1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution expander, 11 // which is used to generate the code corresponding to a given scalar evolution 12 // expression. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/ScalarEvolutionExpander.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Dominators.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/IR/PatternMatch.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/raw_ostream.h" 30 31 using namespace llvm; 32 using namespace PatternMatch; 33 34 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP, 35 /// reusing an existing cast if a suitable one exists, moving an existing 36 /// cast if a suitable one exists but isn't in the right place, or 37 /// creating a new one. 38 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty, 39 Instruction::CastOps Op, 40 BasicBlock::iterator IP) { 41 // This function must be called with the builder having a valid insertion 42 // point. It doesn't need to be the actual IP where the uses of the returned 43 // cast will be added, but it must dominate such IP. 44 // We use this precondition to produce a cast that will dominate all its 45 // uses. In particular, this is crucial for the case where the builder's 46 // insertion point *is* the point where we were asked to put the cast. 47 // Since we don't know the builder's insertion point is actually 48 // where the uses will be added (only that it dominates it), we are 49 // not allowed to move it. 50 BasicBlock::iterator BIP = Builder.GetInsertPoint(); 51 52 Instruction *Ret = nullptr; 53 54 // Check to see if there is already a cast! 55 for (User *U : V->users()) 56 if (U->getType() == Ty) 57 if (CastInst *CI = dyn_cast<CastInst>(U)) 58 if (CI->getOpcode() == Op) { 59 // If the cast isn't where we want it, create a new cast at IP. 60 // Likewise, do not reuse a cast at BIP because it must dominate 61 // instructions that might be inserted before BIP. 62 if (BasicBlock::iterator(CI) != IP || BIP == IP) { 63 // Create a new cast, and leave the old cast in place in case 64 // it is being used as an insert point. Clear its operand 65 // so that it doesn't hold anything live. 66 Ret = CastInst::Create(Op, V, Ty, "", &*IP); 67 Ret->takeName(CI); 68 CI->replaceAllUsesWith(Ret); 69 CI->setOperand(0, UndefValue::get(V->getType())); 70 break; 71 } 72 Ret = CI; 73 break; 74 } 75 76 // Create a new cast. 77 if (!Ret) 78 Ret = CastInst::Create(Op, V, Ty, V->getName(), &*IP); 79 80 // We assert at the end of the function since IP might point to an 81 // instruction with different dominance properties than a cast 82 // (an invoke for example) and not dominate BIP (but the cast does). 83 assert(SE.DT.dominates(Ret, &*BIP)); 84 85 rememberInstruction(Ret); 86 return Ret; 87 } 88 89 static BasicBlock::iterator findInsertPointAfter(Instruction *I, 90 BasicBlock *MustDominate) { 91 BasicBlock::iterator IP = ++I->getIterator(); 92 if (auto *II = dyn_cast<InvokeInst>(I)) 93 IP = II->getNormalDest()->begin(); 94 95 while (isa<PHINode>(IP)) 96 ++IP; 97 98 while (IP->isEHPad()) { 99 if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) { 100 ++IP; 101 } else if (isa<CatchSwitchInst>(IP)) { 102 IP = MustDominate->getFirstInsertionPt(); 103 } else { 104 llvm_unreachable("unexpected eh pad!"); 105 } 106 } 107 108 return IP; 109 } 110 111 /// InsertNoopCastOfTo - Insert a cast of V to the specified type, 112 /// which must be possible with a noop cast, doing what we can to share 113 /// the casts. 114 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) { 115 Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false); 116 assert((Op == Instruction::BitCast || 117 Op == Instruction::PtrToInt || 118 Op == Instruction::IntToPtr) && 119 "InsertNoopCastOfTo cannot perform non-noop casts!"); 120 assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) && 121 "InsertNoopCastOfTo cannot change sizes!"); 122 123 // Short-circuit unnecessary bitcasts. 124 if (Op == Instruction::BitCast) { 125 if (V->getType() == Ty) 126 return V; 127 if (CastInst *CI = dyn_cast<CastInst>(V)) { 128 if (CI->getOperand(0)->getType() == Ty) 129 return CI->getOperand(0); 130 } 131 } 132 // Short-circuit unnecessary inttoptr<->ptrtoint casts. 133 if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) && 134 SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) { 135 if (CastInst *CI = dyn_cast<CastInst>(V)) 136 if ((CI->getOpcode() == Instruction::PtrToInt || 137 CI->getOpcode() == Instruction::IntToPtr) && 138 SE.getTypeSizeInBits(CI->getType()) == 139 SE.getTypeSizeInBits(CI->getOperand(0)->getType())) 140 return CI->getOperand(0); 141 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 142 if ((CE->getOpcode() == Instruction::PtrToInt || 143 CE->getOpcode() == Instruction::IntToPtr) && 144 SE.getTypeSizeInBits(CE->getType()) == 145 SE.getTypeSizeInBits(CE->getOperand(0)->getType())) 146 return CE->getOperand(0); 147 } 148 149 // Fold a cast of a constant. 150 if (Constant *C = dyn_cast<Constant>(V)) 151 return ConstantExpr::getCast(Op, C, Ty); 152 153 // Cast the argument at the beginning of the entry block, after 154 // any bitcasts of other arguments. 155 if (Argument *A = dyn_cast<Argument>(V)) { 156 BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin(); 157 while ((isa<BitCastInst>(IP) && 158 isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) && 159 cast<BitCastInst>(IP)->getOperand(0) != A) || 160 isa<DbgInfoIntrinsic>(IP)) 161 ++IP; 162 return ReuseOrCreateCast(A, Ty, Op, IP); 163 } 164 165 // Cast the instruction immediately after the instruction. 166 Instruction *I = cast<Instruction>(V); 167 BasicBlock::iterator IP = findInsertPointAfter(I, Builder.GetInsertBlock()); 168 return ReuseOrCreateCast(I, Ty, Op, IP); 169 } 170 171 /// InsertBinop - Insert the specified binary operator, doing a small amount 172 /// of work to avoid inserting an obviously redundant operation. 173 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, 174 Value *LHS, Value *RHS) { 175 // Fold a binop with constant operands. 176 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 177 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 178 return ConstantExpr::get(Opcode, CLHS, CRHS); 179 180 // Do a quick scan to see if we have this binop nearby. If so, reuse it. 181 unsigned ScanLimit = 6; 182 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 183 // Scanning starts from the last instruction before the insertion point. 184 BasicBlock::iterator IP = Builder.GetInsertPoint(); 185 if (IP != BlockBegin) { 186 --IP; 187 for (; ScanLimit; --IP, --ScanLimit) { 188 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 189 // generated code. 190 if (isa<DbgInfoIntrinsic>(IP)) 191 ScanLimit++; 192 if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS && 193 IP->getOperand(1) == RHS) 194 return &*IP; 195 if (IP == BlockBegin) break; 196 } 197 } 198 199 // Save the original insertion point so we can restore it when we're done. 200 DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc(); 201 BuilderType::InsertPointGuard Guard(Builder); 202 203 // Move the insertion point out of as many loops as we can. 204 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 205 if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break; 206 BasicBlock *Preheader = L->getLoopPreheader(); 207 if (!Preheader) break; 208 209 // Ok, move up a level. 210 Builder.SetInsertPoint(Preheader->getTerminator()); 211 } 212 213 // If we haven't found this binop, insert it. 214 Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS)); 215 BO->setDebugLoc(Loc); 216 rememberInstruction(BO); 217 218 return BO; 219 } 220 221 /// FactorOutConstant - Test if S is divisible by Factor, using signed 222 /// division. If so, update S with Factor divided out and return true. 223 /// S need not be evenly divisible if a reasonable remainder can be 224 /// computed. 225 /// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made 226 /// unnecessary; in its place, just signed-divide Ops[i] by the scale and 227 /// check to see if the divide was folded. 228 static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder, 229 const SCEV *Factor, ScalarEvolution &SE, 230 const DataLayout &DL) { 231 // Everything is divisible by one. 232 if (Factor->isOne()) 233 return true; 234 235 // x/x == 1. 236 if (S == Factor) { 237 S = SE.getConstant(S->getType(), 1); 238 return true; 239 } 240 241 // For a Constant, check for a multiple of the given factor. 242 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 243 // 0/x == 0. 244 if (C->isZero()) 245 return true; 246 // Check for divisibility. 247 if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) { 248 ConstantInt *CI = 249 ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt())); 250 // If the quotient is zero and the remainder is non-zero, reject 251 // the value at this scale. It will be considered for subsequent 252 // smaller scales. 253 if (!CI->isZero()) { 254 const SCEV *Div = SE.getConstant(CI); 255 S = Div; 256 Remainder = SE.getAddExpr( 257 Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt()))); 258 return true; 259 } 260 } 261 } 262 263 // In a Mul, check if there is a constant operand which is a multiple 264 // of the given factor. 265 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 266 // Size is known, check if there is a constant operand which is a multiple 267 // of the given factor. If so, we can factor it. 268 const SCEVConstant *FC = cast<SCEVConstant>(Factor); 269 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0))) 270 if (!C->getAPInt().srem(FC->getAPInt())) { 271 SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end()); 272 NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt())); 273 S = SE.getMulExpr(NewMulOps); 274 return true; 275 } 276 } 277 278 // In an AddRec, check if both start and step are divisible. 