << MemExprE->getSourceRange();
   12040       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
   12041       // FIXME: Leaking incoming expressions!
   12042       return ExprError();
   12043 
   12044     case OR_Ambiguous:
   12045       Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
   12046         << DeclName << MemExprE->getSourceRange();
   12047       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
   12048       // FIXME: Leaking incoming expressions!
   12049       return ExprError();
   12050 
   12051     case OR_Deleted:
   12052       Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
   12053         << Best->Function->isDeleted()
   12054         << DeclName
   12055         << getDeletedOrUnavailableSuffix(Best->Function)
   12056         << MemExprE->getSourceRange();
   12057       CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
   12058       // FIXME: Leaking incoming expressions!
   12059       return ExprError();
   12060     }
   12061 
   12062     MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
   12063 
   12064     // If overload resolution picked a static member, build a
   12065     // non-member call based on that function.
   12066     if (Method->isStatic()) {
   12067       return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args,
   12068                                    RParenLoc);
   12069     }
   12070 
   12071     MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
   12072   }
   12073 
   12074   QualType ResultType = Method->getReturnType();
   12075   ExprValueKind VK = Expr::getValueKindForType(ResultType);
   12076   ResultType = ResultType.getNonLValueExprType(Context);
   12077 
   12078   assert(Method && "Member call to something that isn't a method?");
   12079   CXXMemberCallExpr *TheCall =
   12080     new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
   12081                                     ResultType, VK, RParenLoc);
   12082 
   12083   // (CUDA B.1): Check for invalid calls between targets.
   12084   if (getLangOpts().CUDA) {
   12085     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext)) {
   12086       if (CheckCUDATarget(Caller, Method)) {
   12087         Diag(MemExpr->getMemberLoc(), diag::err_ref_bad_target)
   12088             << IdentifyCUDATarget(Method) << Method->getIdentifier()
   12089             << IdentifyCUDATarget(Caller);
   12090         return ExprError();
   12091       }
   12092     }
   12093   }
   12094 
   12095   // Check for a valid return type.
   12096   if (CheckCallReturnType(Method->getReturnType(), MemExpr->getMemberLoc(),
   12097                           TheCall, Method))
   12098     return ExprError();
   12099 
   12100   // Convert the object argument (for a non-static member function call).
   12101   // We only need to do this if there was actually an overload; otherwise
   12102   // it was done at lookup.
   12103   if (!Method->isStatic()) {
   12104     ExprResult ObjectArg =
   12105       PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
   12106                                           FoundDecl, Method);
   12107     if (ObjectArg.isInvalid())
   12108       return ExprError();
   12109     MemExpr->setBase(ObjectArg.get());
   12110   }
   12111 
   12112   // Convert the rest of the arguments
   12113   const FunctionProtoType *Proto =
   12114     Method->getType()->getAs<FunctionProtoType>();
   12115   if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args,
   12116                               RParenLoc))
   12117     return ExprError();
   12118 
   12119   DiagnoseSentinelCalls(Method, LParenLoc, Args);
   12120 
   12121   if (CheckFunctionCall(Method, TheCall, Proto))
   12122     return ExprError();
   12123 
   12124   // In the case the method to call was not selected by the overloading
   12125   // resolution process, we still need to handle the enable_if attribute. Do
   12126   // that here, so it will not hide previous -- and more relevant -- errors
   12127   if (isa<MemberExpr>(NakedMemExpr)) {
   12128     if (const EnableIfAttr *Attr = CheckEnableIf(Method, Args, true)) {
   12129       Diag(MemExprE->getLocStart(),
   12130            diag::err_ovl_no_viable_member_function_in_call)
   12131           << Method << Method->getSourceRange();
   12132       Diag(Method->getLocation(),
   12133            diag::note_ovl_candidate_disabled_by_enable_if_attr)
   12134           << Attr->getCond()->getSourceRange() << Attr->getMessage();
   12135       return ExprError();
   12136     }
   12137   }
   12138 
   12139   if ((isa<CXXConstructorDecl>(CurContext) ||
   12140        isa<CXXDestructorDecl>(CurContext)) &&
   12141       TheCall->getMethodDecl()->isPure()) {
   12142     const CXXMethodDecl *MD = TheCall->getMethodDecl();
   12143 
   12144     if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts()) &&
   12145         MemExpr->performsVirtualDispatch(getLangOpts())) {
   12146       Diag(MemExpr->getLocStart(),
   12147            diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
   12148         << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
   12149         << MD->getParent()->getDeclName();
   12150 
   12151       Diag(MD->getLocStart(), diag::note_previous_decl) << MD->getDeclName();
   12152       if (getLangOpts().AppleKext)
   12153         Diag(MemExpr->getLocStart(),
   12154              diag::note_pure_qualified_call_kext)
   12155              << MD->getParent()->getDeclName()
   12156              << MD->getDeclName();
   12157     }
   12158   }
   12159   return MaybeBindToTemporary(TheCall);
   12160 }
   12161 
   12162 /// BuildCallToObjectOfClassType - Build a call to an object of class
   12163 /// type (C++ [over.call.object]), which can end up invoking an
   12164 /// overloaded function call operator (@c operator()) or performing a
   12165 /// user-defined conversion on the object argument.
