Home | History | Annotate | Download | only in Hexagon
      1 //===-- HexagonHardwareLoops.cpp - Identify and generate hardware loops ---===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass identifies loops where we can generate the Hexagon hardware
     11 // loop instruction.  The hardware loop can perform loop branches with a
     12 // zero-cycle overhead.
     13 //
     14 // The pattern that defines the induction variable can changed depending on
     15 // prior optimizations.  For example, the IndVarSimplify phase run by 'opt'
     16 // normalizes induction variables, and the Loop Strength Reduction pass
     17 // run by 'llc' may also make changes to the induction variable.
     18 // The pattern detected by this phase is due to running Strength Reduction.
     19 //
     20 // Criteria for hardware loops:
     21 //  - Countable loops (w/ ind. var for a trip count)
     22 //  - Assumes loops are normalized by IndVarSimplify
     23 //  - Try inner-most loops first
     24 //  - No function calls in loops.
     25 //
     26 //===----------------------------------------------------------------------===//
     27 
     28 #include "llvm/ADT/SmallSet.h"
     29 #include "Hexagon.h"
     30 #include "HexagonSubtarget.h"
     31 #include "llvm/ADT/Statistic.h"
     32 #include "llvm/CodeGen/MachineDominators.h"
     33 #include "llvm/CodeGen/MachineFunction.h"
     34 #include "llvm/CodeGen/MachineFunctionPass.h"
     35 #include "llvm/CodeGen/MachineInstrBuilder.h"
     36 #include "llvm/CodeGen/MachineLoopInfo.h"
     37 #include "llvm/CodeGen/MachineRegisterInfo.h"
     38 #include "llvm/PassSupport.h"
     39 #include "llvm/Support/CommandLine.h"
     40 #include "llvm/Support/Debug.h"
     41 #include "llvm/Support/raw_ostream.h"
     42 #include "llvm/Target/TargetInstrInfo.h"
     43 #include <algorithm>
     44 #include <vector>
     45 
     46 using namespace llvm;
     47 
     48 #define DEBUG_TYPE "hwloops"
     49 
     50 #ifndef NDEBUG
     51 static cl::opt<int> HWLoopLimit("hexagon-max-hwloop", cl::Hidden, cl::init(-1));
     52 
     53 // Option to create preheader only for a specific function.
     54 static cl::opt<std::string> PHFn("hexagon-hwloop-phfn", cl::Hidden,
     55                                  cl::init(""));
     56 #endif
     57 
     58 // Option to create a preheader if one doesn't exist.
     59 static cl::opt<bool> HWCreatePreheader("hexagon-hwloop-preheader",
     60     cl::Hidden, cl::init(true),
     61     cl::desc("Add a preheader to a hardware loop if one doesn't exist"));
     62 
     63 STATISTIC(NumHWLoops, "Number of loops converted to hardware loops");
     64 
     65 namespace llvm {
     66   FunctionPass *createHexagonHardwareLoops();
     67   void initializeHexagonHardwareLoopsPass(PassRegistry&);
     68 }
     69 
     70 namespace {
     71   class CountValue;
     72   struct HexagonHardwareLoops : public MachineFunctionPass {
     73     MachineLoopInfo            *MLI;
     74     MachineRegisterInfo        *MRI;
     75     MachineDominatorTree       *MDT;
     76     const HexagonInstrInfo     *TII;
     77 #ifndef NDEBUG
     78     static int Counter;
     79 #endif
     80 
     81   public:
     82     static char ID;
     83 
     84     HexagonHardwareLoops() : MachineFunctionPass(ID) {
     85       initializeHexagonHardwareLoopsPass(*PassRegistry::getPassRegistry());
     86     }
     87 
     88     bool runOnMachineFunction(MachineFunction &MF) override;
     89 
     90     const char *getPassName() const override { return "Hexagon Hardware Loops"; }
     91 
     92     void getAnalysisUsage(AnalysisUsage &AU) const override {
     93       AU.addRequired<MachineDominatorTree>();
     94       AU.addRequired<MachineLoopInfo>();
     95       MachineFunctionPass::getAnalysisUsage(AU);
     96     }
     97 
     98   private:
     99     typedef std::map<unsigned, MachineInstr *> LoopFeederMap;
    100 
    101     /// Kinds of comparisons in the compare instructions.
    102     struct Comparison {
    103       enum Kind {
    104         EQ  = 0x01,
    105         NE  = 0x02,
    106         L   = 0x04,
    107         G   = 0x08,
    108         U   = 0x40,
    109         LTs = L,
    110         LEs = L | EQ,
    111         GTs = G,
    112         GEs = G | EQ,
    113         LTu = L      | U,
    114         LEu = L | EQ | U,
    115         GTu = G      | U,
    116         GEu = G | EQ | U
    117       };
    118 
    119       static Kind getSwappedComparison(Kind Cmp) {
    120         assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator");
    121         if ((Cmp & L) || (Cmp & G))
    122           return (Kind)(Cmp ^ (L|G));
    123         return Cmp;
    124       }
    125 
    126       static Kind getNegatedComparison(Kind Cmp) {
    127         if ((Cmp & L) || (Cmp & G))
    128           return (Kind)((Cmp ^ (L | G)) ^ EQ);
    129         if ((Cmp & NE) || (Cmp & EQ))
    130           return (Kind)(Cmp ^ (EQ | NE));
    131         return (Kind)0;
    132       }
    133 
    134       static bool isSigned(Kind Cmp) {
    135         return (Cmp & (L | G) && !(Cmp & U));
    136       }
    137 
    138       static bool isUnsigned(Kind Cmp) {
    139         return (Cmp & U);
    140       }
    141 
    142     };
    143 
    144     /// \brief Find the register that contains the loop controlling
    145     /// induction variable.
    146     /// If successful, it will return true and set the \p Reg, \p IVBump
    147     /// and \p IVOp arguments.  Otherwise it will return false.
    148     /// The returned induction register is the register R that follows the
    149     /// following induction pattern:
    150     /// loop:
    151     ///   R = phi ..., [ R.next, LatchBlock ]
    152     ///   R.next = R + #bump
    153     ///   if (R.next < #N) goto loop
    154     /// IVBump is the immediate value added to R, and IVOp is the instruction
    155     /// "R.next = R + #bump".
    156     bool findInductionRegister(MachineLoop *L, unsigned &Reg,
    157                                int64_t &IVBump, MachineInstr *&IVOp) const;
    158 
    159     /// \brief Return the comparison kind for the specified opcode.
    160     Comparison::Kind getComparisonKind(unsigned CondOpc,
    161                                        MachineOperand *InitialValue,
    162                                        const MachineOperand *Endvalue,
    163                                        int64_t IVBump) const;
    164 
    165     /// \brief Analyze the statements in a loop to determine if the loop
    166     /// has a computable trip count and, if so, return a value that represents
    167     /// the trip count expression.
    168     CountValue *getLoopTripCount(MachineLoop *L,
    169                                  SmallVectorImpl<MachineInstr *> &OldInsts);
    170 
    171     /// \brief Return the expression that represents the number of times
    172     /// a loop iterates.  The function takes the operands that represent the
    173     /// loop start value, loop end value, and induction value.  Based upon
    174     /// these operands, the function attempts to compute the trip count.
    175     /// If the trip count is not directly available (as an immediate value,
    176     /// or a register), the function will attempt to insert computation of it
    177     /// to the loop's preheader.
    178     CountValue *computeCount(MachineLoop *Loop, const MachineOperand *Start,
    179                              const MachineOperand *End, unsigned IVReg,
    180                              int64_t IVBump, Comparison::Kind Cmp) const;
    181 
    182     /// \brief Return true if the instruction is not valid within a hardware
    183     /// loop.
    184     bool isInvalidLoopOperation(const MachineInstr *MI,
    185                                 bool IsInnerHWLoop) const;
    186 
    187     /// \brief Return true if the loop contains an instruction that inhibits
    188     /// using the hardware loop.
    189     bool containsInvalidInstruction(MachineLoop *L, bool IsInnerHWLoop) const;
    190 
    191     /// \brief Given a loop, check if we can convert it to a hardware loop.
    192     /// If so, then perform the conversion and return true.
    193     bool convertToHardwareLoop(MachineLoop *L, bool &L0used, bool &L1used);
    194 
    195     /// \brief Return true if the instruction is now dead.
    196     bool isDead(const MachineInstr *MI,
    197                 SmallVectorImpl<MachineInstr *> &DeadPhis) const;
    198 
    199     /// \brief Remove the instruction if it is now dead.
    200     void removeIfDead(MachineInstr *MI);
    201 
    202     /// \brief Make sure that the "bump" instruction executes before the
    203     /// compare.  We need that for the IV fixup, so that the compare
    204     /// instruction would not use a bumped value that has not yet been
    205     /// defined.  If the instructions are out of order, try to reorder them.
    206     bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI);
    207 
    208     /// \brief Return true if MO and MI pair is visited only once. If visited
    209     /// more than once, this indicates there is recursion. In such a case,
    210     /// return false.
    211     bool isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, MachineInstr *MI,
    212                       const MachineOperand *MO,
    213                       LoopFeederMap &LoopFeederPhi) const;
    214 
    215     /// \brief Return true if the Phi may generate a value that may underflow,
    216     /// or may wrap.
    217     bool phiMayWrapOrUnderflow(MachineInstr *Phi, const MachineOperand *EndVal,
    218                                MachineBasicBlock *MBB, MachineLoop *L,
    219                                LoopFeederMap &LoopFeederPhi) const;
    220 
    221     /// \brief Return true if the induction variable may underflow an unsigned
    222     /// value in the first iteration.
    223     bool loopCountMayWrapOrUnderFlow(const MachineOperand *InitVal,
    224                                      const MachineOperand *EndVal,
    225                                      MachineBasicBlock *MBB, MachineLoop *L,
    226                                      LoopFeederMap &LoopFeederPhi) const;
    227 
    228     /// \brief Check if the given operand has a compile-time known constant
    229     /// value. Return true if yes, and false otherwise. When returning true, set
    230     /// Val to the corresponding constant value.
    231     bool checkForImmediate(const MachineOperand &MO, int64_t &Val) const;
    232 
    233     /// \brief Check if the operand has a compile-time known constant value.
    234     bool isImmediate(const MachineOperand &MO) const {
    235       int64_t V;
    236       return checkForImmediate(MO, V);
    237     }
    238 
    239     /// \brief Return the immediate for the specified operand.
    240     int64_t getImmediate(const MachineOperand &MO) const {
    241       int64_t V;
    242       if (!checkForImmediate(MO, V))
    243         llvm_unreachable("Invalid operand");
    244       return V;
    245     }
    246 
    247     /// \brief Reset the given machine operand to now refer to a new immediate
    248     /// value.  Assumes that the operand was already referencing an immediate
    249     /// value, either directly, or via a register.