279 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 280 const SCEV *Step = A->getStepRecurrence(SE); 281 const SCEV *StepRem = SE.getConstant(Step->getType(), 0); 282 if (!FactorOutConstant(Step, StepRem, Factor, SE, DL)) 283 return false; 284 if (!StepRem->isZero()) 285 return false; 286 const SCEV *Start = A->getStart(); 287 if (!FactorOutConstant(Start, Remainder, Factor, SE, DL)) 288 return false; 289 S = SE.getAddRecExpr(Start, Step, A->getLoop(), 290 A->getNoWrapFlags(SCEV::FlagNW)); 291 return true; 292 } 293 294 return false; 295 } 296 297 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs 298 /// is the number of SCEVAddRecExprs present, which are kept at the end of 299 /// the list. 300 /// 301 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops, 302 Type *Ty, 303 ScalarEvolution &SE) { 304 unsigned NumAddRecs = 0; 305 for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i) 306 ++NumAddRecs; 307 // Group Ops into non-addrecs and addrecs. 308 SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs); 309 SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end()); 310 // Let ScalarEvolution sort and simplify the non-addrecs list. 311 const SCEV *Sum = NoAddRecs.empty() ? 312 SE.getConstant(Ty, 0) : 313 SE.getAddExpr(NoAddRecs); 314 // If it returned an add, use the operands. Otherwise it simplified 315 // the sum into a single value, so just use that. 316 Ops.clear(); 317 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum)) 318 Ops.append(Add->op_begin(), Add->op_end()); 319 else if (!Sum->isZero()) 320 Ops.push_back(Sum); 321 // Then append the addrecs. 322 Ops.append(AddRecs.begin(), AddRecs.end()); 323 } 324 325 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values 326 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}. 327 /// This helps expose more opportunities for folding parts of the expressions 328 /// into GEP indices. 329 /// 330 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops, 331 Type *Ty, 332 ScalarEvolution &SE) { 333 // Find the addrecs. 334 SmallVector<const SCEV *, 8> AddRecs; 335 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 336 while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) { 337 const SCEV *Start = A->getStart(); 338 if (Start->isZero()) break; 339 const SCEV *Zero = SE.getConstant(Ty, 0); 340 AddRecs.push_back(SE.getAddRecExpr(Zero, 341 A->getStepRecurrence(SE), 342 A->getLoop(), 343 A->getNoWrapFlags(SCEV::FlagNW))); 344 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) { 345 Ops[i] = Zero; 346 Ops.append(Add->op_begin(), Add->op_end()); 347 e += Add->getNumOperands(); 348 } else { 349 Ops[i] = Start; 350 } 351 } 352 if (!AddRecs.empty()) { 353 // Add the addrecs onto the end of the list. 354 Ops.append(AddRecs.begin(), AddRecs.end()); 355 // Resort the operand list, moving any constants to the front. 356 SimplifyAddOperands(Ops, Ty, SE); 357 } 358 } 359 360 /// expandAddToGEP - Expand an addition expression with a pointer type into 361 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps 362 /// BasicAliasAnalysis and other passes analyze the result. See the rules 363 /// for getelementptr vs. inttoptr in 364 /// http://llvm.org/docs/LangRef.html#pointeraliasing 365 /// for details. 366 /// 367 /// Design note: The correctness of using getelementptr here depends on 368 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as 369 /// they may introduce pointer arithmetic which may not be safely converted 370 /// into getelementptr. 371 /// 372 /// Design note: It might seem desirable for this function to be more 373 /// loop-aware. If some of the indices are loop-invariant while others 374 /// aren't, it might seem desirable to emit multiple GEPs, keeping the 375 /// loop-invariant portions of the overall computation outside the loop. 376 /// However, there are a few reasons this is not done here. Hoisting simple 377 /// arithmetic is a low-level optimization that often isn't very 378 /// important until late in the optimization process. In fact, passes 379 /// like InstructionCombining will combine GEPs, even if it means 380 /// pushing loop-invariant computation down into loops, so even if the 381 /// GEPs were split here, the work would quickly be undone. The 382 /// LoopStrengthReduction pass, which is usually run quite late (and 383 /// after the last InstructionCombining pass), takes care of hoisting 384 /// loop-invariant portions of expressions, after considering what 385 /// can be folded using target addressing modes. 386 /// 387 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin, 388 const SCEV *const *op_end, 389 PointerType *PTy, 390 Type *Ty, 391 Value *V) { 392 Type *OriginalElTy = PTy->getElementType(); 393 Type *ElTy = OriginalElTy; 394 SmallVector<Value *, 4> GepIndices; 395 SmallVector<const SCEV *, 8> Ops(op_begin, op_end); 396 bool AnyNonZeroIndices = false; 397 398 // Split AddRecs up into parts as either of the parts may be usable 399 // without the other. 400 SplitAddRecs(Ops, Ty, SE); 401 402 Type *IntPtrTy = DL.getIntPtrType(PTy); 403 404 // Descend down the pointer's type and attempt to convert the other 405 // operands into GEP indices, at each level. The first index in a GEP 406 // indexes into the array implied by the pointer operand; the rest of 407 // the indices index into the element or field type selected by the 408 // preceding index. 409 for (;;) { 410 // If the scale size is not 0, attempt to factor out a scale for 411 // array indexing. 412 SmallVector<const SCEV *, 8> ScaledOps; 413 if (ElTy->isSized()) { 414 const SCEV *ElSize = SE.getSizeOfExpr(IntPtrTy, ElTy); 415 if (!ElSize->isZero()) { 416 SmallVector<const SCEV *, 8> NewOps; 417 for (const SCEV *Op : Ops) { 418 const SCEV *Remainder = SE.getConstant(Ty, 0); 419 if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) { 420 // Op now has ElSize factored out. 421 ScaledOps.push_back(Op); 422 if (!Remainder->isZero()) 423 NewOps.push_back(Remainder); 424 AnyNonZeroIndices = true; 425 } else { 426 // The operand was not divisible, so add it to the list of operands 427 // we'll scan next iteration. 428 NewOps.push_back(Op); 429 } 430 } 431 // If we made any changes, update Ops. 432 if (!ScaledOps.empty()) { 433 Ops = NewOps; 434 SimplifyAddOperands(Ops, Ty, SE); 435 } 436 } 437 } 438 439 // Record the scaled array index for this level of the type. If 440 // we didn't find any operands that could be factored, tentatively 441 // assume that element zero was selected (since the zero offset 442 // would obviously be folded away). 443 Value *Scaled = ScaledOps.empty() ? 444 Constant::getNullValue(Ty) : 445 expandCodeFor(SE.getAddExpr(ScaledOps), Ty); 446 GepIndices.push_back(Scaled); 447 448 // Collect struct field index operands. 449 while (StructType *STy = dyn_cast<StructType>(ElTy)) { 450 bool FoundFieldNo = false; 451 // An empty struct has no fields. 452 if (STy->getNumElements() == 0) break; 453 // Field offsets are known. See if a constant offset falls within any of 454 // the struct fields. 455 if (Ops.empty()) 456 break; 457 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0])) 458 if (SE.getTypeSizeInBits(C->getType()) <= 64) { 459 const StructLayout &SL = *DL.getStructLayout(STy); 460 uint64_t FullOffset = C->getValue()->getZExtValue(); 461 if (FullOffset < SL.getSizeInBytes()) { 462 unsigned ElIdx = SL.getElementContainingOffset(FullOffset); 463 GepIndices.push_back( 464 ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx)); 465 ElTy = STy->getTypeAtIndex(ElIdx); 466 Ops[0] = 467 SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx)); 468 AnyNonZeroIndices = true; 469 FoundFieldNo = true; 470 } 471 } 472 // If no struct field offsets were found, tentatively assume that 473 // field zero was selected (since the zero offset would obviously 474 // be folded away). 475 if (!FoundFieldNo) { 476 ElTy = STy->getTypeAtIndex(0u); 477 GepIndices.push_back( 478 Constant::getNullValue(Type::getInt32Ty(Ty->getContext()))); 479 } 480 } 481 482 if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy)) 483 ElTy = ATy->getElementType(); 484 else 485 break; 486 } 487 488 // If none of the operands were convertible to proper GEP indices, cast 489 // the base to i8* and do an ugly getelementptr with that. It's still 490 // better than ptrtoint+arithmetic+inttoptr at least. 491 if (!AnyNonZeroIndices) { 492 // Cast the base to i8*. 493 V = InsertNoopCastOfTo(V, 494 Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace())); 495 496 assert(!isa<Instruction>(V) || 497 SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint())); 498 499 // Expand the operands for a plain byte offset. 500 Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty); 501 502 // Fold a GEP with constant operands. 503 if (Constant *CLHS = dyn_cast<Constant>(V)) 504 if (Constant *CRHS = dyn_cast<Constant>(Idx)) 505 return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()), 506 CLHS, CRHS); 507 508 // Do a quick scan to see if we have this GEP nearby. If so, reuse it. 509 unsigned ScanLimit = 6; 510 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 511 // Scanning starts from the last instruction before the insertion point. 