Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements the TargetLowering class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Target/TargetLowering.h"
     15 #include "llvm/ADT/BitVector.h"
     16 #include "llvm/ADT/STLExtras.h"
     17 #include "llvm/CodeGen/Analysis.h"
     18 #include "llvm/CodeGen/MachineFrameInfo.h"
     19 #include "llvm/CodeGen/MachineFunction.h"
     20 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     21 #include "llvm/CodeGen/SelectionDAG.h"
     22 #include "llvm/IR/DataLayout.h"
     23 #include "llvm/IR/DerivedTypes.h"
     24 #include "llvm/IR/GlobalVariable.h"
     25 #include "llvm/IR/LLVMContext.h"
     26 #include "llvm/MC/MCAsmInfo.h"
     27 #include "llvm/MC/MCExpr.h"
     28 #include "llvm/Support/CommandLine.h"
     29 #include "llvm/Support/ErrorHandling.h"
     30 #include "llvm/Support/MathExtras.h"
     31 #include "llvm/Target/TargetLoweringObjectFile.h"
     32 #include "llvm/Target/TargetMachine.h"
     33 #include "llvm/Target/TargetRegisterInfo.h"
     34 #include "llvm/Target/TargetSubtargetInfo.h"
     35 #include <cctype>
     36 using namespace llvm;
     37 
     38 /// NOTE: The TargetMachine owns TLOF.
     39 TargetLowering::TargetLowering(const TargetMachine &tm)
     40   : TargetLoweringBase(tm) {}
     41 
     42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
     43   return nullptr;
     44 }
     45 
     46 /// Check whether a given call node is in tail position within its function. If
     47 /// so, it sets Chain to the input chain of the tail call.
     48 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
     49                                           SDValue &Chain) const {
     50   const Function *F = DAG.getMachineFunction().getFunction();
     51 
     52   // Conservatively require the attributes of the call to match those of
     53   // the return. Ignore noalias because it doesn't affect the call sequence.
     54   AttributeSet CallerAttrs = F->getAttributes();
     55   if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex)
     56       .removeAttribute(Attribute::NoAlias).hasAttributes())
     57     return false;
     58 
     59   // It's not safe to eliminate the sign / zero extension of the return value.
     60   if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
     61       CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
     62     return false;
     63 
     64   // Check if the only use is a function return node.
     65   return isUsedByReturnOnly(Node, Chain);
     66 }
     67 
     68 /// \brief Set CallLoweringInfo attribute flags based on a call instruction
     69 /// and called function attributes.
     70 void TargetLowering::ArgListEntry::setAttributes(ImmutableCallSite *CS,
     71                                                  unsigned AttrIdx) {
     72   isSExt     = CS->paramHasAttr(AttrIdx, Attribute::SExt);
     73   isZExt     = CS->paramHasAttr(AttrIdx, Attribute::ZExt);
     74   isInReg    = CS->paramHasAttr(AttrIdx, Attribute::InReg);
     75   isSRet     = CS->paramHasAttr(AttrIdx, Attribute::StructRet);
     76   isNest     = CS->paramHasAttr(AttrIdx, Attribute::Nest);
     77   isByVal    = CS->paramHasAttr(AttrIdx, Attribute::ByVal);
     78   isInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca);
     79   isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned);
     80   Alignment  = CS->getParamAlignment(AttrIdx);
     81 }
     82 
     83 /// Generate a libcall taking the given operands as arguments and returning a
     84 /// result of type RetVT.
     85 std::pair<SDValue, SDValue>
     86 TargetLowering::makeLibCall(SelectionDAG &DAG,
     87                             RTLIB::Libcall LC, EVT RetVT,
     88                             ArrayRef<SDValue> Ops,
     89                             bool isSigned, SDLoc dl,
     90                             bool doesNotReturn,
     91                             bool isReturnValueUsed) const {
     92   TargetLowering::ArgListTy Args;
     93   Args.reserve(Ops.size());
     94 
     95   TargetLowering::ArgListEntry Entry;
     96   for (SDValue Op : Ops) {
     97     Entry.Node = Op;
     98     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
     99     Entry.isSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
    100     Entry.isZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
    101     Args.push_back(Entry);
    102   }
    103 
    104   markInRegArguments(DAG, Args);
    105 
    106   if (LC == RTLIB::UNKNOWN_LIBCALL)
    107     report_fatal_error("Unsupported library call operation!");
    108   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
    109                                          getPointerTy(DAG.getDataLayout()));
    110 
    111   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
    112   TargetLowering::CallLoweringInfo CLI(DAG);
    113   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned);
    114   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
    115     .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
    116     .setNoReturn(doesNotReturn).setDiscardResult(!isReturnValueUsed)
    117     .setSExtResult(signExtend).setZExtResult(!signExtend);
    118   return LowerCallTo(CLI);
    119 }
    120 
    121 /// SoftenSetCCOperands - Soften the operands of a comparison.  This code is
    122 /// shared among BR_CC, SELECT_CC, and SETCC handlers.
    123 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
    124                                          SDValue &NewLHS, SDValue &NewRHS,
    125                                          ISD::CondCode &CCCode,
    126                                          SDLoc dl) const {
    127   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
    128          && "Unsupported setcc type!");
    129 
    130   // Expand into one or more soft-fp libcall(s).
    131   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
    132   bool ShouldInvertCC = false;
    133   switch (CCCode) {
    134   case ISD::SETEQ:
    135   case ISD::SETOEQ:
    136     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
    137           (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128;
    138     break;
    139   case ISD::SETNE:
    140   case ISD::SETUNE:
    141     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
    142           (VT == MVT::f64) ? RTLIB::UNE_F64 : RTLIB::UNE_F128;
    143     break;
    144   case ISD::SETGE:
    145   case ISD::SETOGE:
    146     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
    147           (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128;
    148     break;
    149   case ISD::SETLT:
    150   case ISD::SETOLT:
    151     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
    152           (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
    153     break;
    154   case ISD::SETLE:
    155   case ISD::SETOLE:
    156     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
    157           (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128;
    158     break;
    159   case ISD::SETGT:
    160   case ISD::SETOGT:
    161     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
    162           (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128;
    163     break;
    164   case ISD::SETUO:
    165     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
    166           (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128;
    167     break;
    168   case ISD::SETO:
    169     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
    170           (VT == MVT::f64) ? RTLIB::O_F64 : RTLIB::O_F128;
    171     break;
    172   case ISD::SETONE:
    173     // SETONE = SETOLT | SETOGT
    174     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
    175           (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
    176     LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
    177           (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128;
    178     break;
    179   case ISD::SETUEQ:
    180     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
    181           (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128;
    182     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
    183           (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128;
    184     break;
    185   default:
    186     // Invert CC for unordered comparisons
    187     ShouldInvertCC = true;
    188     switch (CCCode) {
    189     case ISD::SETULT:
    190       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
    191             (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128;
    192       break;
    193     case ISD::SETULE:
    194       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
    195             (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128;
    196       break;
    197     case ISD::SETUGT:
    198       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
    199             (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128;
    200       break;
    201     case ISD::SETUGE:
    202       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
    203             (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
    204       break;
    205     default: llvm_unreachable("Do not know how to soften this setcc!");
    206     }
    207   }
    208 
    209   // Use the target specific return value for comparions lib calls.
    210   EVT RetVT = getCmpLibcallReturnType();
    211   SDValue Ops[2] = {NewLHS, NewRHS};
    212   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/,
    213                        dl).first;
    214   NewRHS = DAG.getConstant(0, dl, RetVT);
    215 
    216   CCCode = getCmpLibcallCC(LC1);
    217   if (ShouldInvertCC)
    218     CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
    219 
    220   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
    221     SDValue Tmp = DAG.getNode(
    222         ISD::SETCC, dl,
    223         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
    224         NewLHS, NewRHS, DAG.getCondCode(CCCode));
    225     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/,
    226                          dl).first;
    227     NewLHS = DAG.getNode(
    228         ISD::SETCC, dl,
    229         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
    230         NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
    231     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
    232     NewRHS = SDValue();
    233   }
    234 }
    235 
    236 /// getJumpTableEncoding - Return the entry encoding for a jump table in the
    237 /// current function.  The returned value is a member of the
    238 /// MachineJumpTableInfo::JTEntryKind enum.
    239 unsigned TargetLowering::getJumpTableEncoding() const {
    240   // In non-pic modes, just use the address of a block.
    241   if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
    242     return MachineJumpTableInfo::EK_BlockAddress;
    243 
    244   // In PIC mode, if the target supports a GPRel32 directive, use it.
    245   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
    246     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
    247 
    248   // Otherwise, use a label difference.
    249   return MachineJumpTableInfo::EK_LabelDifference32;
    250 }
    251 
    252 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
    253                                                  SelectionDAG &DAG) const {
    254   // If our PIC model is GP relative, use the global offset table as the base.
    255   unsigned JTEncoding = getJumpTableEncoding();
    256 
    257   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
    258       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
    259     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
    260 
    261   return Table;
    262 }
    263 
    264 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
    265 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
    266 /// MCExpr.
    267 const MCExpr *
    268 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
    269                                              unsigned JTI,MCContext &Ctx) const{
    270   // The normal PIC reloc base is the label at the start of the jump table.
    271   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
    272 }
    273 
    274 bool
    275 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
    276   // Assume that everything is safe in static mode.
    277   if (getTargetMachine().getRelocationModel() == Reloc::Static)
    278     return true;
    279 
    280   // In dynamic-no-pic mode, assume that known defined values are safe.
    281   if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
    282       GA && GA->getGlobal()->isStrongDefinitionForLinker())
    283     return true;
    284 
    285   // Otherwise assume nothing is safe.
    286   return false;
    287 }
    288 
    289 //===----------------------------------------------------------------------===//
    290 //  Optimization Methods
    291 //===----------------------------------------------------------------------===//
    292 
    293 /// ShrinkDemandedConstant - Check to see if the specified operand of the
    294 /// specified instruction is a constant integer.  If so, check to see if there
    295 /// are any bits set in the constant that are not demanded.  If so, shrink the
    296 /// constant and return true.
    297 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
    298                                                         const APInt &Demanded) {
    299   SDLoc dl(Op);
    300 
    301   // FIXME: ISD::SELECT, ISD::SELECT_CC
    302   switch (Op.getOpcode()) {
    303   default: break;
    304   case ISD::XOR:
    305   case ISD::AND:
    306   case ISD::OR: {
    307     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
    308     if (!C) return false;
    309 
    310     if (Op.getOpcode() == ISD::XOR &&
    311         (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
    312       return false;
    313 
    314     // if we can expand it to have all bits set, do it
    315     if (C->getAPIntValue().intersects(~Demanded)) {
    316       EVT VT = Op.getValueType();
    317       SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
    318                                 DAG.getConstant(Demanded &
    319                                                 C->getAPIntValue(),
    320                                                 dl, VT));
    321       return CombineTo(Op, New);
    322     }
    323 
    324     break;
    325   }
    326   }
    327 
    328   return false;
    329 }
    330 
    331 /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
    332 /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
    333 /// cast, but it could be generalized for targets with other types of
    334 /// implicit widening casts.
    335 bool
    336 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
    337                                                     unsigned BitWidth,
    338                                                     const APInt &Demanded,
    339                                                     SDLoc dl) {
    340   assert(Op.getNumOperands() == 2 &&
    341          "ShrinkDemandedOp only supports binary operators!");
    342   assert(Op.getNode()->getNumValues() == 1 &&
    343          "ShrinkDemandedOp only supports nodes with one result!");
    344 
    345   // Early return, as this function cannot handle vector types.
    346   if (Op.getValueType().isVector())
    347     return false;
    348 
    349   // Don't do this if the node has another user, which may require the
    350   // full value.
    351   if (!Op.getNode()->hasOneUse())
    352     return false;
    353 
    354   // Search for the smallest integer type with free casts to and from
    355   // Op's type. For expedience, just check power-of-2 integer types.
    356   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    357   unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros();
    358   unsigned SmallVTBits = DemandedSize;
    359   if (!isPowerOf2_32(SmallVTBits))
    360     SmallVTBits = NextPowerOf2(SmallVTBits);
    361   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
    362     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
    363     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
    364         TLI.isZExtFree(SmallVT, Op.getValueType())) {
    365       // We found a type with free casts.
    366       SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
    367                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
    368                                           Op.getNode()->getOperand(0)),
    369                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
    370                                           Op.getNode()->getOperand(1)));
    371       bool NeedZext = DemandedSize > SmallVTBits;
    372       SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND,
    373                               dl, Op.getValueType(), X);
    374       return CombineTo(Op, Z);
    375     }
    376   }
    377   return false;
    378 }
    379 
    380 /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
    381 /// DemandedMask bits of the result of Op are ever used downstream.  If we can
    382 /// use this information to simplify Op, create a new simplified DAG node and
    383 /// return true, returning the original and new nodes in Old and New. Otherwise,
    384 /// analyze the expression and return a mask of KnownOne and KnownZero bits for
    385 /// the expression (used to simplify the caller).  The KnownZero/One bits may
    386 /// only be accurate for those bits in the DemandedMask.
    387 bool TargetLowering::SimplifyDemandedBits(SDValue Op,
    388                                           const APInt &DemandedMask,
    389                                           APInt &KnownZero,
    390                                           APInt &KnownOne,
    391                                           TargetLoweringOpt &TLO,
    392                                           unsigned Depth) const {
    393   unsigned BitWidth = DemandedMask.getBitWidth();
    394   assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
    395          "Mask size mismatches value type size!");
    396   APInt NewMask = DemandedMask;
    397   SDLoc dl(Op);
    398   auto &DL = TLO.DAG.getDataLayout();
    399 
    400   // Don't know anything.
    401   KnownZero = KnownOne = APInt(BitWidth, 0);
    402 
    403   // Other users may use these bits.
    404   if (!Op.getNode()->hasOneUse()) {
    405     if (Depth != 0) {
    406       // If not at the root, Just compute the KnownZero/KnownOne bits to
    407       // simplify things downstream.
    408       TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth);
    409       return false;
    410     }
    411     // If this is the root being simplified, allow it to have multiple uses,
    412     // just set the NewMask to all bits.
    413     NewMask = APInt::getAllOnesValue(BitWidth);
    414   } else if (DemandedMask == 0) {
    415     // Not demanding any bits from Op.
