Home | History | Annotate | Download | only in PowerPC
      1 //===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the interfaces that PPC uses to lower LLVM code into a
     11 // selection DAG.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
     16 #define LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
     17 
     18 #include "PPC.h"
     19 #include "PPCInstrInfo.h"
     20 #include "PPCRegisterInfo.h"
     21 #include "llvm/CodeGen/CallingConvLower.h"
     22 #include "llvm/CodeGen/SelectionDAG.h"
     23 #include "llvm/Target/TargetLowering.h"
     24 
     25 namespace llvm {
     26   namespace PPCISD {
     27     enum NodeType : unsigned {
     28       // Start the numbering where the builtin ops and target ops leave off.
     29       FIRST_NUMBER = ISD::BUILTIN_OP_END,
     30 
     31       /// FSEL - Traditional three-operand fsel node.
     32       ///
     33       FSEL,
     34 
     35       /// FCFID - The FCFID instruction, taking an f64 operand and producing
     36       /// and f64 value containing the FP representation of the integer that
     37       /// was temporarily in the f64 operand.
     38       FCFID,
     39 
     40       /// Newer FCFID[US] integer-to-floating-point conversion instructions for
     41       /// unsigned integers and single-precision outputs.
     42       FCFIDU, FCFIDS, FCFIDUS,
     43 
     44       /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
     45       /// operand, producing an f64 value containing the integer representation
     46       /// of that FP value.
     47       FCTIDZ, FCTIWZ,
     48 
     49       /// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for
     50       /// unsigned integers.
     51       FCTIDUZ, FCTIWUZ,
     52 
     53       /// Reciprocal estimate instructions (unary FP ops).
     54       FRE, FRSQRTE,
     55 
     56       // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
     57       // three v4f32 operands and producing a v4f32 result.
     58       VMADDFP, VNMSUBFP,
     59 
     60       /// VPERM - The PPC VPERM Instruction.
     61       ///
     62       VPERM,
     63 
     64       /// The CMPB instruction (takes two operands of i32 or i64).
     65       CMPB,
     66 
     67       /// Hi/Lo - These represent the high and low 16-bit parts of a global
     68       /// address respectively.  These nodes have two operands, the first of
     69       /// which must be a TargetGlobalAddress, and the second of which must be a
     70       /// Constant.  Selected naively, these turn into 'lis G+C' and 'li G+C',
     71       /// though these are usually folded into other nodes.
     72       Hi, Lo,
     73 
     74       /// The following two target-specific nodes are used for calls through
     75       /// function pointers in the 64-bit SVR4 ABI.
     76 
     77       /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
     78       /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
     79       /// compute an allocation on the stack.
     80       DYNALLOC,
     81 
     82       /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
     83       /// compute an offset from native SP to the address  of the most recent
     84       /// dynamic alloca.
     85       DYNAREAOFFSET,
     86 
     87       /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
     88       /// at function entry, used for PIC code.
     89       GlobalBaseReg,
     90 
     91       /// These nodes represent the 32-bit PPC shifts that operate on 6-bit
     92       /// shift amounts.  These nodes are generated by the multi-precision shift
     93       /// code.
     94       SRL, SRA, SHL,
     95 
     96       /// The combination of sra[wd]i and addze used to implemented signed
     97       /// integer division by a power of 2. The first operand is the dividend,
     98       /// and the second is the constant shift amount (representing the
     99       /// divisor).
    100       SRA_ADDZE,
    101 
    102       /// CALL - A direct function call.
    103       /// CALL_NOP is a call with the special NOP which follows 64-bit
    104       /// SVR4 calls.
    105       CALL, CALL_NOP,
    106 
    107       /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
    108       /// MTCTR instruction.
    109       MTCTR,
    110 
    111       /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
    112       /// BCTRL instruction.
    113       BCTRL,
    114 
    115       /// CHAIN,FLAG = BCTRL(CHAIN, ADDR, INFLAG) - The combination of a bctrl
    116       /// instruction and the TOC reload required on SVR4 PPC64.
    117       BCTRL_LOAD_TOC,
    118 
    119       /// Return with a flag operand, matched by 'blr'
    120       RET_FLAG,
    121 
    122       /// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction.
    123       /// This copies the bits corresponding to the specified CRREG into the
    124       /// resultant GPR.  Bits corresponding to other CR regs are undefined.
    125       MFOCRF,
    126 
    127       /// Direct move from a VSX register to a GPR
    128       MFVSR,
    129 
    130       /// Direct move from a GPR to a VSX register (algebraic)
    131       MTVSRA,
    132 
    133       /// Direct move from a GPR to a VSX register (zero)
    134       MTVSRZ,
    135 
    136       // FIXME: Remove these once the ANDI glue bug is fixed:
    137       /// i1 = ANDIo_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the
    138       /// eq or gt bit of CR0 after executing andi. x, 1. This is used to
    139       /// implement truncation of i32 or i64 to i1.
