1 /* 2 * Copyright 2008 Corbin Simpson <MostAwesomeDude (at) gmail.com> 3 * Copyright 2009 Marek Olk <maraeo (at) gmail.com> 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * on the rights to use, copy, modify, merge, publish, distribute, sub 9 * license, and/or sell copies of the Software, and to permit persons to whom 10 * the Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, 20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 22 * USE OR OTHER DEALINGS IN THE SOFTWARE. */ 23 24 #include "draw/draw_context.h" 25 26 #include "util/u_framebuffer.h" 27 #include "util/u_half.h" 28 #include "util/u_math.h" 29 #include "util/u_mm.h" 30 #include "util/u_memory.h" 31 #include "util/u_pack_color.h" 32 #include "util/u_transfer.h" 33 34 #include "tgsi/tgsi_parse.h" 35 36 #include "pipe/p_config.h" 37 38 #include "r300_cb.h" 39 #include "r300_context.h" 40 #include "r300_emit.h" 41 #include "r300_reg.h" 42 #include "r300_screen.h" 43 #include "r300_screen_buffer.h" 44 #include "r300_state_inlines.h" 45 #include "r300_fs.h" 46 #include "r300_texture.h" 47 #include "r300_vs.h" 48 49 /* r300_state: Functions used to intialize state context by translating 50 * Gallium state objects into semi-native r300 state objects. */ 51 52 #define UPDATE_STATE(cso, atom) \ 53 if (cso != atom.state) { \ 54 atom.state = cso; \ 55 r300_mark_atom_dirty(r300, &(atom)); \ 56 } 57 58 static boolean blend_discard_if_src_alpha_0(unsigned srcRGB, unsigned srcA, 59 unsigned dstRGB, unsigned dstA) 60 { 61 /* If the blend equation is ADD or REVERSE_SUBTRACT, 62 * SRC_ALPHA == 0, and the following state is set, the colorbuffer 63 * will not be changed. 64 * Notice that the dst factors are the src factors inverted. */ 65 return (srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA || 66 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE || 67 srcRGB == PIPE_BLENDFACTOR_ZERO) && 68 (srcA == PIPE_BLENDFACTOR_SRC_COLOR || 69 srcA == PIPE_BLENDFACTOR_SRC_ALPHA || 70 srcA == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE || 71 srcA == PIPE_BLENDFACTOR_ZERO) && 72 (dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA || 73 dstRGB == PIPE_BLENDFACTOR_ONE) && 74 (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR || 75 dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA || 76 dstA == PIPE_BLENDFACTOR_ONE); 77 } 78 79 static boolean blend_discard_if_src_alpha_1(unsigned srcRGB, unsigned srcA, 80 unsigned dstRGB, unsigned dstA) 81 { 82 /* If the blend equation is ADD or REVERSE_SUBTRACT, 83 * SRC_ALPHA == 1, and the following state is set, the colorbuffer 84 * will not be changed. 85 * Notice that the dst factors are the src factors inverted. */ 86 return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA || 87 srcRGB == PIPE_BLENDFACTOR_ZERO) && 88 (srcA == PIPE_BLENDFACTOR_INV_SRC_COLOR || 89 srcA == PIPE_BLENDFACTOR_INV_SRC_ALPHA || 90 srcA == PIPE_BLENDFACTOR_ZERO) && 91 (dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA || 92 dstRGB == PIPE_BLENDFACTOR_ONE) && 93 (dstA == PIPE_BLENDFACTOR_SRC_COLOR || 94 dstA == PIPE_BLENDFACTOR_SRC_ALPHA || 95 dstA == PIPE_BLENDFACTOR_ONE); 96 } 97 98 static boolean blend_discard_if_src_color_0(unsigned srcRGB, unsigned srcA, 99 unsigned dstRGB, unsigned dstA) 100 { 101 /* If the blend equation is ADD or REVERSE_SUBTRACT, 102 * SRC_COLOR == (0,0,0), and the following state is set, the colorbuffer 103 * will not be changed. 104 * Notice that the dst factors are the src factors inverted. */ 105 return (srcRGB == PIPE_BLENDFACTOR_SRC_COLOR || 106 srcRGB == PIPE_BLENDFACTOR_ZERO) && 107 (srcA == PIPE_BLENDFACTOR_ZERO) && 108 (dstRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR || 109 dstRGB == PIPE_BLENDFACTOR_ONE) && 110 (dstA == PIPE_BLENDFACTOR_ONE); 111 } 112 113 static boolean blend_discard_if_src_color_1(unsigned srcRGB, unsigned srcA, 114 unsigned dstRGB, unsigned dstA) 115 { 116 /* If the blend equation is ADD or REVERSE_SUBTRACT, 117 * SRC_COLOR == (1,1,1), and the following state is set, the colorbuffer 118 * will not be changed. 119 * Notice that the dst factors are the src factors inverted. */ 120 return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR || 121 srcRGB == PIPE_BLENDFACTOR_ZERO) && 122 (srcA == PIPE_BLENDFACTOR_ZERO) && 123 (dstRGB == PIPE_BLENDFACTOR_SRC_COLOR || 124 dstRGB == PIPE_BLENDFACTOR_ONE) && 125 (dstA == PIPE_BLENDFACTOR_ONE); 126 } 127 128 static boolean blend_discard_if_src_alpha_color_0(unsigned srcRGB, unsigned srcA, 129 unsigned dstRGB, unsigned dstA) 130 { 131 /* If the blend equation is ADD or REVERSE_SUBTRACT, 132 * SRC_ALPHA_COLOR == (0,0,0,0), and the following state is set, 133 * the colorbuffer will not be changed. 134 * Notice that the dst factors are the src factors inverted. */ 135 return (srcRGB == PIPE_BLENDFACTOR_SRC_COLOR || 136 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA || 137 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE || 138 srcRGB == PIPE_BLENDFACTOR_ZERO) && 139 (srcA == PIPE_BLENDFACTOR_SRC_COLOR || 140 srcA == PIPE_BLENDFACTOR_SRC_ALPHA || 141 srcA == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE || 142 srcA == PIPE_BLENDFACTOR_ZERO) && 143 (dstRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR || 144 dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA || 145 dstRGB == PIPE_BLENDFACTOR_ONE) && 146 (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR || 147 dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA || 148 dstA == PIPE_BLENDFACTOR_ONE); 149 } 150 151 static boolean blend_discard_if_src_alpha_color_1(unsigned srcRGB, unsigned srcA, 152 unsigned dstRGB, unsigned dstA) 153 { 154 /* If the blend equation is ADD or REVERSE_SUBTRACT, 155 * SRC_ALPHA_COLOR == (1,1,1,1), and the following state is set, 156 * the colorbuffer will not be changed. 157 * Notice that the dst factors are the src factors inverted. */ 158 return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR || 159 srcRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA || 160 srcRGB == PIPE_BLENDFACTOR_ZERO) && 161 (srcA == PIPE_BLENDFACTOR_INV_SRC_COLOR || 162 srcA == PIPE_BLENDFACTOR_INV_SRC_ALPHA || 163 srcA == PIPE_BLENDFACTOR_ZERO) && 164 (dstRGB == PIPE_BLENDFACTOR_SRC_COLOR || 165 dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA || 166 dstRGB == PIPE_BLENDFACTOR_ONE) && 167 (dstA == PIPE_BLENDFACTOR_SRC_COLOR || 168 dstA == PIPE_BLENDFACTOR_SRC_ALPHA || 169 dstA == PIPE_BLENDFACTOR_ONE); 170 } 171 172 /* The hardware colormask is clunky a must be swizzled depending on the format. 173 * This was figured out by trial-and-error. */ 174 static unsigned bgra_cmask(unsigned mask) 175 { 176 return ((mask & PIPE_MASK_R) << 2) | 177 ((mask & PIPE_MASK_B) >> 2) | 178 (mask & (PIPE_MASK_G | PIPE_MASK_A)); 179 } 180 181 static unsigned rgba_cmask(unsigned mask) 182 { 183 return mask & PIPE_MASK_RGBA; 184 } 185 186 static unsigned rrrr_cmask(unsigned mask) 187 { 188 return (mask & PIPE_MASK_R) | 189 ((mask & PIPE_MASK_R) << 1) | 190 ((mask & PIPE_MASK_R) << 2) | 191 ((mask & PIPE_MASK_R) << 3); 192 } 193 194 static unsigned aaaa_cmask(unsigned mask) 195 { 196 return ((mask & PIPE_MASK_A) >> 3) | 197 ((mask & PIPE_MASK_A) >> 2) | 198 ((mask & PIPE_MASK_A) >> 1) | 199 (mask & PIPE_MASK_A); 200 } 201 202 static unsigned grrg_cmask(unsigned mask) 203 { 204 return ((mask & PIPE_MASK_R) << 1) | 205 ((mask & PIPE_MASK_R) << 2) | 206 ((mask & PIPE_MASK_G) >> 1) | 207 ((mask & PIPE_MASK_G) << 2); 208 } 209 210 static unsigned arra_cmask(unsigned mask) 211 { 212 return ((mask & PIPE_MASK_R) << 1) | 213 ((mask & PIPE_MASK_R) << 2) | 214 ((mask & PIPE_MASK_A) >> 3) | 215 (mask & PIPE_MASK_A); 216 } 217 218 /* Create a new blend state based on the CSO blend state. 219 * 220 * This encompasses alpha blending, logic/raster ops, and blend dithering. */ 221 static void* r300_create_blend_state(struct pipe_context* pipe, 222 const struct pipe_blend_state* state) 223 { 224 struct r300_screen* r300screen = r300_screen(pipe->screen); 225 struct r300_blend_state* blend = CALLOC_STRUCT(r300_blend_state); 226 uint32_t blend_control = 0; /* R300_RB3D_CBLEND: 0x4e04 */ 227 uint32_t blend_control_noclamp = 0; /* R300_RB3D_CBLEND: 0x4e04 */ 228 uint32_t alpha_blend_control = 0; /* R300_RB3D_ABLEND: 0x4e08 */ 229 uint32_t alpha_blend_control_noclamp = 0; /* R300_RB3D_ABLEND: 0x4e08 */ 230 uint32_t rop = 0; /* R300_RB3D_ROPCNTL: 0x4e18 */ 231 uint32_t dither = 0; /* R300_RB3D_DITHER_CTL: 0x4e50 */ 232 int i; 233 CB_LOCALS; 234 235 blend->state = *state; 236 237 if (state->rt[0].blend_enable) 238 { 239 unsigned eqRGB = state->rt[0].rgb_func; 240 unsigned srcRGB = state->rt[0].rgb_src_factor; 241 unsigned dstRGB = state->rt[0].rgb_dst_factor; 242 243 unsigned eqA = state->rt[0].alpha_func; 244 unsigned srcA = state->rt[0].alpha_src_factor; 245 unsigned dstA = state->rt[0].alpha_dst_factor; 246 247 /* despite the name, ALPHA_BLEND_ENABLE has nothing to do with alpha, 248 * this is just the crappy D3D naming */ 249 blend_control = blend_control_noclamp = 250 R300_ALPHA_BLEND_ENABLE | 251 ( r300_translate_blend_factor(srcRGB) << R300_SRC_BLEND_SHIFT) | 252 ( r300_translate_blend_factor(dstRGB) << R300_DST_BLEND_SHIFT); 253 blend_control |= 254 r300_translate_blend_function(eqRGB, TRUE); 255 blend_control_noclamp |= 256 r300_translate_blend_function(eqRGB, FALSE); 257 258 /* Optimization: some operations do not require the destination color. 