    416     if (Op.getOpcode() != ISD::UNDEF)
    417       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
    418     return false;
    419   } else if (Depth == 6) {        // Limit search depth.
    420     return false;
    421   }
    422 
    423   APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
    424   switch (Op.getOpcode()) {
    425   case ISD::Constant:
    426     // We know all of the bits for a constant!
    427     KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
    428     KnownZero = ~KnownOne;
    429     return false;   // Don't fall through, will infinitely loop.
    430   case ISD::AND:
    431     // If the RHS is a constant, check to see if the LHS would be zero without
    432     // using the bits from the RHS.  Below, we use knowledge about the RHS to
    433     // simplify the LHS, here we're using information from the LHS to simplify
    434     // the RHS.
    435     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
    436       APInt LHSZero, LHSOne;
    437       // Do not increment Depth here; that can cause an infinite loop.
    438       TLO.DAG.computeKnownBits(Op.getOperand(0), LHSZero, LHSOne, Depth);
    439       // If the LHS already has zeros where RHSC does, this and is dead.
    440       if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
    441         return TLO.CombineTo(Op, Op.getOperand(0));
    442       // If any of the set bits in the RHS are known zero on the LHS, shrink
    443       // the constant.
    444       if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
    445         return true;
    446     }
    447 
    448     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
    449                              KnownOne, TLO, Depth+1))
    450       return true;
    451     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    452     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
    453                              KnownZero2, KnownOne2, TLO, Depth+1))
    454       return true;
    455     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    456 
    457     // If all of the demanded bits are known one on one side, return the other.
    458     // These bits cannot contribute to the result of the 'and'.
    459     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
    460       return TLO.CombineTo(Op, Op.getOperand(0));
    461     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
    462       return TLO.CombineTo(Op, Op.getOperand(1));
    463     // If all of the demanded bits in the inputs are known zeros, return zero.
    464     if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
    465       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, Op.getValueType()));
    466     // If the RHS is a constant, see if we can simplify it.
    467     if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
    468       return true;
    469     // If the operation can be done in a smaller type, do so.
    470     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
    471       return true;
    472 
    473     // Output known-1 bits are only known if set in both the LHS & RHS.
    474     KnownOne &= KnownOne2;
    475     // Output known-0 are known to be clear if zero in either the LHS | RHS.
    476     KnownZero |= KnownZero2;
    477     break;
    478   case ISD::OR:
    479     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
    480                              KnownOne, TLO, Depth+1))
    481       return true;
    482     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    483     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
    484                              KnownZero2, KnownOne2, TLO, Depth+1))
    485       return true;
    486     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    487 
    488     // If all of the demanded bits are known zero on one side, return the other.
    489     // These bits cannot contribute to the result of the 'or'.
    490     if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
    491       return TLO.CombineTo(Op, Op.getOperand(0));
    492     if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
    493       return TLO.CombineTo(Op, Op.getOperand(1));
    494     // If all of the potentially set bits on one side are known to be set on
    495     // the other side, just use the 'other' side.
    496     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
    497       return TLO.CombineTo(Op, Op.getOperand(0));
    498     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
    499       return TLO.CombineTo(Op, Op.getOperand(1));
    500     // If the RHS is a constant, see if we can simplify it.
    501     if (TLO.ShrinkDemandedConstant(Op, NewMask))
    502       return true;
    503     // If the operation can be done in a smaller type, do so.
    504     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
    505       return true;
    506 
    507     // Output known-0 bits are only known if clear in both the LHS & RHS.
    508     KnownZero &= KnownZero2;
    509     // Output known-1 are known to be set if set in either the LHS | RHS.
    510     KnownOne |= KnownOne2;
    511     break;
    512   case ISD::XOR:
    513     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
    514                              KnownOne, TLO, Depth+1))
    515       return true;
    516     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    517     if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
    518                              KnownOne2, TLO, Depth+1))
    519       return true;
    520     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    521 
    522     // If all of the demanded bits are known zero on one side, return the other.
    523     // These bits cannot contribute to the result of the 'xor'.
    524     if ((KnownZero & NewMask) == NewMask)
    525       return TLO.CombineTo(Op, Op.getOperand(0));
    526     if ((KnownZero2 & NewMask) == NewMask)
    527       return TLO.CombineTo(Op, Op.getOperand(1));
    528     // If the operation can be done in a smaller type, do so.
    529     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
    530       return true;
    531 
    532     // If all of the unknown bits are known to be zero on one side or the other
    533     // (but not both) turn this into an *inclusive* or.
    534     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
    535     if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
    536       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
    537                                                Op.getOperand(0),
    538                                                Op.getOperand(1)));
    539 
    540     // Output known-0 bits are known if clear or set in both the LHS & RHS.
    541     KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
    542     // Output known-1 are known to be set if set in only one of the LHS, RHS.
    543     KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
    544 
    545     // If all of the demanded bits on one side are known, and all of the set
    546     // bits on that side are also known to be set on the other side, turn this
    547     // into an AND, as we know the bits will be cleared.
    548     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
    549     // NB: it is okay if more bits are known than are requested
    550     if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side
    551       if (KnownOne == KnownOne2) { // set bits are the same on both sides
    552         EVT VT = Op.getValueType();
    553         SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, dl, VT);
    554         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
    555                                                  Op.getOperand(0), ANDC));
    556       }
    557     }
    558 
    559     // If the RHS is a constant, see if we can simplify it.
    560     // for XOR, we prefer to force bits to 1 if they will make a -1.
    561     // if we can't force bits, try to shrink constant
    562     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
    563       APInt Expanded = C->getAPIntValue() | (~NewMask);
    564       // if we can expand it to have all bits set, do it
    565       if (Expanded.isAllOnesValue()) {
    566         if (Expanded != C->getAPIntValue()) {
    567           EVT VT = Op.getValueType();
    568           SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
    569                                         TLO.DAG.getConstant(Expanded, dl, VT));
    570           return TLO.CombineTo(Op, New);
    571         }
    572         // if it already has all the bits set, nothing to change
    573         // but don't shrink either!
    574       } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
    575         return true;
    576       }
    577     }
    578 
    579     KnownZero = KnownZeroOut;
    580     KnownOne  = KnownOneOut;
    581     break;
    582   case ISD::SELECT:
    583     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
    584                              KnownOne, TLO, Depth+1))
    585       return true;
    586     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
    587                              KnownOne2, TLO, Depth+1))
    588       return true;
    589     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    590     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    591 
    592     // If the operands are constants, see if we can simplify them.
    593     if (TLO.ShrinkDemandedConstant(Op, NewMask))
    594       return true;
    595 
    596     // Only known if known in both the LHS and RHS.
    597     KnownOne &= KnownOne2;
    598     KnownZero &= KnownZero2;
    599     break;
    600   case ISD::SELECT_CC:
    601     if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
    602                              KnownOne, TLO, Depth+1))
    603       return true;
    604     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
    605                              KnownOne2, TLO, Depth+1))
    606       return true;
    607     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    608     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    609 
    610     // If the operands are constants, see if we can simplify them.
    611     if (TLO.ShrinkDemandedConstant(Op, NewMask))
    612       return true;
    613 
    614     // Only known if known in both the LHS and RHS.
    615     KnownOne &= KnownOne2;
    616     KnownZero &= KnownZero2;
    617     break;
    618   case ISD::SHL:
    619     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
    620       unsigned ShAmt = SA->getZExtValue();
    621       SDValue InOp = Op.getOperand(0);
    622 
    623       // If the shift count is an invalid immediate, don't do anything.
    624       if (ShAmt >= BitWidth)
    625         break;
    626 
    627       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
    628       // single shift.  We can do this if the bottom bits (which are shifted
    629       // out) are never demanded.
    630       if (InOp.getOpcode() == ISD::SRL &&
    631           isa<ConstantSDNode>(InOp.getOperand(1))) {
    632         if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
    633           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
    634           unsigned Opc = ISD::SHL;
    635           int Diff = ShAmt-C1;
    636           if (Diff < 0) {
    637             Diff = -Diff;
    638             Opc = ISD::SRL;
    639           }
    640 
    641           SDValue NewSA =
    642             TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType());
    643           EVT VT = Op.getValueType();
    644           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
    645                                                    InOp.getOperand(0), NewSA));
    646         }
    647       }
    648 
    649       if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
    650                                KnownZero, KnownOne, TLO, Depth+1))
    651         return true;
    652 
    653       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
    654       // are not demanded. This will likely allow the anyext to be folded away.
    655       if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
    656         SDValue InnerOp = InOp.getNode()->getOperand(0);
    657         EVT InnerVT = InnerOp.getValueType();
    658         unsigned InnerBits = InnerVT.getSizeInBits();
    659         if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 &&
    660             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
    661           EVT ShTy = getShiftAmountTy(InnerVT, DL);
    662           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
    663             ShTy = InnerVT;
    664           SDValue NarrowShl =
    665             TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
    666                             TLO.DAG.getConstant(ShAmt, dl, ShTy));
    667           return
    668             TLO.CombineTo(Op,
    669                           TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
    670                                           NarrowShl));
    671         }
    672         // Repeat the SHL optimization above in cases where an extension
    673         // intervenes: (shl (anyext (shr x, c1)), c2) to
    674         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
    675         // aren't demanded (as above) and that the shifted upper c1 bits of
    676         // x aren't demanded.
    677         if (InOp.hasOneUse() &&
    678             InnerOp.getOpcode() == ISD::SRL &&
    679             InnerOp.hasOneUse() &&
    680             isa<ConstantSDNode>(InnerOp.getOperand(1))) {
    681           uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1))
    682             ->getZExtValue();
    683           if (InnerShAmt < ShAmt &&
    684               InnerShAmt < InnerBits &&
    685               NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 &&
    686               NewMask.trunc(ShAmt) == 0) {
    687             SDValue NewSA =
    688               TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
    689                                   Op.getOperand(1).getValueType());
    690             EVT VT = Op.getValueType();
    691             SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
    692                                              InnerOp.getOperand(0));
    693             return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT,
    694                                                      NewExt, NewSA));
    695           }
    696         }
    697       }
    698 
    699       KnownZero <<= SA->getZExtValue();
    700       KnownOne  <<= SA->getZExtValue();
    701       // low bits known zero.
    702       KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
    703     }
    704     break;
    705   case ISD::SRL:
    706     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
    707       EVT VT = Op.getValueType();
    708       unsigned ShAmt = SA->getZExtValue();
    709       unsigned VTSize = VT.getSizeInBits();
    710       SDValue InOp = Op.getOperand(0);
    711 
    712       // If the shift count is an invalid immediate, don't do anything.
    713       if (ShAmt >= BitWidth)
    714         break;
    715 
    716       APInt InDemandedMask = (NewMask << ShAmt);
    717 
    718       // If the shift is exact, then it does demand the low bits (and knows that
    719       // they are zero).
    720       if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact())
    721         InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt);
    722 
    723       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
    724       // single shift.  We can do this if the top bits (which are shifted out)
    725       // are never demanded.
    726       if (InOp.getOpcode() == ISD::SHL &&
    727           isa<ConstantSDNode>(InOp.getOperand(1))) {
    728         if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
    729           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
    730           unsigned Opc = ISD::SRL;
    731           int Diff = ShAmt-C1;
    732           if (Diff < 0) {
    733             Diff = -Diff;
    734             Opc = ISD::SHL;
    735           }
    736 
    737           SDValue NewSA =
    738             TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType());
    739           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
    740                                                    InOp.getOperand(0), NewSA));
    741         }
    742       }
    743 
    744       // Compute the new bits that are at the top now.
    745       if (SimplifyDemandedBits(InOp, InDemandedMask,
    746                                KnownZero, KnownOne, TLO, Depth+1))
    747         return true;
    748       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    749       KnownZero = KnownZero.lshr(ShAmt);
    750       KnownOne  = KnownOne.lshr(ShAmt);
    751 
    752       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
    753       KnownZero |= HighBits;  // High bits known zero.
    754     }
    755     break;
    756   case ISD::SRA:
    757     // If this is an arithmetic shift right and only the low-bit is set, we can
    758     // always convert this into a logical shr, even if the shift amount is
    759     // variable.  The low bit of the shift cannot be an input sign bit unless
    760     // the shift amount is >= the size of the datatype, which is undefined.
    761     if (NewMask == 1)
    762       return TLO.CombineTo(Op,
    763                            TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
    764                                            Op.getOperand(0), Op.getOperand(1)));
    765 
    766     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
    767       EVT VT = Op.getValueType();
    768       unsigned ShAmt = SA->getZExtValue();
    769 
    770       // If the shift count is an invalid immediate, don't do anything.
    771       if (ShAmt >= BitWidth)
    772         break;
    773 
    774       APInt InDemandedMask = (NewMask << ShAmt);
    775 
    776       // If the shift is exact, then it does demand the low bits (and knows that
    777       // they are zero).
    778       if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact())
    779         InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt);
    780 
    781       // If any of the demanded bits are produced by the sign extension, we also
    782       // demand the input sign bit.
    783       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
    784       if (HighBits.intersects(NewMask))
    785         InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
    786 
    787       if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
    788                                KnownZero, KnownOne, TLO, Depth+1))
    789         return true;
    790       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    791       KnownZero = KnownZero.lshr(ShAmt);
    792       KnownOne  = KnownOne.lshr(ShAmt);
    793 
    794       // Handle the sign bit, adjusted to where it is now in the mask.
    795       APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
    796 
    797       // If the input sign bit is known to be zero, or if none of the top bits
    798       // are demanded, turn this into an unsigned shift right.
    799       if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
    800         SDNodeFlags Flags;
    801         Flags.setExact(cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact());
    802         return TLO.CombineTo(Op,
    803                              TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0),
    804                                              Op.getOperand(1), &Flags));
    805       }
    806 
    807       int Log2 = NewMask.exactLogBase2();
    808       if (Log2 >= 0) {
    809         // The bit must come from the sign.
    810         SDValue NewSA =
    811           TLO.DAG.getConstant(BitWidth - 1 - Log2, dl,
    812                               Op.getOperand(1).getValueType());
    813         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
    814                                                  Op.getOperand(0), NewSA));
    815       }
    816 
    817       if (KnownOne.intersects(SignBit))
    818         // New bits are known one.