    140       ANDIo_1_EQ_BIT, ANDIo_1_GT_BIT,
    141 
    142       // READ_TIME_BASE - A read of the 64-bit time-base register on a 32-bit
    143       // target (returns (Lo, Hi)). It takes a chain operand.
    144       READ_TIME_BASE,
    145 
    146       // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
    147       EH_SJLJ_SETJMP,
    148 
    149       // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
    150       EH_SJLJ_LONGJMP,
    151 
    152       /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
    153       /// instructions.  For lack of better number, we use the opcode number
    154       /// encoding for the OPC field to identify the compare.  For example, 838
    155       /// is VCMPGTSH.
    156       VCMP,
    157 
    158       /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
    159       /// altivec VCMP*o instructions.  For lack of better number, we use the
    160       /// opcode number encoding for the OPC field to identify the compare.  For
    161       /// example, 838 is VCMPGTSH.
    162       VCMPo,
    163 
    164       /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
    165       /// corresponds to the COND_BRANCH pseudo instruction.  CRRC is the
    166       /// condition register to branch on, OPC is the branch opcode to use (e.g.
    167       /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
    168       /// an optional input flag argument.
    169       COND_BRANCH,
    170 
    171       /// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based
    172       /// loops.
    173       BDNZ, BDZ,
    174 
    175       /// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding
    176       /// towards zero.  Used only as part of the long double-to-int
    177       /// conversion sequence.
    178       FADDRTZ,
    179 
    180       /// F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
    181       MFFS,
    182 
    183       /// TC_RETURN - A tail call return.
    184       ///   operand #0 chain
    185       ///   operand #1 callee (register or absolute)
    186       ///   operand #2 stack adjustment
    187       ///   operand #3 optional in flag
    188       TC_RETURN,
    189 
    190       /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
    191       CR6SET,
    192       CR6UNSET,
    193 
    194       /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by initial-exec TLS
    195       /// on PPC32.
    196       PPC32_GOT,
    197 
    198       /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by general dynamic and
    199       /// local dynamic TLS on PPC32.
    200       PPC32_PICGOT,
    201 
    202       /// G8RC = ADDIS_GOT_TPREL_HA %X2, Symbol - Used by the initial-exec
    203       /// TLS model, produces an ADDIS8 instruction that adds the GOT
    204       /// base to sym\@got\@tprel\@ha.
    205       ADDIS_GOT_TPREL_HA,
    206 
    207       /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
    208       /// TLS model, produces a LD instruction with base register G8RReg
    209       /// and offset sym\@got\@tprel\@l.  This completes the addition that
    210       /// finds the offset of "sym" relative to the thread pointer.
    211       LD_GOT_TPREL_L,
    212 
    213       /// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS
    214       /// model, produces an ADD instruction that adds the contents of
    215       /// G8RReg to the thread pointer.  Symbol contains a relocation
    216       /// sym\@tls which is to be replaced by the thread pointer and
    217       /// identifies to the linker that the instruction is part of a
    218       /// TLS sequence.
    219       ADD_TLS,
    220 
    221       /// G8RC = ADDIS_TLSGD_HA %X2, Symbol - For the general-dynamic TLS
    222       /// model, produces an ADDIS8 instruction that adds the GOT base
    223       /// register to sym\@got\@tlsgd\@ha.
    224       ADDIS_TLSGD_HA,
    225 
    226       /// %X3 = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
    227       /// model, produces an ADDI8 instruction that adds G8RReg to
    228       /// sym\@got\@tlsgd\@l and stores the result in X3.  Hidden by
    229       /// ADDIS_TLSGD_L_ADDR until after register assignment.
    230       ADDI_TLSGD_L,
    231 
    232       /// %X3 = GET_TLS_ADDR %X3, Symbol - For the general-dynamic TLS
    233       /// model, produces a call to __tls_get_addr(sym\@tlsgd).  Hidden by
    234       /// ADDIS_TLSGD_L_ADDR until after register assignment.
    235       GET_TLS_ADDR,
    236 
    237       /// G8RC = ADDI_TLSGD_L_ADDR G8RReg, Symbol, Symbol - Op that
    238       /// combines ADDI_TLSGD_L and GET_TLS_ADDR until expansion following
    239       /// register assignment.
    240       ADDI_TLSGD_L_ADDR,
    241 
    242       /// G8RC = ADDIS_TLSLD_HA %X2, Symbol - For the local-dynamic TLS
    243       /// model, produces an ADDIS8 instruction that adds the GOT base
    244       /// register to sym\@got\@tlsld\@ha.