259 * 260 * When SRC_ALPHA_SATURATE is used, colorbuffer reads must be enabled, 261 * otherwise blending gives incorrect results. It seems to be 262 * a hardware bug. */ 263 if (eqRGB == PIPE_BLEND_MIN || eqA == PIPE_BLEND_MIN || 264 eqRGB == PIPE_BLEND_MAX || eqA == PIPE_BLEND_MAX || 265 dstRGB != PIPE_BLENDFACTOR_ZERO || 266 dstA != PIPE_BLENDFACTOR_ZERO || 267 srcRGB == PIPE_BLENDFACTOR_DST_COLOR || 268 srcRGB == PIPE_BLENDFACTOR_DST_ALPHA || 269 srcRGB == PIPE_BLENDFACTOR_INV_DST_COLOR || 270 srcRGB == PIPE_BLENDFACTOR_INV_DST_ALPHA || 271 srcA == PIPE_BLENDFACTOR_DST_COLOR || 272 srcA == PIPE_BLENDFACTOR_DST_ALPHA || 273 srcA == PIPE_BLENDFACTOR_INV_DST_COLOR || 274 srcA == PIPE_BLENDFACTOR_INV_DST_ALPHA || 275 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE) { 276 /* Enable reading from the colorbuffer. */ 277 blend_control |= R300_READ_ENABLE; 278 blend_control_noclamp |= R300_READ_ENABLE; 279 280 if (r300screen->caps.is_r500) { 281 /* Optimization: Depending on incoming pixels, we can 282 * conditionally disable the reading in hardware... */ 283 if (eqRGB != PIPE_BLEND_MIN && eqA != PIPE_BLEND_MIN && 284 eqRGB != PIPE_BLEND_MAX && eqA != PIPE_BLEND_MAX) { 285 /* Disable reading if SRC_ALPHA == 0. */ 286 if ((dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA || 287 dstRGB == PIPE_BLENDFACTOR_ZERO) && 288 (dstA == PIPE_BLENDFACTOR_SRC_COLOR || 289 dstA == PIPE_BLENDFACTOR_SRC_ALPHA || 290 dstA == PIPE_BLENDFACTOR_ZERO) && 291 (srcRGB != PIPE_BLENDFACTOR_DST_COLOR && 292 srcRGB != PIPE_BLENDFACTOR_DST_ALPHA && 293 srcRGB != PIPE_BLENDFACTOR_INV_DST_COLOR && 294 srcRGB != PIPE_BLENDFACTOR_INV_DST_ALPHA)) { 295 blend_control |= R500_SRC_ALPHA_0_NO_READ; 296 } 297 298 /* Disable reading if SRC_ALPHA == 1. */ 299 if ((dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA || 300 dstRGB == PIPE_BLENDFACTOR_ZERO) && 301 (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR || 302 dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA || 303 dstA == PIPE_BLENDFACTOR_ZERO) && 304 (srcRGB != PIPE_BLENDFACTOR_DST_COLOR && 305 srcRGB != PIPE_BLENDFACTOR_DST_ALPHA && 306 srcRGB != PIPE_BLENDFACTOR_INV_DST_COLOR && 307 srcRGB != PIPE_BLENDFACTOR_INV_DST_ALPHA)) { 308 blend_control |= R500_SRC_ALPHA_1_NO_READ; 309 } 310 } 311 } 312 } 313 314 /* Optimization: discard pixels which don't change the colorbuffer. 315 * 316 * The code below is non-trivial and some math is involved. 317 * 318 * Discarding pixels must be disabled when FP16 AA is enabled. 319 * This is a hardware bug. Also, this implementation wouldn't work 320 * with FP blending enabled and equation clamping disabled. 321 * 322 * Equations other than ADD are rarely used and therefore won't be 323 * optimized. */ 324 if ((eqRGB == PIPE_BLEND_ADD || eqRGB == PIPE_BLEND_REVERSE_SUBTRACT) && 325 (eqA == PIPE_BLEND_ADD || eqA == PIPE_BLEND_REVERSE_SUBTRACT)) { 326 /* ADD: X+Y 327 * REVERSE_SUBTRACT: Y-X 328 * 329 * The idea is: 330 * If X = src*srcFactor = 0 and Y = dst*dstFactor = 1, 331 * then CB will not be changed. 332 * 333 * Given the srcFactor and dstFactor variables, we can derive 334 * what src and dst should be equal to and discard appropriate 335 * pixels. 336 */ 337 if (blend_discard_if_src_alpha_0(srcRGB, srcA, dstRGB, dstA)) { 338 blend_control |= R300_DISCARD_SRC_PIXELS_SRC_ALPHA_0; 339 } else if (blend_discard_if_src_alpha_1(srcRGB, srcA, 340 dstRGB, dstA)) { 341 blend_control |= R300_DISCARD_SRC_PIXELS_SRC_ALPHA_1; 342 } else if (blend_discard_if_src_color_0(srcRGB, srcA, 343 dstRGB, dstA)) { 344 blend_control |= R300_DISCARD_SRC_PIXELS_SRC_COLOR_0; 345 } else if (blend_discard_if_src_color_1(srcRGB, srcA, 346 dstRGB, dstA)) { 347 blend_control |= R300_DISCARD_SRC_PIXELS_SRC_COLOR_1; 348 } else if (blend_discard_if_src_alpha_color_0(srcRGB, srcA, 349 dstRGB, dstA)) { 350 blend_control |= 351 R300_DISCARD_SRC_PIXELS_SRC_ALPHA_COLOR_0; 352 } else if (blend_discard_if_src_alpha_color_1(srcRGB, srcA, 353 dstRGB, dstA)) { 354 blend_control |= 355 R300_DISCARD_SRC_PIXELS_SRC_ALPHA_COLOR_1; 356 } 357 } 358 359 /* separate alpha */ 360 if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB) { 361 blend_control |= R300_SEPARATE_ALPHA_ENABLE; 362 blend_control_noclamp |= R300_SEPARATE_ALPHA_ENABLE; 363 alpha_blend_control = alpha_blend_control_noclamp = 364 (r300_translate_blend_factor(srcA) << R300_SRC_BLEND_SHIFT) | 365 (r300_translate_blend_factor(dstA) << R300_DST_BLEND_SHIFT); 366 alpha_blend_control |= 367 r300_translate_blend_function(eqA, TRUE); 368 alpha_blend_control_noclamp |= 369 r300_translate_blend_function(eqA, FALSE); 370 } 371 } 372 373 /* PIPE_LOGICOP_* don't need to be translated, fortunately. */ 374 if (state->logicop_enable) { 375 rop = R300_RB3D_ROPCNTL_ROP_ENABLE | 376 (state->logicop_func) << R300_RB3D_ROPCNTL_ROP_SHIFT; 377 } 378 379 /* Neither fglrx nor classic r300 ever set this, regardless of dithering 380 * state. Since it's an optional implementation detail, we can leave it 381 * out and never dither. 382 * 383 * This could be revisited if we ever get quality or conformance hints. 384 * 385 if (state->dither) { 386 dither = R300_RB3D_DITHER_CTL_DITHER_MODE_LUT | 387 R300_RB3D_DITHER_CTL_ALPHA_DITHER_MODE_LUT; 388 } 389 */ 390 391 /* Build a command buffer. */ 392 { 393 unsigned (*func[COLORMASK_NUM_SWIZZLES])(unsigned) = { 394 bgra_cmask, 395 rgba_cmask, 396 rrrr_cmask, 397 aaaa_cmask, 398 grrg_cmask, 399 arra_cmask 400 }; 401 402 for (i = 0; i < COLORMASK_NUM_SWIZZLES; i++) { 403 BEGIN_CB(blend->cb_clamp[i], 8); 404 OUT_CB_REG(R300_RB3D_ROPCNTL, rop); 405 OUT_CB_REG_SEQ(R300_RB3D_CBLEND, 3); 406 OUT_CB(blend_control); 407 OUT_CB(alpha_blend_control); 408 OUT_CB(func[i](state->rt[0].colormask)); 409 OUT_CB_REG(R300_RB3D_DITHER_CTL, dither); 410 END_CB; 411 } 412 } 413 414 /* Build a command buffer. */ 415 BEGIN_CB(blend->cb_noclamp, 8); 416 OUT_CB_REG(R300_RB3D_ROPCNTL, rop); 417 OUT_CB_REG_SEQ(R300_RB3D_CBLEND, 3); 418 OUT_CB(blend_control_noclamp); 419 OUT_CB(alpha_blend_control_noclamp); 420 OUT_CB(rgba_cmask(state->rt[0].colormask)); 421 OUT_CB_REG(R300_RB3D_DITHER_CTL, dither); 422 END_CB; 423 424 /* The same as above, but with no colorbuffer reads and writes. */ 425 BEGIN_CB(blend->cb_no_readwrite, 8); 426 OUT_CB_REG(R300_RB3D_ROPCNTL, rop); 427 OUT_CB_REG_SEQ(R300_RB3D_CBLEND, 3); 428 OUT_CB(0); 429 OUT_CB(0); 430 OUT_CB(0); 431 OUT_CB_REG(R300_RB3D_DITHER_CTL, dither); 432 END_CB; 433 434 return (void*)blend; 435 } 436 437 /* Bind blend state. */ 438 static void r300_bind_blend_state(struct pipe_context* pipe, 439 void* state) 440 { 441 struct r300_context* r300 = r300_context(pipe); 442 443 UPDATE_STATE(state, r300->blend_state); 444 } 445 446 /* Free blend state. */ 447 static void r300_delete_blend_state(struct pipe_context* pipe, 448 void* state) 449 { 450 FREE(state); 451 } 452 453 /* Convert float to 10bit integer */ 454 static unsigned float_to_fixed10(float f) 455 { 456 return CLAMP((unsigned)(f * 1023.9f), 0, 1023); 457 } 458 459 /* Set blend color. 