1 //===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the TwoAddress instruction pass which is used 11 // by most register allocators. Two-Address instructions are rewritten 12 // from: 13 // 14 // A = B op C 15 // 16 // to: 17 // 18 // A = B 19 // A op= C 20 // 21 // Note that if a register allocator chooses to use this pass, that it 22 // has to be capable of handling the non-SSA nature of these rewritten 23 // virtual registers. 24 // 25 // It is also worth noting that the duplicate operand of the two 26 // address instruction is removed. 27 // 28 //===----------------------------------------------------------------------===// 29 30 #include "llvm/CodeGen/Passes.h" 31 #include "llvm/ADT/BitVector.h" 32 #include "llvm/ADT/DenseMap.h" 33 #include "llvm/ADT/STLExtras.h" 34 #include "llvm/ADT/SmallSet.h" 35 #include "llvm/ADT/Statistic.h" 36 #include "llvm/Analysis/AliasAnalysis.h" 37 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 38 #include "llvm/CodeGen/LiveVariables.h" 39 #include "llvm/CodeGen/MachineFunctionPass.h" 40 #include "llvm/CodeGen/MachineInstr.h" 41 #include "llvm/CodeGen/MachineInstrBuilder.h" 42 #include "llvm/CodeGen/MachineRegisterInfo.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/MC/MCInstrItineraries.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include "llvm/Target/TargetInstrInfo.h" 50 #include "llvm/Target/TargetMachine.h" 51 #include "llvm/Target/TargetRegisterInfo.h" 52 #include "llvm/Target/TargetSubtargetInfo.h" 53 using namespace llvm; 54 55 #define DEBUG_TYPE "twoaddrinstr" 56 57 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions"); 58 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce"); 59 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted"); 60 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address"); 61 STATISTIC(Num3AddrSunk, "Number of 3-address instructions sunk"); 62 STATISTIC(NumReSchedUps, "Number of instructions re-scheduled up"); 63 STATISTIC(NumReSchedDowns, "Number of instructions re-scheduled down"); 64 65 // Temporary flag to disable rescheduling. 66 static cl::opt<bool> 67 EnableRescheduling("twoaddr-reschedule", 68 cl::desc("Coalesce copies by rescheduling (default=true)"), 69 cl::init(true), cl::Hidden); 70 71 namespace { 72 class TwoAddressInstructionPass : public MachineFunctionPass { 73 MachineFunction *MF; 74 const TargetInstrInfo *TII; 75 const TargetRegisterInfo *TRI; 76 const InstrItineraryData *InstrItins; 77 MachineRegisterInfo *MRI; 78 LiveVariables *LV; 79 LiveIntervals *LIS; 80 AliasAnalysis *AA; 81 CodeGenOpt::Level OptLevel; 82 83 // The current basic block being processed. 84 MachineBasicBlock *MBB; 85 86 // Keep track the distance of a MI from the start of the current basic block. 87 DenseMap<MachineInstr*, unsigned> DistanceMap; 88 89 // Set of already processed instructions in the current block. 90 SmallPtrSet<MachineInstr*, 8> Processed; 91 92 // A map from virtual registers to physical registers which are likely targets 93 // to be coalesced to due to copies from physical registers to virtual 94 // registers. e.g. v1024 = move r0. 95 DenseMap<unsigned, unsigned> SrcRegMap; 96 97 // A map from virtual registers to physical registers which are likely targets 98 // to be coalesced to due to copies to physical registers from virtual 99 // registers. e.g. r1 = move v1024. 100 DenseMap<unsigned, unsigned> DstRegMap; 101 102 bool sink3AddrInstruction(MachineInstr *MI, unsigned Reg, 103 MachineBasicBlock::iterator OldPos); 104 105 bool isRevCopyChain(unsigned FromReg, unsigned ToReg, int Maxlen); 106 107 bool noUseAfterLastDef(unsigned Reg, unsigned Dist, unsigned &LastDef); 108 109 bool isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC, 110 MachineInstr *MI, unsigned Dist); 111 112 bool commuteInstruction(MachineInstr *MI, 113 unsigned RegBIdx, unsigned RegCIdx, unsigned Dist); 114 115 bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB); 116 117 bool convertInstTo3Addr(MachineBasicBlock::iterator &mi, 118 MachineBasicBlock::iterator &nmi, 119 unsigned RegA, unsigned RegB, unsigned Dist); 120 121 bool isDefTooClose(unsigned Reg, unsigned Dist, MachineInstr *MI); 122 123 bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 124 MachineBasicBlock::iterator &nmi, 125 unsigned Reg); 126 bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 127 MachineBasicBlock::iterator &nmi, 128 unsigned Reg); 129 130 bool tryInstructionTransform(MachineBasicBlock::iterator &mi, 131 MachineBasicBlock::iterator &nmi, 132 unsigned SrcIdx, unsigned DstIdx, 133 unsigned Dist, bool shouldOnlyCommute); 134 135 bool tryInstructionCommute(MachineInstr *MI, 136 unsigned DstOpIdx, 137 unsigned BaseOpIdx, 138 bool BaseOpKilled, 139 unsigned Dist); 140 void scanUses(unsigned DstReg); 141 142 void processCopy(MachineInstr *MI); 143 144 typedef SmallVector<std::pair<unsigned, unsigned>, 4> TiedPairList; 145 typedef SmallDenseMap<unsigned, TiedPairList> TiedOperandMap; 146 bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&); 147 void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist); 148 void eliminateRegSequence(MachineBasicBlock::iterator&); 149 150 public: 151 static char ID; // Pass identification, replacement for typeid 152 TwoAddressInstructionPass() : MachineFunctionPass(ID) { 153 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry()); 154 } 155 156 void getAnalysisUsage(AnalysisUsage &AU) const override { 157 AU.setPreservesCFG(); 158 AU.addRequired<AAResultsWrapperPass>(); 159 AU.addPreserved<LiveVariables>(); 160 AU.addPreserved<SlotIndexes>(); 161 AU.addPreserved<LiveIntervals>(); 162 AU.addPreservedID(MachineLoopInfoID); 163 AU.addPreservedID(MachineDominatorsID); 164 MachineFunctionPass::getAnalysisUsage(AU); 165 } 166 167 /// Pass entry point. 168 bool runOnMachineFunction(MachineFunction&) override; 169 }; 170 } // end anonymous namespace 171 172 char TwoAddressInstructionPass::ID = 0; 173 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction", 174 "Two-Address instruction pass", false, false) 175 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 176 INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction", 177 "Two-Address instruction pass", false, false) 178 179 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID; 180 181 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, LiveIntervals *LIS); 182 183 /// A two-address instruction has been converted to a three-address instruction 184 /// to avoid clobbering a register. Try to sink it past the instruction that 185 /// would kill the above mentioned register to reduce register pressure. 186 bool TwoAddressInstructionPass:: 187 sink3AddrInstruction(MachineInstr *MI, unsigned SavedReg, 188 MachineBasicBlock::iterator OldPos) { 189 // FIXME: Shouldn't we be trying to do this before we three-addressify the 190 // instruction? After this transformation is done, we no longer need 191 // the instruction to be in three-address form. 192 193 // Check if it's safe to move this instruction. 194 bool SeenStore = true; // Be conservative. 195 if (!MI->isSafeToMove(AA, SeenStore)) 196 return false; 197 198 unsigned DefReg = 0; 199 SmallSet<unsigned, 4> UseRegs; 200 201 for (const MachineOperand &MO : MI->operands()) { 202 if (!MO.isReg()) 203 continue; 204 unsigned MOReg = MO.getReg(); 205 if (!MOReg) 206 continue; 207 if (MO.isUse() && MOReg != SavedReg) 208 UseRegs.insert(MO.getReg()); 209 if (!MO.isDef()) 210 continue; 211 if (MO.isImplicit()) 212 // Don't try to move it if it implicitly defines a register. 213 return false; 214 if (DefReg) 215 // For now, don't move any instructions that define multiple registers. 216 return false; 217 DefReg = MO.getReg(); 218 } 219 220 // Find the instruction that kills SavedReg. 