    245       ADDIS_TLSLD_HA,
    246 
    247       /// %X3 = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
    248       /// model, produces an ADDI8 instruction that adds G8RReg to
    249       /// sym\@got\@tlsld\@l and stores the result in X3.  Hidden by
    250       /// ADDIS_TLSLD_L_ADDR until after register assignment.
    251       ADDI_TLSLD_L,
    252 
    253       /// %X3 = GET_TLSLD_ADDR %X3, Symbol - For the local-dynamic TLS
    254       /// model, produces a call to __tls_get_addr(sym\@tlsld).  Hidden by
    255       /// ADDIS_TLSLD_L_ADDR until after register assignment.
    256       GET_TLSLD_ADDR,
    257 
    258       /// G8RC = ADDI_TLSLD_L_ADDR G8RReg, Symbol, Symbol - Op that
    259       /// combines ADDI_TLSLD_L and GET_TLSLD_ADDR until expansion
    260       /// following register assignment.
    261       ADDI_TLSLD_L_ADDR,
    262 
    263       /// G8RC = ADDIS_DTPREL_HA %X3, Symbol - For the local-dynamic TLS
    264       /// model, produces an ADDIS8 instruction that adds X3 to
    265       /// sym\@dtprel\@ha.
    266       ADDIS_DTPREL_HA,
    267 
    268       /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
    269       /// model, produces an ADDI8 instruction that adds G8RReg to
    270       /// sym\@got\@dtprel\@l.
    271       ADDI_DTPREL_L,
    272 
    273       /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
    274       /// during instruction selection to optimize a BUILD_VECTOR into
    275       /// operations on splats.  This is necessary to avoid losing these
    276       /// optimizations due to constant folding.
    277       VADD_SPLAT,
    278 
    279       /// CHAIN = SC CHAIN, Imm128 - System call.  The 7-bit unsigned
    280       /// operand identifies the operating system entry point.
    281       SC,
    282 
    283       /// CHAIN = CLRBHRB CHAIN - Clear branch history rolling buffer.
    284       CLRBHRB,
    285 
    286       /// GPRC, CHAIN = MFBHRBE CHAIN, Entry, Dummy - Move from branch
    287       /// history rolling buffer entry.
    288       MFBHRBE,
    289 
    290       /// CHAIN = RFEBB CHAIN, State - Return from event-based branch.
    291       RFEBB,
    292 
    293       /// VSRC, CHAIN = XXSWAPD CHAIN, VSRC - Occurs only for little
    294       /// endian.  Maps to an xxswapd instruction that corrects an lxvd2x
    295       /// or stxvd2x instruction.  The chain is necessary because the
    296       /// sequence replaces a load and needs to provide the same number
    297       /// of outputs.
    298       XXSWAPD,
    299 
    300       /// QVFPERM = This corresponds to the QPX qvfperm instruction.
    301       QVFPERM,
    302 
    303       /// QVGPCI = This corresponds to the QPX qvgpci instruction.
    304       QVGPCI,
    305 
    306       /// QVALIGNI = This corresponds to the QPX qvaligni instruction.
    307       QVALIGNI,
    308 
    309       /// QVESPLATI = This corresponds to the QPX qvesplati instruction.
    310       QVESPLATI,
    311 
    312       /// QBFLT = Access the underlying QPX floating-point boolean
    313       /// representation.
    314       QBFLT,
    315 
    316       /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
    317       /// byte-swapping store instruction.  It byte-swaps the low "Type" bits of
    318       /// the GPRC input, then stores it through Ptr.  Type can be either i16 or
    319       /// i32.
    320       STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE,
    321 
    322       /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
    323       /// byte-swapping load instruction.  It loads "Type" bits, byte swaps it,
    324       /// then puts it in the bottom bits of the GPRC.  TYPE can be either i16
    325       /// or i32.
    326       LBRX,
    327 
    328       /// STFIWX - The STFIWX instruction.  The first operand is an input token
    329       /// chain, then an f64 value to store, then an address to store it to.
    330       STFIWX,
    331 
    332       /// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point
    333       /// load which sign-extends from a 32-bit integer value into the
    334       /// destination 64-bit register.
    335       LFIWAX,
    336 
    337       /// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point
    338       /// load which zero-extends from a 32-bit integer value into the
    339       /// destination 64-bit register.
    340       LFIWZX,
    341 
    342       /// VSRC, CHAIN = LXVD2X_LE CHAIN, Ptr - Occurs only for little endian.
    343       /// Maps directly to an lxvd2x instruction that will be followed by
    344       /// an xxswapd.