460 * Setup both R300 and R500 registers, figure out later which one to write. */ 461 static void r300_set_blend_color(struct pipe_context* pipe, 462 const struct pipe_blend_color* color) 463 { 464 struct r300_context* r300 = r300_context(pipe); 465 struct pipe_framebuffer_state *fb = r300->fb_state.state; 466 struct r300_blend_color_state *state = 467 (struct r300_blend_color_state*)r300->blend_color_state.state; 468 struct pipe_blend_color c; 469 enum pipe_format format = fb->nr_cbufs ? fb->cbufs[0]->format : 0; 470 float tmp; 471 CB_LOCALS; 472 473 state->state = *color; /* Save it, so that we can reuse it in set_fb_state */ 474 c = *color; 475 476 /* The blend color is dependent on the colorbuffer format. */ 477 if (fb->nr_cbufs) { 478 switch (format) { 479 case PIPE_FORMAT_R8_UNORM: 480 case PIPE_FORMAT_L8_UNORM: 481 case PIPE_FORMAT_I8_UNORM: 482 c.color[1] = c.color[0]; 483 break; 484 485 case PIPE_FORMAT_A8_UNORM: 486 c.color[1] = c.color[3]; 487 break; 488 489 case PIPE_FORMAT_R8G8_UNORM: 490 c.color[2] = c.color[1]; 491 break; 492 493 case PIPE_FORMAT_L8A8_UNORM: 494 c.color[2] = c.color[3]; 495 break; 496 497 case PIPE_FORMAT_R8G8B8A8_UNORM: 498 case PIPE_FORMAT_R8G8B8X8_UNORM: 499 tmp = c.color[0]; 500 c.color[0] = c.color[2]; 501 c.color[2] = tmp; 502 break; 503 504 default:; 505 } 506 } 507 508 if (r300->screen->caps.is_r500) { 509 BEGIN_CB(state->cb, 3); 510 OUT_CB_REG_SEQ(R500_RB3D_CONSTANT_COLOR_AR, 2); 511 512 switch (format) { 513 case PIPE_FORMAT_R16G16B16A16_FLOAT: 514 OUT_CB(util_float_to_half(c.color[2]) | 515 (util_float_to_half(c.color[3]) << 16)); 516 OUT_CB(util_float_to_half(c.color[0]) | 517 (util_float_to_half(c.color[1]) << 16)); 518 break; 519 520 default: 521 OUT_CB(float_to_fixed10(c.color[0]) | 522 (float_to_fixed10(c.color[3]) << 16)); 523 OUT_CB(float_to_fixed10(c.color[2]) | 524 (float_to_fixed10(c.color[1]) << 16)); 525 } 526 527 END_CB; 528 } else { 529 union util_color uc; 530 util_pack_color(c.color, PIPE_FORMAT_B8G8R8A8_UNORM, &uc); 531 532 BEGIN_CB(state->cb, 2); 533 OUT_CB_REG(R300_RB3D_BLEND_COLOR, uc.ui); 534 END_CB; 535 } 536 537 r300_mark_atom_dirty(r300, &r300->blend_color_state); 538 } 539 540 static void r300_set_clip_state(struct pipe_context* pipe, 541 const struct pipe_clip_state* state) 542 { 543 struct r300_context* r300 = r300_context(pipe); 544 struct r300_clip_state *clip = 545 (struct r300_clip_state*)r300->clip_state.state; 546 CB_LOCALS; 547 548 if (r300->screen->caps.has_tcl) { 549 BEGIN_CB(clip->cb, r300->clip_state.size); 550 OUT_CB_REG(R300_VAP_PVS_VECTOR_INDX_REG, 551 (r300->screen->caps.is_r500 ? 552 R500_PVS_UCP_START : R300_PVS_UCP_START)); 553 OUT_CB_ONE_REG(R300_VAP_PVS_UPLOAD_DATA, 6 * 4); 554 OUT_CB_TABLE(state->ucp, 6 * 4); 555 END_CB; 556 557 r300_mark_atom_dirty(r300, &r300->clip_state); 558 } else { 559 draw_set_clip_state(r300->draw, state); 560 } 561 } 562 563 static void 564 r300_set_sample_mask(struct pipe_context *pipe, 565 unsigned sample_mask) 566 { 567 } 568 569 570 /* Create a new depth, stencil, and alpha state based on the CSO dsa state. 571 * 572 * This contains the depth buffer, stencil buffer, alpha test, and such. 573 * On the Radeon, depth and stencil buffer setup are intertwined, which is 574 * the reason for some of the strange-looking assignments across registers. */ 575 static void* 576 r300_create_dsa_state(struct pipe_context* pipe, 577 const struct pipe_depth_stencil_alpha_state* state) 578 { 579 struct r300_capabilities *caps = &r300_screen(pipe->screen)->caps; 580 struct r300_dsa_state* dsa = CALLOC_STRUCT(r300_dsa_state); 581 CB_LOCALS; 582 583 dsa->dsa = *state; 584 585 /* Depth test setup. - separate write mask depth for decomp flush */ 586 if (state->depth.writemask) { 587 dsa->z_buffer_control |= R300_Z_WRITE_ENABLE; 588 } 589 590 if (state->depth.enabled) { 591 dsa->z_buffer_control |= R300_Z_ENABLE; 592 593 dsa->z_stencil_control |= 594 (r300_translate_depth_stencil_function(state->depth.func) << 595 R300_Z_FUNC_SHIFT); 596 } else { 597 /* We must enable depth test, otherwise occlusion queries won't work. */ 598 dsa->z_buffer_control |= R300_Z_ENABLE; 599 dsa->z_stencil_control |= R300_ZS_ALWAYS; 600 } 601 602 /* Stencil buffer setup. */ 603 if (state->stencil[0].enabled) { 604 dsa->z_buffer_control |= R300_STENCIL_ENABLE; 605 dsa->z_stencil_control |= 606 (r300_translate_depth_stencil_function(state->stencil[0].func) << 607 R300_S_FRONT_FUNC_SHIFT) | 608 (r300_translate_stencil_op(state->stencil[0].fail_op) << 609 R300_S_FRONT_SFAIL_OP_SHIFT) | 610 (r300_translate_stencil_op(state->stencil[0].zpass_op) << 611 R300_S_FRONT_ZPASS_OP_SHIFT) | 612 (r300_translate_stencil_op(state->stencil[0].zfail_op) << 613 R300_S_FRONT_ZFAIL_OP_SHIFT); 614 615 dsa->stencil_ref_mask = 616 (state->stencil[0].valuemask << R300_STENCILMASK_SHIFT) | 617 (state->stencil[0].writemask << R300_STENCILWRITEMASK_SHIFT); 618 619 if (state->stencil[1].enabled) { 620 dsa->two_sided = TRUE; 621 622 dsa->z_buffer_control |= R300_STENCIL_FRONT_BACK; 623 dsa->z_stencil_control |= 624 (r300_translate_depth_stencil_function(state->stencil[1].func) << 625 R300_S_BACK_FUNC_SHIFT) | 626 (r300_translate_stencil_op(state->stencil[1].fail_op) << 627 R300_S_BACK_SFAIL_OP_SHIFT) | 628 (r300_translate_stencil_op(state->stencil[1].zpass_op) << 629 R300_S_BACK_ZPASS_OP_SHIFT) | 630 (r300_translate_stencil_op(state->stencil[1].zfail_op) << 631 R300_S_BACK_ZFAIL_OP_SHIFT); 632 633 dsa->stencil_ref_bf = 634 (state->stencil[1].valuemask << R300_STENCILMASK_SHIFT) | 635 (state->stencil[1].writemask << R300_STENCILWRITEMASK_SHIFT); 636 637 if (caps->is_r500) { 638 dsa->z_buffer_control |= R500_STENCIL_REFMASK_FRONT_BACK; 639 } else { 640 dsa->two_sided_stencil_ref = 641 (state->stencil[0].valuemask != state->stencil[1].valuemask || 642 state->stencil[0].writemask != state->stencil[1].writemask); 643 } 644 } 645 } 646 647 /* Alpha test setup. */ 648 if (state->alpha.enabled) { 649 dsa->alpha_function = 650 r300_translate_alpha_function(state->alpha.func) | 651 R300_FG_ALPHA_FUNC_ENABLE; 652 653 dsa->alpha_function |= float_to_ubyte(state->alpha.ref_value); 654 dsa->alpha_value = util_float_to_half(state->alpha.ref_value); 655 656 if (caps->is_r500) { 657 dsa->alpha_function_fp16 = dsa->alpha_function | 658 R500_FG_ALPHA_FUNC_FP16_ENABLE; 659 dsa->alpha_function |= R500_FG_ALPHA_FUNC_8BIT; 660 } 661 } 662 663 BEGIN_CB(&dsa->cb_begin, 10); 664 OUT_CB_REG(R300_FG_ALPHA_FUNC, dsa->alpha_function); 665 OUT_CB_REG_SEQ(R300_ZB_CNTL, 3); 666 OUT_CB(dsa->z_buffer_control); 667 OUT_CB(dsa->z_stencil_control); 668 OUT_CB(dsa->stencil_ref_mask); 669 OUT_CB_REG(R500_ZB_STENCILREFMASK_BF, dsa->stencil_ref_bf); 670 OUT_CB_REG(R500_FG_ALPHA_VALUE, dsa->alpha_value); 671 END_CB; 672 673 BEGIN_CB(&dsa->cb_begin_fp16, 10); 674 OUT_CB_REG(R300_FG_ALPHA_FUNC, dsa->alpha_function_fp16); 675 OUT_CB_REG_SEQ(R300_ZB_CNTL, 3); 676 OUT_CB(dsa->z_buffer_control); 677 OUT_CB(dsa->z_stencil_control); 678 OUT_CB(dsa->stencil_ref_mask); 679 OUT_CB_REG(R500_ZB_STENCILREFMASK_BF, dsa->stencil_ref_bf); 680 OUT_CB_REG(R500_FG_ALPHA_VALUE, dsa->alpha_value); 681 END_CB; 682 683 /* We must enable depth test, otherwise occlusion queries won't work. 684 * We setup a dummy zbuffer to silent the CS checker, see emit_fb_state. */ 685 BEGIN_CB(dsa->cb_zb_no_readwrite, 10); 686 OUT_CB_REG(R300_FG_ALPHA_FUNC, dsa->alpha_function); 687 OUT_CB_REG_SEQ(R300_ZB_CNTL, 3); 688 OUT_CB(R300_Z_ENABLE); 689 OUT_CB(R300_ZS_ALWAYS); 690 OUT_CB(0); 691 OUT_CB_REG(R500_ZB_STENCILREFMASK_BF, 0); 692 OUT_CB_REG(R500_FG_ALPHA_VALUE, dsa->alpha_value); 693 END_CB; 694 695 BEGIN_CB(dsa->cb_fp16_zb_no_readwrite, 10); 696 OUT_CB_REG(R300_FG_ALPHA_FUNC, dsa->alpha_function_fp16); 697 OUT_CB_REG_SEQ(R300_ZB_CNTL, 3); 698 OUT_CB(R300_Z_ENABLE); 699 OUT_CB(R300_ZS_ALWAYS); 700 OUT_CB(0); 701 OUT_CB_REG(R500_ZB_STENCILREFMASK_BF, 0); 702 OUT_CB_REG(R500_FG_ALPHA_VALUE, dsa->alpha_value); 703 END_CB; 704 705 return (void*)dsa; 706 } 707 708 static void r300_dsa_inject_stencilref(struct r300_context *r300) 709 { 710 struct r300_dsa_state *dsa = 711 (struct r300_dsa_state*)r300->dsa_state.state; 712 713 if (!dsa) 714 return; 715 716 dsa->stencil_ref_mask = 717 (dsa->stencil_ref_mask & ~R300_STENCILREF_MASK) | 718 r300->stencil_ref.ref_value[0]; 719 dsa->stencil_ref_bf = 720 (dsa->stencil_ref_bf & ~R300_STENCILREF_MASK) | 721 r300->stencil_ref.ref_value[1]; 722 } 723 724 /* Bind DSA state. */ 725 static void r300_bind_dsa_state(struct pipe_context* pipe, 726 void* state) 727 { 728 struct r300_context* r300 = r300_context(pipe); 729 730 if (!state) { 731 return; 732 } 733 734 UPDATE_STATE(state, r300->dsa_state); 735 736 r300_mark_atom_dirty(r300, &r300->hyperz_state); /* Will be updated before the emission. */ 737 r300_dsa_inject_stencilref(r300); 738 } 739 740 /* Free DSA state. */ 741 static void r300_delete_dsa_state(struct pipe_context* pipe, 742 void* state) 743 { 744 FREE(state); 745 } 746 747 static void r300_set_stencil_ref(struct pipe_context* pipe, 748 const struct pipe_stencil_ref* sr) 749 { 750 struct r300_context* r300 = r300_context(pipe); 751 752 r300->stencil_ref = *sr; 753 754 r300_dsa_inject_stencilref(r300); 755 r300_mark_atom_dirty(r300, &r300->dsa_state); 756 } 757 758 static void r300_tex_set_tiling_flags(struct r300_context *r300, 759 struct r300_resource *tex, 760 unsigned level) 761 { 762 /* Check if the macrotile flag needs to be changed. 