Home | History | Annotate | Download | only in Analysis
      1 //===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the LoopInfo class that is used to identify natural loops
     11 // and determine the loop depth of various nodes of the CFG.  A natural loop
     12 // has exactly one entry-point, which is called the header. Note that natural
     13 // loops may actually be several loops that share the same header node.
     14 //
     15 // This analysis calculates the nesting structure of loops in a function.  For
     16 // each natural loop identified, this analysis identifies natural loops
     17 // contained entirely within the loop and the basic blocks the make up the loop.
     18 //
     19 // It can calculate on the fly various bits of information, for example:
     20 //
     21 //  * whether there is a preheader for the loop
     22 //  * the number of back edges to the header
     23 //  * whether or not a particular block branches out of the loop
     24 //  * the successor blocks of the loop
     25 //  * the loop depth
     26 //  * etc...
     27 //
     28 //===----------------------------------------------------------------------===//
     29 
     30 #ifndef LLVM_ANALYSIS_LOOPINFO_H
     31 #define LLVM_ANALYSIS_LOOPINFO_H
     32 
     33 #include "llvm/ADT/DenseMap.h"
     34 #include "llvm/ADT/DenseSet.h"
     35 #include "llvm/ADT/GraphTraits.h"
     36 #include "llvm/ADT/SmallPtrSet.h"
     37 #include "llvm/ADT/SmallVector.h"
     38 #include "llvm/IR/CFG.h"
     39 #include "llvm/IR/Instruction.h"
     40 #include "llvm/IR/Instructions.h"
     41 #include "llvm/Pass.h"
     42 #include <algorithm>
     43 
     44 namespace llvm {
     45 
     46 // FIXME: Replace this brittle forward declaration with the include of the new
     47 // PassManager.h when doing so doesn't break the PassManagerBuilder.
     48 template <typename IRUnitT> class AnalysisManager;
     49 class PreservedAnalyses;
     50 
     51 class DominatorTree;
     52 class LoopInfo;
     53 class Loop;
     54 class MDNode;
     55 class PHINode;
     56 class raw_ostream;
     57 template<class N> class DominatorTreeBase;
     58 template<class N, class M> class LoopInfoBase;
     59 template<class N, class M> class LoopBase;
     60 
     61 //===----------------------------------------------------------------------===//
     62 /// LoopBase class - Instances of this class are used to represent loops that
     63 /// are detected in the flow graph
     64 ///
     65 template<class BlockT, class LoopT>
     66 class LoopBase {
     67   LoopT *ParentLoop;
     68   // SubLoops - Loops contained entirely within this one.
     69   std::vector<LoopT *> SubLoops;
     70 
     71   // Blocks - The list of blocks in this loop.  First entry is the header node.
     72   std::vector<BlockT*> Blocks;
     73 
     74   SmallPtrSet<const BlockT*, 8> DenseBlockSet;
     75 
     76   /// Indicator that this loops has been "unlooped", so there's no loop here
     77   /// anymore.
     78   bool IsUnloop = false;
     79 
     80   LoopBase(const LoopBase<BlockT, LoopT> &) = delete;
     81   const LoopBase<BlockT, LoopT>&
     82     operator=(const LoopBase<BlockT, LoopT> &) = delete;
     83 public:
     84   /// Loop ctor - This creates an empty loop.
     85   LoopBase() : ParentLoop(nullptr) {}
     86   ~LoopBase() {
     87     for (size_t i = 0, e = SubLoops.size(); i != e; ++i)
     88       delete SubLoops[i];
     89   }
     90 
     91   /// getLoopDepth - Return the nesting level of this loop.  An outer-most
     92   /// loop has depth 1, for consistency with loop depth values used for basic
     93   /// blocks, where depth 0 is used for blocks not inside any loops.
     94   unsigned getLoopDepth() const {
     95     unsigned D = 1;
     96     for (const LoopT *CurLoop = ParentLoop; CurLoop;
     97          CurLoop = CurLoop->ParentLoop)
     98       ++D;
     99     return D;
    100   }
    101   BlockT *getHeader() const { return Blocks.front(); }
    102   LoopT *getParentLoop() const { return ParentLoop; }
    103 
    104   /// setParentLoop is a raw interface for bypassing addChildLoop.
    105   void setParentLoop(LoopT *L) { ParentLoop = L; }
    106 
    107   /// contains - Return true if the specified loop is contained within in
    108   /// this loop.
    109   ///
    110   bool contains(const LoopT *L) const {
    111     if (L == this) return true;
    112     if (!L)        return false;
    113     return contains(L->getParentLoop());
    114   }
    115 
    116   /// contains - Return true if the specified basic block is in this loop.