    345       LXVD2X,
    346 
    347       /// CHAIN = STXVD2X CHAIN, VSRC, Ptr - Occurs only for little endian.
    348       /// Maps directly to an stxvd2x instruction that will be preceded by
    349       /// an xxswapd.
    350       STXVD2X,
    351 
    352       /// QBRC, CHAIN = QVLFSb CHAIN, Ptr
    353       /// The 4xf32 load used for v4i1 constants.
    354       QVLFSb,
    355 
    356       /// GPRC = TOC_ENTRY GA, TOC
    357       /// Loads the entry for GA from the TOC, where the TOC base is given by
    358       /// the last operand.
    359       TOC_ENTRY
    360     };
    361   }
    362 
    363   /// Define some predicates that are used for node matching.
    364   namespace PPC {
    365     /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
    366     /// VPKUHUM instruction.
    367     bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
    368                               SelectionDAG &DAG);
    369 
    370     /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
    371     /// VPKUWUM instruction.
    372     bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
    373                               SelectionDAG &DAG);
    374 
    375     /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
    376     /// VPKUDUM instruction.
    377     bool isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
    378                               SelectionDAG &DAG);
    379 
    380     /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
    381     /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
    382     bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
    383                             unsigned ShuffleKind, SelectionDAG &DAG);
    384 
    385     /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
    386     /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
    387     bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
    388                             unsigned ShuffleKind, SelectionDAG &DAG);
    389 
    390     /// isVMRGEOShuffleMask - Return true if this is a shuffle mask suitable for
    391     /// a VMRGEW or VMRGOW instruction
    392     bool isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
    393                              unsigned ShuffleKind, SelectionDAG &DAG);
    394 
    395     /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the
    396     /// shift amount, otherwise return -1.
    397     int isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
    398                             SelectionDAG &DAG);
    399 
    400     /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
    401     /// specifies a splat of a single element that is suitable for input to
    402     /// VSPLTB/VSPLTH/VSPLTW.
    403     bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
    404 
    405     /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
    406     /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
    407     unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize, SelectionDAG &DAG);
    408 
    409     /// get_VSPLTI_elt - If this is a build_vector of constants which can be
    410     /// formed by using a vspltis[bhw] instruction of the specified element
    411     /// size, return the constant being splatted.  The ByteSize field indicates
    412     /// the number of bytes of each element [124] -> [bhw].
    413     SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
    414 
    415     /// If this is a qvaligni shuffle mask, return the shift
    416     /// amount, otherwise return -1.
    417     int isQVALIGNIShuffleMask(SDNode *N);
    418   }
    419 
    420   class PPCTargetLowering : public TargetLowering {
    421     const PPCSubtarget &Subtarget;
    422 
    423   public:
    424     explicit PPCTargetLowering(const PPCTargetMachine &TM,
    425                                const PPCSubtarget &STI);
    426 
    427     /// getTargetNodeName() - This method returns the name of a target specific
    428     /// DAG node.
    429     const char *getTargetNodeName(unsigned Opcode) const override;
    430 
    431     bool useSoftFloat() const override;
    432 
    433     MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override {
    434       return MVT::i32;
    435     }
    436 
    437     bool isCheapToSpeculateCttz() const override {
    438       return true;
    439     }
    440 
    441     bool isCheapToSpeculateCtlz() const override {
    442       return true;
    443     }
    444 
    445     /// getSetCCResultType - Return the ISD::SETCC ValueType
    446     EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
    447                            EVT VT) const override;
    448 
    449     /// Return true if target always beneficiates from combining into FMA for a
    450     /// given value type. This must typically return false on targets where FMA
    451     /// takes more cycles to execute than FADD.
    452     bool enableAggressiveFMAFusion(EVT VT) const override;
    453 
    454     /// getPreIndexedAddressParts - returns true by value, base pointer and
    455     /// offset pointer and addressing mode by reference if the node's address
    456     /// can be legally represented as pre-indexed load / store address.
    457     bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
    458                                    SDValue &Offset,
    459                                    ISD::MemIndexedMode &AM,
    460                                    SelectionDAG &DAG) const override;
    461 
    462     /// SelectAddressRegReg - Given the specified addressed, check to see if it
    463     /// can be represented as an indexed [r+r] operation.  Returns false if it
    464     /// can be more efficiently represented with [r+imm].
    465     bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
    466                              SelectionDAG &DAG) const;
    467 
    468     /// SelectAddressRegImm - Returns true if the address N can be represented
    469     /// by a base register plus a signed 16-bit displacement [r+imm], and if it
    470     /// is not better represented as reg+reg.  If Aligned is true, only accept
    471     /// displacements suitable for STD and friends, i.e. multiples of 4.