763 * Skip changing the flags otherwise. */ 764 if (tex->tex.macrotile[tex->surface_level] != 765 tex->tex.macrotile[level]) { 766 r300->rws->buffer_set_tiling(tex->buf, r300->cs, 767 tex->tex.microtile, tex->tex.macrotile[level], 768 0, 0, 0, 0, 0, 769 tex->tex.stride_in_bytes[0]); 770 771 tex->surface_level = level; 772 } 773 } 774 775 /* This switcheroo is needed just because of goddamned MACRO_SWITCH. */ 776 static void r300_fb_set_tiling_flags(struct r300_context *r300, 777 const struct pipe_framebuffer_state *state) 778 { 779 unsigned i; 780 781 /* Set tiling flags for new surfaces. */ 782 for (i = 0; i < state->nr_cbufs; i++) { 783 r300_tex_set_tiling_flags(r300, 784 r300_resource(state->cbufs[i]->texture), 785 state->cbufs[i]->u.tex.level); 786 } 787 if (state->zsbuf) { 788 r300_tex_set_tiling_flags(r300, 789 r300_resource(state->zsbuf->texture), 790 state->zsbuf->u.tex.level); 791 } 792 } 793 794 static void r300_print_fb_surf_info(struct pipe_surface *surf, unsigned index, 795 const char *binding) 796 { 797 struct pipe_resource *tex = surf->texture; 798 struct r300_resource *rtex = r300_resource(tex); 799 800 fprintf(stderr, 801 "r300: %s[%i] Dim: %ix%i, Firstlayer: %i, " 802 "Lastlayer: %i, Level: %i, Format: %s\n" 803 804 "r300: TEX: Macro: %s, Micro: %s, " 805 "Dim: %ix%ix%i, LastLevel: %i, Format: %s\n", 806 807 binding, index, surf->width, surf->height, 808 surf->u.tex.first_layer, surf->u.tex.last_layer, surf->u.tex.level, 809 util_format_short_name(surf->format), 810 811 rtex->tex.macrotile[0] ? "YES" : " NO", 812 rtex->tex.microtile ? "YES" : " NO", 813 tex->width0, tex->height0, tex->depth0, 814 tex->last_level, util_format_short_name(surf->format)); 815 } 816 817 void r300_mark_fb_state_dirty(struct r300_context *r300, 818 enum r300_fb_state_change change) 819 { 820 struct pipe_framebuffer_state *state = r300->fb_state.state; 821 822 r300_mark_atom_dirty(r300, &r300->gpu_flush); 823 r300_mark_atom_dirty(r300, &r300->fb_state); 824 825 /* What is marked as dirty depends on the enum r300_fb_state_change. */ 826 if (change == R300_CHANGED_FB_STATE) { 827 r300_mark_atom_dirty(r300, &r300->aa_state); 828 r300_mark_atom_dirty(r300, &r300->dsa_state); /* for AlphaRef */ 829 r300_set_blend_color(&r300->context, r300->blend_color_state.state); 830 } 831 832 if (change == R300_CHANGED_FB_STATE || 833 change == R300_CHANGED_HYPERZ_FLAG) { 834 r300_mark_atom_dirty(r300, &r300->hyperz_state); 835 } 836 837 if (change == R300_CHANGED_FB_STATE || 838 change == R300_CHANGED_MULTIWRITE) { 839 r300_mark_atom_dirty(r300, &r300->fb_state_pipelined); 840 } 841 842 /* Now compute the fb_state atom size. */ 843 r300->fb_state.size = 2 + (8 * state->nr_cbufs); 844 845 if (r300->cbzb_clear) { 846 r300->fb_state.size += 10; 847 } else if (state->zsbuf) { 848 r300->fb_state.size += 10; 849 if (r300->hyperz_enabled) 850 r300->fb_state.size += 8; 851 } else if (state->nr_cbufs) { 852 r300->fb_state.size += 10; 853 } 854 855 /* The size of the rest of atoms stays the same. */ 856 } 857 858 static void 859 r300_set_framebuffer_state(struct pipe_context* pipe, 860 const struct pipe_framebuffer_state* state) 861 { 862 struct r300_context* r300 = r300_context(pipe); 863 struct r300_aa_state *aa = (struct r300_aa_state*)r300->aa_state.state; 864 struct pipe_framebuffer_state *old_state = r300->fb_state.state; 865 unsigned max_width, max_height, i; 866 uint32_t zbuffer_bpp = 0; 867 boolean unlock_zbuffer = FALSE; 868 869 if (r300->screen->caps.is_r500) { 870 max_width = max_height = 4096; 871 } else if (r300->screen->caps.is_r400) { 872 max_width = max_height = 4021; 873 } else { 874 max_width = max_height = 2560; 875 } 876 877 if (state->width > max_width || state->height > max_height) { 878 fprintf(stderr, "r300: Implementation error: Render targets are too " 879 "big in %s, refusing to bind framebuffer state!\n", __FUNCTION__); 880 return; 881 } 882 883 if (old_state->zsbuf && r300->zmask_in_use && !r300->locked_zbuffer) { 884 /* There is a zmask in use, what are we gonna do? */ 885 if (state->zsbuf) { 886 if (!pipe_surface_equal(old_state->zsbuf, state->zsbuf)) { 887 /* Decompress the currently bound zbuffer before we bind another one. */ 888 r300_decompress_zmask(r300); 889 r300->hiz_in_use = FALSE; 890 } 891 } else { 892 /* We don't bind another zbuffer, so lock the current one. */ 893 pipe_surface_reference(&r300->locked_zbuffer, old_state->zsbuf); 894 } 895 } else if (r300->locked_zbuffer) { 896 /* We have a locked zbuffer now, what are we gonna do? */ 897 if (state->zsbuf) { 898 if (!pipe_surface_equal(r300->locked_zbuffer, state->zsbuf)) { 899 /* We are binding some other zbuffer, so decompress the locked one, 900 * it gets unlocked automatically. */ 901 r300_decompress_zmask_locked_unsafe(r300); 902 r300->hiz_in_use = FALSE; 903 } else { 904 /* We are binding the locked zbuffer again, so unlock it. */ 905 unlock_zbuffer = TRUE; 906 } 907 } 908 } 909 assert(state->zsbuf || (r300->locked_zbuffer && !unlock_zbuffer) || !r300->zmask_in_use); 910 911 /* Need to reset clamping or colormask. */ 912 r300_mark_atom_dirty(r300, &r300->blend_state); 913 914 /* Re-swizzle the blend color. */ 915 r300_set_blend_color(pipe, &((struct r300_blend_color_state*)r300->blend_color_state.state)->state); 916 917 /* If zsbuf is set from NULL to non-NULL or vice versa.. */ 918 if (!!old_state->zsbuf != !!state->zsbuf) { 919 r300_mark_atom_dirty(r300, &r300->dsa_state); 920 } 921 922 if (r300->screen->info.drm_minor < 12) { 923 /* The tiling flags are dependent on the surface miplevel, unfortunately. 924 * This workarounds a bad design decision in old kernels which were 925 * rewriting tile fields in registers. */ 926 r300_fb_set_tiling_flags(r300, state); 927 } 928 929 util_copy_framebuffer_state(r300->fb_state.state, state); 930 931 if (unlock_zbuffer) { 932 pipe_surface_reference(&r300->locked_zbuffer, NULL); 933 } 934 935 r300_mark_fb_state_dirty(r300, R300_CHANGED_FB_STATE); 936 937 if (state->zsbuf) { 938 switch (util_format_get_blocksize(state->zsbuf->format)) { 939 case 2: 940 zbuffer_bpp = 16; 941 break; 942 case 4: 943 zbuffer_bpp = 24; 944 break; 945 } 946 947 /* Polygon offset depends on the zbuffer bit depth. */ 948 if (r300->zbuffer_bpp != zbuffer_bpp) { 949 r300->zbuffer_bpp = zbuffer_bpp; 950 951 if (r300->polygon_offset_enabled) 952 r300_mark_atom_dirty(r300, &r300->rs_state); 953 } 954 } 955 956 /* Set up AA config. */ 957 if (state->nr_cbufs && state->cbufs[0]->texture->nr_samples > 1) { 958 aa->aa_config = R300_GB_AA_CONFIG_AA_ENABLE; 959 960 switch (state->cbufs[0]->texture->nr_samples) { 961 case 2: 962 aa->aa_config |= R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_2; 963 break; 964 case 3: 965 aa->aa_config |= R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_3; 966 break; 967 case 4: 968 aa->aa_config |= R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_4; 969 break; 970 case 6: 971 aa->aa_config |= R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_6; 972 break; 973 } 974 } else { 975 aa->aa_config = 0; 976 } 977 978 if (DBG_ON(r300, DBG_FB)) { 979 fprintf(stderr, "r300: set_framebuffer_state:\n"); 980 for (i = 0; i < state->nr_cbufs; i++) { 981 r300_print_fb_surf_info(state->cbufs[i], i, "CB"); 982 } 983 if (state->zsbuf) { 984 r300_print_fb_surf_info(state->zsbuf, 0, "ZB"); 985 } 986 } 987 } 988 989 /* Create fragment shader state. */ 990 static void* r300_create_fs_state(struct pipe_context* pipe, 991 const struct pipe_shader_state* shader) 992 { 993 struct r300_fragment_shader* fs = NULL; 994 995 fs = (struct r300_fragment_shader*)CALLOC_STRUCT(r300_fragment_shader); 996 997 /* Copy state directly into shader. */ 998 fs->state = *shader; 999 fs->state.tokens = tgsi_dup_tokens(shader->tokens); 1000 1001 return (void*)fs; 1002 } 1003 1004 void r300_mark_fs_code_dirty(struct r300_context *r300) 1005 { 1006 struct r300_fragment_shader* fs = r300_fs(r300); 1007 1008 r300_mark_atom_dirty(r300, &r300->fs); 1009 r300_mark_atom_dirty(r300, &r300->fs_rc_constant_state); 1010 r300_mark_atom_dirty(r300, &r300->fs_constants); 1011 r300->fs.size = fs->shader->cb_code_size; 1012 1013 if (r300->screen->caps.is_r500) { 1014 r300->fs_rc_constant_state.size = fs->shader->rc_state_count * 7; 1015 r300->fs_constants.size = fs->shader->externals_count * 4 + 3; 1016 } else { 1017 r300->fs_rc_constant_state.size = fs->shader->rc_state_count * 5; 1018 r300->fs_constants.size = fs->shader->externals_count * 4 + 1; 1019 } 1020 1021 ((struct r300_constant_buffer*)r300->fs_constants.state)->remap_table = 1022 fs->shader->code.constants_remap_table; 1023 } 1024 1025 /* Bind fragment shader state. */ 1026 static void r300_bind_fs_state(struct pipe_context* pipe, void* shader) 1027 { 1028 struct r300_context* r300 = r300_context(pipe); 1029 struct r300_fragment_shader* fs = (struct r300_fragment_shader*)shader; 1030 1031 if (fs == NULL) { 1032 r300->fs.state = NULL; 1033 return; 1034 } 1035 1036 r300->fs.state = fs; 1037 r300->fs_status = FRAGMENT_SHADER_DIRTY; 1038 1039 r300_mark_atom_dirty(r300, &r300->rs_block_state); /* Will be updated before the emission. */ 1040 } 1041 1042 /* Delete fragment shader state. */ 1043 static void r300_delete_fs_state(struct pipe_context* pipe, void* shader) 1044 { 1045 struct r300_fragment_shader* fs = (struct r300_fragment_shader*)shader; 1046 struct r300_fragment_shader_code *tmp, *ptr = fs->first; 1047 1048 while (ptr) { 1049 tmp = ptr; 1050 ptr = ptr->next; 1051 rc_constants_destroy(&tmp->code.constants); 1052 FREE(tmp->cb_code); 1053 FREE(tmp); 1054 } 1055 FREE((void*)fs->state.tokens); 1056 FREE(shader); 1057 } 1058 1059 static void r300_set_polygon_stipple(struct pipe_context* pipe, 1060 const struct pipe_poly_stipple* state) 1061 { 1062 /* XXX no idea how to set this up, but not terribly important */ 1063 } 1064 1065 /* Create a new rasterizer state based on the CSO rasterizer state. 1066 * 1067 * This is a very large chunk of state, and covers most of the graphics 1068 * backend (GB), geometry assembly (GA), and setup unit (SU) blocks. 1069 * 1070 * In a not entirely unironic sidenote, this state has nearly nothing to do 1071 * with the actual block on the Radeon called the rasterizer (RS). */ 1072 static void* r300_create_rs_state(struct pipe_context* pipe, 1073 const struct pipe_rasterizer_state* state) 1074 { 1075 struct r300_rs_state* rs = CALLOC_STRUCT(r300_rs_state); 1076 uint32_t vap_control_status; /* R300_VAP_CNTL_STATUS: 0x2140 */ 1077 uint32_t vap_clip_cntl; /* R300_VAP_CLIP_CNTL: 0x221C */ 1078 uint32_t point_size; /* R300_GA_POINT_SIZE: 0x421c */ 1079 uint32_t point_minmax; /* R300_GA_POINT_MINMAX: 0x4230 */ 1080 uint32_t line_control; /* R300_GA_LINE_CNTL: 0x4234 */ 1081 uint32_t polygon_offset_enable; /* R300_SU_POLY_OFFSET_ENABLE: 0x42b4 */ 1082 uint32_t cull_mode; /* R300_SU_CULL_MODE: 0x42b8 */ 1083 uint32_t line_stipple_config; /* R300_GA_LINE_STIPPLE_CONFIG: 0x4328 */ 1084 uint32_t line_stipple_value; /* R300_GA_LINE_STIPPLE_VALUE: 0x4260 */ 1085 uint32_t polygon_mode; /* R300_GA_POLY_MODE: 0x4288 */ 1086 uint32_t clip_rule; /* R300_SC_CLIP_RULE: 0x43D0 */ 1087 uint32_t round_mode; /* R300_GA_ROUND_MODE: 0x428c */ 1088 1089 /* Point sprites texture coordinates, 0: lower left, 1: upper right */ 1090 float point_texcoord_left = 0; /* R300_GA_POINT_S0: 0x4200 */ 1091 float point_texcoord_bottom = 0;/* R300_GA_POINT_T0: 0x4204 */ 1092 float point_texcoord_right = 1; /* R300_GA_POINT_S1: 0x4208 */ 1093 float point_texcoord_top = 0; /* R300_GA_POINT_T1: 0x420c */ 1094 boolean vclamp = state->clamp_vertex_color || 1095 !r300_context(pipe)->screen->caps.is_r500; 1096 CB_LOCALS; 1097 1098 /* Copy rasterizer state. */ 1099 rs->rs = *state; 1100 rs->rs_draw = *state; 1101 1102 rs->rs.sprite_coord_enable = state->point_quad_rasterization * 1103 state->sprite_coord_enable; 1104 1105 /* Override some states for Draw. */ 1106 rs->rs_draw.sprite_coord_enable = 0; /* We can do this in HW. */ 1107 rs->rs_draw.offset_point = 0; 1108 rs->rs_draw.offset_line = 0; 1109 rs->rs_draw.offset_tri = 0; 1110 rs->rs_draw.offset_clamp = 0; 1111 1112 #ifdef PIPE_ARCH_LITTLE_ENDIAN 1113 vap_control_status = R300_VC_NO_SWAP; 1114 #else 1115 vap_control_status = R300_VC_32BIT_SWAP; 1116 #endif 1117 1118 /* If no TCL engine is present, turn off the HW TCL. */ 1119 if (!r300_screen(pipe->screen)->caps.has_tcl) { 1120 vap_control_status |= R300_VAP_TCL_BYPASS; 1121 } 1122 1123 /* Point size width and height. */ 1124 point_size = 1125 pack_float_16_6x(state->point_size) | 1126 (pack_float_16_6x(state->point_size) << R300_POINTSIZE_X_SHIFT); 1127 1128 /* Point size clamping. */ 1129 if (state->point_size_per_vertex) { 1130 /* Per-vertex point size. 1131 * Clamp to [0, max FB size] */ 1132 float min_psiz = util_get_min_point_size(state); 1133 float max_psiz = pipe->screen->get_paramf(pipe->screen, 1134 PIPE_CAPF_MAX_POINT_WIDTH); 1135 point_minmax = 1136 (pack_float_16_6x(min_psiz) << R300_GA_POINT_MINMAX_MIN_SHIFT) | 1137 (pack_float_16_6x(max_psiz) << R300_GA_POINT_MINMAX_MAX_SHIFT); 1138 } else { 1139 /* We cannot disable the point-size vertex output, 1140 * so clamp it. */ 1141 float psiz = state->point_size; 1142 point_minmax = 1143 (pack_float_16_6x(psiz) << R300_GA_POINT_MINMAX_MIN_SHIFT) | 1144 (pack_float_16_6x(psiz) << R300_GA_POINT_MINMAX_MAX_SHIFT); 1145 } 1146 1147 /* Line control. */ 1148 line_control = pack_float_16_6x(state->line_width) | 1149 R300_GA_LINE_CNTL_END_TYPE_COMP; 1150 1151 /* Enable polygon mode */ 1152 polygon_mode = 0; 1153 if (state->fill_front != PIPE_POLYGON_MODE_FILL || 1154 state->fill_back != PIPE_POLYGON_MODE_FILL) { 1155 polygon_mode = R300_GA_POLY_MODE_DUAL; 1156 } 1157 1158 /* Front face */ 1159 if (state->front_ccw) 1160 cull_mode = R300_FRONT_FACE_CCW; 1161 else 1162 cull_mode = R300_FRONT_FACE_CW; 1163 1164 /* Polygon offset */ 1165 polygon_offset_enable = 0; 1166 if (util_get_offset(state, state->fill_front)) { 1167 polygon_offset_enable |= R300_FRONT_ENABLE; 1168 } 1169 if (util_get_offset(state, state->fill_back)) { 1170 polygon_offset_enable |= R300_BACK_ENABLE; 1171 } 1172 1173 rs->polygon_offset_enable = polygon_offset_enable != 0; 1174 1175 /* Polygon mode */ 1176 if (polygon_mode) { 1177 polygon_mode |= 1178 r300_translate_polygon_mode_front(state->fill_front); 1179 polygon_mode |= 1180 r300_translate_polygon_mode_back(state->fill_back); 1181 } 1182 1183 if (state->cull_face & PIPE_FACE_FRONT) { 1184 cull_mode |= R300_CULL_FRONT; 1185 } 1186 if (state->cull_face & PIPE_FACE_BACK) { 1187 cull_mode |= R300_CULL_BACK; 1188 } 1189 1190 if (state->line_stipple_enable) { 1191 line_stipple_config = 1192 R300_GA_LINE_STIPPLE_CONFIG_LINE_RESET_LINE | 1193 (fui((float)state->line_stipple_factor) & 1194 R300_GA_LINE_STIPPLE_CONFIG_STIPPLE_SCALE_MASK); 1195 /* XXX this might need to be scaled up */ 1196 line_stipple_value = state->line_stipple_pattern; 1197 } else { 1198 line_stipple_config = 0; 1199 line_stipple_value = 0; 1200 } 1201 1202 if (state->flatshade) { 1203 rs->color_control = R300_SHADE_MODEL_FLAT; 1204 } else { 1205 rs->color_control = R300_SHADE_MODEL_SMOOTH; 1206 } 1207 1208 clip_rule = state->scissor ? 0xAAAA : 0xFFFF; 1209 1210 /* Point sprites coord mode */ 1211 if (rs->rs.sprite_coord_enable) { 1212 switch (state->sprite_coord_mode) { 1213 case PIPE_SPRITE_COORD_UPPER_LEFT: 1214 point_texcoord_top = 0.0f; 1215 point_texcoord_bottom = 1.0f; 1216 break; 1217 case PIPE_SPRITE_COORD_LOWER_LEFT: 1218 point_texcoord_top = 1.0f; 1219 point_texcoord_bottom = 0.0f; 1220 break; 1221 } 1222 } 1223 1224 if (r300_screen(pipe->screen)->caps.has_tcl) { 1225 vap_clip_cntl = (state->clip_plane_enable & 63) | 1226 R300_PS_UCP_MODE_CLIP_AS_TRIFAN; 1227 } else { 1228 vap_clip_cntl = R300_CLIP_DISABLE; 1229 } 1230 1231 /* Vertex color clamping. FP20 means no clamping. */ 1232 round_mode = 1233 R300_GA_ROUND_MODE_GEOMETRY_ROUND_NEAREST | 1234 (!vclamp ? (R300_GA_ROUND_MODE_RGB_CLAMP_FP20 | 1235 R300_GA_ROUND_MODE_ALPHA_CLAMP_FP20) : 0); 1236 1237 /* Build the main command buffer. */ 1238 BEGIN_CB(rs->cb_main, RS_STATE_MAIN_SIZE); 1239 OUT_CB_REG(R300_VAP_CNTL_STATUS, vap_control_status); 1240 OUT_CB_REG(R300_VAP_CLIP_CNTL, vap_clip_cntl); 1241 OUT_CB_REG(R300_GA_POINT_SIZE, point_size); 1242 OUT_CB_REG_SEQ(R300_GA_POINT_MINMAX, 2); 1243 OUT_CB(point_minmax); 1244 OUT_CB(line_control); 1245 OUT_CB_REG_SEQ(R300_SU_POLY_OFFSET_ENABLE, 2); 1246 OUT_CB(polygon_offset_enable); 1247 rs->cull_mode_index = 11; 1248 OUT_CB(cull_mode); 1249 OUT_CB_REG(R300_GA_LINE_STIPPLE_CONFIG, line_stipple_config); 1250 OUT_CB_REG(R300_GA_LINE_STIPPLE_VALUE, line_stipple_value); 1251 OUT_CB_REG(R300_GA_POLY_MODE, polygon_mode); 1252 OUT_CB_REG(R300_GA_ROUND_MODE, round_mode); 1253 OUT_CB_REG(R300_SC_CLIP_RULE, clip_rule); 1254 OUT_CB_REG_SEQ(R300_GA_POINT_S0, 4); 1255 OUT_CB_32F(point_texcoord_left); 1256 OUT_CB_32F(point_texcoord_bottom); 1257 OUT_CB_32F(point_texcoord_right); 1258 OUT_CB_32F(point_texcoord_top); 1259 END_CB; 1260 1261 /* Build the two command buffers for polygon offset setup. */ 1262 if (polygon_offset_enable) { 1263 float scale = state->offset_scale * 12; 1264 float offset = state->offset_units * 4; 1265 1266 BEGIN_CB(rs->cb_poly_offset_zb16, 5); 1267 OUT_CB_REG_SEQ(R300_SU_POLY_OFFSET_FRONT_SCALE, 4); 1268 OUT_CB_32F(scale); 1269 OUT_CB_32F(offset); 1270 OUT_CB_32F(scale); 1271 OUT_CB_32F(offset); 1272 END_CB; 1273 1274 offset = state->offset_units * 2; 1275 1276 BEGIN_CB(rs->cb_poly_offset_zb24, 5); 1277 OUT_CB_REG_SEQ(R300_SU_POLY_OFFSET_FRONT_SCALE, 4); 1278 OUT_CB_32F(scale); 1279 OUT_CB_32F(offset); 1280 OUT_CB_32F(scale); 1281 OUT_CB_32F(offset); 1282 END_CB; 1283 } 1284 1285 return (void*)rs; 1286 } 1287 1288 /* Bind rasterizer state. */ 1289 static void r300_bind_rs_state(struct pipe_context* pipe, void* state) 1290 { 1291 struct r300_context* r300 = r300_context(pipe); 1292 struct r300_rs_state* rs = (struct r300_rs_state*)state; 1293 int last_sprite_coord_enable = r300->sprite_coord_enable; 1294 boolean last_two_sided_color = r300->two_sided_color; 1295 1296 if (r300->draw && rs) { 1297 draw_set_rasterizer_state(r300->draw, &rs->rs_draw, state); 1298 } 1299 1300 if (rs) { 1301 r300->polygon_offset_enabled = rs->polygon_offset_enable; 1302 r300->sprite_coord_enable = rs->rs.sprite_coord_enable; 1303 r300->two_sided_color = rs->rs.light_twoside; 1304 } else { 1305 r300->polygon_offset_enabled = FALSE; 1306 r300->sprite_coord_enable = 0; 1307 r300->two_sided_color = FALSE; 1308 } 1309 1310 UPDATE_STATE(state, r300->rs_state); 1311 r300->rs_state.size = RS_STATE_MAIN_SIZE + (r300->polygon_offset_enabled ? 5 : 0); 1312 1313 if (last_sprite_coord_enable != r300->sprite_coord_enable || 1314 last_two_sided_color != r300->two_sided_color) { 1315 r300_mark_atom_dirty(r300, &r300->rs_block_state); 1316 } 1317 } 1318 1319 /* Free rasterizer state. */ 1320 static void r300_delete_rs_state(struct pipe_context* pipe, void* state) 1321 { 1322 FREE(state); 1323 } 1324 1325 static void* 1326 r300_create_sampler_state(struct pipe_context* pipe, 1327 const struct pipe_sampler_state* state) 1328 { 1329 struct r300_context* r300 = r300_context(pipe); 1330 struct r300_sampler_state* sampler = CALLOC_STRUCT(r300_sampler_state); 1331 boolean is_r500 = r300->screen->caps.is_r500; 1332 int lod_bias; 1333 1334 sampler->state = *state; 1335 1336 /* r300 doesn't handle CLAMP and MIRROR_CLAMP correctly when either MAG 1337 * or MIN filter is NEAREST. Since texwrap produces same results 1338 * for CLAMP and CLAMP_TO_EDGE, we use them instead. */ 1339 if (sampler->state.min_img_filter == PIPE_TEX_FILTER_NEAREST || 1340 sampler->state.mag_img_filter == PIPE_TEX_FILTER_NEAREST) { 1341 /* Wrap S. */ 1342 if (sampler->state.wrap_s == PIPE_TEX_WRAP_CLAMP) 1343 sampler->state.wrap_s = PIPE_TEX_WRAP_CLAMP_TO_EDGE; 1344 else if (sampler->state.wrap_s == PIPE_TEX_WRAP_MIRROR_CLAMP) 1345 sampler->state.wrap_s = PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE; 1346 1347 /* Wrap T. */ 1348 if (sampler->state.wrap_t == PIPE_TEX_WRAP_CLAMP) 1349 sampler->state.wrap_t = PIPE_TEX_WRAP_CLAMP_TO_EDGE; 1350 else if (sampler->state.wrap_t == PIPE_TEX_WRAP_MIRROR_CLAMP) 1351 sampler->state.wrap_t = PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE; 1352 1353 /* Wrap R. */ 1354 if (sampler->state.wrap_r == PIPE_TEX_WRAP_CLAMP) 1355 sampler->state.wrap_r = PIPE_TEX_WRAP_CLAMP_TO_EDGE; 1356 else if (sampler->state.wrap_r == PIPE_TEX_WRAP_MIRROR_CLAMP) 1357 sampler->state.wrap_r = PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE; 1358 } 1359 1360 sampler->filter0 |= 1361 (r300_translate_wrap(sampler->state.wrap_s) << R300_TX_WRAP_S_SHIFT) | 1362 (r300_translate_wrap(sampler->state.wrap_t) << R300_TX_WRAP_T_SHIFT) | 1363 (r300_translate_wrap(sampler->state.wrap_r) << R300_TX_WRAP_R_SHIFT); 1364 1365 sampler->filter0 |= r300_translate_tex_filters(state->min_img_filter, 1366 state->mag_img_filter, 1367 state->min_mip_filter, 1368 state->max_anisotropy > 1); 1369 1370 sampler->filter0 |= r300_anisotropy(state->max_anisotropy); 1371 1372 /* Unfortunately, r300-r500 don't support floating-point mipmap lods. */ 1373 /* We must pass these to the merge function to clamp them properly. */ 1374 sampler->min_lod = (unsigned)MAX2(state->min_lod, 0); 1375 sampler->max_lod = (unsigned)MAX2(ceilf(state->max_lod), 0); 1376 1377 lod_bias = CLAMP((int)(state->lod_bias * 32 + 1), -(1 << 9), (1 << 9) - 1); 1378 1379 sampler->filter1 |= (lod_bias << R300_LOD_BIAS_SHIFT) & R300_LOD_BIAS_MASK; 1380 1381 /* This is very high quality anisotropic filtering for R5xx. 1382 * It's good for benchmarking the performance of texturing but 1383 * in practice we don't want to slow down the driver because it's 1384 * a pretty good performance killer. Feel free to play with it. */ 1385 if (DBG_ON(r300, DBG_ANISOHQ) && is_r500) { 1386 sampler->filter1 |= r500_anisotropy(state->max_anisotropy); 1387 } 1388 1389 /* R500-specific fixups and optimizations */ 1390 if (r300->screen->caps.is_r500) { 1391 sampler->filter1 |= R500_BORDER_FIX; 1392 } 1393 1394 return (void*)sampler; 1395 } 1396 1397 static void r300_bind_sampler_states(struct pipe_context* pipe, 1398 unsigned count, 1399 void** states) 1400 { 1401 struct r300_context* r300 = r300_context(pipe); 1402 struct r300_textures_state* state = 1403 (struct r300_textures_state*)r300->textures_state.state; 1404 unsigned tex_units = r300->screen->caps.num_tex_units; 1405 1406 if (count > tex_units) { 1407 return; 1408 } 1409 1410 memcpy(state->sampler_states, states, sizeof(void*) * count); 1411 state->sampler_state_count = count; 1412 1413 r300_mark_atom_dirty(r300, &r300->textures_state); 1414 } 1415 1416 static void r300_lacks_vertex_textures(struct pipe_context* pipe, 1417 unsigned count, 1418 void** states) 1419 { 1420 } 1421 1422 static void r300_delete_sampler_state(struct pipe_context* pipe, void* state) 1423 { 1424 FREE(state); 1425 } 1426 1427 static uint32_t r300_assign_texture_cache_region(unsigned index, unsigned num) 1428 { 1429 /* This looks like a hack, but I believe it's suppose to work like 1430 * that. To illustrate how this works, let's assume you have 5 textures. 1431 * From docs, 5 and the successive numbers are: 1432 * 1433 * FOURTH_1 = 5 1434 * FOURTH_2 = 6 1435 * FOURTH_3 = 7 1436 * EIGHTH_0 = 8 1437 * EIGHTH_1 = 9 1438 * 1439 * First 3 textures will get 3/4 of size of the cache, divived evenly 1440 * between them. The last 1/4 of the cache must be divided between 1441 * the last 2 textures, each will therefore get 1/8 of the cache. 1442 * Why not just to use "5 + texture_index" ? 1443 * 1444 * This simple trick works for all "num" <= 16. 1445 */ 1446 if (num <= 1) 1447 return R300_TX_CACHE(R300_TX_CACHE_WHOLE); 1448 else 1449 return R300_TX_CACHE(num + index); 1450 } 1451 1452 static void r300_set_fragment_sampler_views(struct pipe_context* pipe, 1453 unsigned count, 1454 struct pipe_sampler_view** views) 1455 { 1456 struct r300_context* r300 = r300_context(pipe); 1457 struct r300_textures_state* state = 1458 (struct r300_textures_state*)r300->textures_state.state; 1459 struct r300_resource *texture; 1460 unsigned i, real_num_views = 0, view_index = 0; 1461 unsigned tex_units = r300->screen->caps.num_tex_units; 1462 boolean dirty_tex = FALSE; 1463 1464 if (count > tex_units) { 1465 return; 1466 } 1467 1468 /* Calculate the real number of views. */ 1469 for (i = 0; i < count; i++) { 1470 if (views[i]) 1471 real_num_views++; 1472 } 1473 1474 for (i = 0; i < count; i++) { 1475 pipe_sampler_view_reference( 1476 (struct pipe_sampler_view**)&state->sampler_views[i], 1477 views[i]); 1478 1479 if (!views[i]) { 1480 continue; 1481 } 1482 1483 /* A new sampler view (= texture)... */ 1484 dirty_tex = TRUE; 1485 1486 /* Set the texrect factor in the fragment shader. 