512 BasicBlock::iterator IP = Builder.GetInsertPoint(); 513 if (IP != BlockBegin) { 514 --IP; 515 for (; ScanLimit; --IP, --ScanLimit) { 516 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 517 // generated code. 518 if (isa<DbgInfoIntrinsic>(IP)) 519 ScanLimit++; 520 if (IP->getOpcode() == Instruction::GetElementPtr && 521 IP->getOperand(0) == V && IP->getOperand(1) == Idx) 522 return &*IP; 523 if (IP == BlockBegin) break; 524 } 525 } 526 527 // Save the original insertion point so we can restore it when we're done. 528 BuilderType::InsertPointGuard Guard(Builder); 529 530 // Move the insertion point out of as many loops as we can. 531 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 532 if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break; 533 BasicBlock *Preheader = L->getLoopPreheader(); 534 if (!Preheader) break; 535 536 // Ok, move up a level. 537 Builder.SetInsertPoint(Preheader->getTerminator()); 538 } 539 540 // Emit a GEP. 541 Value *GEP = Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep"); 542 rememberInstruction(GEP); 543 544 return GEP; 545 } 546 547 // Save the original insertion point so we can restore it when we're done. 548 BuilderType::InsertPoint SaveInsertPt = Builder.saveIP(); 549 550 // Move the insertion point out of as many loops as we can. 551 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 552 if (!L->isLoopInvariant(V)) break; 553 554 bool AnyIndexNotLoopInvariant = 555 std::any_of(GepIndices.begin(), GepIndices.end(), 556 [L](Value *Op) { return !L->isLoopInvariant(Op); }); 557 558 if (AnyIndexNotLoopInvariant) 559 break; 560 561 BasicBlock *Preheader = L->getLoopPreheader(); 562 if (!Preheader) break; 563 564 // Ok, move up a level. 565 Builder.SetInsertPoint(Preheader->getTerminator()); 566 } 567 568 // Insert a pretty getelementptr. Note that this GEP is not marked inbounds, 569 // because ScalarEvolution may have changed the address arithmetic to 570 // compute a value which is beyond the end of the allocated object. 571 Value *Casted = V; 572 if (V->getType() != PTy) 573 Casted = InsertNoopCastOfTo(Casted, PTy); 574 Value *GEP = Builder.CreateGEP(OriginalElTy, Casted, GepIndices, "scevgep"); 575 Ops.push_back(SE.getUnknown(GEP)); 576 rememberInstruction(GEP); 577 578 // Restore the original insert point. 579 Builder.restoreIP(SaveInsertPt); 580 581 return expand(SE.getAddExpr(Ops)); 582 } 583 584 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for 585 /// SCEV expansion. If they are nested, this is the most nested. If they are 586 /// neighboring, pick the later. 587 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B, 588 DominatorTree &DT) { 589 if (!A) return B; 590 if (!B) return A; 591 if (A->contains(B)) return B; 592 if (B->contains(A)) return A; 593 if (DT.dominates(A->getHeader(), B->getHeader())) return B; 594 if (DT.dominates(B->getHeader(), A->getHeader())) return A; 595 return A; // Arbitrarily break the tie. 596 } 597 598 /// getRelevantLoop - Get the most relevant loop associated with the given 599 /// expression, according to PickMostRelevantLoop. 600 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) { 601 // Test whether we've already computed the most relevant loop for this SCEV. 602 auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr)); 603 if (!Pair.second) 604 return Pair.first->second; 605 606 if (isa<SCEVConstant>(S)) 607 // A constant has no relevant loops. 608 return nullptr; 609 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 610 if (const Instruction *I = dyn_cast<Instruction>(U->getValue())) 611 return Pair.first->second = SE.LI.getLoopFor(I->getParent()); 612 // A non-instruction has no relevant loops. 613 return nullptr; 614 } 615 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) { 616 const Loop *L = nullptr; 617 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 618 L = AR->getLoop(); 619 for (const SCEV *Op : N->operands()) 620 L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT); 621 return RelevantLoops[N] = L; 622 } 623 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) { 624 const Loop *Result = getRelevantLoop(C->getOperand()); 625 return RelevantLoops[C] = Result; 626 } 627 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 628 const Loop *Result = PickMostRelevantLoop( 629 getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT); 630 return RelevantLoops[D] = Result; 631 } 632 llvm_unreachable("Unexpected SCEV type!"); 633 } 634 635 namespace { 636 637 /// LoopCompare - Compare loops by PickMostRelevantLoop. 638 class LoopCompare { 639 DominatorTree &DT; 640 public: 641 explicit LoopCompare(DominatorTree &dt) : DT(dt) {} 642 643 bool operator()(std::pair<const Loop *, const SCEV *> LHS, 644 std::pair<const Loop *, const SCEV *> RHS) const { 645 // Keep pointer operands sorted at the end. 646 if (LHS.second->getType()->isPointerTy() != 647 RHS.second->getType()->isPointerTy()) 648 return LHS.second->getType()->isPointerTy(); 649 650 // Compare loops with PickMostRelevantLoop. 651 if (LHS.first != RHS.first) 652 return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first; 653 654 // If one operand is a non-constant negative and the other is not, 655 // put the non-constant negative on the right so that a sub can 656 // be used instead of a negate and add. 657 if (LHS.second->isNonConstantNegative()) { 658 if (!RHS.second->isNonConstantNegative()) 659 return false; 660 } else if (RHS.second->isNonConstantNegative()) 661 return true; 662 663 // Otherwise they are equivalent according to this comparison. 664 return false; 665 } 666 }; 667 668 } 669 670 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) { 671 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 672 673 // Collect all the add operands in a loop, along with their associated loops. 674 // Iterate in reverse so that constants are emitted last, all else equal, and 675 // so that pointer operands are inserted first, which the code below relies on 676 // to form more involved GEPs. 677 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 678 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()), 679 E(S->op_begin()); I != E; ++I) 680 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I)); 681 682 // Sort by loop. Use a stable sort so that constants follow non-constants and 683 // pointer operands precede non-pointer operands. 684 std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(SE.DT)); 685 686 // Emit instructions to add all the operands. Hoist as much as possible 687 // out of loops, and form meaningful getelementptrs where possible. 688 Value *Sum = nullptr; 689 for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) { 690 const Loop *CurLoop = I->first; 691 const SCEV *Op = I->second; 692 if (!Sum) { 693 // This is the first operand. Just expand it. 694 Sum = expand(Op); 695 ++I; 696 } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) { 697 // The running sum expression is a pointer. Try to form a getelementptr 698 // at this level with that as the base. 699 SmallVector<const SCEV *, 4> NewOps; 700 for (; I != E && I->first == CurLoop; ++I) { 701 // If the operand is SCEVUnknown and not instructions, peek through 702 // it, to enable more of it to be folded into the GEP. 703 const SCEV *X = I->second; 704 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X)) 705 if (!isa<Instruction>(U->getValue())) 706 X = SE.getSCEV(U->getValue()); 707 NewOps.push_back(X); 708 } 709 Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum); 710 } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) { 711 // The running sum is an integer, and there's a pointer at this level. 712 // Try to form a getelementptr. If the running sum is instructions, 713 // use a SCEVUnknown to avoid re-analyzing them. 714 SmallVector<const SCEV *, 4> NewOps; 715 NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) : 716 SE.getSCEV(Sum)); 717 for (++I; I != E && I->first == CurLoop; ++I) 718 NewOps.push_back(I->second); 719 Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op)); 720 } else if (Op->isNonConstantNegative()) { 721 // Instead of doing a negate and add, just do a subtract. 722 Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty); 723 Sum = InsertNoopCastOfTo(Sum, Ty); 724 Sum = InsertBinop(Instruction::Sub, Sum, W); 725 ++I; 726 } else { 727 // A simple add. 728 Value *W = expandCodeFor(Op, Ty); 729 Sum = InsertNoopCastOfTo(Sum, Ty); 730 // Canonicalize a constant to the RHS. 731 if (isa<Constant>(Sum)) std::swap(Sum, W); 732 Sum = InsertBinop(Instruction::Add, Sum, W); 733 ++I; 734 } 735 } 736 737 return Sum; 738 } 739 740 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) { 741 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 742 743 // Collect all the mul operands in a loop, along with their associated loops. 744 // Iterate in reverse so that constants are emitted last, all else equal. 745 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 746 for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()), 747 E(S->op_begin()); I != E; ++I) 748 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I)); 749 750 // Sort by loop. Use a stable sort so that constants follow non-constants. 751 std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(SE.DT)); 752 753 // Emit instructions to mul all the operands. Hoist as much as possible 754 // out of loops. 755 Value *Prod = nullptr; 756 for (const auto &I : OpsAndLoops) { 757 const SCEV *Op = I.second; 758 if (!Prod) { 759 // This is the first operand. Just expand it. 760 Prod = expand(Op); 761 } else if (Op->isAllOnesValue()) { 762 // Instead of doing a multiply by negative one, just do a negate. 