    472     bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
    473                              SelectionDAG &DAG, bool Aligned) const;
    474 
    475     /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
    476     /// represented as an indexed [r+r] operation.
    477     bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
    478                                  SelectionDAG &DAG) const;
    479 
    480     Sched::Preference getSchedulingPreference(SDNode *N) const override;
    481 
    482     /// LowerOperation - Provide custom lowering hooks for some operations.
    483     ///
    484     SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
    485 
    486     /// ReplaceNodeResults - Replace the results of node with an illegal result
    487     /// type with new values built out of custom code.
    488     ///
    489     void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
    490                             SelectionDAG &DAG) const override;
    491 
    492     SDValue expandVSXLoadForLE(SDNode *N, DAGCombinerInfo &DCI) const;
    493     SDValue expandVSXStoreForLE(SDNode *N, DAGCombinerInfo &DCI) const;
    494 
    495     SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
    496 
    497     SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
    498                           std::vector<SDNode *> *Created) const override;
    499 
    500     unsigned getRegisterByName(const char* RegName, EVT VT,
    501                                SelectionDAG &DAG) const override;
    502 
    503     void computeKnownBitsForTargetNode(const SDValue Op,
    504                                        APInt &KnownZero,
    505                                        APInt &KnownOne,
    506                                        const SelectionDAG &DAG,
    507                                        unsigned Depth = 0) const override;
    508 
    509     unsigned getPrefLoopAlignment(MachineLoop *ML) const override;
    510 
    511     Instruction* emitLeadingFence(IRBuilder<> &Builder, AtomicOrdering Ord,
    512                                   bool IsStore, bool IsLoad) const override;
    513     Instruction* emitTrailingFence(IRBuilder<> &Builder, AtomicOrdering Ord,
    514                                    bool IsStore, bool IsLoad) const override;
    515 
    516     MachineBasicBlock *
    517       EmitInstrWithCustomInserter(MachineInstr *MI,
    518                                   MachineBasicBlock *MBB) const override;
    519     MachineBasicBlock *EmitAtomicBinary(MachineInstr *MI,
    520                                         MachineBasicBlock *MBB,
    521                                         unsigned AtomicSize,
    522                                         unsigned BinOpcode) const;
    523     MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr *MI,
    524                                                 MachineBasicBlock *MBB,
    525                                             bool is8bit, unsigned Opcode) const;
    526 
    527     MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr *MI,
    528                                         MachineBasicBlock *MBB) const;
    529 
    530     MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr *MI,
    531                                          MachineBasicBlock *MBB) const;
    532 
    533     ConstraintType getConstraintType(StringRef Constraint) const override;
    534 
    535     /// Examine constraint string and operand type and determine a weight value.
    536     /// The operand object must already have been set up with the operand type.
    537     ConstraintWeight getSingleConstraintMatchWeight(
    538       AsmOperandInfo &info, const char *constraint) const override;
    539 
    540     std::pair<unsigned, const TargetRegisterClass *>
    541     getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
    542                                  StringRef Constraint, MVT VT) const override;
    543 
    544     /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
    545     /// function arguments in the caller parameter area.  This is the actual
    546     /// alignment, not its logarithm.
    547     unsigned getByValTypeAlignment(Type *Ty,
    548                                    const DataLayout &DL) const override;
    549 
    550     /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
    551     /// vector.  If it is invalid, don't add anything to Ops.
    552     void LowerAsmOperandForConstraint(SDValue Op,
    553                                       std::string &Constraint,
    554                                       std::vector<SDValue> &Ops,
    555                                       SelectionDAG &DAG) const override;
    556 
    557     unsigned
    558     getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
    559       if (ConstraintCode == "es")
    560         return InlineAsm::Constraint_es;
    561       else if (ConstraintCode == "o")
    562         return InlineAsm::Constraint_o;
    563       else if (ConstraintCode == "Q")
    564         return InlineAsm::Constraint_Q;
    565       else if (ConstraintCode == "Z")
    566         return InlineAsm::Constraint_Z;
    567       else if (ConstraintCode == "Zy")
    568         return InlineAsm::Constraint_Zy;
    569       return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
    570     }
    571 
    572     /// isLegalAddressingMode - Return true if the addressing mode represented
    573     /// by AM is legal for this target, for a load/store of the specified type.
    574     bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
    575                                Type *Ty, unsigned AS) const override;
    576 
    577     /// isLegalICmpImmediate - Return true if the specified immediate is legal
    578     /// icmp immediate, that is the target has icmp instructions which can
    579     /// compare a register against the immediate without having to materialize
    580     /// the immediate into a register.