    819         KnownOne |= HighBits;
    820     }
    821     break;
    822   case ISD::SIGN_EXTEND_INREG: {
    823     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
    824 
    825     APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1);
    826     // If we only care about the highest bit, don't bother shifting right.
    827     if (MsbMask == NewMask) {
    828       unsigned ShAmt = ExVT.getScalarType().getSizeInBits();
    829       SDValue InOp = Op.getOperand(0);
    830       unsigned VTBits = Op->getValueType(0).getScalarType().getSizeInBits();
    831       bool AlreadySignExtended =
    832         TLO.DAG.ComputeNumSignBits(InOp) >= VTBits-ShAmt+1;
    833       // However if the input is already sign extended we expect the sign
    834       // extension to be dropped altogether later and do not simplify.
    835       if (!AlreadySignExtended) {
    836         // Compute the correct shift amount type, which must be getShiftAmountTy
    837         // for scalar types after legalization.
    838         EVT ShiftAmtTy = Op.getValueType();
    839         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
    840           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
    841 
    842         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, dl,
    843                                                ShiftAmtTy);
    844         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
    845                                                  Op.getValueType(), InOp,
    846                                                  ShiftAmt));
    847       }
    848     }
    849 
    850     // Sign extension.  Compute the demanded bits in the result that are not
    851     // present in the input.
    852     APInt NewBits =
    853       APInt::getHighBitsSet(BitWidth,
    854                             BitWidth - ExVT.getScalarType().getSizeInBits());
    855 
    856     // If none of the extended bits are demanded, eliminate the sextinreg.
    857     if ((NewBits & NewMask) == 0)
    858       return TLO.CombineTo(Op, Op.getOperand(0));
    859 
    860     APInt InSignBit =
    861       APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth);
    862     APInt InputDemandedBits =
    863       APInt::getLowBitsSet(BitWidth,
    864                            ExVT.getScalarType().getSizeInBits()) &
    865       NewMask;
    866 
    867     // Since the sign extended bits are demanded, we know that the sign
    868     // bit is demanded.
    869     InputDemandedBits |= InSignBit;
    870 
    871     if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
    872                              KnownZero, KnownOne, TLO, Depth+1))
    873       return true;
    874     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    875 
    876     // If the sign bit of the input is known set or clear, then we know the
    877     // top bits of the result.
    878 
    879     // If the input sign bit is known zero, convert this into a zero extension.
    880     if (KnownZero.intersects(InSignBit))
    881       return TLO.CombineTo(Op,
    882                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT));
    883 
    884     if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
    885       KnownOne |= NewBits;
    886       KnownZero &= ~NewBits;
    887     } else {                       // Input sign bit unknown
    888       KnownZero &= ~NewBits;
    889       KnownOne &= ~NewBits;
    890     }
    891     break;
    892   }
    893   case ISD::BUILD_PAIR: {
    894     EVT HalfVT = Op.getOperand(0).getValueType();
    895     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
    896 
    897     APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
    898     APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
    899 
    900     APInt KnownZeroLo, KnownOneLo;
    901     APInt KnownZeroHi, KnownOneHi;
    902 
    903     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownZeroLo,
    904                              KnownOneLo, TLO, Depth + 1))
    905       return true;
    906 
    907     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownZeroHi,
    908                              KnownOneHi, TLO, Depth + 1))
    909       return true;
    910 
    911     KnownZero = KnownZeroLo.zext(BitWidth) |
    912                 KnownZeroHi.zext(BitWidth).shl(HalfBitWidth);
    913 
    914     KnownOne = KnownOneLo.zext(BitWidth) |
    915                KnownOneHi.zext(BitWidth).shl(HalfBitWidth);
    916     break;
    917   }
    918   case ISD::ZERO_EXTEND: {
    919     unsigned OperandBitWidth =
    920       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
    921     APInt InMask = NewMask.trunc(OperandBitWidth);
    922 
    923     // If none of the top bits are demanded, convert this into an any_extend.
    924     APInt NewBits =
    925       APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
    926     if (!NewBits.intersects(NewMask))
    927       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
    928                                                Op.getValueType(),
    929                                                Op.getOperand(0)));
    930 
    931     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
    932                              KnownZero, KnownOne, TLO, Depth+1))
    933       return true;
    934     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    935     KnownZero = KnownZero.zext(BitWidth);
    936     KnownOne = KnownOne.zext(BitWidth);
    937     KnownZero |= NewBits;
    938     break;
    939   }
    940   case ISD::SIGN_EXTEND: {
    941     EVT InVT = Op.getOperand(0).getValueType();
    942     unsigned InBits = InVT.getScalarType().getSizeInBits();
    943     APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
    944     APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
    945     APInt NewBits   = ~InMask & NewMask;
    946 
    947     // If none of the top bits are demanded, convert this into an any_extend.
    948     if (NewBits == 0)
    949       return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
    950                                               Op.getValueType(),
    951                                               Op.getOperand(0)));
    952 
    953     // Since some of the sign extended bits are demanded, we know that the sign
    954     // bit is demanded.
    955     APInt InDemandedBits = InMask & NewMask;
    956     InDemandedBits |= InSignBit;
    957     InDemandedBits = InDemandedBits.trunc(InBits);
    958 
    959     if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
    960                              KnownOne, TLO, Depth+1))
    961       return true;
    962     KnownZero = KnownZero.zext(BitWidth);
    963     KnownOne = KnownOne.zext(BitWidth);
    964 
    965     // If the sign bit is known zero, convert this to a zero extend.
    966     if (KnownZero.intersects(InSignBit))
    967       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
    968                                                Op.getValueType(),
    969                                                Op.getOperand(0)));
    970 
    971     // If the sign bit is known one, the top bits match.
    972     if (KnownOne.intersects(InSignBit)) {
    973       KnownOne |= NewBits;
    974       assert((KnownZero & NewBits) == 0);
    975     } else {   // Otherwise, top bits aren't known.
    976       assert((KnownOne & NewBits) == 0);
    977       assert((KnownZero & NewBits) == 0);
    978     }
    979     break;
    980   }
    981   case ISD::ANY_EXTEND: {
    982     unsigned OperandBitWidth =
    983       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
    984     APInt InMask = NewMask.trunc(OperandBitWidth);
    985     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
    986                              KnownZero, KnownOne, TLO, Depth+1))
    987       return true;
    988     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    989     KnownZero = KnownZero.zext(BitWidth);
    990     KnownOne = KnownOne.zext(BitWidth);
    991     break;
    992   }
    993   case ISD::TRUNCATE: {
    994     // Simplify the input, using demanded bit information, and compute the known
    995     // zero/one bits live out.
    996     unsigned OperandBitWidth =
    997       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
    998     APInt TruncMask = NewMask.zext(OperandBitWidth);
    999     if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
   1000                              KnownZero, KnownOne, TLO, Depth+1))
   1001       return true;
   1002     KnownZero = KnownZero.trunc(BitWidth);
   1003     KnownOne = KnownOne.trunc(BitWidth);
   1004 
   1005     // If the input is only used by this truncate, see if we can shrink it based
   1006     // on the known demanded bits.
   1007     if (Op.getOperand(0).getNode()->hasOneUse()) {
   1008       SDValue In = Op.getOperand(0);
   1009       switch (In.getOpcode()) {
   1010       default: break;
   1011       case ISD::SRL:
   1012         // Shrink SRL by a constant if none of the high bits shifted in are
   1013         // demanded.
   1014         if (TLO.LegalTypes() &&
   1015             !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
   1016           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
   1017           // undesirable.
   1018           break;
   1019         ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
   1020         if (!ShAmt)
   1021           break;
   1022         SDValue Shift = In.getOperand(1);
   1023         if (TLO.LegalTypes()) {
   1024           uint64_t ShVal = ShAmt->getZExtValue();
   1025           Shift = TLO.DAG.getConstant(ShVal, dl,
   1026                                       getShiftAmountTy(Op.getValueType(), DL));
   1027         }
   1028 
   1029         APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
   1030                                                OperandBitWidth - BitWidth);
   1031         HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
   1032 
   1033         if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
   1034           // None of the shifted in bits are needed.  Add a truncate of the
   1035           // shift input, then shift it.
   1036           SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
   1037                                              Op.getValueType(),
   1038                                              In.getOperand(0));
   1039           return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
   1040                                                    Op.getValueType(),
   1041                                                    NewTrunc,
   1042                                                    Shift));
   1043         }
   1044         break;
   1045       }
   1046     }
   1047 
   1048     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1049     break;
   1050   }
   1051   case ISD::AssertZext: {
   1052     // AssertZext demands all of the high bits, plus any of the low bits
   1053     // demanded by its users.
   1054     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
   1055     APInt InMask = APInt::getLowBitsSet(BitWidth,
   1056                                         VT.getSizeInBits());
   1057     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
   1058                              KnownZero, KnownOne, TLO, Depth+1))
   1059       return true;
   1060     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1061 
   1062     KnownZero |= ~InMask & NewMask;
   1063     break;
   1064   }
   1065   case ISD::BITCAST:
   1066     // If this is an FP->Int bitcast and if the sign bit is the only
   1067     // thing demanded, turn this into a FGETSIGN.
   1068     if (!TLO.LegalOperations() &&
   1069         !Op.getValueType().isVector() &&
   1070         !Op.getOperand(0).getValueType().isVector() &&
   1071         NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) &&
   1072         Op.getOperand(0).getValueType().isFloatingPoint()) {
   1073       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
   1074       bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
   1075       if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple() &&
   1076            Op.getOperand(0).getValueType() != MVT::f128) {
   1077         // Cannot eliminate/lower SHL for f128 yet.
   1078         EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
   1079         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
   1080         // place.  We expect the SHL to be eliminated by other optimizations.
   1081         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
   1082         unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits();
   1083         if (!OpVTLegal && OpVTSizeInBits > 32)
   1084           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
   1085         unsigned ShVal = Op.getValueType().getSizeInBits()-1;
   1086         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, Op.getValueType());
   1087         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
   1088                                                  Op.getValueType(),
   1089                                                  Sign, ShAmt));
   1090       }
   1091     }
   1092     break;
   1093   case ISD::ADD:
   1094   case ISD::MUL:
   1095   case ISD::SUB: {
   1096     // Add, Sub, and Mul don't demand any bits in positions beyond that
   1097     // of the highest bit demanded of them.
   1098     APInt LoMask = APInt::getLowBitsSet(BitWidth,
   1099                                         BitWidth - NewMask.countLeadingZeros());
   1100     if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
   1101                              KnownOne2, TLO, Depth+1))
   1102       return true;
   1103     if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
   1104                              KnownOne2, TLO, Depth+1))
   1105       return true;
   1106     // See if the operation should be performed at a smaller bit width.
   1107     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
   1108       return true;
   1109   }
   1110   // FALL THROUGH
   1111   default:
   1112     // Just use computeKnownBits to compute output bits.
   1113     TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth);
   1114     break;
   1115   }
   1116 
   1117   // If we know the value of all of the demanded bits, return this as a
   1118   // constant.
   1119   if ((NewMask & (KnownZero|KnownOne)) == NewMask) {
   1120     // Avoid folding to a constant if any OpaqueConstant is involved.
   1121     const SDNode *N = Op.getNode();
   1122     for (SDNodeIterator I = SDNodeIterator::begin(N),
   1123          E = SDNodeIterator::end(N); I != E; ++I) {
   1124       SDNode *Op = *I;
   1125       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
   1126         if (C->isOpaque())
   1127           return false;
   1128     }
   1129     return TLO.CombineTo(Op,
   1130                          TLO.DAG.getConstant(KnownOne, dl, Op.getValueType()));
   1131   }
   1132 
   1133   return false;
   1134 }
   1135 
   1136 /// computeKnownBitsForTargetNode - Determine which of the bits specified
   1137 /// in Mask are known to be either zero or one and return them in the
   1138 /// KnownZero/KnownOne bitsets.
   1139 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
   1140                                                    APInt &KnownZero,
   1141                                                    APInt &KnownOne,
   1142                                                    const SelectionDAG &DAG,
   1143                                                    unsigned Depth) const {
   1144   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
   1145           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
   1146           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
   1147           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
   1148          "Should use MaskedValueIsZero if you don't know whether Op"
   1149          " is a target node!");
   1150   KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
   1151 }
   1152 
   1153 /// ComputeNumSignBitsForTargetNode - This method can be implemented by
   1154 /// targets that want to expose additional information about sign bits to the
   1155 /// DAG Combiner.
   1156 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
   1157                                                          const SelectionDAG &,
   1158                                                          unsigned Depth) const {
   1159   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
   1160           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
   1161           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
   1162           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
   1163          "Should use ComputeNumSignBits if you don't know whether Op"
   1164          " is a target node!");
   1165   return 1;
   1166 }
   1167 
   1168 /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
   1169 /// one bit set. This differs from computeKnownBits in that it doesn't need to
   1170 /// determine which bit is set.
   1171 ///
   1172 static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
   1173   // A left-shift of a constant one will have exactly one bit set, because
   1174   // shifting the bit off the end is undefined.
   1175   if (Val.getOpcode() == ISD::SHL)
   1176     if (ConstantSDNode *C =
   1177          dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
   1178       if (C->getAPIntValue() == 1)
   1179         return true;
   1180 
   1181   // Similarly, a right-shift of a constant sign-bit will have exactly
   1182   // one bit set.
   1183   if (Val.getOpcode() == ISD::SRL)
   1184     if (ConstantSDNode *C =
   1185          dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
   1186       if (C->getAPIntValue().isSignBit())
   1187         return true;
   1188 
   1189   // More could be done here, though the above checks are enough
   1190   // to handle some common cases.
   1191 
   1192   // Fall back to computeKnownBits to catch other known cases.
   1193   EVT OpVT = Val.getValueType();
   1194   unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
   1195   APInt KnownZero, KnownOne;
   1196   DAG.computeKnownBits(Val, KnownZero, KnownOne);
   1197   return (KnownZero.countPopulation() == BitWidth - 1) &&
   1198          (KnownOne.countPopulation() == 1);
   1199 }
   1200 
   1201 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
   1202   if (!N)
   1203     return false;
   1204 
   1205   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
   1206   if (!CN) {
   1207     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
   1208     if (!BV)
   1209       return false;
   1210 
   1211     BitVector UndefElements;
   1212     CN = BV->getConstantSplatNode(&UndefElements);
   1213     // Only interested in constant splats, and we don't try to handle undef
   1214     // elements in identifying boolean constants.
