Home | History | Annotate | Download | only in CodeGen
      1 //===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the TwoAddress instruction pass which is used
     11 // by most register allocators. Two-Address instructions are rewritten
     12 // from:
     13 //
     14 //     A = B op C
     15 //
     16 // to:
     17 //
     18 //     A = B
     19 //     A op= C
     20 //
     21 // Note that if a register allocator chooses to use this pass, that it
     22 // has to be capable of handling the non-SSA nature of these rewritten
     23 // virtual registers.
     24 //
     25 // It is also worth noting that the duplicate operand of the two
     26 // address instruction is removed.
     27 //
     28 //===----------------------------------------------------------------------===//
     29 
     30 #include "llvm/CodeGen/Passes.h"
     31 #include "llvm/ADT/BitVector.h"
     32 #include "llvm/ADT/DenseMap.h"
     33 #include "llvm/ADT/STLExtras.h"
     34 #include "llvm/ADT/SmallSet.h"
     35 #include "llvm/ADT/Statistic.h"
     36 #include "llvm/Analysis/AliasAnalysis.h"
     37 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     38 #include "llvm/CodeGen/LiveVariables.h"
     39 #include "llvm/CodeGen/MachineFunctionPass.h"
     40 #include "llvm/CodeGen/MachineInstr.h"
     41 #include "llvm/CodeGen/MachineInstrBuilder.h"
     42 #include "llvm/CodeGen/MachineRegisterInfo.h"
     43 #include "llvm/IR/Function.h"
     44 #include "llvm/MC/MCInstrItineraries.h"
     45 #include "llvm/Support/CommandLine.h"
     46 #include "llvm/Support/Debug.h"
     47 #include "llvm/Support/ErrorHandling.h"
     48 #include "llvm/Support/raw_ostream.h"
     49 #include "llvm/Target/TargetInstrInfo.h"
     50 #include "llvm/Target/TargetMachine.h"
     51 #include "llvm/Target/TargetRegisterInfo.h"
     52 #include "llvm/Target/TargetSubtargetInfo.h"
     53 using namespace llvm;
     54 
     55 #define DEBUG_TYPE "twoaddrinstr"
     56 
     57 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
     58 STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
     59 STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
     60 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
     61 STATISTIC(Num3AddrSunk,        "Number of 3-address instructions sunk");
     62 STATISTIC(NumReSchedUps,       "Number of instructions re-scheduled up");
     63 STATISTIC(NumReSchedDowns,     "Number of instructions re-scheduled down");
     64 
     65 // Temporary flag to disable rescheduling.
     66 static cl::opt<bool>
     67 EnableRescheduling("twoaddr-reschedule",
     68                    cl::desc("Coalesce copies by rescheduling (default=true)"),
     69                    cl::init(true), cl::Hidden);
     70 
     71 namespace {
     72 class TwoAddressInstructionPass : public MachineFunctionPass {
     73   MachineFunction *MF;
     74   const TargetInstrInfo *TII;
     75   const TargetRegisterInfo *TRI;
     76   const InstrItineraryData *InstrItins;
     77   MachineRegisterInfo *MRI;
     78   LiveVariables *LV;
     79   LiveIntervals *LIS;
     80   AliasAnalysis *AA;
     81   CodeGenOpt::Level OptLevel;
     82 
     83   // The current basic block being processed.
     84   MachineBasicBlock *MBB;
     85 
     86   // Keep track the distance of a MI from the start of the current basic block.
     87   DenseMap<MachineInstr*, unsigned> DistanceMap;
     88 
     89   // Set of already processed instructions in the current block.
     90   SmallPtrSet<MachineInstr*, 8> Processed;
     91 
     92   // A map from virtual registers to physical registers which are likely targets
     93   // to be coalesced to due to copies from physical registers to virtual
     94   // registers. e.g. v1024 = move r0.
     95   DenseMap<unsigned, unsigned> SrcRegMap;
     96 
     97   // A map from virtual registers to physical registers which are likely targets
     98   // to be coalesced to due to copies to physical registers from virtual
     99   // registers. e.g. r1 = move v1024.
    100   DenseMap<unsigned, unsigned> DstRegMap;
    101 
    102   bool sink3AddrInstruction(MachineInstr *MI, unsigned Reg,
    103                             MachineBasicBlock::iterator OldPos);
    104 
    105   bool isRevCopyChain(unsigned FromReg, unsigned ToReg, int Maxlen);
    106 
    107   bool noUseAfterLastDef(unsigned Reg, unsigned Dist, unsigned &LastDef);
    108 
    109   bool isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC,
    110                              MachineInstr *MI, unsigned Dist);
    111 
    112   bool commuteInstruction(MachineInstr *MI,
    113                           unsigned RegBIdx, unsigned RegCIdx, unsigned Dist);
    114 
    115   bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB);
    116 
    117   bool convertInstTo3Addr(MachineBasicBlock::iterator &mi,
    118                           MachineBasicBlock::iterator &nmi,
    119                           unsigned RegA, unsigned RegB, unsigned Dist);
    120 
    121   bool isDefTooClose(unsigned Reg, unsigned Dist, MachineInstr *MI);
    122 
    123   bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi,
    124                              MachineBasicBlock::iterator &nmi,
    125                              unsigned Reg);
    126   bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi,
    127                              MachineBasicBlock::iterator &nmi,
    128                              unsigned Reg);
    129 
    130   bool tryInstructionTransform(MachineBasicBlock::iterator &mi,
    131                                MachineBasicBlock::iterator &nmi,
    132                                unsigned SrcIdx, unsigned DstIdx,
    133                                unsigned Dist, bool shouldOnlyCommute);
    134 
    135   bool tryInstructionCommute(MachineInstr *MI,
    136                              unsigned DstOpIdx,
    137                              unsigned BaseOpIdx,
    138                              bool BaseOpKilled,
    139                              unsigned Dist);
    140   void scanUses(unsigned DstReg);
    141 
    142   void processCopy(MachineInstr *MI);
    143 
    144   typedef SmallVector<std::pair<unsigned, unsigned>, 4> TiedPairList;
    145   typedef SmallDenseMap<unsigned, TiedPairList> TiedOperandMap;
    146   bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&);
    147   void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist);
    148   void eliminateRegSequence(MachineBasicBlock::iterator&);
    149 
    150 public:
    151   static char ID; // Pass identification, replacement for typeid
    152   TwoAddressInstructionPass() : MachineFunctionPass(ID) {
    153     initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
    154   }
    155 
    156   void getAnalysisUsage(AnalysisUsage &AU) const override {
    157     AU.setPreservesCFG();
    158     AU.addRequired<AAResultsWrapperPass>();
    159     AU.addPreserved<LiveVariables>();
    160     AU.addPreserved<SlotIndexes>();
    161     AU.addPreserved<LiveIntervals>();
    162     AU.addPreservedID(MachineLoopInfoID);
    163     AU.addPreservedID(MachineDominatorsID);
    164     MachineFunctionPass::getAnalysisUsage(AU);
    165   }
    166 
    167   /// Pass entry point.
    168   bool runOnMachineFunction(MachineFunction&) override;
    169 };
    170 } // end anonymous namespace
    171 
    172 char TwoAddressInstructionPass::ID = 0;
    173 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction",
    174                 "Two-Address instruction pass", false, false)
    175 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
    176 INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction",
    177                 "Two-Address instruction pass", false, false)
    178 
    179 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;
    180 
    181 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, LiveIntervals *LIS);
    182 
    183 /// A two-address instruction has been converted to a three-address instruction
    184 /// to avoid clobbering a register. Try to sink it past the instruction that
    185 /// would kill the above mentioned register to reduce register pressure.
    186 bool TwoAddressInstructionPass::
    187 sink3AddrInstruction(MachineInstr *MI, unsigned SavedReg,
    188                      MachineBasicBlock::iterator OldPos) {
    189   // FIXME: Shouldn't we be trying to do this before we three-addressify the
    190   // instruction?  After this transformation is done, we no longer need
    191   // the instruction to be in three-address form.
    192 
    193   // Check if it's safe to move this instruction.
    194   bool SeenStore = true; // Be conservative.
    195   if (!MI->isSafeToMove(AA, SeenStore))
    196     return false;
    197 
    198   unsigned DefReg = 0;
    199   SmallSet<unsigned, 4> UseRegs;
    200 
    201   for (const MachineOperand &MO : MI->operands()) {
    202     if (!MO.isReg())
    203       continue;
    204     unsigned MOReg = MO.getReg();
    205     if (!MOReg)
    206       continue;
    207     if (MO.isUse() && MOReg != SavedReg)
    208       UseRegs.insert(MO.getReg());
    209     if (!MO.isDef())
    210       continue;
    211     if (MO.isImplicit())
    212       // Don't try to move it if it implicitly defines a register.
    213       return false;
    214     if (DefReg)
    215       // For now, don't move any instructions that define multiple registers.
    216       return false;
    217     DefReg = MO.getReg();
    218   }
    219 
    220   // Find the instruction that kills SavedReg.