   12166 ExprResult
   12167 Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
   12168                                    SourceLocation LParenLoc,
   12169                                    MultiExprArg Args,
   12170                                    SourceLocation RParenLoc) {
   12171   if (checkPlaceholderForOverload(*this, Obj))
   12172     return ExprError();
   12173   ExprResult Object = Obj;
   12174 
   12175   UnbridgedCastsSet UnbridgedCasts;
   12176   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
   12177     return ExprError();
   12178 
   12179   assert(Object.get()->getType()->isRecordType() &&
   12180          "Requires object type argument");
   12181   const RecordType *Record = Object.get()->getType()->getAs<RecordType>();
   12182 
   12183   // C++ [over.call.object]p1:
   12184   //  If the primary-expression E in the function call syntax
   12185   //  evaluates to a class object of type "cv T", then the set of
   12186   //  candidate functions includes at least the function call
   12187   //  operators of T. The function call operators of T are obtained by
   12188   //  ordinary lookup of the name operator() in the context of
   12189   //  (E).operator().
   12190   OverloadCandidateSet CandidateSet(LParenLoc,
   12191                                     OverloadCandidateSet::CSK_Operator);
   12192   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
   12193 
   12194   if (RequireCompleteType(LParenLoc, Object.get()->getType(),
   12195                           diag::err_incomplete_object_call, Object.get()))
   12196     return true;
   12197 
   12198   LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
   12199   LookupQualifiedName(R, Record->getDecl());
   12200   R.suppressDiagnostics();
   12201 
   12202   for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
   12203        Oper != OperEnd; ++Oper) {
   12204     AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
   12205                        Object.get()->Classify(Context),
   12206                        Args, CandidateSet,
   12207                        /*SuppressUserConversions=*/ false);
   12208   }
   12209 
   12210   // C++ [over.call.object]p2:
   12211   //   In addition, for each (non-explicit in C++0x) conversion function
   12212   //   declared in T of the form
   12213   //
   12214   //        operator conversion-type-id () cv-qualifier;
   12215   //
   12216   //   where cv-qualifier is the same cv-qualification as, or a
   12217   //   greater cv-qualification than, cv, and where conversion-type-id
   12218   //   denotes the type "pointer to function of (P1,...,Pn) returning
   12219   //   R", or the type "reference to pointer to function of
   12220   //   (P1,...,Pn) returning R", or the type "reference to function
   12221   //   of (P1,...,Pn) returning R", a surrogate call function [...]
   12222   //   is also considered as a candidate function. Similarly,
   12223   //   surrogate call functions are added to the set of candidate
   12224   //   functions for each conversion function declared in an
   12225   //   accessible base class provided the function is not hidden
   12226   //   within T by another intervening declaration.
   12227   const auto &Conversions =
   12228       cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
   12229   for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
   12230     NamedDecl *D = *I;
   12231     CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
   12232     if (isa<UsingShadowDecl>(D))
   12233       D = cast<UsingShadowDecl>(D)->getTargetDecl();
   12234 
   12235     // Skip over templated conversion functions; they aren't
   12236     // surrogates.
   12237     if (isa<FunctionTemplateDecl>(D))
   12238       continue;
   12239 
   12240     CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
   12241     if (!Conv->isExplicit()) {
   12242       // Strip the reference type (if any) and then the pointer type (if
   12243       // any) to get down to what might be a function type.
   12244       QualType ConvType = Conv->getConversionType().getNonReferenceType();
   12245       if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
   12246         ConvType = ConvPtrType->getPointeeType();
   12247 
   12248       if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
   12249       {
   12250         AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
   12251                               Object.get(), Args, CandidateSet);
   12252       }
   12253     }
   12254   }
   12255 
   12256   bool HadMultipleCandidates = (CandidateSet.size() > 1);
   12257 
   12258   // Perform overload resolution.
