1 //===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the interfaces that Hexagon uses to lower LLVM code 11 // into a selection DAG. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "HexagonISelLowering.h" 16 #include "HexagonMachineFunctionInfo.h" 17 #include "HexagonSubtarget.h" 18 #include "HexagonTargetMachine.h" 19 #include "HexagonTargetObjectFile.h" 20 #include "llvm/CodeGen/CallingConvLower.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineJumpTableInfo.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/SelectionDAGISel.h" 27 #include "llvm/CodeGen/ValueTypes.h" 28 #include "llvm/IR/CallingConv.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GlobalAlias.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/InlineAsm.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/raw_ostream.h" 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "hexagon-lowering" 43 44 static cl::opt<bool> EmitJumpTables("hexagon-emit-jump-tables", 45 cl::init(true), cl::Hidden, 46 cl::desc("Control jump table emission on Hexagon target")); 47 48 static cl::opt<bool> EnableHexSDNodeSched("enable-hexagon-sdnode-sched", 49 cl::Hidden, cl::ZeroOrMore, cl::init(false), 50 cl::desc("Enable Hexagon SDNode scheduling")); 51 52 static cl::opt<bool> EnableFastMath("ffast-math", 53 cl::Hidden, cl::ZeroOrMore, cl::init(false), 54 cl::desc("Enable Fast Math processing")); 55 56 static cl::opt<int> MinimumJumpTables("minimum-jump-tables", 57 cl::Hidden, cl::ZeroOrMore, cl::init(5), 58 cl::desc("Set minimum jump tables")); 59 60 static cl::opt<int> MaxStoresPerMemcpyCL("max-store-memcpy", 61 cl::Hidden, cl::ZeroOrMore, cl::init(6), 62 cl::desc("Max #stores to inline memcpy")); 63 64 static cl::opt<int> MaxStoresPerMemcpyOptSizeCL("max-store-memcpy-Os", 65 cl::Hidden, cl::ZeroOrMore, cl::init(4), 66 cl::desc("Max #stores to inline memcpy")); 67 68 static cl::opt<int> MaxStoresPerMemmoveCL("max-store-memmove", 69 cl::Hidden, cl::ZeroOrMore, cl::init(6), 70 cl::desc("Max #stores to inline memmove")); 71 72 static cl::opt<int> MaxStoresPerMemmoveOptSizeCL("max-store-memmove-Os", 73 cl::Hidden, cl::ZeroOrMore, cl::init(4), 74 cl::desc("Max #stores to inline memmove")); 75 76 static cl::opt<int> MaxStoresPerMemsetCL("max-store-memset", 77 cl::Hidden, cl::ZeroOrMore, cl::init(8), 78 cl::desc("Max #stores to inline memset")); 79 80 static cl::opt<int> MaxStoresPerMemsetOptSizeCL("max-store-memset-Os", 81 cl::Hidden, cl::ZeroOrMore, cl::init(4), 82 cl::desc("Max #stores to inline memset")); 83 84 85 namespace { 86 class HexagonCCState : public CCState { 87 unsigned NumNamedVarArgParams; 88 89 public: 90 HexagonCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF, 91 SmallVectorImpl<CCValAssign> &locs, LLVMContext &C, 92 int NumNamedVarArgParams) 93 : CCState(CC, isVarArg, MF, locs, C), 94 NumNamedVarArgParams(NumNamedVarArgParams) {} 95 96 unsigned getNumNamedVarArgParams() const { return NumNamedVarArgParams; } 97 }; 98 } 99 100 // Implement calling convention for Hexagon. 101 102 static bool IsHvxVectorType(MVT ty); 103 104 static bool 105 CC_Hexagon(unsigned ValNo, MVT ValVT, 106 MVT LocVT, CCValAssign::LocInfo LocInfo, 107 ISD::ArgFlagsTy ArgFlags, CCState &State); 108 109 static bool 110 CC_Hexagon32(unsigned ValNo, MVT ValVT, 111 MVT LocVT, CCValAssign::LocInfo LocInfo, 112 ISD::ArgFlagsTy ArgFlags, CCState &State); 113 114 static bool 115 CC_Hexagon64(unsigned ValNo, MVT ValVT, 116 MVT LocVT, CCValAssign::LocInfo LocInfo, 117 ISD::ArgFlagsTy ArgFlags, CCState &State); 118 119 static bool 120 CC_HexagonVector(unsigned ValNo, MVT ValVT, 121 MVT LocVT, CCValAssign::LocInfo LocInfo, 122 ISD::ArgFlagsTy ArgFlags, CCState &State); 123 124 static bool 125 RetCC_Hexagon(unsigned ValNo, MVT ValVT, 126 MVT LocVT, CCValAssign::LocInfo LocInfo, 127 ISD::ArgFlagsTy ArgFlags, CCState &State); 128 129 static bool 130 RetCC_Hexagon32(unsigned ValNo, MVT ValVT, 131 MVT LocVT, CCValAssign::LocInfo LocInfo, 132 ISD::ArgFlagsTy ArgFlags, CCState &State); 133 134 static bool 135 RetCC_Hexagon64(unsigned ValNo, MVT ValVT, 136 MVT LocVT, CCValAssign::LocInfo LocInfo, 137 ISD::ArgFlagsTy ArgFlags, CCState &State); 138 139 static bool 140 RetCC_HexagonVector(unsigned ValNo, MVT ValVT, 141 MVT LocVT, CCValAssign::LocInfo LocInfo, 142 ISD::ArgFlagsTy ArgFlags, CCState &State); 143 144 static bool 145 CC_Hexagon_VarArg (unsigned ValNo, MVT ValVT, 146 MVT LocVT, CCValAssign::LocInfo LocInfo, 147 ISD::ArgFlagsTy ArgFlags, CCState &State) { 148 HexagonCCState &HState = static_cast<HexagonCCState &>(State); 149 150 if (ValNo < HState.getNumNamedVarArgParams()) { 151 // Deal with named arguments. 152 return CC_Hexagon(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State); 153 } 154 155 // Deal with un-named arguments. 156 unsigned ofst; 157 if (ArgFlags.isByVal()) { 158 // If pass-by-value, the size allocated on stack is decided 159 // by ArgFlags.getByValSize(), not by the size of LocVT. 160 ofst = State.AllocateStack(ArgFlags.getByValSize(), 161 ArgFlags.getByValAlign()); 162 State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo)); 163 return false; 164 } 165 if (LocVT == MVT::i1 || LocVT == MVT::i8 || LocVT == MVT::i16) { 166 LocVT = MVT::i32; 167 ValVT = MVT::i32; 168 if (ArgFlags.isSExt()) 169 LocInfo = CCValAssign::SExt; 170 else if (ArgFlags.isZExt()) 171 LocInfo = CCValAssign::ZExt; 172 else 173 LocInfo = CCValAssign::AExt; 174 } 175 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 176 ofst = State.AllocateStack(4, 4); 177 State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo)); 178 return false; 179 } 180 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 181 ofst = State.AllocateStack(8, 8); 182 State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo)); 183 return false; 184 } 185 if (LocVT == MVT::v2i64 || LocVT == MVT::v4i32 || LocVT == MVT::v8i16 || 186 LocVT == MVT::v16i8) { 187 ofst = State.AllocateStack(16, 16); 188 State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo)); 189 return false; 190 } 191 if (LocVT == MVT::v4i64 || LocVT == MVT::v8i32 || LocVT == MVT::v16i16 || 192 LocVT == MVT::v32i8) { 193 ofst = State.AllocateStack(32, 32); 194 State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo)); 195 return false; 196 } 197 if (LocVT == MVT::v8i64 || LocVT == MVT::v16i32 || LocVT == MVT::v32i16 || 198 LocVT == MVT::v64i8 || LocVT == MVT::v512i1) { 199 ofst = State.AllocateStack(64, 64); 200 State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo)); 201 return false; 202 } 203 if (LocVT == MVT::v16i64 || LocVT == MVT::v32i32 || LocVT == MVT::v64i16 || 204 LocVT == MVT::v128i8 || LocVT == MVT::v1024i1) { 205 ofst = State.AllocateStack(128, 128); 206 State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo)); 207 return false; 208 } 209 if (LocVT == MVT::v32i64 || LocVT == MVT::v64i32 || LocVT == MVT::v128i16 || 210 LocVT == MVT::v256i8) { 211 ofst = State.AllocateStack(256, 256); 212 State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo)); 213 return false; 214 } 215 216 llvm_unreachable(nullptr); 217 } 218 219 220 static bool CC_Hexagon (unsigned ValNo, MVT ValVT, MVT LocVT, 221 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State) { 222 if (ArgFlags.isByVal()) { 223 // Passed on stack. 224 unsigned Offset = State.AllocateStack(ArgFlags.getByValSize(), 225 ArgFlags.getByValAlign()); 226 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 227 return false; 228 } 229 230 if (LocVT == MVT::i1 || LocVT == MVT::i8 || LocVT == MVT::i16) { 231 LocVT = MVT::i32; 232 ValVT = MVT::i32; 233 if (ArgFlags.isSExt()) 234 LocInfo = CCValAssign::SExt; 235 else if (ArgFlags.isZExt()) 236 LocInfo = CCValAssign::ZExt; 237 else 238 LocInfo = CCValAssign::AExt; 239 } else if (LocVT == MVT::v4i8 || LocVT == MVT::v2i16) { 240 LocVT = MVT::i32; 241 LocInfo = CCValAssign::BCvt; 242 } else if (LocVT == MVT::v8i8 || LocVT == MVT::v4i16 || LocVT == MVT::v2i32) { 243 LocVT = MVT::i64; 244 LocInfo = CCValAssign::BCvt; 245 } 246 247 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 248 if (!CC_Hexagon32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State)) 249 return false; 250 } 251 252 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 253 if (!CC_Hexagon64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State)) 254 return false; 255 } 256 257 if (LocVT == MVT::v8i32 || LocVT == MVT::v16i16 || LocVT == MVT::v32i8) { 258 unsigned Offset = State.AllocateStack(ArgFlags.getByValSize(), 32); 259 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 260 return false; 261 } 262 263 if (IsHvxVectorType(LocVT)) { 264 if (!CC_HexagonVector(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State)) 265 return false; 266 } 267 268 return true; // CC didn't match. 269 } 270 271 272 static bool CC_Hexagon32(unsigned ValNo, MVT ValVT, 273 MVT LocVT, CCValAssign::LocInfo LocInfo, 274 ISD::ArgFlagsTy ArgFlags, CCState &State) { 275 276 static const MCPhysReg RegList[] = { 277 Hexagon::R0, Hexagon::R1, Hexagon::R2, Hexagon::R3, Hexagon::R4, 278 Hexagon::R5 279 }; 280 if (unsigned Reg = State.AllocateReg(RegList)) { 281 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 282 return false; 283 } 284 285 unsigned Offset = State.AllocateStack(4, 4); 286 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 287 return false; 288 } 289 290 static bool CC_Hexagon64(unsigned ValNo, MVT ValVT, 291 MVT LocVT, CCValAssign::LocInfo LocInfo, 292 ISD::ArgFlagsTy ArgFlags, CCState &State) { 293 294 if (unsigned Reg = State.AllocateReg(Hexagon::D0)) { 295 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 296 return false; 297 } 298 299 static const MCPhysReg RegList1[] = { 300 Hexagon::D1, Hexagon::D2 301 }; 302 static const MCPhysReg RegList2[] = { 303 Hexagon::R1, Hexagon::R3 304 }; 305 if (unsigned Reg = State.AllocateReg(RegList1, RegList2)) { 306 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 307 return false; 308 } 309 310 unsigned Offset = State.AllocateStack(8, 8, Hexagon::D2); 311 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 312 return false; 313 } 314 315 static bool CC_HexagonVector(unsigned ValNo, MVT ValVT, 316 MVT LocVT, CCValAssign::LocInfo LocInfo, 317 ISD::ArgFlagsTy ArgFlags, CCState &State) { 318 319 static const MCPhysReg VecLstS[] = { Hexagon::V0, Hexagon::V1, 320 Hexagon::V2, Hexagon::V3, 321 Hexagon::V4, Hexagon::V5, 322 Hexagon::V6, Hexagon::V7, 323 Hexagon::V8, Hexagon::V9, 324 Hexagon::V10, Hexagon::V11, 325 Hexagon::V12, Hexagon::V13, 326 Hexagon::V14, Hexagon::V15}; 327 static const MCPhysReg VecLstD[] = { Hexagon::W0, Hexagon::W1, 328 Hexagon::W2, Hexagon::W3, 329 Hexagon::W4, Hexagon::W5, 330 Hexagon::W6, Hexagon::W7}; 331 auto &MF = State.getMachineFunction(); 332 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 333 bool UseHVX = HST.useHVXOps(); 334 bool UseHVXDbl = HST.useHVXDblOps(); 335 336 if ((UseHVX && !UseHVXDbl) && 337 (LocVT == MVT::v8i64 || LocVT == MVT::v16i32 || LocVT == MVT::v32i16 || 338 LocVT == MVT::v64i8 || LocVT == MVT::v512i1)) { 339 if (unsigned Reg = State.AllocateReg(VecLstS)) { 340 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 341 return false; 342 } 343 unsigned Offset = State.AllocateStack(64, 64); 344 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 345 return false; 346 } 347 if ((UseHVX && !UseHVXDbl) && 348 (LocVT == MVT::v16i64 || LocVT == MVT::v32i32 || LocVT == MVT::v64i16 || 349 LocVT == MVT::v128i8)) { 350 if (unsigned Reg = State.AllocateReg(VecLstD)) { 351 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 352 return false; 353 } 354 unsigned Offset = State.AllocateStack(128, 128); 355 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 356 return false; 357 } 358 // 128B Mode 359 if ((UseHVX && UseHVXDbl) && 360 (LocVT == MVT::v32i64 || LocVT == MVT::v64i32 || LocVT == MVT::v128i16 || 361 LocVT == MVT::v256i8)) { 362 if (unsigned Reg = State.AllocateReg(VecLstD)) { 363 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 364 return false; 365 } 366 unsigned Offset = State.AllocateStack(256, 256); 367 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 368 return false; 369 } 370 if ((UseHVX && UseHVXDbl) && 371 (LocVT == MVT::v16i64 || LocVT == MVT::v32i32 || LocVT == MVT::v64i16 || 372 LocVT == MVT::v128i8 || LocVT == MVT::v1024i1)) { 373 if (unsigned Reg = State.AllocateReg(VecLstS)) { 374 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 375 return false; 376 } 377 unsigned Offset = State.AllocateStack(128, 128); 378 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 379 return false; 380 } 381 return true; 382 } 383 384 static bool RetCC_Hexagon(unsigned ValNo, MVT ValVT, 385 MVT LocVT, CCValAssign::LocInfo LocInfo, 386 ISD::ArgFlagsTy ArgFlags, CCState &State) { 387 auto &MF = State.getMachineFunction(); 388 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 389 bool UseHVX = HST.useHVXOps(); 390 bool UseHVXDbl = HST.useHVXDblOps(); 391 392 if (LocVT == MVT::i1 || 393 LocVT == MVT::i8 || 394 LocVT == MVT::i16) { 395 LocVT = MVT::i32; 396 ValVT = MVT::i32; 397 if (ArgFlags.isSExt()) 398 LocInfo = CCValAssign::SExt; 399 else if (ArgFlags.isZExt()) 400 LocInfo = CCValAssign::ZExt; 401 else 402 LocInfo = CCValAssign::AExt; 403 } else if (LocVT == MVT::v4i8 || LocVT == MVT::v2i16) { 404 LocVT = MVT::i32; 405 LocInfo = CCValAssign::BCvt; 406 } else if (LocVT == MVT::v8i8 || LocVT == MVT::v4i16 || LocVT == MVT::v2i32) { 407 LocVT = MVT::i64; 408 LocInfo = CCValAssign::BCvt; 409 } else if (LocVT == MVT::v64i8 || LocVT == MVT::v32i16 || 410 LocVT == MVT::v16i32 || LocVT == MVT::v8i64 || 411 LocVT == MVT::v512i1) { 412 LocVT = MVT::v16i32; 413 ValVT = MVT::v16i32; 414 LocInfo = CCValAssign::Full; 415 } else if (LocVT == MVT::v128i8 || LocVT == MVT::v64i16 || 416 LocVT == MVT::v32i32 || LocVT == MVT::v16i64 || 417 (LocVT == MVT::v1024i1 && UseHVX && UseHVXDbl)) { 418 LocVT = MVT::v32i32; 419 ValVT = MVT::v32i32; 420 LocInfo = CCValAssign::Full; 421 } else if (LocVT == MVT::v256i8 || LocVT == MVT::v128i16 || 422 LocVT == MVT::v64i32 || LocVT == MVT::v32i64) { 423 LocVT = MVT::v64i32; 424 ValVT = MVT::v64i32; 425 LocInfo = CCValAssign::Full; 426 } 427 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 428 if (!RetCC_Hexagon32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State)) 429 return false; 430 } 431 432 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 433 if (!RetCC_Hexagon64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State)) 434 return false; 435 } 436 if (LocVT == MVT::v16i32 || LocVT == MVT::v32i32 || LocVT == MVT::v64i32) { 437 if (!RetCC_HexagonVector(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State)) 438 return false; 439 } 440 return true; // CC didn't match. 