763 Prod = InsertNoopCastOfTo(Prod, Ty); 764 Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod); 765 } else { 766 // A simple mul. 767 Value *W = expandCodeFor(Op, Ty); 768 Prod = InsertNoopCastOfTo(Prod, Ty); 769 // Canonicalize a constant to the RHS. 770 if (isa<Constant>(Prod)) std::swap(Prod, W); 771 const APInt *RHS; 772 if (match(W, m_Power2(RHS))) { 773 // Canonicalize Prod*(1<<C) to Prod<<C. 774 assert(!Ty->isVectorTy() && "vector types are not SCEVable"); 775 Prod = InsertBinop(Instruction::Shl, Prod, 776 ConstantInt::get(Ty, RHS->logBase2())); 777 } else { 778 Prod = InsertBinop(Instruction::Mul, Prod, W); 779 } 780 } 781 } 782 783 return Prod; 784 } 785 786 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) { 787 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 788 789 Value *LHS = expandCodeFor(S->getLHS(), Ty); 790 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) { 791 const APInt &RHS = SC->getAPInt(); 792 if (RHS.isPowerOf2()) 793 return InsertBinop(Instruction::LShr, LHS, 794 ConstantInt::get(Ty, RHS.logBase2())); 795 } 796 797 Value *RHS = expandCodeFor(S->getRHS(), Ty); 798 return InsertBinop(Instruction::UDiv, LHS, RHS); 799 } 800 801 /// Move parts of Base into Rest to leave Base with the minimal 802 /// expression that provides a pointer operand suitable for a 803 /// GEP expansion. 804 static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest, 805 ScalarEvolution &SE) { 806 while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) { 807 Base = A->getStart(); 808 Rest = SE.getAddExpr(Rest, 809 SE.getAddRecExpr(SE.getConstant(A->getType(), 0), 810 A->getStepRecurrence(SE), 811 A->getLoop(), 812 A->getNoWrapFlags(SCEV::FlagNW))); 813 } 814 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) { 815 Base = A->getOperand(A->getNumOperands()-1); 816 SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end()); 817 NewAddOps.back() = Rest; 818 Rest = SE.getAddExpr(NewAddOps); 819 ExposePointerBase(Base, Rest, SE); 820 } 821 } 822 823 /// Determine if this is a well-behaved chain of instructions leading back to 824 /// the PHI. If so, it may be reused by expanded expressions. 825 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, 826 const Loop *L) { 827 if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) || 828 (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV))) 829 return false; 830 // If any of the operands don't dominate the insert position, bail. 831 // Addrec operands are always loop-invariant, so this can only happen 832 // if there are instructions which haven't been hoisted. 833 if (L == IVIncInsertLoop) { 834 for (User::op_iterator OI = IncV->op_begin()+1, 835 OE = IncV->op_end(); OI != OE; ++OI) 836 if (Instruction *OInst = dyn_cast<Instruction>(OI)) 837 if (!SE.DT.dominates(OInst, IVIncInsertPos)) 838 return false; 839 } 840 // Advance to the next instruction. 841 IncV = dyn_cast<Instruction>(IncV->getOperand(0)); 842 if (!IncV) 843 return false; 844 845 if (IncV->mayHaveSideEffects()) 846 return false; 847 848 if (IncV != PN) 849 return true; 850 851 return isNormalAddRecExprPHI(PN, IncV, L); 852 } 853 854 /// getIVIncOperand returns an induction variable increment's induction 855 /// variable operand. 856 /// 857 /// If allowScale is set, any type of GEP is allowed as long as the nonIV 858 /// operands dominate InsertPos. 859 /// 860 /// If allowScale is not set, ensure that a GEP increment conforms to one of the 861 /// simple patterns generated by getAddRecExprPHILiterally and 862 /// expandAddtoGEP. If the pattern isn't recognized, return NULL. 863 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV, 864 Instruction *InsertPos, 865 bool allowScale) { 866 if (IncV == InsertPos) 867 return nullptr; 868 869 switch (IncV->getOpcode()) { 870 default: 871 return nullptr; 872 // Check for a simple Add/Sub or GEP of a loop invariant step. 873 case Instruction::Add: 874 case Instruction::Sub: { 875 Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1)); 876 if (!OInst || SE.DT.dominates(OInst, InsertPos)) 877 return dyn_cast<Instruction>(IncV->getOperand(0)); 878 return nullptr; 879 } 880 case Instruction::BitCast: 881 return dyn_cast<Instruction>(IncV->getOperand(0)); 882 case Instruction::GetElementPtr: 883 for (auto I = IncV->op_begin() + 1, E = IncV->op_end(); I != E; ++I) { 884 if (isa<Constant>(*I)) 885 continue; 886 if (Instruction *OInst = dyn_cast<Instruction>(*I)) { 887 if (!SE.DT.dominates(OInst, InsertPos)) 888 return nullptr; 889 } 890 if (allowScale) { 891 // allow any kind of GEP as long as it can be hoisted. 892 continue; 893 } 894 // This must be a pointer addition of constants (pretty), which is already 895 // handled, or some number of address-size elements (ugly). Ugly geps 896 // have 2 operands. i1* is used by the expander to represent an 897 // address-size element. 898 if (IncV->getNumOperands() != 2) 899 return nullptr; 900 unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace(); 901 if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS) 902 && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS)) 903 return nullptr; 904 break; 905 } 906 return dyn_cast<Instruction>(IncV->getOperand(0)); 907 } 908 } 909 910 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make 911 /// it available to other uses in this loop. Recursively hoist any operands, 912 /// until we reach a value that dominates InsertPos. 913 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) { 914 if (SE.DT.dominates(IncV, InsertPos)) 915 return true; 916 917 // InsertPos must itself dominate IncV so that IncV's new position satisfies 918 // its existing users. 919 if (isa<PHINode>(InsertPos) || 920 !SE.DT.dominates(InsertPos->getParent(), IncV->getParent())) 921 return false; 922 923 if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos)) 924 return false; 925 926 // Check that the chain of IV operands leading back to Phi can be hoisted. 927 SmallVector<Instruction*, 4> IVIncs; 928 for(;;) { 929 Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true); 930 if (!Oper) 931 return false; 932 // IncV is safe to hoist. 933 IVIncs.push_back(IncV); 934 IncV = Oper; 935 if (SE.DT.dominates(IncV, InsertPos)) 936 break; 937 } 938 for (auto I = IVIncs.rbegin(), E = IVIncs.rend(); I != E; ++I) { 939 (*I)->moveBefore(InsertPos); 940 } 941 return true; 942 } 943 944 /// Determine if this cyclic phi is in a form that would have been generated by 945 /// LSR. We don't care if the phi was actually expanded in this pass, as long 946 /// as it is in a low-cost form, for example, no implied multiplication. This 947 /// should match any patterns generated by getAddRecExprPHILiterally and 948 /// expandAddtoGEP. 949 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, 950 const Loop *L) { 951 for(Instruction *IVOper = IncV; 952 (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(), 953 /*allowScale=*/false));) { 954 if (IVOper == PN) 955 return true; 956 } 957 return false; 958 } 959 960 /// expandIVInc - Expand an IV increment at Builder's current InsertPos. 961 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may 962 /// need to materialize IV increments elsewhere to handle difficult situations. 963 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L, 964 Type *ExpandTy, Type *IntTy, 965 bool useSubtract) { 966 Value *IncV; 967 // If the PHI is a pointer, use a GEP, otherwise use an add or sub. 968 if (ExpandTy->isPointerTy()) { 969 PointerType *GEPPtrTy = cast<PointerType>(ExpandTy); 970 // If the step isn't constant, don't use an implicitly scaled GEP, because 971 // that would require a multiply inside the loop. 972 if (!isa<ConstantInt>(StepV)) 973 GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()), 974 GEPPtrTy->getAddressSpace()); 975 const SCEV *const StepArray[1] = { SE.getSCEV(StepV) }; 976 IncV = expandAddToGEP(StepArray, StepArray+1, GEPPtrTy, IntTy, PN); 977 if (IncV->getType() != PN->getType()) { 978 IncV = Builder.CreateBitCast(IncV, PN->getType()); 979 rememberInstruction(IncV); 980 } 981 } else { 982 IncV = useSubtract ? 983 Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") : 984 Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next"); 985 rememberInstruction(IncV); 986 } 987 return IncV; 988 } 989 990 /// \brief Hoist the addrec instruction chain rooted in the loop phi above the 991 /// position. This routine assumes that this is possible (has been checked). 992 static void hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist, 993 Instruction *Pos, PHINode *LoopPhi) { 994 do { 995 if (DT->dominates(InstToHoist, Pos)) 996 break; 997 // Make sure the increment is where we want it. But don't move it 998 // down past a potential existing post-inc user. 999 InstToHoist->moveBefore(Pos); 1000 Pos = InstToHoist; 1001 InstToHoist = cast<Instruction>(InstToHoist->getOperand(0)); 1002 } while (InstToHoist != LoopPhi); 1003 } 1004 1005 /// \brief Check whether we can cheaply express the requested SCEV in terms of 1006 /// the available PHI SCEV by truncation and/or inversion of the step. 1007 static bool canBeCheaplyTransformed(ScalarEvolution &SE, 1008 const SCEVAddRecExpr *Phi, 1009 const SCEVAddRecExpr *Requested, 1010 bool &InvertStep) { 1011 Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType()); 1012 Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType()); 1013 1014 if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth()) 1015 return false; 1016 1017 // Try truncate it if necessary. 1018 Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy)); 1019 if (!Phi) 1020 return false; 1021 1022 // Check whether truncation will help. 1023 if (Phi == Requested) { 1024 InvertStep = false; 1025 return true; 1026 } 1027 1028 // Check whether inverting will help: {R,+,-1} == R - {0,+,1}. 