    221   MachineInstr *KillMI = nullptr;
    222   if (LIS) {
    223     LiveInterval &LI = LIS->getInterval(SavedReg);
    224     assert(LI.end() != LI.begin() &&
    225            "Reg should not have empty live interval.");
    226 
    227     SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
    228     LiveInterval::const_iterator I = LI.find(MBBEndIdx);
    229     if (I != LI.end() && I->start < MBBEndIdx)
    230       return false;
    231 
    232     --I;
    233     KillMI = LIS->getInstructionFromIndex(I->end);
    234   }
    235   if (!KillMI) {
    236     for (MachineOperand &UseMO : MRI->use_nodbg_operands(SavedReg)) {
    237       if (!UseMO.isKill())
    238         continue;
    239       KillMI = UseMO.getParent();
    240       break;
    241     }
    242   }
    243 
    244   // If we find the instruction that kills SavedReg, and it is in an
    245   // appropriate location, we can try to sink the current instruction
    246   // past it.
    247   if (!KillMI || KillMI->getParent() != MBB || KillMI == MI ||
    248       KillMI == OldPos || KillMI->isTerminator())
    249     return false;
    250 
    251   // If any of the definitions are used by another instruction between the
    252   // position and the kill use, then it's not safe to sink it.
    253   //
    254   // FIXME: This can be sped up if there is an easy way to query whether an
    255   // instruction is before or after another instruction. Then we can use
    256   // MachineRegisterInfo def / use instead.
    257   MachineOperand *KillMO = nullptr;
    258   MachineBasicBlock::iterator KillPos = KillMI;
    259   ++KillPos;
    260 
    261   unsigned NumVisited = 0;
    262   for (MachineBasicBlock::iterator I = std::next(OldPos); I != KillPos; ++I) {
    263     MachineInstr *OtherMI = I;
    264     // DBG_VALUE cannot be counted against the limit.
    265     if (OtherMI->isDebugValue())
    266       continue;
    267     if (NumVisited > 30)  // FIXME: Arbitrary limit to reduce compile time cost.
    268       return false;
    269     ++NumVisited;
    270     for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
    271       MachineOperand &MO = OtherMI->getOperand(i);
    272       if (!MO.isReg())
    273         continue;
    274       unsigned MOReg = MO.getReg();
    275       if (!MOReg)
    276         continue;
    277       if (DefReg == MOReg)
    278         return false;
    279 
    280       if (MO.isKill() || (LIS && isPlainlyKilled(OtherMI, MOReg, LIS))) {
    281         if (OtherMI == KillMI && MOReg == SavedReg)
    282           // Save the operand that kills the register. We want to unset the kill
    283           // marker if we can sink MI past it.
    284           KillMO = &MO;
    285         else if (UseRegs.count(MOReg))
    286           // One of the uses is killed before the destination.
    287           return false;
    288       }
    289     }
    290   }
    291   assert(KillMO && "Didn't find kill");
    292 
    293   if (!LIS) {
    294     // Update kill and LV information.
    295     KillMO->setIsKill(false);
    296     KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
    297     KillMO->setIsKill(true);
    298 
    299     if (LV)
    300       LV->replaceKillInstruction(SavedReg, KillMI, MI);
    301   }
    302 
    303   // Move instruction to its destination.
    304   MBB->remove(MI);
    305   MBB->insert(KillPos, MI);
    306 
    307   if (LIS)
    308     LIS->handleMove(MI);
    309 
    310   ++Num3AddrSunk;
    311   return true;
    312 }
    313 
    314 /// Return the MachineInstr* if it is the single def of the Reg in current BB.
    315 static MachineInstr *getSingleDef(unsigned Reg, MachineBasicBlock *BB,
    316                                   const MachineRegisterInfo *MRI) {
    317   MachineInstr *Ret = nullptr;
    318   for (MachineInstr &DefMI : MRI->def_instructions(Reg)) {
    319     if (DefMI.getParent() != BB || DefMI.isDebugValue())
    320       continue;
    321     if (!Ret)
    322       Ret = &DefMI;
    323     else if (Ret != &DefMI)
    324       return nullptr;
    325   }
    326   return Ret;
    327 }
    328 
    329 /// Check if there is a reversed copy chain from FromReg to ToReg:
    330 /// %Tmp1 = copy %Tmp2;
    331 /// %FromReg = copy %Tmp1;
    332 /// %ToReg = add %FromReg ...
    333 /// %Tmp2 = copy %ToReg;
    334 /// MaxLen specifies the maximum length of the copy chain the func
    335 /// can walk through.
    336 bool TwoAddressInstructionPass::isRevCopyChain(unsigned FromReg, unsigned ToReg,
    337                                                int Maxlen) {
    338   unsigned TmpReg = FromReg;
    339   for (int i = 0; i < Maxlen; i++) {
    340     MachineInstr *Def = getSingleDef(TmpReg, MBB, MRI);
    341     if (!Def || !Def->isCopy())
    342       return false;
    343 
    344     TmpReg = Def->getOperand(1).getReg();
    345 
    346     if (TmpReg == ToReg)
    347       return true;
    348   }
    349   return false;
    350 }
    351 
    352 /// Return true if there are no intervening uses between the last instruction
    353 /// in the MBB that defines the specified register and the two-address
    354 /// instruction which is being processed. It also returns the last def location
    355 /// by reference.
    356 bool TwoAddressInstructionPass::noUseAfterLastDef(unsigned Reg, unsigned Dist,
    357                                                   unsigned &LastDef) {
    358   LastDef = 0;
    359   unsigned LastUse = Dist;
    360   for (MachineOperand &MO : MRI->reg_operands(Reg)) {
    361     MachineInstr *MI = MO.getParent();
    362     if (MI->getParent() != MBB || MI->isDebugValue())
    363       continue;
    364     DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
    365     if (DI == DistanceMap.end())
    366       continue;
    367     if (MO.isUse() && DI->second < LastUse)
    368       LastUse = DI->second;
    369     if (MO.isDef() && DI->second > LastDef)
    370       LastDef = DI->second;
    371   }
    372 
    373   return !(LastUse > LastDef && LastUse < Dist);
    374 }
    375 
    376 /// Return true if the specified MI is a copy instruction or an extract_subreg
    377 /// instruction. It also returns the source and destination registers and
    378 /// whether they are physical registers by reference.
    379 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
    380                         unsigned &SrcReg, unsigned &DstReg,
    381                         bool &IsSrcPhys, bool &IsDstPhys) {
    382   SrcReg = 0;
    383   DstReg = 0;
    384   if (MI.isCopy()) {
    385     DstReg = MI.getOperand(0).getReg();
    386     SrcReg = MI.getOperand(1).getReg();
    387   } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
    388     DstReg = MI.getOperand(0).getReg();
    389     SrcReg = MI.getOperand(2).getReg();
    390   } else
    391     return false;
    392 
    393   IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
    394   IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
    395   return true;
    396 }
    397 
    398 /// Test if the given register value, which is used by the
    399 /// given instruction, is killed by the given instruction.
    400 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg,
    401                             LiveIntervals *LIS) {
    402   if (LIS && TargetRegisterInfo::isVirtualRegister(Reg) &&
    403       !LIS->isNotInMIMap(MI)) {
    404     // FIXME: Sometimes tryInstructionTransform() will add instructions and
    405     // test whether they can be folded before keeping them. In this case it
    406     // sets a kill before recursively calling tryInstructionTransform() again.
    407     // If there is no interval available, we assume that this instruction is
    408     // one of those. A kill flag is manually inserted on the operand so the
    409     // check below will handle it.
    410     LiveInterval &LI = LIS->getInterval(Reg);
    411     // This is to match the kill flag version where undefs don't have kill
    412     // flags.
    413     if (!LI.hasAtLeastOneValue())
    414       return false;
    415 
    416     SlotIndex useIdx = LIS->getInstructionIndex(MI);
    417     LiveInterval::const_iterator I = LI.find(useIdx);
    418     assert(I != LI.end() && "Reg must be live-in to use.");
    419     return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx);
    420   }
    421 
    422   return MI->killsRegister(Reg);
    423 }
    424 
    425 /// Test if the given register value, which is used by the given
    426 /// instruction, is killed by the given instruction. This looks through
    427 /// coalescable copies to see if the original value is potentially not killed.
    428 ///
    429 /// For example, in this code:
    430 ///
    431 ///   %reg1034 = copy %reg1024
    432 ///   %reg1035 = copy %reg1025<kill>
    433 ///   %reg1036 = add %reg1034<kill>, %reg1035<kill>
    434 ///
    435 /// %reg1034 is not considered to be killed, since it is copied from a
    436 /// register which is not killed. Treating it as not killed lets the
    437 /// normal heuristics commute the (two-address) add, which lets
    438 /// coalescing eliminate the extra copy.
    439 ///
    440 /// If allowFalsePositives is true then likely kills are treated as kills even
    441 /// if it can't be proven that they are kills.
    442 static bool isKilled(MachineInstr &MI, unsigned Reg,
    443                      const MachineRegisterInfo *MRI,
    444                      const TargetInstrInfo *TII,
    445                      LiveIntervals *LIS,
    446                      bool allowFalsePositives) {
    447   MachineInstr *DefMI = &MI;
    448   for (;;) {
    449     // All uses of physical registers are likely to be kills.