    117   ///
    118   bool contains(const BlockT *BB) const {
    119     return DenseBlockSet.count(BB);
    120   }
    121 
    122   /// contains - Return true if the specified instruction is in this loop.
    123   ///
    124   template<class InstT>
    125   bool contains(const InstT *Inst) const {
    126     return contains(Inst->getParent());
    127   }
    128 
    129   /// iterator/begin/end - Return the loops contained entirely within this loop.
    130   ///
    131   const std::vector<LoopT *> &getSubLoops() const { return SubLoops; }
    132   std::vector<LoopT *> &getSubLoopsVector() { return SubLoops; }
    133   typedef typename std::vector<LoopT *>::const_iterator iterator;
    134   typedef typename std::vector<LoopT *>::const_reverse_iterator
    135     reverse_iterator;
    136   iterator begin() const { return SubLoops.begin(); }
    137   iterator end() const { return SubLoops.end(); }
    138   reverse_iterator rbegin() const { return SubLoops.rbegin(); }
    139   reverse_iterator rend() const { return SubLoops.rend(); }
    140   bool empty() const { return SubLoops.empty(); }
    141 
    142   /// getBlocks - Get a list of the basic blocks which make up this loop.
    143   ///
    144   const std::vector<BlockT*> &getBlocks() const { return Blocks; }
    145   typedef typename std::vector<BlockT*>::const_iterator block_iterator;
    146   block_iterator block_begin() const { return Blocks.begin(); }
    147   block_iterator block_end() const { return Blocks.end(); }
    148   inline iterator_range<block_iterator> blocks() const {
    149     return make_range(block_begin(), block_end());
    150   }
    151 
    152   /// getNumBlocks - Get the number of blocks in this loop in constant time.
    153   unsigned getNumBlocks() const {
    154     return Blocks.size();
    155   }
    156 
    157   /// Mark this loop as having been unlooped - the last backedge was removed and
    158   /// we no longer have a loop.
    159   void markUnlooped() { IsUnloop = true; }
    160 
    161   /// Return true if this no longer represents a loop.
    162   bool isUnloop() const { return IsUnloop; }
    163 
    164   /// isLoopExiting - True if terminator in the block can branch to another
    165   /// block that is outside of the current loop.
    166   ///
    167   bool isLoopExiting(const BlockT *BB) const {
    168     typedef GraphTraits<const BlockT*> BlockTraits;
    169     for (typename BlockTraits::ChildIteratorType SI =
    170          BlockTraits::child_begin(BB),
    171          SE = BlockTraits::child_end(BB); SI != SE; ++SI) {
    172       if (!contains(*SI))
    173         return true;
    174     }
    175     return false;
    176   }
    177 
    178   /// getNumBackEdges - Calculate the number of back edges to the loop header
    179   ///
    180   unsigned getNumBackEdges() const {
    181     unsigned NumBackEdges = 0;
    182     BlockT *H = getHeader();
    183 
    184     typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
    185     for (typename InvBlockTraits::ChildIteratorType I =
    186          InvBlockTraits::child_begin(H),
    187          E = InvBlockTraits::child_end(H); I != E; ++I)
    188       if (contains(*I))
    189         ++NumBackEdges;
    190 
    191     return NumBackEdges;
    192   }
    193 
    194   //===--------------------------------------------------------------------===//
    195   // APIs for simple analysis of the loop.
    196   //
    197   // Note that all of these methods can fail on general loops (ie, there may not
    198   // be a preheader, etc).  For best success, the loop simplification and
    199   // induction variable canonicalization pass should be used to normalize loops
    200   // for easy analysis.  These methods assume canonical loops.
    201 
    202   /// getExitingBlocks - Return all blocks inside the loop that have successors
    203   /// outside of the loop.  These are the blocks _inside of the current loop_
    204   /// which branch out.  The returned list is always unique.
    205   ///
    206   void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const;
    207 
    208   /// getExitingBlock - If getExitingBlocks would return exactly one block,
    209   /// return that block. Otherwise return null.
    210   BlockT *getExitingBlock() const;
    211 
    212   /// getExitBlocks - Return all of the successor blocks of this loop.  These
    213   /// are the blocks _outside of the current loop_ which are branched to.
    214   ///
    215   void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const;
    216 
    217   /// getExitBlock - If getExitBlocks would return exactly one block,
    218   /// return that block. Otherwise return null.
    219   BlockT *getExitBlock() const;
    220 
    221   /// Edge type.