    250     void setImmediate(MachineOperand &MO, int64_t Val);
    251 
    252     /// \brief Fix the data flow of the induction varible.
    253     /// The desired flow is: phi ---> bump -+-> comparison-in-latch.
    254     ///                                     |
    255     ///                                     +-> back to phi
    256     /// where "bump" is the increment of the induction variable:
    257     ///   iv = iv + #const.
    258     /// Due to some prior code transformations, the actual flow may look
    259     /// like this:
    260     ///   phi -+-> bump ---> back to phi
    261     ///        |
    262     ///        +-> comparison-in-latch (against upper_bound-bump),
    263     /// i.e. the comparison that controls the loop execution may be using
    264     /// the value of the induction variable from before the increment.
    265     ///
    266     /// Return true if the loop's flow is the desired one (i.e. it's
    267     /// either been fixed, or no fixing was necessary).
    268     /// Otherwise, return false.  This can happen if the induction variable
    269     /// couldn't be identified, or if the value in the latch's comparison
    270     /// cannot be adjusted to reflect the post-bump value.
    271     bool fixupInductionVariable(MachineLoop *L);
    272 
    273     /// \brief Given a loop, if it does not have a preheader, create one.
    274     /// Return the block that is the preheader.
    275     MachineBasicBlock *createPreheaderForLoop(MachineLoop *L);
    276   };
    277 
    278   char HexagonHardwareLoops::ID = 0;
    279 #ifndef NDEBUG
    280   int HexagonHardwareLoops::Counter = 0;
    281 #endif
    282 
    283   /// \brief Abstraction for a trip count of a loop. A smaller version
    284   /// of the MachineOperand class without the concerns of changing the
    285   /// operand representation.
    286   class CountValue {
    287   public:
    288     enum CountValueType {
    289       CV_Register,
    290       CV_Immediate
    291     };
    292   private:
    293     CountValueType Kind;
    294     union Values {
    295       struct {
    296         unsigned Reg;
    297         unsigned Sub;
    298       } R;
    299       unsigned ImmVal;
    300     } Contents;
    301 
    302   public:
    303     explicit CountValue(CountValueType t, unsigned v, unsigned u = 0) {
    304       Kind = t;
    305       if (Kind == CV_Register) {
    306         Contents.R.Reg = v;
    307         Contents.R.Sub = u;
    308       } else {
    309         Contents.ImmVal = v;
    310       }
    311     }
    312     bool isReg() const { return Kind == CV_Register; }
    313     bool isImm() const { return Kind == CV_Immediate; }
    314 
    315     unsigned getReg() const {
    316       assert(isReg() && "Wrong CountValue accessor");
    317       return Contents.R.Reg;
    318     }
    319     unsigned getSubReg() const {
    320       assert(isReg() && "Wrong CountValue accessor");
    321       return Contents.R.Sub;
    322     }
    323     unsigned getImm() const {
    324       assert(isImm() && "Wrong CountValue accessor");
    325       return Contents.ImmVal;
    326     }
    327 
    328     void print(raw_ostream &OS, const TargetRegisterInfo *TRI = nullptr) const {
    329       if (isReg()) { OS << PrintReg(Contents.R.Reg, TRI, Contents.R.Sub); }
    330       if (isImm()) { OS << Contents.ImmVal; }
    331     }
    332   };
    333 } // end anonymous namespace
    334 
    335 
    336 INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops",
    337                       "Hexagon Hardware Loops", false, false)
    338 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
    339 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
    340 INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops",
    341                     "Hexagon Hardware Loops", false, false)
    342 
    343 FunctionPass *llvm::createHexagonHardwareLoops() {
    344   return new HexagonHardwareLoops();
    345 }
    346 
    347 bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) {
    348   DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n");
    349 
    350   bool Changed = false;
    351 
    352   MLI = &getAnalysis<MachineLoopInfo>();
    353   MRI = &MF.getRegInfo();
    354   MDT = &getAnalysis<MachineDominatorTree>();
    355   TII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
    356 
    357   for (auto &L : *MLI)
    358     if (!L->getParentLoop()) {
    359       bool L0Used = false;
    360       bool L1Used = false;
    361       Changed |= convertToHardwareLoop(L, L0Used, L1Used);
    362     }
    363 
    364   return Changed;
    365 }
    366 
    367 /// \brief Return the latch block if it's one of the exiting blocks. Otherwise,
    368 /// return the exiting block. Return 'null' when multiple exiting blocks are
    369 /// present.
    370 static MachineBasicBlock* getExitingBlock(MachineLoop *L) {
    371   if (MachineBasicBlock *Latch = L->getLoopLatch()) {
    372     if (L->isLoopExiting(Latch))
    373       return Latch;
    374     else
    375       return L->getExitingBlock();
    376   }
    377   return nullptr;
    378 }
    379 
    380 bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L,
    381                                                  unsigned &Reg,
    382                                                  int64_t &IVBump,
    383                                                  MachineInstr *&IVOp
    384                                                  ) const {
    385   MachineBasicBlock *Header = L->getHeader();
    386   MachineBasicBlock *Preheader = L->getLoopPreheader();
    387   MachineBasicBlock *Latch = L->getLoopLatch();
    388   MachineBasicBlock *ExitingBlock = getExitingBlock(L);
    389   if (!Header || !Preheader || !Latch || !ExitingBlock)
    390     return false;
    391 
    392   // This pair represents an induction register together with an immediate
    393   // value that will be added to it in each loop iteration.
    394   typedef std::pair<unsigned,int64_t> RegisterBump;
    395 
    396   // Mapping:  R.next -> (R, bump), where R, R.next and bump are derived
    397   // from an induction operation
    398   //   R.next = R + bump
    399   // where bump is an immediate value.
    400   typedef std::map<unsigned,RegisterBump> InductionMap;
    401 
    402   InductionMap IndMap;
    403 
    404   typedef MachineBasicBlock::instr_iterator instr_iterator;
    405   for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
    406        I != E && I->isPHI(); ++I) {
    407     MachineInstr *Phi = &*I;
    408 
    409     // Have a PHI instruction.  Get the operand that corresponds to the
    410     // latch block, and see if is a result of an addition of form "reg+imm",
    411     // where the "reg" is defined by the PHI node we are looking at.
    412     for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) {
    413       if (Phi->getOperand(i+1).getMBB() != Latch)
    414         continue;
    415 
    416       unsigned PhiOpReg = Phi->getOperand(i).getReg();
    417       MachineInstr *DI = MRI->getVRegDef(PhiOpReg);
    418       unsigned UpdOpc = DI->getOpcode();
    419       bool isAdd = (UpdOpc == Hexagon::A2_addi || UpdOpc == Hexagon::A2_addp);
    420 
    421       if (isAdd) {
    422         // If the register operand to the add is the PHI we're looking at, this
    423         // meets the induction pattern.
    424         unsigned IndReg = DI->getOperand(1).getReg();
    425         MachineOperand &Opnd2 = DI->getOperand(2);
    426         int64_t V;
    427         if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) {
    428           unsigned UpdReg = DI->getOperand(0).getReg();
    429           IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
    430         }
    431       }
    432     }  // for (i)
    433   }  // for (instr)
    434 
    435   SmallVector<MachineOperand,2> Cond;
    436   MachineBasicBlock *TB = nullptr, *FB = nullptr;
    437   bool NotAnalyzed = TII->AnalyzeBranch(*ExitingBlock, TB, FB, Cond, false);
    438   if (NotAnalyzed)
    439     return false;
    440 
    441   unsigned PredR, PredPos, PredRegFlags;
    442   if (!TII->getPredReg(Cond, PredR, PredPos, PredRegFlags))
    443     return false;
    444 
    445   MachineInstr *PredI = MRI->getVRegDef(PredR);
    446   if (!PredI->isCompare())
    447     return false;
    448 
    449   unsigned CmpReg1 = 0, CmpReg2 = 0;
    450   int CmpImm = 0, CmpMask = 0;
    451   bool CmpAnalyzed = TII->analyzeCompare(PredI, CmpReg1, CmpReg2,
    452                                          CmpMask, CmpImm);
    453   // Fail if the compare was not analyzed, or it's not comparing a register
    454   // with an immediate value.  Not checking the mask here, since we handle
    455   // the individual compare opcodes (including A4_cmpb*) later on.
    456   if (!CmpAnalyzed)
    457     return false;
    458 
    459   // Exactly one of the input registers to the comparison should be among
    460   // the induction registers.
    461   InductionMap::iterator IndMapEnd = IndMap.end();
    462   InductionMap::iterator F = IndMapEnd;
    463   if (CmpReg1 != 0) {
    464     InductionMap::iterator F1 = IndMap.find(CmpReg1);
    465     if (F1 != IndMapEnd)
    466       F = F1;
    467   }
    468   if (CmpReg2 != 0) {
    469     InductionMap::iterator F2 = IndMap.find(CmpReg2);
    470     if (F2 != IndMapEnd) {
    471       if (F != IndMapEnd)
    472         return false;
    473       F = F2;
    474     }
    475   }
    476   if (F == IndMapEnd)
    477     return false;
    478 
    479   Reg = F->second.first;
    480   IVBump = F->second.second;
    481   IVOp = MRI->getVRegDef(F->first);
    482   return true;
    483 }
    484 
    485 // Return the comparison kind for the specified opcode.
    486 HexagonHardwareLoops::Comparison::Kind
    487 HexagonHardwareLoops::getComparisonKind(unsigned CondOpc,
    488                                         MachineOperand *InitialValue,
    489                                         const MachineOperand *EndValue,
    490                                         int64_t IVBump) const {
    491   Comparison::Kind Cmp = (Comparison::Kind)0;
    492   switch (CondOpc) {
    493   case Hexagon::C2_cmpeqi:
    494   case Hexagon::C2_cmpeq:
    495   case Hexagon::C2_cmpeqp:
    496     Cmp = Comparison::EQ;
    497     break;
    498   case Hexagon::C4_cmpneq:
    499   case Hexagon::C4_cmpneqi:
    500     Cmp = Comparison::NE;
    501     break;
    502   case Hexagon::C4_cmplte:
    503     Cmp = Comparison::LEs;
    504     break;
    505   case Hexagon::C4_cmplteu:
    506     Cmp = Comparison::LEu;
    507     break;
    508   case Hexagon::C2_cmpgtui:
    509   case Hexagon::C2_cmpgtu:
    510   case Hexagon::C2_cmpgtup:
    511     Cmp = Comparison::GTu;
    512     break;
    513   case Hexagon::C2_cmpgti:
    514   case Hexagon::C2_cmpgt:
    515   case Hexagon::C2_cmpgtp:
    516     Cmp = Comparison::GTs;
    517     break;
    518   default:
    519     return (Comparison::Kind)0;
    520   }
    521   return Cmp;
    522 }
    523 
    524 /// \brief Analyze the statements in a loop to determine if the loop has
    525 /// a computable trip count and, if so, return a value that represents
    526 /// the trip count expression.