    450     if (TargetRegisterInfo::isPhysicalRegister(Reg) &&
    451         (allowFalsePositives || MRI->hasOneUse(Reg)))
    452       return true;
    453     if (!isPlainlyKilled(DefMI, Reg, LIS))
    454       return false;
    455     if (TargetRegisterInfo::isPhysicalRegister(Reg))
    456       return true;
    457     MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
    458     // If there are multiple defs, we can't do a simple analysis, so just
    459     // go with what the kill flag says.
    460     if (std::next(Begin) != MRI->def_end())
    461       return true;
    462     DefMI = Begin->getParent();
    463     bool IsSrcPhys, IsDstPhys;
    464     unsigned SrcReg,  DstReg;
    465     // If the def is something other than a copy, then it isn't going to
    466     // be coalesced, so follow the kill flag.
    467     if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
    468       return true;
    469     Reg = SrcReg;
    470   }
    471 }
    472 
    473 /// Return true if the specified MI uses the specified register as a two-address
    474 /// use. If so, return the destination register by reference.
    475 static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
    476   for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) {
    477     const MachineOperand &MO = MI.getOperand(i);
    478     if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
    479       continue;
    480     unsigned ti;
    481     if (MI.isRegTiedToDefOperand(i, &ti)) {
    482       DstReg = MI.getOperand(ti).getReg();
    483       return true;
    484     }
    485   }
    486   return false;
    487 }
    488 
    489 /// Given a register, if has a single in-basic block use, return the use
    490 /// instruction if it's a copy or a two-address use.
    491 static
    492 MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
    493                                      MachineRegisterInfo *MRI,
    494                                      const TargetInstrInfo *TII,
    495                                      bool &IsCopy,
    496                                      unsigned &DstReg, bool &IsDstPhys) {
    497   if (!MRI->hasOneNonDBGUse(Reg))
    498     // None or more than one use.
    499     return nullptr;
    500   MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(Reg);
    501   if (UseMI.getParent() != MBB)
    502     return nullptr;
    503   unsigned SrcReg;
    504   bool IsSrcPhys;
    505   if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
    506     IsCopy = true;
    507     return &UseMI;
    508   }
    509   IsDstPhys = false;
    510   if (isTwoAddrUse(UseMI, Reg, DstReg)) {
    511     IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
    512     return &UseMI;
    513   }
    514   return nullptr;
    515 }
    516 
    517 /// Return the physical register the specified virtual register might be mapped
    518 /// to.
    519 static unsigned
    520 getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
    521   while (TargetRegisterInfo::isVirtualRegister(Reg))  {
    522     DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
    523     if (SI == RegMap.end())
    524       return 0;
    525     Reg = SI->second;
    526   }
    527   if (TargetRegisterInfo::isPhysicalRegister(Reg))
    528     return Reg;
    529   return 0;
    530 }
    531 
    532 /// Return true if the two registers are equal or aliased.
    533 static bool
    534 regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
    535   if (RegA == RegB)
    536     return true;
    537   if (!RegA || !RegB)
    538     return false;
    539   return TRI->regsOverlap(RegA, RegB);
    540 }
    541 
    542 
    543 /// Return true if it's potentially profitable to commute the two-address
    544 /// instruction that's being processed.
    545 bool
    546 TwoAddressInstructionPass::
    547 isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC,
    548                       MachineInstr *MI, unsigned Dist) {
    549   if (OptLevel == CodeGenOpt::None)
    550     return false;
    551 
    552   // Determine if it's profitable to commute this two address instruction. In
    553   // general, we want no uses between this instruction and the definition of
    554   // the two-address register.
    555   // e.g.
    556   // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
    557   // %reg1029<def> = MOV8rr %reg1028
    558   // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
    559   // insert => %reg1030<def> = MOV8rr %reg1028
    560   // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
    561   // In this case, it might not be possible to coalesce the second MOV8rr
    562   // instruction if the first one is coalesced. So it would be profitable to
    563   // commute it:
    564   // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
    565   // %reg1029<def> = MOV8rr %reg1028
    566   // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
    567   // insert => %reg1030<def> = MOV8rr %reg1029
    568   // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
    569 
    570   if (!isPlainlyKilled(MI, regC, LIS))
    571     return false;
    572 
    573   // Ok, we have something like:
    574   // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
    575   // let's see if it's worth commuting it.
    576 
    577   // Look for situations like this:
    578   // %reg1024<def> = MOV r1
    579   // %reg1025<def> = MOV r0
    580   // %reg1026<def> = ADD %reg1024, %reg1025
    581   // r0            = MOV %reg1026
    582   // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
    583   unsigned ToRegA = getMappedReg(regA, DstRegMap);
    584   if (ToRegA) {
    585     unsigned FromRegB = getMappedReg(regB, SrcRegMap);
    586     unsigned FromRegC = getMappedReg(regC, SrcRegMap);
    587     bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI);
    588     bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI);
    589 
    590     // Compute if any of the following are true:
    591     // -RegB is not tied to a register and RegC is compatible with RegA.
    592     // -RegB is tied to the wrong physical register, but RegC is.
    593     // -RegB is tied to the wrong physical register, and RegC isn't tied.
    594     if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC)))
    595       return true;
    596     // Don't compute if any of the following are true:
    597     // -RegC is not tied to a register and RegB is compatible with RegA.
    598     // -RegC is tied to the wrong physical register, but RegB is.
    599     // -RegC is tied to the wrong physical register, and RegB isn't tied.
    600     if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB)))
    601       return false;
    602   }
    603 
    604   // If there is a use of regC between its last def (could be livein) and this
    605   // instruction, then bail.
    606   unsigned LastDefC = 0;
    607   if (!noUseAfterLastDef(regC, Dist, LastDefC))
    608     return false;
    609 
    610   // If there is a use of regB between its last def (could be livein) and this
    611   // instruction, then go ahead and make this transformation.
    612   unsigned LastDefB = 0;
    613   if (!noUseAfterLastDef(regB, Dist, LastDefB))
    614     return true;
    615 
    616   // Look for situation like this:
    617   // %reg101 = MOV %reg100
    618   // %reg102 = ...
    619   // %reg103 = ADD %reg102, %reg101
    620   // ... = %reg103 ...
    621   // %reg100 = MOV %reg103
    622   // If there is a reversed copy chain from reg101 to reg103, commute the ADD
    623   // to eliminate an otherwise unavoidable copy.
    624   // FIXME:
    625   // We can extend the logic further: If an pair of operands in an insn has
    626   // been merged, the insn could be regarded as a virtual copy, and the virtual
    627   // copy could also be used to construct a copy chain.
    628   // To more generally minimize register copies, ideally the logic of two addr
    629   // instruction pass should be integrated with register allocation pass where
    630   // interference graph is available.
    631   if (isRevCopyChain(regC, regA, 3))
    632     return true;
    633 
    634   if (isRevCopyChain(regB, regA, 3))
    635     return false;
    636 
    637   // Since there are no intervening uses for both registers, then commute
    638   // if the def of regC is closer. Its live interval is shorter.
    639   return LastDefB && LastDefC && LastDefC > LastDefB;
    640 }
    641 
    642 /// Commute a two-address instruction and update the basic block, distance map,
    643 /// and live variables if needed. Return true if it is successful.
    644 bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI,
    645                                                    unsigned RegBIdx,
    646                                                    unsigned RegCIdx,
    647                                                    unsigned Dist) {
    648   unsigned RegC = MI->getOperand(RegCIdx).getReg();
    649   DEBUG(dbgs() << "2addr: COMMUTING  : " << *MI);
    650   MachineInstr *NewMI = TII->commuteInstruction(MI, false, RegBIdx, RegCIdx);
    651 
    652   if (NewMI == nullptr) {
    653     DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
    654     return false;
    655   }
    656 
    657   DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
    658   assert(NewMI == MI &&
    659          "TargetInstrInfo::commuteInstruction() should not return a new "
    660          "instruction unless it was requested.");
    661 
    662   // Update source register map.
    663   unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
    664   if (FromRegC) {
    665     unsigned RegA = MI->getOperand(0).getReg();
    666     SrcRegMap[RegA] = FromRegC;
    667   }
    668 
    669   return true;
    670 }
    671 
    672 /// Return true if it is profitable to convert the given 2-address instruction
    673 /// to a 3-address one.
    674 bool
    675 TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){
    676   // Look for situations like this:
    677   // %reg1024<def> = MOV r1
    678   // %reg1025<def> = MOV r0
    679   // %reg1026<def> = ADD %reg1024, %reg1025
    680   // r2            = MOV %reg1026
    681   // Turn ADD into a 3-address instruction to avoid a copy.
    682   unsigned FromRegB = getMappedReg(RegB, SrcRegMap);
    683   if (!FromRegB)
    684     return false;
    685   unsigned ToRegA = getMappedReg(RegA, DstRegMap);
    686   return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI));
    687 }
    688 
    689 /// Convert the specified two-address instruction into a three address one.
    690 /// Return true if this transformation was successful.
    691 bool
    692 TwoAddressInstructionPass::convertInstTo3Addr(MachineBasicBlock::iterator &mi,
    693                                               MachineBasicBlock::iterator &nmi,
    694                                               unsigned RegA, unsigned RegB,
    695                                               unsigned Dist) {
    696   // FIXME: Why does convertToThreeAddress() need an iterator reference?