    222   typedef std::pair<const BlockT*, const BlockT*> Edge;
    223 
    224   /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
    225   void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const;
    226 
    227   /// getLoopPreheader - If there is a preheader for this loop, return it.  A
    228   /// loop has a preheader if there is only one edge to the header of the loop
    229   /// from outside of the loop.  If this is the case, the block branching to the
    230   /// header of the loop is the preheader node.
    231   ///
    232   /// This method returns null if there is no preheader for the loop.
    233   ///
    234   BlockT *getLoopPreheader() const;
    235 
    236   /// getLoopPredecessor - If the given loop's header has exactly one unique
    237   /// predecessor outside the loop, return it. Otherwise return null.
    238   /// This is less strict that the loop "preheader" concept, which requires
    239   /// the predecessor to have exactly one successor.
    240   ///
    241   BlockT *getLoopPredecessor() const;
    242 
    243   /// getLoopLatch - If there is a single latch block for this loop, return it.
    244   /// A latch block is a block that contains a branch back to the header.
    245   BlockT *getLoopLatch() const;
    246 
    247   /// getLoopLatches - Return all loop latch blocks of this loop. A latch block
    248   /// is a block that contains a branch back to the header.
    249   void getLoopLatches(SmallVectorImpl<BlockT *> &LoopLatches) const {
    250     BlockT *H = getHeader();
    251     typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
    252     for (typename InvBlockTraits::ChildIteratorType I =
    253          InvBlockTraits::child_begin(H),
    254          E = InvBlockTraits::child_end(H); I != E; ++I)
    255       if (contains(*I))
    256         LoopLatches.push_back(*I);
    257   }
    258 
    259   //===--------------------------------------------------------------------===//
    260   // APIs for updating loop information after changing the CFG
    261   //
    262 
    263   /// addBasicBlockToLoop - This method is used by other analyses to update loop
    264   /// information.  NewBB is set to be a new member of the current loop.
    265   /// Because of this, it is added as a member of all parent loops, and is added
    266   /// to the specified LoopInfo object as being in the current basic block.  It
    267   /// is not valid to replace the loop header with this method.
    268   ///
    269   void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
    270 
    271   /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
    272   /// the OldChild entry in our children list with NewChild, and updates the
    273   /// parent pointer of OldChild to be null and the NewChild to be this loop.
    274   /// This updates the loop depth of the new child.
    275   void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild);
    276 
    277   /// addChildLoop - Add the specified loop to be a child of this loop.  This
    278   /// updates the loop depth of the new child.
    279   ///
    280   void addChildLoop(LoopT *NewChild) {
    281     assert(!NewChild->ParentLoop && "NewChild already has a parent!");
    282     NewChild->ParentLoop = static_cast<LoopT *>(this);
    283     SubLoops.push_back(NewChild);
    284   }
    285 
    286   /// removeChildLoop - This removes the specified child from being a subloop of
    287   /// this loop.  The loop is not deleted, as it will presumably be inserted
    288   /// into another loop.
    289   LoopT *removeChildLoop(iterator I) {
    290     assert(I != SubLoops.end() && "Cannot remove end iterator!");
    291     LoopT *Child = *I;
    292     assert(Child->ParentLoop == this && "Child is not a child of this loop!");
    293     SubLoops.erase(SubLoops.begin()+(I-begin()));
    294     Child->ParentLoop = nullptr;
    295     return Child;
    296   }
    297 
    298   /// addBlockEntry - This adds a basic block directly to the basic block list.
    299   /// This should only be used by transformations that create new loops.  Other
    300   /// transformations should use addBasicBlockToLoop.
    301   void addBlockEntry(BlockT *BB) {
    302     Blocks.push_back(BB);
    303     DenseBlockSet.insert(BB);
    304   }
    305 
    306   /// reverseBlocks - interface to reverse Blocks[from, end of loop] in this loop
    307   void reverseBlock(unsigned from) {
    308     std::reverse(Blocks.begin() + from, Blocks.end());
    309   }
    310 
    311   /// reserveBlocks- interface to do reserve() for Blocks
    312   void reserveBlocks(unsigned size) {
    313     Blocks.reserve(size);
    314   }
    315 
    316   /// moveToHeader - This method is used to move BB (which must be part of this
    317   /// loop) to be the loop header of the loop (the block that dominates all
    318   /// others).