    581     bool isLegalICmpImmediate(int64_t Imm) const override;
    582 
    583     /// isLegalAddImmediate - Return true if the specified immediate is legal
    584     /// add immediate, that is the target has add instructions which can
    585     /// add a register and the immediate without having to materialize
    586     /// the immediate into a register.
    587     bool isLegalAddImmediate(int64_t Imm) const override;
    588 
    589     /// isTruncateFree - Return true if it's free to truncate a value of
    590     /// type Ty1 to type Ty2. e.g. On PPC it's free to truncate a i64 value in
    591     /// register X1 to i32 by referencing its sub-register R1.
    592     bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
    593     bool isTruncateFree(EVT VT1, EVT VT2) const override;
    594 
    595     bool isZExtFree(SDValue Val, EVT VT2) const override;
    596 
    597     bool isFPExtFree(EVT VT) const override;
    598 
    599     /// \brief Returns true if it is beneficial to convert a load of a constant
    600     /// to just the constant itself.
    601     bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
    602                                            Type *Ty) const override;
    603 
    604     bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;
    605 
    606     bool getTgtMemIntrinsic(IntrinsicInfo &Info,
    607                             const CallInst &I,
    608                             unsigned Intrinsic) const override;
    609 
    610     /// getOptimalMemOpType - Returns the target specific optimal type for load
    611     /// and store operations as a result of memset, memcpy, and memmove
    612     /// lowering. If DstAlign is zero that means it's safe to destination
    613     /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
    614     /// means there isn't a need to check it against alignment requirement,
    615     /// probably because the source does not need to be loaded. If 'IsMemset' is
    616     /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
    617     /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
    618     /// source is constant so it does not need to be loaded.
    619     /// It returns EVT::Other if the type should be determined using generic
    620     /// target-independent logic.
    621     EVT
    622     getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
    623                         bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
    624                         MachineFunction &MF) const override;
    625 
    626     /// Is unaligned memory access allowed for the given type, and is it fast
    627     /// relative to software emulation.
    628     bool allowsMisalignedMemoryAccesses(EVT VT,
    629                                         unsigned AddrSpace,
    630                                         unsigned Align = 1,
    631                                         bool *Fast = nullptr) const override;
    632 
    633     /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
    634     /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
    635     /// expanded to FMAs when this method returns true, otherwise fmuladd is
    636     /// expanded to fmul + fadd.
    637     bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;
    638 
    639     const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
    640 
    641     // Should we expand the build vector with shuffles?
    642     bool
    643     shouldExpandBuildVectorWithShuffles(EVT VT,
    644                                         unsigned DefinedValues) const override;
    645 
    646     /// createFastISel - This method returns a target-specific FastISel object,
    647     /// or null if the target does not support "fast" instruction selection.
    648     FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
    649                              const TargetLibraryInfo *LibInfo) const override;
    650 
    651     /// \brief Returns true if an argument of type Ty needs to be passed in a
    652     /// contiguous block of registers in calling convention CallConv.
    653     bool functionArgumentNeedsConsecutiveRegisters(
    654       Type *Ty, CallingConv::ID CallConv, bool isVarArg) const override {
    655       // We support any array type as "consecutive" block in the parameter
    656       // save area.  The element type defines the alignment requirement and
    657       // whether the argument should go in GPRs, FPRs, or VRs if available.
    658       //
    659       // Note that clang uses this capability both to implement the ELFv2
    660       // homogeneous float/vector aggregate ABI, and to avoid having to use
    661       // "byval" when passing aggregates that might fully fit in registers.
    662       return Ty->isArrayTy();
    663     }
    664 
    665     /// If a physical register, this returns the register that receives the
    666     /// exception address on entry to an EH pad.
    667     unsigned
    668     getExceptionPointerRegister(const Constant *PersonalityFn) const override;
    669 
    670     /// If a physical register, this returns the register that receives the
    671     /// exception typeid on entry to a landing pad.