   12259   OverloadCandidateSet::iterator Best;
   12260   switch (CandidateSet.BestViableFunction(*this, Object.get()->getLocStart(),
   12261                              Best)) {
   12262   case OR_Success:
   12263     // Overload resolution succeeded; we'll build the appropriate call
   12264     // below.
   12265     break;
   12266 
   12267   case OR_No_Viable_Function:
   12268     if (CandidateSet.empty())
   12269       Diag(Object.get()->getLocStart(), diag::err_ovl_no_oper)
   12270         << Object.get()->getType() << /*call*/ 1
   12271         << Object.get()->getSourceRange();
   12272     else
   12273       Diag(Object.get()->getLocStart(),
   12274            diag::err_ovl_no_viable_object_call)
   12275         << Object.get()->getType() << Object.get()->getSourceRange();
   12276     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
   12277     break;
   12278 
   12279   case OR_Ambiguous:
   12280     Diag(Object.get()->getLocStart(),
   12281          diag::err_ovl_ambiguous_object_call)
   12282       << Object.get()->getType() << Object.get()->getSourceRange();
   12283     CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args);
   12284     break;
   12285 
   12286   case OR_Deleted:
   12287     Diag(Object.get()->getLocStart(),
   12288          diag::err_ovl_deleted_object_call)
   12289       << Best->Function->isDeleted()
   12290       << Object.get()->getType()
   12291       << getDeletedOrUnavailableSuffix(Best->Function)
   12292       << Object.get()->getSourceRange();
   12293     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
   12294     break;
   12295   }
   12296 
   12297   if (Best == CandidateSet.end())
   12298     return true;
   12299 
   12300   UnbridgedCasts.restore();
   12301 
   12302   if (Best->Function == nullptr) {
   12303     // Since there is no function declaration, this is one of the
   12304     // surrogate candidates. Dig out the conversion function.
   12305     CXXConversionDecl *Conv
   12306       = cast<CXXConversionDecl>(
   12307                          Best->Conversions[0].UserDefined.ConversionFunction);
   12308 
   12309     CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr,
   12310                               Best->FoundDecl);
   12311     if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc))
   12312       return ExprError();
   12313     assert(Conv == Best->FoundDecl.getDecl() &&
   12314              "Found Decl & conversion-to-functionptr should be same, right?!");
   12315     // We selected one of the surrogate functions that converts the
   12316     // object parameter to a function pointer. Perform the conversion
   12317     // on the object argument, then let ActOnCallExpr finish the job.
   12318 
   12319     // Create an implicit member expr to refer to the conversion operator.
   12320     // and then call it.
   12321     ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
   12322                                              Conv, HadMultipleCandidates);
   12323     if (Call.isInvalid())
   12324       return ExprError();
   12325     // Record usage of conversion in an implicit cast.
   12326     Call = ImplicitCastExpr::Create(Context, Call.get()->getType(),
   12327                                     CK_UserDefinedConversion, Call.get(),
   12328                                     nullptr, VK_RValue);
   12329 
   12330     return ActOnCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc);
   12331   }
   12332 
   12333   CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, Best->FoundDecl);
   12334 
   12335   // We found an overloaded operator(). Build a CXXOperatorCallExpr
   12336   // that calls this method, using Object for the implicit object
   12337   // parameter and passing along the remaining arguments.
   12338   CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
   12339 
   12340   // An error diagnostic has already been printed when parsing the declaration.
   12341   if (Method->isInvalidDecl())
   12342     return ExprError();
   12343 
   12344   const FunctionProtoType *Proto =
   12345     Method->getType()->getAs<FunctionProtoType>();
   12346 
   12347   unsigned NumParams = Proto->getNumParams();
   12348 
   12349   DeclarationNameInfo OpLocInfo(
   12350                Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc);
   12351   OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc));
   12352   ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
   12353                                            HadMultipleCandidates,
   12354                                            OpLocInfo.getLoc(),
   12355                                            OpLocInfo.getInfo());
   12356   if (NewFn.isInvalid())
   12357     return true;
   12358 
   12359   // Build the full argument list for the method call (the implicit object
   12360   // parameter is placed at the beginning of the list).
   12361   std::unique_ptr<Expr * []> MethodArgs(new Expr *[Args.size() + 1]);
   12362   MethodArgs[0] = Object.get();
   12363   std::copy(Args.begin(), Args.end(), &MethodArgs[1]);
   12364 
   12365   // Once we've built TheCall, all of the expressions are properly
   12366   // owned.