441 } 442 443 static bool RetCC_Hexagon32(unsigned ValNo, MVT ValVT, 444 MVT LocVT, CCValAssign::LocInfo LocInfo, 445 ISD::ArgFlagsTy ArgFlags, CCState &State) { 446 447 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 448 if (unsigned Reg = State.AllocateReg(Hexagon::R0)) { 449 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 450 return false; 451 } 452 } 453 454 unsigned Offset = State.AllocateStack(4, 4); 455 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 456 return false; 457 } 458 459 static bool RetCC_Hexagon64(unsigned ValNo, MVT ValVT, 460 MVT LocVT, CCValAssign::LocInfo LocInfo, 461 ISD::ArgFlagsTy ArgFlags, CCState &State) { 462 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 463 if (unsigned Reg = State.AllocateReg(Hexagon::D0)) { 464 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 465 return false; 466 } 467 } 468 469 unsigned Offset = State.AllocateStack(8, 8); 470 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 471 return false; 472 } 473 474 static bool RetCC_HexagonVector(unsigned ValNo, MVT ValVT, 475 MVT LocVT, CCValAssign::LocInfo LocInfo, 476 ISD::ArgFlagsTy ArgFlags, CCState &State) { 477 auto &MF = State.getMachineFunction(); 478 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 479 bool UseHVX = HST.useHVXOps(); 480 bool UseHVXDbl = HST.useHVXDblOps(); 481 482 unsigned OffSiz = 64; 483 if (LocVT == MVT::v16i32) { 484 if (unsigned Reg = State.AllocateReg(Hexagon::V0)) { 485 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 486 return false; 487 } 488 } else if (LocVT == MVT::v32i32) { 489 unsigned Req = (UseHVX && UseHVXDbl) ? Hexagon::V0 : Hexagon::W0; 490 if (unsigned Reg = State.AllocateReg(Req)) { 491 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 492 return false; 493 } 494 OffSiz = 128; 495 } else if (LocVT == MVT::v64i32) { 496 if (unsigned Reg = State.AllocateReg(Hexagon::W0)) { 497 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 498 return false; 499 } 500 OffSiz = 256; 501 } 502 503 unsigned Offset = State.AllocateStack(OffSiz, OffSiz); 504 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 505 return false; 506 } 507 508 void HexagonTargetLowering::promoteLdStType(EVT VT, EVT PromotedLdStVT) { 509 if (VT != PromotedLdStVT) { 510 setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote); 511 AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), 512 PromotedLdStVT.getSimpleVT()); 513 514 setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote); 515 AddPromotedToType(ISD::STORE, VT.getSimpleVT(), 516 PromotedLdStVT.getSimpleVT()); 517 } 518 } 519 520 SDValue 521 HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) 522 const { 523 return SDValue(); 524 } 525 526 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 527 /// by "Src" to address "Dst" of size "Size". Alignment information is 528 /// specified by the specific parameter attribute. The copy will be passed as 529 /// a byval function parameter. Sometimes what we are copying is the end of a 530 /// larger object, the part that does not fit in registers. 531 static SDValue 532 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, 533 ISD::ArgFlagsTy Flags, SelectionDAG &DAG, 534 SDLoc dl) { 535 536 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 537 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 538 /*isVolatile=*/false, /*AlwaysInline=*/false, 539 /*isTailCall=*/false, 540 MachinePointerInfo(), MachinePointerInfo()); 541 } 542 543 static bool IsHvxVectorType(MVT ty) { 544 return (ty == MVT::v8i64 || ty == MVT::v16i32 || ty == MVT::v32i16 || 545 ty == MVT::v64i8 || 546 ty == MVT::v16i64 || ty == MVT::v32i32 || ty == MVT::v64i16 || 547 ty == MVT::v128i8 || 548 ty == MVT::v32i64 || ty == MVT::v64i32 || ty == MVT::v128i16 || 549 ty == MVT::v256i8 || 550 ty == MVT::v512i1 || ty == MVT::v1024i1); 551 } 552 553 // LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is 554 // passed by value, the function prototype is modified to return void and 555 // the value is stored in memory pointed by a pointer passed by caller. 556 SDValue 557 HexagonTargetLowering::LowerReturn(SDValue Chain, 558 CallingConv::ID CallConv, bool isVarArg, 559 const SmallVectorImpl<ISD::OutputArg> &Outs, 560 const SmallVectorImpl<SDValue> &OutVals, 561 SDLoc dl, SelectionDAG &DAG) const { 562 563 // CCValAssign - represent the assignment of the return value to locations. 564 SmallVector<CCValAssign, 16> RVLocs; 565 566 // CCState - Info about the registers and stack slot. 567 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 568 *DAG.getContext()); 569 570 // Analyze return values of ISD::RET 571 CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon); 572 573 SDValue Flag; 574 SmallVector<SDValue, 4> RetOps(1, Chain); 575 576 // Copy the result values into the output registers. 577 for (unsigned i = 0; i != RVLocs.size(); ++i) { 578 CCValAssign &VA = RVLocs[i]; 579 580 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag); 581 582 // Guarantee that all emitted copies are stuck together with flags. 583 Flag = Chain.getValue(1); 584 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 585 } 586 587 RetOps[0] = Chain; // Update chain. 588 589 // Add the flag if we have it. 590 if (Flag.getNode()) 591 RetOps.push_back(Flag); 592 593 return DAG.getNode(HexagonISD::RET_FLAG, dl, MVT::Other, RetOps); 594 } 595 596 bool HexagonTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { 597 // If either no tail call or told not to tail call at all, don't. 598 auto Attr = 599 CI->getParent()->getParent()->getFnAttribute("disable-tail-calls"); 600 if (!CI->isTailCall() || Attr.getValueAsString() == "true") 601 return false; 602 603 return true; 604 } 605 606 /// LowerCallResult - Lower the result values of an ISD::CALL into the 607 /// appropriate copies out of appropriate physical registers. This assumes that 608 /// Chain/InFlag are the input chain/flag to use, and that TheCall is the call 609 /// being lowered. Returns a SDNode with the same number of values as the 610 /// ISD::CALL. 611 SDValue 612 HexagonTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, 613 CallingConv::ID CallConv, bool isVarArg, 614 const 615 SmallVectorImpl<ISD::InputArg> &Ins, 616 SDLoc dl, SelectionDAG &DAG, 617 SmallVectorImpl<SDValue> &InVals, 618 const SmallVectorImpl<SDValue> &OutVals, 619 SDValue Callee) const { 620 621 // Assign locations to each value returned by this call. 622 SmallVector<CCValAssign, 16> RVLocs; 623 624 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 625 *DAG.getContext()); 626 627 CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon); 628 629 // Copy all of the result registers out of their specified physreg. 630 for (unsigned i = 0; i != RVLocs.size(); ++i) { 631 Chain = DAG.getCopyFromReg(Chain, dl, 632 RVLocs[i].getLocReg(), 633 RVLocs[i].getValVT(), InFlag).getValue(1); 634 InFlag = Chain.getValue(2); 635 InVals.push_back(Chain.getValue(0)); 636 } 637 638 return Chain; 639 } 640 641 /// LowerCall - Functions arguments are copied from virtual regs to 642 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted. 643 SDValue 644 HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 645 SmallVectorImpl<SDValue> &InVals) const { 646 SelectionDAG &DAG = CLI.DAG; 647 SDLoc &dl = CLI.DL; 648 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 649 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 650 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 651 SDValue Chain = CLI.Chain; 652 SDValue Callee = CLI.Callee; 653 bool &isTailCall = CLI.IsTailCall; 654 CallingConv::ID CallConv = CLI.CallConv; 655 bool isVarArg = CLI.IsVarArg; 656 bool doesNotReturn = CLI.DoesNotReturn; 657 658 bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet(); 659 MachineFunction &MF = DAG.getMachineFunction(); 660 auto PtrVT = getPointerTy(MF.getDataLayout()); 661 662 // Check for varargs. 663 int NumNamedVarArgParams = -1; 664 if (GlobalAddressSDNode *GAN = dyn_cast<GlobalAddressSDNode>(Callee)) { 665 const GlobalValue *GV = GAN->getGlobal(); 666 Callee = DAG.getTargetGlobalAddress(GV, dl, MVT::i32); 667 if (const Function* F = dyn_cast<Function>(GV)) { 668 // If a function has zero args and is a vararg function, that's 669 // disallowed so it must be an undeclared function. Do not assume 670 // varargs if the callee is undefined. 671 if (F->isVarArg() && F->getFunctionType()->getNumParams() != 0) 672 NumNamedVarArgParams = F->getFunctionType()->getNumParams(); 673 } 674 } 675 676 // Analyze operands of the call, assigning locations to each operand. 677 SmallVector<CCValAssign, 16> ArgLocs; 678 HexagonCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 679 *DAG.getContext(), NumNamedVarArgParams); 680 681 if (isVarArg) 682 CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_VarArg); 683 else 684 CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon); 685 686 auto Attr = MF.getFunction()->getFnAttribute("disable-tail-calls"); 687 if (Attr.getValueAsString() == "true") 688 isTailCall = false; 689 690 if (isTailCall) { 691 bool StructAttrFlag = MF.getFunction()->hasStructRetAttr(); 692 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, 693 isVarArg, IsStructRet, 694 StructAttrFlag, 695 Outs, OutVals, Ins, DAG); 696 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 697 CCValAssign &VA = ArgLocs[i]; 698 if (VA.isMemLoc()) { 699 isTailCall = false; 700 break; 701 } 702 } 703 DEBUG(dbgs() << (isTailCall ? "Eligible for Tail Call\n" 704 : "Argument must be passed on stack. " 705 "Not eligible for Tail Call\n")); 706 } 707 // Get a count of how many bytes are to be pushed on the stack. 708 unsigned NumBytes = CCInfo.getNextStackOffset(); 709 SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass; 710 SmallVector<SDValue, 8> MemOpChains; 711 712 auto &HRI = *Subtarget.getRegisterInfo(); 713 SDValue StackPtr = 714 DAG.getCopyFromReg(Chain, dl, HRI.getStackRegister(), PtrVT); 715 716 bool NeedsArgAlign = false; 717 unsigned LargestAlignSeen = 0; 718 // Walk the register/memloc assignments, inserting copies/loads. 719 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 720 CCValAssign &VA = ArgLocs[i]; 721 SDValue Arg = OutVals[i]; 722 ISD::ArgFlagsTy Flags = Outs[i].Flags; 723 // Record if we need > 8 byte alignment on an argument. 724 bool ArgAlign = IsHvxVectorType(VA.getValVT()); 725 NeedsArgAlign |= ArgAlign; 726 727 // Promote the value if needed. 728 switch (VA.getLocInfo()) { 729 default: 730 // Loc info must be one of Full, SExt, ZExt, or AExt. 731 llvm_unreachable("Unknown loc info!"); 732 case CCValAssign::BCvt: 733 case CCValAssign::Full: 734 break; 735 case CCValAssign::SExt: 736 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 737 break; 738 case CCValAssign::ZExt: 739 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 740 break; 741 case CCValAssign::AExt: 742 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 743 break; 744 } 745 746 if (VA.isMemLoc()) { 747 unsigned LocMemOffset = VA.getLocMemOffset(); 748 SDValue MemAddr = DAG.getConstant(LocMemOffset, dl, 749 StackPtr.getValueType()); 750 MemAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, MemAddr); 751 if (ArgAlign) 752 LargestAlignSeen = std::max(LargestAlignSeen, 753 VA.getLocVT().getStoreSizeInBits() >> 3); 754 if (Flags.isByVal()) { 755 // The argument is a struct passed by value. According to LLVM, "Arg" 756 // is is pointer. 757 MemOpChains.push_back(CreateCopyOfByValArgument(Arg, MemAddr, Chain, 758 Flags, DAG, dl)); 759 } else { 760 MachinePointerInfo LocPI = MachinePointerInfo::getStack( 761 DAG.getMachineFunction(), LocMemOffset); 762 SDValue S = DAG.getStore(Chain, dl, Arg, MemAddr, LocPI, false, 763 false, 0); 764 MemOpChains.push_back(S); 765 } 766 continue; 767 } 768 769 // Arguments that can be passed on register must be kept at RegsToPass 770 // vector. 771 if (VA.isRegLoc()) 772 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 773 } 774 775 if (NeedsArgAlign && Subtarget.hasV60TOps()) { 776 DEBUG(dbgs() << "Function needs byte stack align due to call args\n"); 777 MachineFrameInfo* MFI = DAG.getMachineFunction().getFrameInfo(); 778 // V6 vectors passed by value have 64 or 128 byte alignment depending 779 // on whether we are 64 byte vector mode or 128 byte. 780 bool UseHVXDbl = Subtarget.useHVXDblOps(); 781 assert(Subtarget.useHVXOps()); 782 const unsigned ObjAlign = UseHVXDbl ? 128 : 64; 783 LargestAlignSeen = std::max(LargestAlignSeen, ObjAlign); 784 MFI->ensureMaxAlignment(LargestAlignSeen); 785 } 786 // Transform all store nodes into one single node because all store 787 // nodes are independent of each other. 788 if (!MemOpChains.empty()) 789 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 790 791 if (!isTailCall) { 792 SDValue C = DAG.getConstant(NumBytes, dl, PtrVT, true); 793 Chain = DAG.getCALLSEQ_START(Chain, C, dl); 794 } 795 796 // Build a sequence of copy-to-reg nodes chained together with token 797 // chain and flag operands which copy the outgoing args into registers. 798 // The InFlag in necessary since all emitted instructions must be 799 // stuck together. 