1029 if (SE.getAddExpr(Requested->getStart(), 1030 SE.getNegativeSCEV(Requested)) == Phi) { 1031 InvertStep = true; 1032 return true; 1033 } 1034 1035 return false; 1036 } 1037 1038 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 1039 if (!isa<IntegerType>(AR->getType())) 1040 return false; 1041 1042 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 1043 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 1044 const SCEV *Step = AR->getStepRecurrence(SE); 1045 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy), 1046 SE.getSignExtendExpr(AR, WideTy)); 1047 const SCEV *ExtendAfterOp = 1048 SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy); 1049 return ExtendAfterOp == OpAfterExtend; 1050 } 1051 1052 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 1053 if (!isa<IntegerType>(AR->getType())) 1054 return false; 1055 1056 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 1057 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 1058 const SCEV *Step = AR->getStepRecurrence(SE); 1059 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy), 1060 SE.getZeroExtendExpr(AR, WideTy)); 1061 const SCEV *ExtendAfterOp = 1062 SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy); 1063 return ExtendAfterOp == OpAfterExtend; 1064 } 1065 1066 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand 1067 /// the base addrec, which is the addrec without any non-loop-dominating 1068 /// values, and return the PHI. 1069 PHINode * 1070 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, 1071 const Loop *L, 1072 Type *ExpandTy, 1073 Type *IntTy, 1074 Type *&TruncTy, 1075 bool &InvertStep) { 1076 assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position"); 1077 1078 // Reuse a previously-inserted PHI, if present. 1079 BasicBlock *LatchBlock = L->getLoopLatch(); 1080 if (LatchBlock) { 1081 PHINode *AddRecPhiMatch = nullptr; 1082 Instruction *IncV = nullptr; 1083 TruncTy = nullptr; 1084 InvertStep = false; 1085 1086 // Only try partially matching scevs that need truncation and/or 1087 // step-inversion if we know this loop is outside the current loop. 1088 bool TryNonMatchingSCEV = 1089 IVIncInsertLoop && 1090 SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader()); 1091 1092 for (auto &I : *L->getHeader()) { 1093 auto *PN = dyn_cast<PHINode>(&I); 1094 if (!PN || !SE.isSCEVable(PN->getType())) 1095 continue; 1096 1097 const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PN)); 1098 if (!PhiSCEV) 1099 continue; 1100 1101 bool IsMatchingSCEV = PhiSCEV == Normalized; 1102 // We only handle truncation and inversion of phi recurrences for the 1103 // expanded expression if the expanded expression's loop dominates the 1104 // loop we insert to. Check now, so we can bail out early. 1105 if (!IsMatchingSCEV && !TryNonMatchingSCEV) 1106 continue; 1107 1108 Instruction *TempIncV = 1109 cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock)); 1110 1111 // Check whether we can reuse this PHI node. 1112 if (LSRMode) { 1113 if (!isExpandedAddRecExprPHI(PN, TempIncV, L)) 1114 continue; 1115 if (L == IVIncInsertLoop && !hoistIVInc(TempIncV, IVIncInsertPos)) 1116 continue; 1117 } else { 1118 if (!isNormalAddRecExprPHI(PN, TempIncV, L)) 1119 continue; 1120 } 1121 1122 // Stop if we have found an exact match SCEV. 1123 if (IsMatchingSCEV) { 1124 IncV = TempIncV; 1125 TruncTy = nullptr; 1126 InvertStep = false; 1127 AddRecPhiMatch = PN; 1128 break; 1129 } 1130 1131 // Try whether the phi can be translated into the requested form 1132 // (truncated and/or offset by a constant). 1133 if ((!TruncTy || InvertStep) && 1134 canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) { 1135 // Record the phi node. But don't stop we might find an exact match 1136 // later. 1137 AddRecPhiMatch = PN; 1138 IncV = TempIncV; 1139 TruncTy = SE.getEffectiveSCEVType(Normalized->getType()); 1140 } 1141 } 1142 1143 if (AddRecPhiMatch) { 1144 // Potentially, move the increment. We have made sure in 1145 // isExpandedAddRecExprPHI or hoistIVInc that this is possible. 1146 if (L == IVIncInsertLoop) 1147 hoistBeforePos(&SE.DT, IncV, IVIncInsertPos, AddRecPhiMatch); 1148 1149 // Ok, the add recurrence looks usable. 1150 // Remember this PHI, even in post-inc mode. 1151 InsertedValues.insert(AddRecPhiMatch); 1152 // Remember the increment. 1153 rememberInstruction(IncV); 1154 return AddRecPhiMatch; 1155 } 1156 } 1157 1158 // Save the original insertion point so we can restore it when we're done. 1159 BuilderType::InsertPointGuard Guard(Builder); 1160 1161 // Another AddRec may need to be recursively expanded below. For example, if 1162 // this AddRec is quadratic, the StepV may itself be an AddRec in this 1163 // loop. Remove this loop from the PostIncLoops set before expanding such 1164 // AddRecs. Otherwise, we cannot find a valid position for the step 1165 // (i.e. StepV can never dominate its loop header). Ideally, we could do 1166 // SavedIncLoops.swap(PostIncLoops), but we generally have a single element, 1167 // so it's not worth implementing SmallPtrSet::swap. 1168 PostIncLoopSet SavedPostIncLoops = PostIncLoops; 1169 PostIncLoops.clear(); 1170 1171 // Expand code for the start value. 1172 Value *StartV = 1173 expandCodeFor(Normalized->getStart(), ExpandTy, &L->getHeader()->front()); 1174 1175 // StartV must be hoisted into L's preheader to dominate the new phi. 1176 assert(!isa<Instruction>(StartV) || 1177 SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(), 1178 L->getHeader())); 1179 1180 // Expand code for the step value. Do this before creating the PHI so that PHI 1181 // reuse code doesn't see an incomplete PHI. 1182 const SCEV *Step = Normalized->getStepRecurrence(SE); 1183 // If the stride is negative, insert a sub instead of an add for the increment 1184 // (unless it's a constant, because subtracts of constants are canonicalized 1185 // to adds). 1186 bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1187 if (useSubtract) 1188 Step = SE.getNegativeSCEV(Step); 1189 // Expand the step somewhere that dominates the loop header. 1190 Value *StepV = expandCodeFor(Step, IntTy, &L->getHeader()->front()); 1191 1192 // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if 1193 // we actually do emit an addition. It does not apply if we emit a 1194 // subtraction. 1195 bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized); 1196 bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized); 1197 1198 // Create the PHI. 1199 BasicBlock *Header = L->getHeader(); 1200 Builder.SetInsertPoint(Header, Header->begin()); 1201 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1202 PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE), 1203 Twine(IVName) + ".iv"); 1204 rememberInstruction(PN); 1205 1206 // Create the step instructions and populate the PHI. 1207 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1208 BasicBlock *Pred = *HPI; 1209 1210 // Add a start value. 1211 if (!L->contains(Pred)) { 1212 PN->addIncoming(StartV, Pred); 1213 continue; 1214 } 1215 1216 // Create a step value and add it to the PHI. 1217 // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the 1218 // instructions at IVIncInsertPos. 1219 Instruction *InsertPos = L == IVIncInsertLoop ? 1220 IVIncInsertPos : Pred->getTerminator(); 1221 Builder.SetInsertPoint(InsertPos); 1222 Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); 1223 1224 if (isa<OverflowingBinaryOperator>(IncV)) { 1225 if (IncrementIsNUW) 1226 cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap(); 1227 if (IncrementIsNSW) 1228 cast<BinaryOperator>(IncV)->setHasNoSignedWrap(); 1229 } 1230 PN->addIncoming(IncV, Pred); 1231 } 1232 1233 // After expanding subexpressions, restore the PostIncLoops set so the caller 1234 // can ensure that IVIncrement dominates the current uses. 1235 PostIncLoops = SavedPostIncLoops; 1236 1237 // Remember this PHI, even in post-inc mode. 1238 InsertedValues.insert(PN); 1239 1240 return PN; 1241 } 1242 1243 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) { 1244 Type *STy = S->getType(); 1245 Type *IntTy = SE.getEffectiveSCEVType(STy); 1246 const Loop *L = S->getLoop(); 1247 1248 // Determine a normalized form of this expression, which is the expression 1249 // before any post-inc adjustment is made. 1250 const SCEVAddRecExpr *Normalized = S; 1251 if (PostIncLoops.count(L)) { 1252 PostIncLoopSet Loops; 1253 Loops.insert(L); 1254 Normalized = cast<SCEVAddRecExpr>(TransformForPostIncUse( 1255 Normalize, S, nullptr, nullptr, Loops, SE, SE.DT)); 1256 } 1257 1258 // Strip off any non-loop-dominating component from the addrec start. 1259 const SCEV *Start = Normalized->getStart(); 1260 const SCEV *PostLoopOffset = nullptr; 1261 if (!SE.properlyDominates(Start, L->getHeader())) { 1262 PostLoopOffset = Start; 1263 Start = SE.getConstant(Normalized->getType(), 0); 1264 Normalized = cast<SCEVAddRecExpr>( 1265 SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE), 1266 Normalized->getLoop(), 1267 Normalized->getNoWrapFlags(SCEV::FlagNW))); 1268 } 1269 1270 // Strip off any non-loop-dominating component from the addrec step. 1271 const SCEV *Step = Normalized->getStepRecurrence(SE); 1272 const SCEV *PostLoopScale = nullptr; 1273 if (!SE.dominates(Step, L->getHeader())) { 1274 PostLoopScale = Step; 1275 Step = SE.getConstant(Normalized->getType(), 1); 1276 Normalized = 1277 cast<SCEVAddRecExpr>(SE.getAddRecExpr( 1278 Start, Step, Normalized->getLoop(), 1279 Normalized->getNoWrapFlags(SCEV::FlagNW))); 1280 } 1281 1282 // Expand the core addrec. If we need post-loop scaling, force it to 1283 // expand to an integer type to avoid the need for additional casting. 