    527 ///
    528 /// This function iterates over the phi nodes in the loop to check for
    529 /// induction variable patterns that are used in the calculation for
    530 /// the number of time the loop is executed.
    531 CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L,
    532     SmallVectorImpl<MachineInstr *> &OldInsts) {
    533   MachineBasicBlock *TopMBB = L->getTopBlock();
    534   MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin();
    535   assert(PI != TopMBB->pred_end() &&
    536          "Loop must have more than one incoming edge!");
    537   MachineBasicBlock *Backedge = *PI++;
    538   if (PI == TopMBB->pred_end())  // dead loop?
    539     return nullptr;
    540   MachineBasicBlock *Incoming = *PI++;
    541   if (PI != TopMBB->pred_end())  // multiple backedges?
    542     return nullptr;
    543 
    544   // Make sure there is one incoming and one backedge and determine which
    545   // is which.
    546   if (L->contains(Incoming)) {
    547     if (L->contains(Backedge))
    548       return nullptr;
    549     std::swap(Incoming, Backedge);
    550   } else if (!L->contains(Backedge))
    551     return nullptr;
    552 
    553   // Look for the cmp instruction to determine if we can get a useful trip
    554   // count.  The trip count can be either a register or an immediate.  The
    555   // location of the value depends upon the type (reg or imm).
    556   MachineBasicBlock *ExitingBlock = getExitingBlock(L);
    557   if (!ExitingBlock)
    558     return nullptr;
    559 
    560   unsigned IVReg = 0;
    561   int64_t IVBump = 0;
    562   MachineInstr *IVOp;
    563   bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp);
    564   if (!FoundIV)
    565     return nullptr;
    566 
    567   MachineBasicBlock *Preheader = L->getLoopPreheader();
    568 
    569   MachineOperand *InitialValue = nullptr;
    570   MachineInstr *IV_Phi = MRI->getVRegDef(IVReg);
    571   MachineBasicBlock *Latch = L->getLoopLatch();
    572   for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) {
    573     MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB();
    574     if (MBB == Preheader)
    575       InitialValue = &IV_Phi->getOperand(i);
    576     else if (MBB == Latch)
    577       IVReg = IV_Phi->getOperand(i).getReg();  // Want IV reg after bump.
    578   }
    579   if (!InitialValue)
    580     return nullptr;
    581 
    582   SmallVector<MachineOperand,2> Cond;
    583   MachineBasicBlock *TB = nullptr, *FB = nullptr;
    584   bool NotAnalyzed = TII->AnalyzeBranch(*ExitingBlock, TB, FB, Cond, false);
    585   if (NotAnalyzed)
    586     return nullptr;
    587 
    588   MachineBasicBlock *Header = L->getHeader();
    589   // TB must be non-null.  If FB is also non-null, one of them must be
    590   // the header.  Otherwise, branch to TB could be exiting the loop, and
    591   // the fall through can go to the header.
    592   assert (TB && "Exit block without a branch?");
    593   if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) {
    594     MachineBasicBlock *LTB = 0, *LFB = 0;
    595     SmallVector<MachineOperand,2> LCond;
    596     bool NotAnalyzed = TII->AnalyzeBranch(*Latch, LTB, LFB, LCond, false);
    597     if (NotAnalyzed)
    598       return nullptr;
    599     if (TB == Latch)
    600       TB = (LTB == Header) ? LTB : LFB;
    601     else
    602       FB = (LTB == Header) ? LTB: LFB;
    603   }
    604   assert ((!FB || TB == Header || FB == Header) && "Branches not to header?");
    605   if (!TB || (FB && TB != Header && FB != Header))
    606     return nullptr;
    607 
    608   // Branches of form "if (!P) ..." cause HexagonInstrInfo::AnalyzeBranch
    609   // to put imm(0), followed by P in the vector Cond.
    610   // If TB is not the header, it means that the "not-taken" path must lead
    611   // to the header.
    612   bool Negated = TII->predOpcodeHasNot(Cond) ^ (TB != Header);
    613   unsigned PredReg, PredPos, PredRegFlags;
    614   if (!TII->getPredReg(Cond, PredReg, PredPos, PredRegFlags))
    615     return nullptr;
    616   MachineInstr *CondI = MRI->getVRegDef(PredReg);
    617   unsigned CondOpc = CondI->getOpcode();
    618 
    619   unsigned CmpReg1 = 0, CmpReg2 = 0;
    620   int Mask = 0, ImmValue = 0;
    621   bool AnalyzedCmp = TII->analyzeCompare(CondI, CmpReg1, CmpReg2,
    622                                          Mask, ImmValue);
    623   if (!AnalyzedCmp)
    624     return nullptr;
    625 
    626   // The comparison operator type determines how we compute the loop
    627   // trip count.
    628   OldInsts.push_back(CondI);
    629   OldInsts.push_back(IVOp);
    630 
    631   // Sadly, the following code gets information based on the position
    632   // of the operands in the compare instruction.  This has to be done
    633   // this way, because the comparisons check for a specific relationship
    634   // between the operands (e.g. is-less-than), rather than to find out
    635   // what relationship the operands are in (as on PPC).
    636   Comparison::Kind Cmp;
    637   bool isSwapped = false;
    638   const MachineOperand &Op1 = CondI->getOperand(1);
    639   const MachineOperand &Op2 = CondI->getOperand(2);
    640   const MachineOperand *EndValue = nullptr;
    641 
    642   if (Op1.isReg()) {
    643     if (Op2.isImm() || Op1.getReg() == IVReg)
    644       EndValue = &Op2;
    645     else {
    646       EndValue = &Op1;
    647       isSwapped = true;
    648     }
    649   }
    650 
    651   if (!EndValue)
    652     return nullptr;
    653 
    654   Cmp = getComparisonKind(CondOpc, InitialValue, EndValue, IVBump);
    655   if (!Cmp)
    656     return nullptr;
    657   if (Negated)
    658     Cmp = Comparison::getNegatedComparison(Cmp);
    659   if (isSwapped)
    660     Cmp = Comparison::getSwappedComparison(Cmp);
    661 
    662   if (InitialValue->isReg()) {
    663     unsigned R = InitialValue->getReg();
    664     MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent();
    665     if (!MDT->properlyDominates(DefBB, Header))
    666       return nullptr;
    667     OldInsts.push_back(MRI->getVRegDef(R));
    668   }
    669   if (EndValue->isReg()) {
    670     unsigned R = EndValue->getReg();
    671     MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent();
    672     if (!MDT->properlyDominates(DefBB, Header))
    673       return nullptr;
    674     OldInsts.push_back(MRI->getVRegDef(R));
    675   }
    676 
    677   return computeCount(L, InitialValue, EndValue, IVReg, IVBump, Cmp);
    678 }
    679 
    680 /// \brief Helper function that returns the expression that represents the
    681 /// number of times a loop iterates.  The function takes the operands that
    682 /// represent the loop start value, loop end value, and induction value.
    683 /// Based upon these operands, the function attempts to compute the trip count.
    684 CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop,
    685                                                const MachineOperand *Start,
    686                                                const MachineOperand *End,
    687                                                unsigned IVReg,
    688                                                int64_t IVBump,
    689                                                Comparison::Kind Cmp) const {
    690   // Cannot handle comparison EQ, i.e. while (A == B).
    691   if (Cmp == Comparison::EQ)
    692     return nullptr;
    693 
    694   // Check if either the start or end values are an assignment of an immediate.
    695   // If so, use the immediate value rather than the register.
    696   if (Start->isReg()) {
    697     const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg());
    698     if (StartValInstr && (StartValInstr->getOpcode() == Hexagon::A2_tfrsi ||
    699                           StartValInstr->getOpcode() == Hexagon::A2_tfrpi))
    700       Start = &StartValInstr->getOperand(1);
    701   }
    702   if (End->isReg()) {
    703     const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg());
    704     if (EndValInstr && (EndValInstr->getOpcode() == Hexagon::A2_tfrsi ||
    705                         EndValInstr->getOpcode() == Hexagon::A2_tfrpi))
    706       End = &EndValInstr->getOperand(1);
    707   }
    708 
    709   if (!Start->isReg() && !Start->isImm())
    710     return nullptr;
    711   if (!End->isReg() && !End->isImm())
    712     return nullptr;
    713 
    714   bool CmpLess =     Cmp & Comparison::L;
    715   bool CmpGreater =  Cmp & Comparison::G;
    716   bool CmpHasEqual = Cmp & Comparison::EQ;
    717 
    718   // Avoid certain wrap-arounds.  This doesn't detect all wrap-arounds.
    719   if (CmpLess && IVBump < 0)
    720     // Loop going while iv is "less" with the iv value going down.  Must wrap.
    721     return nullptr;
    722 
    723   if (CmpGreater && IVBump > 0)
    724     // Loop going while iv is "greater" with the iv value going up.  Must wrap.
    725     return nullptr;
    726 
    727   // Phis that may feed into the loop.
    728   LoopFeederMap LoopFeederPhi;
    729 
    730   // Check if the initial value may be zero and can be decremented in the first
    731   // iteration. If the value is zero, the endloop instruction will not decrement
    732   // the loop counter, so we shouldn't generate a hardware loop in this case.
    733   if (loopCountMayWrapOrUnderFlow(Start, End, Loop->getLoopPreheader(), Loop,
    734                                   LoopFeederPhi))
    735       return nullptr;
    736 
    737   if (Start->isImm() && End->isImm()) {
    738     // Both, start and end are immediates.
    739     int64_t StartV = Start->getImm();
    740     int64_t EndV = End->getImm();
    741     int64_t Dist = EndV - StartV;
    742     if (Dist == 0)
    743       return nullptr;
    744 
    745     bool Exact = (Dist % IVBump) == 0;
    746 
    747     if (Cmp == Comparison::NE) {
    748       if (!Exact)
    749         return nullptr;
    750       if ((Dist < 0) ^ (IVBump < 0))
    751         return nullptr;
    752     }
    753 
    754     // For comparisons that include the final value (i.e. include equality
    755     // with the final value), we need to increase the distance by 1.