    697   MachineFunction::iterator MFI = MBB->getIterator();
    698   MachineInstr *NewMI = TII->convertToThreeAddress(MFI, mi, LV);
    699   assert(MBB->getIterator() == MFI &&
    700          "convertToThreeAddress changed iterator reference");
    701   if (!NewMI)
    702     return false;
    703 
    704   DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
    705   DEBUG(dbgs() << "2addr:         TO 3-ADDR: " << *NewMI);
    706   bool Sunk = false;
    707 
    708   if (LIS)
    709     LIS->ReplaceMachineInstrInMaps(mi, NewMI);
    710 
    711   if (NewMI->findRegisterUseOperand(RegB, false, TRI))
    712     // FIXME: Temporary workaround. If the new instruction doesn't
    713     // uses RegB, convertToThreeAddress must have created more
    714     // then one instruction.
    715     Sunk = sink3AddrInstruction(NewMI, RegB, mi);
    716 
    717   MBB->erase(mi); // Nuke the old inst.
    718 
    719   if (!Sunk) {
    720     DistanceMap.insert(std::make_pair(NewMI, Dist));
    721     mi = NewMI;
    722     nmi = std::next(mi);
    723   }
    724 
    725   // Update source and destination register maps.
    726   SrcRegMap.erase(RegA);
    727   DstRegMap.erase(RegB);
    728   return true;
    729 }
    730 
    731 /// Scan forward recursively for only uses, update maps if the use is a copy or
    732 /// a two-address instruction.
    733 void
    734 TwoAddressInstructionPass::scanUses(unsigned DstReg) {
    735   SmallVector<unsigned, 4> VirtRegPairs;
    736   bool IsDstPhys;
    737   bool IsCopy = false;
    738   unsigned NewReg = 0;
    739   unsigned Reg = DstReg;
    740   while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy,
    741                                                       NewReg, IsDstPhys)) {
    742     if (IsCopy && !Processed.insert(UseMI).second)
    743       break;
    744 
    745     DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
    746     if (DI != DistanceMap.end())
    747       // Earlier in the same MBB.Reached via a back edge.
    748       break;
    749 
    750     if (IsDstPhys) {
    751       VirtRegPairs.push_back(NewReg);
    752       break;
    753     }
    754     bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second;
    755     if (!isNew)
    756       assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!");
    757     VirtRegPairs.push_back(NewReg);
    758     Reg = NewReg;
    759   }
    760 
    761   if (!VirtRegPairs.empty()) {
    762     unsigned ToReg = VirtRegPairs.back();
    763     VirtRegPairs.pop_back();
    764     while (!VirtRegPairs.empty()) {
    765       unsigned FromReg = VirtRegPairs.back();
    766       VirtRegPairs.pop_back();
    767       bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
    768       if (!isNew)
    769         assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!");
    770       ToReg = FromReg;
    771     }
    772     bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second;
    773     if (!isNew)
    774       assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!");
    775   }
    776 }
    777 
    778 /// If the specified instruction is not yet processed, process it if it's a
    779 /// copy. For a copy instruction, we find the physical registers the
    780 /// source and destination registers might be mapped to. These are kept in
    781 /// point-to maps used to determine future optimizations. e.g.
    782 /// v1024 = mov r0
    783 /// v1025 = mov r1
    784 /// v1026 = add v1024, v1025
    785 /// r1    = mov r1026
    786 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially
    787 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
    788 /// potentially joined with r1 on the output side. It's worthwhile to commute
    789 /// 'add' to eliminate a copy.
    790 void TwoAddressInstructionPass::processCopy(MachineInstr *MI) {
    791   if (Processed.count(MI))
    792     return;
    793 
    794   bool IsSrcPhys, IsDstPhys;
    795   unsigned SrcReg, DstReg;
    796   if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
    797     return;
    798 
    799   if (IsDstPhys && !IsSrcPhys)
    800     DstRegMap.insert(std::make_pair(SrcReg, DstReg));
    801   else if (!IsDstPhys && IsSrcPhys) {
    802     bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
    803     if (!isNew)
    804       assert(SrcRegMap[DstReg] == SrcReg &&
    805              "Can't map to two src physical registers!");
    806 
    807     scanUses(DstReg);
    808   }
    809 
    810   Processed.insert(MI);
    811   return;
    812 }
    813 
    814 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg,
    815 /// consider moving the instruction below the kill instruction in order to
    816 /// eliminate the need for the copy.
    817 bool TwoAddressInstructionPass::
    818 rescheduleMIBelowKill(MachineBasicBlock::iterator &mi,
    819                       MachineBasicBlock::iterator &nmi,
    820                       unsigned Reg) {
    821   // Bail immediately if we don't have LV or LIS available. We use them to find
    822   // kills efficiently.
    823   if (!LV && !LIS)
    824     return false;
    825 
    826   MachineInstr *MI = &*mi;
    827   DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
    828   if (DI == DistanceMap.end())
    829     // Must be created from unfolded load. Don't waste time trying this.
    830     return false;
    831 
    832   MachineInstr *KillMI = nullptr;
    833   if (LIS) {
    834     LiveInterval &LI = LIS->getInterval(Reg);
    835     assert(LI.end() != LI.begin() &&
    836            "Reg should not have empty live interval.");
    837 
    838     SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
    839     LiveInterval::const_iterator I = LI.find(MBBEndIdx);
    840     if (I != LI.end() && I->start < MBBEndIdx)
    841       return false;
    842 
    843     --I;
    844     KillMI = LIS->getInstructionFromIndex(I->end);
    845   } else {
    846     KillMI = LV->getVarInfo(Reg).findKill(MBB);
    847   }
    848   if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
    849     // Don't mess with copies, they may be coalesced later.
    850     return false;
    851 
    852   if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() ||
    853       KillMI->isBranch() || KillMI->isTerminator())
    854     // Don't move pass calls, etc.
    855     return false;
    856 
    857   unsigned DstReg;
    858   if (isTwoAddrUse(*KillMI, Reg, DstReg))
    859     return false;
    860 
    861   bool SeenStore = true;
    862   if (!MI->isSafeToMove(AA, SeenStore))
    863     return false;
    864 
    865   if (TII->getInstrLatency(InstrItins, MI) > 1)
    866     // FIXME: Needs more sophisticated heuristics.
    867     return false;
    868 
    869   SmallSet<unsigned, 2> Uses;
    870   SmallSet<unsigned, 2> Kills;
    871   SmallSet<unsigned, 2> Defs;
    872   for (const MachineOperand &MO : MI->operands()) {
    873     if (!MO.isReg())
    874       continue;
    875     unsigned MOReg = MO.getReg();
    876     if (!MOReg)
    877       continue;
    878     if (MO.isDef())
    879       Defs.insert(MOReg);
    880     else {
    881       Uses.insert(MOReg);
    882       if (MOReg != Reg && (MO.isKill() ||
    883                            (LIS && isPlainlyKilled(MI, MOReg, LIS))))
    884         Kills.insert(MOReg);
    885     }
    886   }
    887 
    888   // Move the copies connected to MI down as well.
    889   MachineBasicBlock::iterator Begin = MI;
    890   MachineBasicBlock::iterator AfterMI = std::next(Begin);
    891 
    892   MachineBasicBlock::iterator End = AfterMI;
    893   while (End->isCopy() && Defs.count(End->getOperand(1).getReg())) {
    894     Defs.insert(End->getOperand(0).getReg());
    895     ++End;
    896   }
    897 
    898   // Check if the reschedule will not break depedencies.
    899   unsigned NumVisited = 0;
    900   MachineBasicBlock::iterator KillPos = KillMI;
    901   ++KillPos;
    902   for (MachineBasicBlock::iterator I = End; I != KillPos; ++I) {
    903     MachineInstr *OtherMI = I;
    904     // DBG_VALUE cannot be counted against the limit.
    905     if (OtherMI->isDebugValue())
    906       continue;
    907     if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
    908       return false;
    909     ++NumVisited;
    910     if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() ||
    911         OtherMI->isBranch() || OtherMI->isTerminator())
    912       // Don't move pass calls, etc.
    913       return false;
    914     for (const MachineOperand &MO : OtherMI->operands()) {
    915       if (!MO.isReg())
    916         continue;
    917       unsigned MOReg = MO.getReg();
    918       if (!MOReg)
    919         continue;
    920       if (MO.isDef()) {
    921         if (Uses.count(MOReg))
    922           // Physical register use would be clobbered.
    923           return false;
    924         if (!MO.isDead() && Defs.count(MOReg))
    925           // May clobber a physical register def.
    926           // FIXME: This may be too conservative. It's ok if the instruction
    927           // is sunken completely below the use.
    928           return false;
    929       } else {
    930         if (Defs.count(MOReg))
    931           return false;
    932         bool isKill = MO.isKill() ||
    933                       (LIS && isPlainlyKilled(OtherMI, MOReg, LIS));
    934         if (MOReg != Reg &&
    935             ((isKill && Uses.count(MOReg)) || Kills.count(MOReg)))
    936           // Don't want to extend other live ranges and update kills.