    319   void moveToHeader(BlockT *BB) {
    320     if (Blocks[0] == BB) return;
    321     for (unsigned i = 0; ; ++i) {
    322       assert(i != Blocks.size() && "Loop does not contain BB!");
    323       if (Blocks[i] == BB) {
    324         Blocks[i] = Blocks[0];
    325         Blocks[0] = BB;
    326         return;
    327       }
    328     }
    329   }
    330 
    331   /// removeBlockFromLoop - This removes the specified basic block from the
    332   /// current loop, updating the Blocks as appropriate.  This does not update
    333   /// the mapping in the LoopInfo class.
    334   void removeBlockFromLoop(BlockT *BB) {
    335     auto I = std::find(Blocks.begin(), Blocks.end(), BB);
    336     assert(I != Blocks.end() && "N is not in this list!");
    337     Blocks.erase(I);
    338 
    339     DenseBlockSet.erase(BB);
    340   }
    341 
    342   /// verifyLoop - Verify loop structure
    343   void verifyLoop() const;
    344 
    345   /// verifyLoop - Verify loop structure of this loop and all nested loops.
    346   void verifyLoopNest(DenseSet<const LoopT*> *Loops) const;
    347 
    348   void print(raw_ostream &OS, unsigned Depth = 0) const;
    349 
    350 protected:
    351   friend class LoopInfoBase<BlockT, LoopT>;
    352   explicit LoopBase(BlockT *BB) : ParentLoop(nullptr) {
    353     Blocks.push_back(BB);
    354     DenseBlockSet.insert(BB);
    355   }
    356 };
    357 
    358 template<class BlockT, class LoopT>
    359 raw_ostream& operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) {
    360   Loop.print(OS);
    361   return OS;
    362 }
    363 
    364 // Implementation in LoopInfoImpl.h
    365 extern template class LoopBase<BasicBlock, Loop>;
    366 
    367 class Loop : public LoopBase<BasicBlock, Loop> {
    368 public:
    369   Loop() {}
    370 
    371   /// isLoopInvariant - Return true if the specified value is loop invariant
    372   ///
    373   bool isLoopInvariant(const Value *V) const;
    374 
    375   /// hasLoopInvariantOperands - Return true if all the operands of the
    376   /// specified instruction are loop invariant.
    377   bool hasLoopInvariantOperands(const Instruction *I) const;
    378 
    379   /// makeLoopInvariant - If the given value is an instruction inside of the
    380   /// loop and it can be hoisted, do so to make it trivially loop-invariant.
    381   /// Return true if the value after any hoisting is loop invariant. This
    382   /// function can be used as a slightly more aggressive replacement for
    383   /// isLoopInvariant.
    384   ///
    385   /// If InsertPt is specified, it is the point to hoist instructions to.
    386   /// If null, the terminator of the loop preheader is used.
    387   ///
    388   bool makeLoopInvariant(Value *V, bool &Changed,
    389                          Instruction *InsertPt = nullptr) const;
    390 
    391   /// makeLoopInvariant - If the given instruction is inside of the
    392   /// loop and it can be hoisted, do so to make it trivially loop-invariant.
    393   /// Return true if the instruction after any hoisting is loop invariant. This
    394   /// function can be used as a slightly more aggressive replacement for
    395   /// isLoopInvariant.
    396   ///
    397   /// If InsertPt is specified, it is the point to hoist instructions to.
    398   /// If null, the terminator of the loop preheader is used.
    399   ///
    400   bool makeLoopInvariant(Instruction *I, bool &Changed,
    401                          Instruction *InsertPt = nullptr) const;
    402 
    403   /// getCanonicalInductionVariable - Check to see if the loop has a canonical
    404   /// induction variable: an integer recurrence that starts at 0 and increments
    405   /// by one each time through the loop.  If so, return the phi node that
    406   /// corresponds to it.
    407   ///
    408   /// The IndVarSimplify pass transforms loops to have a canonical induction
    409   /// variable.
    410   ///
    411   PHINode *getCanonicalInductionVariable() const;
    412 
    413   /// isLCSSAForm - Return true if the Loop is in LCSSA form
    414   bool isLCSSAForm(DominatorTree &DT) const;
    415 
    416   /// \brief Return true if this Loop and all inner subloops are in LCSSA form.
    417   bool isRecursivelyLCSSAForm(DominatorTree &DT) const;
    418 
    419   /// isLoopSimplifyForm - Return true if the Loop is in the form that
    420   /// the LoopSimplify form transforms loops to, which is sometimes called
    421   /// normal form.
    422   bool isLoopSimplifyForm() const;
    423 
    424   /// isSafeToClone - Return true if the loop body is safe to clone in practice.
    425   bool isSafeToClone() const;
    426 
    427   /// Returns true if the loop is annotated parallel.