    756     if (CmpHasEqual)
    757       Dist = Dist > 0 ? Dist+1 : Dist-1;
    758 
    759     // For the loop to iterate, CmpLess should imply Dist > 0.  Similarly,
    760     // CmpGreater should imply Dist < 0.  These conditions could actually
    761     // fail, for example, in unreachable code (which may still appear to be
    762     // reachable in the CFG).
    763     if ((CmpLess && Dist < 0) || (CmpGreater && Dist > 0))
    764       return nullptr;
    765 
    766     // "Normalized" distance, i.e. with the bump set to +-1.
    767     int64_t Dist1 = (IVBump > 0) ? (Dist +  (IVBump - 1)) / IVBump
    768                                  : (-Dist + (-IVBump - 1)) / (-IVBump);
    769     assert (Dist1 > 0 && "Fishy thing.  Both operands have the same sign.");
    770 
    771     uint64_t Count = Dist1;
    772 
    773     if (Count > 0xFFFFFFFFULL)
    774       return nullptr;
    775 
    776     return new CountValue(CountValue::CV_Immediate, Count);
    777   }
    778 
    779   // A general case: Start and End are some values, but the actual
    780   // iteration count may not be available.  If it is not, insert
    781   // a computation of it into the preheader.
    782 
    783   // If the induction variable bump is not a power of 2, quit.
    784   // Othwerise we'd need a general integer division.
    785   if (!isPowerOf2_64(std::abs(IVBump)))
    786     return nullptr;
    787 
    788   MachineBasicBlock *PH = Loop->getLoopPreheader();
    789   assert (PH && "Should have a preheader by now");
    790   MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator();
    791   DebugLoc DL;
    792   if (InsertPos != PH->end())
    793     DL = InsertPos->getDebugLoc();
    794 
    795   // If Start is an immediate and End is a register, the trip count
    796   // will be "reg - imm".  Hexagon's "subtract immediate" instruction
    797   // is actually "reg + -imm".
    798 
    799   // If the loop IV is going downwards, i.e. if the bump is negative,
    800   // then the iteration count (computed as End-Start) will need to be
    801   // negated.  To avoid the negation, just swap Start and End.
    802   if (IVBump < 0) {
    803     std::swap(Start, End);
    804     IVBump = -IVBump;
    805   }
    806   // Cmp may now have a wrong direction, e.g.  LEs may now be GEs.
    807   // Signedness, and "including equality" are preserved.
    808 
    809   bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm)
    810   bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg)
    811 
    812   int64_t StartV = 0, EndV = 0;
    813   if (Start->isImm())
    814     StartV = Start->getImm();
    815   if (End->isImm())
    816     EndV = End->getImm();
    817 
    818   int64_t AdjV = 0;
    819   // To compute the iteration count, we would need this computation:
    820   //   Count = (End - Start + (IVBump-1)) / IVBump
    821   // or, when CmpHasEqual:
    822   //   Count = (End - Start + (IVBump-1)+1) / IVBump
    823   // The "IVBump-1" part is the adjustment (AdjV).  We can avoid
    824   // generating an instruction specifically to add it if we can adjust
    825   // the immediate values for Start or End.
    826 
    827   if (CmpHasEqual) {
    828     // Need to add 1 to the total iteration count.
    829     if (Start->isImm())
    830       StartV--;
    831     else if (End->isImm())
    832       EndV++;
    833     else
    834       AdjV += 1;
    835   }
    836 
    837   if (Cmp != Comparison::NE) {
    838     if (Start->isImm())
    839       StartV -= (IVBump-1);
    840     else if (End->isImm())
    841       EndV += (IVBump-1);
    842     else
    843       AdjV += (IVBump-1);
    844   }
    845 
    846   unsigned R = 0, SR = 0;
    847   if (Start->isReg()) {
    848     R = Start->getReg();
    849     SR = Start->getSubReg();
    850   } else {
    851     R = End->getReg();
    852     SR = End->getSubReg();
    853   }
    854   const TargetRegisterClass *RC = MRI->getRegClass(R);
    855   // Hardware loops cannot handle 64-bit registers.  If it's a double
    856   // register, it has to have a subregister.
    857   if (!SR && RC == &Hexagon::DoubleRegsRegClass)
    858     return nullptr;
    859   const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass;
    860 
    861   // Compute DistR (register with the distance between Start and End).
    862   unsigned DistR, DistSR;
    863 
    864   // Avoid special case, where the start value is an imm(0).
    865   if (Start->isImm() && StartV == 0) {
    866     DistR = End->getReg();
    867     DistSR = End->getSubReg();
    868   } else {
    869     const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::A2_sub) :
    870                               (RegToImm ? TII->get(Hexagon::A2_subri) :
    871                                           TII->get(Hexagon::A2_addi));
    872     if (RegToReg || RegToImm) {
    873       unsigned SubR = MRI->createVirtualRegister(IntRC);
    874       MachineInstrBuilder SubIB =
    875         BuildMI(*PH, InsertPos, DL, SubD, SubR);
    876 
    877       if (RegToReg)
    878         SubIB.addReg(End->getReg(), 0, End->getSubReg())
    879           .addReg(Start->getReg(), 0, Start->getSubReg());
    880       else
    881         SubIB.addImm(EndV)
    882           .addReg(Start->getReg(), 0, Start->getSubReg());
    883       DistR = SubR;
    884     } else {
    885       // If the loop has been unrolled, we should use the original loop count
    886       // instead of recalculating the value. This will avoid additional
    887       // 'Add' instruction.
    888       const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg());
    889       if (EndValInstr->getOpcode() == Hexagon::A2_addi &&
    890           EndValInstr->getOperand(2).getImm() == StartV) {
    891         DistR = EndValInstr->getOperand(1).getReg();
    892       } else {
    893         unsigned SubR = MRI->createVirtualRegister(IntRC);
    894         MachineInstrBuilder SubIB =
    895           BuildMI(*PH, InsertPos, DL, SubD, SubR);
    896         SubIB.addReg(End->getReg(), 0, End->getSubReg())
    897              .addImm(-StartV);
    898         DistR = SubR;
    899       }
    900     }
    901     DistSR = 0;
    902   }
    903 
    904   // From DistR, compute AdjR (register with the adjusted distance).
    905   unsigned AdjR, AdjSR;
    906 
    907   if (AdjV == 0) {
    908     AdjR = DistR;
    909     AdjSR = DistSR;
    910   } else {
    911     // Generate CountR = ADD DistR, AdjVal
    912     unsigned AddR = MRI->createVirtualRegister(IntRC);
    913     MCInstrDesc const &AddD = TII->get(Hexagon::A2_addi);
    914     BuildMI(*PH, InsertPos, DL, AddD, AddR)
    915       .addReg(DistR, 0, DistSR)
    916       .addImm(AdjV);
    917 
    918     AdjR = AddR;
    919     AdjSR = 0;
    920   }
    921 
    922   // From AdjR, compute CountR (register with the final count).
    923   unsigned CountR, CountSR;
    924 
    925   if (IVBump == 1) {
    926     CountR = AdjR;
    927     CountSR = AdjSR;
    928   } else {
    929     // The IV bump is a power of two. Log_2(IV bump) is the shift amount.
    930     unsigned Shift = Log2_32(IVBump);
    931 
    932     // Generate NormR = LSR DistR, Shift.
    933     unsigned LsrR = MRI->createVirtualRegister(IntRC);
    934     const MCInstrDesc &LsrD = TII->get(Hexagon::S2_lsr_i_r);
    935     BuildMI(*PH, InsertPos, DL, LsrD, LsrR)
    936       .addReg(AdjR, 0, AdjSR)
    937       .addImm(Shift);
    938 
    939     CountR = LsrR;
    940     CountSR = 0;
    941   }
    942 
    943   return new CountValue(CountValue::CV_Register, CountR, CountSR);
    944 }
    945 
    946 /// \brief Return true if the operation is invalid within hardware loop.
    947 bool HexagonHardwareLoops::isInvalidLoopOperation(const MachineInstr *MI,
    948                                                   bool IsInnerHWLoop) const {
    949 
    950   // Call is not allowed because the callee may use a hardware loop except for
    951   // the case when the call never returns.
    952   if (MI->getDesc().isCall() && MI->getOpcode() != Hexagon::CALLv3nr)
    953     return true;
    954 
    955   // Check if the instruction defines a hardware loop register.
    956   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    957     const MachineOperand &MO = MI->getOperand(i);
    958     if (!MO.isReg() || !MO.isDef())
    959       continue;
    960     unsigned R = MO.getReg();
    961     if (IsInnerHWLoop && (R == Hexagon::LC0 || R == Hexagon::SA0 ||
    962                           R == Hexagon::LC1 || R == Hexagon::SA1))
    963       return true;
    964     if (!IsInnerHWLoop && (R == Hexagon::LC1 || R == Hexagon::SA1))
    965       return true;
    966   }
    967   return false;
    968 }
    969 
    970 /// \brief Return true if the loop contains an instruction that inhibits
    971 /// the use of the hardware loop instruction.
    972 bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L,
    973     bool IsInnerHWLoop) const {
    974   const std::vector<MachineBasicBlock *> &Blocks = L->getBlocks();
    975   DEBUG(dbgs() << "\nhw_loop head, BB#" << Blocks[0]->getNumber(););
    976   for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
    977     MachineBasicBlock *MBB = Blocks[i];
    978     for (MachineBasicBlock::iterator
    979            MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) {
    980       const MachineInstr *MI = &*MII;
    981       if (isInvalidLoopOperation(MI, IsInnerHWLoop)) {
    982         DEBUG(dbgs()<< "\nCannot convert to hw_loop due to:"; MI->dump(););
    983         return true;
    984       }
    985     }
    986   }
    987   return false;
    988 }
    989 
    990 /// \brief Returns true if the instruction is dead.  This was essentially
    991 /// copied from DeadMachineInstructionElim::isDead, but with special cases
    992 /// for inline asm, physical registers and instructions with side effects
    993 /// removed.
    994 bool HexagonHardwareLoops::isDead(const MachineInstr *MI,
    995                               SmallVectorImpl<MachineInstr *> &DeadPhis) const {
    996   // Examine each operand.
    997   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    998     const MachineOperand &MO = MI->getOperand(i);
    999     if (!MO.isReg() || !MO.isDef())
   1000       continue;
   1001 
   1002     unsigned Reg = MO.getReg();
   1003     if (MRI->use_nodbg_empty(Reg))
   1004       continue;
   1005 
   1006     typedef MachineRegisterInfo::use_nodbg_iterator use_nodbg_iterator;
   1007 
   1008     // This instruction has users, but if the only user is the phi node for the
   1009     // parent block, and the only use of that phi node is this instruction, then
   1010     // this instruction is dead: both it (and the phi node) can be removed.