   12367   QualType ResultTy = Method->getReturnType();
   12368   ExprValueKind VK = Expr::getValueKindForType(ResultTy);
   12369   ResultTy = ResultTy.getNonLValueExprType(Context);
   12370 
   12371   CXXOperatorCallExpr *TheCall = new (Context)
   12372       CXXOperatorCallExpr(Context, OO_Call, NewFn.get(),
   12373                           llvm::makeArrayRef(MethodArgs.get(), Args.size() + 1),
   12374                           ResultTy, VK, RParenLoc, false);
   12375   MethodArgs.reset();
   12376 
   12377   if (CheckCallReturnType(Method->getReturnType(), LParenLoc, TheCall, Method))
   12378     return true;
   12379 
   12380   // We may have default arguments. If so, we need to allocate more
   12381   // slots in the call for them.
   12382   if (Args.size() < NumParams)
   12383     TheCall->setNumArgs(Context, NumParams + 1);
   12384 
   12385   bool IsError = false;
   12386 
   12387   // Initialize the implicit object parameter.
   12388   ExprResult ObjRes =
   12389     PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/nullptr,
   12390                                         Best->FoundDecl, Method);
   12391   if (ObjRes.isInvalid())
   12392     IsError = true;
   12393   else
   12394     Object = ObjRes;
   12395   TheCall->setArg(0, Object.get());
   12396 
   12397   // Check the argument types.
   12398   for (unsigned i = 0; i != NumParams; i++) {
   12399     Expr *Arg;
   12400     if (i < Args.size()) {
   12401       Arg = Args[i];
   12402 
   12403       // Pass the argument.
   12404 
   12405       ExprResult InputInit
   12406         = PerformCopyInitialization(InitializedEntity::InitializeParameter(
   12407                                                     Context,
   12408                                                     Method->getParamDecl(i)),
   12409                                     SourceLocation(), Arg);
   12410 
   12411       IsError |= InputInit.isInvalid();
   12412       Arg = InputInit.getAs<Expr>();
   12413     } else {
   12414       ExprResult DefArg
   12415         = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
   12416       if (DefArg.isInvalid()) {
   12417         IsError = true;
   12418         break;
   12419       }
   12420 
   12421       Arg = DefArg.getAs<Expr>();
   12422     }
   12423 
   12424     TheCall->setArg(i + 1, Arg);
   12425   }
   12426 
   12427   // If this is a variadic call, handle args passed through "...".
   12428   if (Proto->isVariadic()) {
   12429     // Promote the arguments (C99 6.5.2.2p7).
   12430     for (unsigned i = NumParams, e = Args.size(); i < e; i++) {
   12431       ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
   12432                                                         nullptr);
   12433       IsError |= Arg.isInvalid();
   12434       TheCall->setArg(i + 1, Arg.get());
   12435     }
   12436   }
   12437 
   12438   if (IsError) return true;
   12439 
   12440   DiagnoseSentinelCalls(Method, LParenLoc, Args);
   12441 
   12442   if (CheckFunctionCall(Method, TheCall, Proto))
   12443     return true;
   12444 
   12445   return MaybeBindToTemporary(TheCall);
   12446 }
   12447 
   12448 /// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
   12449 ///  (if one exists), where @c Base is an expression of class type and
   12450 /// @c Member is the name of the member we're trying to find.
   12451 ExprResult
   12452 Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
   12453                                bool *NoArrowOperatorFound) {
   12454   assert(Base->getType()->isRecordType() &&
   12455          "left-hand side must have class type");
   12456 
   12457   if (checkPlaceholderForOverload(*this, Base))
   12458     return ExprError();
   12459 
   12460   SourceLocation Loc = Base->getExprLoc();
   12461 
   12462   // C++ [over.ref]p1:
   12463   //
   12464   //   [...] An expression x->m is interpreted as (x.operator->())->m
   12465   //   for a class object x of type T if T::operator->() exists and if
   12466   //   the operator is selected as the best match function by the
   12467   //   overload resolution mechanism (13.3).