800 SDValue InFlag; 801 if (!isTailCall) { 802 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 803 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 804 RegsToPass[i].second, InFlag); 805 InFlag = Chain.getValue(1); 806 } 807 } else { 808 // For tail calls lower the arguments to the 'real' stack slot. 809 // 810 // Force all the incoming stack arguments to be loaded from the stack 811 // before any new outgoing arguments are stored to the stack, because the 812 // outgoing stack slots may alias the incoming argument stack slots, and 813 // the alias isn't otherwise explicit. This is slightly more conservative 814 // than necessary, because it means that each store effectively depends 815 // on every argument instead of just those arguments it would clobber. 816 // 817 // Do not flag preceding copytoreg stuff together with the following stuff. 818 InFlag = SDValue(); 819 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 820 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 821 RegsToPass[i].second, InFlag); 822 InFlag = Chain.getValue(1); 823 } 824 InFlag = SDValue(); 825 } 826 827 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every 828 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol 829 // node so that legalize doesn't hack it. 830 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 831 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, PtrVT); 832 } else if (ExternalSymbolSDNode *S = 833 dyn_cast<ExternalSymbolSDNode>(Callee)) { 834 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT); 835 } 836 837 // Returns a chain & a flag for retval copy to use. 838 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 839 SmallVector<SDValue, 8> Ops; 840 Ops.push_back(Chain); 841 Ops.push_back(Callee); 842 843 // Add argument registers to the end of the list so that they are 844 // known live into the call. 845 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 846 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 847 RegsToPass[i].second.getValueType())); 848 } 849 850 if (InFlag.getNode()) 851 Ops.push_back(InFlag); 852 853 if (isTailCall) { 854 MF.getFrameInfo()->setHasTailCall(); 855 return DAG.getNode(HexagonISD::TC_RETURN, dl, NodeTys, Ops); 856 } 857 858 int OpCode = doesNotReturn ? HexagonISD::CALLv3nr : HexagonISD::CALLv3; 859 Chain = DAG.getNode(OpCode, dl, NodeTys, Ops); 860 InFlag = Chain.getValue(1); 861 862 // Create the CALLSEQ_END node. 863 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 864 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 865 InFlag = Chain.getValue(1); 866 867 // Handle result values, copying them out of physregs into vregs that we 868 // return. 869 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG, 870 InVals, OutVals, Callee); 871 } 872 873 static bool getIndexedAddressParts(SDNode *Ptr, EVT VT, 874 bool isSEXTLoad, SDValue &Base, 875 SDValue &Offset, bool &isInc, 876 SelectionDAG &DAG) { 877 if (Ptr->getOpcode() != ISD::ADD) 878 return false; 879 880 auto &HST = static_cast<const HexagonSubtarget&>(DAG.getSubtarget()); 881 bool UseHVX = HST.useHVXOps(); 882 bool UseHVXDbl = HST.useHVXDblOps(); 883 884 bool ValidHVXDblType = 885 (UseHVX && UseHVXDbl) && (VT == MVT::v32i32 || VT == MVT::v16i64 || 886 VT == MVT::v64i16 || VT == MVT::v128i8); 887 bool ValidHVXType = 888 UseHVX && !UseHVXDbl && (VT == MVT::v16i32 || VT == MVT::v8i64 || 889 VT == MVT::v32i16 || VT == MVT::v64i8); 890 891 if (ValidHVXDblType || ValidHVXType || 892 VT == MVT::i64 || VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) { 893 isInc = (Ptr->getOpcode() == ISD::ADD); 894 Base = Ptr->getOperand(0); 895 Offset = Ptr->getOperand(1); 896 // Ensure that Offset is a constant. 897 return (isa<ConstantSDNode>(Offset)); 898 } 899 900 return false; 901 } 902 903 /// getPostIndexedAddressParts - returns true by value, base pointer and 904 /// offset pointer and addressing mode by reference if this node can be 905 /// combined with a load / store to form a post-indexed load / store. 906 bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op, 907 SDValue &Base, 908 SDValue &Offset, 909 ISD::MemIndexedMode &AM, 910 SelectionDAG &DAG) const 911 { 912 EVT VT; 913 SDValue Ptr; 914 bool isSEXTLoad = false; 915 916 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 917 VT = LD->getMemoryVT(); 918 isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD; 919 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 920 VT = ST->getMemoryVT(); 921 if (ST->getValue().getValueType() == MVT::i64 && ST->isTruncatingStore()) { 922 return false; 923 } 924 } else { 925 return false; 926 } 927 928 bool isInc = false; 929 bool isLegal = getIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset, 930 isInc, DAG); 931 if (isLegal) { 932 auto &HII = *Subtarget.getInstrInfo(); 933 int32_t OffsetVal = cast<ConstantSDNode>(Offset.getNode())->getSExtValue(); 934 if (HII.isValidAutoIncImm(VT, OffsetVal)) { 935 AM = isInc ? ISD::POST_INC : ISD::POST_DEC; 936 return true; 937 } 938 } 939 940 return false; 941 } 942 943 SDValue 944 HexagonTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const { 945 SDNode *Node = Op.getNode(); 946 MachineFunction &MF = DAG.getMachineFunction(); 947 auto &FuncInfo = *MF.getInfo<HexagonMachineFunctionInfo>(); 948 switch (Node->getOpcode()) { 949 case ISD::INLINEASM: { 950 unsigned NumOps = Node->getNumOperands(); 951 if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue) 952 --NumOps; // Ignore the flag operand. 953 954 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { 955 if (FuncInfo.hasClobberLR()) 956 break; 957 unsigned Flags = 958 cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue(); 959 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 960 ++i; // Skip the ID value. 961 962 switch (InlineAsm::getKind(Flags)) { 963 default: llvm_unreachable("Bad flags!"); 964 case InlineAsm::Kind_RegDef: 965 case InlineAsm::Kind_RegUse: 966 case InlineAsm::Kind_Imm: 967 case InlineAsm::Kind_Clobber: 968 case InlineAsm::Kind_Mem: { 969 for (; NumVals; --NumVals, ++i) {} 970 break; 971 } 972 case InlineAsm::Kind_RegDefEarlyClobber: { 973 for (; NumVals; --NumVals, ++i) { 974 unsigned Reg = 975 cast<RegisterSDNode>(Node->getOperand(i))->getReg(); 976 977 // Check it to be lr 978 const HexagonRegisterInfo *QRI = Subtarget.getRegisterInfo(); 979 if (Reg == QRI->getRARegister()) { 980 FuncInfo.setHasClobberLR(true); 981 break; 982 } 983 } 984 break; 985 } 986 } 987 } 988 } 989 } // Node->getOpcode 990 return Op; 991 } 992 993 SDValue 994 HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 995 SelectionDAG &DAG) const { 996 SDValue Chain = Op.getOperand(0); 997 SDValue Size = Op.getOperand(1); 998 SDValue Align = Op.getOperand(2); 999 SDLoc dl(Op); 1000 1001 ConstantSDNode *AlignConst = dyn_cast<ConstantSDNode>(Align); 1002 assert(AlignConst && "Non-constant Align in LowerDYNAMIC_STACKALLOC"); 1003 1004 unsigned A = AlignConst->getSExtValue(); 1005 auto &HFI = *Subtarget.getFrameLowering(); 1006 // "Zero" means natural stack alignment. 1007 if (A == 0) 1008 A = HFI.getStackAlignment(); 1009 1010 DEBUG({ 1011 dbgs () << LLVM_FUNCTION_NAME << " Align: " << A << " Size: "; 1012 Size.getNode()->dump(&DAG); 1013 dbgs() << "\n"; 1014 }); 1015 1016 SDValue AC = DAG.getConstant(A, dl, MVT::i32); 1017 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); 1018 SDValue AA = DAG.getNode(HexagonISD::ALLOCA, dl, VTs, Chain, Size, AC); 1019 if (Op.getNode()->getHasDebugValue()) 1020 DAG.TransferDbgValues(Op, AA); 1021 return AA; 1022 } 1023 1024 SDValue 1025 HexagonTargetLowering::LowerFormalArguments(SDValue Chain, 1026 CallingConv::ID CallConv, 1027 bool isVarArg, 1028 const 1029 SmallVectorImpl<ISD::InputArg> &Ins, 1030 SDLoc dl, SelectionDAG &DAG, 1031 SmallVectorImpl<SDValue> &InVals) 1032 const { 1033 1034 MachineFunction &MF = DAG.getMachineFunction(); 1035 MachineFrameInfo *MFI = MF.getFrameInfo(); 1036 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1037 auto &FuncInfo = *MF.getInfo<HexagonMachineFunctionInfo>(); 1038 1039 // Assign locations to all of the incoming arguments. 1040 SmallVector<CCValAssign, 16> ArgLocs; 1041 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 1042 *DAG.getContext()); 1043 1044 CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon); 1045 1046 // For LLVM, in the case when returning a struct by value (>8byte), 1047 // the first argument is a pointer that points to the location on caller's 1048 // stack where the return value will be stored. For Hexagon, the location on 1049 // caller's stack is passed only when the struct size is smaller than (and 1050 // equal to) 8 bytes. If not, no address will be passed into callee and 1051 // callee return the result direclty through R0/R1. 1052 1053 SmallVector<SDValue, 8> MemOps; 1054 bool UseHVX = Subtarget.useHVXOps(), UseHVXDbl = Subtarget.useHVXDblOps(); 1055 1056 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1057 CCValAssign &VA = ArgLocs[i]; 1058 ISD::ArgFlagsTy Flags = Ins[i].Flags; 1059 unsigned ObjSize; 1060 unsigned StackLocation; 1061 int FI; 1062 1063 if ( (VA.isRegLoc() && !Flags.isByVal()) 1064 || (VA.isRegLoc() && Flags.isByVal() && Flags.getByValSize() > 8)) { 1065 // Arguments passed in registers 1066 // 1. int, long long, ptr args that get allocated in register. 1067 // 2. Large struct that gets an register to put its address in. 1068 EVT RegVT = VA.getLocVT(); 1069 if (RegVT == MVT::i8 || RegVT == MVT::i16 || 1070 RegVT == MVT::i32 || RegVT == MVT::f32) { 1071 unsigned VReg = 1072 RegInfo.createVirtualRegister(&Hexagon::IntRegsRegClass); 1073 RegInfo.addLiveIn(VA.getLocReg(), VReg); 1074 InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT)); 1075 } else if (RegVT == MVT::i64 || RegVT == MVT::f64) { 1076 unsigned VReg = 1077 RegInfo.createVirtualRegister(&Hexagon::DoubleRegsRegClass); 1078 RegInfo.addLiveIn(VA.getLocReg(), VReg); 1079 InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT)); 1080 1081 // Single Vector 1082 } else if ((RegVT == MVT::v8i64 || RegVT == MVT::v16i32 || 1083 RegVT == MVT::v32i16 || RegVT == MVT::v64i8)) { 1084 unsigned VReg = 1085 RegInfo.createVirtualRegister(&Hexagon::VectorRegsRegClass); 1086 RegInfo.addLiveIn(VA.getLocReg(), VReg); 1087 InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT)); 1088 } else if (UseHVX && UseHVXDbl && 1089 ((RegVT == MVT::v16i64 || RegVT == MVT::v32i32 || 1090 RegVT == MVT::v64i16 || RegVT == MVT::v128i8))) { 1091 unsigned VReg = 1092 RegInfo.createVirtualRegister(&Hexagon::VectorRegs128BRegClass); 1093 RegInfo.addLiveIn(VA.getLocReg(), VReg); 1094 InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT)); 1095 1096 // Double Vector 1097 } else if ((RegVT == MVT::v16i64 || RegVT == MVT::v32i32 || 1098 RegVT == MVT::v64i16 || RegVT == MVT::v128i8)) { 1099 unsigned VReg = 1100 RegInfo.createVirtualRegister(&Hexagon::VecDblRegsRegClass); 1101 RegInfo.addLiveIn(VA.getLocReg(), VReg); 1102 InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT)); 1103 } else if (UseHVX && UseHVXDbl && 1104 ((RegVT == MVT::v32i64 || RegVT == MVT::v64i32 || 1105 RegVT == MVT::v128i16 || RegVT == MVT::v256i8))) { 1106 unsigned VReg = 1107 RegInfo.createVirtualRegister(&Hexagon::VecDblRegs128BRegClass); 1108 RegInfo.addLiveIn(VA.getLocReg(), VReg); 1109 InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT)); 1110 } else if (RegVT == MVT::v512i1 || RegVT == MVT::v1024i1) { 1111 assert(0 && "need to support VecPred regs"); 1112 unsigned VReg = 1113 RegInfo.createVirtualRegister(&Hexagon::VecPredRegsRegClass); 1114 RegInfo.addLiveIn(VA.getLocReg(), VReg); 1115 InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT)); 1116 } else { 1117 assert (0); 1118 } 1119 } else if (VA.isRegLoc() && Flags.isByVal() && Flags.getByValSize() <= 8) { 1120 assert (0 && "ByValSize must be bigger than 8 bytes"); 1121 } else { 1122 // Sanity check. 1123 assert(VA.isMemLoc()); 1124 1125 if (Flags.isByVal()) { 1126 // If it's a byval parameter, then we need to compute the 1127 // "real" size, not the size of the pointer. 1128 ObjSize = Flags.getByValSize(); 1129 } else { 1130 ObjSize = VA.getLocVT().getStoreSizeInBits() >> 3; 1131 } 1132 1133 StackLocation = HEXAGON_LRFP_SIZE + VA.getLocMemOffset(); 1134 // Create the frame index object for this incoming parameter... 1135 FI = MFI->CreateFixedObject(ObjSize, StackLocation, true); 1136 1137 // Create the SelectionDAG nodes cordl, responding to a load 1138 // from this parameter. 1139 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 1140 1141 if (Flags.isByVal()) { 1142 // If it's a pass-by-value aggregate, then do not dereference the stack 1143 // location. Instead, we should generate a reference to the stack 1144 // location. 1145 InVals.push_back(FIN); 1146 } else { 1147 InVals.push_back(DAG.getLoad(VA.getLocVT(), dl, Chain, FIN, 1148 MachinePointerInfo(), false, false, 1149 false, 0)); 1150 } 1151 } 1152 } 1153 1154 if (!MemOps.empty()) 1155 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 1156 1157 if (isVarArg) { 1158 // This will point to the next argument passed via stack. 1159 int FrameIndex = MFI->CreateFixedObject(Hexagon_PointerSize, 1160 HEXAGON_LRFP_SIZE + 1161 CCInfo.getNextStackOffset(), 1162 true); 1163 FuncInfo.setVarArgsFrameIndex(FrameIndex); 1164 } 1165 1166 return Chain; 1167 } 1168 1169 SDValue 1170 HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 1171 // VASTART stores the address of the VarArgsFrameIndex slot into the 1172 // memory location argument. 1173 MachineFunction &MF = DAG.getMachineFunction(); 1174 HexagonMachineFunctionInfo *QFI = MF.getInfo<HexagonMachineFunctionInfo>(); 1175 SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32); 1176 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1177 return DAG.getStore(Op.getOperand(0), SDLoc(Op), Addr, 1178 Op.getOperand(1), MachinePointerInfo(SV), false, 1179 false, 0); 1180 } 1181 1182 // Creates a SPLAT instruction for a constant value VAL. 1183 static SDValue createSplat(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue Val) { 1184 if (VT.getSimpleVT() == MVT::v4i8) 1185 return DAG.getNode(HexagonISD::VSPLATB, dl, VT, Val); 1186 1187 if (VT.getSimpleVT() == MVT::v4i16) 1188 return DAG.getNode(HexagonISD::VSPLATH, dl, VT, Val); 1189 1190 return SDValue(); 1191 } 1192 1193 static bool isSExtFree(SDValue N) { 1194 // A sign-extend of a truncate of a sign-extend is free. 1195 if (N.getOpcode() == ISD::TRUNCATE && 1196 N.getOperand(0).getOpcode() == ISD::AssertSext) 1197 return true; 1198 // We have sign-extended loads. 