1284 Type *ExpandTy = PostLoopScale ? IntTy : STy; 1285 // In some cases, we decide to reuse an existing phi node but need to truncate 1286 // it and/or invert the step. 1287 Type *TruncTy = nullptr; 1288 bool InvertStep = false; 1289 PHINode *PN = getAddRecExprPHILiterally(Normalized, L, ExpandTy, IntTy, 1290 TruncTy, InvertStep); 1291 1292 // Accommodate post-inc mode, if necessary. 1293 Value *Result; 1294 if (!PostIncLoops.count(L)) 1295 Result = PN; 1296 else { 1297 // In PostInc mode, use the post-incremented value. 1298 BasicBlock *LatchBlock = L->getLoopLatch(); 1299 assert(LatchBlock && "PostInc mode requires a unique loop latch!"); 1300 Result = PN->getIncomingValueForBlock(LatchBlock); 1301 1302 // For an expansion to use the postinc form, the client must call 1303 // expandCodeFor with an InsertPoint that is either outside the PostIncLoop 1304 // or dominated by IVIncInsertPos. 1305 if (isa<Instruction>(Result) && 1306 !SE.DT.dominates(cast<Instruction>(Result), 1307 &*Builder.GetInsertPoint())) { 1308 // The induction variable's postinc expansion does not dominate this use. 1309 // IVUsers tries to prevent this case, so it is rare. However, it can 1310 // happen when an IVUser outside the loop is not dominated by the latch 1311 // block. Adjusting IVIncInsertPos before expansion begins cannot handle 1312 // all cases. Consider a phi outide whose operand is replaced during 1313 // expansion with the value of the postinc user. Without fundamentally 1314 // changing the way postinc users are tracked, the only remedy is 1315 // inserting an extra IV increment. StepV might fold into PostLoopOffset, 1316 // but hopefully expandCodeFor handles that. 1317 bool useSubtract = 1318 !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1319 if (useSubtract) 1320 Step = SE.getNegativeSCEV(Step); 1321 Value *StepV; 1322 { 1323 // Expand the step somewhere that dominates the loop header. 1324 BuilderType::InsertPointGuard Guard(Builder); 1325 StepV = expandCodeFor(Step, IntTy, &L->getHeader()->front()); 1326 } 1327 Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); 1328 } 1329 } 1330 1331 // We have decided to reuse an induction variable of a dominating loop. Apply 1332 // truncation and/or invertion of the step. 1333 if (TruncTy) { 1334 Type *ResTy = Result->getType(); 1335 // Normalize the result type. 1336 if (ResTy != SE.getEffectiveSCEVType(ResTy)) 1337 Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy)); 1338 // Truncate the result. 1339 if (TruncTy != Result->getType()) { 1340 Result = Builder.CreateTrunc(Result, TruncTy); 1341 rememberInstruction(Result); 1342 } 1343 // Invert the result. 1344 if (InvertStep) { 1345 Result = Builder.CreateSub(expandCodeFor(Normalized->getStart(), TruncTy), 1346 Result); 1347 rememberInstruction(Result); 1348 } 1349 } 1350 1351 // Re-apply any non-loop-dominating scale. 1352 if (PostLoopScale) { 1353 assert(S->isAffine() && "Can't linearly scale non-affine recurrences."); 1354 Result = InsertNoopCastOfTo(Result, IntTy); 1355 Result = Builder.CreateMul(Result, 1356 expandCodeFor(PostLoopScale, IntTy)); 1357 rememberInstruction(Result); 1358 } 1359 1360 // Re-apply any non-loop-dominating offset. 1361 if (PostLoopOffset) { 1362 if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) { 1363 const SCEV *const OffsetArray[1] = { PostLoopOffset }; 1364 Result = expandAddToGEP(OffsetArray, OffsetArray+1, PTy, IntTy, Result); 1365 } else { 1366 Result = InsertNoopCastOfTo(Result, IntTy); 1367 Result = Builder.CreateAdd(Result, 1368 expandCodeFor(PostLoopOffset, IntTy)); 1369 rememberInstruction(Result); 1370 } 1371 } 1372 1373 return Result; 1374 } 1375 1376 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) { 1377 if (!CanonicalMode) return expandAddRecExprLiterally(S); 1378 1379 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1380 const Loop *L = S->getLoop(); 1381 1382 // First check for an existing canonical IV in a suitable type. 1383 PHINode *CanonicalIV = nullptr; 1384 if (PHINode *PN = L->getCanonicalInductionVariable()) 1385 if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty)) 1386 CanonicalIV = PN; 1387 1388 // Rewrite an AddRec in terms of the canonical induction variable, if 1389 // its type is more narrow. 1390 if (CanonicalIV && 1391 SE.getTypeSizeInBits(CanonicalIV->getType()) > 1392 SE.getTypeSizeInBits(Ty)) { 1393 SmallVector<const SCEV *, 4> NewOps(S->getNumOperands()); 1394 for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i) 1395 NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType()); 1396 Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(), 1397 S->getNoWrapFlags(SCEV::FlagNW))); 1398 BasicBlock::iterator NewInsertPt = 1399 findInsertPointAfter(cast<Instruction>(V), Builder.GetInsertBlock()); 1400 V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr, 1401 &*NewInsertPt); 1402 return V; 1403 } 1404 1405 // {X,+,F} --> X + {0,+,F} 1406 if (!S->getStart()->isZero()) { 1407 SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end()); 1408 NewOps[0] = SE.getConstant(Ty, 0); 1409 const SCEV *Rest = SE.getAddRecExpr(NewOps, L, 1410 S->getNoWrapFlags(SCEV::FlagNW)); 1411 1412 // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the 1413 // comments on expandAddToGEP for details. 1414 const SCEV *Base = S->getStart(); 1415 const SCEV *RestArray[1] = { Rest }; 1416 // Dig into the expression to find the pointer base for a GEP. 1417 ExposePointerBase(Base, RestArray[0], SE); 1418 // If we found a pointer, expand the AddRec with a GEP. 1419 if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) { 1420 // Make sure the Base isn't something exotic, such as a multiplied 1421 // or divided pointer value. In those cases, the result type isn't 1422 // actually a pointer type. 1423 if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) { 1424 Value *StartV = expand(Base); 1425 assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!"); 1426 return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV); 1427 } 1428 } 1429 1430 // Just do a normal add. Pre-expand the operands to suppress folding. 1431 return expand(SE.getAddExpr(SE.getUnknown(expand(S->getStart())), 1432 SE.getUnknown(expand(Rest)))); 1433 } 1434 1435 // If we don't yet have a canonical IV, create one. 1436 if (!CanonicalIV) { 1437 // Create and insert the PHI node for the induction variable in the 1438 // specified loop. 1439 BasicBlock *Header = L->getHeader(); 1440 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1441 CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar", 1442 &Header->front()); 1443 rememberInstruction(CanonicalIV); 1444 1445 SmallSet<BasicBlock *, 4> PredSeen; 1446 Constant *One = ConstantInt::get(Ty, 1); 1447 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1448 BasicBlock *HP = *HPI; 1449 if (!PredSeen.insert(HP).second) { 1450 // There must be an incoming value for each predecessor, even the 1451 // duplicates! 1452 CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP); 1453 continue; 1454 } 1455 1456 if (L->contains(HP)) { 1457 // Insert a unit add instruction right before the terminator 1458 // corresponding to the back-edge. 1459 Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One, 1460 "indvar.next", 1461 HP->getTerminator()); 1462 Add->setDebugLoc(HP->getTerminator()->getDebugLoc()); 1463 rememberInstruction(Add); 1464 CanonicalIV->addIncoming(Add, HP); 1465 } else { 1466 CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP); 1467 } 1468 } 1469 } 1470 1471 // {0,+,1} --> Insert a canonical induction variable into the loop! 1472 if (S->isAffine() && S->getOperand(1)->isOne()) { 1473 assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) && 1474 "IVs with types different from the canonical IV should " 1475 "already have been handled!"); 1476 return CanonicalIV; 1477 } 1478 1479 // {0,+,F} --> {0,+,1} * F 1480 1481 // If this is a simple linear addrec, emit it now as a special case. 1482 if (S->isAffine()) // {0,+,F} --> i*F 1483 return 1484 expand(SE.getTruncateOrNoop( 1485 SE.getMulExpr(SE.getUnknown(CanonicalIV), 1486 SE.getNoopOrAnyExtend(S->getOperand(1), 1487 CanonicalIV->getType())), 1488 Ty)); 1489 1490 // If this is a chain of recurrences, turn it into a closed form, using the 1491 // folders, then expandCodeFor the closed form. This allows the folders to 1492 // simplify the expression without having to build a bunch of special code 1493 // into this folder. 1494 const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV. 1495 1496 // Promote S up to the canonical IV type, if the cast is foldable. 1497 const SCEV *NewS = S; 1498 const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType()); 1499 if (isa<SCEVAddRecExpr>(Ext)) 1500 NewS = Ext; 1501 1502 const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE); 1503 //cerr << "Evaluated: " << *this << "\n to: " << *V << "\n"; 1504 1505 // Truncate the result down to the original type, if needed. 1506 const SCEV *T = SE.getTruncateOrNoop(V, Ty); 1507 return expand(T); 1508 } 1509 1510 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) { 1511 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1512 Value *V = expandCodeFor(S->getOperand(), 1513 SE.getEffectiveSCEVType(S->getOperand()->getType())); 1514 Value *I = Builder.CreateTrunc(V, Ty); 1515 rememberInstruction(I); 1516 return I; 1517 } 1518 1519 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) { 1520 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1521 Value *V = expandCodeFor(S->getOperand(), 1522 SE.getEffectiveSCEVType(S->getOperand()->getType())); 1523 Value *I = Builder.CreateZExt(V, Ty); 1524 rememberInstruction(I); 1525 return I; 1526 } 1527 1528 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) { 1529 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1530 Value *V = expandCodeFor(S->getOperand(), 1531 SE.getEffectiveSCEVType(S->getOperand()->getType())); 1532 Value *I = Builder.CreateSExt(V, Ty); 1533 rememberInstruction(I); 1534 return I; 1535 } 1536 1537 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) { 1538 Value *LHS = expand(S->getOperand(S->getNumOperands()-1)); 1539 Type *Ty = LHS->getType(); 1540 for (int i = S->getNumOperands()-2; i >= 0; --i) { 1541 // In the case of mixed integer and pointer types, do the 1542 // rest of the comparisons as integer. 