1487 * Needed for RECT and NPOT fallback. */ 1488 texture = r300_resource(views[i]->texture); 1489 if (texture->tex.is_npot) { 1490 r300_mark_atom_dirty(r300, &r300->fs_rc_constant_state); 1491 } 1492 1493 state->sampler_views[i]->texcache_region = 1494 r300_assign_texture_cache_region(view_index, real_num_views); 1495 view_index++; 1496 } 1497 1498 for (i = count; i < tex_units; i++) { 1499 if (state->sampler_views[i]) { 1500 pipe_sampler_view_reference( 1501 (struct pipe_sampler_view**)&state->sampler_views[i], 1502 NULL); 1503 } 1504 } 1505 1506 state->sampler_view_count = count; 1507 1508 r300_mark_atom_dirty(r300, &r300->textures_state); 1509 1510 if (dirty_tex) { 1511 r300_mark_atom_dirty(r300, &r300->texture_cache_inval); 1512 } 1513 } 1514 1515 struct pipe_sampler_view * 1516 r300_create_sampler_view_custom(struct pipe_context *pipe, 1517 struct pipe_resource *texture, 1518 const struct pipe_sampler_view *templ, 1519 unsigned width0_override, 1520 unsigned height0_override) 1521 { 1522 struct r300_sampler_view *view = CALLOC_STRUCT(r300_sampler_view); 1523 struct r300_resource *tex = r300_resource(texture); 1524 boolean is_r500 = r300_screen(pipe->screen)->caps.is_r500; 1525 boolean dxtc_swizzle = r300_screen(pipe->screen)->caps.dxtc_swizzle; 1526 1527 if (view) { 1528 unsigned hwformat; 1529 1530 view->base = *templ; 1531 view->base.reference.count = 1; 1532 view->base.context = pipe; 1533 view->base.texture = NULL; 1534 pipe_resource_reference(&view->base.texture, texture); 1535 1536 view->width0_override = width0_override; 1537 view->height0_override = height0_override; 1538 view->swizzle[0] = templ->swizzle_r; 1539 view->swizzle[1] = templ->swizzle_g; 1540 view->swizzle[2] = templ->swizzle_b; 1541 view->swizzle[3] = templ->swizzle_a; 1542 1543 hwformat = r300_translate_texformat(templ->format, 1544 view->swizzle, 1545 is_r500, 1546 dxtc_swizzle); 1547 1548 if (hwformat == ~0) { 1549 fprintf(stderr, "r300: Ooops. Got unsupported format %s in %s.\n", 1550 util_format_short_name(templ->format), __func__); 1551 } 1552 assert(hwformat != ~0); 1553 1554 r300_texture_setup_format_state(r300_screen(pipe->screen), tex, 1555 templ->format, 0, 1556 width0_override, height0_override, 1557 &view->format); 1558 view->format.format1 |= hwformat; 1559 if (is_r500) { 1560 view->format.format2 |= r500_tx_format_msb_bit(templ->format); 1561 } 1562 } 1563 1564 return (struct pipe_sampler_view*)view; 1565 } 1566 1567 static struct pipe_sampler_view * 1568 r300_create_sampler_view(struct pipe_context *pipe, 1569 struct pipe_resource *texture, 1570 const struct pipe_sampler_view *templ) 1571 { 1572 return r300_create_sampler_view_custom(pipe, texture, templ, 1573 r300_resource(texture)->tex.width0, 1574 r300_resource(texture)->tex.height0); 1575 } 1576 1577 1578 static void 1579 r300_sampler_view_destroy(struct pipe_context *pipe, 1580 struct pipe_sampler_view *view) 1581 { 1582 pipe_resource_reference(&view->texture, NULL); 1583 FREE(view); 1584 } 1585 1586 static void r300_set_scissor_state(struct pipe_context* pipe, 1587 const struct pipe_scissor_state* state) 1588 { 1589 struct r300_context* r300 = r300_context(pipe); 1590 1591 memcpy(r300->scissor_state.state, state, 1592 sizeof(struct pipe_scissor_state)); 1593 1594 r300_mark_atom_dirty(r300, &r300->scissor_state); 1595 } 1596 1597 static void r300_set_viewport_state(struct pipe_context* pipe, 1598 const struct pipe_viewport_state* state) 1599 { 1600 struct r300_context* r300 = r300_context(pipe); 1601 struct r300_viewport_state* viewport = 1602 (struct r300_viewport_state*)r300->viewport_state.state; 1603 1604 r300->viewport = *state; 1605 1606 if (r300->draw) { 1607 draw_set_viewport_state(r300->draw, state); 1608 viewport->vte_control = R300_VTX_XY_FMT | R300_VTX_Z_FMT; 1609 return; 1610 } 1611 1612 /* Do the transform in HW. */ 1613 viewport->vte_control = R300_VTX_W0_FMT; 1614 1615 if (state->scale[0] != 1.0f) { 1616 viewport->xscale = state->scale[0]; 1617 viewport->vte_control |= R300_VPORT_X_SCALE_ENA; 1618 } 1619 if (state->scale[1] != 1.0f) { 1620 viewport->yscale = state->scale[1]; 1621 viewport->vte_control |= R300_VPORT_Y_SCALE_ENA; 1622 } 1623 if (state->scale[2] != 1.0f) { 1624 viewport->zscale = state->scale[2]; 1625 viewport->vte_control |= R300_VPORT_Z_SCALE_ENA; 1626 } 1627 if (state->translate[0] != 0.0f) { 1628 viewport->xoffset = state->translate[0]; 1629 viewport->vte_control |= R300_VPORT_X_OFFSET_ENA; 1630 } 1631 if (state->translate[1] != 0.0f) { 1632 viewport->yoffset = state->translate[1]; 1633 viewport->vte_control |= R300_VPORT_Y_OFFSET_ENA; 1634 } 1635 if (state->translate[2] != 0.0f) { 1636 viewport->zoffset = state->translate[2]; 1637 viewport->vte_control |= R300_VPORT_Z_OFFSET_ENA; 1638 } 1639 1640 r300_mark_atom_dirty(r300, &r300->viewport_state); 1641 if (r300->fs.state && r300_fs(r300)->shader && 1642 r300_fs(r300)->shader->inputs.wpos != ATTR_UNUSED) { 1643 r300_mark_atom_dirty(r300, &r300->fs_rc_constant_state); 1644 } 1645 } 1646 1647 static void r300_set_vertex_buffers_hwtcl(struct pipe_context* pipe, 1648 unsigned count, 1649 const struct pipe_vertex_buffer* buffers) 1650 { 1651 struct r300_context* r300 = r300_context(pipe); 1652 1653 /* There must be at least one vertex buffer set, otherwise it locks up. */ 1654 if (!count) { 1655 buffers = &r300->dummy_vb; 1656 count = 1; 1657 } 1658 1659 util_copy_vertex_buffers(r300->vertex_buffer, 1660 &r300->nr_vertex_buffers, 1661 buffers, count); 1662 1663 r300->vertex_arrays_dirty = TRUE; 1664 } 1665 1666 static void r300_set_vertex_buffers_swtcl(struct pipe_context* pipe, 1667 unsigned count, 1668 const struct pipe_vertex_buffer* buffers) 1669 { 1670 struct r300_context* r300 = r300_context(pipe); 1671 unsigned i; 1672 1673 util_copy_vertex_buffers(r300->vertex_buffer, 1674 &r300->nr_vertex_buffers, 1675 buffers, count); 1676 draw_set_vertex_buffers(r300->draw, count, buffers); 1677 1678 for (i = 0; i < count; i++) { 1679 if (buffers[i].user_buffer) { 1680 draw_set_mapped_vertex_buffer(r300->draw, i, 1681 buffers[i].user_buffer); 1682 } else if (buffers[i].buffer) { 1683 draw_set_mapped_vertex_buffer(r300->draw, i, 1684 r300_resource(buffers[i].buffer)->malloced_buffer); 1685 } 1686 } 1687 } 1688 1689 static void r300_set_index_buffer_hwtcl(struct pipe_context* pipe, 1690 const struct pipe_index_buffer *ib) 1691 { 1692 struct r300_context* r300 = r300_context(pipe); 1693 1694 if (ib) { 1695 pipe_resource_reference(&r300->index_buffer.buffer, ib->buffer); 1696 memcpy(&r300->index_buffer, ib, sizeof(*ib)); 1697 } else { 1698 pipe_resource_reference(&r300->index_buffer.buffer, NULL); 1699 } 1700 } 1701 1702 static void r300_set_index_buffer_swtcl(struct pipe_context* pipe, 1703 const struct pipe_index_buffer *ib) 1704 { 1705 struct r300_context* r300 = r300_context(pipe); 1706 1707 if (ib) { 1708 const void *buf = NULL; 1709 if (ib->user_buffer) { 1710 buf = ib->user_buffer; 1711 } else if (ib->buffer) { 1712 buf = r300_resource(ib->buffer)->malloced_buffer; 1713 } 1714 draw_set_indexes(r300->draw, 1715 (const ubyte *) buf + ib->offset, 1716 ib->index_size); 1717 } 1718 } 1719 1720 /* Initialize the PSC tables. */ 1721 static void r300_vertex_psc(struct r300_vertex_element_state *velems) 1722 { 1723 struct r300_vertex_stream_state *vstream = &velems->vertex_stream; 1724 uint16_t type, swizzle; 1725 enum pipe_format format; 1726 unsigned i; 1727 1728 /* Vertex shaders have no semantics on their inputs, 1729 * so PSC should just route stuff based on the vertex elements, 1730 * and not on attrib information. */ 1731 for (i = 0; i < velems->count; i++) { 1732 format = velems->velem[i].src_format; 1733 1734 type = r300_translate_vertex_data_type(format); 1735 if (type == R300_INVALID_FORMAT) { 1736 fprintf(stderr, "r300: Bad vertex format %s.\n", 1737 util_format_short_name(format)); 1738 assert(0); 1739 abort(); 1740 } 1741 1742 type |= i << R300_DST_VEC_LOC_SHIFT; 1743 swizzle = r300_translate_vertex_data_swizzle(format); 1744 1745 if (i & 1) { 1746 vstream->vap_prog_stream_cntl[i >> 1] |= type << 16; 1747 vstream->vap_prog_stream_cntl_ext[i >> 1] |= swizzle << 16; 1748 } else { 1749 vstream->vap_prog_stream_cntl[i >> 1] |= type; 1750 vstream->vap_prog_stream_cntl_ext[i >> 1] |= swizzle; 1751 } 1752 } 1753 1754 /* Set the last vector in the PSC. */ 1755 if (i) { 1756 i -= 1; 1757 } 1758 vstream->vap_prog_stream_cntl[i >> 1] |= 1759 (R300_LAST_VEC << (i & 1 ? 16 : 0)); 1760 1761 vstream->count = (i >> 1) + 1; 1762 } 1763 1764 static void* r300_create_vertex_elements_state(struct pipe_context* pipe, 1765 unsigned count, 1766 const struct pipe_vertex_element* attribs) 1767 { 1768 struct r300_vertex_element_state *velems; 1769 unsigned i; 1770 struct pipe_vertex_element dummy_attrib = {0}; 1771 1772 /* R300 Programmable Stream Control (PSC) doesn't support 0 vertex elements. */ 1773 if (!count) { 1774 dummy_attrib.src_format = PIPE_FORMAT_R8G8B8A8_UNORM; 1775 attribs = &dummy_attrib; 1776 count = 1; 1777 } else if (count > 16) { 1778 fprintf(stderr, "r300: More than 16 vertex elements are not supported," 1779 " requested %i, using 16.