   1215     if (!CN || UndefElements.none())
   1216       return false;
   1217   }
   1218 
   1219   switch (getBooleanContents(N->getValueType(0))) {
   1220   case UndefinedBooleanContent:
   1221     return CN->getAPIntValue()[0];
   1222   case ZeroOrOneBooleanContent:
   1223     return CN->isOne();
   1224   case ZeroOrNegativeOneBooleanContent:
   1225     return CN->isAllOnesValue();
   1226   }
   1227 
   1228   llvm_unreachable("Invalid boolean contents");
   1229 }
   1230 
   1231 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
   1232   if (!N)
   1233     return false;
   1234 
   1235   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
   1236   if (!CN) {
   1237     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
   1238     if (!BV)
   1239       return false;
   1240 
   1241     BitVector UndefElements;
   1242     CN = BV->getConstantSplatNode(&UndefElements);
   1243     // Only interested in constant splats, and we don't try to handle undef
   1244     // elements in identifying boolean constants.
   1245     if (!CN || UndefElements.none())
   1246       return false;
   1247   }
   1248 
   1249   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
   1250     return !CN->getAPIntValue()[0];
   1251 
   1252   return CN->isNullValue();
   1253 }
   1254 
   1255 /// SimplifySetCC - Try to simplify a setcc built with the specified operands
   1256 /// and cc. If it is unable to simplify it, return a null SDValue.
   1257 SDValue
   1258 TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
   1259                               ISD::CondCode Cond, bool foldBooleans,
   1260                               DAGCombinerInfo &DCI, SDLoc dl) const {
   1261   SelectionDAG &DAG = DCI.DAG;
   1262 
   1263   // These setcc operations always fold.
   1264   switch (Cond) {
   1265   default: break;
   1266   case ISD::SETFALSE:
   1267   case ISD::SETFALSE2: return DAG.getConstant(0, dl, VT);
   1268   case ISD::SETTRUE:
   1269   case ISD::SETTRUE2: {
   1270     TargetLowering::BooleanContent Cnt =
   1271         getBooleanContents(N0->getValueType(0));
   1272     return DAG.getConstant(
   1273         Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl,
   1274         VT);
   1275   }
   1276   }
   1277 
   1278   // Ensure that the constant occurs on the RHS, and fold constant
   1279   // comparisons.
   1280   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
   1281   if (isa<ConstantSDNode>(N0.getNode()) &&
   1282       (DCI.isBeforeLegalizeOps() ||
   1283        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
   1284     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
   1285 
   1286   if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
   1287     const APInt &C1 = N1C->getAPIntValue();
   1288 
   1289     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
   1290     // equality comparison, then we're just comparing whether X itself is
   1291     // zero.
   1292     if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
   1293         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
   1294         N0.getOperand(1).getOpcode() == ISD::Constant) {
   1295       const APInt &ShAmt
   1296         = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
   1297       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
   1298           ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
   1299         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
   1300           // (srl (ctlz x), 5) == 0  -> X != 0
   1301           // (srl (ctlz x), 5) != 1  -> X != 0
   1302           Cond = ISD::SETNE;
   1303         } else {
   1304           // (srl (ctlz x), 5) != 0  -> X == 0
   1305           // (srl (ctlz x), 5) == 1  -> X == 0
   1306           Cond = ISD::SETEQ;
   1307         }
   1308         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
   1309         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
   1310                             Zero, Cond);
   1311       }
   1312     }
   1313 
   1314     SDValue CTPOP = N0;
   1315     // Look through truncs that don't change the value of a ctpop.
   1316     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
   1317       CTPOP = N0.getOperand(0);
   1318 
   1319     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
   1320         (N0 == CTPOP || N0.getValueType().getSizeInBits() >
   1321                         Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
   1322       EVT CTVT = CTPOP.getValueType();
   1323       SDValue CTOp = CTPOP.getOperand(0);
   1324 
   1325       // (ctpop x) u< 2 -> (x & x-1) == 0
   1326       // (ctpop x) u> 1 -> (x & x-1) != 0
   1327       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
   1328         SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
   1329                                   DAG.getConstant(1, dl, CTVT));
   1330         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
   1331         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
   1332         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
   1333       }
   1334 
   1335       // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
   1336     }
   1337 
   1338     // (zext x) == C --> x == (trunc C)
   1339     // (sext x) == C --> x == (trunc C)
   1340     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
   1341         DCI.isBeforeLegalize() && N0->hasOneUse()) {
   1342       unsigned MinBits = N0.getValueSizeInBits();
   1343       SDValue PreExt;
   1344       bool Signed = false;
   1345       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
   1346         // ZExt
   1347         MinBits = N0->getOperand(0).getValueSizeInBits();
   1348         PreExt = N0->getOperand(0);
   1349       } else if (N0->getOpcode() == ISD::AND) {
   1350         // DAGCombine turns costly ZExts into ANDs
   1351         if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
   1352           if ((C->getAPIntValue()+1).isPowerOf2()) {
   1353             MinBits = C->getAPIntValue().countTrailingOnes();
   1354             PreExt = N0->getOperand(0);
   1355           }
   1356       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
   1357         // SExt
   1358         MinBits = N0->getOperand(0).getValueSizeInBits();
   1359         PreExt = N0->getOperand(0);
   1360         Signed = true;
   1361       } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) {
   1362         // ZEXTLOAD / SEXTLOAD
   1363         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
   1364           MinBits = LN0->getMemoryVT().getSizeInBits();
   1365           PreExt = N0;
   1366         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
   1367           Signed = true;
   1368           MinBits = LN0->getMemoryVT().getSizeInBits();
   1369           PreExt = N0;
   1370         }
   1371       }
   1372 
   1373       // Figure out how many bits we need to preserve this constant.
   1374       unsigned ReqdBits = Signed ?
   1375         C1.getBitWidth() - C1.getNumSignBits() + 1 :
   1376         C1.getActiveBits();
   1377 
   1378       // Make sure we're not losing bits from the constant.
   1379       if (MinBits > 0 &&
   1380           MinBits < C1.getBitWidth() &&
   1381           MinBits >= ReqdBits) {
   1382         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
   1383         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
   1384           // Will get folded away.
   1385           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
   1386           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
   1387           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
   1388         }
   1389       }
   1390     }
   1391 
   1392     // If the LHS is '(and load, const)', the RHS is 0,
   1393     // the test is for equality or unsigned, and all 1 bits of the const are
   1394     // in the same partial word, see if we can shorten the load.
   1395     if (DCI.isBeforeLegalize() &&
   1396         !ISD::isSignedIntSetCC(Cond) &&
   1397         N0.getOpcode() == ISD::AND && C1 == 0 &&
   1398         N0.getNode()->hasOneUse() &&
   1399         isa<LoadSDNode>(N0.getOperand(0)) &&
   1400         N0.getOperand(0).getNode()->hasOneUse() &&
   1401         isa<ConstantSDNode>(N0.getOperand(1))) {
   1402       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
   1403       APInt bestMask;
   1404       unsigned bestWidth = 0, bestOffset = 0;
   1405       if (!Lod->isVolatile() && Lod->isUnindexed()) {
   1406         unsigned origWidth = N0.getValueType().getSizeInBits();
   1407         unsigned maskWidth = origWidth;
   1408         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
   1409         // 8 bits, but have to be careful...
   1410         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
   1411           origWidth = Lod->getMemoryVT().getSizeInBits();
   1412         const APInt &Mask =
   1413           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
   1414         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
   1415           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
   1416           for (unsigned offset=0; offset<origWidth/width; offset++) {
   1417             if ((newMask & Mask) == Mask) {
   1418               if (!DAG.getDataLayout().isLittleEndian())
   1419                 bestOffset = (origWidth/width - offset - 1) * (width/8);
   1420               else
   1421                 bestOffset = (uint64_t)offset * (width/8);
   1422               bestMask = Mask.lshr(offset * (width/8) * 8);
   1423               bestWidth = width;
   1424               break;
   1425             }
   1426             newMask = newMask << width;
   1427           }
   1428         }
   1429       }
   1430       if (bestWidth) {
   1431         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
   1432         if (newVT.isRound()) {
   1433           EVT PtrType = Lod->getOperand(1).getValueType();
   1434           SDValue Ptr = Lod->getBasePtr();
   1435           if (bestOffset != 0)
   1436             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
   1437                               DAG.getConstant(bestOffset, dl, PtrType));
   1438           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
   1439           SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
   1440                                 Lod->getPointerInfo().getWithOffset(bestOffset),
   1441                                         false, false, false, NewAlign);
   1442           return DAG.getSetCC(dl, VT,
   1443                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
   1444                                       DAG.getConstant(bestMask.trunc(bestWidth),
   1445                                                       dl, newVT)),
   1446                               DAG.getConstant(0LL, dl, newVT), Cond);
   1447         }
   1448       }
   1449     }
   1450 
   1451     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
   1452     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
   1453       unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
   1454 
   1455       // If the comparison constant has bits in the upper part, the
   1456       // zero-extended value could never match.
   1457       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
   1458                                               C1.getBitWidth() - InSize))) {
   1459         switch (Cond) {
   1460         case ISD::SETUGT:
   1461         case ISD::SETUGE:
   1462         case ISD::SETEQ: return DAG.getConstant(0, dl, VT);
   1463         case ISD::SETULT:
   1464         case ISD::SETULE:
   1465         case ISD::SETNE: return DAG.getConstant(1, dl, VT);
   1466         case ISD::SETGT:
   1467         case ISD::SETGE:
   1468           // True if the sign bit of C1 is set.
   1469           return DAG.getConstant(C1.isNegative(), dl, VT);
   1470         case ISD::SETLT:
   1471         case ISD::SETLE:
   1472           // True if the sign bit of C1 isn't set.
   1473           return DAG.getConstant(C1.isNonNegative(), dl, VT);
   1474         default:
   1475           break;
   1476         }
   1477       }
   1478 
   1479       // Otherwise, we can perform the comparison with the low bits.
   1480       switch (Cond) {
   1481       case ISD::SETEQ:
   1482       case ISD::SETNE:
   1483       case ISD::SETUGT:
   1484       case ISD::SETUGE:
   1485       case ISD::SETULT:
   1486       case ISD::SETULE: {
   1487         EVT newVT = N0.getOperand(0).getValueType();
   1488         if (DCI.isBeforeLegalizeOps() ||
   1489             (isOperationLegal(ISD::SETCC, newVT) &&
   1490              getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) {
   1491           EVT NewSetCCVT =
   1492               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
   1493           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
   1494 
   1495           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
   1496                                           NewConst, Cond);
   1497           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
   1498         }
   1499         break;
   1500       }
   1501       default:
   1502         break;   // todo, be more careful with signed comparisons
   1503       }
   1504     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
   1505                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
   1506       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
   1507       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
   1508       EVT ExtDstTy = N0.getValueType();
   1509       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
   1510 
   1511       // If the constant doesn't fit into the number of bits for the source of
   1512       // the sign extension, it is impossible for both sides to be equal.
   1513       if (C1.getMinSignedBits() > ExtSrcTyBits)
   1514         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
   1515 
   1516       SDValue ZextOp;
   1517       EVT Op0Ty = N0.getOperand(0).getValueType();
   1518       if (Op0Ty == ExtSrcTy) {
   1519         ZextOp = N0.getOperand(0);
   1520       } else {
   1521         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
   1522         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
   1523                               DAG.getConstant(Imm, dl, Op0Ty));
   1524       }
   1525       if (!DCI.isCalledByLegalizer())
   1526         DCI.AddToWorklist(ZextOp.getNode());
   1527       // Otherwise, make this a use of a zext.
   1528       return DAG.getSetCC(dl, VT, ZextOp,
   1529                           DAG.getConstant(C1 & APInt::getLowBitsSet(
   1530                                                               ExtDstTyBits,
   1531                                                               ExtSrcTyBits),
   1532                                           dl, ExtDstTy),
   1533                           Cond);
   1534     } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
   1535                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
   1536       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
   1537       if (N0.getOpcode() == ISD::SETCC &&
   1538           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
   1539         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
   1540         if (TrueWhenTrue)
   1541           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
   1542         // Invert the condition.
   1543         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
   1544         CC = ISD::getSetCCInverse(CC,
   1545                                   N0.getOperand(0).getValueType().isInteger());
   1546         if (DCI.isBeforeLegalizeOps() ||
   1547             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
   1548           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
   1549       }
   1550 
   1551       if ((N0.getOpcode() == ISD::XOR ||
   1552            (N0.getOpcode() == ISD::AND &&
   1553             N0.getOperand(0).getOpcode() == ISD::XOR &&
   1554             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
   1555           isa<ConstantSDNode>(N0.getOperand(1)) &&
   1556           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
   1557         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
   1558         // can only do this if the top bits are known zero.
   1559         unsigned BitWidth = N0.getValueSizeInBits();
   1560         if (DAG.MaskedValueIsZero(N0,
   1561                                   APInt::getHighBitsSet(BitWidth,
   1562                                                         BitWidth-1))) {
   1563           // Okay, get the un-inverted input value.