1543 if (S->getOperand(i)->getType() != Ty) { 1544 Ty = SE.getEffectiveSCEVType(Ty); 1545 LHS = InsertNoopCastOfTo(LHS, Ty); 1546 } 1547 Value *RHS = expandCodeFor(S->getOperand(i), Ty); 1548 Value *ICmp = Builder.CreateICmpSGT(LHS, RHS); 1549 rememberInstruction(ICmp); 1550 Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax"); 1551 rememberInstruction(Sel); 1552 LHS = Sel; 1553 } 1554 // In the case of mixed integer and pointer types, cast the 1555 // final result back to the pointer type. 1556 if (LHS->getType() != S->getType()) 1557 LHS = InsertNoopCastOfTo(LHS, S->getType()); 1558 return LHS; 1559 } 1560 1561 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) { 1562 Value *LHS = expand(S->getOperand(S->getNumOperands()-1)); 1563 Type *Ty = LHS->getType(); 1564 for (int i = S->getNumOperands()-2; i >= 0; --i) { 1565 // In the case of mixed integer and pointer types, do the 1566 // rest of the comparisons as integer. 1567 if (S->getOperand(i)->getType() != Ty) { 1568 Ty = SE.getEffectiveSCEVType(Ty); 1569 LHS = InsertNoopCastOfTo(LHS, Ty); 1570 } 1571 Value *RHS = expandCodeFor(S->getOperand(i), Ty); 1572 Value *ICmp = Builder.CreateICmpUGT(LHS, RHS); 1573 rememberInstruction(ICmp); 1574 Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax"); 1575 rememberInstruction(Sel); 1576 LHS = Sel; 1577 } 1578 // In the case of mixed integer and pointer types, cast the 1579 // final result back to the pointer type. 1580 if (LHS->getType() != S->getType()) 1581 LHS = InsertNoopCastOfTo(LHS, S->getType()); 1582 return LHS; 1583 } 1584 1585 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty, 1586 Instruction *IP) { 1587 assert(IP); 1588 Builder.SetInsertPoint(IP); 1589 return expandCodeFor(SH, Ty); 1590 } 1591 1592 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) { 1593 // Expand the code for this SCEV. 1594 Value *V = expand(SH); 1595 if (Ty) { 1596 assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) && 1597 "non-trivial casts should be done with the SCEVs directly!"); 1598 V = InsertNoopCastOfTo(V, Ty); 1599 } 1600 return V; 1601 } 1602 1603 Value *SCEVExpander::expand(const SCEV *S) { 1604 // Compute an insertion point for this SCEV object. Hoist the instructions 1605 // as far out in the loop nest as possible. 1606 Instruction *InsertPt = &*Builder.GetInsertPoint(); 1607 for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());; 1608 L = L->getParentLoop()) 1609 if (SE.isLoopInvariant(S, L)) { 1610 if (!L) break; 1611 if (BasicBlock *Preheader = L->getLoopPreheader()) 1612 InsertPt = Preheader->getTerminator(); 1613 else { 1614 // LSR sets the insertion point for AddRec start/step values to the 1615 // block start to simplify value reuse, even though it's an invalid 1616 // position. SCEVExpander must correct for this in all cases. 1617 InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1618 } 1619 } else { 1620 // If the SCEV is computable at this level, insert it into the header 1621 // after the PHIs (and after any other instructions that we've inserted 1622 // there) so that it is guaranteed to dominate any user inside the loop. 1623 if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L)) 1624 InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1625 while (InsertPt != Builder.GetInsertPoint() 1626 && (isInsertedInstruction(InsertPt) 1627 || isa<DbgInfoIntrinsic>(InsertPt))) { 1628 InsertPt = &*std::next(InsertPt->getIterator()); 1629 } 1630 break; 1631 } 1632 1633 // Check to see if we already expanded this here. 1634 auto I = InsertedExpressions.find(std::make_pair(S, InsertPt)); 1635 if (I != InsertedExpressions.end()) 1636 return I->second; 1637 1638 BuilderType::InsertPointGuard Guard(Builder); 1639 Builder.SetInsertPoint(InsertPt); 1640 1641 // Expand the expression into instructions. 1642 Value *V = visit(S); 1643 1644 // Remember the expanded value for this SCEV at this location. 1645 // 1646 // This is independent of PostIncLoops. The mapped value simply materializes 1647 // the expression at this insertion point. If the mapped value happened to be 1648 // a postinc expansion, it could be reused by a non-postinc user, but only if 1649 // its insertion point was already at the head of the loop. 1650 InsertedExpressions[std::make_pair(S, InsertPt)] = V; 1651 return V; 1652 } 1653 1654 void SCEVExpander::rememberInstruction(Value *I) { 1655 if (!PostIncLoops.empty()) 1656 InsertedPostIncValues.insert(I); 1657 else 1658 InsertedValues.insert(I); 1659 } 1660 1661 /// getOrInsertCanonicalInductionVariable - This method returns the 1662 /// canonical induction variable of the specified type for the specified 1663 /// loop (inserting one if there is none). A canonical induction variable 1664 /// starts at zero and steps by one on each iteration. 1665 PHINode * 1666 SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L, 1667 Type *Ty) { 1668 assert(Ty->isIntegerTy() && "Can only insert integer induction variables!"); 1669 1670 // Build a SCEV for {0,+,1}<L>. 1671 // Conservatively use FlagAnyWrap for now. 1672 const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0), 1673 SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap); 1674 1675 // Emit code for it. 1676 BuilderType::InsertPointGuard Guard(Builder); 1677 PHINode *V = 1678 cast<PHINode>(expandCodeFor(H, nullptr, &L->getHeader()->front())); 1679 1680 return V; 1681 } 1682 1683 /// replaceCongruentIVs - Check for congruent phis in this loop header and 1684 /// replace them with their most canonical representative. Return the number of 1685 /// phis eliminated. 1686 /// 1687 /// This does not depend on any SCEVExpander state but should be used in 1688 /// the same context that SCEVExpander is used. 1689 unsigned SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT, 1690 SmallVectorImpl<WeakVH> &DeadInsts, 1691 const TargetTransformInfo *TTI) { 1692 // Find integer phis in order of increasing width. 1693 SmallVector<PHINode*, 8> Phis; 1694 for (auto &I : *L->getHeader()) { 1695 if (auto *PN = dyn_cast<PHINode>(&I)) 1696 Phis.push_back(PN); 1697 else 1698 break; 1699 } 1700 1701 if (TTI) 1702 std::sort(Phis.begin(), Phis.end(), [](Value *LHS, Value *RHS) { 1703 // Put pointers at the back and make sure pointer < pointer = false. 1704 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) 1705 return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy(); 1706 return RHS->getType()->getPrimitiveSizeInBits() < 1707 LHS->getType()->getPrimitiveSizeInBits(); 1708 }); 1709 1710 unsigned NumElim = 0; 1711 DenseMap<const SCEV *, PHINode *> ExprToIVMap; 1712 // Process phis from wide to narrow. Map wide phis to their truncation 1713 // so narrow phis can reuse them. 1714 for (PHINode *Phi : Phis) { 1715 auto SimplifyPHINode = [&](PHINode *PN) -> Value * { 1716 if (Value *V = SimplifyInstruction(PN, DL, &SE.TLI, &SE.DT, &SE.AC)) 1717 return V; 1718 if (!SE.isSCEVable(PN->getType())) 1719 return nullptr; 1720 auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN)); 1721 if (!Const) 1722 return nullptr; 1723 return Const->getValue(); 1724 }; 1725 1726 // Fold constant phis. They may be congruent to other constant phis and 1727 // would confuse the logic below that expects proper IVs. 1728 if (Value *V = SimplifyPHINode(Phi)) { 1729 if (V->getType() != Phi->getType()) 1730 continue; 1731 Phi->replaceAllUsesWith(V); 1732 DeadInsts.emplace_back(Phi); 1733 ++NumElim; 1734 DEBUG_WITH_TYPE(DebugType, dbgs() 1735 << "INDVARS: Eliminated constant iv: " << *Phi << '\n'); 1736 continue; 1737 } 1738 1739 if (!SE.isSCEVable(Phi->getType())) 1740 continue; 1741 1742 PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)]; 1743 if (!OrigPhiRef) { 1744 OrigPhiRef = Phi; 1745 if (Phi->getType()->isIntegerTy() && TTI 1746 && TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) { 1747 // This phi can be freely truncated to the narrowest phi type. Map the 1748 // truncated expression to it so it will be reused for narrow types. 1749 const SCEV *TruncExpr = 1750 SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType()); 1751 ExprToIVMap[TruncExpr] = Phi; 1752 } 1753 continue; 1754 } 1755 1756 // Replacing a pointer phi with an integer phi or vice-versa doesn't make 1757 // sense. 1758 if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy()) 1759 continue; 1760 1761 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1762 Instruction *OrigInc = 1763 cast<Instruction>(OrigPhiRef->getIncomingValueForBlock(LatchBlock)); 1764 Instruction *IsomorphicInc = 1765 cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock)); 1766 1767 // If this phi has the same width but is more canonical, replace the 1768 // original with it. As part of the "more canonical" determination, 1769 // respect a prior decision to use an IV chain. 1770 if (OrigPhiRef->getType() == Phi->getType() 1771 && !