    937           return false;
    938         if (MOReg == Reg && !isKill)
    939           // We can't schedule across a use of the register in question.
    940           return false;
    941         // Ensure that if this is register in question, its the kill we expect.
    942         assert((MOReg != Reg || OtherMI == KillMI) &&
    943                "Found multiple kills of a register in a basic block");
    944       }
    945     }
    946   }
    947 
    948   // Move debug info as well.
    949   while (Begin != MBB->begin() && std::prev(Begin)->isDebugValue())
    950     --Begin;
    951 
    952   nmi = End;
    953   MachineBasicBlock::iterator InsertPos = KillPos;
    954   if (LIS) {
    955     // We have to move the copies first so that the MBB is still well-formed
    956     // when calling handleMove().
    957     for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) {
    958       MachineInstr *CopyMI = MBBI;
    959       ++MBBI;
    960       MBB->splice(InsertPos, MBB, CopyMI);
    961       LIS->handleMove(CopyMI);
    962       InsertPos = CopyMI;
    963     }
    964     End = std::next(MachineBasicBlock::iterator(MI));
    965   }
    966 
    967   // Copies following MI may have been moved as well.
    968   MBB->splice(InsertPos, MBB, Begin, End);
    969   DistanceMap.erase(DI);
    970 
    971   // Update live variables
    972   if (LIS) {
    973     LIS->handleMove(MI);
    974   } else {
    975     LV->removeVirtualRegisterKilled(Reg, KillMI);
    976     LV->addVirtualRegisterKilled(Reg, MI);
    977   }
    978 
    979   DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI);
    980   return true;
    981 }
    982 
    983 /// Return true if the re-scheduling will put the given instruction too close
    984 /// to the defs of its register dependencies.
    985 bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist,
    986                                               MachineInstr *MI) {
    987   for (MachineInstr &DefMI : MRI->def_instructions(Reg)) {
    988     if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike())
    989       continue;
    990     if (&DefMI == MI)
    991       return true; // MI is defining something KillMI uses
    992     DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI);
    993     if (DDI == DistanceMap.end())
    994       return true;  // Below MI
    995     unsigned DefDist = DDI->second;
    996     assert(Dist > DefDist && "Visited def already?");
    997     if (TII->getInstrLatency(InstrItins, &DefMI) > (Dist - DefDist))
    998       return true;
    999   }
   1000   return false;
   1001 }
   1002 
   1003 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg,
   1004 /// consider moving the kill instruction above the current two-address
   1005 /// instruction in order to eliminate the need for the copy.
   1006 bool TwoAddressInstructionPass::
   1007 rescheduleKillAboveMI(MachineBasicBlock::iterator &mi,
   1008                       MachineBasicBlock::iterator &nmi,
   1009                       unsigned Reg) {
   1010   // Bail immediately if we don't have LV or LIS available. We use them to find
   1011   // kills efficiently.
   1012   if (!LV && !LIS)
   1013     return false;
   1014 
   1015   MachineInstr *MI = &*mi;
   1016   DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
   1017   if (DI == DistanceMap.end())
   1018     // Must be created from unfolded load. Don't waste time trying this.
   1019     return false;
   1020 
   1021   MachineInstr *KillMI = nullptr;
   1022   if (LIS) {
   1023     LiveInterval &LI = LIS->getInterval(Reg);
   1024     assert(LI.end() != LI.begin() &&
   1025            "Reg should not have empty live interval.");
   1026 
   1027     SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
   1028     LiveInterval::const_iterator I = LI.find(MBBEndIdx);
   1029     if (I != LI.end() && I->start < MBBEndIdx)
   1030       return false;
   1031 
   1032     --I;
   1033     KillMI = LIS->getInstructionFromIndex(I->end);
   1034   } else {
   1035     KillMI = LV->getVarInfo(Reg).findKill(MBB);
   1036   }
   1037   if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
   1038     // Don't mess with copies, they may be coalesced later.
   1039     return false;
   1040 
   1041   unsigned DstReg;
   1042   if (isTwoAddrUse(*KillMI, Reg, DstReg))
   1043     return false;
   1044 
   1045   bool SeenStore = true;
   1046   if (!KillMI->isSafeToMove(AA, SeenStore))
   1047     return false;
   1048 
   1049   SmallSet<unsigned, 2> Uses;
   1050   SmallSet<unsigned, 2> Kills;
   1051   SmallSet<unsigned, 2> Defs;
   1052   SmallSet<unsigned, 2> LiveDefs;
   1053   for (const MachineOperand &MO : KillMI->operands()) {
   1054     if (!MO.isReg())
   1055       continue;
   1056     unsigned MOReg = MO.getReg();
   1057     if (MO.isUse()) {
   1058       if (!MOReg)
   1059         continue;
   1060       if (isDefTooClose(MOReg, DI->second, MI))
   1061         return false;
   1062       bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS));
   1063       if (MOReg == Reg && !isKill)
   1064         return false;
   1065       Uses.insert(MOReg);
   1066       if (isKill && MOReg != Reg)
   1067         Kills.insert(MOReg);
   1068     } else if (TargetRegisterInfo::isPhysicalRegister(MOReg)) {
   1069       Defs.insert(MOReg);
   1070       if (!MO.isDead())
   1071         LiveDefs.insert(MOReg);
   1072     }
   1073   }
   1074 
   1075   // Check if the reschedule will not break depedencies.
   1076   unsigned NumVisited = 0;
   1077   MachineBasicBlock::iterator KillPos = KillMI;
   1078   for (MachineBasicBlock::iterator I = mi; I != KillPos; ++I) {
   1079     MachineInstr *OtherMI = I;
   1080     // DBG_VALUE cannot be counted against the limit.
   1081     if (OtherMI->isDebugValue())
   1082       continue;
   1083     if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
   1084       return false;
   1085     ++NumVisited;
   1086     if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() ||
   1087         OtherMI->isBranch() || OtherMI->isTerminator())
   1088       // Don't move pass calls, etc.
   1089       return false;
   1090     SmallVector<unsigned, 2> OtherDefs;
   1091     for (const MachineOperand &MO : OtherMI->operands()) {
   1092       if (!MO.isReg())
   1093         continue;
   1094       unsigned MOReg = MO.getReg();
   1095       if (!MOReg)
   1096         continue;
   1097       if (MO.isUse()) {
   1098         if (Defs.count(MOReg))
   1099           // Moving KillMI can clobber the physical register if the def has
   1100           // not been seen.
   1101           return false;
   1102         if (Kills.count(MOReg))
   1103           // Don't want to extend other live ranges and update kills.
   1104           return false;
   1105         if (OtherMI != MI && MOReg == Reg &&
   1106             !(MO.isKill() || (LIS && isPlainlyKilled(OtherMI, MOReg, LIS))))
   1107           // We can't schedule across a use of the register in question.
   1108           return false;
   1109       } else {
   1110         OtherDefs.push_back(MOReg);
   1111       }
   1112     }
   1113 
   1114     for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) {
   1115       unsigned MOReg = OtherDefs[i];
   1116       if (Uses.count(MOReg))
   1117         return false;
   1118       if (TargetRegisterInfo::isPhysicalRegister(MOReg) &&
   1119           LiveDefs.count(MOReg))
   1120         return false;
   1121       // Physical register def is seen.
   1122       Defs.erase(MOReg);
   1123     }
   1124   }
   1125 
   1126   // Move the old kill above MI, don't forget to move debug info as well.
   1127   MachineBasicBlock::iterator InsertPos = mi;
   1128   while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugValue())
   1129     --InsertPos;
   1130   MachineBasicBlock::iterator From = KillMI;
   1131   MachineBasicBlock::iterator To = std::next(From);
   1132   while (std::prev(From)->isDebugValue())
   1133     --From;
   1134   MBB->splice(InsertPos, MBB, From, To);
   1135 
   1136   nmi = std::prev(InsertPos); // Backtrack so we process the moved instr.
   1137   DistanceMap.erase(DI);
   1138 
   1139   // Update live variables
   1140   if (LIS) {
   1141     LIS->handleMove(KillMI);
   1142   } else {
   1143     LV->removeVirtualRegisterKilled(Reg, KillMI);
   1144     LV->addVirtualRegisterKilled(Reg, MI);
   1145   }
   1146 
   1147   DEBUG(dbgs() << "\trescheduled kill: " << *KillMI);
   1148   return true;
   1149 }
   1150 
   1151 /// Tries to commute the operand 'BaseOpIdx' and some other operand in the
   1152 /// given machine instruction to improve opportunities for coalescing and
   1153 /// elimination of a register to register copy.
   1154 ///
   1155 /// 'DstOpIdx' specifies the index of MI def operand.
   1156 /// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx'
   1157 /// operand is killed by the given instruction.
   1158 /// The 'Dist' arguments provides the distance of MI from the start of the
   1159 /// current basic block and it is used to determine if it is profitable
   1160 /// to commute operands in the instruction.
   1161 ///
   1162 /// Returns true if the transformation happened. Otherwise, returns false.