   1564           SDValue Val;
   1565           if (N0.getOpcode() == ISD::XOR)
   1566             Val = N0.getOperand(0);
   1567           else {
   1568             assert(N0.getOpcode() == ISD::AND &&
   1569                     N0.getOperand(0).getOpcode() == ISD::XOR);
   1570             // ((X^1)&1)^1 -> X & 1
   1571             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
   1572                               N0.getOperand(0).getOperand(0),
   1573                               N0.getOperand(1));
   1574           }
   1575 
   1576           return DAG.getSetCC(dl, VT, Val, N1,
   1577                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
   1578         }
   1579       } else if (N1C->getAPIntValue() == 1 &&
   1580                  (VT == MVT::i1 ||
   1581                   getBooleanContents(N0->getValueType(0)) ==
   1582                       ZeroOrOneBooleanContent)) {
   1583         SDValue Op0 = N0;
   1584         if (Op0.getOpcode() == ISD::TRUNCATE)
   1585           Op0 = Op0.getOperand(0);
   1586 
   1587         if ((Op0.getOpcode() == ISD::XOR) &&
   1588             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
   1589             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
   1590           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
   1591           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
   1592           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
   1593                               Cond);
   1594         }
   1595         if (Op0.getOpcode() == ISD::AND &&
   1596             isa<ConstantSDNode>(Op0.getOperand(1)) &&
   1597             cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
   1598           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
   1599           if (Op0.getValueType().bitsGT(VT))
   1600             Op0 = DAG.getNode(ISD::AND, dl, VT,
   1601                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
   1602                           DAG.getConstant(1, dl, VT));
   1603           else if (Op0.getValueType().bitsLT(VT))
   1604             Op0 = DAG.getNode(ISD::AND, dl, VT,
   1605                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
   1606                         DAG.getConstant(1, dl, VT));
   1607 
   1608           return DAG.getSetCC(dl, VT, Op0,
   1609                               DAG.getConstant(0, dl, Op0.getValueType()),
   1610                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
   1611         }
   1612         if (Op0.getOpcode() == ISD::AssertZext &&
   1613             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
   1614           return DAG.getSetCC(dl, VT, Op0,
   1615                               DAG.getConstant(0, dl, Op0.getValueType()),
   1616                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
   1617       }
   1618     }
   1619 
   1620     APInt MinVal, MaxVal;
   1621     unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
   1622     if (ISD::isSignedIntSetCC(Cond)) {
   1623       MinVal = APInt::getSignedMinValue(OperandBitSize);
   1624       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
   1625     } else {
   1626       MinVal = APInt::getMinValue(OperandBitSize);
   1627       MaxVal = APInt::getMaxValue(OperandBitSize);
   1628     }
   1629 
   1630     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
   1631     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
   1632       if (C1 == MinVal) return DAG.getConstant(1, dl, VT);  // X >= MIN --> true
   1633       // X >= C0 --> X > (C0 - 1)
   1634       APInt C = C1 - 1;
   1635       ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
   1636       if ((DCI.isBeforeLegalizeOps() ||
   1637            isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
   1638           (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
   1639                                 isLegalICmpImmediate(C.getSExtValue())))) {
   1640         return DAG.getSetCC(dl, VT, N0,
   1641                             DAG.getConstant(C, dl, N1.getValueType()),
   1642                             NewCC);
   1643       }
   1644     }
   1645 
   1646     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
   1647       if (C1 == MaxVal) return DAG.getConstant(1, dl, VT);  // X <= MAX --> true
   1648       // X <= C0 --> X < (C0 + 1)
   1649       APInt C = C1 + 1;
   1650       ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
   1651       if ((DCI.isBeforeLegalizeOps() ||
   1652            isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
   1653           (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
   1654                                 isLegalICmpImmediate(C.getSExtValue())))) {
   1655         return DAG.getSetCC(dl, VT, N0,
   1656                             DAG.getConstant(C, dl, N1.getValueType()),
   1657                             NewCC);
   1658       }
   1659     }
   1660 
   1661     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
   1662       return DAG.getConstant(0, dl, VT);      // X < MIN --> false
   1663     if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
   1664       return DAG.getConstant(1, dl, VT);      // X >= MIN --> true
   1665     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
   1666       return DAG.getConstant(0, dl, VT);      // X > MAX --> false
   1667     if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
   1668       return DAG.getConstant(1, dl, VT);      // X <= MAX --> true
   1669 
   1670     // Canonicalize setgt X, Min --> setne X, Min
   1671     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
   1672       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
   1673     // Canonicalize setlt X, Max --> setne X, Max
   1674     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
   1675       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
   1676 
   1677     // If we have setult X, 1, turn it into seteq X, 0
   1678     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
   1679       return DAG.getSetCC(dl, VT, N0,
   1680                           DAG.getConstant(MinVal, dl, N0.getValueType()),
   1681                           ISD::SETEQ);
   1682     // If we have setugt X, Max-1, turn it into seteq X, Max
   1683     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
   1684       return DAG.getSetCC(dl, VT, N0,
   1685                           DAG.getConstant(MaxVal, dl, N0.getValueType()),
   1686                           ISD::SETEQ);
   1687 
   1688     // If we have "setcc X, C0", check to see if we can shrink the immediate
   1689     // by changing cc.
   1690 
   1691     // SETUGT X, SINTMAX  -> SETLT X, 0
   1692     if (Cond == ISD::SETUGT &&
   1693         C1 == APInt::getSignedMaxValue(OperandBitSize))
   1694       return DAG.getSetCC(dl, VT, N0,
   1695                           DAG.getConstant(0, dl, N1.getValueType()),
   1696                           ISD::SETLT);
   1697 
   1698     // SETULT X, SINTMIN  -> SETGT X, -1
   1699     if (Cond == ISD::SETULT &&
   1700         C1 == APInt::getSignedMinValue(OperandBitSize)) {
   1701       SDValue ConstMinusOne =
   1702           DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
   1703                           N1.getValueType());
   1704       return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
   1705     }
   1706 
   1707     // Fold bit comparisons when we can.
   1708     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
   1709         (VT == N0.getValueType() ||
   1710          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
   1711         N0.getOpcode() == ISD::AND) {
   1712       auto &DL = DAG.getDataLayout();
   1713       if (ConstantSDNode *AndRHS =
   1714                   dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
   1715         EVT ShiftTy = DCI.isBeforeLegalize()
   1716                           ? getPointerTy(DL)
   1717                           : getShiftAmountTy(N0.getValueType(), DL);
   1718         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
   1719           // Perform the xform if the AND RHS is a single bit.
   1720           if (AndRHS->getAPIntValue().isPowerOf2()) {
   1721             return DAG.getNode(ISD::TRUNCATE, dl, VT,
   1722                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
   1723                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl,
   1724                                    ShiftTy)));
   1725           }
   1726         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
   1727           // (X & 8) == 8  -->  (X & 8) >> 3
   1728           // Perform the xform if C1 is a single bit.
   1729           if (C1.isPowerOf2()) {
   1730             return DAG.getNode(ISD::TRUNCATE, dl, VT,
   1731                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
   1732                                       DAG.getConstant(C1.logBase2(), dl,
   1733                                                       ShiftTy)));
   1734           }
   1735         }
   1736       }
   1737     }
   1738 
   1739     if (C1.getMinSignedBits() <= 64 &&
   1740         !isLegalICmpImmediate(C1.getSExtValue())) {
   1741       // (X & -256) == 256 -> (X >> 8) == 1
   1742       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
   1743           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
   1744         if (ConstantSDNode *AndRHS =
   1745             dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
   1746           const APInt &AndRHSC = AndRHS->getAPIntValue();
   1747           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
   1748             unsigned ShiftBits = AndRHSC.countTrailingZeros();
   1749             auto &DL = DAG.getDataLayout();
   1750             EVT ShiftTy = DCI.isBeforeLegalize()
   1751                               ? getPointerTy(DL)
   1752                               : getShiftAmountTy(N0.getValueType(), DL);
   1753             EVT CmpTy = N0.getValueType();
   1754             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
   1755                                         DAG.getConstant(ShiftBits, dl,
   1756                                                         ShiftTy));
   1757             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
   1758             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
   1759           }
   1760         }
   1761       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
   1762                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
   1763         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
   1764         // X <  0x100000000 -> (X >> 32) <  1
   1765         // X >= 0x100000000 -> (X >> 32) >= 1
   1766         // X <= 0x0ffffffff -> (X >> 32) <  1
   1767         // X >  0x0ffffffff -> (X >> 32) >= 1
   1768         unsigned ShiftBits;
   1769         APInt NewC = C1;
   1770         ISD::CondCode NewCond = Cond;
   1771         if (AdjOne) {
   1772           ShiftBits = C1.countTrailingOnes();
   1773           NewC = NewC + 1;
   1774           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
   1775         } else {
   1776           ShiftBits = C1.countTrailingZeros();
   1777         }
   1778         NewC = NewC.lshr(ShiftBits);
   1779         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
   1780           isLegalICmpImmediate(NewC.getSExtValue())) {
   1781           auto &DL = DAG.getDataLayout();
   1782           EVT ShiftTy = DCI.isBeforeLegalize()
   1783                             ? getPointerTy(DL)
   1784                             : getShiftAmountTy(N0.getValueType(), DL);
   1785           EVT CmpTy = N0.getValueType();
   1786           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
   1787                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
   1788           SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
   1789           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
   1790         }
   1791       }
   1792     }
   1793   }
   1794 
   1795   if (isa<ConstantFPSDNode>(N0.getNode())) {
   1796     // Constant fold or commute setcc.
   1797     SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
   1798     if (O.getNode()) return O;
   1799   } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
   1800     // If the RHS of an FP comparison is a constant, simplify it away in
   1801     // some cases.
   1802     if (CFP->getValueAPF().isNaN()) {
   1803       // If an operand is known to be a nan, we can fold it.
   1804       switch (ISD::getUnorderedFlavor(Cond)) {
   1805       default: llvm_unreachable("Unknown flavor!");
   1806       case 0:  // Known false.
   1807         return DAG.getConstant(0, dl, VT);
   1808       case 1:  // Known true.
   1809         return DAG.getConstant(1, dl, VT);
   1810       case 2:  // Undefined.
   1811         return DAG.getUNDEF(VT);
   1812       }
   1813     }
   1814 
   1815     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
   1816     // constant if knowing that the operand is non-nan is enough.  We prefer to
   1817     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
   1818     // materialize 0.0.
   1819     if (Cond == ISD::SETO || Cond == ISD::SETUO)
   1820       return DAG.getSetCC(dl, VT, N0, N0, Cond);
   1821 
   1822     // If the condition is not legal, see if we can find an equivalent one
   1823     // which is legal.
   1824     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
   1825       // If the comparison was an awkward floating-point == or != and one of
   1826       // the comparison operands is infinity or negative infinity, convert the
   1827       // condition to a less-awkward <= or >=.
   1828       if (CFP->getValueAPF().isInfinity()) {
   1829         if (CFP->getValueAPF().isNegative()) {
   1830           if (Cond == ISD::SETOEQ &&
   1831               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
   1832             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
   1833           if (Cond == ISD::SETUEQ &&
   1834               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
   1835             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
   1836           if (Cond == ISD::SETUNE &&
   1837               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
   1838             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
   1839           if (Cond == ISD::SETONE &&
   1840               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
   1841             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
   1842         } else {
   1843           if (Cond == ISD::SETOEQ &&
   1844               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
   1845             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
   1846           if (Cond == ISD::SETUEQ &&
   1847               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
   1848             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
   1849           if (Cond == ISD::SETUNE &&
   1850               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
   1851             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
   1852           if (Cond == ISD::SETONE &&
   1853               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
   1854             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
   1855         }
   1856       }
   1857     }
   1858   }
   1859 
   1860   if (N0 == N1) {
   1861     // The sext(setcc()) => setcc() optimization relies on the appropriate
   1862     // constant being emitted.
   1863     uint64_t EqVal = 0;
   1864     switch (getBooleanContents(N0.getValueType())) {
   1865     case UndefinedBooleanContent:
   1866     case ZeroOrOneBooleanContent:
   1867       EqVal = ISD::isTrueWhenEqual(Cond);
   1868       break;
   1869     case ZeroOrNegativeOneBooleanContent:
   1870       EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0;
   1871       break;
   1872     }
   1873 
   1874     // We can always fold X == X for integer setcc's.
   1875     if (N0.getValueType().isInteger()) {
   1876       return DAG.getConstant(EqVal, dl, VT);
   1877     }
   1878     unsigned UOF = ISD::getUnorderedFlavor(Cond);
   1879     if (UOF == 2)   // FP operators that are undefined on NaNs.
   1880       return DAG.getConstant(EqVal, dl, VT);
   1881     if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
   1882       return DAG.getConstant(EqVal, dl, VT);
   1883     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
   1884     // if it is not already.
   1885     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
   1886     if (NewCond != Cond && (DCI.isBeforeLegalizeOps() ||
   1887           getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal))
   1888       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
   1889   }
   1890 
   1891   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
   1892       N0.getValueType().isInteger()) {
   1893     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
   1894         N0.getOpcode() == ISD::XOR) {
   1895       // Simplify (X+Y) == (X+Z) -->  Y == Z
   1896       if (N0.getOpcode() == N1.getOpcode()) {
   1897         if (N0.getOperand(0) == N1.getOperand(0))
   1898           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
   1899         if (N0.getOperand(1) == N1.getOperand(1))
   1900           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
   1901         if (DAG.isCommutativeBinOp(N0.getOpcode())) {
   1902           // If X op Y == Y op X, try other combinations.
   1903           if (N0.getOperand(0) == N1.getOperand(1))
   1904             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
   1905                                 Cond);
   1906           if (N0.getOperand(1) == N1.getOperand(0))
   1907             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
   1908                                 Cond);
   1909         }
   1910       }
   1911 
   1912       // If RHS is a legal immediate value for a compare instruction, we need
   1913       // to be careful about increasing register pressure needlessly.
   1914       bool LegalRHSImm = false;
   1915 
   1916       if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
   1917         if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
   1918           // Turn (X+C1) == C2 --> X == C2-C1
   1919           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
   1920             return DAG.getSetCC(dl, VT, N0.getOperand(0),
   1921                                 DAG.getConstant(RHSC->getAPIntValue()-
   1922                                                 LHSR->getAPIntValue(),
   1923                                 dl, N0.getValueType()), Cond);
   1924           }
   1925 
   1926           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
   1927           if (N0.getOpcode() == ISD::XOR)
   1928             // If we know that all of the inverted bits are zero, don't bother
   1929             // performing the inversion.
   1930             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
   1931               return
   1932                 DAG.getSetCC(dl, VT, N0.getOperand(0),
   1933                              DAG.getConstant(LHSR->getAPIntValue() ^
   1934                                                RHSC->getAPIntValue(),
   1935                                              dl, N0.getValueType()),
   1936                              Cond);
   1937         }
   1938 
   1939         // Turn (C1-X) == C2 --> X == C1-C2
   1940         if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
   1941           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
   1942             return
   1943               DAG.getSetCC(dl, VT, N0.getOperand(1),
   1944                            DAG.getConstant(SUBC->getAPIntValue() -
   1945                                              RHSC->getAPIntValue(),
   1946                                            dl, N0.getValueType()),
   1947                            Cond);
   1948           }
   1949         }
   1950 
   1951         // Could RHSC fold directly into a compare?