   1011     use_nodbg_iterator I = MRI->use_nodbg_begin(Reg);
   1012     use_nodbg_iterator End = MRI->use_nodbg_end();
   1013     if (std::next(I) != End || !I->getParent()->isPHI())
   1014       return false;
   1015 
   1016     MachineInstr *OnePhi = I->getParent();
   1017     for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) {
   1018       const MachineOperand &OPO = OnePhi->getOperand(j);
   1019       if (!OPO.isReg() || !OPO.isDef())
   1020         continue;
   1021 
   1022       unsigned OPReg = OPO.getReg();
   1023       use_nodbg_iterator nextJ;
   1024       for (use_nodbg_iterator J = MRI->use_nodbg_begin(OPReg);
   1025            J != End; J = nextJ) {
   1026         nextJ = std::next(J);
   1027         MachineOperand &Use = *J;
   1028         MachineInstr *UseMI = Use.getParent();
   1029 
   1030         // If the phi node has a user that is not MI, bail.
   1031         if (MI != UseMI)
   1032           return false;
   1033       }
   1034     }
   1035     DeadPhis.push_back(OnePhi);
   1036   }
   1037 
   1038   // If there are no defs with uses, the instruction is dead.
   1039   return true;
   1040 }
   1041 
   1042 void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) {
   1043   // This procedure was essentially copied from DeadMachineInstructionElim.
   1044 
   1045   SmallVector<MachineInstr*, 1> DeadPhis;
   1046   if (isDead(MI, DeadPhis)) {
   1047     DEBUG(dbgs() << "HW looping will remove: " << *MI);
   1048 
   1049     // It is possible that some DBG_VALUE instructions refer to this
   1050     // instruction.  Examine each def operand for such references;
   1051     // if found, mark the DBG_VALUE as undef (but don't delete it).
   1052     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1053       const MachineOperand &MO = MI->getOperand(i);
   1054       if (!MO.isReg() || !MO.isDef())
   1055         continue;
   1056       unsigned Reg = MO.getReg();
   1057       MachineRegisterInfo::use_iterator nextI;
   1058       for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg),
   1059            E = MRI->use_end(); I != E; I = nextI) {
   1060         nextI = std::next(I);  // I is invalidated by the setReg
   1061         MachineOperand &Use = *I;
   1062         MachineInstr *UseMI = I->getParent();
   1063         if (UseMI == MI)
   1064           continue;
   1065         if (Use.isDebug())
   1066           UseMI->getOperand(0).setReg(0U);
   1067       }
   1068     }
   1069 
   1070     MI->eraseFromParent();
   1071     for (unsigned i = 0; i < DeadPhis.size(); ++i)
   1072       DeadPhis[i]->eraseFromParent();
   1073   }
   1074 }
   1075 
   1076 /// \brief Check if the loop is a candidate for converting to a hardware
   1077 /// loop.  If so, then perform the transformation.
   1078 ///
   1079 /// This function works on innermost loops first.  A loop can be converted
   1080 /// if it is a counting loop; either a register value or an immediate.
   1081 ///
   1082 /// The code makes several assumptions about the representation of the loop
   1083 /// in llvm.
   1084 bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L,
   1085                                                  bool &RecL0used,
   1086                                                  bool &RecL1used) {
   1087   // This is just for sanity.
   1088   assert(L->getHeader() && "Loop without a header?");
   1089 
   1090   bool Changed = false;
   1091   bool L0Used = false;
   1092   bool L1Used = false;
   1093 
   1094   // Process nested loops first.
   1095   for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) {
   1096     Changed |= convertToHardwareLoop(*I, RecL0used, RecL1used);
   1097     L0Used |= RecL0used;
   1098     L1Used |= RecL1used;
   1099   }
   1100 
   1101   // If a nested loop has been converted, then we can't convert this loop.
   1102   if (Changed && L0Used && L1Used)
   1103     return Changed;
   1104 
   1105   unsigned LOOP_i;
   1106   unsigned LOOP_r;
   1107   unsigned ENDLOOP;
   1108 
   1109   // Flag used to track loopN instruction:
   1110   // 1 - Hardware loop is being generated for the inner most loop.
   1111   // 0 - Hardware loop is being generated for the outer loop.
   1112   unsigned IsInnerHWLoop = 1;
   1113 
   1114   if (L0Used) {
   1115     LOOP_i = Hexagon::J2_loop1i;
   1116     LOOP_r = Hexagon::J2_loop1r;
   1117     ENDLOOP = Hexagon::ENDLOOP1;
   1118     IsInnerHWLoop = 0;
   1119   } else {
   1120     LOOP_i = Hexagon::J2_loop0i;
   1121     LOOP_r = Hexagon::J2_loop0r;
   1122     ENDLOOP = Hexagon::ENDLOOP0;
   1123   }
   1124 
   1125 #ifndef NDEBUG
   1126   // Stop trying after reaching the limit (if any).
   1127   int Limit = HWLoopLimit;
   1128   if (Limit >= 0) {
   1129     if (Counter >= HWLoopLimit)
   1130       return false;
   1131     Counter++;
   1132   }
   1133 #endif
   1134 
   1135   // Does the loop contain any invalid instructions?
   1136   if (containsInvalidInstruction(L, IsInnerHWLoop))
   1137     return false;
   1138 
   1139   MachineBasicBlock *LastMBB = getExitingBlock(L);
   1140   // Don't generate hw loop if the loop has more than one exit.
   1141   if (!LastMBB)
   1142     return false;
   1143 
   1144   MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator();
   1145   if (LastI == LastMBB->end())
   1146     return false;
   1147 
   1148   // Is the induction variable bump feeding the latch condition?
   1149   if (!fixupInductionVariable(L))
   1150     return false;
   1151 
   1152   // Ensure the loop has a preheader: the loop instruction will be
   1153   // placed there.
   1154   MachineBasicBlock *Preheader = L->getLoopPreheader();
   1155   if (!Preheader) {
   1156     Preheader = createPreheaderForLoop(L);
   1157     if (!Preheader)
   1158       return false;
   1159   }
   1160 
   1161   MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator();
   1162 
   1163   SmallVector<MachineInstr*, 2> OldInsts;
   1164   // Are we able to determine the trip count for the loop?
   1165   CountValue *TripCount = getLoopTripCount(L, OldInsts);
   1166   if (!TripCount)
   1167     return false;
   1168 
   1169   // Is the trip count available in the preheader?
   1170   if (TripCount->isReg()) {
   1171     // There will be a use of the register inserted into the preheader,
   1172     // so make sure that the register is actually defined at that point.
   1173     MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg());
   1174     MachineBasicBlock *BBDef = TCDef->getParent();
   1175     if (!MDT->dominates(BBDef, Preheader))
   1176       return false;
   1177   }
   1178 
   1179   // Determine the loop start.
   1180   MachineBasicBlock *TopBlock = L->getTopBlock();
   1181   MachineBasicBlock *ExitingBlock = getExitingBlock(L);
   1182   MachineBasicBlock *LoopStart = 0;
   1183   if (ExitingBlock !=  L->getLoopLatch()) {
   1184     MachineBasicBlock *TB = 0, *FB = 0;
   1185     SmallVector<MachineOperand, 2> Cond;
   1186 
   1187     if (TII->AnalyzeBranch(*ExitingBlock, TB, FB, Cond, false))
   1188       return false;
   1189 
   1190     if (L->contains(TB))
   1191       LoopStart = TB;
   1192     else if (L->contains(FB))
   1193       LoopStart = FB;
   1194     else
   1195       return false;
   1196   }
   1197   else
   1198     LoopStart = TopBlock;
   1199 
   1200   // Convert the loop to a hardware loop.
   1201   DEBUG(dbgs() << "Change to hardware loop at "; L->dump());
   1202   DebugLoc DL;
   1203   if (InsertPos != Preheader->end())
   1204     DL = InsertPos->getDebugLoc();
   1205 
   1206   if (TripCount->isReg()) {
   1207     // Create a copy of the loop count register.
   1208     unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
   1209     BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg)
   1210       .addReg(TripCount->getReg(), 0, TripCount->getSubReg());
   1211     // Add the Loop instruction to the beginning of the loop.
   1212     BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)).addMBB(LoopStart)
   1213       .addReg(CountReg);
   1214   } else {
   1215     assert(TripCount->isImm() && "Expecting immediate value for trip count");
   1216     // Add the Loop immediate instruction to the beginning of the loop,
   1217     // if the immediate fits in the instructions.  Otherwise, we need to
   1218     // create a new virtual register.
   1219     int64_t CountImm = TripCount->getImm();
   1220     if (!TII->isValidOffset(LOOP_i, CountImm)) {
   1221       unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
   1222       BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::A2_tfrsi), CountReg)
   1223         .addImm(CountImm);
   1224       BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r))
   1225         .addMBB(LoopStart).addReg(CountReg);
   1226     } else
   1227       BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_i))
   1228         .addMBB(LoopStart).addImm(CountImm);
   1229   }
   1230 
   1231   // Make sure the loop start always has a reference in the CFG.  We need
   1232   // to create a BlockAddress operand to get this mechanism to work both the
   1233   // MachineBasicBlock and BasicBlock objects need the flag set.
   1234   LoopStart->setHasAddressTaken();
   1235   // This line is needed to set the hasAddressTaken flag on the BasicBlock
   1236   // object.
   1237   BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock()));
   1238 
   1239   // Replace the loop branch with an endloop instruction.
   1240   DebugLoc LastIDL = LastI->getDebugLoc();
   1241   BuildMI(*LastMBB, LastI, LastIDL, TII->get(ENDLOOP)).addMBB(LoopStart);
   1242 
   1243   // The loop ends with either:
   1244   //  - a conditional branch followed by an unconditional branch, or
   1245   //  - a conditional branch to the loop start.
   1246   if (LastI->getOpcode() == Hexagon::J2_jumpt ||
   1247       LastI->getOpcode() == Hexagon::J2_jumpf) {
   1248     // Delete one and change/add an uncond. branch to out of the loop.
   1249     MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB();
   1250     LastI = LastMBB->erase(LastI);
   1251     if (!L->contains(BranchTarget)) {
   1252       if (LastI != LastMBB->end())
   1253         LastI = LastMBB->erase(LastI);
   1254       SmallVector<MachineOperand, 0> Cond;
   1255       TII->InsertBranch(*LastMBB, BranchTarget, nullptr, Cond, LastIDL);
   1256     }
   1257   } else {
   1258     // Conditional branch to loop start; just delete it.
   1259     LastMBB->erase(LastI);
   1260   }
   1261   delete TripCount;
   1262 
   1263   // The induction operation and the comparison may now be
   1264   // unneeded. If these are unneeded, then remove them.