1199 if (N.getOpcode() == ISD::LOAD) 1200 return true; 1201 return false; 1202 } 1203 1204 SDValue HexagonTargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const { 1205 SDLoc dl(Op); 1206 SDValue InpVal = Op.getOperand(0); 1207 if (isa<ConstantSDNode>(InpVal)) { 1208 uint64_t V = cast<ConstantSDNode>(InpVal)->getZExtValue(); 1209 return DAG.getTargetConstant(countPopulation(V), dl, MVT::i64); 1210 } 1211 SDValue PopOut = DAG.getNode(HexagonISD::POPCOUNT, dl, MVT::i32, InpVal); 1212 return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, PopOut); 1213 } 1214 1215 SDValue HexagonTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 1216 SDLoc dl(Op); 1217 1218 SDValue LHS = Op.getOperand(0); 1219 SDValue RHS = Op.getOperand(1); 1220 SDValue Cmp = Op.getOperand(2); 1221 ISD::CondCode CC = cast<CondCodeSDNode>(Cmp)->get(); 1222 1223 EVT VT = Op.getValueType(); 1224 EVT LHSVT = LHS.getValueType(); 1225 EVT RHSVT = RHS.getValueType(); 1226 1227 if (LHSVT == MVT::v2i16) { 1228 assert(ISD::isSignedIntSetCC(CC) || ISD::isUnsignedIntSetCC(CC)); 1229 unsigned ExtOpc = ISD::isSignedIntSetCC(CC) ? ISD::SIGN_EXTEND 1230 : ISD::ZERO_EXTEND; 1231 SDValue LX = DAG.getNode(ExtOpc, dl, MVT::v2i32, LHS); 1232 SDValue RX = DAG.getNode(ExtOpc, dl, MVT::v2i32, RHS); 1233 SDValue SC = DAG.getNode(ISD::SETCC, dl, MVT::v2i1, LX, RX, Cmp); 1234 return SC; 1235 } 1236 1237 // Treat all other vector types as legal. 1238 if (VT.isVector()) 1239 return Op; 1240 1241 // Equals and not equals should use sign-extend, not zero-extend, since 1242 // we can represent small negative values in the compare instructions. 1243 // The LLVM default is to use zero-extend arbitrarily in these cases. 1244 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && 1245 (RHSVT == MVT::i8 || RHSVT == MVT::i16) && 1246 (LHSVT == MVT::i8 || LHSVT == MVT::i16)) { 1247 ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS); 1248 if (C && C->getAPIntValue().isNegative()) { 1249 LHS = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, LHS); 1250 RHS = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, RHS); 1251 return DAG.getNode(ISD::SETCC, dl, Op.getValueType(), 1252 LHS, RHS, Op.getOperand(2)); 1253 } 1254 if (isSExtFree(LHS) || isSExtFree(RHS)) { 1255 LHS = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, LHS); 1256 RHS = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, RHS); 1257 return DAG.getNode(ISD::SETCC, dl, Op.getValueType(), 1258 LHS, RHS, Op.getOperand(2)); 1259 } 1260 } 1261 return SDValue(); 1262 } 1263 1264 SDValue 1265 HexagonTargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const { 1266 SDValue PredOp = Op.getOperand(0); 1267 SDValue Op1 = Op.getOperand(1), Op2 = Op.getOperand(2); 1268 EVT OpVT = Op1.getValueType(); 1269 SDLoc DL(Op); 1270 1271 if (OpVT == MVT::v2i16) { 1272 SDValue X1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v2i32, Op1); 1273 SDValue X2 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v2i32, Op2); 1274 SDValue SL = DAG.getNode(ISD::VSELECT, DL, MVT::v2i32, PredOp, X1, X2); 1275 SDValue TR = DAG.getNode(ISD::TRUNCATE, DL, MVT::v2i16, SL); 1276 return TR; 1277 } 1278 1279 return SDValue(); 1280 } 1281 1282 // Handle only specific vector loads. 1283 SDValue HexagonTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 1284 EVT VT = Op.getValueType(); 1285 SDLoc DL(Op); 1286 LoadSDNode *LoadNode = cast<LoadSDNode>(Op); 1287 SDValue Chain = LoadNode->getChain(); 1288 SDValue Ptr = Op.getOperand(1); 1289 SDValue LoweredLoad; 1290 SDValue Result; 1291 SDValue Base = LoadNode->getBasePtr(); 1292 ISD::LoadExtType Ext = LoadNode->getExtensionType(); 1293 unsigned Alignment = LoadNode->getAlignment(); 1294 SDValue LoadChain; 1295 1296 if(Ext == ISD::NON_EXTLOAD) 1297 Ext = ISD::ZEXTLOAD; 1298 1299 if (VT == MVT::v4i16) { 1300 if (Alignment == 2) { 1301 SDValue Loads[4]; 1302 // Base load. 1303 Loads[0] = DAG.getExtLoad(Ext, DL, MVT::i32, Chain, Base, 1304 LoadNode->getPointerInfo(), MVT::i16, 1305 LoadNode->isVolatile(), 1306 LoadNode->isNonTemporal(), 1307 LoadNode->isInvariant(), 1308 Alignment); 1309 // Base+2 load. 1310 SDValue Increment = DAG.getConstant(2, DL, MVT::i32); 1311 Ptr = DAG.getNode(ISD::ADD, DL, Base.getValueType(), Base, Increment); 1312 Loads[1] = DAG.getExtLoad(Ext, DL, MVT::i32, Chain, Ptr, 1313 LoadNode->getPointerInfo(), MVT::i16, 1314 LoadNode->isVolatile(), 1315 LoadNode->isNonTemporal(), 1316 LoadNode->isInvariant(), 1317 Alignment); 1318 // SHL 16, then OR base and base+2. 1319 SDValue ShiftAmount = DAG.getConstant(16, DL, MVT::i32); 1320 SDValue Tmp1 = DAG.getNode(ISD::SHL, DL, MVT::i32, Loads[1], ShiftAmount); 1321 SDValue Tmp2 = DAG.getNode(ISD::OR, DL, MVT::i32, Tmp1, Loads[0]); 1322 // Base + 4. 1323 Increment = DAG.getConstant(4, DL, MVT::i32); 1324 Ptr = DAG.getNode(ISD::ADD, DL, Base.getValueType(), Base, Increment); 1325 Loads[2] = DAG.getExtLoad(Ext, DL, MVT::i32, Chain, Ptr, 1326 LoadNode->getPointerInfo(), MVT::i16, 1327 LoadNode->isVolatile(), 1328 LoadNode->isNonTemporal(), 1329 LoadNode->isInvariant(), 1330 Alignment); 1331 // Base + 6. 1332 Increment = DAG.getConstant(6, DL, MVT::i32); 1333 Ptr = DAG.getNode(ISD::ADD, DL, Base.getValueType(), Base, Increment); 1334 Loads[3] = DAG.getExtLoad(Ext, DL, MVT::i32, Chain, Ptr, 1335 LoadNode->getPointerInfo(), MVT::i16, 1336 LoadNode->isVolatile(), 1337 LoadNode->isNonTemporal(), 1338 LoadNode->isInvariant(), 1339 Alignment); 1340 // SHL 16, then OR base+4 and base+6. 1341 Tmp1 = DAG.getNode(ISD::SHL, DL, MVT::i32, Loads[3], ShiftAmount); 1342 SDValue Tmp4 = DAG.getNode(ISD::OR, DL, MVT::i32, Tmp1, Loads[2]); 1343 // Combine to i64. This could be optimised out later if we can 1344 // affect reg allocation of this code. 1345 Result = DAG.getNode(HexagonISD::COMBINE, DL, MVT::i64, Tmp4, Tmp2); 1346 LoadChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1347 Loads[0].getValue(1), Loads[1].getValue(1), 1348 Loads[2].getValue(1), Loads[3].getValue(1)); 1349 } else { 1350 // Perform default type expansion. 1351 Result = DAG.getLoad(MVT::i64, DL, Chain, Ptr, LoadNode->getPointerInfo(), 1352 LoadNode->isVolatile(), LoadNode->isNonTemporal(), 1353 LoadNode->isInvariant(), LoadNode->getAlignment()); 1354 LoadChain = Result.getValue(1); 1355 } 1356 } else 1357 llvm_unreachable("Custom lowering unsupported load"); 1358 1359 Result = DAG.getNode(ISD::BITCAST, DL, VT, Result); 1360 // Since we pretend to lower a load, we need the original chain 1361 // info attached to the result. 1362 SDValue Ops[] = { Result, LoadChain }; 1363 1364 return DAG.getMergeValues(Ops, DL); 1365 } 1366 1367 1368 SDValue 1369 HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const { 1370 EVT ValTy = Op.getValueType(); 1371 ConstantPoolSDNode *CPN = cast<ConstantPoolSDNode>(Op); 1372 unsigned Align = CPN->getAlignment(); 1373 Reloc::Model RM = HTM.getRelocationModel(); 1374 unsigned char TF = (RM == Reloc::PIC_) ? HexagonII::MO_PCREL : 0; 1375 1376 SDValue T; 1377 if (CPN->isMachineConstantPoolEntry()) 1378 T = DAG.getTargetConstantPool(CPN->getMachineCPVal(), ValTy, Align, TF); 1379 else 1380 T = DAG.getTargetConstantPool(CPN->getConstVal(), ValTy, Align, TF); 1381 if (RM == Reloc::PIC_) 1382 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), ValTy, T); 1383 return DAG.getNode(HexagonISD::CP, SDLoc(Op), ValTy, T); 1384 } 1385 1386 SDValue 1387 HexagonTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 1388 EVT VT = Op.getValueType(); 1389 int Idx = cast<JumpTableSDNode>(Op)->getIndex(); 1390 Reloc::Model RM = HTM.getRelocationModel(); 1391 if (RM == Reloc::PIC_) { 1392 SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL); 1393 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), VT, T); 1394 } 1395 1396 SDValue T = DAG.getTargetJumpTable(Idx, VT); 1397 return DAG.getNode(HexagonISD::JT, SDLoc(Op), VT, T); 1398 } 1399 1400 SDValue 1401 HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const { 1402 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); 1403 MachineFunction &MF = DAG.getMachineFunction(); 1404 MachineFrameInfo &MFI = *MF.getFrameInfo(); 1405 MFI.setReturnAddressIsTaken(true); 1406 1407 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1408 return SDValue(); 1409 1410 EVT VT = Op.getValueType(); 1411 SDLoc dl(Op); 1412 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1413 if (Depth) { 1414 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 1415 SDValue Offset = DAG.getConstant(4, dl, MVT::i32); 1416 return DAG.getLoad(VT, dl, DAG.getEntryNode(), 1417 DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset), 1418 MachinePointerInfo(), false, false, false, 0); 1419 } 1420 1421 // Return LR, which contains the return address. Mark it an implicit live-in. 1422 unsigned Reg = MF.addLiveIn(HRI.getRARegister(), getRegClassFor(MVT::i32)); 1423 return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT); 1424 } 1425 1426 SDValue 1427 HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { 1428 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); 1429 MachineFrameInfo &MFI = *DAG.getMachineFunction().getFrameInfo(); 1430 MFI.setFrameAddressIsTaken(true); 1431 1432 EVT VT = Op.getValueType(); 1433 SDLoc dl(Op); 1434 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1435 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, 1436 HRI.getFrameRegister(), VT); 1437 while (Depth--) 1438 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, 1439 MachinePointerInfo(), 1440 false, false, false, 0); 1441 return FrameAddr; 1442 } 1443 1444 SDValue 1445 HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const { 1446 SDLoc dl(Op); 1447 return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0)); 1448 } 1449 1450 1451 SDValue 1452 HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op, SelectionDAG &DAG) const { 1453 SDLoc dl(Op); 1454 auto *GAN = cast<GlobalAddressSDNode>(Op); 1455 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1456 auto *GV = GAN->getGlobal(); 1457 int64_t Offset = GAN->getOffset(); 1458 1459 auto &HLOF = *HTM.getObjFileLowering(); 1460 Reloc::Model RM = HTM.getRelocationModel(); 1461 1462 if (RM == Reloc::Static) { 1463 SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset); 1464 if (HLOF.IsGlobalInSmallSection(GV, HTM)) 1465 return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, GA); 1466 return DAG.getNode(HexagonISD::CONST32, dl, PtrVT, GA); 1467 } 1468 1469 bool UsePCRel = GV->hasInternalLinkage() || GV->hasHiddenVisibility() || 1470 (GV->hasLocalLinkage() && !isa<Function>(GV)); 1471 if (UsePCRel) { 1472 SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset, 1473 HexagonII::MO_PCREL); 1474 return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, GA); 1475 } 1476 1477 // Use GOT index. 1478 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 1479 SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, HexagonII::MO_GOT); 1480 SDValue Off = DAG.getConstant(Offset, dl, MVT::i32); 1481 return DAG.getNode(HexagonISD::AT_GOT, dl, PtrVT, GOT, GA, Off); 1482 } 1483 1484 // Specifies that for loads and stores VT can be promoted to PromotedLdStVT. 1485 SDValue 1486 HexagonTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { 1487 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); 1488 SDLoc dl(Op); 1489 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1490 1491 Reloc::Model RM = HTM.getRelocationModel(); 1492 if (RM == Reloc::Static) { 1493 SDValue A = DAG.getTargetBlockAddress(BA, PtrVT); 1494 return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, A); 1495 } 1496 1497 SDValue A = DAG.getTargetBlockAddress(BA, PtrVT, 0, HexagonII::MO_PCREL); 1498 return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, A); 1499 } 1500 1501 SDValue 1502 HexagonTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG) 1503 const { 1504 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1505 SDValue GOTSym = DAG.getTargetExternalSymbol(HEXAGON_GOT_SYM_NAME, PtrVT, 1506 HexagonII::MO_PCREL); 1507 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), PtrVT, GOTSym); 1508 } 1509 1510 //===----------------------------------------------------------------------===// 1511 // TargetLowering Implementation 1512 //===----------------------------------------------------------------------===// 1513 1514 HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &TM, 1515 const HexagonSubtarget &ST) 1516 : TargetLowering(TM), HTM(static_cast<const HexagonTargetMachine&>(TM)), 1517 Subtarget(ST) { 1518 bool IsV4 = !Subtarget.hasV5TOps(); 1519 auto &HRI = *Subtarget.getRegisterInfo(); 1520 bool UseHVX = Subtarget.useHVXOps(); 1521 bool UseHVXSgl = Subtarget.useHVXSglOps(); 1522 bool UseHVXDbl = Subtarget.useHVXDblOps(); 1523 1524 setPrefLoopAlignment(4); 1525 setPrefFunctionAlignment(4); 1526 setMinFunctionAlignment(2); 1527 setInsertFencesForAtomic(false); 1528 setStackPointerRegisterToSaveRestore(HRI.getStackRegister()); 1529 1530 if (EnableHexSDNodeSched) 1531 setSchedulingPreference(Sched::VLIW); 1532 else 1533 setSchedulingPreference(Sched::Source); 1534 1535 // Limits for inline expansion of memcpy/memmove 1536 MaxStoresPerMemcpy = MaxStoresPerMemcpyCL; 1537 MaxStoresPerMemcpyOptSize = MaxStoresPerMemcpyOptSizeCL; 1538 MaxStoresPerMemmove = MaxStoresPerMemmoveCL; 1539 MaxStoresPerMemmoveOptSize = MaxStoresPerMemmoveOptSizeCL; 1540 MaxStoresPerMemset = MaxStoresPerMemsetCL; 1541 MaxStoresPerMemsetOptSize = MaxStoresPerMemsetOptSizeCL; 1542 1543 // 1544 // Set up register classes. 