   1952         if (RHSC->getValueType(0).getSizeInBits() <= 64)
   1953           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
   1954       }
   1955 
   1956       // Simplify (X+Z) == X -->  Z == 0
   1957       // Don't do this if X is an immediate that can fold into a cmp
   1958       // instruction and X+Z has other uses. It could be an induction variable
   1959       // chain, and the transform would increase register pressure.
   1960       if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
   1961         if (N0.getOperand(0) == N1)
   1962           return DAG.getSetCC(dl, VT, N0.getOperand(1),
   1963                               DAG.getConstant(0, dl, N0.getValueType()), Cond);
   1964         if (N0.getOperand(1) == N1) {
   1965           if (DAG.isCommutativeBinOp(N0.getOpcode()))
   1966             return DAG.getSetCC(dl, VT, N0.getOperand(0),
   1967                                 DAG.getConstant(0, dl, N0.getValueType()),
   1968                                 Cond);
   1969           if (N0.getNode()->hasOneUse()) {
   1970             assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
   1971             auto &DL = DAG.getDataLayout();
   1972             // (Z-X) == X  --> Z == X<<1
   1973             SDValue SH = DAG.getNode(
   1974                 ISD::SHL, dl, N1.getValueType(), N1,
   1975                 DAG.getConstant(1, dl,
   1976                                 getShiftAmountTy(N1.getValueType(), DL)));
   1977             if (!DCI.isCalledByLegalizer())
   1978               DCI.AddToWorklist(SH.getNode());
   1979             return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
   1980           }
   1981         }
   1982       }
   1983     }
   1984 
   1985     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
   1986         N1.getOpcode() == ISD::XOR) {
   1987       // Simplify  X == (X+Z) -->  Z == 0
   1988       if (N1.getOperand(0) == N0)
   1989         return DAG.getSetCC(dl, VT, N1.getOperand(1),
   1990                         DAG.getConstant(0, dl, N1.getValueType()), Cond);
   1991       if (N1.getOperand(1) == N0) {
   1992         if (DAG.isCommutativeBinOp(N1.getOpcode()))
   1993           return DAG.getSetCC(dl, VT, N1.getOperand(0),
   1994                           DAG.getConstant(0, dl, N1.getValueType()), Cond);
   1995         if (N1.getNode()->hasOneUse()) {
   1996           assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
   1997           auto &DL = DAG.getDataLayout();
   1998           // X == (Z-X)  --> X<<1 == Z
   1999           SDValue SH = DAG.getNode(
   2000               ISD::SHL, dl, N1.getValueType(), N0,
   2001               DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL)));
   2002           if (!DCI.isCalledByLegalizer())
   2003             DCI.AddToWorklist(SH.getNode());
   2004           return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
   2005         }
   2006       }
   2007     }
   2008 
   2009     // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
   2010     // Note that where y is variable and is known to have at most
   2011     // one bit set (for example, if it is z&1) we cannot do this;
   2012     // the expressions are not equivalent when y==0.
   2013     if (N0.getOpcode() == ISD::AND)
   2014       if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
   2015         if (ValueHasExactlyOneBitSet(N1, DAG)) {
   2016           Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
   2017           if (DCI.isBeforeLegalizeOps() ||
   2018               isCondCodeLegal(Cond, N0.getSimpleValueType())) {
   2019             SDValue Zero = DAG.getConstant(0, dl, N1.getValueType());
   2020             return DAG.getSetCC(dl, VT, N0, Zero, Cond);
   2021           }
   2022         }
   2023       }
   2024     if (N1.getOpcode() == ISD::AND)
   2025       if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
   2026         if (ValueHasExactlyOneBitSet(N0, DAG)) {
   2027           Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
   2028           if (DCI.isBeforeLegalizeOps() ||
   2029               isCondCodeLegal(Cond, N1.getSimpleValueType())) {
   2030             SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
   2031             return DAG.getSetCC(dl, VT, N1, Zero, Cond);
   2032           }
   2033         }
   2034       }
   2035   }
   2036 
   2037   // Fold away ALL boolean setcc's.
   2038   SDValue Temp;
   2039   if (N0.getValueType() == MVT::i1 && foldBooleans) {
   2040     switch (Cond) {
   2041     default: llvm_unreachable("Unknown integer setcc!");
   2042     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
   2043       Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
   2044       N0 = DAG.getNOT(dl, Temp, MVT::i1);
   2045       if (!DCI.isCalledByLegalizer())
   2046         DCI.AddToWorklist(Temp.getNode());
   2047       break;
   2048     case ISD::SETNE:  // X != Y   -->  (X^Y)
   2049       N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
   2050       break;
   2051     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
   2052     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
   2053       Temp = DAG.getNOT(dl, N0, MVT::i1);
   2054       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
   2055       if (!DCI.isCalledByLegalizer())
   2056         DCI.AddToWorklist(Temp.getNode());
   2057       break;
   2058     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
   2059     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
   2060       Temp = DAG.getNOT(dl, N1, MVT::i1);
   2061       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
   2062       if (!DCI.isCalledByLegalizer())
   2063         DCI.AddToWorklist(Temp.getNode());
   2064       break;
   2065     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
   2066     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
   2067       Temp = DAG.getNOT(dl, N0, MVT::i1);
   2068       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
   2069       if (!DCI.isCalledByLegalizer())
   2070         DCI.AddToWorklist(Temp.getNode());
   2071       break;
   2072     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
   2073     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
   2074       Temp = DAG.getNOT(dl, N1, MVT::i1);
   2075       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
   2076       break;
   2077     }
   2078     if (VT != MVT::i1) {
   2079       if (!DCI.isCalledByLegalizer())
   2080         DCI.AddToWorklist(N0.getNode());
   2081       // FIXME: If running after legalize, we probably can't do this.
   2082       N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
   2083     }
   2084     return N0;
   2085   }
   2086 
   2087   // Could not fold it.
   2088   return SDValue();
   2089 }
   2090 
   2091 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
   2092 /// node is a GlobalAddress + offset.
   2093 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
   2094                                     int64_t &Offset) const {
   2095   if (isa<GlobalAddressSDNode>(N)) {
   2096     GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
   2097     GA = GASD->getGlobal();
   2098     Offset += GASD->getOffset();
   2099     return true;
   2100   }
   2101 
   2102   if (N->getOpcode() == ISD::ADD) {
   2103     SDValue N1 = N->getOperand(0);
   2104     SDValue N2 = N->getOperand(1);
   2105     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
   2106       ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
   2107       if (V) {
   2108         Offset += V->getSExtValue();
   2109         return true;
   2110       }
   2111     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
   2112       ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
   2113       if (V) {
   2114         Offset += V->getSExtValue();
   2115         return true;
   2116       }
   2117     }
   2118   }
   2119 
   2120   return false;
   2121 }
   2122 
   2123 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
   2124                                           DAGCombinerInfo &DCI) const {
   2125   // Default implementation: no optimization.
   2126   return SDValue();
   2127 }
   2128 
   2129 //===----------------------------------------------------------------------===//
   2130 //  Inline Assembler Implementation Methods
   2131 //===----------------------------------------------------------------------===//
   2132 
   2133 TargetLowering::ConstraintType
   2134 TargetLowering::getConstraintType(StringRef Constraint) const {
   2135   unsigned S = Constraint.size();
   2136 
   2137   if (S == 1) {
   2138     switch (Constraint[0]) {
   2139     default: break;
   2140     case 'r': return C_RegisterClass;
   2141     case 'm':    // memory
   2142     case 'o':    // offsetable
   2143     case 'V':    // not offsetable
   2144       return C_Memory;
   2145     case 'i':    // Simple Integer or Relocatable Constant
   2146     case 'n':    // Simple Integer
   2147     case 'E':    // Floating Point Constant
   2148     case 'F':    // Floating Point Constant
   2149     case 's':    // Relocatable Constant
   2150     case 'p':    // Address.
   2151     case 'X':    // Allow ANY value.
   2152     case 'I':    // Target registers.
   2153     case 'J':
   2154     case 'K':
   2155     case 'L':
   2156     case 'M':
   2157     case 'N':
   2158     case 'O':
   2159     case 'P':
   2160     case '<':
   2161     case '>':
   2162       return C_Other;
   2163     }
   2164   }
   2165 
   2166   if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') {
   2167     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
   2168       return C_Memory;
   2169     return C_Register;
   2170   }
   2171   return C_Unknown;
   2172 }
   2173 
   2174 /// LowerXConstraint - try to replace an X constraint, which matches anything,
   2175 /// with another that has more specific requirements based on the type of the
   2176 /// corresponding operand.
   2177 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
   2178   if (ConstraintVT.isInteger())
   2179     return "r";
   2180   if (ConstraintVT.isFloatingPoint())
   2181     return "f";      // works for many targets
   2182   return nullptr;
   2183 }
   2184 
   2185 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
   2186 /// vector.  If it is invalid, don't add anything to Ops.
   2187 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
   2188                                                   std::string &Constraint,
   2189                                                   std::vector<SDValue> &Ops,
   2190                                                   SelectionDAG &DAG) const {
   2191 
   2192   if (Constraint.length() > 1) return;
   2193 
   2194   char ConstraintLetter = Constraint[0];
   2195   switch (ConstraintLetter) {
   2196   default: break;
   2197   case 'X':     // Allows any operand; labels (basic block) use this.
   2198     if (Op.getOpcode() == ISD::BasicBlock) {
   2199       Ops.push_back(Op);
   2200       return;
   2201     }
   2202     // fall through
   2203   case 'i':    // Simple Integer or Relocatable Constant
   2204   case 'n':    // Simple Integer
   2205   case 's': {  // Relocatable Constant
   2206     // These operands are interested in values of the form (GV+C), where C may
   2207     // be folded in as an offset of GV, or it may be explicitly added.  Also, it
   2208     // is possible and fine if either GV or C are missing.
   2209     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
   2210     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
   2211 
   2212     // If we have "(add GV, C)", pull out GV/C
   2213     if (Op.getOpcode() == ISD::ADD) {
   2214       C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
   2215       GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
   2216       if (!C || !GA) {
   2217         C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
   2218         GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
   2219       }
   2220       if (!C || !GA)
   2221         C = nullptr, GA = nullptr;
   2222     }
   2223 
   2224     // If we find a valid operand, map to the TargetXXX version so that the
   2225     // value itself doesn't get selected.
   2226     if (GA) {   // Either &GV   or   &GV+C
   2227       if (ConstraintLetter != 'n') {
   2228         int64_t Offs = GA->getOffset();
   2229         if (C) Offs += C->getZExtValue();
   2230         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
   2231                                                  C ? SDLoc(C) : SDLoc(),
   2232                                                  Op.getValueType(), Offs));
   2233       }
   2234       return;
   2235     }
   2236     if (C) {   // just C, no GV.
   2237       // Simple constants are not allowed for 's'.
   2238       if (ConstraintLetter != 's') {
   2239         // gcc prints these as sign extended.  Sign extend value to 64 bits
   2240         // now; without this it would get ZExt'd later in
   2241         // ScheduleDAGSDNodes::EmitNode, which is very generic.
   2242         Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
   2243                                             SDLoc(C), MVT::i64));
   2244       }
   2245       return;
   2246     }
   2247     break;
   2248   }
   2249   }
   2250 }
   2251 
   2252 std::pair<unsigned, const TargetRegisterClass *>
   2253 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
   2254                                              StringRef Constraint,
   2255                                              MVT VT) const {
   2256   if (Constraint.empty() || Constraint[0] != '{')
   2257     return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr));
   2258   assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
   2259 
   2260   // Remove the braces from around the name.
   2261   StringRef RegName(Constraint.data()+1, Constraint.size()-2);
   2262 
   2263   std::pair<unsigned, const TargetRegisterClass*> R =
   2264     std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr));
   2265 
   2266   // Figure out which register class contains this reg.
   2267   for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
   2268        E = RI->regclass_end(); RCI != E; ++RCI) {
   2269     const TargetRegisterClass *RC = *RCI;
   2270 
   2271     // If none of the value types for this register class are valid, we
   2272     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
   2273     if (!isLegalRC(RC))
   2274       continue;
   2275 
   2276     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
   2277          I != E; ++I) {
   2278       if (RegName.equals_lower(RI->getName(*I))) {
   2279         std::pair<unsigned, const TargetRegisterClass*> S =
   2280           std::make_pair(*I, RC);
   2281 
   2282         // If this register class has the requested value type, return it,
   2283         // otherwise keep searching and return the first class found
   2284         // if no other is found which explicitly has the requested type.
   2285         if (RC->hasType(VT))
   2286           return S;
   2287         else if (!R.second)
   2288           R = S;
   2289       }
   2290     }
   2291   }
   2292 
   2293   return R;
   2294 }
   2295 
   2296 //===----------------------------------------------------------------------===//
   2297 // Constraint Selection.
   2298 
   2299 /// isMatchingInputConstraint - Return true of this is an input operand that is
   2300 /// a matching constraint like "4".
   2301 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
   2302   assert(!ConstraintCode.empty() && "No known constraint!");
   2303   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
   2304 }
   2305 
   2306 /// getMatchedOperand - If this is an input matching constraint, this method
   2307 /// returns the output operand it matches.
   2308 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
   2309   assert(!ConstraintCode.empty() && "No known constraint!");
   2310   return atoi(ConstraintCode.c_str());
   2311 }
   2312 
   2313 /// ParseConstraints - Split up the constraint string from the inline
   2314 /// assembly value into the specific constraints and their prefixes,
   2315 /// and also tie in the associated operand values.
   2316 /// If this returns an empty vector, and if the constraint string itself
   2317 /// isn't empty, there was an error parsing.
   2318 TargetLowering::AsmOperandInfoVector
   2319 TargetLowering::ParseConstraints(const DataLayout &DL,
   2320                                  const TargetRegisterInfo *TRI,
   2321                                  ImmutableCallSite CS) const {
   2322   /// ConstraintOperands - Information about all of the constraints.
   2323   AsmOperandInfoVector ConstraintOperands;
   2324   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
   2325   unsigned maCount = 0; // Largest number of multiple alternative constraints.
   2326 
   2327   // Do a prepass over the constraints, canonicalizing them, and building up the
   2328   // ConstraintOperands list.