221 MachineInstr *KillMI = nullptr; 222 if (LIS) { 223 LiveInterval &LI = LIS->getInterval(SavedReg); 224 assert(LI.end() != LI.begin() && 225 "Reg should not have empty live interval."); 226 227 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 228 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 229 if (I != LI.end() && I->start < MBBEndIdx) 230 return false; 231 232 --I; 233 KillMI = LIS->getInstructionFromIndex(I->end); 234 } 235 if (!KillMI) { 236 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SavedReg)) { 237 if (!UseMO.isKill()) 238 continue; 239 KillMI = UseMO.getParent(); 240 break; 241 } 242 } 243 244 // If we find the instruction that kills SavedReg, and it is in an 245 // appropriate location, we can try to sink the current instruction 246 // past it. 247 if (!KillMI || KillMI->getParent() != MBB || KillMI == MI || 248 KillMI == OldPos || KillMI->isTerminator()) 249 return false; 250 251 // If any of the definitions are used by another instruction between the 252 // position and the kill use, then it's not safe to sink it. 253 // 254 // FIXME: This can be sped up if there is an easy way to query whether an 255 // instruction is before or after another instruction. Then we can use 256 // MachineRegisterInfo def / use instead. 257 MachineOperand *KillMO = nullptr; 258 MachineBasicBlock::iterator KillPos = KillMI; 259 ++KillPos; 260 261 unsigned NumVisited = 0; 262 for (MachineBasicBlock::iterator I = std::next(OldPos); I != KillPos; ++I) { 263 MachineInstr *OtherMI = I; 264 // DBG_VALUE cannot be counted against the limit. 265 if (OtherMI->isDebugValue()) 266 continue; 267 if (NumVisited > 30) // FIXME: Arbitrary limit to reduce compile time cost. 268 return false; 269 ++NumVisited; 270 for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) { 271 MachineOperand &MO = OtherMI->getOperand(i); 272 if (!MO.isReg()) 273 continue; 274 unsigned MOReg = MO.getReg(); 275 if (!MOReg) 276 continue; 277 if (DefReg == MOReg) 278 return false; 279 280 if (MO.isKill() || (LIS && isPlainlyKilled(OtherMI, MOReg, LIS))) { 281 if (OtherMI == KillMI && MOReg == SavedReg) 282 // Save the operand that kills the register. We want to unset the kill 283 // marker if we can sink MI past it. 284 KillMO = &MO; 285 else if (UseRegs.count(MOReg)) 286 // One of the uses is killed before the destination. 287 return false; 288 } 289 } 290 } 291 assert(KillMO && "Didn't find kill"); 292 293 if (!LIS) { 294 // Update kill and LV information. 295 KillMO->setIsKill(false); 296 KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI); 297 KillMO->setIsKill(true); 298 299 if (LV) 300 LV->replaceKillInstruction(SavedReg, KillMI, MI); 301 } 302 303 // Move instruction to its destination. 304 MBB->remove(MI); 305 MBB->insert(KillPos, MI); 306 307 if (LIS) 308 LIS->handleMove(MI); 309 310 ++Num3AddrSunk; 311 return true; 312 } 313 314 /// Return the MachineInstr* if it is the single def of the Reg in current BB. 315 static MachineInstr *getSingleDef(unsigned Reg, MachineBasicBlock *BB, 316 const MachineRegisterInfo *MRI) { 317 MachineInstr *Ret = nullptr; 318 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 319 if (DefMI.getParent() != BB || DefMI.isDebugValue()) 320 continue; 321 if (!Ret) 322 Ret = &DefMI; 323 else if (Ret != &DefMI) 324 return nullptr; 325 } 326 return Ret; 327 } 328 329 /// Check if there is a reversed copy chain from FromReg to ToReg: 330 /// %Tmp1 = copy %Tmp2; 331 /// %FromReg = copy %Tmp1; 332 /// %ToReg = add %FromReg ... 333 /// %Tmp2 = copy %ToReg; 334 /// MaxLen specifies the maximum length of the copy chain the func 335 /// can walk through. 336 bool TwoAddressInstructionPass::isRevCopyChain(unsigned FromReg, unsigned ToReg, 337 int Maxlen) { 338 unsigned TmpReg = FromReg; 339 for (int i = 0; i < Maxlen; i++) { 340 MachineInstr *Def = getSingleDef(TmpReg, MBB, MRI); 341 if (!Def || !Def->isCopy()) 342 return false; 343 344 TmpReg = Def->getOperand(1).getReg(); 345 346 if (TmpReg == ToReg) 347 return true; 348 } 349 return false; 350 } 351 352 /// Return true if there are no intervening uses between the last instruction 353 /// in the MBB that defines the specified register and the two-address 354 /// instruction which is being processed. It also returns the last def location 355 /// by reference. 356 bool TwoAddressInstructionPass::noUseAfterLastDef(unsigned Reg, unsigned Dist, 357 unsigned &LastDef) { 358 LastDef = 0; 359 unsigned LastUse = Dist; 360 for (MachineOperand &MO : MRI->reg_operands(Reg)) { 361 MachineInstr *MI = MO.getParent(); 362 if (MI->getParent() != MBB || MI->isDebugValue()) 363 continue; 364 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 365 if (DI == DistanceMap.end()) 366 continue; 367 if (MO.isUse() && DI->second < LastUse) 368 LastUse = DI->second; 369 if (MO.isDef() && DI->second > LastDef) 370 LastDef = DI->second; 371 } 372 373 return !(LastUse > LastDef && LastUse < Dist); 374 } 375 376 /// Return true if the specified MI is a copy instruction or an extract_subreg 377 /// instruction. It also returns the source and destination registers and 378 /// whether they are physical registers by reference. 379 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII, 380 unsigned &SrcReg, unsigned &DstReg, 381 bool &IsSrcPhys, bool &IsDstPhys) { 382 SrcReg = 0; 383 DstReg = 0; 384 if (MI.isCopy()) { 385 DstReg = MI.getOperand(0).getReg(); 386 SrcReg = MI.getOperand(1).getReg(); 387 } else if (MI.isInsertSubreg() || MI.isSubregToReg()) { 388 DstReg = MI.getOperand(0).getReg(); 389 SrcReg = MI.getOperand(2).getReg(); 390 } else 391 return false; 392 393 IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg); 394 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 395 return true; 396 } 397 398 /// Test if the given register value, which is used by the 399 /// given instruction, is killed by the given instruction. 400 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, 401 LiveIntervals *LIS) { 402 if (LIS && TargetRegisterInfo::isVirtualRegister(Reg) && 403 !LIS->isNotInMIMap(MI)) { 404 // FIXME: Sometimes tryInstructionTransform() will add instructions and 405 // test whether they can be folded before keeping them. In this case it 406 // sets a kill before recursively calling tryInstructionTransform() again. 407 // If there is no interval available, we assume that this instruction is 408 // one of those. A kill flag is manually inserted on the operand so the 409 // check below will handle it. 410 LiveInterval &LI = LIS->getInterval(Reg); 411 // This is to match the kill flag version where undefs don't have kill 412 // flags. 413 if (!LI.hasAtLeastOneValue()) 414 return false; 415 416 SlotIndex useIdx = LIS->getInstructionIndex(MI); 417 LiveInterval::const_iterator I = LI.find(useIdx); 418 assert(I != LI.end() && "Reg must be live-in to use."); 419 return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx); 420 } 421 422 return MI->killsRegister(Reg); 423 } 424 425 /// Test if the given register value, which is used by the given 426 /// instruction, is killed by the given instruction. This looks through 427 /// coalescable copies to see if the original value is potentially not killed. 428 /// 429 /// For example, in this code: 430 /// 431 /// %reg1034 = copy %reg1024 432 /// %reg1035 = copy %reg1025<kill> 433 /// %reg1036 = add %reg1034<kill>, %reg1035<kill> 434 /// 435 /// %reg1034 is not considered to be killed, since it is copied from a 436 /// register which is not killed. Treating it as not killed lets the 437 /// normal heuristics commute the (two-address) add, which lets 438 /// coalescing eliminate the extra copy. 439 /// 440 /// If allowFalsePositives is true then likely kills are treated as kills even 441 /// if it can't be proven that they are kills. 442 static bool isKilled(MachineInstr &MI, unsigned Reg, 443 const MachineRegisterInfo *MRI, 444 const TargetInstrInfo *TII, 445 LiveIntervals *LIS, 446 bool allowFalsePositives) { 447 MachineInstr *DefMI = &MI; 448 for (;;) { 449 // All uses of physical registers are likely to be kills. 