    428   ///
    429   /// A parallel loop can be assumed to not contain any dependencies between
    430   /// iterations by the compiler. That is, any loop-carried dependency checking
    431   /// can be skipped completely when parallelizing the loop on the target
    432   /// machine. Thus, if the parallel loop information originates from the
    433   /// programmer, e.g. via the OpenMP parallel for pragma, it is the
    434   /// programmer's responsibility to ensure there are no loop-carried
    435   /// dependencies. The final execution order of the instructions across
    436   /// iterations is not guaranteed, thus, the end result might or might not
    437   /// implement actual concurrent execution of instructions across multiple
    438   /// iterations.
    439   bool isAnnotatedParallel() const;
    440 
    441   /// Return the llvm.loop loop id metadata node for this loop if it is present.
    442   ///
    443   /// If this loop contains the same llvm.loop metadata on each branch to the
    444   /// header then the node is returned. If any latch instruction does not
    445   /// contain llvm.loop or or if multiple latches contain different nodes then
    446   /// 0 is returned.
    447   MDNode *getLoopID() const;
    448   /// Set the llvm.loop loop id metadata for this loop.
    449   ///
    450   /// The LoopID metadata node will be added to each terminator instruction in
    451   /// the loop that branches to the loop header.
    452   ///
    453   /// The LoopID metadata node should have one or more operands and the first
    454   /// operand should should be the node itself.
    455   void setLoopID(MDNode *LoopID) const;
    456 
    457   /// hasDedicatedExits - Return true if no exit block for the loop
    458   /// has a predecessor that is outside the loop.
    459   bool hasDedicatedExits() const;
    460 
    461   /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
    462   /// These are the blocks _outside of the current loop_ which are branched to.
    463   /// This assumes that loop exits are in canonical form.
    464   ///
    465   void getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const;
    466 
    467   /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
    468   /// block, return that block. Otherwise return null.
    469   BasicBlock *getUniqueExitBlock() const;
    470 
    471   void dump() const;
    472 
    473   /// \brief Return the debug location of the start of this loop.
    474   /// This looks for a BB terminating instruction with a known debug
    475   /// location by looking at the preheader and header blocks. If it
    476   /// cannot find a terminating instruction with location information,
    477   /// it returns an unknown location.
    478   DebugLoc getStartLoc() const {
    479     BasicBlock *HeadBB;
    480 
    481     // Try the pre-header first.
    482     if ((HeadBB = getLoopPreheader()) != nullptr)
    483       if (DebugLoc DL = HeadBB->getTerminator()->getDebugLoc())
    484         return DL;
    485 
    486     // If we have no pre-header or there are no instructions with debug
    487     // info in it, try the header.
    488     HeadBB = getHeader();
    489     if (HeadBB)
    490       return HeadBB->getTerminator()->getDebugLoc();
    491 
    492     return DebugLoc();
    493   }
    494 
    495 private:
    496   friend class LoopInfoBase<BasicBlock, Loop>;
    497   explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
    498 };
    499 
    500 //===----------------------------------------------------------------------===//
    501 /// LoopInfo - This class builds and contains all of the top level loop
    502 /// structures in the specified function.
    503 ///
    504 
    505 template<class BlockT, class LoopT>
    506 class LoopInfoBase {
    507   // BBMap - Mapping of basic blocks to the inner most loop they occur in
    508   DenseMap<const BlockT *, LoopT *> BBMap;
    509   std::vector<LoopT *> TopLevelLoops;
    510   friend class LoopBase<BlockT, LoopT>;
    511   friend class LoopInfo;
    512 
    513   void operator=(const LoopInfoBase &) = delete;
    514   LoopInfoBase(const LoopInfoBase &) = delete;
    515 public:
    516   LoopInfoBase() { }
    517   ~LoopInfoBase() { releaseMemory(); }
    518 
    519   LoopInfoBase(LoopInfoBase &&Arg)
    520       : BBMap(std::move(Arg.BBMap)),
    521         TopLevelLoops(std::move(Arg.TopLevelLoops)) {
    522     // We have to clear the arguments top level loops as we've taken ownership.
    523     Arg.TopLevelLoops.clear();
    524   }
    525   LoopInfoBase &operator=(LoopInfoBase &&RHS) {
    526     BBMap = std::move(RHS.BBMap);
    527 
    528     for (auto *L : TopLevelLoops)
    529       delete L;
    530     TopLevelLoops = std::move(RHS.TopLevelLoops);
    531     RHS.TopLevelLoops.clear();
    532     return *this;
    533   }
    534 
    535   void releaseMemory() {
    536     BBMap.clear();
    537 
    538     for (auto *L : TopLevelLoops)
    539       delete L;
    540     TopLevelLoops.clear();
    541   }
    542 
    543   /// iterator/begin/end - The interface to the top-level loops in the current
    544   /// function.