   2329   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
   2330   unsigned ResNo = 0;   // ResNo - The result number of the next output.
   2331 
   2332   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
   2333     ConstraintOperands.emplace_back(std::move(CI));
   2334     AsmOperandInfo &OpInfo = ConstraintOperands.back();
   2335 
   2336     // Update multiple alternative constraint count.
   2337     if (OpInfo.multipleAlternatives.size() > maCount)
   2338       maCount = OpInfo.multipleAlternatives.size();
   2339 
   2340     OpInfo.ConstraintVT = MVT::Other;
   2341 
   2342     // Compute the value type for each operand.
   2343     switch (OpInfo.Type) {
   2344     case InlineAsm::isOutput:
   2345       // Indirect outputs just consume an argument.
   2346       if (OpInfo.isIndirect) {
   2347         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
   2348         break;
   2349       }
   2350 
   2351       // The return value of the call is this value.  As such, there is no
   2352       // corresponding argument.
   2353       assert(!CS.getType()->isVoidTy() &&
   2354              "Bad inline asm!");
   2355       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
   2356         OpInfo.ConstraintVT =
   2357             getSimpleValueType(DL, STy->getElementType(ResNo));
   2358       } else {
   2359         assert(ResNo == 0 && "Asm only has one result!");
   2360         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
   2361       }
   2362       ++ResNo;
   2363       break;
   2364     case InlineAsm::isInput:
   2365       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
   2366       break;
   2367     case InlineAsm::isClobber:
   2368       // Nothing to do.
   2369       break;
   2370     }
   2371 
   2372     if (OpInfo.CallOperandVal) {
   2373       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
   2374       if (OpInfo.isIndirect) {
   2375         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
   2376         if (!PtrTy)
   2377           report_fatal_error("Indirect operand for inline asm not a pointer!");
   2378         OpTy = PtrTy->getElementType();
   2379       }
   2380 
   2381       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
   2382       if (StructType *STy = dyn_cast<StructType>(OpTy))
   2383         if (STy->getNumElements() == 1)
   2384           OpTy = STy->getElementType(0);
   2385 
   2386       // If OpTy is not a single value, it may be a struct/union that we
   2387       // can tile with integers.
   2388       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
   2389         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
   2390         switch (BitSize) {
   2391         default: break;
   2392         case 1:
   2393         case 8:
   2394         case 16:
   2395         case 32:
   2396         case 64:
   2397         case 128:
   2398           OpInfo.ConstraintVT =
   2399             MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
   2400           break;
   2401         }
   2402       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
   2403         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
   2404         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
   2405       } else {
   2406         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
   2407       }
   2408     }
   2409   }
   2410 
   2411   // If we have multiple alternative constraints, select the best alternative.
   2412   if (!ConstraintOperands.empty()) {
   2413     if (maCount) {
   2414       unsigned bestMAIndex = 0;
   2415       int bestWeight = -1;
   2416       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
   2417       int weight = -1;
   2418       unsigned maIndex;
   2419       // Compute the sums of the weights for each alternative, keeping track
   2420       // of the best (highest weight) one so far.
   2421       for (maIndex = 0; maIndex < maCount; ++maIndex) {
   2422         int weightSum = 0;
   2423         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
   2424             cIndex != eIndex; ++cIndex) {
   2425           AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
   2426           if (OpInfo.Type == InlineAsm::isClobber)
   2427             continue;
   2428 
   2429           // If this is an output operand with a matching input operand,
   2430           // look up the matching input. If their types mismatch, e.g. one
   2431           // is an integer, the other is floating point, or their sizes are
   2432           // different, flag it as an maCantMatch.
   2433           if (OpInfo.hasMatchingInput()) {
   2434             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
   2435             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
   2436               if ((OpInfo.ConstraintVT.isInteger() !=
   2437                    Input.ConstraintVT.isInteger()) ||
   2438                   (OpInfo.ConstraintVT.getSizeInBits() !=
   2439                    Input.ConstraintVT.getSizeInBits())) {
   2440                 weightSum = -1;  // Can't match.
   2441                 break;
   2442               }
   2443             }
   2444           }
   2445           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
   2446           if (weight == -1) {
   2447             weightSum = -1;
   2448             break;
   2449           }
   2450           weightSum += weight;
   2451         }
   2452         // Update best.
   2453         if (weightSum > bestWeight) {
   2454           bestWeight = weightSum;
   2455           bestMAIndex = maIndex;
   2456         }
   2457       }
   2458 
   2459       // Now select chosen alternative in each constraint.
   2460       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
   2461           cIndex != eIndex; ++cIndex) {
   2462         AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
   2463         if (cInfo.Type == InlineAsm::isClobber)
   2464           continue;
   2465         cInfo.selectAlternative(bestMAIndex);
   2466       }
   2467     }
   2468   }
   2469 
   2470   // Check and hook up tied operands, choose constraint code to use.
   2471   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
   2472       cIndex != eIndex; ++cIndex) {
   2473     AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
   2474 
   2475     // If this is an output operand with a matching input operand, look up the
   2476     // matching input. If their types mismatch, e.g. one is an integer, the
   2477     // other is floating point, or their sizes are different, flag it as an
   2478     // error.
   2479     if (OpInfo.hasMatchingInput()) {
   2480       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
   2481 
   2482       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
   2483         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
   2484             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
   2485                                          OpInfo.ConstraintVT);
   2486         std::pair<unsigned, const TargetRegisterClass *> InputRC =
   2487             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
   2488                                          Input.ConstraintVT);
   2489         if ((OpInfo.ConstraintVT.isInteger() !=
   2490              Input.ConstraintVT.isInteger()) ||
   2491             (MatchRC.second != InputRC.second)) {
   2492           report_fatal_error("Unsupported asm: input constraint"
   2493                              " with a matching output constraint of"
   2494                              " incompatible type!");
   2495         }
   2496       }
   2497     }
   2498   }
   2499 
   2500   return ConstraintOperands;
   2501 }
   2502 
   2503 /// getConstraintGenerality - Return an integer indicating how general CT
   2504 /// is.
   2505 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
   2506   switch (CT) {
   2507   case TargetLowering::C_Other:
   2508   case TargetLowering::C_Unknown:
   2509     return 0;
   2510   case TargetLowering::C_Register:
   2511     return 1;
   2512   case TargetLowering::C_RegisterClass:
   2513     return 2;
   2514   case TargetLowering::C_Memory:
   2515     return 3;
   2516   }
   2517   llvm_unreachable("Invalid constraint type");
   2518 }
   2519 
   2520 /// Examine constraint type and operand type and determine a weight value.
   2521 /// This object must already have been set up with the operand type
   2522 /// and the current alternative constraint selected.
   2523 TargetLowering::ConstraintWeight
   2524   TargetLowering::getMultipleConstraintMatchWeight(
   2525     AsmOperandInfo &info, int maIndex) const {
   2526   InlineAsm::ConstraintCodeVector *rCodes;
   2527   if (maIndex >= (int)info.multipleAlternatives.size())
   2528     rCodes = &info.Codes;
   2529   else
   2530     rCodes = &info.multipleAlternatives[maIndex].Codes;
   2531   ConstraintWeight BestWeight = CW_Invalid;
   2532 
   2533   // Loop over the options, keeping track of the most general one.
   2534   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
   2535     ConstraintWeight weight =
   2536       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
   2537     if (weight > BestWeight)
   2538       BestWeight = weight;
   2539   }
   2540 
   2541   return BestWeight;
   2542 }
   2543 
   2544 /// Examine constraint type and operand type and determine a weight value.
   2545 /// This object must already have been set up with the operand type
   2546 /// and the current alternative constraint selected.
   2547 TargetLowering::ConstraintWeight
   2548   TargetLowering::getSingleConstraintMatchWeight(
   2549     AsmOperandInfo &info, const char *constraint) const {
   2550   ConstraintWeight weight = CW_Invalid;
   2551   Value *CallOperandVal = info.CallOperandVal;
   2552     // If we don't have a value, we can't do a match,
   2553     // but allow it at the lowest weight.
   2554   if (!CallOperandVal)
   2555     return CW_Default;
   2556   // Look at the constraint type.
   2557   switch (*constraint) {
   2558     case 'i': // immediate integer.
   2559     case 'n': // immediate integer with a known value.
   2560       if (isa<ConstantInt>(CallOperandVal))
   2561         weight = CW_Constant;
   2562       break;
   2563     case 's': // non-explicit intregal immediate.
   2564       if (isa<GlobalValue>(CallOperandVal))
   2565         weight = CW_Constant;
   2566       break;
   2567     case 'E': // immediate float if host format.
   2568     case 'F': // immediate float.
   2569       if (isa<ConstantFP>(CallOperandVal))
   2570         weight = CW_Constant;
   2571       break;
   2572     case '<': // memory operand with autodecrement.
   2573     case '>': // memory operand with autoincrement.
   2574     case 'm': // memory operand.
   2575     case 'o': // offsettable memory operand
   2576     case 'V': // non-offsettable memory operand
   2577       weight = CW_Memory;
   2578       break;
   2579     case 'r': // general register.
   2580     case 'g': // general register, memory operand or immediate integer.
   2581               // note: Clang converts "g" to "imr".
   2582       if (CallOperandVal->getType()->isIntegerTy())
   2583         weight = CW_Register;
   2584       break;
   2585     case 'X': // any operand.
   2586     default:
   2587       weight = CW_Default;
   2588       break;
   2589   }
   2590   return weight;
   2591 }
   2592 
   2593 /// ChooseConstraint - If there are multiple different constraints that we
   2594 /// could pick for this operand (e.g. "imr") try to pick the 'best' one.
   2595 /// This is somewhat tricky: constraints fall into four classes:
   2596 ///    Other         -> immediates and magic values
   2597 ///    Register      -> one specific register
   2598 ///    RegisterClass -> a group of regs
   2599 ///    Memory        -> memory
   2600 /// Ideally, we would pick the most specific constraint possible: if we have
   2601 /// something that fits into a register, we would pick it.  The problem here
   2602 /// is that if we have something that could either be in a register or in
   2603 /// memory that use of the register could cause selection of *other*
   2604 /// operands to fail: they might only succeed if we pick memory.  Because of
   2605 /// this the heuristic we use is:
   2606 ///
   2607 ///  1) If there is an 'other' constraint, and if the operand is valid for
   2608 ///     that constraint, use it.  This makes us take advantage of 'i'
   2609 ///     constraints when available.
   2610 ///  2) Otherwise, pick the most general constraint present.  This prefers
   2611 ///     'm' over 'r', for example.
   2612 ///
   2613 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
   2614                              const TargetLowering &TLI,
   2615                              SDValue Op, SelectionDAG *DAG) {
   2616   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
   2617   unsigned BestIdx = 0;
   2618   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
   2619   int BestGenerality = -1;
   2620 
   2621   // Loop over the options, keeping track of the most general one.
   2622   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
   2623     TargetLowering::ConstraintType CType =
   2624       TLI.getConstraintType(OpInfo.Codes[i]);
   2625 
   2626     // If this is an 'other' constraint, see if the operand is valid for it.
   2627     // For example, on X86 we might have an 'rI' constraint.  If the operand
   2628     // is an integer in the range [0..31] we want to use I (saving a load
   2629     // of a register), otherwise we must use 'r'.
   2630     if (CType == TargetLowering::C_Other && Op.getNode()) {
   2631       assert(OpInfo.Codes[i].size() == 1 &&
   2632              "Unhandled multi-letter 'other' constraint");
   2633       std::vector<SDValue> ResultOps;
   2634       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
   2635                                        ResultOps, *DAG);
   2636       if (!ResultOps.empty()) {
   2637         BestType = CType;
   2638         BestIdx = i;
   2639         break;
   2640       }
   2641     }
   2642 
   2643     // Things with matching constraints can only be registers, per gcc
   2644     // documentation.  This mainly affects "g" constraints.
   2645     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
   2646       continue;
   2647 
   2648     // This constraint letter is more general than the previous one, use it.
   2649     int Generality = getConstraintGenerality(CType);
   2650     if (Generality > BestGenerality) {
   2651       BestType = CType;
   2652       BestIdx = i;
   2653       BestGenerality = Generality;
   2654     }
   2655   }
   2656 
   2657   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
   2658   OpInfo.ConstraintType = BestType;
   2659 }
   2660 
   2661 /// ComputeConstraintToUse - Determines the constraint code and constraint
   2662 /// type to use for the specific AsmOperandInfo, setting
   2663 /// OpInfo.ConstraintCode and OpInfo.ConstraintType.
   2664 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
   2665                                             SDValue Op,
   2666                                             SelectionDAG *DAG) const {
   2667   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
   2668 
   2669   // Single-letter constraints ('r') are very common.
   2670   if (OpInfo.Codes.size() == 1) {
   2671     OpInfo.ConstraintCode = OpInfo.Codes[0];
   2672     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
   2673   } else {
   2674     ChooseConstraint(OpInfo, *this, Op, DAG);
   2675   }
   2676 
   2677   // 'X' matches anything.
   2678   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
   2679     // Labels and constants are handled elsewhere ('X' is the only thing
   2680     // that matches labels).  For Functions, the type here is the type of
   2681     // the result, which is not what we want to look at; leave them alone.
   2682     Value *v = OpInfo.CallOperandVal;
   2683     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
   2684       OpInfo.CallOperandVal = v;
   2685       return;
   2686     }
   2687 
   2688     // Otherwise, try to resolve it to something we know about by looking at
   2689     // the actual operand type.
   2690     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
   2691       OpInfo.ConstraintCode = Repl;
   2692       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
   2693     }
   2694   }
   2695 }
   2696 
   2697 /// \brief Given an exact SDIV by a constant, create a multiplication
   2698 /// with the multiplicative inverse of the constant.
   2699 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDValue Op1, APInt d,
   2700                               SDLoc dl, SelectionDAG &DAG,
   2701                               std::vector<SDNode *> &Created) {
   2702   assert(d != 0 && "Division by zero!");
   2703 
   2704   // Shift the value upfront if it is even, so the LSB is one.
   2705   unsigned ShAmt = d.countTrailingZeros();
   2706   if (ShAmt) {
   2707     // TODO: For UDIV use SRL instead of SRA.