450 if (TargetRegisterInfo::isPhysicalRegister(Reg) && 451 (allowFalsePositives || MRI->hasOneUse(Reg))) 452 return true; 453 if (!isPlainlyKilled(DefMI, Reg, LIS)) 454 return false; 455 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 456 return true; 457 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg); 458 // If there are multiple defs, we can't do a simple analysis, so just 459 // go with what the kill flag says. 460 if (std::next(Begin) != MRI->def_end()) 461 return true; 462 DefMI = Begin->getParent(); 463 bool IsSrcPhys, IsDstPhys; 464 unsigned SrcReg, DstReg; 465 // If the def is something other than a copy, then it isn't going to 466 // be coalesced, so follow the kill flag. 467 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 468 return true; 469 Reg = SrcReg; 470 } 471 } 472 473 /// Return true if the specified MI uses the specified register as a two-address 474 /// use. If so, return the destination register by reference. 475 static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) { 476 for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) { 477 const MachineOperand &MO = MI.getOperand(i); 478 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg) 479 continue; 480 unsigned ti; 481 if (MI.isRegTiedToDefOperand(i, &ti)) { 482 DstReg = MI.getOperand(ti).getReg(); 483 return true; 484 } 485 } 486 return false; 487 } 488 489 /// Given a register, if has a single in-basic block use, return the use 490 /// instruction if it's a copy or a two-address use. 491 static 492 MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB, 493 MachineRegisterInfo *MRI, 494 const TargetInstrInfo *TII, 495 bool &IsCopy, 496 unsigned &DstReg, bool &IsDstPhys) { 497 if (!MRI->hasOneNonDBGUse(Reg)) 498 // None or more than one use. 499 return nullptr; 500 MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(Reg); 501 if (UseMI.getParent() != MBB) 502 return nullptr; 503 unsigned SrcReg; 504 bool IsSrcPhys; 505 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) { 506 IsCopy = true; 507 return &UseMI; 508 } 509 IsDstPhys = false; 510 if (isTwoAddrUse(UseMI, Reg, DstReg)) { 511 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); 512 return &UseMI; 513 } 514 return nullptr; 515 } 516 517 /// Return the physical register the specified virtual register might be mapped 518 /// to. 519 static unsigned 520 getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) { 521 while (TargetRegisterInfo::isVirtualRegister(Reg)) { 522 DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg); 523 if (SI == RegMap.end()) 524 return 0; 525 Reg = SI->second; 526 } 527 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 528 return Reg; 529 return 0; 530 } 531 532 /// Return true if the two registers are equal or aliased. 533 static bool 534 regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) { 535 if (RegA == RegB) 536 return true; 537 if (!RegA || !RegB) 538 return false; 539 return TRI->regsOverlap(RegA, RegB); 540 } 541 542 543 /// Return true if it's potentially profitable to commute the two-address 544 /// instruction that's being processed. 545 bool 546 TwoAddressInstructionPass:: 547 isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC, 548 MachineInstr *MI, unsigned Dist) { 549 if (OptLevel == CodeGenOpt::None) 550 return false; 551 552 // Determine if it's profitable to commute this two address instruction. In 553 // general, we want no uses between this instruction and the definition of 554 // the two-address register. 555 // e.g. 556 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1 557 // %reg1029<def> = MOV8rr %reg1028 558 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead> 559 // insert => %reg1030<def> = MOV8rr %reg1028 560 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead> 561 // In this case, it might not be possible to coalesce the second MOV8rr 562 // instruction if the first one is coalesced. So it would be profitable to 563 // commute it: 564 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1 565 // %reg1029<def> = MOV8rr %reg1028 566 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead> 567 // insert => %reg1030<def> = MOV8rr %reg1029 568 // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead> 569 570 if (!isPlainlyKilled(MI, regC, LIS)) 571 return false; 572 573 // Ok, we have something like: 574 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead> 575 // let's see if it's worth commuting it. 576 577 // Look for situations like this: 578 // %reg1024<def> = MOV r1 579 // %reg1025<def> = MOV r0 580 // %reg1026<def> = ADD %reg1024, %reg1025 581 // r0 = MOV %reg1026 582 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy. 583 unsigned ToRegA = getMappedReg(regA, DstRegMap); 584 if (ToRegA) { 585 unsigned FromRegB = getMappedReg(regB, SrcRegMap); 586 unsigned FromRegC = getMappedReg(regC, SrcRegMap); 587 bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI); 588 bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI); 589 590 // Compute if any of the following are true: 591 // -RegB is not tied to a register and RegC is compatible with RegA. 592 // -RegB is tied to the wrong physical register, but RegC is. 593 // -RegB is tied to the wrong physical register, and RegC isn't tied. 594 if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC))) 595 return true; 596 // Don't compute if any of the following are true: 597 // -RegC is not tied to a register and RegB is compatible with RegA. 598 // -RegC is tied to the wrong physical register, but RegB is. 599 // -RegC is tied to the wrong physical register, and RegB isn't tied. 600 if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB))) 601 return false; 602 } 603 604 // If there is a use of regC between its last def (could be livein) and this 605 // instruction, then bail. 606 unsigned LastDefC = 0; 607 if (!noUseAfterLastDef(regC, Dist, LastDefC)) 608 return false; 609 610 // If there is a use of regB between its last def (could be livein) and this 611 // instruction, then go ahead and make this transformation. 612 unsigned LastDefB = 0; 613 if (!noUseAfterLastDef(regB, Dist, LastDefB)) 614 return true; 615 616 // Look for situation like this: 617 // %reg101 = MOV %reg100 618 // %reg102 = ... 619 // %reg103 = ADD %reg102, %reg101 620 // ... = %reg103 ... 621 // %reg100 = MOV %reg103 622 // If there is a reversed copy chain from reg101 to reg103, commute the ADD 623 // to eliminate an otherwise unavoidable copy. 624 // FIXME: 625 // We can extend the logic further: If an pair of operands in an insn has 626 // been merged, the insn could be regarded as a virtual copy, and the virtual 627 // copy could also be used to construct a copy chain. 628 // To more generally minimize register copies, ideally the logic of two addr 629 // instruction pass should be integrated with register allocation pass where 630 // interference graph is available. 631 if (isRevCopyChain(regC, regA, 3)) 632 return true; 633 634 if (isRevCopyChain(regB, regA, 3)) 635 return false; 636 637 // Since there are no intervening uses for both registers, then commute 638 // if the def of regC is closer. Its live interval is shorter. 639 return LastDefB && LastDefC && LastDefC > LastDefB; 640 } 641 642 /// Commute a two-address instruction and update the basic block, distance map, 643 /// and live variables if needed. Return true if it is successful. 