   1265   for (unsigned i = 0; i < OldInsts.size(); ++i)
   1266     removeIfDead(OldInsts[i]);
   1267 
   1268   ++NumHWLoops;
   1269 
   1270   // Set RecL1used and RecL0used only after hardware loop has been
   1271   // successfully generated. Doing it earlier can cause wrong loop instruction
   1272   // to be used.
   1273   if (L0Used) // Loop0 was already used. So, the correct loop must be loop1.
   1274     RecL1used = true;
   1275   else
   1276     RecL0used = true;
   1277 
   1278   return true;
   1279 }
   1280 
   1281 bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI,
   1282                                             MachineInstr *CmpI) {
   1283   assert (BumpI != CmpI && "Bump and compare in the same instruction?");
   1284 
   1285   MachineBasicBlock *BB = BumpI->getParent();
   1286   if (CmpI->getParent() != BB)
   1287     return false;
   1288 
   1289   typedef MachineBasicBlock::instr_iterator instr_iterator;
   1290   // Check if things are in order to begin with.
   1291   for (instr_iterator I(BumpI), E = BB->instr_end(); I != E; ++I)
   1292     if (&*I == CmpI)
   1293       return true;
   1294 
   1295   // Out of order.
   1296   unsigned PredR = CmpI->getOperand(0).getReg();
   1297   bool FoundBump = false;
   1298   instr_iterator CmpIt = CmpI->getIterator(), NextIt = std::next(CmpIt);
   1299   for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) {
   1300     MachineInstr *In = &*I;
   1301     for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) {
   1302       MachineOperand &MO = In->getOperand(i);
   1303       if (MO.isReg() && MO.isUse()) {
   1304         if (MO.getReg() == PredR)  // Found an intervening use of PredR.
   1305           return false;
   1306       }
   1307     }
   1308 
   1309     if (In == BumpI) {
   1310       BB->splice(++BumpI->getIterator(), BB, CmpI->getIterator());
   1311       FoundBump = true;
   1312       break;
   1313     }
   1314   }
   1315   assert (FoundBump && "Cannot determine instruction order");
   1316   return FoundBump;
   1317 }
   1318 
   1319 /// This function is required to break recursion. Visiting phis in a loop may
   1320 /// result in recursion during compilation. We break the recursion by making
   1321 /// sure that we visit a MachineOperand and its definition in a
   1322 /// MachineInstruction only once. If we attempt to visit more than once, then
   1323 /// there is recursion, and will return false.
   1324 bool HexagonHardwareLoops::isLoopFeeder(MachineLoop *L, MachineBasicBlock *A,
   1325                                         MachineInstr *MI,
   1326                                         const MachineOperand *MO,
   1327                                         LoopFeederMap &LoopFeederPhi) const {
   1328   if (LoopFeederPhi.find(MO->getReg()) == LoopFeederPhi.end()) {
   1329     const std::vector<MachineBasicBlock *> &Blocks = L->getBlocks();
   1330     DEBUG(dbgs() << "\nhw_loop head, BB#" << Blocks[0]->getNumber(););
   1331     // Ignore all BBs that form Loop.
   1332     for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
   1333       MachineBasicBlock *MBB = Blocks[i];
   1334       if (A == MBB)
   1335         return false;
   1336     }
   1337     MachineInstr *Def = MRI->getVRegDef(MO->getReg());
   1338     LoopFeederPhi.insert(std::make_pair(MO->getReg(), Def));
   1339     return true;
   1340   } else
   1341     // Already visited node.
   1342     return false;
   1343 }
   1344 
   1345 /// Return true if a Phi may generate a value that can underflow.
   1346 /// This function calls loopCountMayWrapOrUnderFlow for each Phi operand.
   1347 bool HexagonHardwareLoops::phiMayWrapOrUnderflow(
   1348     MachineInstr *Phi, const MachineOperand *EndVal, MachineBasicBlock *MBB,
   1349     MachineLoop *L, LoopFeederMap &LoopFeederPhi) const {
   1350   assert(Phi->isPHI() && "Expecting a Phi.");
   1351   // Walk through each Phi, and its used operands. Make sure that
   1352   // if there is recursion in Phi, we won't generate hardware loops.
   1353   for (int i = 1, n = Phi->getNumOperands(); i < n; i += 2)
   1354     if (isLoopFeeder(L, MBB, Phi, &(Phi->getOperand(i)), LoopFeederPhi))
   1355       if (loopCountMayWrapOrUnderFlow(&(Phi->getOperand(i)), EndVal,
   1356                                       Phi->getParent(), L, LoopFeederPhi))
   1357         return true;
   1358   return false;
   1359 }
   1360 
   1361 /// Return true if the induction variable can underflow in the first iteration.
   1362 /// An example, is an initial unsigned value that is 0 and is decrement in the
   1363 /// first itertion of a do-while loop.  In this case, we cannot generate a
   1364 /// hardware loop because the endloop instruction does not decrement the loop
   1365 /// counter if it is <= 1. We only need to perform this analysis if the
   1366 /// initial value is a register.
   1367 ///
   1368 /// This function assumes the initial value may underfow unless proven
   1369 /// otherwise. If the type is signed, then we don't care because signed
   1370 /// underflow is undefined. We attempt to prove the initial value is not
   1371 /// zero by perfoming a crude analysis of the loop counter. This function
   1372 /// checks if the initial value is used in any comparison prior to the loop
   1373 /// and, if so, assumes the comparison is a range check. This is inexact,
   1374 /// but will catch the simple cases.
   1375 bool HexagonHardwareLoops::loopCountMayWrapOrUnderFlow(
   1376     const MachineOperand *InitVal, const MachineOperand *EndVal,
   1377     MachineBasicBlock *MBB, MachineLoop *L,
   1378     LoopFeederMap &LoopFeederPhi) const {
   1379   // Only check register values since they are unknown.
   1380   if (!InitVal->isReg())
   1381     return false;
   1382 
   1383   if (!EndVal->isImm())
   1384     return false;
   1385 
   1386   // A register value that is assigned an immediate is a known value, and it
   1387   // won't underflow in the first iteration.
   1388   int64_t Imm;
   1389   if (checkForImmediate(*InitVal, Imm))
   1390     return (EndVal->getImm() == Imm);
   1391 
   1392   unsigned Reg = InitVal->getReg();
   1393 
   1394   // We don't know the value of a physical register.
   1395   if (!TargetRegisterInfo::isVirtualRegister(Reg))
   1396     return true;
   1397 
   1398   MachineInstr *Def = MRI->getVRegDef(Reg);
   1399   if (!Def)
   1400     return true;
   1401 
   1402   // If the initial value is a Phi or copy and the operands may not underflow,
   1403   // then the definition cannot be underflow either.
   1404   if (Def->isPHI() && !phiMayWrapOrUnderflow(Def, EndVal, Def->getParent(),
   1405                                              L, LoopFeederPhi))
   1406     return false;
   1407   if (Def->isCopy() && !loopCountMayWrapOrUnderFlow(&(Def->getOperand(1)),
   1408                                                     EndVal, Def->getParent(),
   1409                                                     L, LoopFeederPhi))
   1410     return false;
   1411 
   1412   // Iterate over the uses of the initial value. If the initial value is used
   1413   // in a compare, then we assume this is a range check that ensures the loop
   1414   // doesn't underflow. This is not an exact test and should be improved.
   1415   for (MachineRegisterInfo::use_instr_nodbg_iterator I = MRI->use_instr_nodbg_begin(Reg),
   1416          E = MRI->use_instr_nodbg_end(); I != E; ++I) {
   1417     MachineInstr *MI = &*I;
   1418     unsigned CmpReg1 = 0, CmpReg2 = 0;
   1419     int CmpMask = 0, CmpValue = 0;
   1420 
   1421     if (!TII->analyzeCompare(MI, CmpReg1, CmpReg2, CmpMask, CmpValue))
   1422       continue;
   1423 
   1424     MachineBasicBlock *TBB = 0, *FBB = 0;
   1425     SmallVector<MachineOperand, 2> Cond;
   1426     if (TII->AnalyzeBranch(*MI->getParent(), TBB, FBB, Cond, false))
   1427       continue;
   1428 
   1429     Comparison::Kind Cmp = getComparisonKind(MI->getOpcode(), 0, 0, 0);
   1430     if (Cmp == 0)
   1431       continue;
   1432     if (TII->predOpcodeHasNot(Cond) ^ (TBB != MBB))
   1433       Cmp = Comparison::getNegatedComparison(Cmp);
   1434     if (CmpReg2 != 0 && CmpReg2 == Reg)
   1435       Cmp = Comparison::getSwappedComparison(Cmp);
   1436 
   1437     // Signed underflow is undefined.
   1438     if (Comparison::isSigned(Cmp))
   1439       return false;
   1440 
   1441     // Check if there is a comparison of the initial value. If the initial value
   1442     // is greater than or not equal to another value, then assume this is a
   1443     // range check.
   1444     if ((Cmp & Comparison::G) || Cmp == Comparison::NE)
   1445       return false;
   1446   }
   1447 
   1448   // OK - this is a hack that needs to be improved. We really need to analyze
   1449   // the instructions performed on the initial value. This works on the simplest
   1450   // cases only.
   1451   if (!Def->isCopy() && !Def->isPHI())
   1452     return false;
   1453 
   1454   return true;
   1455 }
   1456 
   1457 bool HexagonHardwareLoops::checkForImmediate(const MachineOperand &MO,
   1458                                              int64_t &Val) const {
   1459   if (MO.isImm()) {
   1460     Val = MO.getImm();
   1461     return true;
   1462   }
   1463   if (!MO.isReg())
   1464     return false;
   1465 
   1466   // MO is a register. Check whether it is defined as an immediate value,
   1467   // and if so, get the value of it in TV. That value will then need to be
   1468   // processed to handle potential subregisters in MO.
   1469   int64_t TV;
   1470 
   1471   unsigned R = MO.getReg();
   1472   if (!TargetRegisterInfo::isVirtualRegister(R))
   1473     return false;
   1474   MachineInstr *DI = MRI->getVRegDef(R);
   1475   unsigned DOpc = DI->getOpcode();
   1476   switch (DOpc) {
   1477     case TargetOpcode::COPY:
   1478     case Hexagon::A2_tfrsi:
   1479     case Hexagon::A2_tfrpi:
   1480     case Hexagon::CONST32_Int_Real:
   1481     case Hexagon::CONST64_Int_Real: {
   1482       // Call recursively to avoid an extra check whether operand(1) is
   1483       // indeed an immediate (it could be a global address, for example),
   1484       // plus we can handle COPY at the same time.