   2708     SDValue Amt =
   2709         DAG.getConstant(ShAmt, dl, TLI.getShiftAmountTy(Op1.getValueType(),
   2710                                                         DAG.getDataLayout()));
   2711     SDNodeFlags Flags;
   2712     Flags.setExact(true);
   2713     Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, &Flags);
   2714     Created.push_back(Op1.getNode());
   2715     d = d.ashr(ShAmt);
   2716   }
   2717 
   2718   // Calculate the multiplicative inverse, using Newton's method.
   2719   APInt t, xn = d;
   2720   while ((t = d*xn) != 1)
   2721     xn *= APInt(d.getBitWidth(), 2) - t;
   2722 
   2723   SDValue Op2 = DAG.getConstant(xn, dl, Op1.getValueType());
   2724   SDValue Mul = DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
   2725   Created.push_back(Mul.getNode());
   2726   return Mul;
   2727 }
   2728 
   2729 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
   2730                                       SelectionDAG &DAG,
   2731                                       std::vector<SDNode *> *Created) const {
   2732   AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes();
   2733   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   2734   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
   2735     return SDValue(N,0); // Lower SDIV as SDIV
   2736   return SDValue();
   2737 }
   2738 
   2739 /// \brief Given an ISD::SDIV node expressing a divide by constant,
   2740 /// return a DAG expression to select that will generate the same value by
   2741 /// multiplying by a magic number.
   2742 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
   2743 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor,
   2744                                   SelectionDAG &DAG, bool IsAfterLegalization,
   2745                                   std::vector<SDNode *> *Created) const {
   2746   assert(Created && "No vector to hold sdiv ops.");
   2747 
   2748   EVT VT = N->getValueType(0);
   2749   SDLoc dl(N);
   2750 
   2751   // Check to see if we can do this.
   2752   // FIXME: We should be more aggressive here.
   2753   if (!isTypeLegal(VT))
   2754     return SDValue();
   2755 
   2756   // If the sdiv has an 'exact' bit we can use a simpler lowering.
   2757   if (cast<BinaryWithFlagsSDNode>(N)->Flags.hasExact())
   2758     return BuildExactSDIV(*this, N->getOperand(0), Divisor, dl, DAG, *Created);
   2759 
   2760   APInt::ms magics = Divisor.magic();
   2761 
   2762   // Multiply the numerator (operand 0) by the magic value
   2763   // FIXME: We should support doing a MUL in a wider type
   2764   SDValue Q;
   2765   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) :
   2766                             isOperationLegalOrCustom(ISD::MULHS, VT))
   2767     Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
   2768                     DAG.getConstant(magics.m, dl, VT));
   2769   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) :
   2770                                  isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
   2771     Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
   2772                               N->getOperand(0),
   2773                               DAG.getConstant(magics.m, dl, VT)).getNode(), 1);
   2774   else
   2775     return SDValue();       // No mulhs or equvialent
   2776   // If d > 0 and m < 0, add the numerator
   2777   if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
   2778     Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
   2779     Created->push_back(Q.getNode());
   2780   }
   2781   // If d < 0 and m > 0, subtract the numerator.
   2782   if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
   2783     Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
   2784     Created->push_back(Q.getNode());
   2785   }
   2786   auto &DL = DAG.getDataLayout();
   2787   // Shift right algebraic if shift value is nonzero
   2788   if (magics.s > 0) {
   2789     Q = DAG.getNode(
   2790         ISD::SRA, dl, VT, Q,
   2791         DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL)));
   2792     Created->push_back(Q.getNode());
   2793   }
   2794   // Extract the sign bit and add it to the quotient
   2795   SDValue T =
   2796       DAG.getNode(ISD::SRL, dl, VT, Q,
   2797                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl,
   2798                                   getShiftAmountTy(Q.getValueType(), DL)));
   2799   Created->push_back(T.getNode());
   2800   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
   2801 }
   2802 
   2803 /// \brief Given an ISD::UDIV node expressing a divide by constant,
   2804 /// return a DAG expression to select that will generate the same value by
   2805 /// multiplying by a magic number.
   2806 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
   2807 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor,
   2808                                   SelectionDAG &DAG, bool IsAfterLegalization,
   2809                                   std::vector<SDNode *> *Created) const {
   2810   assert(Created && "No vector to hold udiv ops.");
   2811 
   2812   EVT VT = N->getValueType(0);
   2813   SDLoc dl(N);
   2814   auto &DL = DAG.getDataLayout();
   2815 
   2816   // Check to see if we can do this.
   2817   // FIXME: We should be more aggressive here.
   2818   if (!isTypeLegal(VT))
   2819     return SDValue();
   2820 
   2821   // FIXME: We should use a narrower constant when the upper
   2822   // bits are known to be zero.
   2823   APInt::mu magics = Divisor.magicu();
   2824 
   2825   SDValue Q = N->getOperand(0);
   2826 
   2827   // If the divisor is even, we can avoid using the expensive fixup by shifting
   2828   // the divided value upfront.
   2829   if (magics.a != 0 && !Divisor[0]) {
   2830     unsigned Shift = Divisor.countTrailingZeros();
   2831     Q = DAG.getNode(
   2832         ISD::SRL, dl, VT, Q,
   2833         DAG.getConstant(Shift, dl, getShiftAmountTy(Q.getValueType(), DL)));
   2834     Created->push_back(Q.getNode());
   2835 
   2836     // Get magic number for the shifted divisor.
   2837     magics = Divisor.lshr(Shift).magicu(Shift);
   2838     assert(magics.a == 0 && "Should use cheap fixup now");
   2839   }
   2840 
   2841   // Multiply the numerator (operand 0) by the magic value
   2842   // FIXME: We should support doing a MUL in a wider type
   2843   if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) :
   2844                             isOperationLegalOrCustom(ISD::MULHU, VT))
   2845     Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, dl, VT));
   2846   else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) :
   2847                                  isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
   2848     Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
   2849                             DAG.getConstant(magics.m, dl, VT)).getNode(), 1);
   2850   else
   2851     return SDValue();       // No mulhu or equvialent
   2852 
   2853   Created->push_back(Q.getNode());
   2854 
   2855   if (magics.a == 0) {
   2856     assert(magics.s < Divisor.getBitWidth() &&
   2857            "We shouldn't generate an undefined shift!");
   2858     return DAG.getNode(
   2859         ISD::SRL, dl, VT, Q,
   2860         DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL)));
   2861   } else {
   2862     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
   2863     Created->push_back(NPQ.getNode());
   2864     NPQ = DAG.getNode(
   2865         ISD::SRL, dl, VT, NPQ,
   2866         DAG.getConstant(1, dl, getShiftAmountTy(NPQ.getValueType(), DL)));
   2867     Created->push_back(NPQ.getNode());
   2868     NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
   2869     Created->push_back(NPQ.getNode());
   2870     return DAG.getNode(
   2871         ISD::SRL, dl, VT, NPQ,
   2872         DAG.getConstant(magics.s - 1, dl,
   2873                         getShiftAmountTy(NPQ.getValueType(), DL)));
   2874   }
   2875 }
   2876 
   2877 bool TargetLowering::
   2878 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
   2879   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
   2880     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
   2881                                 "be a constant integer");
   2882     return true;
   2883   }
   2884 
   2885   return false;
   2886 }
   2887 
   2888 //===----------------------------------------------------------------------===//
   2889 // Legalization Utilities
   2890 //===----------------------------------------------------------------------===//
   2891 
   2892 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
   2893                                SelectionDAG &DAG, SDValue LL, SDValue LH,
   2894                                SDValue RL, SDValue RH) const {
   2895   EVT VT = N->getValueType(0);
   2896   SDLoc dl(N);
   2897 
   2898   bool HasMULHS = isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
   2899   bool HasMULHU = isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
   2900   bool HasSMUL_LOHI = isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
   2901   bool HasUMUL_LOHI = isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
   2902   if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) {
   2903     unsigned OuterBitSize = VT.getSizeInBits();
   2904     unsigned InnerBitSize = HiLoVT.getSizeInBits();
   2905     unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0));
   2906     unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1));
   2907 
   2908     // LL, LH, RL, and RH must be either all NULL or all set to a value.
   2909     assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
   2910            (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
   2911 
   2912     if (!LL.getNode() && !RL.getNode() &&
   2913         isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
   2914       LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(0));
   2915       RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(1));
   2916     }
   2917 
   2918     if (!LL.getNode())
   2919       return false;
   2920 
   2921     APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
   2922     if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) &&
   2923         DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) {
   2924       // The inputs are both zero-extended.
   2925       if (HasUMUL_LOHI) {
   2926         // We can emit a umul_lohi.
   2927         Lo = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL,
   2928                          RL);
   2929         Hi = SDValue(Lo.getNode(), 1);
   2930         return true;
   2931       }
   2932       if (HasMULHU) {
   2933         // We can emit a mulhu+mul.
   2934         Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
   2935         Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL);
   2936         return true;
   2937       }
   2938     }
   2939     if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) {
   2940       // The input values are both sign-extended.
   2941       if (HasSMUL_LOHI) {
   2942         // We can emit a smul_lohi.
   2943         Lo = DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL,
   2944                          RL);
   2945         Hi = SDValue(Lo.getNode(), 1);
   2946         return true;
   2947       }
   2948       if (HasMULHS) {
   2949         // We can emit a mulhs+mul.
   2950         Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
   2951         Hi = DAG.getNode(ISD::MULHS, dl, HiLoVT, LL, RL);
   2952         return true;
   2953       }
   2954     }
   2955 
   2956     if (!LH.getNode() && !RH.getNode() &&
   2957         isOperationLegalOrCustom(ISD::SRL, VT) &&
   2958         isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
   2959       auto &DL = DAG.getDataLayout();
   2960       unsigned ShiftAmt = VT.getSizeInBits() - HiLoVT.getSizeInBits();
   2961       SDValue Shift = DAG.getConstant(ShiftAmt, dl, getShiftAmountTy(VT, DL));
   2962       LH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(0), Shift);
   2963       LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
   2964       RH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(1), Shift);
   2965       RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
   2966     }
   2967 
   2968     if (!LH.getNode())
   2969       return false;
   2970 
   2971     if (HasUMUL_LOHI) {
   2972       // Lo,Hi = umul LHS, RHS.
   2973       SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl,
   2974                                      DAG.getVTList(HiLoVT, HiLoVT), LL, RL);
   2975       Lo = UMulLOHI;
   2976       Hi = UMulLOHI.getValue(1);
   2977       RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
   2978       LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
   2979       Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
   2980       Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
   2981       return true;
   2982     }
   2983     if (HasMULHU) {
   2984       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
   2985       Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL);
   2986       RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
   2987       LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
   2988       Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
   2989       Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
   2990       return true;
   2991     }
   2992   }
   2993   return false;
   2994 }
   2995 
   2996 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
   2997                                SelectionDAG &DAG) const {
   2998   EVT VT = Node->getOperand(0).getValueType();
   2999   EVT NVT = Node->getValueType(0);
   3000   SDLoc dl(SDValue(Node, 0));
   3001 
   3002   // FIXME: Only f32 to i64 conversions are supported.
   3003   if (VT != MVT::f32 || NVT != MVT::i64)
   3004     return false;
   3005 
   3006   // Expand f32 -> i64 conversion
   3007   // This algorithm comes from compiler-rt's implementation of fixsfdi:
   3008   // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c
   3009   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(),
   3010                                 VT.getSizeInBits());
   3011   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
   3012   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
   3013   SDValue Bias = DAG.getConstant(127, dl, IntVT);
   3014   SDValue SignMask = DAG.getConstant(APInt::getSignBit(VT.getSizeInBits()), dl,
   3015                                      IntVT);
   3016   SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT);
   3017   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
   3018 
   3019   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0));
   3020 
   3021   auto &DL = DAG.getDataLayout();
   3022   SDValue ExponentBits = DAG.getNode(
   3023       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
   3024       DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT, DL)));
   3025   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
   3026 
   3027   SDValue Sign = DAG.getNode(
   3028       ISD::SRA, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
   3029       DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT, DL)));
   3030   Sign = DAG.getSExtOrTrunc(Sign, dl, NVT);
   3031 
   3032   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
   3033       DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
   3034       DAG.getConstant(0x00800000, dl, IntVT));
   3035 
   3036   R = DAG.getZExtOrTrunc(R, dl, NVT);
   3037 
   3038   R = DAG.getSelectCC(
   3039       dl, Exponent, ExponentLoBit,
   3040       DAG.getNode(ISD::SHL, dl, NVT, R,
   3041                   DAG.getZExtOrTrunc(
   3042                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
   3043                       dl, getShiftAmountTy(IntVT, DL))),
   3044       DAG.getNode(ISD::SRL, dl, NVT, R,
   3045                   DAG.getZExtOrTrunc(
   3046                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
   3047                       dl, getShiftAmountTy(IntVT, DL))),
   3048       ISD::SETGT);
   3049 
   3050   SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT,
   3051       DAG.getNode(ISD::XOR, dl, NVT, R, Sign),
   3052       Sign);
   3053 
   3054   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
   3055       DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT);
   3056   return true;
   3057 }
   3058 
   3059 //===----------------------------------------------------------------------===//
   3060 // Implementation of Emulated TLS Model
   3061 //===----------------------------------------------------------------------===//
   3062 
   3063 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
   3064                                                 SelectionDAG &DAG) const {
   3065   // Access to address of TLS varialbe xyz is lowered to a function call:
   3066   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
   3067   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   3068   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
   3069   SDLoc dl(GA);
   3070 
   3071   ArgListTy Args;
   3072   ArgListEntry Entry;
   3073   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
   3074   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
   3075   StringRef EmuTlsVarName(NameString);
   3076   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
   3077   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
   3078   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
   3079   Entry.Ty = VoidPtrType;
   3080   Args.push_back(Entry);
   3081 
   3082   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
   3083 
   3084   TargetLowering::CallLoweringInfo CLI(DAG);
   3085   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
   3086   CLI.setCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args), 0);
   3087   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
   3088 
   3089   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
   3090   // At last for X86 targets, maybe good for other targets too?
   3091   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   3092   MFI->setAdjustsStack(true);  // Is this only for X86 target?
   3093   MFI->setHasCalls(true);
   3094 
   3095   assert((GA->getOffset() == 0) &&
   3096          "Emulated TLS must have zero offset in GlobalAddressSDNode");
   3097   return CallResult.first;
   3098 }
   3099