644 bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI, 645 unsigned RegBIdx, 646 unsigned RegCIdx, 647 unsigned Dist) { 648 unsigned RegC = MI->getOperand(RegCIdx).getReg(); 649 DEBUG(dbgs() << "2addr: COMMUTING : " << *MI); 650 MachineInstr *NewMI = TII->commuteInstruction(MI, false, RegBIdx, RegCIdx); 651 652 if (NewMI == nullptr) { 653 DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n"); 654 return false; 655 } 656 657 DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI); 658 assert(NewMI == MI && 659 "TargetInstrInfo::commuteInstruction() should not return a new " 660 "instruction unless it was requested."); 661 662 // Update source register map. 663 unsigned FromRegC = getMappedReg(RegC, SrcRegMap); 664 if (FromRegC) { 665 unsigned RegA = MI->getOperand(0).getReg(); 666 SrcRegMap[RegA] = FromRegC; 667 } 668 669 return true; 670 } 671 672 /// Return true if it is profitable to convert the given 2-address instruction 673 /// to a 3-address one. 674 bool 675 TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){ 676 // Look for situations like this: 677 // %reg1024<def> = MOV r1 678 // %reg1025<def> = MOV r0 679 // %reg1026<def> = ADD %reg1024, %reg1025 680 // r2 = MOV %reg1026 681 // Turn ADD into a 3-address instruction to avoid a copy. 682 unsigned FromRegB = getMappedReg(RegB, SrcRegMap); 683 if (!FromRegB) 684 return false; 685 unsigned ToRegA = getMappedReg(RegA, DstRegMap); 686 return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI)); 687 } 688 689 /// Convert the specified two-address instruction into a three address one. 690 /// Return true if this transformation was successful. 691 bool 692 TwoAddressInstructionPass::convertInstTo3Addr(MachineBasicBlock::iterator &mi, 693 MachineBasicBlock::iterator &nmi, 694 unsigned RegA, unsigned RegB, 695 unsigned Dist) { 696 // FIXME: Why does convertToThreeAddress() need an iterator reference? 697 MachineFunction::iterator MFI = MBB->getIterator(); 698 MachineInstr *NewMI = TII->convertToThreeAddress(MFI, mi, LV); 699 assert(MBB->getIterator() == MFI && 700 "convertToThreeAddress changed iterator reference"); 701 if (!NewMI) 702 return false; 703 704 DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi); 705 DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI); 706 bool Sunk = false; 707 708 if (LIS) 709 LIS->ReplaceMachineInstrInMaps(mi, NewMI); 710 711 if (NewMI->findRegisterUseOperand(RegB, false, TRI)) 712 // FIXME: Temporary workaround. If the new instruction doesn't 713 // uses RegB, convertToThreeAddress must have created more 714 // then one instruction. 715 Sunk = sink3AddrInstruction(NewMI, RegB, mi); 716 717 MBB->erase(mi); // Nuke the old inst. 718 719 if (!Sunk) { 720 DistanceMap.insert(std::make_pair(NewMI, Dist)); 721 mi = NewMI; 722 nmi = std::next(mi); 723 } 724 725 // Update source and destination register maps. 726 SrcRegMap.erase(RegA); 727 DstRegMap.erase(RegB); 728 return true; 729 } 730 731 /// Scan forward recursively for only uses, update maps if the use is a copy or 732 /// a two-address instruction. 733 void 734 TwoAddressInstructionPass::scanUses(unsigned DstReg) { 735 SmallVector<unsigned, 4> VirtRegPairs; 736 bool IsDstPhys; 737 bool IsCopy = false; 738 unsigned NewReg = 0; 739 unsigned Reg = DstReg; 740 while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy, 741 NewReg, IsDstPhys)) { 742 if (IsCopy && !Processed.insert(UseMI).second) 743 break; 744 745 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI); 746 if (DI != DistanceMap.end()) 747 // Earlier in the same MBB.Reached via a back edge. 748 break; 749 750 if (IsDstPhys) { 751 VirtRegPairs.push_back(NewReg); 752 break; 753 } 754 bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second; 755 if (!isNew) 756 assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!"); 757 VirtRegPairs.push_back(NewReg); 758 Reg = NewReg; 759 } 760 761 if (!VirtRegPairs.empty()) { 762 unsigned ToReg = VirtRegPairs.back(); 763 VirtRegPairs.pop_back(); 764 while (!VirtRegPairs.empty()) { 765 unsigned FromReg = VirtRegPairs.back(); 766 VirtRegPairs.pop_back(); 767 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second; 768 if (!isNew) 769 assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!"); 770 ToReg = FromReg; 771 } 772 bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second; 773 if (!isNew) 774 assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!"); 775 } 776 } 777 778 /// If the specified instruction is not yet processed, process it if it's a 779 /// copy. For a copy instruction, we find the physical registers the 780 /// source and destination registers might be mapped to. These are kept in 781 /// point-to maps used to determine future optimizations. e.g. 782 /// v1024 = mov r0 783 /// v1025 = mov r1 784 /// v1026 = add v1024, v1025 785 /// r1 = mov r1026 786 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially 787 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is 788 /// potentially joined with r1 on the output side. It's worthwhile to commute 789 /// 'add' to eliminate a copy. 790 void TwoAddressInstructionPass::processCopy(MachineInstr *MI) { 791 if (Processed.count(MI)) 792 return; 793 794 bool IsSrcPhys, IsDstPhys; 795 unsigned SrcReg, DstReg; 796 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 797 return; 798 799 if (IsDstPhys && !IsSrcPhys) 800 DstRegMap.insert(std::make_pair(SrcReg, DstReg)); 801 else if (!IsDstPhys && IsSrcPhys) { 802 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second; 803 if (!isNew) 804 assert(SrcRegMap[DstReg] == SrcReg && 805 "Can't map to two src physical registers!"); 806 807 scanUses(DstReg); 808 } 809 810 Processed.insert(MI); 811 return; 812 } 813 814 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 815 /// consider moving the instruction below the kill instruction in order to 816 /// eliminate the need for the copy. 817 bool TwoAddressInstructionPass:: 818 rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 819 MachineBasicBlock::iterator &nmi, 820 unsigned Reg) { 821 // Bail immediately if we don't have LV or LIS available. We use them to find 822 // kills efficiently. 823 if (!LV && !LIS) 824 return false; 825 826 MachineInstr *MI = &*mi; 827 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 828 if (DI == DistanceMap.end()) 829 // Must be created from unfolded load. Don't waste time trying this. 830 return false; 831 832 MachineInstr *KillMI = nullptr; 833 if (LIS) { 834 LiveInterval &LI = LIS->getInterval(Reg); 835 assert(LI.end() != LI.begin() && 836 "Reg should not have empty live interval."); 837 838 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 839 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 840 if (I != LI.end() && I->start < MBBEndIdx) 841 return false; 842 843 --I; 844 KillMI = LIS->getInstructionFromIndex(I->end); 845 } else { 846 KillMI = LV->getVarInfo(Reg).findKill(MBB); 847 } 848 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 849 // Don't mess with copies, they may be coalesced later. 850 return false; 851 852 if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() || 853 KillMI->isBranch() || KillMI->isTerminator()) 854 // Don't move pass calls, etc. 855 return false; 856 857 unsigned DstReg; 858 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 859 return false; 860 861 bool SeenStore = true; 862 if (!MI->isSafeToMove(AA, SeenStore)) 863 return false; 864 865 if (TII->getInstrLatency(InstrItins, MI) > 1) 866 // FIXME: Needs more sophisticated heuristics. 867 return false; 868 869 SmallSet<unsigned, 2> Uses; 870 SmallSet<unsigned, 2> Kills; 871 SmallSet<unsigned, 2> Defs; 872 for (const MachineOperand &MO : MI->operands()) { 873 if (!MO.isReg()) 874 continue; 875 unsigned MOReg = MO.getReg(); 876 if (!MOReg) 877 continue; 878 if (MO.isDef()) 879 Defs.insert(MOReg); 880 else { 881 Uses.insert(MOReg); 882 if (MOReg != Reg && (MO.isKill() || 883 (LIS && isPlainlyKilled(MI, MOReg, LIS)))) 884 Kills.insert(MOReg); 885 } 886 } 887 888 // Move the copies connected to MI down as well. 889 MachineBasicBlock::iterator Begin = MI; 890 MachineBasicBlock::iterator AfterMI = std::next(Begin); 891 892 MachineBasicBlock::iterator End = AfterMI; 893 while (End->isCopy() && Defs.count(End->getOperand(1).getReg())) { 894 Defs.insert(End->getOperand(0).getReg()); 895 ++End; 896 } 897 898 // Check if the reschedule will not break depedencies. 899 unsigned NumVisited = 0; 900 MachineBasicBlock::iterator KillPos = KillMI; 901 ++KillPos; 902 for (MachineBasicBlock::iterator I = End; I != KillPos; ++I) { 903 MachineInstr *OtherMI = I; 904 // DBG_VALUE cannot be counted against the limit. 