   1485       if (!checkForImmediate(DI->getOperand(1), TV))
   1486         return false;
   1487       break;
   1488     }
   1489     case Hexagon::A2_combineii:
   1490     case Hexagon::A4_combineir:
   1491     case Hexagon::A4_combineii:
   1492     case Hexagon::A4_combineri:
   1493     case Hexagon::A2_combinew: {
   1494       const MachineOperand &S1 = DI->getOperand(1);
   1495       const MachineOperand &S2 = DI->getOperand(2);
   1496       int64_t V1, V2;
   1497       if (!checkForImmediate(S1, V1) || !checkForImmediate(S2, V2))
   1498         return false;
   1499       TV = V2 | (V1 << 32);
   1500       break;
   1501     }
   1502     case TargetOpcode::REG_SEQUENCE: {
   1503       const MachineOperand &S1 = DI->getOperand(1);
   1504       const MachineOperand &S3 = DI->getOperand(3);
   1505       int64_t V1, V3;
   1506       if (!checkForImmediate(S1, V1) || !checkForImmediate(S3, V3))
   1507         return false;
   1508       unsigned Sub2 = DI->getOperand(2).getImm();
   1509       unsigned Sub4 = DI->getOperand(4).getImm();
   1510       if (Sub2 == Hexagon::subreg_loreg && Sub4 == Hexagon::subreg_hireg)
   1511         TV = V1 | (V3 << 32);
   1512       else if (Sub2 == Hexagon::subreg_hireg && Sub4 == Hexagon::subreg_loreg)
   1513         TV = V3 | (V1 << 32);
   1514       else
   1515         llvm_unreachable("Unexpected form of REG_SEQUENCE");
   1516       break;
   1517     }
   1518 
   1519     default:
   1520       return false;
   1521   }
   1522 
   1523   // By now, we should have successfuly obtained the immediate value defining
   1524   // the register referenced in MO. Handle a potential use of a subregister.
   1525   switch (MO.getSubReg()) {
   1526     case Hexagon::subreg_loreg:
   1527       Val = TV & 0xFFFFFFFFULL;
   1528       break;
   1529     case Hexagon::subreg_hireg:
   1530       Val = (TV >> 32) & 0xFFFFFFFFULL;
   1531       break;
   1532     default:
   1533       Val = TV;
   1534       break;
   1535   }
   1536   return true;
   1537 }
   1538 
   1539 void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) {
   1540   if (MO.isImm()) {
   1541     MO.setImm(Val);
   1542     return;
   1543   }
   1544 
   1545   assert(MO.isReg());
   1546   unsigned R = MO.getReg();
   1547   MachineInstr *DI = MRI->getVRegDef(R);
   1548 
   1549   const TargetRegisterClass *RC = MRI->getRegClass(R);
   1550   unsigned NewR = MRI->createVirtualRegister(RC);
   1551   MachineBasicBlock &B = *DI->getParent();
   1552   DebugLoc DL = DI->getDebugLoc();
   1553   BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR).addImm(Val);
   1554   MO.setReg(NewR);
   1555 }
   1556 
   1557 static bool isImmValidForOpcode(unsigned CmpOpc, int64_t Imm) {
   1558   // These two instructions are not extendable.
   1559   if (CmpOpc == Hexagon::A4_cmpbeqi)
   1560     return isUInt<8>(Imm);
   1561   if (CmpOpc == Hexagon::A4_cmpbgti)
   1562     return isInt<8>(Imm);
   1563   // The rest of the comparison-with-immediate instructions are extendable.
   1564   return true;
   1565 }
   1566 
   1567 bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) {
   1568   MachineBasicBlock *Header = L->getHeader();
   1569   MachineBasicBlock *Latch = L->getLoopLatch();
   1570   MachineBasicBlock *ExitingBlock = getExitingBlock(L);
   1571 
   1572   if (!(Header && Latch && ExitingBlock))
   1573     return false;
   1574 
   1575   // These data structures follow the same concept as the corresponding
   1576   // ones in findInductionRegister (where some comments are).
   1577   typedef std::pair<unsigned,int64_t> RegisterBump;
   1578   typedef std::pair<unsigned,RegisterBump> RegisterInduction;
   1579   typedef std::set<RegisterInduction> RegisterInductionSet;
   1580 
   1581   // Register candidates for induction variables, with their associated bumps.
   1582   RegisterInductionSet IndRegs;
   1583 
   1584   // Look for induction patterns:
   1585   //   vreg1 = PHI ..., [ latch, vreg2 ]
   1586   //   vreg2 = ADD vreg1, imm
   1587   typedef MachineBasicBlock::instr_iterator instr_iterator;
   1588   for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
   1589        I != E && I->isPHI(); ++I) {
   1590     MachineInstr *Phi = &*I;
   1591 
   1592     // Have a PHI instruction.
   1593     for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) {
   1594       if (Phi->getOperand(i+1).getMBB() != Latch)
   1595         continue;
   1596 
   1597       unsigned PhiReg = Phi->getOperand(i).getReg();
   1598       MachineInstr *DI = MRI->getVRegDef(PhiReg);
   1599       unsigned UpdOpc = DI->getOpcode();
   1600       bool isAdd = (UpdOpc == Hexagon::A2_addi || UpdOpc == Hexagon::A2_addp);
   1601 
   1602       if (isAdd) {
   1603         // If the register operand to the add/sub is the PHI we are looking
   1604         // at, this meets the induction pattern.
   1605         unsigned IndReg = DI->getOperand(1).getReg();
   1606         MachineOperand &Opnd2 = DI->getOperand(2);
   1607         int64_t V;
   1608         if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) {
   1609           unsigned UpdReg = DI->getOperand(0).getReg();
   1610           IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
   1611         }
   1612       }
   1613     }  // for (i)
   1614   }  // for (instr)
   1615 
   1616   if (IndRegs.empty())
   1617     return false;
   1618 
   1619   MachineBasicBlock *TB = nullptr, *FB = nullptr;
   1620   SmallVector<MachineOperand,2> Cond;
   1621   // AnalyzeBranch returns true if it fails to analyze branch.
   1622   bool NotAnalyzed = TII->AnalyzeBranch(*ExitingBlock, TB, FB, Cond, false);
   1623   if (NotAnalyzed || Cond.empty())
   1624     return false;
   1625 
   1626   if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) {
   1627     MachineBasicBlock *LTB = 0, *LFB = 0;
   1628     SmallVector<MachineOperand,2> LCond;
   1629     bool NotAnalyzed = TII->AnalyzeBranch(*Latch, LTB, LFB, LCond, false);
   1630     if (NotAnalyzed)
   1631       return false;
   1632 
   1633     // Since latch is not the exiting block, the latch branch should be an
   1634     // unconditional branch to the loop header.
   1635     if (TB == Latch)
   1636       TB = (LTB == Header) ? LTB : LFB;
   1637     else
   1638       FB = (LTB == Header) ? LTB : LFB;
   1639   }
   1640   if (TB != Header) {
   1641     if (FB != Header) {
   1642       // The latch/exit block does not go back to the header.
   1643       return false;
   1644     }
   1645     // FB is the header (i.e., uncond. jump to branch header)
   1646     // In this case, the LoopBody -> TB should not be a back edge otherwise
   1647     // it could result in an infinite loop after conversion to hw_loop.
   1648     // This case can happen when the Latch has two jumps like this:
   1649     // Jmp_c OuterLoopHeader <-- TB
   1650     // Jmp   InnerLoopHeader <-- FB
   1651     if (MDT->dominates(TB, FB))
   1652       return false;
   1653   }
   1654 
   1655   // Expecting a predicate register as a condition.  It won't be a hardware
   1656   // predicate register at this point yet, just a vreg.
   1657   // HexagonInstrInfo::AnalyzeBranch for negated branches inserts imm(0)
   1658   // into Cond, followed by the predicate register.  For non-negated branches
   1659   // it's just the register.
   1660   unsigned CSz = Cond.size();
   1661   if (CSz != 1 && CSz != 2)
   1662     return false;
   1663 
   1664   if (!Cond[CSz-1].isReg())
   1665     return false;
   1666 
   1667   unsigned P = Cond[CSz-1].getReg();
   1668   MachineInstr *PredDef = MRI->getVRegDef(P);
   1669 
   1670   if (!PredDef->isCompare())
   1671     return false;
   1672 
   1673   SmallSet<unsigned,2> CmpRegs;
   1674   MachineOperand *CmpImmOp = nullptr;
   1675 
   1676   // Go over all operands to the compare and look for immediate and register
   1677   // operands.  Assume that if the compare has a single register use and a
   1678   // single immediate operand, then the register is being compared with the
   1679   // immediate value.
   1680   for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) {
   1681     MachineOperand &MO = PredDef->getOperand(i);
   1682     if (MO.isReg()) {
   1683       // Skip all implicit references.  In one case there was:
   1684       //   %vreg140<def> = FCMPUGT32_rr %vreg138, %vreg139, %USR<imp-use>
   1685       if (MO.isImplicit())
   1686         continue;
   1687       if (MO.isUse()) {
   1688         if (!isImmediate(MO)) {
   1689           CmpRegs.insert(MO.getReg());
   1690           continue;
   1691         }
   1692         // Consider the register to be the "immediate" operand.
   1693         if (CmpImmOp)
   1694           return false;
   1695         CmpImmOp = &MO;
   1696       }
   1697     } else if (MO.isImm()) {
   1698       if (CmpImmOp)    // A second immediate argument?  Confusing.  Bail out.
   1699         return false;
   1700       CmpImmOp = &MO;
   1701     }
   1702   }
   1703 
   1704   if (CmpRegs.empty())
   1705     return false;
   1706 
   1707   // Check if the compared register follows the order we want.  Fix if needed.
   1708   for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end();
   1709        I != E; ++I) {
   1710     // This is a success.  If the register used in the comparison is one that
   1711     // we have identified as a bumped (updated) induction register, there is
   1712     // nothing to do.
   1713     if (CmpRegs.count(I->first))
   1714       return true;
   1715 
   1716     // Otherwise, if the register being compared comes out of a PHI node,
   1717     // and has been recognized as following the induction pattern, and is
   1718     // compared against an immediate, we can fix it.
   1719     const RegisterBump &RB = I->second;
   1720     if (CmpRegs.count(RB.first)) {
   1721       if (!CmpImmOp) {
   1722         // If both operands to the compare instruction are registers, see if
   1723         // it can be changed to use induction register as one of the operands.