1545 // 1546 1547 addRegisterClass(MVT::i1, &Hexagon::PredRegsRegClass); 1548 addRegisterClass(MVT::v2i1, &Hexagon::PredRegsRegClass); // bbbbaaaa 1549 addRegisterClass(MVT::v4i1, &Hexagon::PredRegsRegClass); // ddccbbaa 1550 addRegisterClass(MVT::v8i1, &Hexagon::PredRegsRegClass); // hgfedcba 1551 addRegisterClass(MVT::i32, &Hexagon::IntRegsRegClass); 1552 addRegisterClass(MVT::v4i8, &Hexagon::IntRegsRegClass); 1553 addRegisterClass(MVT::v2i16, &Hexagon::IntRegsRegClass); 1554 addRegisterClass(MVT::i64, &Hexagon::DoubleRegsRegClass); 1555 addRegisterClass(MVT::v8i8, &Hexagon::DoubleRegsRegClass); 1556 addRegisterClass(MVT::v4i16, &Hexagon::DoubleRegsRegClass); 1557 addRegisterClass(MVT::v2i32, &Hexagon::DoubleRegsRegClass); 1558 1559 if (Subtarget.hasV5TOps()) { 1560 addRegisterClass(MVT::f32, &Hexagon::IntRegsRegClass); 1561 addRegisterClass(MVT::f64, &Hexagon::DoubleRegsRegClass); 1562 } 1563 1564 if (Subtarget.hasV60TOps()) { 1565 if (Subtarget.useHVXSglOps()) { 1566 addRegisterClass(MVT::v64i8, &Hexagon::VectorRegsRegClass); 1567 addRegisterClass(MVT::v32i16, &Hexagon::VectorRegsRegClass); 1568 addRegisterClass(MVT::v16i32, &Hexagon::VectorRegsRegClass); 1569 addRegisterClass(MVT::v8i64, &Hexagon::VectorRegsRegClass); 1570 addRegisterClass(MVT::v128i8, &Hexagon::VecDblRegsRegClass); 1571 addRegisterClass(MVT::v64i16, &Hexagon::VecDblRegsRegClass); 1572 addRegisterClass(MVT::v32i32, &Hexagon::VecDblRegsRegClass); 1573 addRegisterClass(MVT::v16i64, &Hexagon::VecDblRegsRegClass); 1574 addRegisterClass(MVT::v512i1, &Hexagon::VecPredRegsRegClass); 1575 } else if (Subtarget.useHVXDblOps()) { 1576 addRegisterClass(MVT::v128i8, &Hexagon::VectorRegs128BRegClass); 1577 addRegisterClass(MVT::v64i16, &Hexagon::VectorRegs128BRegClass); 1578 addRegisterClass(MVT::v32i32, &Hexagon::VectorRegs128BRegClass); 1579 addRegisterClass(MVT::v16i64, &Hexagon::VectorRegs128BRegClass); 1580 addRegisterClass(MVT::v256i8, &Hexagon::VecDblRegs128BRegClass); 1581 addRegisterClass(MVT::v128i16, &Hexagon::VecDblRegs128BRegClass); 1582 addRegisterClass(MVT::v64i32, &Hexagon::VecDblRegs128BRegClass); 1583 addRegisterClass(MVT::v32i64, &Hexagon::VecDblRegs128BRegClass); 1584 addRegisterClass(MVT::v1024i1, &Hexagon::VecPredRegs128BRegClass); 1585 } 1586 1587 } 1588 1589 // 1590 // Handling of scalar operations. 1591 // 1592 // All operations default to "legal", except: 1593 // - indexed loads and stores (pre-/post-incremented), 1594 // - ANY_EXTEND_VECTOR_INREG, ATOMIC_CMP_SWAP_WITH_SUCCESS, CONCAT_VECTORS, 1595 // ConstantFP, DEBUGTRAP, FCEIL, FCOPYSIGN, FEXP, FEXP2, FFLOOR, FGETSIGN, 1596 // FLOG, FLOG2, FLOG10, FMAXNUM, FMINNUM, FNEARBYINT, FRINT, FROUND, TRAP, 1597 // FTRUNC, PREFETCH, SIGN_EXTEND_VECTOR_INREG, ZERO_EXTEND_VECTOR_INREG, 1598 // which default to "expand" for at least one type. 1599 1600 // Misc operations. 1601 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); // Default: expand 1602 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); // Default: expand 1603 1604 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 1605 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 1606 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 1607 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 1608 setOperationAction(ISD::INLINEASM, MVT::Other, Custom); 1609 setOperationAction(ISD::EH_RETURN, MVT::Other, Custom); 1610 setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom); 1611 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 1612 1613 // Custom legalize GlobalAddress nodes into CONST32. 1614 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 1615 setOperationAction(ISD::GlobalAddress, MVT::i8, Custom); 1616 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 1617 1618 // Hexagon needs to optimize cases with negative constants. 1619 setOperationAction(ISD::SETCC, MVT::i8, Custom); 1620 setOperationAction(ISD::SETCC, MVT::i16, Custom); 1621 1622 // VASTART needs to be custom lowered to use the VarArgsFrameIndex. 1623 setOperationAction(ISD::VASTART, MVT::Other, Custom); 1624 setOperationAction(ISD::VAEND, MVT::Other, Expand); 1625 setOperationAction(ISD::VAARG, MVT::Other, Expand); 1626 1627 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 1628 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 1629 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 1630 1631 if (EmitJumpTables) 1632 setMinimumJumpTableEntries(2); 1633 else 1634 setMinimumJumpTableEntries(MinimumJumpTables); 1635 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 1636 1637 // Hexagon has instructions for add/sub with carry. The problem with 1638 // modeling these instructions is that they produce 2 results: Rdd and Px. 1639 // To model the update of Px, we will have to use Defs[p0..p3] which will 1640 // cause any predicate live range to spill. So, we pretend we dont't have 1641 // these instructions. 1642 setOperationAction(ISD::ADDE, MVT::i8, Expand); 1643 setOperationAction(ISD::ADDE, MVT::i16, Expand); 1644 setOperationAction(ISD::ADDE, MVT::i32, Expand); 1645 setOperationAction(ISD::ADDE, MVT::i64, Expand); 1646 setOperationAction(ISD::SUBE, MVT::i8, Expand); 1647 setOperationAction(ISD::SUBE, MVT::i16, Expand); 1648 setOperationAction(ISD::SUBE, MVT::i32, Expand); 1649 setOperationAction(ISD::SUBE, MVT::i64, Expand); 1650 setOperationAction(ISD::ADDC, MVT::i8, Expand); 1651 setOperationAction(ISD::ADDC, MVT::i16, Expand); 1652 setOperationAction(ISD::ADDC, MVT::i32, Expand); 1653 setOperationAction(ISD::ADDC, MVT::i64, Expand); 1654 setOperationAction(ISD::SUBC, MVT::i8, Expand); 1655 setOperationAction(ISD::SUBC, MVT::i16, Expand); 1656 setOperationAction(ISD::SUBC, MVT::i32, Expand); 1657 setOperationAction(ISD::SUBC, MVT::i64, Expand); 1658 1659 // Only add and sub that detect overflow are the saturating ones. 1660 for (MVT VT : MVT::integer_valuetypes()) { 1661 setOperationAction(ISD::UADDO, VT, Expand); 1662 setOperationAction(ISD::SADDO, VT, Expand); 1663 setOperationAction(ISD::USUBO, VT, Expand); 1664 setOperationAction(ISD::SSUBO, VT, Expand); 1665 } 1666 1667 setOperationAction(ISD::CTLZ, MVT::i8, Promote); 1668 setOperationAction(ISD::CTLZ, MVT::i16, Promote); 1669 setOperationAction(ISD::CTTZ, MVT::i8, Promote); 1670 setOperationAction(ISD::CTTZ, MVT::i16, Promote); 1671 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8, Promote); 1672 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote); 1673 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i8, Promote); 1674 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote); 1675 1676 // In V5, popcount can count # of 1s in i64 but returns i32. 1677 // On V4 it will be expanded (set later). 1678 setOperationAction(ISD::CTPOP, MVT::i8, Promote); 1679 setOperationAction(ISD::CTPOP, MVT::i16, Promote); 1680 setOperationAction(ISD::CTPOP, MVT::i32, Promote); 1681 setOperationAction(ISD::CTPOP, MVT::i64, Custom); 1682 1683 // We custom lower i64 to i64 mul, so that it is not considered as a legal 1684 // operation. There is a pattern that will match i64 mul and transform it 1685 // to a series of instructions. 1686 setOperationAction(ISD::MUL, MVT::i64, Expand); 1687 setOperationAction(ISD::MULHS, MVT::i64, Expand); 1688 1689 for (unsigned IntExpOp : 1690 { ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM, 1691 ISD::SDIVREM, ISD::UDIVREM, ISD::ROTL, ISD::ROTR, 1692 ISD::BSWAP, ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS, 1693 ISD::SMUL_LOHI, ISD::UMUL_LOHI }) { 1694 setOperationAction(IntExpOp, MVT::i32, Expand); 1695 setOperationAction(IntExpOp, MVT::i64, Expand); 1696 } 1697 1698 for (unsigned FPExpOp : 1699 {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, ISD::FSINCOS, 1700 ISD::FPOW, ISD::FCOPYSIGN}) { 1701 setOperationAction(FPExpOp, MVT::f32, Expand); 1702 setOperationAction(FPExpOp, MVT::f64, Expand); 1703 } 1704 1705 // No extending loads from i32. 1706 for (MVT VT : MVT::integer_valuetypes()) { 1707 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); 1708 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); 1709 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); 1710 } 1711 // Turn FP truncstore into trunc + store. 1712 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 1713 // Turn FP extload into load/fextend. 1714 for (MVT VT : MVT::fp_valuetypes()) 1715 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); 1716 1717 // Expand BR_CC and SELECT_CC for all integer and fp types. 1718 for (MVT VT : MVT::integer_valuetypes()) { 1719 setOperationAction(ISD::BR_CC, VT, Expand); 1720 setOperationAction(ISD::SELECT_CC, VT, Expand); 1721 } 1722 for (MVT VT : MVT::fp_valuetypes()) { 1723 setOperationAction(ISD::BR_CC, VT, Expand); 1724 setOperationAction(ISD::SELECT_CC, VT, Expand); 1725 } 1726 setOperationAction(ISD::BR_CC, MVT::Other, Expand); 1727 1728 // 1729 // Handling of vector operations. 1730 // 1731 1732 // Custom lower v4i16 load only. Let v4i16 store to be 1733 // promoted for now. 1734 promoteLdStType(MVT::v4i8, MVT::i32); 1735 promoteLdStType(MVT::v2i16, MVT::i32); 1736 promoteLdStType(MVT::v8i8, MVT::i64); 1737 promoteLdStType(MVT::v2i32, MVT::i64); 1738 1739 setOperationAction(ISD::LOAD, MVT::v4i16, Custom); 1740 setOperationAction(ISD::STORE, MVT::v4i16, Promote); 1741 AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::i64); 1742 AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::i64); 1743 1744 // Set the action for vector operations to "expand", then override it with 1745 // either "custom" or "legal" for specific cases. 1746 static const unsigned VectExpOps[] = { 1747 // Integer arithmetic: 1748 ISD::ADD, ISD::SUB, ISD::MUL, ISD::SDIV, ISD::UDIV, 1749 ISD::SREM, ISD::UREM, ISD::SDIVREM, ISD::UDIVREM, ISD::ADDC, 1750 ISD::SUBC, ISD::SADDO, ISD::UADDO, ISD::SSUBO, ISD::USUBO, 1751 ISD::SMUL_LOHI, ISD::UMUL_LOHI, 1752 // Logical/bit: 1753 ISD::AND, ISD::OR, ISD::XOR, ISD::ROTL, ISD::ROTR, 1754 ISD::CTPOP, ISD::CTLZ, ISD::CTTZ, ISD::CTLZ_ZERO_UNDEF, 1755 ISD::CTTZ_ZERO_UNDEF, 1756 // Floating point arithmetic/math functions: 1757 ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FMA, ISD::FDIV, 1758 ISD::FREM, ISD::FNEG, ISD::FABS, ISD::FSQRT, ISD::FSIN, 1759 ISD::FCOS, ISD::FPOWI, ISD::FPOW, ISD::FLOG, ISD::FLOG2, 1760 ISD::FLOG10, ISD::FEXP, ISD::FEXP2, ISD::FCEIL, ISD::FTRUNC, 1761 ISD::FRINT, ISD::FNEARBYINT, ISD::FROUND, ISD::FFLOOR, 1762 ISD::FMINNUM, ISD::FMAXNUM, ISD::FSINCOS, 1763 // Misc: 1764 ISD::SELECT, ISD::ConstantPool, 1765 // Vector: 1766 ISD::BUILD_VECTOR, ISD::SCALAR_TO_VECTOR, 1767 ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT, 1768 ISD::EXTRACT_SUBVECTOR, ISD::INSERT_SUBVECTOR, 1769 ISD::CONCAT_VECTORS, ISD::VECTOR_SHUFFLE 1770 }; 1771 1772 for (MVT VT : MVT::vector_valuetypes()) { 1773 for (unsigned VectExpOp : VectExpOps) 1774 setOperationAction(VectExpOp, VT, Expand); 1775 1776 // Expand all extended loads and truncating stores: 1777 for (MVT TargetVT : MVT::vector_valuetypes()) { 1778 setLoadExtAction(ISD::EXTLOAD, TargetVT, VT, Expand); 1779 setTruncStoreAction(VT, TargetVT, Expand); 1780 } 1781 1782 setOperationAction(ISD::SRA, VT, Custom); 1783 setOperationAction(ISD::SHL, VT, Custom); 1784 setOperationAction(ISD::SRL, VT, Custom); 1785 } 1786 1787 // Types natively supported: 1788 for (MVT NativeVT : {MVT::v2i1, MVT::v4i1, MVT::v8i1, MVT::v32i1, MVT::v64i1, 1789 MVT::v4i8, MVT::v8i8, MVT::v2i16, MVT::v4i16, MVT::v1i32, 1790 MVT::v2i32, MVT::v1i64}) { 1791 setOperationAction(ISD::BUILD_VECTOR, NativeVT, Custom); 1792 setOperationAction(ISD::EXTRACT_VECTOR_ELT, NativeVT, Custom); 1793 setOperationAction(ISD::INSERT_VECTOR_ELT, NativeVT, Custom); 1794 setOperationAction(ISD::EXTRACT_SUBVECTOR, NativeVT, Custom); 1795 setOperationAction(ISD::INSERT_SUBVECTOR, NativeVT, Custom); 1796 setOperationAction(ISD::CONCAT_VECTORS, NativeVT, Custom); 1797 1798 setOperationAction(ISD::ADD, NativeVT, Legal); 1799 setOperationAction(ISD::SUB, NativeVT, Legal); 1800 setOperationAction(ISD::MUL, NativeVT, Legal); 1801 setOperationAction(ISD::AND, NativeVT, Legal); 1802 setOperationAction(ISD::OR, NativeVT, Legal); 1803 setOperationAction(ISD::XOR, NativeVT, Legal); 1804 } 1805 1806 setOperationAction(ISD::SETCC, MVT::v2i16, Custom); 1807 setOperationAction(ISD::VSELECT, MVT::v2i16, Custom); 1808 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom); 1809 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom); 1810 if (UseHVX) { 1811 if (UseHVXSgl) { 1812 setOperationAction(ISD::CONCAT_VECTORS, MVT::v128i8, Custom); 1813 setOperationAction(ISD::CONCAT_VECTORS, MVT::v64i16, Custom); 1814 setOperationAction(ISD::CONCAT_VECTORS, MVT::v32i32, Custom); 1815 setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i64, Custom); 1816 } else if (UseHVXDbl) { 1817 setOperationAction(ISD::CONCAT_VECTORS, MVT::v256i8, Custom); 1818 setOperationAction(ISD::CONCAT_VECTORS, MVT::v128i16, Custom); 1819 setOperationAction(ISD::CONCAT_VECTORS, MVT::v64i32, Custom); 1820 setOperationAction(ISD::CONCAT_VECTORS, MVT::v32i64, Custom); 1821 } else { 1822 llvm_unreachable("Unrecognized HVX mode"); 1823 } 1824 } 1825 // Subtarget-specific operation actions. 