   1163 bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI,
   1164                                                       unsigned DstOpIdx,
   1165                                                       unsigned BaseOpIdx,
   1166                                                       bool BaseOpKilled,
   1167                                                       unsigned Dist) {
   1168   unsigned DstOpReg = MI->getOperand(DstOpIdx).getReg();
   1169   unsigned BaseOpReg = MI->getOperand(BaseOpIdx).getReg();
   1170   unsigned OpsNum = MI->getDesc().getNumOperands();
   1171   unsigned OtherOpIdx = MI->getDesc().getNumDefs();
   1172   for (; OtherOpIdx < OpsNum; OtherOpIdx++) {
   1173     // The call of findCommutedOpIndices below only checks if BaseOpIdx
   1174     // and OtherOpIdx are commutable, it does not really search for
   1175     // other commutable operands and does not change the values of passed
   1176     // variables.
   1177     if (OtherOpIdx == BaseOpIdx ||
   1178         !TII->findCommutedOpIndices(MI, BaseOpIdx, OtherOpIdx))
   1179       continue;
   1180 
   1181     unsigned OtherOpReg = MI->getOperand(OtherOpIdx).getReg();
   1182     bool AggressiveCommute = false;
   1183 
   1184     // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp
   1185     // operands. This makes the live ranges of DstOp and OtherOp joinable.
   1186     bool DoCommute =
   1187         !BaseOpKilled && isKilled(*MI, OtherOpReg, MRI, TII, LIS, false);
   1188 
   1189     if (!DoCommute &&
   1190         isProfitableToCommute(DstOpReg, BaseOpReg, OtherOpReg, MI, Dist)) {
   1191       DoCommute = true;
   1192       AggressiveCommute = true;
   1193     }
   1194 
   1195     // If it's profitable to commute, try to do so.
   1196     if (DoCommute && commuteInstruction(MI, BaseOpIdx, OtherOpIdx, Dist)) {
   1197       ++NumCommuted;
   1198       if (AggressiveCommute)
   1199         ++NumAggrCommuted;
   1200       return true;
   1201     }
   1202   }
   1203   return false;
   1204 }
   1205 
   1206 /// For the case where an instruction has a single pair of tied register
   1207 /// operands, attempt some transformations that may either eliminate the tied
   1208 /// operands or improve the opportunities for coalescing away the register copy.
   1209 /// Returns true if no copy needs to be inserted to untie mi's operands
   1210 /// (either because they were untied, or because mi was rescheduled, and will
   1211 /// be visited again later). If the shouldOnlyCommute flag is true, only
   1212 /// instruction commutation is attempted.
   1213 bool TwoAddressInstructionPass::
   1214 tryInstructionTransform(MachineBasicBlock::iterator &mi,
   1215                         MachineBasicBlock::iterator &nmi,
   1216                         unsigned SrcIdx, unsigned DstIdx,
   1217                         unsigned Dist, bool shouldOnlyCommute) {
   1218   if (OptLevel == CodeGenOpt::None)
   1219     return false;
   1220 
   1221   MachineInstr &MI = *mi;
   1222   unsigned regA = MI.getOperand(DstIdx).getReg();
   1223   unsigned regB = MI.getOperand(SrcIdx).getReg();
   1224 
   1225   assert(TargetRegisterInfo::isVirtualRegister(regB) &&
   1226          "cannot make instruction into two-address form");
   1227   bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true);
   1228 
   1229   if (TargetRegisterInfo::isVirtualRegister(regA))
   1230     scanUses(regA);
   1231 
   1232   bool Commuted = tryInstructionCommute(&MI, DstIdx, SrcIdx, regBKilled, Dist);
   1233 
   1234   // If the instruction is convertible to 3 Addr, instead
   1235   // of returning try 3 Addr transformation aggresively and
   1236   // use this variable to check later. Because it might be better.
   1237   // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret`
   1238   // instead of the following code.
   1239   //   addl     %esi, %edi
   1240   //   movl     %edi, %eax
   1241   //   ret
   1242   if (Commuted && !MI.isConvertibleTo3Addr())
   1243     return false;
   1244 
   1245   if (shouldOnlyCommute)
   1246     return false;
   1247 
   1248   // If there is one more use of regB later in the same MBB, consider
   1249   // re-schedule this MI below it.
   1250   if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) {
   1251     ++NumReSchedDowns;
   1252     return true;
   1253   }
   1254 
   1255   // If we commuted, regB may have changed so we should re-sample it to avoid
   1256   // confusing the three address conversion below.
   1257   if (Commuted) {
   1258     regB = MI.getOperand(SrcIdx).getReg();
   1259     regBKilled = isKilled(MI, regB, MRI, TII, LIS, true);
   1260   }
   1261 
   1262   if (MI.isConvertibleTo3Addr()) {
   1263     // This instruction is potentially convertible to a true
   1264     // three-address instruction.  Check if it is profitable.
   1265     if (!regBKilled || isProfitableToConv3Addr(regA, regB)) {
   1266       // Try to convert it.
   1267       if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) {
   1268         ++NumConvertedTo3Addr;
   1269         return true; // Done with this instruction.
   1270       }
   1271     }
   1272   }
   1273 
   1274   // Return if it is commuted but 3 addr conversion is failed.
   1275   if (Commuted)
   1276     return false;
   1277 
   1278   // If there is one more use of regB later in the same MBB, consider
   1279   // re-schedule it before this MI if it's legal.
   1280   if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) {
   1281     ++NumReSchedUps;
   1282     return true;
   1283   }
   1284 
   1285   // If this is an instruction with a load folded into it, try unfolding
   1286   // the load, e.g. avoid this:
   1287   //   movq %rdx, %rcx
   1288   //   addq (%rax), %rcx
   1289   // in favor of this:
   1290   //   movq (%rax), %rcx
   1291   //   addq %rdx, %rcx
   1292   // because it's preferable to schedule a load than a register copy.
   1293   if (MI.mayLoad() && !regBKilled) {
   1294     // Determine if a load can be unfolded.
   1295     unsigned LoadRegIndex;
   1296     unsigned NewOpc =
   1297       TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
   1298                                       /*UnfoldLoad=*/true,
   1299                                       /*UnfoldStore=*/false,
   1300                                       &LoadRegIndex);
   1301     if (NewOpc != 0) {
   1302       const MCInstrDesc &UnfoldMCID = TII->get(NewOpc);
   1303       if (UnfoldMCID.getNumDefs() == 1) {
   1304         // Unfold the load.
   1305         DEBUG(dbgs() << "2addr:   UNFOLDING: " << MI);
   1306         const TargetRegisterClass *RC =
   1307           TRI->getAllocatableClass(
   1308             TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF));
   1309         unsigned Reg = MRI->createVirtualRegister(RC);
   1310         SmallVector<MachineInstr *, 2> NewMIs;
   1311         if (!TII->unfoldMemoryOperand(*MF, &MI, Reg,
   1312                                       /*UnfoldLoad=*/true,/*UnfoldStore=*/false,
   1313                                       NewMIs)) {
   1314           DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
   1315           return false;
   1316         }
   1317         assert(NewMIs.size() == 2 &&
   1318                "Unfolded a load into multiple instructions!");
   1319         // The load was previously folded, so this is the only use.
   1320         NewMIs[1]->addRegisterKilled(Reg, TRI);
   1321 
   1322         // Tentatively insert the instructions into the block so that they
   1323         // look "normal" to the transformation logic.
   1324         MBB->insert(mi, NewMIs[0]);
   1325         MBB->insert(mi, NewMIs[1]);
   1326 
   1327         DEBUG(dbgs() << "2addr:    NEW LOAD: " << *NewMIs[0]
   1328                      << "2addr:    NEW INST: " << *NewMIs[1]);
   1329 
   1330         // Transform the instruction, now that it no longer has a load.
   1331         unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
   1332         unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
   1333         MachineBasicBlock::iterator NewMI = NewMIs[1];
   1334         bool TransformResult =
   1335           tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true);
   1336         (void)TransformResult;
   1337         assert(!TransformResult &&
   1338                "tryInstructionTransform() should return false.");
   1339         if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
   1340           // Success, or at least we made an improvement. Keep the unfolded
   1341           // instructions and discard the original.
   1342           if (LV) {
   1343             for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
   1344               MachineOperand &MO = MI.getOperand(i);
   1345               if (MO.isReg() &&
   1346                   TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
   1347                 if (MO.isUse()) {
   1348                   if (MO.isKill()) {
   1349                     if (NewMIs[0]->killsRegister(MO.getReg()))
   1350                       LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[0]);
   1351                     else {
   1352                       assert(NewMIs[1]->killsRegister(MO.getReg()) &&
   1353                              "Kill missing after load unfold!");
   1354                       LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[1]);
   1355                     }
   1356                   }
   1357                 } else if (LV->removeVirtualRegisterDead(MO.getReg(), &MI)) {
   1358                   if (NewMIs[1]->registerDefIsDead(MO.getReg()))
   1359                     LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]);
   1360                   else {
   1361                     assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
   1362                            "Dead flag missing after load unfold!");
   1363                     LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]);
   1364                   }
   1365                 }
   1366               }
   1367             }
   1368             LV->addVirtualRegisterKilled(Reg, NewMIs[1]);
   1369           }
   1370 
   1371           SmallVector<unsigned, 4> OrigRegs;
   1372           if (LIS) {
   1373             for (const MachineOperand &MO : MI.operands()) {
   1374               if (MO.isReg())
   1375                 OrigRegs.push_back(MO.getReg());
   1376             }
   1377           }
   1378 
   1379           MI.eraseFromParent();
   1380 
   1381           // Update LiveIntervals.