905 if (OtherMI->isDebugValue()) 906 continue; 907 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 908 return false; 909 ++NumVisited; 910 if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() || 911 OtherMI->isBranch() || OtherMI->isTerminator()) 912 // Don't move pass calls, etc. 913 return false; 914 for (const MachineOperand &MO : OtherMI->operands()) { 915 if (!MO.isReg()) 916 continue; 917 unsigned MOReg = MO.getReg(); 918 if (!MOReg) 919 continue; 920 if (MO.isDef()) { 921 if (Uses.count(MOReg)) 922 // Physical register use would be clobbered. 923 return false; 924 if (!MO.isDead() && Defs.count(MOReg)) 925 // May clobber a physical register def. 926 // FIXME: This may be too conservative. It's ok if the instruction 927 // is sunken completely below the use. 928 return false; 929 } else { 930 if (Defs.count(MOReg)) 931 return false; 932 bool isKill = MO.isKill() || 933 (LIS && isPlainlyKilled(OtherMI, MOReg, LIS)); 934 if (MOReg != Reg && 935 ((isKill && Uses.count(MOReg)) || Kills.count(MOReg))) 936 // Don't want to extend other live ranges and update kills. 937 return false; 938 if (MOReg == Reg && !isKill) 939 // We can't schedule across a use of the register in question. 940 return false; 941 // Ensure that if this is register in question, its the kill we expect. 942 assert((MOReg != Reg || OtherMI == KillMI) && 943 "Found multiple kills of a register in a basic block"); 944 } 945 } 946 } 947 948 // Move debug info as well. 949 while (Begin != MBB->begin() && std::prev(Begin)->isDebugValue()) 950 --Begin; 951 952 nmi = End; 953 MachineBasicBlock::iterator InsertPos = KillPos; 954 if (LIS) { 955 // We have to move the copies first so that the MBB is still well-formed 956 // when calling handleMove(). 957 for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) { 958 MachineInstr *CopyMI = MBBI; 959 ++MBBI; 960 MBB->splice(InsertPos, MBB, CopyMI); 961 LIS->handleMove(CopyMI); 962 InsertPos = CopyMI; 963 } 964 End = std::next(MachineBasicBlock::iterator(MI)); 965 } 966 967 // Copies following MI may have been moved as well. 968 MBB->splice(InsertPos, MBB, Begin, End); 969 DistanceMap.erase(DI); 970 971 // Update live variables 972 if (LIS) { 973 LIS->handleMove(MI); 974 } else { 975 LV->removeVirtualRegisterKilled(Reg, KillMI); 976 LV->addVirtualRegisterKilled(Reg, MI); 977 } 978 979 DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI); 980 return true; 981 } 982 983 /// Return true if the re-scheduling will put the given instruction too close 984 /// to the defs of its register dependencies. 985 bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist, 986 MachineInstr *MI) { 987 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 988 if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike()) 989 continue; 990 if (&DefMI == MI) 991 return true; // MI is defining something KillMI uses 992 DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI); 993 if (DDI == DistanceMap.end()) 994 return true; // Below MI 995 unsigned DefDist = DDI->second; 996 assert(Dist > DefDist && "Visited def already?"); 997 if (TII->getInstrLatency(InstrItins, &DefMI) > (Dist - DefDist)) 998 return true; 999 } 1000 return false; 1001 } 1002 1003 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 1004 /// consider moving the kill instruction above the current two-address 1005 /// instruction in order to eliminate the need for the copy. 1006 bool TwoAddressInstructionPass:: 1007 rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 1008 MachineBasicBlock::iterator &nmi, 1009 unsigned Reg) { 1010 // Bail immediately if we don't have LV or LIS available. We use them to find 1011 // kills efficiently. 1012 if (!LV && !LIS) 1013 return false; 1014 1015 MachineInstr *MI = &*mi; 1016 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 1017 if (DI == DistanceMap.end()) 1018 // Must be created from unfolded load. Don't waste time trying this. 1019 return false; 1020 1021 MachineInstr *KillMI = nullptr; 1022 if (LIS) { 1023 LiveInterval &LI = LIS->getInterval(Reg); 1024 assert(LI.end() != LI.begin() && 1025 "Reg should not have empty live interval."); 1026 1027 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 1028 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 1029 if (I != LI.end() && I->start < MBBEndIdx) 1030 return false; 1031 1032 --I; 1033 KillMI = LIS->getInstructionFromIndex(I->end); 1034 } else { 1035 KillMI = LV->getVarInfo(Reg).findKill(MBB); 1036 } 1037 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 1038 // Don't mess with copies, they may be coalesced later. 1039 return false; 1040 1041 unsigned DstReg; 1042 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 1043 return false; 1044 1045 bool SeenStore = true; 1046 if (!KillMI->isSafeToMove(AA, SeenStore)) 1047 return false; 1048 1049 SmallSet<unsigned, 2> Uses; 1050 SmallSet<unsigned, 2> Kills; 1051 SmallSet<unsigned, 2> Defs; 1052 SmallSet<unsigned, 2> LiveDefs; 1053 for (const MachineOperand &MO : KillMI->operands()) { 1054 if (!MO.isReg()) 1055 continue; 1056 unsigned MOReg = MO.getReg(); 1057 if (MO.isUse()) { 1058 if (!MOReg) 1059 continue; 1060 if (isDefTooClose(MOReg, DI->second, MI)) 1061 return false; 1062 bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS)); 1063 if (MOReg == Reg && !isKill) 1064 return false; 1065 Uses.insert(MOReg); 1066 if (isKill && MOReg != Reg) 1067 Kills.insert(MOReg); 1068 } else if (TargetRegisterInfo::isPhysicalRegister(MOReg)) { 1069 Defs.insert(MOReg); 1070 if (!MO.isDead()) 1071 LiveDefs.insert(MOReg); 1072 } 1073 } 1074 1075 // Check if the reschedule will not break depedencies. 1076 unsigned NumVisited = 0; 1077 MachineBasicBlock::iterator KillPos = KillMI; 1078 for (MachineBasicBlock::iterator I = mi; I != KillPos; ++I) { 1079 MachineInstr *OtherMI = I; 1080 // DBG_VALUE cannot be counted against the limit. 1081 if (OtherMI->isDebugValue()) 1082 continue; 1083 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 1084 return false; 1085 ++NumVisited; 1086 if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() || 1087 OtherMI->isBranch() || OtherMI->isTerminator()) 1088 // Don't move pass calls, etc. 1089 return false; 1090 SmallVector<unsigned, 2> OtherDefs; 1091 for (const MachineOperand &MO : OtherMI->operands()) { 1092 if (!MO.isReg()) 1093 continue; 1094 unsigned MOReg = MO.getReg(); 1095 if (!MOReg) 1096 continue; 1097 if (MO.isUse()) { 1098 if (Defs.count(MOReg)) 1099 // Moving KillMI can clobber the physical register if the def has 1100 // not been seen. 1101 return false; 1102 if (Kills.count(MOReg)) 1103 // Don't want to extend other live ranges and update kills. 1104 return false; 1105 if (OtherMI != MI && MOReg == Reg && 1106 !(MO.isKill() || (LIS && isPlainlyKilled(OtherMI, MOReg, LIS)))) 1107 // We can't schedule across a use of the register in question. 1108 return false; 1109 } else { 1110 OtherDefs.push_back(MOReg); 1111 } 1112 } 1113 1114 for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) { 1115 unsigned MOReg = OtherDefs[i]; 1116 if (Uses.count(MOReg)) 1117 return false; 1118 if (TargetRegisterInfo::isPhysicalRegister(MOReg) && 1119 LiveDefs.count(MOReg)) 1120 return false; 1121 // Physical register def is seen. 1122 Defs.erase(MOReg); 1123 } 1124 } 1125 1126 // Move the old kill above MI, don't forget to move debug info as well. 1127 MachineBasicBlock::iterator InsertPos = mi; 1128 while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugValue()) 1129 --InsertPos; 1130 MachineBasicBlock::iterator From = KillMI; 1131 MachineBasicBlock::iterator To = std::next(From); 1132 while (std::prev(From)->isDebugValue()) 1133 --From; 1134 MBB->splice(InsertPos, MBB, From, To); 1135 1136 nmi = std::prev(InsertPos); // Backtrack so we process the moved instr. 