    545   ///
    546   typedef typename std::vector<LoopT *>::const_iterator iterator;
    547   typedef typename std::vector<LoopT *>::const_reverse_iterator
    548     reverse_iterator;
    549   iterator begin() const { return TopLevelLoops.begin(); }
    550   iterator end() const { return TopLevelLoops.end(); }
    551   reverse_iterator rbegin() const { return TopLevelLoops.rbegin(); }
    552   reverse_iterator rend() const { return TopLevelLoops.rend(); }
    553   bool empty() const { return TopLevelLoops.empty(); }
    554 
    555   /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
    556   /// block is in no loop (for example the entry node), null is returned.
    557   ///
    558   LoopT *getLoopFor(const BlockT *BB) const { return BBMap.lookup(BB); }
    559 
    560   /// operator[] - same as getLoopFor...
    561   ///
    562   const LoopT *operator[](const BlockT *BB) const {
    563     return getLoopFor(BB);
    564   }
    565 
    566   /// getLoopDepth - Return the loop nesting level of the specified block.  A
    567   /// depth of 0 means the block is not inside any loop.
    568   ///
    569   unsigned getLoopDepth(const BlockT *BB) const {
    570     const LoopT *L = getLoopFor(BB);
    571     return L ? L->getLoopDepth() : 0;
    572   }
    573 
    574   // isLoopHeader - True if the block is a loop header node
    575   bool isLoopHeader(const BlockT *BB) const {
    576     const LoopT *L = getLoopFor(BB);
    577     return L && L->getHeader() == BB;
    578   }
    579 
    580   /// removeLoop - This removes the specified top-level loop from this loop info
    581   /// object.  The loop is not deleted, as it will presumably be inserted into
    582   /// another loop.
    583   LoopT *removeLoop(iterator I) {
    584     assert(I != end() && "Cannot remove end iterator!");
    585     LoopT *L = *I;
    586     assert(!L->getParentLoop() && "Not a top-level loop!");
    587     TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
    588     return L;
    589   }
    590 
    591   /// changeLoopFor - Change the top-level loop that contains BB to the
    592   /// specified loop.  This should be used by transformations that restructure
    593   /// the loop hierarchy tree.
    594   void changeLoopFor(BlockT *BB, LoopT *L) {
    595     if (!L) {
    596       BBMap.erase(BB);
    597       return;
    598     }
    599     BBMap[BB] = L;
    600   }
    601 
    602   /// changeTopLevelLoop - Replace the specified loop in the top-level loops
    603   /// list with the indicated loop.
    604   void changeTopLevelLoop(LoopT *OldLoop,
    605                           LoopT *NewLoop) {
    606     auto I = std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop);
    607     assert(I != TopLevelLoops.end() && "Old loop not at top level!");
    608     *I = NewLoop;
    609     assert(!NewLoop->ParentLoop && !OldLoop->ParentLoop &&
    610            "Loops already embedded into a subloop!");
    611   }
    612 
    613   /// addTopLevelLoop - This adds the specified loop to the collection of
    614   /// top-level loops.
    615   void addTopLevelLoop(LoopT *New) {
    616     assert(!New->getParentLoop() && "Loop already in subloop!");
    617     TopLevelLoops.push_back(New);
    618   }
    619 
    620   /// removeBlock - This method completely removes BB from all data structures,
    621   /// including all of the Loop objects it is nested in and our mapping from
    622   /// BasicBlocks to loops.
    623   void removeBlock(BlockT *BB) {
    624     auto I = BBMap.find(BB);
    625     if (I != BBMap.end()) {
    626       for (LoopT *L = I->second; L; L = L->getParentLoop())
    627         L->removeBlockFromLoop(BB);
    628 
    629       BBMap.erase(I);
    630     }
    631   }
    632 
    633   // Internals
    634 
    635   static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
    636                                       const LoopT *ParentLoop) {
    637     if (!SubLoop) return true;
    638     if (SubLoop == ParentLoop) return false;
    639     return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
    640   }
    641 
    642   /// Create the loop forest using a stable algorithm.