    672     unsigned
    673     getExceptionSelectorRegister(const Constant *PersonalityFn) const override;
    674 
    675   private:
    676     struct ReuseLoadInfo {
    677       SDValue Ptr;
    678       SDValue Chain;
    679       SDValue ResChain;
    680       MachinePointerInfo MPI;
    681       bool IsInvariant;
    682       unsigned Alignment;
    683       AAMDNodes AAInfo;
    684       const MDNode *Ranges;
    685 
    686       ReuseLoadInfo() : IsInvariant(false), Alignment(0), Ranges(nullptr) {}
    687     };
    688 
    689     bool canReuseLoadAddress(SDValue Op, EVT MemVT, ReuseLoadInfo &RLI,
    690                              SelectionDAG &DAG,
    691                              ISD::LoadExtType ET = ISD::NON_EXTLOAD) const;
    692     void spliceIntoChain(SDValue ResChain, SDValue NewResChain,
    693                          SelectionDAG &DAG) const;
    694 
    695     void LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
    696                                 SelectionDAG &DAG, SDLoc dl) const;
    697     SDValue LowerFP_TO_INTDirectMove(SDValue Op, SelectionDAG &DAG,
    698                                      SDLoc dl) const;
    699     SDValue LowerINT_TO_FPDirectMove(SDValue Op, SelectionDAG &DAG,
    700                                      SDLoc dl) const;
    701 
    702     SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
    703     SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
    704 
    705     bool
    706     IsEligibleForTailCallOptimization(SDValue Callee,
    707                                       CallingConv::ID CalleeCC,
    708                                       bool isVarArg,
    709                                       const SmallVectorImpl<ISD::InputArg> &Ins,
    710                                       SelectionDAG& DAG) const;
    711 
    712     SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
    713                                          int SPDiff,
    714                                          SDValue Chain,
    715                                          SDValue &LROpOut,
    716                                          SDValue &FPOpOut,
    717                                          bool isDarwinABI,
    718                                          SDLoc dl) const;
    719 
    720     SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
    721     SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
    722     SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
    723     SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
    724     SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
    725     SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
    726     SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
    727     SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
    728     SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
    729     SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
    730     SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
    731                          const PPCSubtarget &Subtarget) const;
    732     SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG,
    733                        const PPCSubtarget &Subtarget) const;
    734     SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG,
    735                         const PPCSubtarget &Subtarget) const;
    736     SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
    737                                 const PPCSubtarget &Subtarget) const;
    738     SDValue LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG,
    739                                          const PPCSubtarget &Subtarget) const;
    740     SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG,
    741                                       const PPCSubtarget &Subtarget) const;
    742     SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const;
    743     SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const;
    744     SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
    745     SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
    746     SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, SDLoc dl) const;
    747     SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
    748     SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
    749     SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const;
    750     SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const;
    751     SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const;
    752     SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
    753     SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
    754     SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
    755     SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
    756     SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
    757     SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const;
    758     SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
    759 
    760     SDValue LowerVectorLoad(SDValue Op, SelectionDAG &DAG) const;
    761     SDValue LowerVectorStore(SDValue Op, SelectionDAG &DAG) const;
    762 
    763     SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
    764                             CallingConv::ID CallConv, bool isVarArg,
    765                             const SmallVectorImpl<ISD::InputArg> &Ins,
    766                             SDLoc dl, SelectionDAG &DAG,
    767                             SmallVectorImpl<SDValue> &InVals) const;
    768     SDValue FinishCall(CallingConv::ID CallConv, SDLoc dl, bool isTailCall,
    769                        bool isVarArg, bool IsPatchPoint, bool hasNest,
    770                        SelectionDAG &DAG,
    771                        SmallVector<std::pair<unsigned, SDValue>, 8>
    772                          &RegsToPass,
    773                        SDValue InFlag, SDValue Chain, SDValue CallSeqStart,
    774                        SDValue &Callee,
    775                        int SPDiff, unsigned NumBytes,
    776                        const SmallVectorImpl<ISD::InputArg> &Ins,
    777                        SmallVectorImpl<SDValue> &InVals,
    778                        ImmutableCallSite *CS) const;
    779 
    780     SDValue
    781       LowerFormalArguments(SDValue Chain,
    782                            CallingConv::ID CallConv, bool isVarArg,
    783                            const SmallVectorImpl<ISD::InputArg> &Ins,
    784                            SDLoc dl, SelectionDAG &DAG,