   1724         MachineInstr *IndI = nullptr;
   1725         MachineInstr *nonIndI = nullptr;
   1726         MachineOperand *IndMO = nullptr;
   1727         MachineOperand *nonIndMO = nullptr;
   1728 
   1729         for (unsigned i = 1, n = PredDef->getNumOperands(); i < n; ++i) {
   1730           MachineOperand &MO = PredDef->getOperand(i);
   1731           if (MO.isReg() && MO.getReg() == RB.first) {
   1732             DEBUG(dbgs() << "\n DefMI(" << i << ") = "
   1733                          << *(MRI->getVRegDef(I->first)));
   1734             if (IndI)
   1735               return false;
   1736 
   1737             IndI = MRI->getVRegDef(I->first);
   1738             IndMO = &MO;
   1739           } else if (MO.isReg()) {
   1740             DEBUG(dbgs() << "\n DefMI(" << i << ") = "
   1741                          << *(MRI->getVRegDef(MO.getReg())));
   1742             if (nonIndI)
   1743               return false;
   1744 
   1745             nonIndI = MRI->getVRegDef(MO.getReg());
   1746             nonIndMO = &MO;
   1747           }
   1748         }
   1749         if (IndI && nonIndI &&
   1750             nonIndI->getOpcode() == Hexagon::A2_addi &&
   1751             nonIndI->getOperand(2).isImm() &&
   1752             nonIndI->getOperand(2).getImm() == - RB.second) {
   1753           bool Order = orderBumpCompare(IndI, PredDef);
   1754           if (Order) {
   1755             IndMO->setReg(I->first);
   1756             nonIndMO->setReg(nonIndI->getOperand(1).getReg());
   1757             return true;
   1758           }
   1759         }
   1760         return false;
   1761       }
   1762 
   1763       // It is not valid to do this transformation on an unsigned comparison
   1764       // because it may underflow.
   1765       Comparison::Kind Cmp = getComparisonKind(PredDef->getOpcode(), 0, 0, 0);
   1766       if (!Cmp || Comparison::isUnsigned(Cmp))
   1767         return false;
   1768 
   1769       // If the register is being compared against an immediate, try changing
   1770       // the compare instruction to use induction register and adjust the
   1771       // immediate operand.
   1772       int64_t CmpImm = getImmediate(*CmpImmOp);
   1773       int64_t V = RB.second;
   1774       // Handle Overflow (64-bit).
   1775       if (((V > 0) && (CmpImm > INT64_MAX - V)) ||
   1776           ((V < 0) && (CmpImm < INT64_MIN - V)))
   1777         return false;
   1778       CmpImm += V;
   1779       // Most comparisons of register against an immediate value allow
   1780       // the immediate to be constant-extended. There are some exceptions
   1781       // though. Make sure the new combination will work.
   1782       if (CmpImmOp->isImm())
   1783         if (!isImmValidForOpcode(PredDef->getOpcode(), CmpImm))
   1784           return false;
   1785 
   1786       // Make sure that the compare happens after the bump.  Otherwise,
   1787       // after the fixup, the compare would use a yet-undefined register.
   1788       MachineInstr *BumpI = MRI->getVRegDef(I->first);
   1789       bool Order = orderBumpCompare(BumpI, PredDef);
   1790       if (!Order)
   1791         return false;
   1792 
   1793       // Finally, fix the compare instruction.
   1794       setImmediate(*CmpImmOp, CmpImm);
   1795       for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) {
   1796         MachineOperand &MO = PredDef->getOperand(i);
   1797         if (MO.isReg() && MO.getReg() == RB.first) {
   1798           MO.setReg(I->first);
   1799           return true;
   1800         }
   1801       }
   1802     }
   1803   }
   1804 
   1805   return false;
   1806 }
   1807 
   1808 /// \brief Create a preheader for a given loop.
   1809 MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop(
   1810       MachineLoop *L) {
   1811   if (MachineBasicBlock *TmpPH = L->getLoopPreheader())
   1812     return TmpPH;
   1813 
   1814   if (!HWCreatePreheader)
   1815     return nullptr;
   1816 
   1817   MachineBasicBlock *Header = L->getHeader();
   1818   MachineBasicBlock *Latch = L->getLoopLatch();
   1819   MachineBasicBlock *ExitingBlock = getExitingBlock(L);
   1820   MachineFunction *MF = Header->getParent();
   1821   DebugLoc DL;
   1822 
   1823 #ifndef NDEBUG
   1824   if ((PHFn != "") && (PHFn != MF->getName()))
   1825     return nullptr;
   1826 #endif
   1827 
   1828   if (!Latch || !ExitingBlock || Header->hasAddressTaken())
   1829     return nullptr;
   1830 
   1831   typedef MachineBasicBlock::instr_iterator instr_iterator;
   1832 
   1833   // Verify that all existing predecessors have analyzable branches
   1834   // (or no branches at all).
   1835   typedef std::vector<MachineBasicBlock*> MBBVector;
   1836   MBBVector Preds(Header->pred_begin(), Header->pred_end());
   1837   SmallVector<MachineOperand,2> Tmp1;
   1838   MachineBasicBlock *TB = nullptr, *FB = nullptr;
   1839 
   1840   if (TII->AnalyzeBranch(*ExitingBlock, TB, FB, Tmp1, false))
   1841     return nullptr;
   1842 
   1843   for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) {
   1844     MachineBasicBlock *PB = *I;
   1845     bool NotAnalyzed = TII->AnalyzeBranch(*PB, TB, FB, Tmp1, false);
   1846     if (NotAnalyzed)
   1847       return nullptr;
   1848   }
   1849 
   1850   MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock();
   1851   MF->insert(Header->getIterator(), NewPH);
   1852 
   1853   if (Header->pred_size() > 2) {
   1854     // Ensure that the header has only two predecessors: the preheader and
   1855     // the loop latch.  Any additional predecessors of the header should
   1856     // join at the newly created preheader. Inspect all PHI nodes from the
   1857     // header and create appropriate corresponding PHI nodes in the preheader.
   1858 
   1859     for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
   1860          I != E && I->isPHI(); ++I) {
   1861       MachineInstr *PN = &*I;
   1862 
   1863       const MCInstrDesc &PD = TII->get(TargetOpcode::PHI);
   1864       MachineInstr *NewPN = MF->CreateMachineInstr(PD, DL);
   1865       NewPH->insert(NewPH->end(), NewPN);
   1866 
   1867       unsigned PR = PN->getOperand(0).getReg();
   1868       const TargetRegisterClass *RC = MRI->getRegClass(PR);
   1869       unsigned NewPR = MRI->createVirtualRegister(RC);
   1870       NewPN->addOperand(MachineOperand::CreateReg(NewPR, true));
   1871 
   1872       // Copy all non-latch operands of a header's PHI node to the newly
   1873       // created PHI node in the preheader.
   1874       for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) {
   1875         unsigned PredR = PN->getOperand(i).getReg();
   1876         unsigned PredRSub = PN->getOperand(i).getSubReg();
   1877         MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB();
   1878         if (PredB == Latch)
   1879           continue;
   1880 
   1881         MachineOperand MO = MachineOperand::CreateReg(PredR, false);
   1882         MO.setSubReg(PredRSub);
   1883         NewPN->addOperand(MO);
   1884         NewPN->addOperand(MachineOperand::CreateMBB(PredB));
   1885       }
   1886 
   1887       // Remove copied operands from the old PHI node and add the value
   1888       // coming from the preheader's PHI.
   1889       for (int i = PN->getNumOperands()-2; i > 0; i -= 2) {
   1890         MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB();
   1891         if (PredB != Latch) {
   1892           PN->RemoveOperand(i+1);
   1893           PN->RemoveOperand(i);
   1894         }
   1895       }
   1896       PN->addOperand(MachineOperand::CreateReg(NewPR, false));
   1897       PN->addOperand(MachineOperand::CreateMBB(NewPH));
   1898     }
   1899 
   1900   } else {
   1901     assert(Header->pred_size() == 2);
   1902 
   1903     // The header has only two predecessors, but the non-latch predecessor
   1904     // is not a preheader (e.g. it has other successors, etc.)
   1905     // In such a case we don't need any extra PHI nodes in the new preheader,
   1906     // all we need is to adjust existing PHIs in the header to now refer to
   1907     // the new preheader.
   1908     for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
   1909          I != E && I->isPHI(); ++I) {
   1910       MachineInstr *PN = &*I;
   1911       for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) {
   1912         MachineOperand &MO = PN->getOperand(i+1);
   1913         if (MO.getMBB() != Latch)
   1914           MO.setMBB(NewPH);
   1915       }
   1916     }
   1917   }
   1918 
   1919   // "Reroute" the CFG edges to link in the new preheader.
   1920   // If any of the predecessors falls through to the header, insert a branch
   1921   // to the new preheader in that place.
   1922   SmallVector<MachineOperand,1> Tmp2;
   1923   SmallVector<MachineOperand,1> EmptyCond;
   1924 
   1925   TB = FB = nullptr;
   1926 
   1927   for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) {
   1928     MachineBasicBlock *PB = *I;
   1929     if (PB != Latch) {
   1930       Tmp2.clear();
   1931       bool NotAnalyzed = TII->AnalyzeBranch(*PB, TB, FB, Tmp2, false);
   1932       (void)NotAnalyzed; // suppress compiler warning
   1933       assert (!NotAnalyzed && "Should be analyzable!");
   1934       if (TB != Header && (Tmp2.empty() || FB != Header))
   1935         TII->InsertBranch(*PB, NewPH, nullptr, EmptyCond, DL);
   1936       PB->ReplaceUsesOfBlockWith(Header, NewPH);
   1937     }
   1938   }
   1939 
   1940   // It can happen that the latch block will fall through into the header.
   1941   // Insert an unconditional branch to the header.
   1942   TB = FB = nullptr;
   1943   bool LatchNotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Tmp2, false);
   1944   (void)LatchNotAnalyzed; // suppress compiler warning
   1945   assert (!LatchNotAnalyzed && "Should be analyzable!");
   1946   if (!TB && !FB)
   1947     TII->InsertBranch(*Latch, Header, nullptr, EmptyCond, DL);
   1948 
   1949   // Finally, the branch from the preheader to the header.
   1950   TII->InsertBranch(*NewPH, Header, nullptr, EmptyCond, DL);
   1951   NewPH->addSuccessor(Header);
   1952 
   1953   MachineLoop *ParentLoop = L->getParentLoop();
   1954   if (ParentLoop)
   1955     ParentLoop->addBasicBlockToLoop(NewPH, MLI->getBase());
   1956 
   1957   // Update the dominator information with the new preheader.
   1958   if (MDT) {
   1959     MachineDomTreeNode *HDom = MDT->getNode(Header);
   1960     MDT->addNewBlock(NewPH, HDom->getIDom()->getBlock());
   1961     MDT->changeImmediateDominator(Header, NewPH);
   1962   }
   1963 
   1964   return NewPH;
   1965 }
   1966