1826 // 1827 if (Subtarget.hasV5TOps()) { 1828 setOperationAction(ISD::FMA, MVT::f64, Expand); 1829 setOperationAction(ISD::FADD, MVT::f64, Expand); 1830 setOperationAction(ISD::FSUB, MVT::f64, Expand); 1831 setOperationAction(ISD::FMUL, MVT::f64, Expand); 1832 1833 setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote); 1834 setOperationAction(ISD::FP_TO_UINT, MVT::i8, Promote); 1835 setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote); 1836 setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote); 1837 setOperationAction(ISD::FP_TO_SINT, MVT::i8, Promote); 1838 setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote); 1839 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 1840 setOperationAction(ISD::UINT_TO_FP, MVT::i8, Promote); 1841 setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote); 1842 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 1843 setOperationAction(ISD::SINT_TO_FP, MVT::i8, Promote); 1844 setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote); 1845 1846 } else { // V4 1847 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 1848 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Expand); 1849 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 1850 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 1851 setOperationAction(ISD::FP_TO_SINT, MVT::f64, Expand); 1852 setOperationAction(ISD::FP_TO_SINT, MVT::f32, Expand); 1853 setOperationAction(ISD::FP_EXTEND, MVT::f32, Expand); 1854 setOperationAction(ISD::FP_ROUND, MVT::f64, Expand); 1855 setCondCodeAction(ISD::SETUNE, MVT::f64, Expand); 1856 1857 setOperationAction(ISD::CTPOP, MVT::i8, Expand); 1858 setOperationAction(ISD::CTPOP, MVT::i16, Expand); 1859 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 1860 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 1861 1862 // Expand these operations for both f32 and f64: 1863 for (unsigned FPExpOpV4 : 1864 {ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FABS, ISD::FNEG, ISD::FMA}) { 1865 setOperationAction(FPExpOpV4, MVT::f32, Expand); 1866 setOperationAction(FPExpOpV4, MVT::f64, Expand); 1867 } 1868 1869 for (ISD::CondCode FPExpCCV4 : 1870 {ISD::SETOEQ, ISD::SETOGT, ISD::SETOLT, ISD::SETOGE, ISD::SETOLE, 1871 ISD::SETUO, ISD::SETO}) { 1872 setCondCodeAction(FPExpCCV4, MVT::f32, Expand); 1873 setCondCodeAction(FPExpCCV4, MVT::f64, Expand); 1874 } 1875 } 1876 1877 // Handling of indexed loads/stores: default is "expand". 1878 // 1879 for (MVT LSXTy : {MVT::i8, MVT::i16, MVT::i32, MVT::i64}) { 1880 setIndexedLoadAction(ISD::POST_INC, LSXTy, Legal); 1881 setIndexedStoreAction(ISD::POST_INC, LSXTy, Legal); 1882 } 1883 1884 if (UseHVXDbl) { 1885 for (MVT VT : {MVT::v128i8, MVT::v64i16, MVT::v32i32, MVT::v16i64}) { 1886 setIndexedLoadAction(ISD::POST_INC, VT, Legal); 1887 setIndexedStoreAction(ISD::POST_INC, VT, Legal); 1888 } 1889 } 1890 1891 computeRegisterProperties(&HRI); 1892 1893 // 1894 // Library calls for unsupported operations 1895 // 1896 bool FastMath = EnableFastMath; 1897 1898 setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3"); 1899 setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3"); 1900 setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3"); 1901 setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3"); 1902 setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3"); 1903 setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3"); 1904 setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3"); 1905 setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3"); 1906 1907 setLibcallName(RTLIB::SINTTOFP_I128_F64, "__hexagon_floattidf"); 1908 setLibcallName(RTLIB::SINTTOFP_I128_F32, "__hexagon_floattisf"); 1909 setLibcallName(RTLIB::FPTOUINT_F32_I128, "__hexagon_fixunssfti"); 1910 setLibcallName(RTLIB::FPTOUINT_F64_I128, "__hexagon_fixunsdfti"); 1911 setLibcallName(RTLIB::FPTOSINT_F32_I128, "__hexagon_fixsfti"); 1912 setLibcallName(RTLIB::FPTOSINT_F64_I128, "__hexagon_fixdfti"); 1913 1914 if (IsV4) { 1915 // Handle single-precision floating point operations on V4. 1916 if (FastMath) { 1917 setLibcallName(RTLIB::ADD_F32, "__hexagon_fast_addsf3"); 1918 setLibcallName(RTLIB::SUB_F32, "__hexagon_fast_subsf3"); 1919 setLibcallName(RTLIB::MUL_F32, "__hexagon_fast_mulsf3"); 1920 setLibcallName(RTLIB::OGT_F32, "__hexagon_fast_gtsf2"); 1921 setLibcallName(RTLIB::OLT_F32, "__hexagon_fast_ltsf2"); 1922 // Double-precision compares. 1923 setLibcallName(RTLIB::OGT_F64, "__hexagon_fast_gtdf2"); 1924 setLibcallName(RTLIB::OLT_F64, "__hexagon_fast_ltdf2"); 1925 } else { 1926 setLibcallName(RTLIB::ADD_F32, "__hexagon_addsf3"); 1927 setLibcallName(RTLIB::SUB_F32, "__hexagon_subsf3"); 1928 setLibcallName(RTLIB::MUL_F32, "__hexagon_mulsf3"); 1929 setLibcallName(RTLIB::OGT_F32, "__hexagon_gtsf2"); 1930 setLibcallName(RTLIB::OLT_F32, "__hexagon_ltsf2"); 1931 // Double-precision compares. 1932 setLibcallName(RTLIB::OGT_F64, "__hexagon_gtdf2"); 1933 setLibcallName(RTLIB::OLT_F64, "__hexagon_ltdf2"); 1934 } 1935 } 1936 1937 // This is the only fast library function for sqrtd. 1938 if (FastMath) 1939 setLibcallName(RTLIB::SQRT_F64, "__hexagon_fast2_sqrtdf2"); 1940 1941 // Prefix is: nothing for "slow-math", 1942 // "fast2_" for V4 fast-math and V5+ fast-math double-precision 1943 // (actually, keep fast-math and fast-math2 separate for now) 1944 if (FastMath) { 1945 setLibcallName(RTLIB::ADD_F64, "__hexagon_fast_adddf3"); 1946 setLibcallName(RTLIB::SUB_F64, "__hexagon_fast_subdf3"); 1947 setLibcallName(RTLIB::MUL_F64, "__hexagon_fast_muldf3"); 1948 setLibcallName(RTLIB::DIV_F64, "__hexagon_fast_divdf3"); 1949 // Calling __hexagon_fast2_divsf3 with fast-math on V5 (ok). 1950 setLibcallName(RTLIB::DIV_F32, "__hexagon_fast_divsf3"); 1951 } else { 1952 setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3"); 1953 setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3"); 1954 setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3"); 1955 setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3"); 1956 setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3"); 1957 } 1958 1959 if (Subtarget.hasV5TOps()) { 1960 if (FastMath) 1961 setLibcallName(RTLIB::SQRT_F32, "__hexagon_fast2_sqrtf"); 1962 else 1963 setLibcallName(RTLIB::SQRT_F32, "__hexagon_sqrtf"); 1964 } else { 1965 // V4 1966 setLibcallName(RTLIB::SINTTOFP_I32_F32, "__hexagon_floatsisf"); 1967 setLibcallName(RTLIB::SINTTOFP_I32_F64, "__hexagon_floatsidf"); 1968 setLibcallName(RTLIB::SINTTOFP_I64_F32, "__hexagon_floatdisf"); 1969 setLibcallName(RTLIB::SINTTOFP_I64_F64, "__hexagon_floatdidf"); 1970 setLibcallName(RTLIB::UINTTOFP_I32_F32, "__hexagon_floatunsisf"); 1971 setLibcallName(RTLIB::UINTTOFP_I32_F64, "__hexagon_floatunsidf"); 1972 setLibcallName(RTLIB::UINTTOFP_I64_F32, "__hexagon_floatundisf"); 1973 setLibcallName(RTLIB::UINTTOFP_I64_F64, "__hexagon_floatundidf"); 1974 setLibcallName(RTLIB::FPTOUINT_F32_I32, "__hexagon_fixunssfsi"); 1975 setLibcallName(RTLIB::FPTOUINT_F32_I64, "__hexagon_fixunssfdi"); 1976 setLibcallName(RTLIB::FPTOUINT_F64_I32, "__hexagon_fixunsdfsi"); 1977 setLibcallName(RTLIB::FPTOUINT_F64_I64, "__hexagon_fixunsdfdi"); 1978 setLibcallName(RTLIB::FPTOSINT_F32_I32, "__hexagon_fixsfsi"); 1979 setLibcallName(RTLIB::FPTOSINT_F32_I64, "__hexagon_fixsfdi"); 1980 setLibcallName(RTLIB::FPTOSINT_F64_I32, "__hexagon_fixdfsi"); 1981 setLibcallName(RTLIB::FPTOSINT_F64_I64, "__hexagon_fixdfdi"); 1982 setLibcallName(RTLIB::FPEXT_F32_F64, "__hexagon_extendsfdf2"); 1983 setLibcallName(RTLIB::FPROUND_F64_F32, "__hexagon_truncdfsf2"); 1984 setLibcallName(RTLIB::OEQ_F32, "__hexagon_eqsf2"); 1985 setLibcallName(RTLIB::OEQ_F64, "__hexagon_eqdf2"); 1986 setLibcallName(RTLIB::OGE_F32, "__hexagon_gesf2"); 1987 setLibcallName(RTLIB::OGE_F64, "__hexagon_gedf2"); 1988 setLibcallName(RTLIB::OLE_F32, "__hexagon_lesf2"); 1989 setLibcallName(RTLIB::OLE_F64, "__hexagon_ledf2"); 1990 setLibcallName(RTLIB::UNE_F32, "__hexagon_nesf2"); 1991 setLibcallName(RTLIB::UNE_F64, "__hexagon_nedf2"); 1992 setLibcallName(RTLIB::UO_F32, "__hexagon_unordsf2"); 1993 setLibcallName(RTLIB::UO_F64, "__hexagon_unorddf2"); 1994 setLibcallName(RTLIB::O_F32, "__hexagon_unordsf2"); 1995 setLibcallName(RTLIB::O_F64, "__hexagon_unorddf2"); 1996 } 1997 1998 // These cause problems when the shift amount is non-constant. 1999 setLibcallName(RTLIB::SHL_I128, nullptr); 2000 setLibcallName(RTLIB::SRL_I128, nullptr); 2001 setLibcallName(RTLIB::SRA_I128, nullptr); 2002 } 2003 2004 2005 const char* HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const { 2006 switch ((HexagonISD::NodeType)Opcode) { 2007 case HexagonISD::ALLOCA: return "HexagonISD::ALLOCA"; 2008 case HexagonISD::ARGEXTEND: return "HexagonISD::ARGEXTEND"; 2009 case HexagonISD::AT_GOT: return "HexagonISD::AT_GOT"; 2010 case HexagonISD::AT_PCREL: return "HexagonISD::AT_PCREL"; 2011 case HexagonISD::BARRIER: return "HexagonISD::BARRIER"; 2012 case HexagonISD::CALLR: return "HexagonISD::CALLR"; 2013 case HexagonISD::CALLv3nr: return "HexagonISD::CALLv3nr"; 2014 case HexagonISD::CALLv3: return "HexagonISD::CALLv3"; 2015 case HexagonISD::COMBINE: return "HexagonISD::COMBINE"; 2016 case HexagonISD::CONST32_GP: return "HexagonISD::CONST32_GP"; 2017 case HexagonISD::CONST32: return "HexagonISD::CONST32"; 2018 case HexagonISD::CP: return "HexagonISD::CP"; 2019 case HexagonISD::DCFETCH: return "HexagonISD::DCFETCH"; 2020 case HexagonISD::EH_RETURN: return "HexagonISD::EH_RETURN"; 2021 case HexagonISD::EXTRACTU: return "HexagonISD::EXTRACTU"; 2022 case HexagonISD::EXTRACTURP: return "HexagonISD::EXTRACTURP"; 2023 case HexagonISD::FCONST32: return "HexagonISD::FCONST32"; 2024 case HexagonISD::INSERT: return "HexagonISD::INSERT"; 2025 case HexagonISD::INSERTRP: return "HexagonISD::INSERTRP"; 2026 case HexagonISD::JT: return "HexagonISD::JT"; 2027 case HexagonISD::PACKHL: return "HexagonISD::PACKHL"; 2028 case HexagonISD::POPCOUNT: return "HexagonISD::POPCOUNT"; 2029 case HexagonISD::RET_FLAG: return "HexagonISD::RET_FLAG"; 2030 case HexagonISD::SHUFFEB: return "HexagonISD::SHUFFEB"; 2031 case HexagonISD::SHUFFEH: return "HexagonISD::SHUFFEH"; 2032 case HexagonISD::SHUFFOB: return "HexagonISD::SHUFFOB"; 2033 case HexagonISD::SHUFFOH: return "HexagonISD::SHUFFOH"; 2034 case HexagonISD::TC_RETURN: return "HexagonISD::TC_RETURN"; 2035 case HexagonISD::VCMPBEQ: return "HexagonISD::VCMPBEQ"; 2036 case HexagonISD::VCMPBGT: return "HexagonISD::VCMPBGT"; 2037 case HexagonISD::VCMPBGTU: return "HexagonISD::VCMPBGTU"; 2038 case HexagonISD::VCMPHEQ: return "HexagonISD::VCMPHEQ"; 2039 case HexagonISD::VCMPHGT: return "HexagonISD::VCMPHGT"; 2040 case HexagonISD::VCMPHGTU: return "HexagonISD::VCMPHGTU"; 2041 case HexagonISD::VCMPWEQ: return "HexagonISD::VCMPWEQ"; 2042 case HexagonISD::VCMPWGT: return "HexagonISD::VCMPWGT"; 2043 case HexagonISD::VCMPWGTU: return "HexagonISD::VCMPWGTU"; 2044 case HexagonISD::VCOMBINE: return "HexagonISD::VCOMBINE"; 2045 case HexagonISD::VSHLH: return "HexagonISD::VSHLH"; 2046 case HexagonISD::VSHLW: return "HexagonISD::VSHLW"; 2047 case HexagonISD::VSPLATB: return "HexagonISD::VSPLTB"; 2048 case HexagonISD::VSPLATH: return "HexagonISD::VSPLATH"; 2049 case HexagonISD::VSRAH: return "HexagonISD::VSRAH"; 2050 case HexagonISD::VSRAW: return "HexagonISD::VSRAW"; 2051 case HexagonISD::VSRLH: return "HexagonISD::VSRLH"; 2052 case HexagonISD::VSRLW: return "HexagonISD::VSRLW"; 2053 case HexagonISD::VSXTBH: return "HexagonISD::VSXTBH"; 2054 case HexagonISD::VSXTBW: return "HexagonISD::VSXTBW"; 2055 case HexagonISD::OP_END: break; 2056 } 2057 return nullptr; 2058 } 2059 2060 bool HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 2061 EVT MTy1 = EVT::getEVT(Ty1); 2062 EVT MTy2 = EVT::getEVT(Ty2); 2063 if (!MTy1.isSimple() || !MTy2.isSimple()) 2064 return false; 2065 return (MTy1.getSimpleVT() == MVT::i64) && (MTy2.getSimpleVT() == MVT::i32); 2066 } 2067 2068 bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 2069 if (!VT1.isSimple() || !VT2.isSimple()) 2070 return false; 2071 return (VT1.getSimpleVT() == MVT::i64) && (VT2.getSimpleVT() == MVT::i32); 2072 } 2073 2074 // shouldExpandBuildVectorWithShuffles 2075 // Should we expand the build vector with shuffles? 2076 bool 2077 HexagonTargetLowering::shouldExpandBuildVectorWithShuffles(EVT VT, 2078 unsigned DefinedValues) const { 2079 2080 // Hexagon vector shuffle operates on element sizes of bytes or halfwords 2081 EVT EltVT = VT.getVectorElementType(); 2082 int EltBits = EltVT.getSizeInBits(); 2083 if ((EltBits != 8) && (EltBits != 16)) 2084 return false; 2085 2086 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 2087 } 2088 2089 // LowerVECTOR_SHUFFLE - Lower a vector shuffle (V1, V2, V3). V1 and 2090 // V2 are the two vectors to select data from, V3 is the permutation. 2091 static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) { 2092 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2093 SDValue V1 = Op.getOperand(0); 2094 SDValue V2 = Op.getOperand(1); 2095 SDLoc dl(Op); 2096 EVT VT = Op.getValueType(); 2097 2098 if (V2.getOpcode() == ISD::UNDEF) 2099 V2 = V1; 2100 2101 if (SVN->isSplat()) { 2102 int Lane = SVN->getSplatIndex(); 2103 if (Lane == -1) Lane = 0; 2104 2105 // Test if V1 is a SCALAR_TO_VECTOR. 2106 if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) 2107 return createSplat(DAG, dl, VT, V1.getOperand(0)); 2108 2109 // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR 2110 // (and probably will turn into a SCALAR_TO_VECTOR once legalization 2111 // reaches it). 2112 if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR && 2113 !isa<ConstantSDNode>(V1.getOperand(0))) { 2114 bool IsScalarToVector = true; 2115 for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i) 2116 if (V1.getOperand(i).getOpcode() != ISD::UNDEF) { 2117 IsScalarToVector = false; 2118 break; 2119 } 2120 if (IsScalarToVector) 2121 return createSplat(DAG, dl, VT, V1.getOperand(0)); 2122 } 2123 return createSplat(DAG, dl, VT, DAG.getConstant(Lane, dl, MVT::i32)); 2124 } 2125 2126 // FIXME: We need to support more general vector shuffles. See 2127 // below the comment from the ARM backend that deals in the general 2128 // case with the vector shuffles. For now, let expand handle these. 2129 return SDValue(); 2130 2131 // If the shuffle is not directly supported and it has 4 elements, use 2132 // the PerfectShuffle-generated table to synthesize it from other shuffles. 2133 } 2134 2135 // If BUILD_VECTOR has same base element repeated several times, 2136 // report true. 2137 static bool isCommonSplatElement(BuildVectorSDNode *BVN) { 2138 unsigned NElts = BVN->getNumOperands(); 2139 SDValue V0 = BVN->getOperand(0); 2140 2141 for (unsigned i = 1, e = NElts; i != e; ++i) { 2142 if (BVN->getOperand(i) != V0) 2143 return false; 2144 } 2145 return true; 2146 } 2147 2148 // LowerVECTOR_SHIFT - Lower a vector shift. Try to convert 2149 // <VT> = SHL/SRA/SRL <VT> by <VT> to Hexagon specific 2150 // <VT> = SHL/SRA/SRL <VT> by <IT/i32>. 