    643   void analyze(const DominatorTreeBase<BlockT> &DomTree);
    644 
    645   // Debugging
    646   void print(raw_ostream &OS) const;
    647 
    648   void verify() const;
    649 };
    650 
    651 // Implementation in LoopInfoImpl.h
    652 extern template class LoopInfoBase<BasicBlock, Loop>;
    653 
    654 class LoopInfo : public LoopInfoBase<BasicBlock, Loop> {
    655   typedef LoopInfoBase<BasicBlock, Loop> BaseT;
    656 
    657   friend class LoopBase<BasicBlock, Loop>;
    658 
    659   void operator=(const LoopInfo &) = delete;
    660   LoopInfo(const LoopInfo &) = delete;
    661 public:
    662   LoopInfo() {}
    663   explicit LoopInfo(const DominatorTreeBase<BasicBlock> &DomTree);
    664 
    665   LoopInfo(LoopInfo &&Arg) : BaseT(std::move(static_cast<BaseT &>(Arg))) {}
    666   LoopInfo &operator=(LoopInfo &&RHS) {
    667     BaseT::operator=(std::move(static_cast<BaseT &>(RHS)));
    668     return *this;
    669   }
    670 
    671   // Most of the public interface is provided via LoopInfoBase.
    672 
    673   /// updateUnloop - Update LoopInfo after removing the last backedge from a
    674   /// loop--now the "unloop". This updates the loop forest and parent loops for
    675   /// each block so that Unloop is no longer referenced, but does not actually
    676   /// delete the Unloop object. Generally, the loop pass manager should manage
    677   /// deleting the Unloop.
    678   void updateUnloop(Loop *Unloop);
    679 
    680   /// replacementPreservesLCSSAForm - Returns true if replacing From with To
    681   /// everywhere is guaranteed to preserve LCSSA form.
    682   bool replacementPreservesLCSSAForm(Instruction *From, Value *To) {
    683     // Preserving LCSSA form is only problematic if the replacing value is an
    684     // instruction.
    685     Instruction *I = dyn_cast<Instruction>(To);
    686     if (!I) return true;
    687     // If both instructions are defined in the same basic block then replacement
    688     // cannot break LCSSA form.
    689     if (I->getParent() == From->getParent())
    690       return true;
    691     // If the instruction is not defined in a loop then it can safely replace
    692     // anything.
    693     Loop *ToLoop = getLoopFor(I->getParent());
    694     if (!ToLoop) return true;
    695     // If the replacing instruction is defined in the same loop as the original
    696     // instruction, or in a loop that contains it as an inner loop, then using
    697     // it as a replacement will not break LCSSA form.
    698     return ToLoop->contains(getLoopFor(From->getParent()));
    699   }
    700 
    701   /// \brief Checks if moving a specific instruction can break LCSSA in any
    702   /// loop.
    703   ///
    704   /// Return true if moving \p Inst to before \p NewLoc will break LCSSA,
    705   /// assuming that the function containing \p Inst and \p NewLoc is currently
    706   /// in LCSSA form.
    707   bool movementPreservesLCSSAForm(Instruction *Inst, Instruction *NewLoc) {
    708     assert(Inst->getFunction() == NewLoc->getFunction() &&
    709            "Can't reason about IPO!");
    710 
    711     auto *OldBB = Inst->getParent();
    712     auto *NewBB = NewLoc->getParent();
    713 
    714     // Movement within the same loop does not break LCSSA (the equality check is
    715     // to avoid doing a hashtable lookup in case of intra-block movement).
    716     if (OldBB == NewBB)
    717       return true;
    718 
    719     auto *OldLoop = getLoopFor(OldBB);
    720     auto *NewLoop = getLoopFor(NewBB);
    721 
    722     if (OldLoop == NewLoop)
    723       return true;
    724 
    725     // Check if Outer contains Inner; with the null loop counting as the
    726     // "outermost" loop.
    727     auto Contains = [](const Loop *Outer, const Loop *Inner) {
    728       return !Outer || Outer->contains(Inner);
    729     };
    730 
    731     // To check that the movement of Inst to before NewLoc does not break LCSSA,
    732     // we need to check two sets of uses for possible LCSSA violations at
    733     // NewLoc: the users of NewInst, and the operands of NewInst.
    734 
    735     // If we know we're hoisting Inst out of an inner loop to an outer loop,
    736     // then the uses *of* Inst don't need to be checked.
    737 
    738     if (!Contains(NewLoop, OldLoop)) {
    739       for (Use &U : Inst->uses()) {
    740         auto *UI = cast<Instruction>(U.getUser());
    741         auto *UBB = isa<PHINode>(UI) ? cast<PHINode>(UI)->getIncomingBlock(U)
    742                                      : UI->getParent();
    743         if (UBB != NewBB && getLoopFor(UBB) != NewLoop)
    744           return false;
    745       }
    746     }
    747 
    748     // If we know we're sinking Inst from an outer loop into an inner loop, then
    749     // the *operands* of Inst don't need to be checked.