1137 DistanceMap.erase(DI); 1138 1139 // Update live variables 1140 if (LIS) { 1141 LIS->handleMove(KillMI); 1142 } else { 1143 LV->removeVirtualRegisterKilled(Reg, KillMI); 1144 LV->addVirtualRegisterKilled(Reg, MI); 1145 } 1146 1147 DEBUG(dbgs() << "\trescheduled kill: " << *KillMI); 1148 return true; 1149 } 1150 1151 /// Tries to commute the operand 'BaseOpIdx' and some other operand in the 1152 /// given machine instruction to improve opportunities for coalescing and 1153 /// elimination of a register to register copy. 1154 /// 1155 /// 'DstOpIdx' specifies the index of MI def operand. 1156 /// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx' 1157 /// operand is killed by the given instruction. 1158 /// The 'Dist' arguments provides the distance of MI from the start of the 1159 /// current basic block and it is used to determine if it is profitable 1160 /// to commute operands in the instruction. 1161 /// 1162 /// Returns true if the transformation happened. Otherwise, returns false. 1163 bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI, 1164 unsigned DstOpIdx, 1165 unsigned BaseOpIdx, 1166 bool BaseOpKilled, 1167 unsigned Dist) { 1168 unsigned DstOpReg = MI->getOperand(DstOpIdx).getReg(); 1169 unsigned BaseOpReg = MI->getOperand(BaseOpIdx).getReg(); 1170 unsigned OpsNum = MI->getDesc().getNumOperands(); 1171 unsigned OtherOpIdx = MI->getDesc().getNumDefs(); 1172 for (; OtherOpIdx < OpsNum; OtherOpIdx++) { 1173 // The call of findCommutedOpIndices below only checks if BaseOpIdx 1174 // and OtherOpIdx are commutable, it does not really search for 1175 // other commutable operands and does not change the values of passed 1176 // variables. 1177 if (OtherOpIdx == BaseOpIdx || 1178 !TII->findCommutedOpIndices(MI, BaseOpIdx, OtherOpIdx)) 1179 continue; 1180 1181 unsigned OtherOpReg = MI->getOperand(OtherOpIdx).getReg(); 1182 bool AggressiveCommute = false; 1183 1184 // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp 1185 // operands. This makes the live ranges of DstOp and OtherOp joinable. 1186 bool DoCommute = 1187 !BaseOpKilled && isKilled(*MI, OtherOpReg, MRI, TII, LIS, false); 1188 1189 if (!DoCommute && 1190 isProfitableToCommute(DstOpReg, BaseOpReg, OtherOpReg, MI, Dist)) { 1191 DoCommute = true; 1192 AggressiveCommute = true; 1193 } 1194 1195 // If it's profitable to commute, try to do so. 1196 if (DoCommute && commuteInstruction(MI, BaseOpIdx, OtherOpIdx, Dist)) { 1197 ++NumCommuted; 1198 if (AggressiveCommute) 1199 ++NumAggrCommuted; 1200 return true; 1201 } 1202 } 1203 return false; 1204 } 1205 1206 /// For the case where an instruction has a single pair of tied register 1207 /// operands, attempt some transformations that may either eliminate the tied 1208 /// operands or improve the opportunities for coalescing away the register copy. 1209 /// Returns true if no copy needs to be inserted to untie mi's operands 1210 /// (either because they were untied, or because mi was rescheduled, and will 1211 /// be visited again later). If the shouldOnlyCommute flag is true, only 1212 /// instruction commutation is attempted. 1213 bool TwoAddressInstructionPass:: 1214 tryInstructionTransform(MachineBasicBlock::iterator &mi, 1215 MachineBasicBlock::iterator &nmi, 1216 unsigned SrcIdx, unsigned DstIdx, 1217 unsigned Dist, bool shouldOnlyCommute) { 1218 if (OptLevel == CodeGenOpt::None) 1219 return false; 1220 1221 MachineInstr &MI = *mi; 1222 unsigned regA = MI.getOperand(DstIdx).getReg(); 1223 unsigned regB = MI.getOperand(SrcIdx).getReg(); 1224 1225 assert(TargetRegisterInfo::isVirtualRegister(regB) && 1226 "cannot make instruction into two-address form"); 1227 bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1228 1229 if (TargetRegisterInfo::isVirtualRegister(regA)) 1230 scanUses(regA); 1231 1232 bool Commuted = tryInstructionCommute(&MI, DstIdx, SrcIdx, regBKilled, Dist); 1233 1234 // If the instruction is convertible to 3 Addr, instead 1235 // of returning try 3 Addr transformation aggresively and 1236 // use this variable to check later. Because it might be better. 1237 // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret` 1238 // instead of the following code. 1239 // addl %esi, %edi 1240 // movl %edi, %eax 1241 // ret 1242 if (Commuted && !MI.isConvertibleTo3Addr()) 1243 return false; 1244 1245 if (shouldOnlyCommute) 1246 return false; 1247 1248 // If there is one more use of regB later in the same MBB, consider 1249 // re-schedule this MI below it. 1250 if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) { 1251 ++NumReSchedDowns; 1252 return true; 1253 } 1254 1255 // If we commuted, regB may have changed so we should re-sample it to avoid 1256 // confusing the three address conversion below. 1257 if (Commuted) { 1258 regB = MI.getOperand(SrcIdx).getReg(); 1259 regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1260 } 1261 1262 if (MI.isConvertibleTo3Addr()) { 1263 // This instruction is potentially convertible to a true 1264 // three-address instruction. Check if it is profitable. 1265 if (!regBKilled || isProfitableToConv3Addr(regA, regB)) { 1266 // Try to convert it. 1267 if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) { 1268 ++NumConvertedTo3Addr; 1269 return true; // Done with this instruction. 1270 } 1271 } 1272 } 1273 1274 // Return if it is commuted but 3 addr conversion is failed. 1275 if (Commuted) 1276 return false; 1277 1278 // If there is one more use of regB later in the same MBB, consider 1279 // re-schedule it before this MI if it's legal. 1280 if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) { 1281 ++NumReSchedUps; 1282 return true; 1283 } 1284 1285 // If this is an instruction with a load folded into it, try unfolding 1286 // the load, e.g. avoid this: 1287 // movq %rdx, %rcx 1288 // addq (%rax), %rcx 1289 // in favor of this: 1290 // movq (%rax), %rcx 1291 // addq %rdx, %rcx 1292 // because it's preferable to schedule a load than a register copy. 1293 if (MI.mayLoad() && !regBKilled) { 1294 // Determine if a load can be unfolded. 1295 unsigned LoadRegIndex; 1296 unsigned NewOpc = 1297 TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), 1298 /*UnfoldLoad=*/true, 1299 /*UnfoldStore=*/false, 1300 &LoadRegIndex); 1301 if (NewOpc != 0) { 1302 const MCInstrDesc &UnfoldMCID = TII->get(NewOpc); 1303 if (UnfoldMCID.getNumDefs() == 1) { 1304 // Unfold the load. 1305 DEBUG(dbgs() << "2addr: UNFOLDING: " << MI); 1306 const TargetRegisterClass *RC = 1307 TRI->getAllocatableClass( 1308 TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF)); 1309 unsigned Reg = MRI->createVirtualRegister(RC); 1310 SmallVector<MachineInstr *, 2> NewMIs; 1311 if (!TII->unfoldMemoryOperand(*MF, &MI, Reg, 1312 /*UnfoldLoad=*/true,/*UnfoldStore=*/false, 1313 NewMIs)) { 1314 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1315 return false; 1316 } 1317 assert(NewMIs.size() == 2 && 1318 "Unfolded a load into multiple instructions!"); 1319 // The load was previously folded, so this is the only use. 1320 NewMIs[1]->addRegisterKilled(Reg, TRI); 1321 1322 // Tentatively insert the instructions into the block so that they 1323 // look "normal" to the transformation logic. 1324 MBB->insert(mi, NewMIs[0]); 1325 MBB->insert(mi, NewMIs[1]); 1326 1327 DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0] 1328 << "2addr: NEW INST: " << *NewMIs[1]); 1329 1330 // Transform the instruction, now that it no longer has a load. 1331 unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA); 1332 unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB); 1333 MachineBasicBlock::iterator NewMI = NewMIs[1]; 1334 bool TransformResult = 1335 tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true); 1336 (void)TransformResult; 1337 assert(!TransformResult && 1338 "tryInstructionTransform() should return false."); 1339 if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) { 1340 // Success, or at least we made an improvement. Keep the unfolded 1341 // instructions and discard the original. 