\n", count); 1780 count = 16; 1781 } 1782 1783 velems = CALLOC_STRUCT(r300_vertex_element_state); 1784 if (!velems) 1785 return NULL; 1786 1787 velems->count = count; 1788 memcpy(velems->velem, attribs, sizeof(struct pipe_vertex_element) * count); 1789 1790 if (r300_screen(pipe->screen)->caps.has_tcl) { 1791 /* Setup PSC. 1792 * The unused components will be replaced by (..., 0, 1). */ 1793 r300_vertex_psc(velems); 1794 1795 for (i = 0; i < count; i++) { 1796 velems->format_size[i] = 1797 align(util_format_get_blocksize(velems->velem[i].src_format), 4); 1798 velems->vertex_size_dwords += velems->format_size[i] / 4; 1799 } 1800 } 1801 1802 return velems; 1803 } 1804 1805 static void r300_bind_vertex_elements_state(struct pipe_context *pipe, 1806 void *state) 1807 { 1808 struct r300_context *r300 = r300_context(pipe); 1809 struct r300_vertex_element_state *velems = state; 1810 1811 if (velems == NULL) { 1812 return; 1813 } 1814 1815 r300->velems = velems; 1816 1817 if (r300->draw) { 1818 draw_set_vertex_elements(r300->draw, velems->count, velems->velem); 1819 return; 1820 } 1821 1822 UPDATE_STATE(&velems->vertex_stream, r300->vertex_stream_state); 1823 r300->vertex_stream_state.size = (1 + velems->vertex_stream.count) * 2; 1824 r300->vertex_arrays_dirty = TRUE; 1825 } 1826 1827 static void r300_delete_vertex_elements_state(struct pipe_context *pipe, void *state) 1828 { 1829 FREE(state); 1830 } 1831 1832 static void* r300_create_vs_state(struct pipe_context* pipe, 1833 const struct pipe_shader_state* shader) 1834 { 1835 struct r300_context* r300 = r300_context(pipe); 1836 struct r300_vertex_shader* vs = CALLOC_STRUCT(r300_vertex_shader); 1837 1838 /* Copy state directly into shader. */ 1839 vs->state = *shader; 1840 vs->state.tokens = tgsi_dup_tokens(shader->tokens); 1841 1842 if (r300->screen->caps.has_tcl) { 1843 r300_init_vs_outputs(r300, vs); 1844 r300_translate_vertex_shader(r300, vs); 1845 } else { 1846 r300_draw_init_vertex_shader(r300, vs); 1847 } 1848 1849 return vs; 1850 } 1851 1852 static void r300_bind_vs_state(struct pipe_context* pipe, void* shader) 1853 { 1854 struct r300_context* r300 = r300_context(pipe); 1855 struct r300_vertex_shader* vs = (struct r300_vertex_shader*)shader; 1856 1857 if (vs == NULL) { 1858 r300->vs_state.state = NULL; 1859 return; 1860 } 1861 if (vs == r300->vs_state.state) { 1862 return; 1863 } 1864 r300->vs_state.state = vs; 1865 1866 /* The majority of the RS block bits is dependent on the vertex shader. */ 1867 r300_mark_atom_dirty(r300, &r300->rs_block_state); /* Will be updated before the emission. */ 1868 1869 if (r300->screen->caps.has_tcl) { 1870 unsigned fc_op_dwords = r300->screen->caps.is_r500 ? 3 : 2; 1871 r300_mark_atom_dirty(r300, &r300->vs_state); 1872 r300->vs_state.size = vs->code.length + 9 + 1873 (R300_VS_MAX_FC_OPS * fc_op_dwords + 4); 1874 1875 r300_mark_atom_dirty(r300, &r300->vs_constants); 1876 r300->vs_constants.size = 1877 2 + 1878 (vs->externals_count ? vs->externals_count * 4 + 3 : 0) + 1879 (vs->immediates_count ? vs->immediates_count * 4 + 3 : 0); 1880 1881 ((struct r300_constant_buffer*)r300->vs_constants.state)->remap_table = 1882 vs->code.constants_remap_table; 1883 1884 r300_mark_atom_dirty(r300, &r300->pvs_flush); 1885 } else { 1886 draw_bind_vertex_shader(r300->draw, 1887 (struct draw_vertex_shader*)vs->draw_vs); 1888 } 1889 } 1890 1891 static void r300_delete_vs_state(struct pipe_context* pipe, void* shader) 1892 { 1893 struct r300_context* r300 = r300_context(pipe); 1894 struct r300_vertex_shader* vs = (struct r300_vertex_shader*)shader; 1895 1896 if (r300->screen->caps.has_tcl) { 1897 rc_constants_destroy(&vs->code.constants); 1898 if (vs->code.constants_remap_table) 1899 FREE(vs->code.constants_remap_table); 1900 } else { 1901 draw_delete_vertex_shader(r300->draw, 1902 (struct draw_vertex_shader*)vs->draw_vs); 1903 } 1904 1905 FREE((void*)vs->state.tokens); 1906 FREE(shader); 1907 } 1908 1909 static void r300_set_constant_buffer(struct pipe_context *pipe, 1910 uint shader, uint index, 1911 struct pipe_constant_buffer *cb) 1912 { 1913 struct r300_context* r300 = r300_context(pipe); 1914 struct r300_constant_buffer *cbuf; 1915 uint32_t *mapped; 1916 1917 if (!cb) 1918 return; 1919 1920 switch (shader) { 1921 case PIPE_SHADER_VERTEX: 1922 cbuf = (struct r300_constant_buffer*)r300->vs_constants.state; 1923 break; 1924 case PIPE_SHADER_FRAGMENT: 1925 cbuf = (struct r300_constant_buffer*)r300->fs_constants.state; 1926 break; 1927 default: 1928 return; 1929 } 1930 1931 1932 if (cb->user_buffer) 1933 mapped = (uint32_t*)cb->user_buffer; 1934 else { 1935 struct r300_resource *rbuf = r300_resource(cb->buffer); 1936 1937 if (rbuf && rbuf->malloced_buffer) 1938 mapped = (uint32_t*)rbuf->malloced_buffer; 1939 else 1940 return; 1941 } 1942 1943 if (shader == PIPE_SHADER_FRAGMENT || 1944 (shader == PIPE_SHADER_VERTEX && r300->screen->caps.has_tcl)) { 1945 cbuf->ptr = mapped; 1946 } 1947 1948 if (shader == PIPE_SHADER_VERTEX) { 1949 if (r300->screen->caps.has_tcl) { 1950 struct r300_vertex_shader *vs = 1951 (struct r300_vertex_shader*)r300->vs_state.state; 1952 1953 if (!vs) { 1954 cbuf->buffer_base = 0; 1955 return; 1956 } 1957 1958 cbuf->buffer_base = r300->vs_const_base; 1959 r300->vs_const_base += vs->code.constants.Count; 1960 if (r300->vs_const_base > R500_MAX_PVS_CONST_VECS) { 1961 r300->vs_const_base = vs->code.constants.Count; 1962 cbuf->buffer_base = 0; 1963 r300_mark_atom_dirty(r300, &r300->pvs_flush); 1964 } 1965 r300_mark_atom_dirty(r300, &r300->vs_constants); 1966 } else if (r300->draw) { 1967 draw_set_mapped_constant_buffer(r300->draw, PIPE_SHADER_VERTEX, 1968 0, mapped, cb->buffer_size); 1969 } 1970 } else if (shader == PIPE_SHADER_FRAGMENT) { 1971 r300_mark_atom_dirty(r300, &r300->fs_constants); 1972 } 1973 } 1974 1975 static void r300_texture_barrier(struct pipe_context *pipe) 1976 { 1977 struct r300_context *r300 = r300_context(pipe); 1978 1979 r300_mark_atom_dirty(r300, &r300->gpu_flush); 1980 r300_mark_atom_dirty(r300, &r300->texture_cache_inval); 1981 } 1982 1983 void r300_init_state_functions(struct r300_context* r300) 1984 { 1985 r300->context.create_blend_state = r300_create_blend_state; 1986 r300->context.bind_blend_state = r300_bind_blend_state; 1987 r300->context.delete_blend_state = r300_delete_blend_state; 1988 1989 r300->context.set_blend_color = r300_set_blend_color; 1990 1991 r300->context.set_clip_state = r300_set_clip_state; 1992 r300->context.set_sample_mask = r300_set_sample_mask; 1993 1994 r300->context.set_constant_buffer = r300_set_constant_buffer; 1995 1996 r300->context.create_depth_stencil_alpha_state = r300_create_dsa_state; 1997 r300->context.bind_depth_stencil_alpha_state = r300_bind_dsa_state; 1998 r300->context.delete_depth_stencil_alpha_state = r300_delete_dsa_state; 1999 2000 r300->context.set_stencil_ref = r300_set_stencil_ref; 2001 2002 r300->context.set_framebuffer_state = r300_set_framebuffer_state; 2003 2004 r300->context.create_fs_state = r300_create_fs_state; 2005 r300->context.bind_fs_state = r300_bind_fs_state; 2006 r300->context.delete_fs_state = r300_delete_fs_state; 2007 2008 r300->context.set_polygon_stipple = r300_set_polygon_stipple; 2009 2010 r300->context.create_rasterizer_state = r300_create_rs_state; 2011 r300->context.bind_rasterizer_state = r300_bind_rs_state; 2012 r300->context.delete_rasterizer_state = r300_delete_rs_state; 2013 2014 r300->context.create_sampler_state = r300_create_sampler_state; 2015 r300->context.bind_fragment_sampler_states = r300_bind_sampler_states; 2016 r300->context.bind_vertex_sampler_states = r300_lacks_vertex_textures; 2017 r300->context.delete_sampler_state = r300_delete_sampler_state; 2018 2019 r300->context.set_fragment_sampler_views = r300_set_fragment_sampler_views; 2020 r300->context.create_sampler_view = r300_create_sampler_view; 2021 r300->context.sampler_view_destroy = r300_sampler_view_destroy; 2022 2023 r300->context.set_scissor_state = r300_set_scissor_state; 2024 2025 r300->context.set_viewport_state = r300_set_viewport_state; 2026 2027 if (r300->screen->caps.has_tcl) { 2028 r300->context.set_vertex_buffers = r300_set_vertex_buffers_hwtcl; 2029 r300->context.set_index_buffer = r300_set_index_buffer_hwtcl; 2030 } else { 2031 r300->context.set_vertex_buffers = r300_set_vertex_buffers_swtcl; 2032 r300->context.set_index_buffer = r300_set_index_buffer_swtcl; 2033 } 2034 2035 r300->context.create_vertex_elements_state = r300_create_vertex_elements_state; 2036 r300->context.bind_vertex_elements_state = r300_bind_vertex_elements_state; 2037 r300->context.delete_vertex_elements_state = r300_delete_vertex_elements_state; 2038 2039 r300->context.create_vs_state = r300_create_vs_state; 2040 r300->context.bind_vs_state = r300_bind_vs_state; 2041 r300->context.delete_vs_state = r300_delete_vs_state; 2042 2043 r300->context.texture_barrier = r300_texture_barrier; 2044 } 2045