2151 static SDValue LowerVECTOR_SHIFT(SDValue Op, SelectionDAG &DAG) { 2152 BuildVectorSDNode *BVN = 0; 2153 SDValue V1 = Op.getOperand(0); 2154 SDValue V2 = Op.getOperand(1); 2155 SDValue V3; 2156 SDLoc dl(Op); 2157 EVT VT = Op.getValueType(); 2158 2159 if ((BVN = dyn_cast<BuildVectorSDNode>(V1.getNode())) && 2160 isCommonSplatElement(BVN)) 2161 V3 = V2; 2162 else if ((BVN = dyn_cast<BuildVectorSDNode>(V2.getNode())) && 2163 isCommonSplatElement(BVN)) 2164 V3 = V1; 2165 else 2166 return SDValue(); 2167 2168 SDValue CommonSplat = BVN->getOperand(0); 2169 SDValue Result; 2170 2171 if (VT.getSimpleVT() == MVT::v4i16) { 2172 switch (Op.getOpcode()) { 2173 case ISD::SRA: 2174 Result = DAG.getNode(HexagonISD::VSRAH, dl, VT, V3, CommonSplat); 2175 break; 2176 case ISD::SHL: 2177 Result = DAG.getNode(HexagonISD::VSHLH, dl, VT, V3, CommonSplat); 2178 break; 2179 case ISD::SRL: 2180 Result = DAG.getNode(HexagonISD::VSRLH, dl, VT, V3, CommonSplat); 2181 break; 2182 default: 2183 return SDValue(); 2184 } 2185 } else if (VT.getSimpleVT() == MVT::v2i32) { 2186 switch (Op.getOpcode()) { 2187 case ISD::SRA: 2188 Result = DAG.getNode(HexagonISD::VSRAW, dl, VT, V3, CommonSplat); 2189 break; 2190 case ISD::SHL: 2191 Result = DAG.getNode(HexagonISD::VSHLW, dl, VT, V3, CommonSplat); 2192 break; 2193 case ISD::SRL: 2194 Result = DAG.getNode(HexagonISD::VSRLW, dl, VT, V3, CommonSplat); 2195 break; 2196 default: 2197 return SDValue(); 2198 } 2199 } else { 2200 return SDValue(); 2201 } 2202 2203 return DAG.getNode(ISD::BITCAST, dl, VT, Result); 2204 } 2205 2206 SDValue 2207 HexagonTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const { 2208 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode()); 2209 SDLoc dl(Op); 2210 EVT VT = Op.getValueType(); 2211 2212 unsigned Size = VT.getSizeInBits(); 2213 2214 // Only handle vectors of 64 bits or shorter. 2215 if (Size > 64) 2216 return SDValue(); 2217 2218 APInt APSplatBits, APSplatUndef; 2219 unsigned SplatBitSize; 2220 bool HasAnyUndefs; 2221 unsigned NElts = BVN->getNumOperands(); 2222 2223 // Try to generate a SPLAT instruction. 2224 if ((VT.getSimpleVT() == MVT::v4i8 || VT.getSimpleVT() == MVT::v4i16) && 2225 (BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 2226 HasAnyUndefs, 0, true) && SplatBitSize <= 16)) { 2227 unsigned SplatBits = APSplatBits.getZExtValue(); 2228 int32_t SextVal = ((int32_t) (SplatBits << (32 - SplatBitSize)) >> 2229 (32 - SplatBitSize)); 2230 return createSplat(DAG, dl, VT, DAG.getConstant(SextVal, dl, MVT::i32)); 2231 } 2232 2233 // Try to generate COMBINE to build v2i32 vectors. 2234 if (VT.getSimpleVT() == MVT::v2i32) { 2235 SDValue V0 = BVN->getOperand(0); 2236 SDValue V1 = BVN->getOperand(1); 2237 2238 if (V0.getOpcode() == ISD::UNDEF) 2239 V0 = DAG.getConstant(0, dl, MVT::i32); 2240 if (V1.getOpcode() == ISD::UNDEF) 2241 V1 = DAG.getConstant(0, dl, MVT::i32); 2242 2243 ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(V0); 2244 ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(V1); 2245 // If the element isn't a constant, it is in a register: 2246 // generate a COMBINE Register Register instruction. 2247 if (!C0 || !C1) 2248 return DAG.getNode(HexagonISD::COMBINE, dl, VT, V1, V0); 2249 2250 // If one of the operands is an 8 bit integer constant, generate 2251 // a COMBINE Immediate Immediate instruction. 2252 if (isInt<8>(C0->getSExtValue()) || 2253 isInt<8>(C1->getSExtValue())) 2254 return DAG.getNode(HexagonISD::COMBINE, dl, VT, V1, V0); 2255 } 2256 2257 // Try to generate a S2_packhl to build v2i16 vectors. 2258 if (VT.getSimpleVT() == MVT::v2i16) { 2259 for (unsigned i = 0, e = NElts; i != e; ++i) { 2260 if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) 2261 continue; 2262 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(BVN->getOperand(i)); 2263 // If the element isn't a constant, it is in a register: 2264 // generate a S2_packhl instruction. 2265 if (!Cst) { 2266 SDValue pack = DAG.getNode(HexagonISD::PACKHL, dl, MVT::v4i16, 2267 BVN->getOperand(1), BVN->getOperand(0)); 2268 2269 return DAG.getTargetExtractSubreg(Hexagon::subreg_loreg, dl, MVT::v2i16, 2270 pack); 2271 } 2272 } 2273 } 2274 2275 // In the general case, generate a CONST32 or a CONST64 for constant vectors, 2276 // and insert_vector_elt for all the other cases. 2277 uint64_t Res = 0; 2278 unsigned EltSize = Size / NElts; 2279 SDValue ConstVal; 2280 uint64_t Mask = ~uint64_t(0ULL) >> (64 - EltSize); 2281 bool HasNonConstantElements = false; 2282 2283 for (unsigned i = 0, e = NElts; i != e; ++i) { 2284 // LLVM's BUILD_VECTOR operands are in Little Endian mode, whereas Hexagon's 2285 // combine, const64, etc. are Big Endian. 2286 unsigned OpIdx = NElts - i - 1; 2287 SDValue Operand = BVN->getOperand(OpIdx); 2288 if (Operand.getOpcode() == ISD::UNDEF) 2289 continue; 2290 2291 int64_t Val = 0; 2292 if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Operand)) 2293 Val = Cst->getSExtValue(); 2294 else 2295 HasNonConstantElements = true; 2296 2297 Val &= Mask; 2298 Res = (Res << EltSize) | Val; 2299 } 2300 2301 if (Size == 64) 2302 ConstVal = DAG.getConstant(Res, dl, MVT::i64); 2303 else 2304 ConstVal = DAG.getConstant(Res, dl, MVT::i32); 2305 2306 // When there are non constant operands, add them with INSERT_VECTOR_ELT to 2307 // ConstVal, the constant part of the vector. 2308 if (HasNonConstantElements) { 2309 EVT EltVT = VT.getVectorElementType(); 2310 SDValue Width = DAG.getConstant(EltVT.getSizeInBits(), dl, MVT::i64); 2311 SDValue Shifted = DAG.getNode(ISD::SHL, dl, MVT::i64, Width, 2312 DAG.getConstant(32, dl, MVT::i64)); 2313 2314 for (unsigned i = 0, e = NElts; i != e; ++i) { 2315 // LLVM's BUILD_VECTOR operands are in Little Endian mode, whereas Hexagon 2316 // is Big Endian. 2317 unsigned OpIdx = NElts - i - 1; 2318 SDValue Operand = BVN->getOperand(OpIdx); 2319 if (isa<ConstantSDNode>(Operand)) 2320 // This operand is already in ConstVal. 2321 continue; 2322 2323 if (VT.getSizeInBits() == 64 && 2324 Operand.getValueType().getSizeInBits() == 32) { 2325 SDValue C = DAG.getConstant(0, dl, MVT::i32); 2326 Operand = DAG.getNode(HexagonISD::COMBINE, dl, VT, C, Operand); 2327 } 2328 2329 SDValue Idx = DAG.getConstant(OpIdx, dl, MVT::i64); 2330 SDValue Offset = DAG.getNode(ISD::MUL, dl, MVT::i64, Idx, Width); 2331 SDValue Combined = DAG.getNode(ISD::OR, dl, MVT::i64, Shifted, Offset); 2332 const SDValue Ops[] = {ConstVal, Operand, Combined}; 2333 2334 if (VT.getSizeInBits() == 32) 2335 ConstVal = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i32, Ops); 2336 else 2337 ConstVal = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i64, Ops); 2338 } 2339 } 2340 2341 return DAG.getNode(ISD::BITCAST, dl, VT, ConstVal); 2342 } 2343 2344 SDValue 2345 HexagonTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 2346 SelectionDAG &DAG) const { 2347 SDLoc dl(Op); 2348 bool UseHVX = Subtarget.useHVXOps(); 2349 EVT VT = Op.getValueType(); 2350 unsigned NElts = Op.getNumOperands(); 2351 SDValue Vec0 = Op.getOperand(0); 2352 EVT VecVT = Vec0.getValueType(); 2353 unsigned Width = VecVT.getSizeInBits(); 2354 2355 if (NElts == 2) { 2356 MVT ST = VecVT.getSimpleVT(); 2357 // We are trying to concat two v2i16 to a single v4i16, or two v4i8 2358 // into a single v8i8. 2359 if (ST == MVT::v2i16 || ST == MVT::v4i8) 2360 return DAG.getNode(HexagonISD::COMBINE, dl, VT, Op.getOperand(1), Vec0); 2361 2362 if (UseHVX) { 2363 assert((Width == 64*8 && Subtarget.useHVXSglOps()) || 2364 (Width == 128*8 && Subtarget.useHVXDblOps())); 2365 SDValue Vec1 = Op.getOperand(1); 2366 MVT OpTy = Subtarget.useHVXSglOps() ? MVT::v16i32 : MVT::v32i32; 2367 MVT ReTy = Subtarget.useHVXSglOps() ? MVT::v32i32 : MVT::v64i32; 2368 SDValue B0 = DAG.getNode(ISD::BITCAST, dl, OpTy, Vec0); 2369 SDValue B1 = DAG.getNode(ISD::BITCAST, dl, OpTy, Vec1); 2370 SDValue VC = DAG.getNode(HexagonISD::VCOMBINE, dl, ReTy, B1, B0); 2371 return DAG.getNode(ISD::BITCAST, dl, VT, VC); 2372 } 2373 } 2374 2375 if (VT.getSizeInBits() != 32 && VT.getSizeInBits() != 64) 2376 return SDValue(); 2377 2378 SDValue C0 = DAG.getConstant(0, dl, MVT::i64); 2379 SDValue C32 = DAG.getConstant(32, dl, MVT::i64); 2380 SDValue W = DAG.getConstant(Width, dl, MVT::i64); 2381 // Create the "width" part of the argument to insert_rp/insertp_rp. 2382 SDValue S = DAG.getNode(ISD::SHL, dl, MVT::i64, W, C32); 2383 SDValue V = C0; 2384 2385 for (unsigned i = 0, e = NElts; i != e; ++i) { 2386 unsigned N = NElts-i-1; 2387 SDValue OpN = Op.getOperand(N); 2388 2389 if (VT.getSizeInBits() == 64 && OpN.getValueType().getSizeInBits() == 32) { 2390 SDValue C = DAG.getConstant(0, dl, MVT::i32); 2391 OpN = DAG.getNode(HexagonISD::COMBINE, dl, VT, C, OpN); 2392 } 2393 SDValue Idx = DAG.getConstant(N, dl, MVT::i64); 2394 SDValue Offset = DAG.getNode(ISD::MUL, dl, MVT::i64, Idx, W); 2395 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, S, Offset); 2396 if (VT.getSizeInBits() == 32) 2397 V = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i32, {V, OpN, Or}); 2398 else 2399 V = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i64, {V, OpN, Or}); 2400 } 2401 2402 return DAG.getNode(ISD::BITCAST, dl, VT, V); 2403 } 2404 2405 SDValue 2406 HexagonTargetLowering::LowerEXTRACT_VECTOR(SDValue Op, 2407 SelectionDAG &DAG) const { 2408 EVT VT = Op.getValueType(); 2409 int VTN = VT.isVector() ? VT.getVectorNumElements() : 1; 2410 SDLoc dl(Op); 2411 SDValue Idx = Op.getOperand(1); 2412 SDValue Vec = Op.getOperand(0); 2413 EVT VecVT = Vec.getValueType(); 2414 EVT EltVT = VecVT.getVectorElementType(); 2415 int EltSize = EltVT.getSizeInBits(); 2416 SDValue Width = DAG.getConstant(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT ? 2417 EltSize : VTN * EltSize, dl, MVT::i64); 2418 2419 // Constant element number. 2420 if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Idx)) { 2421 uint64_t X = CI->getZExtValue(); 2422 SDValue Offset = DAG.getConstant(X * EltSize, dl, MVT::i32); 2423 const SDValue Ops[] = {Vec, Width, Offset}; 2424 2425 ConstantSDNode *CW = dyn_cast<ConstantSDNode>(Width); 2426 assert(CW && "Non constant width in LowerEXTRACT_VECTOR"); 2427 2428 SDValue N; 2429 MVT SVT = VecVT.getSimpleVT(); 2430 uint64_t W = CW->getZExtValue(); 2431 2432 if (W == 32) { 2433 // Translate this node into EXTRACT_SUBREG. 2434 unsigned Subreg = (X == 0) ? Hexagon::subreg_loreg : 0; 2435 2436 if (X == 0) 2437 Subreg = Hexagon::subreg_loreg; 2438 else if (SVT == MVT::v2i32 && X == 1) 2439 Subreg = Hexagon::subreg_hireg; 2440 else if (SVT == MVT::v4i16 && X == 2) 2441 Subreg = Hexagon::subreg_hireg; 2442 else if (SVT == MVT::v8i8 && X == 4) 2443 Subreg = Hexagon::subreg_hireg; 2444 else 2445 llvm_unreachable("Bad offset"); 2446 N = DAG.getTargetExtractSubreg(Subreg, dl, MVT::i32, Vec); 2447 2448 } else if (VecVT.getSizeInBits() == 32) { 2449 N = DAG.getNode(HexagonISD::EXTRACTU, dl, MVT::i32, Ops); 2450 } else { 2451 N = DAG.getNode(HexagonISD::EXTRACTU, dl, MVT::i64, Ops); 2452 if (VT.getSizeInBits() == 32) 2453 N = DAG.getTargetExtractSubreg(Hexagon::subreg_loreg, dl, MVT::i32, N); 2454 } 2455 2456 return DAG.getNode(ISD::BITCAST, dl, VT, N); 2457 } 2458 2459 // Variable element number. 2460 SDValue Offset = DAG.getNode(ISD::MUL, dl, MVT::i32, Idx, 2461 DAG.getConstant(EltSize, dl, MVT::i32)); 2462 SDValue Shifted = DAG.getNode(ISD::SHL, dl, MVT::i64, Width, 2463 DAG.getConstant(32, dl, MVT::i64)); 2464 SDValue Combined = DAG.getNode(ISD::OR, dl, MVT::i64, Shifted, Offset); 2465 2466 const SDValue Ops[] = {Vec, Combined}; 2467 2468 SDValue N; 2469 if (VecVT.getSizeInBits() == 32) { 2470 N = DAG.getNode(HexagonISD::EXTRACTURP, dl, MVT::i32, Ops); 2471 } else { 2472 N = DAG.getNode(HexagonISD::EXTRACTURP, dl, MVT::i64, Ops); 2473 if (VT.getSizeInBits() == 32) 2474 N = DAG.getTargetExtractSubreg(Hexagon::subreg_loreg, dl, MVT::i32, N); 2475 } 2476 return DAG.getNode(ISD::BITCAST, dl, VT, N); 2477 } 2478 2479 SDValue 2480 HexagonTargetLowering::LowerINSERT_VECTOR(SDValue Op, 2481 SelectionDAG &DAG) const { 2482 EVT VT = Op.getValueType(); 2483 int VTN = VT.isVector() ? VT.getVectorNumElements() : 1; 2484 SDLoc dl(Op); 2485 SDValue Vec = Op.getOperand(0); 2486 SDValue Val = Op.getOperand(1); 2487 SDValue Idx = Op.getOperand(2); 2488 EVT VecVT = Vec.getValueType(); 2489 EVT EltVT = VecVT.getVectorElementType(); 2490 int EltSize = EltVT.getSizeInBits(); 2491 SDValue Width = DAG.getConstant(Op.getOpcode() == ISD::INSERT_VECTOR_ELT ? 2492 EltSize : VTN * EltSize, dl, MVT::i64); 2493 2494 if (ConstantSDNode *C = cast<ConstantSDNode>(Idx)) { 2495 SDValue Offset = DAG.getConstant(C->getSExtValue() * EltSize, dl, MVT::i32); 2496 const SDValue Ops[] = {Vec, Val, Width, Offset}; 2497 2498 SDValue N; 2499 if (VT.getSizeInBits() == 32) 2500 N = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32, Ops); 2501 else 2502 N = DAG.getNode(HexagonISD::INSERT, dl, MVT::i64, Ops); 2503 2504 return DAG.getNode(ISD::BITCAST, dl, VT, N); 2505 } 2506 2507 // Variable element number. 2508 SDValue Offset = DAG.getNode(ISD::MUL, dl, MVT::i32, Idx, 2509 DAG.getConstant(EltSize, dl, MVT::i32)); 2510 SDValue Shifted = DAG.getNode(ISD::SHL, dl, MVT::i64, Width, 2511 DAG.getConstant(32, dl, MVT::i64)); 2512 SDValue Combined = DAG.getNode(ISD::OR, dl, MVT::i64, Shifted, Offset); 2513 2514 if (VT.getSizeInBits() == 64 && 2515 Val.getValueType().getSizeInBits() == 32) { 2516 SDValue C = DAG.getConstant(0, dl, MVT::i32); 2517 Val = DAG.getNode(HexagonISD::COMBINE, dl, VT, C, Val); 2518 } 2519 2520 const SDValue Ops[] = {Vec, Val, Combined}; 2521 2522 SDValue N; 2523 if (VT.getSizeInBits() == 32) 2524 N = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i32, Ops); 2525 else 2526 N = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i64, Ops); 2527 2528 return DAG.getNode(ISD::BITCAST, dl, VT, N); 2529 } 2530 2531 bool 2532 HexagonTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const { 2533 // Assuming the caller does not have either a signext or zeroext modifier, and 2534 // only one value is accepted, any reasonable truncation is allowed. 