1342 if (LV) { 1343 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1344 MachineOperand &MO = MI.getOperand(i); 1345 if (MO.isReg() && 1346 TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 1347 if (MO.isUse()) { 1348 if (MO.isKill()) { 1349 if (NewMIs[0]->killsRegister(MO.getReg())) 1350 LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[0]); 1351 else { 1352 assert(NewMIs[1]->killsRegister(MO.getReg()) && 1353 "Kill missing after load unfold!"); 1354 LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[1]); 1355 } 1356 } 1357 } else if (LV->removeVirtualRegisterDead(MO.getReg(), &MI)) { 1358 if (NewMIs[1]->registerDefIsDead(MO.getReg())) 1359 LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]); 1360 else { 1361 assert(NewMIs[0]->registerDefIsDead(MO.getReg()) && 1362 "Dead flag missing after load unfold!"); 1363 LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]); 1364 } 1365 } 1366 } 1367 } 1368 LV->addVirtualRegisterKilled(Reg, NewMIs[1]); 1369 } 1370 1371 SmallVector<unsigned, 4> OrigRegs; 1372 if (LIS) { 1373 for (const MachineOperand &MO : MI.operands()) { 1374 if (MO.isReg()) 1375 OrigRegs.push_back(MO.getReg()); 1376 } 1377 } 1378 1379 MI.eraseFromParent(); 1380 1381 // Update LiveIntervals. 1382 if (LIS) { 1383 MachineBasicBlock::iterator Begin(NewMIs[0]); 1384 MachineBasicBlock::iterator End(NewMIs[1]); 1385 LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs); 1386 } 1387 1388 mi = NewMIs[1]; 1389 } else { 1390 // Transforming didn't eliminate the tie and didn't lead to an 1391 // improvement. Clean up the unfolded instructions and keep the 1392 // original. 1393 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1394 NewMIs[0]->eraseFromParent(); 1395 NewMIs[1]->eraseFromParent(); 1396 } 1397 } 1398 } 1399 } 1400 1401 return false; 1402 } 1403 1404 // Collect tied operands of MI that need to be handled. 1405 // Rewrite trivial cases immediately. 1406 // Return true if any tied operands where found, including the trivial ones. 1407 bool TwoAddressInstructionPass:: 1408 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) { 1409 const MCInstrDesc &MCID = MI->getDesc(); 1410 bool AnyOps = false; 1411 unsigned NumOps = MI->getNumOperands(); 1412 1413 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) { 1414 unsigned DstIdx = 0; 1415 if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx)) 1416 continue; 1417 AnyOps = true; 1418 MachineOperand &SrcMO = MI->getOperand(SrcIdx); 1419 MachineOperand &DstMO = MI->getOperand(DstIdx); 1420 unsigned SrcReg = SrcMO.getReg(); 1421 unsigned DstReg = DstMO.getReg(); 1422 // Tied constraint already satisfied? 1423 if (SrcReg == DstReg) 1424 continue; 1425 1426 assert(SrcReg && SrcMO.isUse() && "two address instruction invalid"); 1427 1428 // Deal with <undef> uses immediately - simply rewrite the src operand. 1429 if (SrcMO.isUndef() && !DstMO.getSubReg()) { 1430 // Constrain the DstReg register class if required. 1431 if (TargetRegisterInfo::isVirtualRegister(DstReg)) 1432 if (const TargetRegisterClass *RC = TII->getRegClass(MCID, SrcIdx, 1433 TRI, *MF)) 1434 MRI->constrainRegClass(DstReg, RC); 1435 SrcMO.setReg(DstReg); 1436 SrcMO.setSubReg(0); 1437 DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI); 1438 continue; 1439 } 1440 TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx)); 1441 } 1442 return AnyOps; 1443 } 1444 1445 // Process a list of tied MI operands that all use the same source register. 1446 // The tied pairs are of the form (SrcIdx, DstIdx). 1447 void 1448 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI, 1449 TiedPairList &TiedPairs, 1450 unsigned &Dist) { 1451 bool IsEarlyClobber = false; 1452 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) { 1453 const MachineOperand &DstMO = MI->getOperand(TiedPairs[tpi].second); 1454 IsEarlyClobber |= DstMO.isEarlyClobber(); 1455 } 1456 1457 bool RemovedKillFlag = false; 1458 bool AllUsesCopied = true; 1459 unsigned LastCopiedReg = 0; 1460 SlotIndex LastCopyIdx; 1461 unsigned RegB = 0; 1462 unsigned SubRegB = 0; 1463 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) { 1464 unsigned SrcIdx = TiedPairs[tpi].first; 1465 unsigned DstIdx = TiedPairs[tpi].second; 1466 1467 const MachineOperand &DstMO = MI->getOperand(DstIdx); 1468 unsigned RegA = DstMO.getReg(); 1469 1470 // Grab RegB from the instruction because it may have changed if the 1471 // instruction was commuted. 1472 RegB = MI->getOperand(SrcIdx).getReg(); 1473 SubRegB = MI->getOperand(SrcIdx).getSubReg(); 1474 1475 if (RegA == RegB) { 1476 // The register is tied to multiple destinations (or else we would 1477 // not have continued this far), but this use of the register 1478 // already matches the tied destination. Leave it. 1479 AllUsesCopied = false; 1480 continue; 1481 } 1482 LastCopiedReg = RegA; 1483 1484 assert(TargetRegisterInfo::isVirtualRegister(RegB) && 1485 "cannot make instruction into two-address form"); 1486 1487 #ifndef NDEBUG 1488 // First, verify that we don't have a use of "a" in the instruction 1489 // (a = b + a for example) because our transformation will not 1490 // work. This should never occur because we are in SSA form. 1491 for (unsigned i = 0; i != MI->getNumOperands(); ++i) 1492 assert(i == DstIdx || 1493 !MI->getOperand(i).isReg() || 1494 MI->getOperand(i).getReg() != RegA); 1495 #endif 1496 1497 // Emit a copy. 1498 MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1499 TII->get(TargetOpcode::COPY), RegA); 1500 // If this operand is folding a truncation, the truncation now moves to the 1501 // copy so that the register classes remain valid for the operands. 1502 MIB.addReg(RegB, 0, SubRegB); 1503 const TargetRegisterClass *RC = MRI->getRegClass(RegB); 1504 if (SubRegB) { 1505 if (TargetRegisterInfo::isVirtualRegister(RegA)) { 1506 assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA), 1507 SubRegB) && 1508 "tied subregister must be a truncation"); 1509 // The superreg class will not be used to constrain the subreg class. 1510 RC = nullptr; 1511 } 1512 else { 1513 assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB)) 1514 && "tied subregister must be a truncation"); 1515 } 1516 } 1517 1518 // Update DistanceMap. 1519 MachineBasicBlock::iterator PrevMI = MI; 1520 --PrevMI; 1521 DistanceMap.insert(std::make_pair(PrevMI, Dist)); 1522 DistanceMap[MI] = ++Dist; 1523 1524 if (LIS) { 1525 LastCopyIdx = LIS->InsertMachineInstrInMaps(PrevMI).getRegSlot(); 1526 1527 if (TargetRegisterInfo::isVirtualRegister(RegA)) { 1528 LiveInterval &LI = LIS->getInterval(RegA); 1529 VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1530 SlotIndex endIdx = 1531 LIS->getInstructionIndex(MI).getRegSlot(IsEarlyClobber); 1532 LI.addSegment(LiveInterval::Segment(LastCopyIdx, endIdx, VNI)); 1533 } 1534 } 1535 1536 DEBUG(dbgs() << "\t\tprepend:\t" << *MIB); 1537 1538 MachineOperand &MO = MI->getOperand(SrcIdx); 1539 assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() && 1540 "inconsistent operand info for 2-reg pass"); 1541 if (MO.isKill()) { 1542 MO.setIsKill(false); 1543 RemovedKillFlag = true; 1544 } 1545 1546 // Make sure regA is a legal regclass for the SrcIdx operand. 1547 if (TargetRegisterInfo::isVirtualRegister(RegA) && 1548 TargetRegisterInfo::isVirtualRegister(RegB)) 1549 MRI->constrainRegClass(RegA, RC); 1550 MO.setReg(RegA); 1551 // The getMatchingSuper asserts guarantee that the register class projected 1552 // by SubRegB is compatible with RegA with no subregister. So regardless of 1553 // whether the dest oper writes a subreg, the source oper should not. 1554 MO.setSubReg(0); 1555 1556 // Propagate SrcRegMap. 1557 SrcRegMap[RegA] = RegB; 1558 } 1559 1560 if (AllUsesCopied) { 1561 if (!IsEarlyClobber) { 1562 // Replace other (un-tied) uses of regB with LastCopiedReg. 1563 for (MachineOperand &MO : MI->operands()) { 1564 if (MO.isReg() && MO.getReg() == RegB && MO.getSubReg() == SubRegB && 1565 MO.isUse()) { 1566 if (MO.isKill()) { 1567 MO.setIsKill(false); 1568 RemovedKillFlag = true; 1569 } 1570 MO.setReg(LastCopiedReg); 1571 MO.setSubReg(0); 1572 } 1573 } 1574 } 1575 1576 // Update live variables for regB. 1577 if (RemovedKillFlag && LV && LV->getVarInfo(RegB).removeKill(MI)) { 1578 MachineBasicBlock::iterator PrevMI = MI; 1579 --PrevMI; 1580 LV->addVirtualRegisterKilled(RegB, PrevMI); 1581 } 1582 1583 // Update LiveIntervals. 