   1382           if (LIS) {
   1383             MachineBasicBlock::iterator Begin(NewMIs[0]);
   1384             MachineBasicBlock::iterator End(NewMIs[1]);
   1385             LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs);
   1386           }
   1387 
   1388           mi = NewMIs[1];
   1389         } else {
   1390           // Transforming didn't eliminate the tie and didn't lead to an
   1391           // improvement. Clean up the unfolded instructions and keep the
   1392           // original.
   1393           DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
   1394           NewMIs[0]->eraseFromParent();
   1395           NewMIs[1]->eraseFromParent();
   1396         }
   1397       }
   1398     }
   1399   }
   1400 
   1401   return false;
   1402 }
   1403 
   1404 // Collect tied operands of MI that need to be handled.
   1405 // Rewrite trivial cases immediately.
   1406 // Return true if any tied operands where found, including the trivial ones.
   1407 bool TwoAddressInstructionPass::
   1408 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) {
   1409   const MCInstrDesc &MCID = MI->getDesc();
   1410   bool AnyOps = false;
   1411   unsigned NumOps = MI->getNumOperands();
   1412 
   1413   for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
   1414     unsigned DstIdx = 0;
   1415     if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx))
   1416       continue;
   1417     AnyOps = true;
   1418     MachineOperand &SrcMO = MI->getOperand(SrcIdx);
   1419     MachineOperand &DstMO = MI->getOperand(DstIdx);
   1420     unsigned SrcReg = SrcMO.getReg();
   1421     unsigned DstReg = DstMO.getReg();
   1422     // Tied constraint already satisfied?
   1423     if (SrcReg == DstReg)
   1424       continue;
   1425 
   1426     assert(SrcReg && SrcMO.isUse() && "two address instruction invalid");
   1427 
   1428     // Deal with <undef> uses immediately - simply rewrite the src operand.
   1429     if (SrcMO.isUndef() && !DstMO.getSubReg()) {
   1430       // Constrain the DstReg register class if required.
   1431       if (TargetRegisterInfo::isVirtualRegister(DstReg))
   1432         if (const TargetRegisterClass *RC = TII->getRegClass(MCID, SrcIdx,
   1433                                                              TRI, *MF))
   1434           MRI->constrainRegClass(DstReg, RC);
   1435       SrcMO.setReg(DstReg);
   1436       SrcMO.setSubReg(0);
   1437       DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI);
   1438       continue;
   1439     }
   1440     TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx));
   1441   }
   1442   return AnyOps;
   1443 }
   1444 
   1445 // Process a list of tied MI operands that all use the same source register.
   1446 // The tied pairs are of the form (SrcIdx, DstIdx).
   1447 void
   1448 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI,
   1449                                             TiedPairList &TiedPairs,
   1450                                             unsigned &Dist) {
   1451   bool IsEarlyClobber = false;
   1452   for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
   1453     const MachineOperand &DstMO = MI->getOperand(TiedPairs[tpi].second);
   1454     IsEarlyClobber |= DstMO.isEarlyClobber();
   1455   }
   1456 
   1457   bool RemovedKillFlag = false;
   1458   bool AllUsesCopied = true;
   1459   unsigned LastCopiedReg = 0;
   1460   SlotIndex LastCopyIdx;
   1461   unsigned RegB = 0;
   1462   unsigned SubRegB = 0;
   1463   for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
   1464     unsigned SrcIdx = TiedPairs[tpi].first;
   1465     unsigned DstIdx = TiedPairs[tpi].second;
   1466 
   1467     const MachineOperand &DstMO = MI->getOperand(DstIdx);
   1468     unsigned RegA = DstMO.getReg();
   1469 
   1470     // Grab RegB from the instruction because it may have changed if the
   1471     // instruction was commuted.
   1472     RegB = MI->getOperand(SrcIdx).getReg();
   1473     SubRegB = MI->getOperand(SrcIdx).getSubReg();
   1474 
   1475     if (RegA == RegB) {
   1476       // The register is tied to multiple destinations (or else we would
   1477       // not have continued this far), but this use of the register
   1478       // already matches the tied destination.  Leave it.
   1479       AllUsesCopied = false;
   1480       continue;
   1481     }
   1482     LastCopiedReg = RegA;
   1483 
   1484     assert(TargetRegisterInfo::isVirtualRegister(RegB) &&
   1485            "cannot make instruction into two-address form");
   1486 
   1487 #ifndef NDEBUG
   1488     // First, verify that we don't have a use of "a" in the instruction
   1489     // (a = b + a for example) because our transformation will not
   1490     // work. This should never occur because we are in SSA form.
   1491     for (unsigned i = 0; i != MI->getNumOperands(); ++i)
   1492       assert(i == DstIdx ||
   1493              !MI->getOperand(i).isReg() ||
   1494              MI->getOperand(i).getReg() != RegA);
   1495 #endif
   1496 
   1497     // Emit a copy.
   1498     MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
   1499                                       TII->get(TargetOpcode::COPY), RegA);
   1500     // If this operand is folding a truncation, the truncation now moves to the
   1501     // copy so that the register classes remain valid for the operands.
   1502     MIB.addReg(RegB, 0, SubRegB);
   1503     const TargetRegisterClass *RC = MRI->getRegClass(RegB);
   1504     if (SubRegB) {
   1505       if (TargetRegisterInfo::isVirtualRegister(RegA)) {
   1506         assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA),
   1507                                              SubRegB) &&
   1508                "tied subregister must be a truncation");
   1509         // The superreg class will not be used to constrain the subreg class.
   1510         RC = nullptr;
   1511       }
   1512       else {
   1513         assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB))
   1514                && "tied subregister must be a truncation");
   1515       }
   1516     }
   1517 
   1518     // Update DistanceMap.
   1519     MachineBasicBlock::iterator PrevMI = MI;
   1520     --PrevMI;
   1521     DistanceMap.insert(std::make_pair(PrevMI, Dist));
   1522     DistanceMap[MI] = ++Dist;
   1523 
   1524     if (LIS) {
   1525       LastCopyIdx = LIS->InsertMachineInstrInMaps(PrevMI).getRegSlot();
   1526 
   1527       if (TargetRegisterInfo::isVirtualRegister(RegA)) {
   1528         LiveInterval &LI = LIS->getInterval(RegA);
   1529         VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator());
   1530         SlotIndex endIdx =
   1531           LIS->getInstructionIndex(MI).getRegSlot(IsEarlyClobber);
   1532         LI.addSegment(LiveInterval::Segment(LastCopyIdx, endIdx, VNI));
   1533       }
   1534     }
   1535 
   1536     DEBUG(dbgs() << "\t\tprepend:\t" << *MIB);
   1537 
   1538     MachineOperand &MO = MI->getOperand(SrcIdx);
   1539     assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() &&
   1540            "inconsistent operand info for 2-reg pass");
   1541     if (MO.isKill()) {
   1542       MO.setIsKill(false);
   1543       RemovedKillFlag = true;
   1544     }
   1545 
   1546     // Make sure regA is a legal regclass for the SrcIdx operand.
   1547     if (TargetRegisterInfo::isVirtualRegister(RegA) &&
   1548         TargetRegisterInfo::isVirtualRegister(RegB))
   1549       MRI->constrainRegClass(RegA, RC);
   1550     MO.setReg(RegA);
   1551     // The getMatchingSuper asserts guarantee that the register class projected
   1552     // by SubRegB is compatible with RegA with no subregister. So regardless of
   1553     // whether the dest oper writes a subreg, the source oper should not.
   1554     MO.setSubReg(0);
   1555 
   1556     // Propagate SrcRegMap.
   1557     SrcRegMap[RegA] = RegB;
   1558   }
   1559 
   1560   if (AllUsesCopied) {
   1561     if (!IsEarlyClobber) {
   1562       // Replace other (un-tied) uses of regB with LastCopiedReg.
   1563       for (MachineOperand &MO : MI->operands()) {
   1564         if (MO.isReg() && MO.getReg() == RegB && MO.getSubReg() == SubRegB &&
   1565             MO.isUse()) {
   1566           if (MO.isKill()) {
   1567             MO.setIsKill(false);
   1568             RemovedKillFlag = true;
   1569           }
   1570           MO.setReg(LastCopiedReg);
   1571           MO.setSubReg(0);
   1572         }
   1573       }
   1574     }
   1575 
   1576     // Update live variables for regB.
   1577     if (RemovedKillFlag && LV && LV->getVarInfo(RegB).removeKill(MI)) {
   1578       MachineBasicBlock::iterator PrevMI = MI;
   1579       --PrevMI;
   1580       LV->addVirtualRegisterKilled(RegB, PrevMI);
   1581     }
   1582 
   1583     // Update LiveIntervals.