   12468   DeclarationName OpName =
   12469     Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
   12470   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Operator);
   12471   const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
   12472 
   12473   if (RequireCompleteType(Loc, Base->getType(),
   12474                           diag::err_typecheck_incomplete_tag, Base))
   12475     return ExprError();
   12476 
   12477   LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
   12478   LookupQualifiedName(R, BaseRecord->getDecl());
   12479   R.suppressDiagnostics();
   12480 
   12481   for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
   12482        Oper != OperEnd; ++Oper) {
   12483     AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
   12484                        None, CandidateSet, /*SuppressUserConversions=*/false);
   12485   }
   12486 
   12487   bool HadMultipleCandidates = (CandidateSet.size() > 1);
   12488 
   12489   // Perform overload resolution.
   12490   OverloadCandidateSet::iterator Best;
   12491   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
   12492   case OR_Success:
   12493     // Overload resolution succeeded; we'll build the call below.
   12494     break;
   12495 
   12496   case OR_No_Viable_Function:
   12497     if (CandidateSet.empty()) {
   12498       QualType BaseType = Base->getType();
   12499       if (NoArrowOperatorFound) {
   12500         // Report this specific error to the caller instead of emitting a
   12501         // diagnostic, as requested.
   12502         *NoArrowOperatorFound = true;
   12503         return ExprError();
   12504       }
   12505       Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
   12506         << BaseType << Base->getSourceRange();
   12507       if (BaseType->isRecordType() && !BaseType->isPointerType()) {
   12508         Diag(OpLoc, diag::note_typecheck_member_reference_suggestion)
   12509           << FixItHint::CreateReplacement(OpLoc, ".");
   12510       }
   12511     } else
   12512       Diag(OpLoc, diag::err_ovl_no_viable_oper)
   12513         << "operator->" << Base->getSourceRange();
   12514     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
   12515     return ExprError();
   12516 
   12517   case OR_Ambiguous:
   12518     Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
   12519       << "->" << Base->getType() << Base->getSourceRange();
   12520     CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Base);
   12521     return ExprError();
   12522 
   12523   case OR_Deleted:
   12524     Diag(OpLoc,  diag::err_ovl_deleted_oper)
   12525       << Best->Function->isDeleted()
   12526       << "->"
   12527       << getDeletedOrUnavailableSuffix(Best->Function)
   12528       << Base->getSourceRange();
   12529     CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
   12530     return ExprError();
   12531   }
   12532 
   12533   CheckMemberOperatorAccess(OpLoc, Base, nullptr, Best->FoundDecl);
   12534 
   12535   // Convert the object parameter.
   12536   CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
   12537   ExprResult BaseResult =
   12538     PerformObjectArgumentInitialization(Base, /*Qualifier=*/nullptr,
   12539                                         Best->FoundDecl, Method);
   12540   if (BaseResult.isInvalid())
   12541     return ExprError();
   12542   Base = BaseResult.get();
   12543 
   12544   // Build the operator call.
   12545   ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
   12546                                             HadMultipleCandidates, OpLoc);
   12547   if (FnExpr.isInvalid())
   12548     return ExprError();
   12549 
   12550   QualType ResultTy = Method->getReturnType();
   12551   ExprValueKind VK = Expr::getValueKindForType(ResultTy);
   12552   ResultTy = ResultTy.getNonLValueExprType(Context);
   12553   CXXOperatorCallExpr *TheCall =
   12554     new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr.get(),
   12555                                       Base, ResultTy, VK, OpLoc, false);
   12556 
   12557   if (CheckCallReturnType(Method->getReturnType(), OpLoc, TheCall, Method))
   12558           return ExprError();
   12559 
   12560   return MaybeBindToTemporary(TheCall);
   12561 }
   12562 
   12563 /// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to
   12564 /// a literal operator described by the provided lookup results.
   12565 ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
   12566                                           DeclarationNameInfo &SuffixInfo,
   12567                                           ArrayRef<Expr*> Args,
   12568                                           SourceLocation LitEndLoc,
   12569                                        TemplateArgumentListInfo *TemplateArgs) {
   12570   SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc();
   12571 
   12572   OverloadCandidateSet CandidateSet(UDSuffixLoc,
   12573                                     OverloadCandidateSet::CSK_Normal);
   12574   AddFunctionCandidates(R.asUnresolvedSet(), Args, CandidateSet, TemplateArgs,
   12575                         /*SuppressUserConversions=*/true);
   12576 
   12577   bool HadMultipleCandidates = (CandidateSet.size() > 1);
   12578 
   12579   // Perform overload resolution. This will usually be trivial, but might need
   12580   // to perform substitutions for a literal operator template.
   12581   OverloadCandidateSet::iterator Best;
   12582   switch (CandidateSet.BestViableFunction(*this,