1584 if (LIS) { 1585 LiveInterval &LI = LIS->getInterval(RegB); 1586 SlotIndex MIIdx = LIS->getInstructionIndex(MI); 1587 LiveInterval::const_iterator I = LI.find(MIIdx); 1588 assert(I != LI.end() && "RegB must be live-in to use."); 1589 1590 SlotIndex UseIdx = MIIdx.getRegSlot(IsEarlyClobber); 1591 if (I->end == UseIdx) 1592 LI.removeSegment(LastCopyIdx, UseIdx); 1593 } 1594 1595 } else if (RemovedKillFlag) { 1596 // Some tied uses of regB matched their destination registers, so 1597 // regB is still used in this instruction, but a kill flag was 1598 // removed from a different tied use of regB, so now we need to add 1599 // a kill flag to one of the remaining uses of regB. 1600 for (MachineOperand &MO : MI->operands()) { 1601 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) { 1602 MO.setIsKill(true); 1603 break; 1604 } 1605 } 1606 } 1607 } 1608 1609 /// Reduce two-address instructions to two operands. 1610 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) { 1611 MF = &Func; 1612 const TargetMachine &TM = MF->getTarget(); 1613 MRI = &MF->getRegInfo(); 1614 TII = MF->getSubtarget().getInstrInfo(); 1615 TRI = MF->getSubtarget().getRegisterInfo(); 1616 InstrItins = MF->getSubtarget().getInstrItineraryData(); 1617 LV = getAnalysisIfAvailable<LiveVariables>(); 1618 LIS = getAnalysisIfAvailable<LiveIntervals>(); 1619 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1620 OptLevel = TM.getOptLevel(); 1621 1622 bool MadeChange = false; 1623 1624 DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n"); 1625 DEBUG(dbgs() << "********** Function: " 1626 << MF->getName() << '\n'); 1627 1628 // This pass takes the function out of SSA form. 1629 MRI->leaveSSA(); 1630 1631 TiedOperandMap TiedOperands; 1632 for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end(); 1633 MBBI != MBBE; ++MBBI) { 1634 MBB = &*MBBI; 1635 unsigned Dist = 0; 1636 DistanceMap.clear(); 1637 SrcRegMap.clear(); 1638 DstRegMap.clear(); 1639 Processed.clear(); 1640 for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end(); 1641 mi != me; ) { 1642 MachineBasicBlock::iterator nmi = std::next(mi); 1643 if (mi->isDebugValue()) { 1644 mi = nmi; 1645 continue; 1646 } 1647 1648 // Expand REG_SEQUENCE instructions. This will position mi at the first 1649 // expanded instruction. 1650 if (mi->isRegSequence()) 1651 eliminateRegSequence(mi); 1652 1653 DistanceMap.insert(std::make_pair(mi, ++Dist)); 1654 1655 processCopy(&*mi); 1656 1657 // First scan through all the tied register uses in this instruction 1658 // and record a list of pairs of tied operands for each register. 1659 if (!collectTiedOperands(mi, TiedOperands)) { 1660 mi = nmi; 1661 continue; 1662 } 1663 1664 ++NumTwoAddressInstrs; 1665 MadeChange = true; 1666 DEBUG(dbgs() << '\t' << *mi); 1667 1668 // If the instruction has a single pair of tied operands, try some 1669 // transformations that may either eliminate the tied operands or 1670 // improve the opportunities for coalescing away the register copy. 1671 if (TiedOperands.size() == 1) { 1672 SmallVectorImpl<std::pair<unsigned, unsigned> > &TiedPairs 1673 = TiedOperands.begin()->second; 1674 if (TiedPairs.size() == 1) { 1675 unsigned SrcIdx = TiedPairs[0].first; 1676 unsigned DstIdx = TiedPairs[0].second; 1677 unsigned SrcReg = mi->getOperand(SrcIdx).getReg(); 1678 unsigned DstReg = mi->getOperand(DstIdx).getReg(); 1679 if (SrcReg != DstReg && 1680 tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) { 1681 // The tied operands have been eliminated or shifted further down 1682 // the block to ease elimination. Continue processing with 'nmi'. 1683 TiedOperands.clear(); 1684 mi = nmi; 1685 continue; 1686 } 1687 } 1688 } 1689 1690 // Now iterate over the information collected above. 1691 for (auto &TO : TiedOperands) { 1692 processTiedPairs(mi, TO.second, Dist); 1693 DEBUG(dbgs() << "\t\trewrite to:\t" << *mi); 1694 } 1695 1696 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form. 1697 if (mi->isInsertSubreg()) { 1698 // From %reg = INSERT_SUBREG %reg, %subreg, subidx 1699 // To %reg:subidx = COPY %subreg 1700 unsigned SubIdx = mi->getOperand(3).getImm(); 1701 mi->RemoveOperand(3); 1702 assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx"); 1703 mi->getOperand(0).setSubReg(SubIdx); 1704 mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef()); 1705 mi->RemoveOperand(1); 1706 mi->setDesc(TII->get(TargetOpcode::COPY)); 1707 DEBUG(dbgs() << "\t\tconvert to:\t" << *mi); 1708 } 1709 1710 // Clear TiedOperands here instead of at the top of the loop 1711 // since most instructions do not have tied operands. 1712 TiedOperands.clear(); 1713 mi = nmi; 1714 } 1715 } 1716 1717 if (LIS) 1718 MF->verify(this, "After two-address instruction pass"); 1719 1720 return MadeChange; 1721 } 1722 1723 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process. 1724 /// 1725 /// The instruction is turned into a sequence of sub-register copies: 1726 /// 1727 /// %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1 1728 /// 1729 /// Becomes: 1730 /// 1731 /// %dst:ssub0<def,undef> = COPY %v1 1732 /// %dst:ssub1<def> = COPY %v2 1733 /// 1734 void TwoAddressInstructionPass:: 1735 eliminateRegSequence(MachineBasicBlock::iterator &MBBI) { 1736 MachineInstr *MI = MBBI; 1737 unsigned DstReg = MI->getOperand(0).getReg(); 1738 if (MI->getOperand(0).getSubReg() || 1739 TargetRegisterInfo::isPhysicalRegister(DstReg) || 1740 !(MI->getNumOperands() & 1)) { 1741 DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI); 1742 llvm_unreachable(nullptr); 1743 } 1744 1745 SmallVector<unsigned, 4> OrigRegs; 1746 if (LIS) { 1747 OrigRegs.push_back(MI->getOperand(0).getReg()); 1748 for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) 1749 OrigRegs.push_back(MI->getOperand(i).getReg()); 1750 } 1751 1752 bool DefEmitted = false; 1753 for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) { 1754 MachineOperand &UseMO = MI->getOperand(i); 1755 unsigned SrcReg = UseMO.getReg(); 1756 unsigned SubIdx = MI->getOperand(i+1).getImm(); 1757 // Nothing needs to be inserted for <undef> operands. 1758 if (UseMO.isUndef()) 1759 continue; 1760 1761 // Defer any kill flag to the last operand using SrcReg. Otherwise, we 1762 // might insert a COPY that uses SrcReg after is was killed. 1763 bool isKill = UseMO.isKill(); 1764 if (isKill) 1765 for (unsigned j = i + 2; j < e; j += 2) 1766 if (MI->getOperand(j).getReg() == SrcReg) { 1767 MI->getOperand(j).setIsKill(); 1768 UseMO.setIsKill(false); 1769 isKill = false; 1770 break; 1771 } 1772 1773 // Insert the sub-register copy. 1774 MachineInstr *CopyMI = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1775 TII->get(TargetOpcode::COPY)) 1776 .addReg(DstReg, RegState::Define, SubIdx) 1777 .addOperand(UseMO); 1778 1779 // The first def needs an <undef> flag because there is no live register 1780 // before it. 1781 if (!DefEmitted) { 1782 CopyMI->getOperand(0).setIsUndef(true); 1783 // Return an iterator pointing to the first inserted instr. 1784 MBBI = CopyMI; 1785 } 1786 DefEmitted = true; 1787 1788 // Update LiveVariables' kill info. 1789 if (LV && isKill && !TargetRegisterInfo::isPhysicalRegister(SrcReg)) 1790 LV->replaceKillInstruction(SrcReg, MI, CopyMI); 1791 1792 DEBUG(dbgs() << "Inserted: " << *CopyMI); 1793 } 1794 1795 MachineBasicBlock::iterator EndMBBI = 1796 std::next(MachineBasicBlock::iterator(MI)); 1797 1798 if (!DefEmitted) { 1799 DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF"); 1800 MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1801 for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j) 1802 MI->RemoveOperand(j); 1803 } else { 1804 DEBUG(dbgs() << "Eliminated: " << *MI); 1805 MI->eraseFromParent(); 1806 } 1807 1808 // Udpate LiveIntervals. 1809 if (LIS) 1810 LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs); 1811 } 1812