    750 
    751     if (!Contains(OldLoop, NewLoop)) {
    752       // See below on why we can't handle phi nodes here.
    753       if (isa<PHINode>(Inst))
    754         return false;
    755 
    756       for (Use &U : Inst->operands()) {
    757         auto *DefI = dyn_cast<Instruction>(U.get());
    758         if (!DefI)
    759           return false;
    760 
    761         // This would need adjustment if we allow Inst to be a phi node -- the
    762         // new use block won't simply be NewBB.
    763 
    764         auto *DefBlock = DefI->getParent();
    765         if (DefBlock != NewBB && getLoopFor(DefBlock) != NewLoop)
    766           return false;
    767       }
    768     }
    769 
    770     return true;
    771   }
    772 };
    773 
    774 // Allow clients to walk the list of nested loops...
    775 template <> struct GraphTraits<const Loop*> {
    776   typedef const Loop NodeType;
    777   typedef LoopInfo::iterator ChildIteratorType;
    778 
    779   static NodeType *getEntryNode(const Loop *L) { return L; }
    780   static inline ChildIteratorType child_begin(NodeType *N) {
    781     return N->begin();
    782   }
    783   static inline ChildIteratorType child_end(NodeType *N) {
    784     return N->end();
    785   }
    786 };
    787 
    788 template <> struct GraphTraits<Loop*> {
    789   typedef Loop NodeType;
    790   typedef LoopInfo::iterator ChildIteratorType;
    791 
    792   static NodeType *getEntryNode(Loop *L) { return L; }
    793   static inline ChildIteratorType child_begin(NodeType *N) {
    794     return N->begin();
    795   }
    796   static inline ChildIteratorType child_end(NodeType *N) {
    797     return N->end();
    798   }
    799 };
    800 
    801 /// \brief Analysis pass that exposes the \c LoopInfo for a function.
    802 class LoopAnalysis {
    803   static char PassID;
    804 
    805 public:
    806   typedef LoopInfo Result;
    807 
    808   /// \brief Opaque, unique identifier for this analysis pass.
    809   static void *ID() { return (void *)&PassID; }
    810 
    811   /// \brief Provide a name for the analysis for debugging and logging.
    812   static StringRef name() { return "LoopAnalysis"; }
    813 
    814   LoopInfo run(Function &F, AnalysisManager<Function> *AM);
    815 };
    816 
    817 /// \brief Printer pass for the \c LoopAnalysis results.
    818 class LoopPrinterPass {
    819   raw_ostream &OS;
    820 
    821 public:
    822   explicit LoopPrinterPass(raw_ostream &OS) : OS(OS) {}
    823   PreservedAnalyses run(Function &F, AnalysisManager<Function> *AM);
    824 
    825   static StringRef name() { return "LoopPrinterPass"; }
    826 };
    827 
    828 /// \brief The legacy pass manager's analysis pass to compute loop information.
    829 class LoopInfoWrapperPass : public FunctionPass {
    830   LoopInfo LI;
    831 
    832 public:
    833   static char ID; // Pass identification, replacement for typeid
    834 
    835   LoopInfoWrapperPass() : FunctionPass(ID) {
    836     initializeLoopInfoWrapperPassPass(*PassRegistry::getPassRegistry());
    837   }
    838 
    839   LoopInfo &getLoopInfo() { return LI; }
    840   const LoopInfo &getLoopInfo() const { return LI; }
    841 
    842   /// \brief Calculate the natural loop information for a given function.
    843   bool runOnFunction(Function &F) override;
    844 
    845   void verifyAnalysis() const override;
    846 
    847   void releaseMemory() override { LI.releaseMemory(); }
    848 
    849   void print(raw_ostream &O, const Module *M = nullptr) const override;
    850 
    851   void getAnalysisUsage(AnalysisUsage &AU) const override;
    852 };
    853 
    854 /// \brief Pass for printing a loop's contents as LLVM's text IR assembly.
    855 class PrintLoopPass {
    856   raw_ostream &OS;
    857   std::string Banner;
    858 
    859 public:
    860   PrintLoopPass();
    861   PrintLoopPass(raw_ostream &OS, const std::string &Banner = "");
    862 
    863   PreservedAnalyses run(Loop &L);
    864   static StringRef name() { return "PrintLoopPass"; }
    865 };
    866 
    867 } // End llvm namespace
    868 
    869 #endif
    870