   1584     if (LIS) {
   1585       LiveInterval &LI = LIS->getInterval(RegB);
   1586       SlotIndex MIIdx = LIS->getInstructionIndex(MI);
   1587       LiveInterval::const_iterator I = LI.find(MIIdx);
   1588       assert(I != LI.end() && "RegB must be live-in to use.");
   1589 
   1590       SlotIndex UseIdx = MIIdx.getRegSlot(IsEarlyClobber);
   1591       if (I->end == UseIdx)
   1592         LI.removeSegment(LastCopyIdx, UseIdx);
   1593     }
   1594 
   1595   } else if (RemovedKillFlag) {
   1596     // Some tied uses of regB matched their destination registers, so
   1597     // regB is still used in this instruction, but a kill flag was
   1598     // removed from a different tied use of regB, so now we need to add
   1599     // a kill flag to one of the remaining uses of regB.
   1600     for (MachineOperand &MO : MI->operands()) {
   1601       if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) {
   1602         MO.setIsKill(true);
   1603         break;
   1604       }
   1605     }
   1606   }
   1607 }
   1608 
   1609 /// Reduce two-address instructions to two operands.
   1610 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) {
   1611   MF = &Func;
   1612   const TargetMachine &TM = MF->getTarget();
   1613   MRI = &MF->getRegInfo();
   1614   TII = MF->getSubtarget().getInstrInfo();
   1615   TRI = MF->getSubtarget().getRegisterInfo();
   1616   InstrItins = MF->getSubtarget().getInstrItineraryData();
   1617   LV = getAnalysisIfAvailable<LiveVariables>();
   1618   LIS = getAnalysisIfAvailable<LiveIntervals>();
   1619   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
   1620   OptLevel = TM.getOptLevel();
   1621 
   1622   bool MadeChange = false;
   1623 
   1624   DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
   1625   DEBUG(dbgs() << "********** Function: "
   1626         << MF->getName() << '\n');
   1627 
   1628   // This pass takes the function out of SSA form.
   1629   MRI->leaveSSA();
   1630 
   1631   TiedOperandMap TiedOperands;
   1632   for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
   1633        MBBI != MBBE; ++MBBI) {
   1634     MBB = &*MBBI;
   1635     unsigned Dist = 0;
   1636     DistanceMap.clear();
   1637     SrcRegMap.clear();
   1638     DstRegMap.clear();
   1639     Processed.clear();
   1640     for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end();
   1641          mi != me; ) {
   1642       MachineBasicBlock::iterator nmi = std::next(mi);
   1643       if (mi->isDebugValue()) {
   1644         mi = nmi;
   1645         continue;
   1646       }
   1647 
   1648       // Expand REG_SEQUENCE instructions. This will position mi at the first
   1649       // expanded instruction.
   1650       if (mi->isRegSequence())
   1651         eliminateRegSequence(mi);
   1652 
   1653       DistanceMap.insert(std::make_pair(mi, ++Dist));
   1654 
   1655       processCopy(&*mi);
   1656 
   1657       // First scan through all the tied register uses in this instruction
   1658       // and record a list of pairs of tied operands for each register.
   1659       if (!collectTiedOperands(mi, TiedOperands)) {
   1660         mi = nmi;
   1661         continue;
   1662       }
   1663 
   1664       ++NumTwoAddressInstrs;
   1665       MadeChange = true;
   1666       DEBUG(dbgs() << '\t' << *mi);
   1667 
   1668       // If the instruction has a single pair of tied operands, try some
   1669       // transformations that may either eliminate the tied operands or
   1670       // improve the opportunities for coalescing away the register copy.
   1671       if (TiedOperands.size() == 1) {
   1672         SmallVectorImpl<std::pair<unsigned, unsigned> > &TiedPairs
   1673           = TiedOperands.begin()->second;
   1674         if (TiedPairs.size() == 1) {
   1675           unsigned SrcIdx = TiedPairs[0].first;
   1676           unsigned DstIdx = TiedPairs[0].second;
   1677           unsigned SrcReg = mi->getOperand(SrcIdx).getReg();
   1678           unsigned DstReg = mi->getOperand(DstIdx).getReg();
   1679           if (SrcReg != DstReg &&
   1680               tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) {
   1681             // The tied operands have been eliminated or shifted further down
   1682             // the block to ease elimination. Continue processing with 'nmi'.
   1683             TiedOperands.clear();
   1684             mi = nmi;
   1685             continue;
   1686           }
   1687         }
   1688       }
   1689 
   1690       // Now iterate over the information collected above.
   1691       for (auto &TO : TiedOperands) {
   1692         processTiedPairs(mi, TO.second, Dist);
   1693         DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
   1694       }
   1695 
   1696       // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
   1697       if (mi->isInsertSubreg()) {
   1698         // From %reg = INSERT_SUBREG %reg, %subreg, subidx
   1699         // To   %reg:subidx = COPY %subreg
   1700         unsigned SubIdx = mi->getOperand(3).getImm();
   1701         mi->RemoveOperand(3);
   1702         assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
   1703         mi->getOperand(0).setSubReg(SubIdx);
   1704         mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef());
   1705         mi->RemoveOperand(1);
   1706         mi->setDesc(TII->get(TargetOpcode::COPY));
   1707         DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
   1708       }
   1709 
   1710       // Clear TiedOperands here instead of at the top of the loop
   1711       // since most instructions do not have tied operands.
   1712       TiedOperands.clear();
   1713       mi = nmi;
   1714     }
   1715   }
   1716 
   1717   if (LIS)
   1718     MF->verify(this, "After two-address instruction pass");
   1719 
   1720   return MadeChange;
   1721 }
   1722 
   1723 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process.
   1724 ///
   1725 /// The instruction is turned into a sequence of sub-register copies:
   1726 ///
   1727 ///   %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1
   1728 ///
   1729 /// Becomes:
   1730 ///
   1731 ///   %dst:ssub0<def,undef> = COPY %v1
   1732 ///   %dst:ssub1<def> = COPY %v2
   1733 ///
   1734 void TwoAddressInstructionPass::
   1735 eliminateRegSequence(MachineBasicBlock::iterator &MBBI) {
   1736   MachineInstr *MI = MBBI;
   1737   unsigned DstReg = MI->getOperand(0).getReg();
   1738   if (MI->getOperand(0).getSubReg() ||
   1739       TargetRegisterInfo::isPhysicalRegister(DstReg) ||
   1740       !(MI->getNumOperands() & 1)) {
   1741     DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
   1742     llvm_unreachable(nullptr);
   1743   }
   1744 
   1745   SmallVector<unsigned, 4> OrigRegs;
   1746   if (LIS) {
   1747     OrigRegs.push_back(MI->getOperand(0).getReg());
   1748     for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2)
   1749       OrigRegs.push_back(MI->getOperand(i).getReg());
   1750   }
   1751 
   1752   bool DefEmitted = false;
   1753   for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
   1754     MachineOperand &UseMO = MI->getOperand(i);
   1755     unsigned SrcReg = UseMO.getReg();
   1756     unsigned SubIdx = MI->getOperand(i+1).getImm();
   1757     // Nothing needs to be inserted for <undef> operands.
   1758     if (UseMO.isUndef())
   1759       continue;
   1760 
   1761     // Defer any kill flag to the last operand using SrcReg. Otherwise, we
   1762     // might insert a COPY that uses SrcReg after is was killed.
   1763     bool isKill = UseMO.isKill();
   1764     if (isKill)
   1765       for (unsigned j = i + 2; j < e; j += 2)
   1766         if (MI->getOperand(j).getReg() == SrcReg) {
   1767           MI->getOperand(j).setIsKill();
   1768           UseMO.setIsKill(false);
   1769           isKill = false;
   1770           break;
   1771         }
   1772 
   1773     // Insert the sub-register copy.
   1774     MachineInstr *CopyMI = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
   1775                                    TII->get(TargetOpcode::COPY))
   1776       .addReg(DstReg, RegState::Define, SubIdx)
   1777       .addOperand(UseMO);
   1778 
   1779     // The first def needs an <undef> flag because there is no live register
   1780     // before it.
   1781     if (!DefEmitted) {
   1782       CopyMI->getOperand(0).setIsUndef(true);
   1783       // Return an iterator pointing to the first inserted instr.
   1784       MBBI = CopyMI;
   1785     }
   1786     DefEmitted = true;
   1787 
   1788     // Update LiveVariables' kill info.
   1789     if (LV && isKill && !TargetRegisterInfo::isPhysicalRegister(SrcReg))
   1790       LV->replaceKillInstruction(SrcReg, MI, CopyMI);
   1791 
   1792     DEBUG(dbgs() << "Inserted: " << *CopyMI);
   1793   }
   1794 
   1795   MachineBasicBlock::iterator EndMBBI =
   1796       std::next(MachineBasicBlock::iterator(MI));
   1797 
   1798   if (!DefEmitted) {
   1799     DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF");
   1800     MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
   1801     for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j)
   1802       MI->RemoveOperand(j);
   1803   } else {
   1804     DEBUG(dbgs() << "Eliminated: " << *MI);
   1805     MI->eraseFromParent();
   1806   }
   1807 
   1808   // Udpate LiveIntervals.
   1809   if (LIS)
   1810     LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs);
   1811 }
   1812