(ChainedPhis.count(Phi) 1772 || isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) 1773 && (ChainedPhis.count(Phi) 1774 || isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) { 1775 std::swap(OrigPhiRef, Phi); 1776 std::swap(OrigInc, IsomorphicInc); 1777 } 1778 // Replacing the congruent phi is sufficient because acyclic redundancy 1779 // elimination, CSE/GVN, should handle the rest. However, once SCEV proves 1780 // that a phi is congruent, it's often the head of an IV user cycle that 1781 // is isomorphic with the original phi. It's worth eagerly cleaning up the 1782 // common case of a single IV increment so that DeleteDeadPHIs can remove 1783 // cycles that had postinc uses. 1784 const SCEV *TruncExpr = SE.getTruncateOrNoop(SE.getSCEV(OrigInc), 1785 IsomorphicInc->getType()); 1786 if (OrigInc != IsomorphicInc 1787 && TruncExpr == SE.getSCEV(IsomorphicInc) 1788 && ((isa<PHINode>(OrigInc) && isa<PHINode>(IsomorphicInc)) 1789 || hoistIVInc(OrigInc, IsomorphicInc))) { 1790 DEBUG_WITH_TYPE(DebugType, dbgs() 1791 << "INDVARS: Eliminated congruent iv.inc: " 1792 << *IsomorphicInc << '\n'); 1793 Value *NewInc = OrigInc; 1794 if (OrigInc->getType() != IsomorphicInc->getType()) { 1795 Instruction *IP = nullptr; 1796 if (PHINode *PN = dyn_cast<PHINode>(OrigInc)) 1797 IP = &*PN->getParent()->getFirstInsertionPt(); 1798 else 1799 IP = OrigInc->getNextNode(); 1800 1801 IRBuilder<> Builder(IP); 1802 Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc()); 1803 NewInc = Builder. 1804 CreateTruncOrBitCast(OrigInc, IsomorphicInc->getType(), IVName); 1805 } 1806 IsomorphicInc->replaceAllUsesWith(NewInc); 1807 DeadInsts.emplace_back(IsomorphicInc); 1808 } 1809 } 1810 DEBUG_WITH_TYPE(DebugType, dbgs() 1811 << "INDVARS: Eliminated congruent iv: " << *Phi << '\n'); 1812 ++NumElim; 1813 Value *NewIV = OrigPhiRef; 1814 if (OrigPhiRef->getType() != Phi->getType()) { 1815 IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt()); 1816 Builder.SetCurrentDebugLocation(Phi->getDebugLoc()); 1817 NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName); 1818 } 1819 Phi->replaceAllUsesWith(NewIV); 1820 DeadInsts.emplace_back(Phi); 1821 } 1822 return NumElim; 1823 } 1824 1825 Value *SCEVExpander::findExistingExpansion(const SCEV *S, 1826 const Instruction *At, Loop *L) { 1827 using namespace llvm::PatternMatch; 1828 1829 SmallVector<BasicBlock *, 4> ExitingBlocks; 1830 L->getExitingBlocks(ExitingBlocks); 1831 1832 // Look for suitable value in simple conditions at the loop exits. 1833 for (BasicBlock *BB : ExitingBlocks) { 1834 ICmpInst::Predicate Pred; 1835 Instruction *LHS, *RHS; 1836 BasicBlock *TrueBB, *FalseBB; 1837 1838 if (!match(BB->getTerminator(), 1839 m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)), 1840 TrueBB, FalseBB))) 1841 continue; 1842 1843 if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At)) 1844 return LHS; 1845 1846 if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At)) 1847 return RHS; 1848 } 1849 1850 // There is potential to make this significantly smarter, but this simple 1851 // heuristic already gets some interesting cases. 1852 1853 // Can not find suitable value. 1854 return nullptr; 1855 } 1856 1857 bool SCEVExpander::isHighCostExpansionHelper( 1858 const SCEV *S, Loop *L, const Instruction *At, 1859 SmallPtrSetImpl<const SCEV *> &Processed) { 1860 1861 // If we can find an existing value for this scev avaliable at the point "At" 1862 // then consider the expression cheap. 1863 if (At && findExistingExpansion(S, At, L) != nullptr) 1864 return false; 1865 1866 // Zero/One operand expressions 1867 switch (S->getSCEVType()) { 1868 case scUnknown: 1869 case scConstant: 1870 return false; 1871 case scTruncate: 1872 return isHighCostExpansionHelper(cast<SCEVTruncateExpr>(S)->getOperand(), 1873 L, At, Processed); 1874 case scZeroExtend: 1875 return isHighCostExpansionHelper(cast<SCEVZeroExtendExpr>(S)->getOperand(), 1876 L, At, Processed); 1877 case scSignExtend: 1878 return isHighCostExpansionHelper(cast<SCEVSignExtendExpr>(S)->getOperand(), 1879 L, At, Processed); 1880 } 1881 1882 if (!Processed.insert(S).second) 1883 return false; 1884 1885 if (auto *UDivExpr = dyn_cast<SCEVUDivExpr>(S)) { 1886 // If the divisor is a power of two and the SCEV type fits in a native 1887 // integer, consider the division cheap irrespective of whether it occurs in 1888 // the user code since it can be lowered into a right shift. 1889 if (auto *SC = dyn_cast<SCEVConstant>(UDivExpr->getRHS())) 1890 if (SC->getAPInt().isPowerOf2()) { 1891 const DataLayout &DL = 1892 L->getHeader()->getParent()->getParent()->getDataLayout(); 1893 unsigned Width = cast<IntegerType>(UDivExpr->getType())->getBitWidth(); 1894 return DL.isIllegalInteger(Width); 1895 } 1896 1897 // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or 1898 // HowManyLessThans produced to compute a precise expression, rather than a 1899 // UDiv from the user's code. If we can't find a UDiv in the code with some 1900 // simple searching, assume the former consider UDivExpr expensive to 1901 // compute. 1902 BasicBlock *ExitingBB = L->getExitingBlock(); 1903 if (!ExitingBB) 1904 return true; 1905 1906 // At the beginning of this function we already tried to find existing value 1907 // for plain 'S'. Now try to lookup 'S + 1' since it is common pattern 1908 // involving division. This is just a simple search heuristic. 1909 if (!At) 1910 At = &ExitingBB->back(); 1911 if (!findExistingExpansion( 1912 SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), At, L)) 1913 return true; 1914 } 1915 1916 // HowManyLessThans uses a Max expression whenever the loop is not guarded by 1917 // the exit condition. 1918 if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S)) 1919 return true; 1920 1921 // Recurse past nary expressions, which commonly occur in the 1922 // BackedgeTakenCount. They may already exist in program code, and if not, 1923 // they are not too expensive rematerialize. 1924 if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(S)) { 1925 for (auto *Op : NAry->operands()) 1926 if (isHighCostExpansionHelper(Op, L, At, Processed)) 1927 return true; 1928 } 1929 1930 // If we haven't recognized an expensive SCEV pattern, assume it's an 1931 // expression produced by program code. 1932 return false; 1933 } 1934 1935 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred, 1936 Instruction *IP) { 1937 assert(IP); 1938 switch (Pred->getKind()) { 1939 case SCEVPredicate::P_Union: 1940 return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP); 1941 case SCEVPredicate::P_Equal: 1942 return expandEqualPredicate(cast<SCEVEqualPredicate>(Pred), IP); 1943 } 1944 llvm_unreachable("Unknown SCEV predicate type"); 1945 } 1946 1947 Value *SCEVExpander::expandEqualPredicate(const SCEVEqualPredicate *Pred, 1948 Instruction *IP) { 1949 Value *Expr0 = expandCodeFor(Pred->getLHS(), Pred->getLHS()->getType(), IP); 1950 Value *Expr1 = expandCodeFor(Pred->getRHS(), Pred->getRHS()->getType(), IP); 1951 1952 Builder.SetInsertPoint(IP); 1953 auto *I = Builder.CreateICmpNE(Expr0, Expr1, "ident.check"); 1954 return I; 1955 } 1956 1957 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union, 1958 Instruction *IP) { 1959 auto *BoolType = IntegerType::get(IP->getContext(), 1); 1960 Value *Check = ConstantInt::getNullValue(BoolType); 1961 1962 // Loop over all checks in this set. 1963 for (auto Pred : Union->getPredicates()) { 1964 auto *NextCheck = expandCodeForPredicate(Pred, IP); 1965 Builder.SetInsertPoint(IP); 1966 Check = Builder.CreateOr(Check, NextCheck); 1967 } 1968 1969 return Check; 1970 } 1971 1972 namespace { 1973 // Search for a SCEV subexpression that is not safe to expand. Any expression 1974 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely 1975 // UDiv expressions. We don't know if the UDiv is derived from an IR divide 1976 // instruction, but the important thing is that we prove the denominator is 1977 // nonzero before expansion. 1978 // 1979 // IVUsers already checks that IV-derived expressions are safe. So this check is 1980 // only needed when the expression includes some subexpression that is not IV 1981 // derived. 1982 // 1983 // Currently, we only allow division by a nonzero constant here. If this is 1984 // inadequate, we could easily allow division by SCEVUnknown by using 1985 // ValueTracking to check isKnownNonZero(). 1986 // 1987 // We cannot generally expand recurrences unless the step dominates the loop 1988 // header. The expander handles the special case of affine recurrences by 1989 // scaling the recurrence outside the loop, but this technique isn't generally 1990 // applicable. Expanding a nested recurrence outside a loop requires computing 1991 // binomial coefficients. This could be done, but the recurrence has to be in a 1992 // perfectly reduced form, which can't be guaranteed. 1993 struct SCEVFindUnsafe { 1994 ScalarEvolution &SE; 1995 bool IsUnsafe; 1996 1997 SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {} 1998 1999 bool follow(const SCEV *S) { 2000 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 2001 const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS()); 2002 if (!SC || SC->getValue()->isZero()) { 2003 IsUnsafe = true; 2004 return false; 2005 } 2006 } 2007 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2008 const SCEV *Step = AR->getStepRecurrence(SE); 2009 if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) { 2010 IsUnsafe = true; 2011 return false; 2012 } 2013 } 2014 return true; 2015 } 2016 bool isDone() const { return IsUnsafe; } 2017 }; 2018 } 2019 2020 namespace llvm { 2021 bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) { 2022 SCEVFindUnsafe Search(SE); 2023 visitAll(S, Search); 2024 return !Search.IsUnsafe; 2025 } 2026 } 2027