    785                            SmallVectorImpl<SDValue> &InVals) const override;
    786 
    787     SDValue
    788       LowerCall(TargetLowering::CallLoweringInfo &CLI,
    789                 SmallVectorImpl<SDValue> &InVals) const override;
    790 
    791     bool
    792       CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
    793                    bool isVarArg,
    794                    const SmallVectorImpl<ISD::OutputArg> &Outs,
    795                    LLVMContext &Context) const override;
    796 
    797     SDValue
    798       LowerReturn(SDValue Chain,
    799                   CallingConv::ID CallConv, bool isVarArg,
    800                   const SmallVectorImpl<ISD::OutputArg> &Outs,
    801                   const SmallVectorImpl<SDValue> &OutVals,
    802                   SDLoc dl, SelectionDAG &DAG) const override;
    803 
    804     SDValue
    805       extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT, SelectionDAG &DAG,
    806                         SDValue ArgVal, SDLoc dl) const;
    807 
    808     SDValue
    809       LowerFormalArguments_Darwin(SDValue Chain,
    810                                   CallingConv::ID CallConv, bool isVarArg,
    811                                   const SmallVectorImpl<ISD::InputArg> &Ins,
    812                                   SDLoc dl, SelectionDAG &DAG,
    813                                   SmallVectorImpl<SDValue> &InVals) const;
    814     SDValue
    815       LowerFormalArguments_64SVR4(SDValue Chain,
    816                                   CallingConv::ID CallConv, bool isVarArg,
    817                                   const SmallVectorImpl<ISD::InputArg> &Ins,
    818                                   SDLoc dl, SelectionDAG &DAG,
    819                                   SmallVectorImpl<SDValue> &InVals) const;
    820     SDValue
    821       LowerFormalArguments_32SVR4(SDValue Chain,
    822                                   CallingConv::ID CallConv, bool isVarArg,
    823                                   const SmallVectorImpl<ISD::InputArg> &Ins,
    824                                   SDLoc dl, SelectionDAG &DAG,
    825                                   SmallVectorImpl<SDValue> &InVals) const;
    826 
    827     SDValue
    828       createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
    829                                  SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
    830                                  SelectionDAG &DAG, SDLoc dl) const;
    831 
    832     SDValue
    833       LowerCall_Darwin(SDValue Chain, SDValue Callee,
    834                        CallingConv::ID CallConv,
    835                        bool isVarArg, bool isTailCall, bool IsPatchPoint,
    836                        const SmallVectorImpl<ISD::OutputArg> &Outs,
    837                        const SmallVectorImpl<SDValue> &OutVals,
    838                        const SmallVectorImpl<ISD::InputArg> &Ins,
    839                        SDLoc dl, SelectionDAG &DAG,
    840                        SmallVectorImpl<SDValue> &InVals,
    841                        ImmutableCallSite *CS) const;
    842     SDValue
    843       LowerCall_64SVR4(SDValue Chain, SDValue Callee,
    844                        CallingConv::ID CallConv,
    845                        bool isVarArg, bool isTailCall, bool IsPatchPoint,
    846                        const SmallVectorImpl<ISD::OutputArg> &Outs,
    847                        const SmallVectorImpl<SDValue> &OutVals,
    848                        const SmallVectorImpl<ISD::InputArg> &Ins,
    849                        SDLoc dl, SelectionDAG &DAG,
    850                        SmallVectorImpl<SDValue> &InVals,
    851                        ImmutableCallSite *CS) const;
    852     SDValue
    853     LowerCall_32SVR4(SDValue Chain, SDValue Callee, CallingConv::ID CallConv,
    854                      bool isVarArg, bool isTailCall, bool IsPatchPoint,
    855                      const SmallVectorImpl<ISD::OutputArg> &Outs,
    856                      const SmallVectorImpl<SDValue> &OutVals,
    857                      const SmallVectorImpl<ISD::InputArg> &Ins,
    858                      SDLoc dl, SelectionDAG &DAG,
    859                      SmallVectorImpl<SDValue> &InVals,
    860                      ImmutableCallSite *CS) const;
    861 
    862     SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
    863     SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
    864 
    865     SDValue DAGCombineExtBoolTrunc(SDNode *N, DAGCombinerInfo &DCI) const;
    866     SDValue DAGCombineTruncBoolExt(SDNode *N, DAGCombinerInfo &DCI) const;
    867     SDValue combineFPToIntToFP(SDNode *N, DAGCombinerInfo &DCI) const;
    868 
    869     SDValue getRsqrtEstimate(SDValue Operand, DAGCombinerInfo &DCI,
    870                              unsigned &RefinementSteps,
    871                              bool &UseOneConstNR) const override;
    872     SDValue getRecipEstimate(SDValue Operand, DAGCombinerInfo &DCI,
    873                              unsigned &RefinementSteps) const override;
    874     unsigned combineRepeatedFPDivisors() const override;
    875 
    876     CCAssignFn *useFastISelCCs(unsigned Flag) const;
    877   };
    878 
    879   namespace PPC {
    880     FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
    881                              const TargetLibraryInfo *LibInfo);
    882   }
    883 
    884   bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
    885                                   CCValAssign::LocInfo &LocInfo,
    886                                   ISD::ArgFlagsTy &ArgFlags,
    887                                   CCState &State);
    888 
    889   bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
    890                                          MVT &LocVT,
    891                                          CCValAssign::LocInfo &LocInfo,
    892                                          ISD::ArgFlagsTy &ArgFlags,
    893                                          CCState &State);
    894 
    895   bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
    896                                            MVT &LocVT,
    897                                            CCValAssign::LocInfo &LocInfo,
    898                                            ISD::ArgFlagsTy &ArgFlags,
    899                                            CCState &State);
    900 }
    901 
    902 #endif   // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
    903