2535 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 2536 return false; 2537 2538 // FIXME: in principle up to 64-bit could be made safe, but it would be very 2539 // fragile at the moment: any support for multiple value returns would be 2540 // liable to disallow tail calls involving i64 -> iN truncation in many cases. 2541 return Ty1->getPrimitiveSizeInBits() <= 32; 2542 } 2543 2544 SDValue 2545 HexagonTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const { 2546 SDValue Chain = Op.getOperand(0); 2547 SDValue Offset = Op.getOperand(1); 2548 SDValue Handler = Op.getOperand(2); 2549 SDLoc dl(Op); 2550 auto PtrVT = getPointerTy(DAG.getDataLayout()); 2551 2552 // Mark function as containing a call to EH_RETURN. 2553 HexagonMachineFunctionInfo *FuncInfo = 2554 DAG.getMachineFunction().getInfo<HexagonMachineFunctionInfo>(); 2555 FuncInfo->setHasEHReturn(); 2556 2557 unsigned OffsetReg = Hexagon::R28; 2558 2559 SDValue StoreAddr = 2560 DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getRegister(Hexagon::R30, PtrVT), 2561 DAG.getIntPtrConstant(4, dl)); 2562 Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(), 2563 false, false, 0); 2564 Chain = DAG.getCopyToReg(Chain, dl, OffsetReg, Offset); 2565 2566 // Not needed we already use it as explict input to EH_RETURN. 2567 // MF.getRegInfo().addLiveOut(OffsetReg); 2568 2569 return DAG.getNode(HexagonISD::EH_RETURN, dl, MVT::Other, Chain); 2570 } 2571 2572 SDValue 2573 HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 2574 unsigned Opc = Op.getOpcode(); 2575 switch (Opc) { 2576 default: 2577 #ifndef NDEBUG 2578 Op.getNode()->dumpr(&DAG); 2579 if (Opc > HexagonISD::OP_BEGIN && Opc < HexagonISD::OP_END) 2580 errs() << "Check for a non-legal type in this operation\n"; 2581 #endif 2582 llvm_unreachable("Should not custom lower this!"); 2583 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 2584 case ISD::INSERT_SUBVECTOR: return LowerINSERT_VECTOR(Op, DAG); 2585 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR(Op, DAG); 2586 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_VECTOR(Op, DAG); 2587 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR(Op, DAG); 2588 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 2589 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 2590 case ISD::SRA: 2591 case ISD::SHL: 2592 case ISD::SRL: return LowerVECTOR_SHIFT(Op, DAG); 2593 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 2594 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 2595 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG); 2596 // Frame & Return address. Currently unimplemented. 2597 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 2598 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 2599 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG); 2600 case ISD::GlobalAddress: return LowerGLOBALADDRESS(Op, DAG); 2601 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 2602 case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG); 2603 case ISD::VASTART: return LowerVASTART(Op, DAG); 2604 // Custom lower some vector loads. 2605 case ISD::LOAD: return LowerLOAD(Op, DAG); 2606 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 2607 case ISD::SETCC: return LowerSETCC(Op, DAG); 2608 case ISD::VSELECT: return LowerVSELECT(Op, DAG); 2609 case ISD::CTPOP: return LowerCTPOP(Op, DAG); 2610 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 2611 case ISD::INLINEASM: return LowerINLINEASM(Op, DAG); 2612 } 2613 } 2614 2615 /// Returns relocation base for the given PIC jumptable. 2616 SDValue 2617 HexagonTargetLowering::getPICJumpTableRelocBase(SDValue Table, 2618 SelectionDAG &DAG) const { 2619 int Idx = cast<JumpTableSDNode>(Table)->getIndex(); 2620 EVT VT = Table.getValueType(); 2621 SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL); 2622 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Table), VT, T); 2623 } 2624 2625 MachineBasicBlock * 2626 HexagonTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 2627 MachineBasicBlock *BB) 2628 const { 2629 switch (MI->getOpcode()) { 2630 case Hexagon::ALLOCA: { 2631 MachineFunction *MF = BB->getParent(); 2632 auto *FuncInfo = MF->getInfo<HexagonMachineFunctionInfo>(); 2633 FuncInfo->addAllocaAdjustInst(MI); 2634 return BB; 2635 } 2636 default: llvm_unreachable("Unexpected instr type to insert"); 2637 } // switch 2638 } 2639 2640 //===----------------------------------------------------------------------===// 2641 // Inline Assembly Support 2642 //===----------------------------------------------------------------------===// 2643 2644 std::pair<unsigned, const TargetRegisterClass *> 2645 HexagonTargetLowering::getRegForInlineAsmConstraint( 2646 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 2647 bool UseHVX = Subtarget.useHVXOps(), UseHVXDbl = Subtarget.useHVXDblOps(); 2648 2649 if (Constraint.size() == 1) { 2650 switch (Constraint[0]) { 2651 case 'r': // R0-R31 2652 switch (VT.SimpleTy) { 2653 default: 2654 llvm_unreachable("getRegForInlineAsmConstraint Unhandled data type"); 2655 case MVT::i32: 2656 case MVT::i16: 2657 case MVT::i8: 2658 case MVT::f32: 2659 return std::make_pair(0U, &Hexagon::IntRegsRegClass); 2660 case MVT::i64: 2661 case MVT::f64: 2662 return std::make_pair(0U, &Hexagon::DoubleRegsRegClass); 2663 } 2664 case 'q': // q0-q3 2665 switch (VT.SimpleTy) { 2666 default: 2667 llvm_unreachable("getRegForInlineAsmConstraint Unhandled data type"); 2668 case MVT::v1024i1: 2669 case MVT::v512i1: 2670 case MVT::v32i16: 2671 case MVT::v16i32: 2672 case MVT::v64i8: 2673 case MVT::v8i64: 2674 return std::make_pair(0U, &Hexagon::VecPredRegsRegClass); 2675 } 2676 case 'v': // V0-V31 2677 switch (VT.SimpleTy) { 2678 default: 2679 llvm_unreachable("getRegForInlineAsmConstraint Unhandled data type"); 2680 case MVT::v16i32: 2681 case MVT::v32i16: 2682 case MVT::v64i8: 2683 case MVT::v8i64: 2684 return std::make_pair(0U, &Hexagon::VectorRegsRegClass); 2685 case MVT::v32i32: 2686 case MVT::v64i16: 2687 case MVT::v16i64: 2688 case MVT::v128i8: 2689 if (Subtarget.hasV60TOps() && UseHVX && UseHVXDbl) 2690 return std::make_pair(0U, &Hexagon::VectorRegs128BRegClass); 2691 else 2692 return std::make_pair(0U, &Hexagon::VecDblRegsRegClass); 2693 case MVT::v256i8: 2694 case MVT::v128i16: 2695 case MVT::v64i32: 2696 case MVT::v32i64: 2697 return std::make_pair(0U, &Hexagon::VecDblRegs128BRegClass); 2698 } 2699 2700 default: 2701 llvm_unreachable("Unknown asm register class"); 2702 } 2703 } 2704 2705 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 2706 } 2707 2708 /// isFPImmLegal - Returns true if the target can instruction select the 2709 /// specified FP immediate natively. If false, the legalizer will 2710 /// materialize the FP immediate as a load from a constant pool. 2711 bool HexagonTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 2712 return Subtarget.hasV5TOps(); 2713 } 2714 2715 /// isLegalAddressingMode - Return true if the addressing mode represented by 2716 /// AM is legal for this target, for a load/store of the specified type. 2717 bool HexagonTargetLowering::isLegalAddressingMode(const DataLayout &DL, 2718 const AddrMode &AM, Type *Ty, 2719 unsigned AS) const { 2720 // Allows a signed-extended 11-bit immediate field. 2721 if (AM.BaseOffs <= -(1LL << 13) || AM.BaseOffs >= (1LL << 13)-1) 2722 return false; 2723 2724 // No global is ever allowed as a base. 2725 if (AM.BaseGV) 2726 return false; 2727 2728 int Scale = AM.Scale; 2729 if (Scale < 0) Scale = -Scale; 2730 switch (Scale) { 2731 case 0: // No scale reg, "r+i", "r", or just "i". 2732 break; 2733 default: // No scaled addressing mode. 2734 return false; 2735 } 2736 return true; 2737 } 2738 2739 /// Return true if folding a constant offset with the given GlobalAddress is 2740 /// legal. It is frequently not legal in PIC relocation models. 2741 bool HexagonTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) 2742 const { 2743 return HTM.getRelocationModel() == Reloc::Static; 2744 } 2745 2746 2747 /// isLegalICmpImmediate - Return true if the specified immediate is legal 2748 /// icmp immediate, that is the target has icmp instructions which can compare 2749 /// a register against the immediate without having to materialize the 2750 /// immediate into a register. 2751 bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 2752 return Imm >= -512 && Imm <= 511; 2753 } 2754 2755 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 2756 /// for tail call optimization. Targets which want to do tail call 2757 /// optimization should implement this function. 2758 bool HexagonTargetLowering::IsEligibleForTailCallOptimization( 2759 SDValue Callee, 2760 CallingConv::ID CalleeCC, 2761 bool isVarArg, 2762 bool isCalleeStructRet, 2763 bool isCallerStructRet, 2764 const SmallVectorImpl<ISD::OutputArg> &Outs, 2765 const SmallVectorImpl<SDValue> &OutVals, 2766 const SmallVectorImpl<ISD::InputArg> &Ins, 2767 SelectionDAG& DAG) const { 2768 const Function *CallerF = DAG.getMachineFunction().getFunction(); 2769 CallingConv::ID CallerCC = CallerF->getCallingConv(); 2770 bool CCMatch = CallerCC == CalleeCC; 2771 2772 // *************************************************************************** 2773 // Look for obvious safe cases to perform tail call optimization that do not 2774 // require ABI changes. 2775 // *************************************************************************** 2776 2777 // If this is a tail call via a function pointer, then don't do it! 2778 if (!(isa<GlobalAddressSDNode>(Callee)) && 2779 !(isa<ExternalSymbolSDNode>(Callee))) { 2780 return false; 2781 } 2782 2783 // Do not optimize if the calling conventions do not match. 2784 if (!CCMatch) 2785 return false; 2786 2787 // Do not tail call optimize vararg calls. 2788 if (isVarArg) 2789 return false; 2790 2791 // Also avoid tail call optimization if either caller or callee uses struct 2792 // return semantics. 2793 if (isCalleeStructRet || isCallerStructRet) 2794 return false; 2795 2796 // In addition to the cases above, we also disable Tail Call Optimization if 2797 // the calling convention code that at least one outgoing argument needs to 2798 // go on the stack. We cannot check that here because at this point that 2799 // information is not available. 2800 return true; 2801 } 2802 2803 // Return true when the given node fits in a positive half word. 2804 bool llvm::isPositiveHalfWord(SDNode *N) { 2805 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 2806 if (CN && CN->getSExtValue() > 0 && isInt<16>(CN->getSExtValue())) 2807 return true; 2808 2809 switch (N->getOpcode()) { 2810 default: 2811 return false; 2812 case ISD::SIGN_EXTEND_INREG: 2813 return true; 2814 } 2815 } 2816 2817 std::pair<const TargetRegisterClass*, uint8_t> 2818 HexagonTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI, 2819 MVT VT) const { 2820 const TargetRegisterClass *RRC = nullptr; 2821 2822 uint8_t Cost = 1; 2823 switch (VT.SimpleTy) { 2824 default: 2825 return TargetLowering::findRepresentativeClass(TRI, VT); 2826 case MVT::v64i8: 2827 case MVT::v32i16: 2828 case MVT::v16i32: 2829 case MVT::v8i64: 2830 RRC = &Hexagon::VectorRegsRegClass; 2831 break; 2832 case MVT::v128i8: 2833 case MVT::v64i16: 2834 case MVT::v32i32: 2835 case MVT::v16i64: 2836 if (Subtarget.hasV60TOps() && Subtarget.useHVXOps() && 2837 Subtarget.useHVXDblOps()) 2838 RRC = &Hexagon::VectorRegs128BRegClass; 2839 else 2840 RRC = &Hexagon::VecDblRegsRegClass; 2841 break; 2842 case MVT::v256i8: 2843 case MVT::v128i16: 2844 case MVT::v64i32: 2845 case MVT::v32i64: 2846 RRC = &Hexagon::VecDblRegs128BRegClass; 2847 break; 2848 } 2849 return std::make_pair(RRC, Cost); 2850 } 2851 2852 Value *HexagonTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr, 2853 AtomicOrdering Ord) const { 2854 BasicBlock *BB = Builder.GetInsertBlock(); 2855 Module *M = BB->getParent()->getParent(); 2856 Type *Ty = cast<PointerType>(Addr->getType())->getElementType(); 2857 unsigned SZ = Ty->getPrimitiveSizeInBits(); 2858 assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic loads supported"); 2859 Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_L2_loadw_locked 2860 : Intrinsic::hexagon_L4_loadd_locked; 2861 Value *Fn = Intrinsic::getDeclaration(M, IntID); 2862 return Builder.CreateCall(Fn, Addr, "larx"); 2863 } 2864 2865 /// Perform a store-conditional operation to Addr. Return the status of the 2866 /// store. This should be 0 if the store succeeded, non-zero otherwise. 2867 Value *HexagonTargetLowering::emitStoreConditional(IRBuilder<> &Builder, 2868 Value *Val, Value *Addr, AtomicOrdering Ord) const { 2869 BasicBlock *BB = Builder.GetInsertBlock(); 2870 Module *M = BB->getParent()->getParent(); 2871 Type *Ty = Val->getType(); 2872 unsigned SZ = Ty->getPrimitiveSizeInBits(); 2873 assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic stores supported"); 2874 Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_S2_storew_locked 2875 : Intrinsic::hexagon_S4_stored_locked; 2876 Value *Fn = Intrinsic::getDeclaration(M, IntID); 2877 Value *Call = Builder.CreateCall(Fn, {Addr, Val}, "stcx"); 2878 Value *Cmp = Builder.CreateICmpEQ(Call, Builder.getInt32(0), ""); 2879 Value *Ext = Builder.CreateZExt(Cmp, Type::getInt32Ty(M->getContext())); 2880 return Ext; 2881 } 2882 2883 TargetLowering::AtomicExpansionKind 2884 HexagonTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const { 2885 // Do not expand loads and stores that don't exceed 64 bits. 2886 return LI->getType()->getPrimitiveSizeInBits() > 64 2887 ? AtomicExpansionKind::LLOnly 2888 : AtomicExpansionKind::None; 2889 } 2890 2891 bool HexagonTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const { 2892 // Do not expand loads and stores that don't exceed 64 bits. 2893 return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() > 64; 2894 } 2895